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Marketplace 
Forecasting at Uber
What is marketplace and how does forecasting fit in?
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Marketplace Forecasting

Real Time Forecasting
Minute-level forecasts 1- 2 hours into 
the future

Near-Term Forecasting
10-15 minute-level forecasts several 
hours into the future

Long Term Forecasting
Hour level forecasts 1-2 weeks into the 
future



Estimated 
Time to 
Request
Help drivers decide if they 
should wait
Use historical and recent signals to predict 
the future wait times across cities and 
airports.



Suggestions

Help drivers decide if they 
should move
Suggest locations with more opportunities 
for matching with riders and help them 
navigate there



Geospatial 
Representation
How does Uber see the world?



Hexagons!



Partition the world



Index data



Run algorithms



H3 

Hexagonal Hierarchical 
Geospatial Indexing 
System
H3 is an open source geospatial indexing 
system using a hexagonal grid that can be 
(approximately) subdivided into finer and finer 
hexagonal grids, combining the benefits of a 
hexagonal grid with S2's hierarchical 
subdivisions.



H3 
Resolutions

Data SIO, NOAA, U.S. Navy, NGA, GEBCO,
Image Landsat / Copernicus
Image IBCAO

Hierarchical subdivisions
With the largest resolution roughly the size of 
continents down to the smallest resolution of 
a meter squared. The library gives flexibility 
in the size of hexagon to work with
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Why hexagons?



Why hexagons?

Uniform adjacency
Hexagons have no ambiguous 
neighbors

Low shape and area 
distortion
Hexagons can fill an icosahedron 
and offer low distortion



Data SIO, NOAA, U.S. Navy, NGA, GEBCO,
Image Landsat / Copernicus
Image IBCAO

Global Grid

Many advantages
● Uniform edge length
● Uniform angles
● Optimally compact
● Optimally space-filling
● Uniform adjacency
● Hierarchical relationships
● Low shape distortion
● Low area distortion

Few tradeoffs
● Not completely uniform shape
● Not perfect child containment



Geospatial 
Processing
Working with hexagons



Hexagon 
Data

Uber on Hexagons
Many decisions are made on small 
hexagons

Hexagons Level 9
Larger cities have 500k+ hexagons

Sparse Data 

E.g., a few requests in some 
hexagons for a whole day



Hexagon 
Data 
Smoothing
Hexcluster
Clustering hexagons into groups and use 
the aggregated values of all the 
hexagons in each cluster

● Low computation
● “Arbitrary” boundaries

Kring smoothing
For each hexagon, using the aggregated 
values of all its k ring neighbours

● Heavy computation
● Flexible



Hexagon 
Data 
Smoothing

# hexagons

1-ring 6

2-ring 12

3-ring 18

k-ring 6 * k

M hexagons K-ring data 
smoothing computation: 

M* K * (6 + K*6) / 2 

3rd-ring

2nd-ring

1st-ring

Hexcluster
Clustering hexagons into groups and use 
the aggregated values of all the 
hexagons in each cluster

● Low computation
● “Arbitrary” boundaries

Kring smoothing
For each hexagon, using the aggregated 
values of all its k ring neighbours

● Heavy computation
● Flexible



Convolution
Input Matrix Kernel/Filter Output Matrix

(2-D) Convolution
Slide a kernel (small matrix) on top of an 
input (big matrix), multiple and add the 
corresponding values to produce the 
convolution result.

A base component of CNN (Convolutional 
Neural Network) in deep learning.

Efficient Implementation
Many efficient implementations of 
convolution in popular packages, e.g., 
Scipy, TensorFlow, PyTorch.

GPU Acceleration
GPU is a perfect fit for accelerating 
convolution computation. 
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Hexagon 
Convolution
Hex Convolution
Conceptually, convolution on hex is similar to 
convolution on square grid matrix

Filter 
Using different weights in the filter generates 
different convolution results. E.g., weighted sum. 

Kring data smoothing could be done by using 
convolution with weight 1 for each hexagon of K 
rings, e.g, 1-ring smoothing 

Challenge
None of known convolution implementations is for 
hexagon coordinate systems 

Optimization and GPU acceleration could not be 
applied to hexagons directly 
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Hexagon Coordinate 
System (1) 

Cube Coordinate

● Represents 2-D hexagon grid in a 
3-D Cube.

● Memory inefficient 

● No direct map from cube coordinate 
to a 2-D rectangular grid



Hexagon Coordinate 
System (2) 

Double Coordinate
● Two double coordinates

○ Double coordinates by 
heights (example)

○ Double coordinates by 
widths 

● Easy map to square grid based on 
the coordinate values

● Very inefficiency for convolution as 
the cells are not contiguous  
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Hexagon Coordinate 
System (3) 

Axial Coordinate

● Map to the square grid well with 
missing cells in the corner

● Good fit for the convolution with 
extra filtering
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Hexagon Convolution (0)

FilterInput



Hexagon Convolution (1)

FilterInput



Hexagon Convolution (2)

Input Filter



Hexagon Convolution (3)
FilterFilter

Input Result



Kring Data 
Smoothing

Kring Data Smoothing
Smoothing hexagon data with values in kring 
the neighbour hexagons. 

● Weights for kring smoothing 
○ Equal weight kring smoothing
○ Dynamic weight kring smoothing

● Dynamic kring size for smoothing
○ Run the smoothing for all the kring 

sizes separately 

Equal Weights Dynamic Weights



Kring Data 
Smoothing

Equal Weights Dynamic Weights

Kring Size 1 Kring Size 2 

Kring Data Smoothing
Smoothing hexagon data with values in kring 
the neighbour hexagons. 

● Weights for kring smoothing 
○ Equal weight kring smoothing
○ Dynamic weight kring smoothing

● Dynamic kring size for smoothing
○ Run the smoothing for all the kring 

sizes separately 



Kring Smoothing 
Performance
Performance Comparison

● Basic implementation

● Convolution approach with CPU

● Convolution approach with GPU

100x faster than k-ring smoothing 
with GPU and 10X faster with CPU



Use cases
How is this used in production?



700+
Hexagons smoothed and 
forecasted

30M+
Cities worldwide 

10+
Quantities forecasted 

Every minute



High throughput and low 
latency 
Developed as a true streaming framework 
from the ground up, Flink has enabled us to 
produce forecasts with only a few seconds of 
latency

Efficient memory 
management 
Even with complex custom aggregations we 
have been able to keep memory utilization 
under 60%

Strong feature set 
Operator isolation with keyby lets us use city 
specific configurations and the Table API 
offers really nice high level abstractions



Resource reduction

Significant savings
The combination of both moving our 
pipelines to Flink and leveraging  hexagon 
convolution has reduced the total 
required core count by ~90% and 
memory utilization per box by ~70%



Forecasting Flink Pipeline



Summary

● Uber data is aggregated on hexagons using the H3 library

● Geospatial processing is expensive. Leveraging convolution 
allows for significant performance gains

● Geospatial processing is expensive. Efficient pipeline 
frameworks are critical with Flink being a very natural fit



Q&A
Additional resources:

● Uber Marketplace
● Uber github


