Knowledge-Powered Data Science for Integrated Modeling in Geosciences

Yolanda Gil

Information Sciences Institute Department of Computer Science Spatial Sciences Institute

University of Southern California

http://www.isi.edu/~gil @yolandagil gil@isi.edu

The Future is Here: Knowledge-Powered Data Science

Focus shifted from data to models

- Model characterization, reuse, and integration
- Need to incorporate model-centered science knowledge about phenomena and context
 - Knowledge about physical, geological, chemical, biological, ecological, and anthropomorphic factors
 - Knowledge about the user **goals and context**
- This would enable novel forms of reasoning, integrating, visualizing, managing, learning, and discovery with geosciences data

Intelligent Systems for Geosciences: An Essential Research Agenda

By Yolanda Gil, Suzanne A. Pierce, Hassan Babaie, Arindam Banerjee, Kirk Borne, Gary Bust, Michelle Cheatham, Imme Ebert-phoff, Carla Gomes, Mary Hill, John Horel, Leslie Hsu, Jim Kinter, Craig Knoblock, David Krum, Vipin Kumar, Pierre Lermusiaux, Yan Liu, Chris North, Victor Pankratius, Shanan Peters, Beth Plale, Allen Pope, Sai Ravela, Juan Restrepo, Aaron Ridley, Hanan Samet, Shashi Shekhar Communications of the ACM, January 2019, Vol. 62 No. 1, Pages 76-84 10.1145/3192335 Comments

SHARE:

User Name

Password

- » Forgot Password?
- » Create an ACM Web Account

VIEW AS:

旦

Many aspects of geosciences pose no systems research. Geoscience data is to be uncertain, intermittent, sparse scale. Geosciences processes and obj spatiotemporal boundaries. The lack model evaluation, testing, and comp these challenges requires breakthrou transform intelligent systems, while geosciences in turn. Although there I beneficial interactions between the in geosciences communities,^{4,12} the po research in intelligent systems for ge

ే

ച

Е

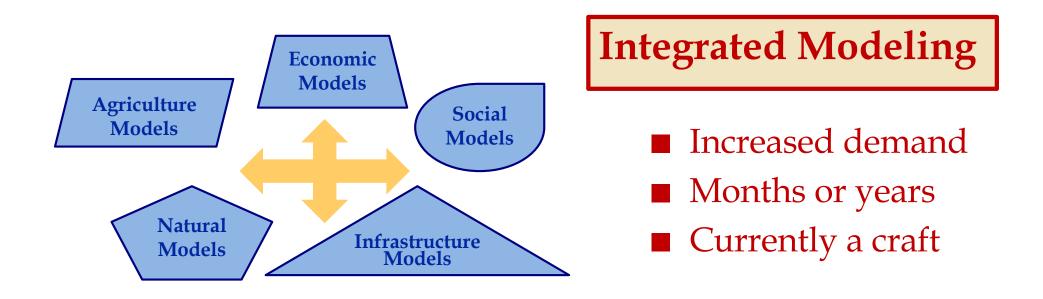
f

+

Outline

- The need for integrated modeling in geosciences
- Diversity of models across disciplines
- MINT: knowledge-powered data science for integrated modeling
- Intelligent systems for geosciences

Understanding Natural-Human System Interactions: Water Use, Land Cover Changes, Food Insecurity,...

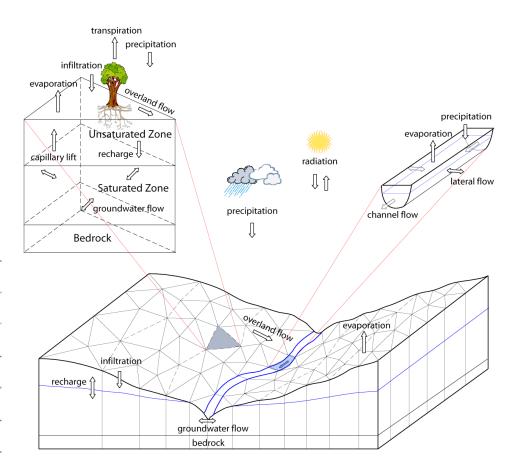


A Grand Challenge for Geospatial Data Science

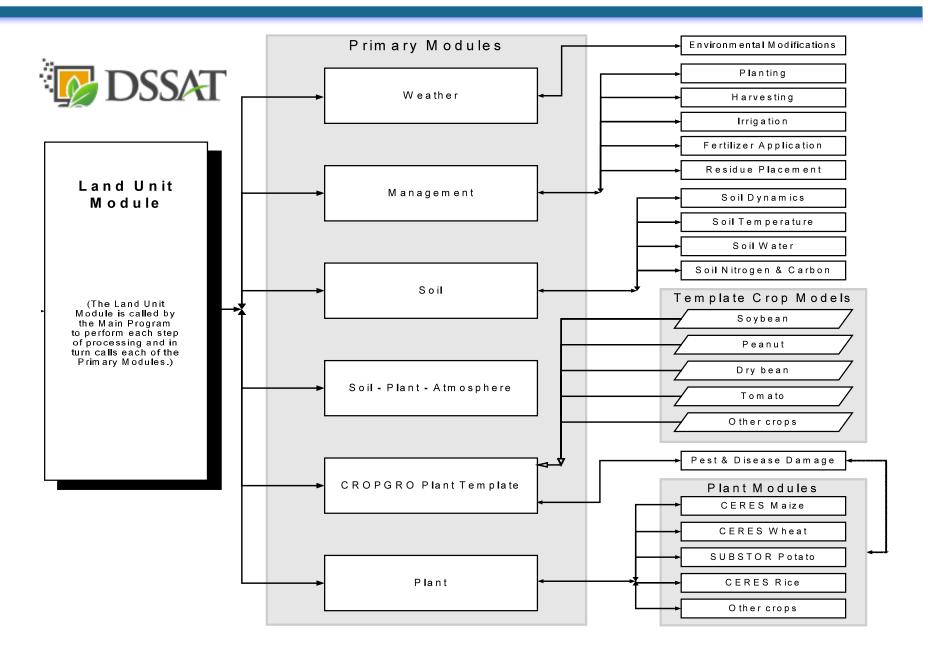
Integrating pairs of natural models is very hard

- Eg, surface water models + ground water models
- Integrating natural and human models is even harder
 - Eg, agriculture + socioeconomic models of human behavior

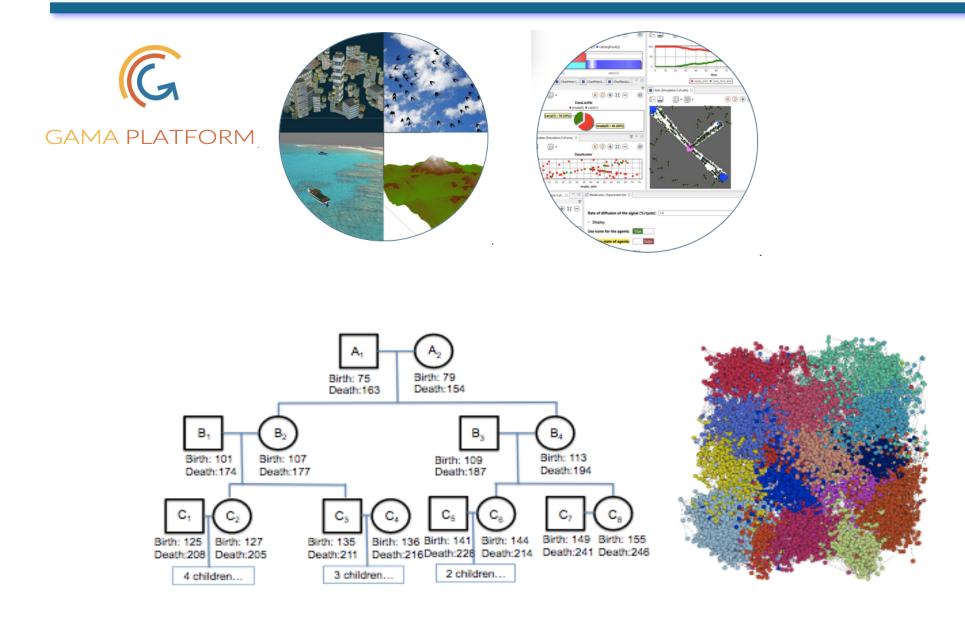
Outline

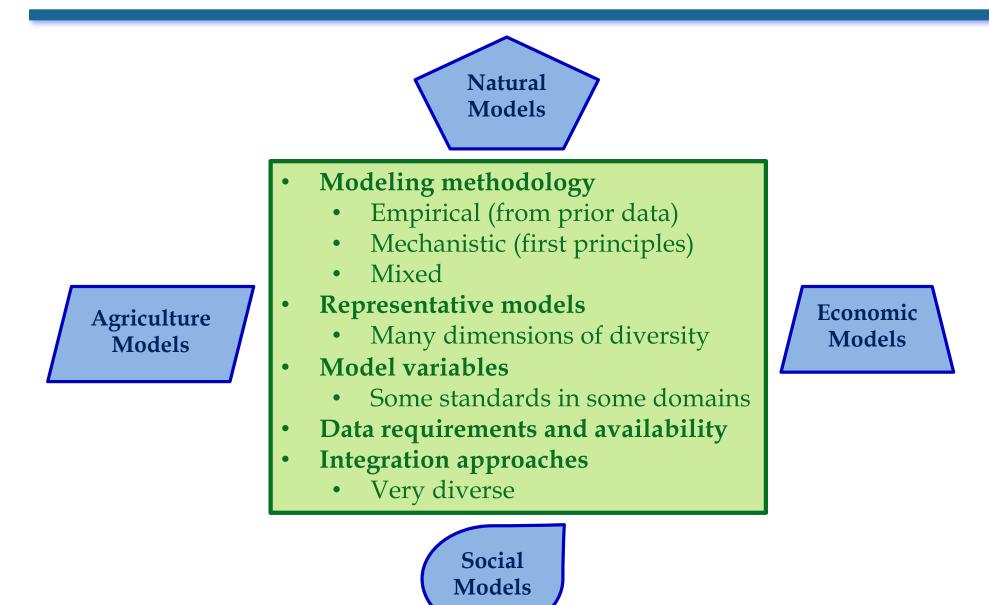

- The need for integrated modeling in geosciences
- Diversity of models across disciplines
- MINT: knowledge-powered data science for integrated modeling
- Intelligent systems for geosciences

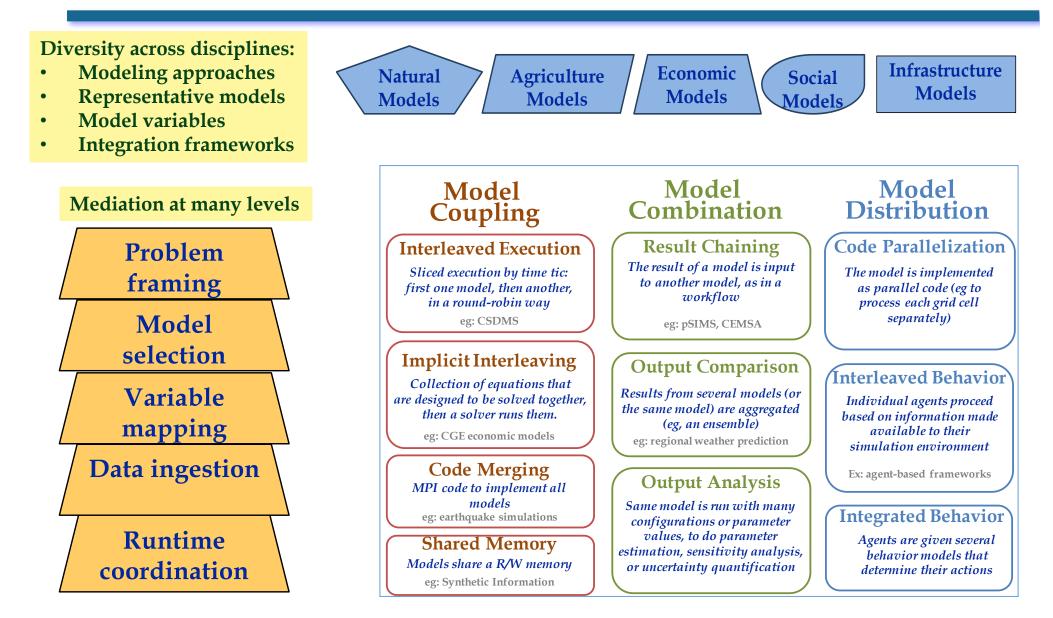
A Representative Hydrology Model


PIHM hydrology model

- Needs data on *essential terrestrial variables*: slope, vegetation, etc.
- Generates discharge, flooding


Process	Governing equation/model	Original governing equations	Semi-discrete form ODEs
Channel Routing	St. Venant Equation	$\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} = q$	$\left(\frac{d_{2}^{2}}{dt} = P_{z} - \sum Q_{gc} + \sum Q_{ac} + Q_{in} - Q_{out} - E_{z}\right)_{i}$
Overland Flow	St. Venant Equation	$\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} + \frac{\partial (vh)}{\partial y} = q$	$\left(\frac{\partial h}{\partial t} = P_{\phi} - I - E_{\phi} - Q_{oc} + \sum_{j=1}^{3} Q_{z}^{(j)}\right)_{i}$
Unsaturated Flow	Richard Equation	$C(\psi)\frac{\partial\psi}{\partial t}=\nabla\cdot(K(\psi)\nabla(\psi+Z)$	$\left(\frac{d\xi}{dt} = I - q^{\psi} - ET_{y}\right)_{i}$
Groundwater Flow	Richard Equation	$C(\psi)\frac{\partial\psi}{\partial t}=\nabla\cdot(K(\psi)\nabla(\psi+Z)$	$\left(\frac{dl_{\varphi}^{*}}{dt} = q^{q} + \sum_{j=1}^{3} Q_{g}^{-jj} - Q_{l} + Q_{ge}\right)_{l}$
Interception	Bucket Model	$\frac{dS_I}{dt} = P - E_I - P_o$	$\left(\frac{dS_I}{dt} = P - E_I - P_o\right)_i$
Snow melt	ISNOBAL	$\frac{dS_{max}}{dt} = P - E_{max} - \Delta w$	$\left(\frac{dS_{source}}{dt} = P - E_{source} - \Delta w\right)_{i}$
Evapotran- spiration	Pennman- Monteith Method	$ET_{0} = \frac{\Delta(R_{a} - G) + \rho_{a}C_{y}}{\Delta + \gamma(1 + \frac{r_{s}}{r_{a}})}$	$\left(ET_{\phi} = \frac{\Delta(R_{\sigma} - G) + \rho_{\sigma}C_{\rho} \frac{(e_{s} - e_{\sigma})}{r_{\sigma}}}{\Delta + \gamma \left(1 + \frac{r_{\sigma}}{r_{\sigma}}\right)}\right)_{i}$


A Representative Agriculture Model


A Representative Social Model

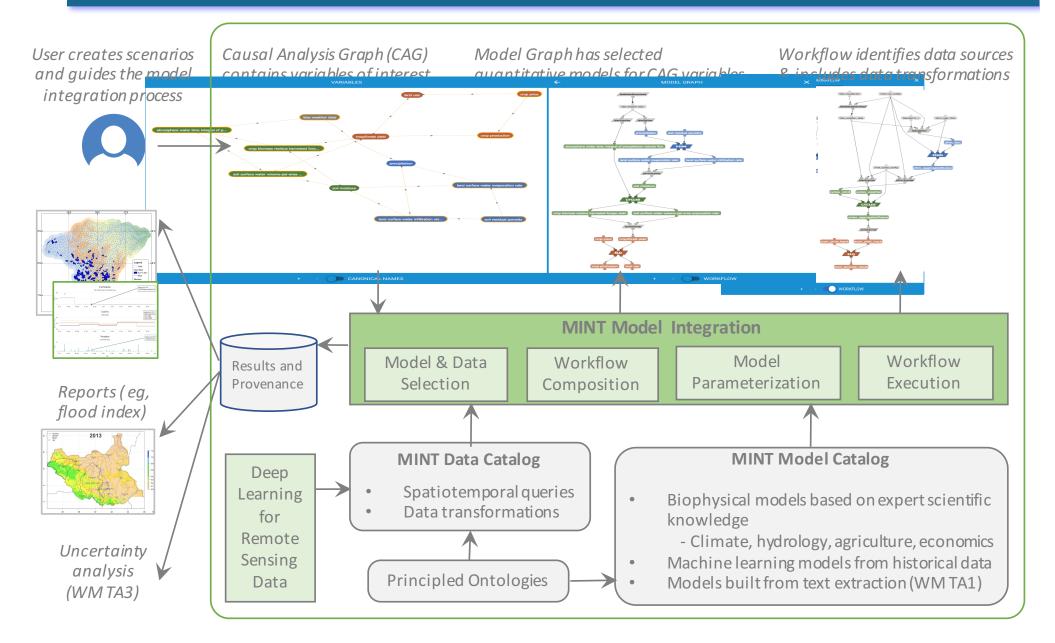
Modeling in Different Disciplines: Diversity of Approaches

Integrated Modeling: Bridging Across Disciplines

How Can We Facilitate Model Integration?

Problem framing	Very diverse scope	Manual definition
Model selection	Very diverse approa	ches <i>Manual selection</i>
Variable mapping	Very diverse variabl	es Manual mapping
Data ingestion	Very diverse data ne	eds Disconnected tools

Outline


- The need for integrated modeling in geosciences
- Diversity of models across disciplines
- MINT: knowledge-powered data science for integrated modeling
- Intelligent systems for geosciences

Knowledge-Powered Data Science for Integrated Modeling

Problem framing	Structured frameworks for scenario scoping	
Model selection	Semantic descriptions of models and assumptions	
Variable mapping	Ontologies of variables and relations	
Data ingestion	Knowledge-guided information extraction and integration	

MINT: Model INTegration [Gil et al iEMSs'18] http://mint-project.info

Collaboration with Daniel Garijo, Deborah Khider, Craig Knoblock, Ewa Deelman, Rafael Ferreira (USC/ISI), Vipin Kumar (UM), Scott Peckham (CU), Chris Duffy & Armen Kemanian (PSU), Kelly Cobourn (VT), Suzanne Pierce (UT)

Knowledge-Powered Data Science for Integrated Modeling in MINT

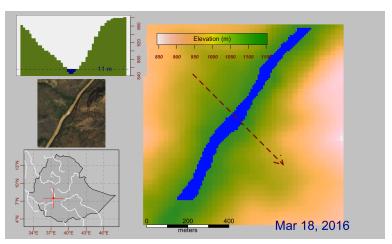
Problem framing	Structured frameworks for scenario scoping	
Model selection	Semantic descriptions of models and assumptions	
Variable mapping	Ontologies of variables and relations	
Data ingestion	Knowledge-guided information extraction and integration	

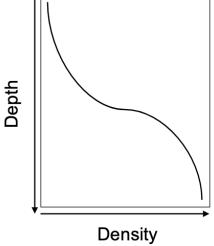
Knowledge-Powered Data Science for Integrated Modeling in MINT

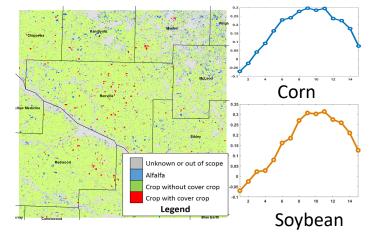
Problem framing	Structured frameworks for scenario scoping
Model selection	Semantic descriptions of models and assumptions
Variable mapping	Ontologies of variables and relations
Data ingestion	Knowledge-guided information extraction and integration

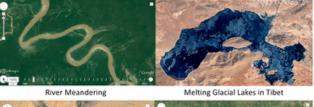
TGDS: Theory-Guided Data Science [Kumar et al 2017]

Machine learning to generate physically consistent models Physics laws guide deep learning



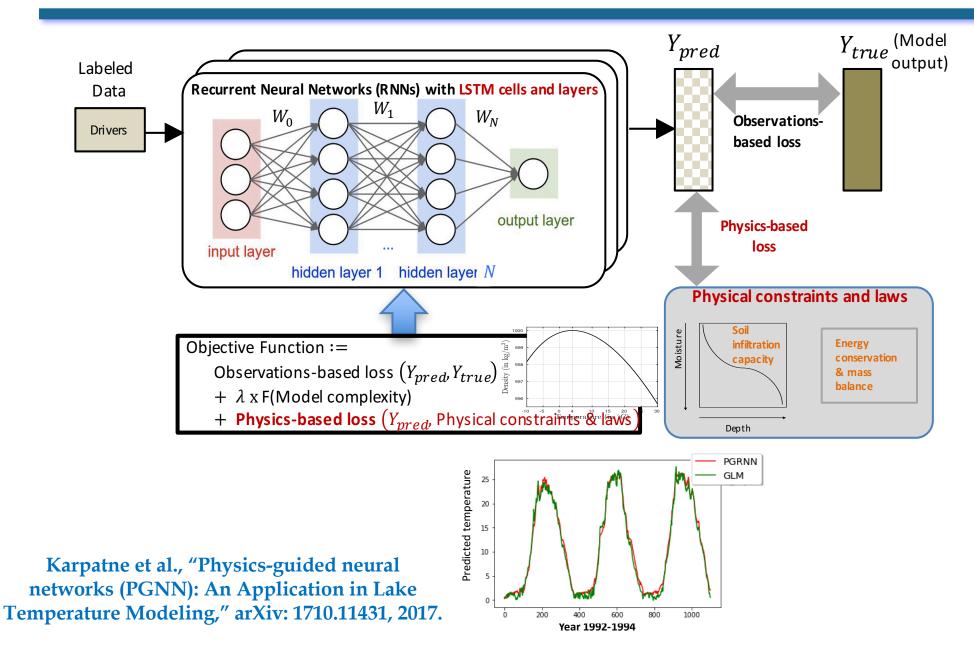



Corn patch



Corn

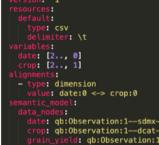


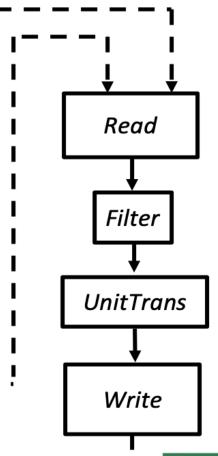


Shrinking Lake Mead

Dam Construction

Physics-Guided Neural Networks (PGNNs) [Karpatne et al 2017]

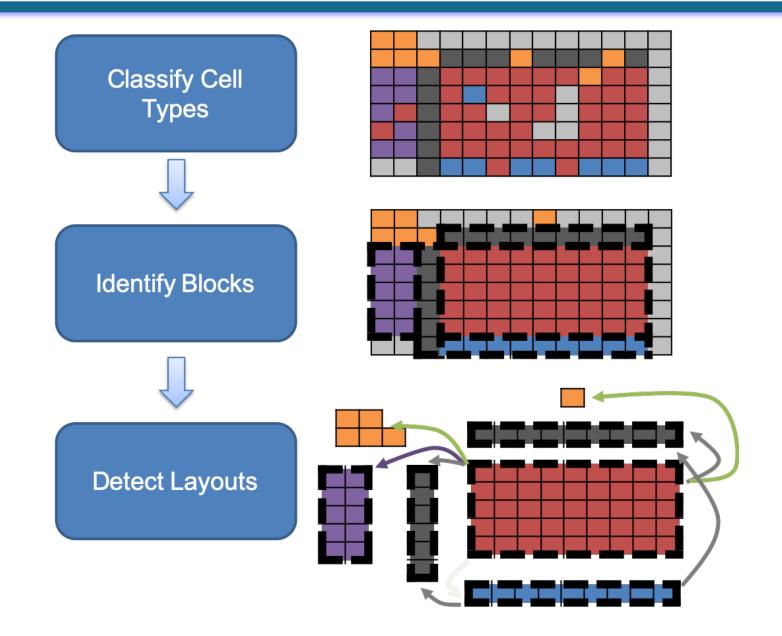



Automated Data Transformations [Knoblock et al 2018]

🖈 wfp_food_prices_ethiopia

	A	В	с	D	E	F	G
1	date	cmname	unit	category	price	currency	country
2	#date	#item+name	#item+unit	#item+type	#value	#currency	#country+nar
3	7/15/05	Sorghum - Wi	100 KG	cereals and to	238	ETB	Ethiopia
4	8/15/05	Sorghum - Wi	100 KG	cereals and to	250	ETB	Ethiopia
5	9/15/05	Sorghum - W	100 KG	cereals and to	248	ETB	Ethiopia
6	10/15/05	Sorghum - W	100 KG	cereals and to	233	ETB	Ethiopia
7	11/15/05	Sorghum - W	100 KG	cereals and to	252	ETB	Ethiopia

wfp_food_prices D-REPR yml file



🚯 wfp_food_prices_ethiopia.modified

	A	В	С	D	E
1	sdmx-dimen	sdmx-attribute:refArea	sdmx-a	dcat-dimension:thing	dcat:measure_1_value
2	7/15/05	Ethiopia - Addis Ababa	\$/kg	Sorghum - Wholesale	0.082134514
3	8/15/05	Ethiopia - Addis Ababa	\$/kg	Sorghum - Wholesale	0.08627575
4	9/15/05	Ethiopia - Addis Ababa	\$/kg	Sorghum - Wholesale	0.085585544
5	10/15/05	Ethiopia - Addis Ababa	\$/kg	Sorghum - Wholesale	0.080408999
6	11/15/05	Ethiopia - Addis Ababa	\$/kg	Sorghum - Wholesale	0.086965956
7	12/15/05	Ethiopia - Addis Ababa	\$/kg	Sorghum - Wholesale	0.087311059

Table Understanding [Vu et al WWW'19]

Knowledge-Powered Data Science for Integrated Modeling in MINT

Problem framing	Structured frameworks for scenario scoping
Model selection	Semantic descriptions of models and assumptions
Variable mapping	Ontologies of variables and relations
Data ingestion	Knowledge-guided information extraction and integration

Ontologies for Modeling Variables [Peckham & Stoica 2019]

Object: Soil

Processes (related to verbs):

Aeration, Bioturbation, Creep, Drainage, Erosion, Fertilization, Formation, Gelifluction, Movement, Slumping, Solifluction, Tilling, Weathering

Process Quantities:

creep_speed erosion_rate fertilization_time tilling_depth

- Property names are nominalizations of adjectives.
- Quantity is a subclass of Property. (Numerical, often has units.)
- A pairing of an object with a quantity is a variable.

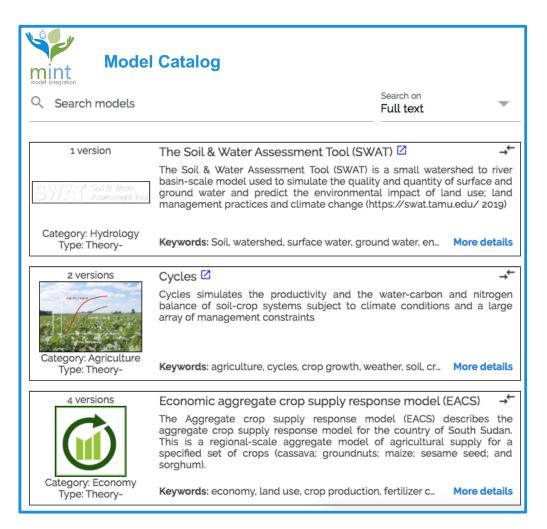
State Quantities: age alkalinity brooks-corey_c_parameter clay_volume_fraction depth (to bedrock) hydraulic_conductivity organic_matter_volume_fraction

porosity pressure_head sand_volume_fraction saturated_hydraulic_conductivity water_volume_fraction

Properties:

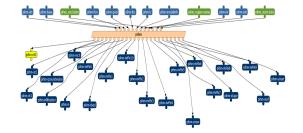
color fertility

- An index or scale numerically quantifies a property (eg, drought index, flood index)
- Index is a subclass of Quantity



Knowledge-Powered Data Science for Integrated Modeling in MINT

Problem framing	Structured frameworks for scenario scoping
Model selection	Semantic descriptions of models and assumptions
Variable mapping	Ontologies of variables and relations
Data ingestion	Knowledge-guided information extraction and integration


Knowledge-Rich Catalogs of Models [Garijo et al eScience 2019]

- 1. Model invocation
- 2. Data formats
- 3. Model variables
- 4. Constraints
- 5. Adjustable parameters
- 6. Interventions

1) Model Invocation

Configuration: selected processesSetup: calibrated for specific areas

(?)

Creation date: 2016 Category: Agriculture Model type: Theory Guided

Cycles

Cycles simulates the productivity and the water, carbon and nitrogen balance of soil-crop systems subject to climate conditions and a large array of management constraints. Overall the model is set up to be daily. Some processes such as water balance are temporally nested (subdaily)

- Authors: Armen Kemanian
- Publisher: The Pennsylvania State University
 - Select a configuration
 - Cycles configuration (v0.9.4) exposing weed fraction and fertilizer rate
 - Select a configuration setup
- 🤨 Cycles calibrated model (vo.9.4) for the Pongo region with planting dates. Weather file can be c ?

OverviewParameters and FilesVariablesAssumptionsCompatible Software	Technical Information
---	-----------------------

2) Data Formats

Creation date: 2016 Category: Agriculture Model type: Theory Guided

Cycles

Cycles simulates the productivity and the water, carbon and nitrogen balance of soil-crop systems subject to climate conditions and a large array of management constraints. Overall the model is set up to be daily. Some processes such as water balance are temporally nested (subdaily)

- · Authors: Armen Kemanian
- Publisher: The Pennsylvania State University

Select a configuration

Cycles configuration (v0.9.4) exposing weed fraction and fertilizer rate

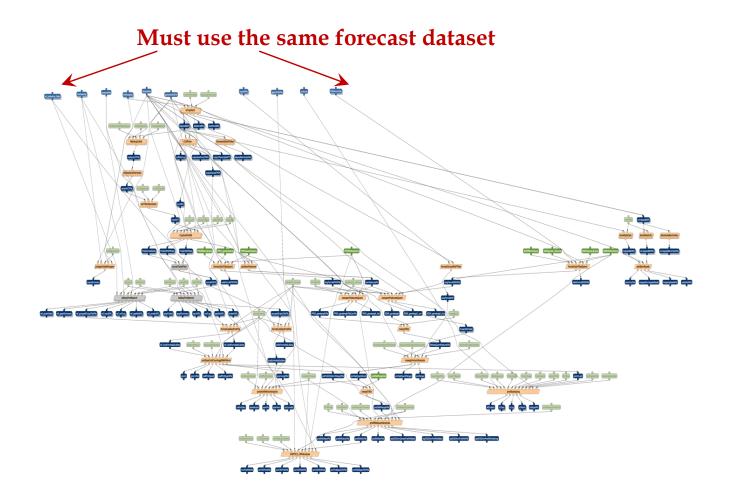
2

Select a configuration setup

🔇 🛛 Cycles calibrated model (vo.9.4) for the Pongo region with planting dates. Weather file can be c 🕐

Overview	Parameters and Files	Variables	Assumptions	Compatible Software	Technical Information		
Output files							
Name		Description					
cycles_	outputs	Cycles seasor	n configuration file	2			
cycles_	crop	Cycles crop o	utput file				
cycles_	cycles_nitrogen		Nitrogen file. Results in this file are for the sum of all layers in the soil profile, i				
cycles_	water	Cycles water file					
cycles_	weatherOutput	Cycles weather output file					
cycles_	season	The season.dat file provides information about each crop harvest.			op harvest.		
cycles_	soilProfile	Results in this file are for the sum of all layers in the soil profile, including			profile, including sur		
cycles_	SOM	ratio by soil la		e provides annualized me will be created for each l			
cycles_	summary		file provides a su or N cycling proce	mmarized output of tota esses.	al C inputs over the du		

3) Model Variables


Ontology of standard scientific names [Peckham iEMSs 2014; Peckham & Stoica 2019]

• Eg SSN: watershed_outlet_water__volume_outflow_rate is more precise than "streamflow" or "discharge"

cycles_soil	Cycles soil descripti	ion file. Soil files typically have a suffix of .so	il, but any naming convention can be used as long as i	t matches the soil file n
Label	Long Name	Description	Standard Name	Units
RV	rock volume	Rock volume expressed as volume over total volume	<pre>soil_rockvolume_fraction</pre>	m3 m-3
DZ	soil layer thickness	Soil layer thickness	<pre>soil_layerthickness</pre>	m
SLOPE	slope of the field	Average slope of field of interest	land_surfaceslope	m m-1
LAYER	soil layer number	Soil layer number from 1 to an integer that is user defined (or database defined)		
SOM	soil organic matter	Soil organic matter per unit of non-rock soil expressed as percentage over total mass	<pre>soil_matter~organicmass_fraction</pre>	kg kg-1 x- 100
SILT	silt percentage	Silt mass per unit of soil mass (no rocks) and expressed as a percentage	<pre>soil~no-rock_siltmass_fraction</pre>	%
BD	bulk density	Soil mass dry and wihtout rock divided by the sampled volume	<pre>soil~no-rock~drymass-per-volume_density</pre>	Mg m-3
CLAY	clay percentage	clay particle size fraction size fraction of each soil layer in %.	<pre>soil_clay_particlevolume_fraction</pre>	%

4) Constraints and Preconditions

Daily rainfall data vs monthly rainfall data

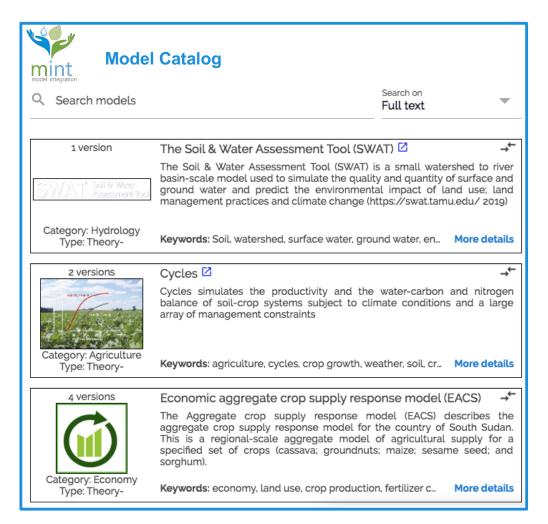
5) Drivers and Adjustable Parameters

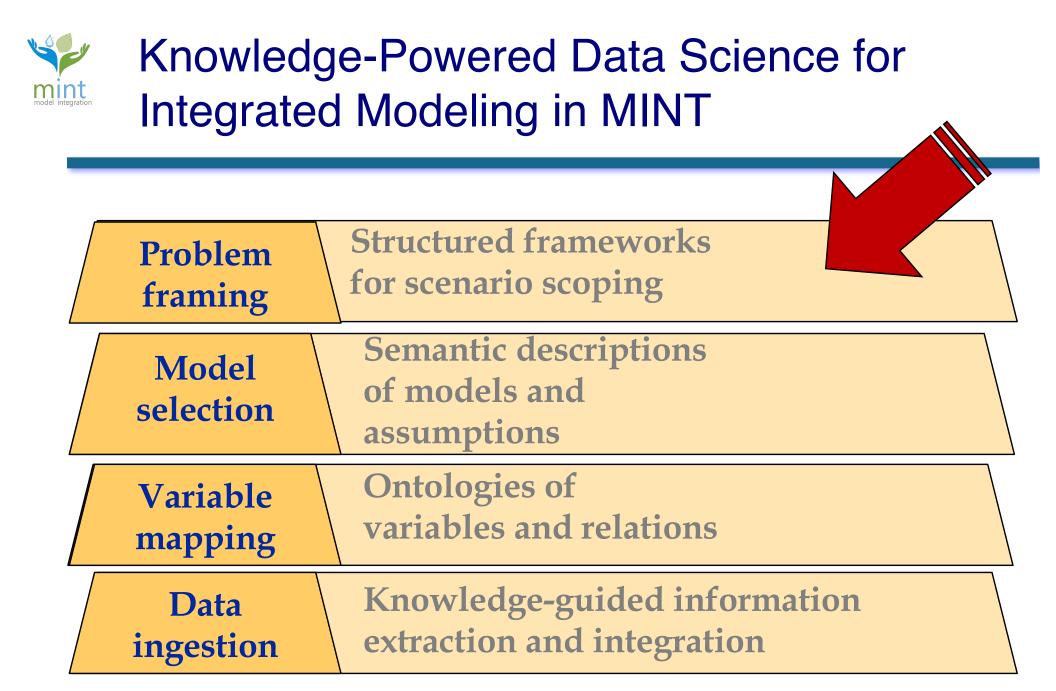
Drivers are typically input data files (eg weather forecast)
 Adjustable parameters are those useful to explore what-if scenarios

Parameter	Description	Relevant for intervention	Value on setup ဈ
start_year	Year when the simulation started		2000 (default)
end_year	Year when the simulation ended		2017 (default)
(crop_name)	Name of the crop to run the simulation for. Accepted values are: Maize, Sorghum, Peanut		Maize (default)
start_planting_day The range is from 1 to 365	Day of the year for the start of the planting window	Planting Windows	100 (default)
end_planting_day The range is from 1 to 365	Day of the year for the end of the planting window	Planting Windows	149 (default)
(fertilizer_rate) The range is from 0 to 1250	Mass of nitrogen fertilizer added each year (kg/ha)		0 (default)
weed_fraction The range is from 0 to 1	Areal fraction of weed	Weed Control	0 (default)
use_forcing	Use forcing data from a hydrology model (when available)		FALSE

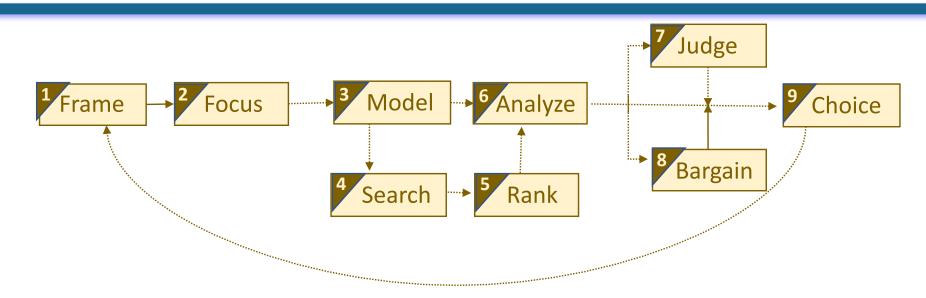
6) Interventions

Associated with specific input parameters


Parameters:

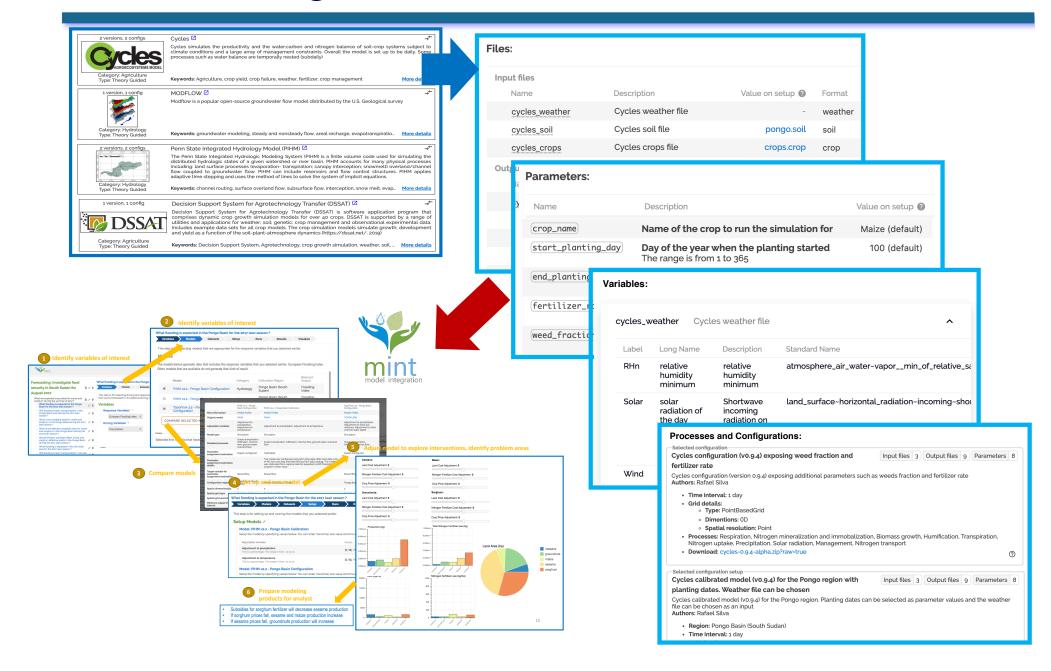

Parameter	Description	Relevant for intervention	Value on setup 👔
(start_year)	Year when the simulation started		2000 (default)
end_year	Year when the simulation ended		2017 (default)
crop_name	Name of the crop to run the simulation for. Accepted Peanut	Interventions that force specific target planting windows can be expressed in this model as a start or end planting date	Maize (default)
start_planting_day The range is from 1 to 365	Day of the year for the start of the planting window	Planting Windows	100 (default)
end_planting_day The range is from 1 to 365	Day of the year for the end of the planting window	Planting Windows	149 (default)
fertilizer_rate The range is from 0 to 1250	Mass of nitrogen fertilizer added each year (kg/ha)		0 (default)
weed_fraction The range is from 0 to 1	Areal fraction of weed	Weed Control	0 (default)
use_forcing	Use forcing data from a hydrology model (when avail	able)	FALSE

Knowledge-Rich Catalogs of Models [Garijo et al eScience 2019]


- 1. Model invocation
- 2. Data formats
- 3. Model variables
- 4. Constraints
- 5. Adjustable parameters
- 6. Interventions

and much more!!

Decision Making Process [Pierce et al 2019]


DECISION MAKING STEPS:

- 1. Frame: Recognize and identify key issues
- 2. Focus: Define the context, key variables, reference behaviors, and decision problem
- 3. Model: Construct/Run Analysis Pipeline run base case
- 4. Search: Explore solution space, consider interventions
- 5. Rank/Filter: Select interesting solutions
- 6. Analyze: Create summary of solutions explored, assess uncertainty
- 7. Judge: Adjudicate possible actions
- 8. Bargain: Consider tradeoffs
- 9. Choice: Make recommendation, take action, converge on decisions Iterate to refine/reframe/refocus modeling goals

Knowledge-Driven Problem Framing: Indicators and Adjustable Variables

► ETHIOPIA Explore Areas Prepare Models Brows	se Datasets Use Models Prepare Repo	rts MESSAGES 🗏 L	OGOUT MINT@ISI.EDU			
< Problem statements Choose an existing problem from the list below or click a	add to cre TASKS	ADD 🗜	ADD 🖡			
Crop elasticities for the Econ model 2018-01-01 to 2018-12-31		Several modeling tasks can be created for a given problem statement. Read more				
Forecasting potential crop production in Baro region	01-01 - 2018-12-31	 Potential Crop Production: Ethiopia: 2018- 01-01 - 2018-12-31 Response of maize to fertilizer with no weeds Potential Crop Production: Ethiopia: 2018- 01-01 - 2018-12-31 Average conditions 				
Forecast flooding in the Baro region 2018-01-01 to 2018-12-31	weeds					
Crop production with crop elasticities 2018-01-01 to 2018-12-31	01-01 - 2018-12-31					
	Indicators/Response of interest	Adjustable Variables				
Modeling threads For a given task, you can investigate different initial conditions new modeling thread for that task. Read more Average conditions Average conditions with a large number of runs Crop Production + Fertilizer cost: Interventions concerning fertilizer subsidies can be expressed in this model as a percentage of fertilizer prices						
Models Datasets Setup Runs	Results Visualize					

Forecasting and Interventions

MINT User Interaction

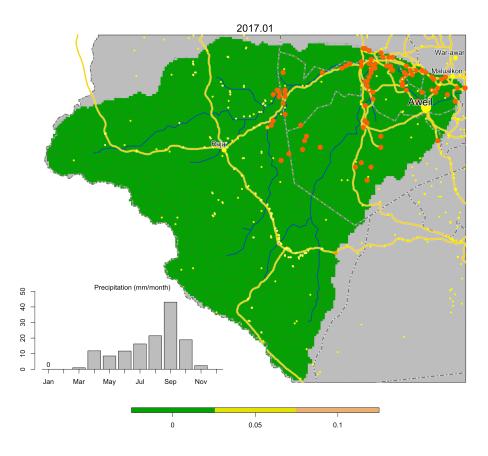
1 Identify results of interest

Variables Models Datasets Setup Ri	uns Results Visualize		tify releva	
his step is for selecting driving and response variables for your analysis nat you're interested in. An optional driving variable indicates the kind o	What flooding is expected in the Pongo Basin Variables Models Datasets	n for the 2017 lear Setup	Runs Results	Visualize
/ariables Response Variables* + European Flooding Index + Driving Variables + Precipitation +	This step is for selecting models that are appropria Models The models below generate data that includes the Other models that are available do not generate that	response variables t		
	Model	Category	Calibration Region	Relevant Output
Notes	Model PIHM v2.2 - Pongo Basin Configuration		Calibration Region Pongo Basin (South Sudan)	
Notes			Pongo Basin (South	Output Flooding
Notes	PIHM v2.2 - Pongo Basin Configuration	on Hydrology	Pongo Basin (South Sudan) Pongo Basin (South	Output Flooding Index Flooding

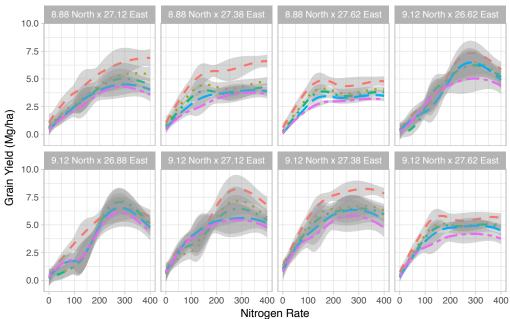
cassava

maize

sesame


sorahum

groundnuts


MINT User Interaction (Cont'd)

3 Find and transform datasets Adjust model to explore 5 Browse Datasets Search Datasets Rivers interventions, identify Found 2 results South Sudan Rivers and Ports problem areas South Surlan Rivers and Ports Additional Metadata Creative Commons Attribution Cassava Maize: Land Cost Adjustment: 0 Land Cost Adjustment: 0 South Sudan Rivers and Ports Nitrogen Fertilizer Cost Adjustment: 0 Nitrogen Fertilizer Cost Adjustment: 0 South Sudan Rivers and Ports Additional Metadata Crop Price Adjustment: 0 Crop Price Adjustment: 0 Creative Commons Attribution Groundnuts Sorahum: Land Cost Adjustment: 0 Land Cost Adjustment: 0 **4** Set up and run models Nitrogen Fertilizer Cost Adjustment: 0 Nitrogen Fertilizer Cost Adjustment: 0 Crop Price Adjustment: 0 Crop Price Adjustment: 0 What flooding is expected in the Pongo Basin for the 2017 lean season? Total Nitrogen Fertilizer Use (kg) Production (kg) 1 000 1.000e45 Variables Models Datasets Setup Runs Results Visualize 8.000e+ 8.000e+ This step is for setting up and running the models that you selected earlier. 6.000e+ 6.000e+i Land Area (ha) Setup Models 🗸 4 00004 4.000 2.000e+ 2 00004 Model: PIHM v2.2 - Pongo Basin Calibration Setup the model by specifying values below. You can enter more than one value (comma separated) if you want several runs Adjustable Variable Values Yield (kg/ha Nitrogen fertilizer use (kg/ha) 20000 1000 Adjustment to precipitation 0, 10, -10 800 This is a percentage. The range is from -20 to 20 15000 Adjustment to temperature 0, 10, -10 This is a percentage. The range is from -20 to 20 10000 400 Model: PIHM v2.2 - Pongo Basin Configuration 5000 200 Setup the model by specifying values below. You can enter more than one value (comma separated) if you want several runs

Future Work in MINT

- Causal models
- Forecasting
- Interventions
- Uncertainty

Weed Fraction - 0 • • 0.05 • - 0.1 - 0.2 - - 0.4

Knowledge-Powered Data Science for Integrated Modeling in MINT

- Knowledge-guided machine learning
- Knowledge-rich catalogs of models and data
- Knowledge-driven problem framing

Problem framing	Structured frameworks for scenario scoping	
Model selection	Semantic descriptions of models and assumptions	
Variable mapping	Ontologies of variables and relations	
Data ingestion	Knowledge-guided information extraction and integration	

Outline

- The need for integrated modeling in geosciences
- Diversity of models across disciplines
- MINT: knowledge-powered data science for integrated modeling
 - Intelligent systems for geosciences

Intelligent Systems for Geosciences: An Essential Research Agenda

By Yolanda Gil, Suzanne A. Pierce, Hassan Babaie, Arindam Banerjee, Kirk Borne, Gary Bust, Michelle Cheatham, Imme Ebert-phoff, Carla Gomes, Mary Hill, John Horel, Leslie Hsu, Jim Kinter, Craig Knoblock, David Krum, Vipin Kumar, Pierre Lermusiaux, Yan Liu, Chris North, Victor Pankratius, Shanan Peters, Beth Plale, Allen Pope, Sai Ravela, Juan Restrepo, Aaron Ridley, Hanan Samet, Shashi Shekhar Communications of the ACM, January 2019, Vol. 62 No. 1, Pages 76-84 10.1145/3192335 Comments

SHARE:

User Name

Password

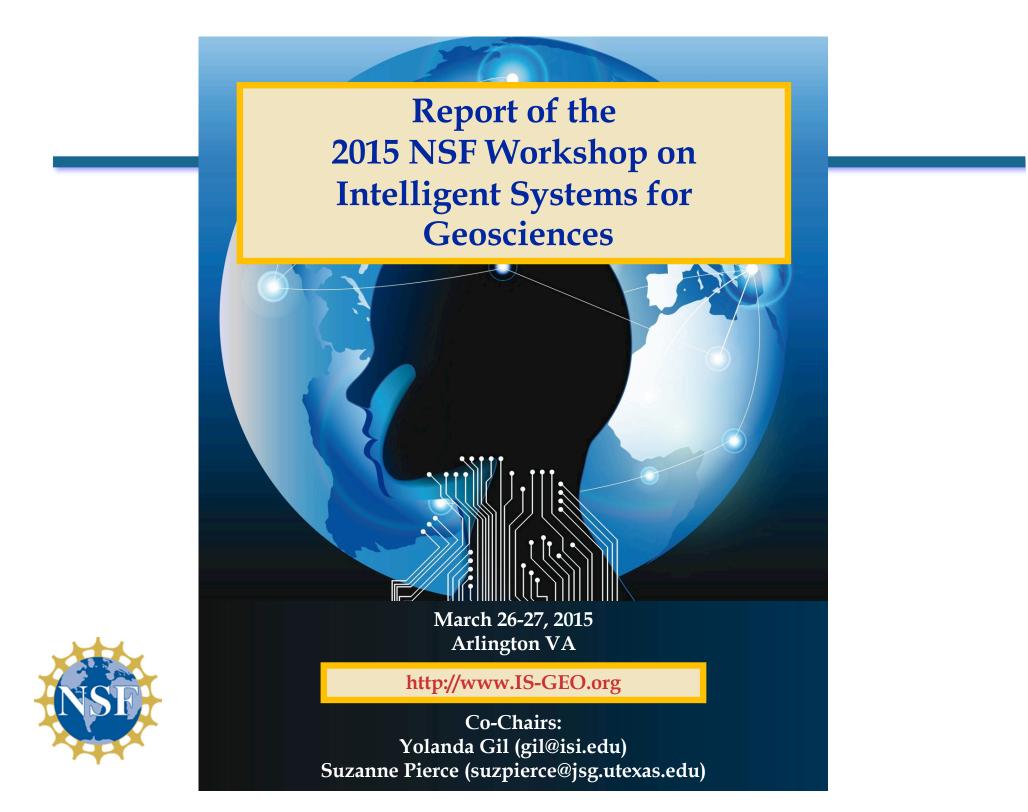
- » Forgot Password?
- » Create an ACM Web Account

VIEW AS:

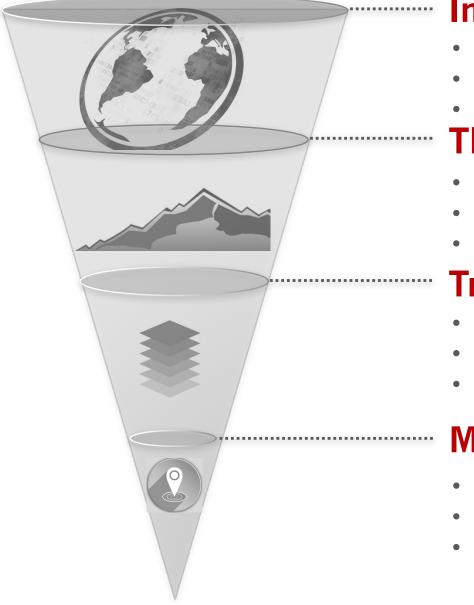
旦

Many aspects of geosciences pose no systems research. Geoscience data is to be uncertain, intermittent, sparse scale. Geosciences processes and obj spatiotemporal boundaries. The lack model evaluation, testing, and comp these challenges requires breakthrou transform intelligent systems, while geosciences in turn. Although there I beneficial interactions between the in geosciences communities,^{4,12} the po research in intelligent systems for ge

ే


ച

Е


f

+

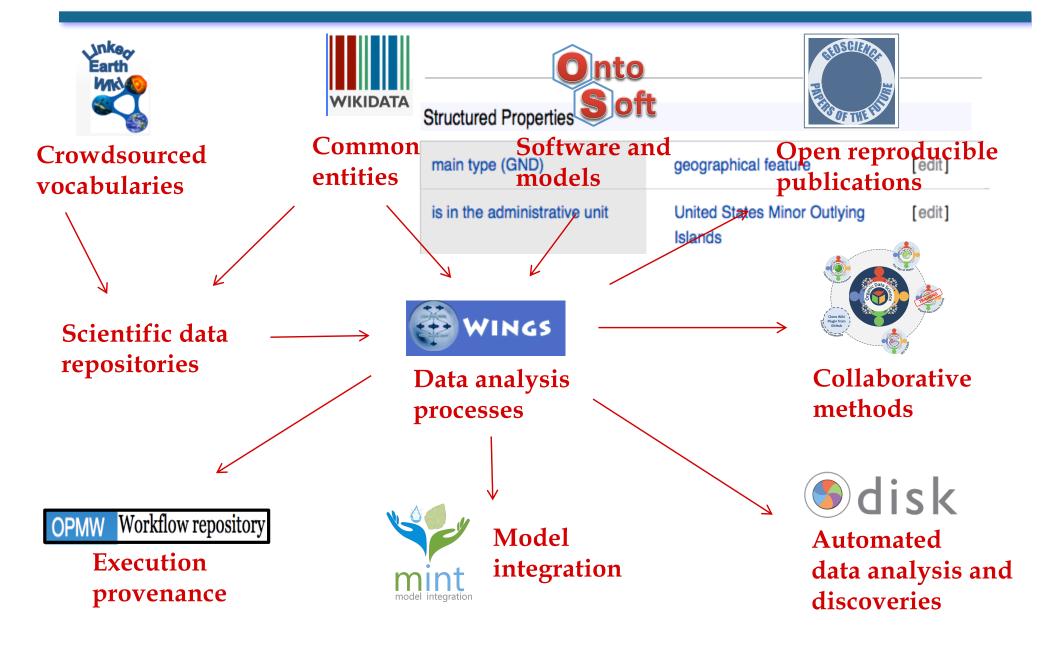
AI Opportunities Across Scales

Interactive Workspaces

- Interactive model building
- Synthesis studies
- Specify high-level research questions

Theory-Guided Learning

- Large but minuscule datasets
- Extreme events
- Multiple scales


Trusted Threads

- Many locations & data types
- Georeferenced & curated data
- Interlinked information

Model-Driven Sensing

- Selective data collection
- Inaccessible locations
- Optimize experimental design

Open Knowledge Networks

The Future is Here: Knowledge-Powered Data Science Focus shifted from data to models

- Model characterization, reuse, and integration
- Need to incorporate model-centered science
 knowledge about phenomena and context
 - Knowledge about physical, geological, chemical, biological, ecological, and anthropomorphic factors
 - Knowledge about the user **goals and context**
- This would enable novel forms of reasoning, integrating, visualizing, managing, learning, and discovery with geosciences data

Continue the conversation at http://www.IS-GEO.org

Yolanda Gil, USC, AAAI President Bart Selman, Cornell, AAAI President-Elec

https://arxiv.org/abs/1908.02624

Computing Community Consortium Catalyst

re US