
Geospatial and Temporal
Forecasting at Uber
September 09, 2019

Apachecon

Chong Sun, Brian Tang

01 Marketplace Forecasting at Uber
02 Geospatial Representation
03 Geospatial Processing
04 Use Cases

Marketplace
Forecasting at Uber
What is marketplace and how does forecasting fit in?

Core
Infrastructure

Product Platform

Business
IntelligenceMarketplaceMaps

Uber EatsDriverRider NeMo U4B

AI Labs

Uber Marketplace

Marketplace Forecasting

Real Time Forecasting
Minute-level forecasts 1- 2 hours into
the future

Near-Term Forecasting
10-15 minute-level forecasts several
hours into the future

Long Term Forecasting
Hour level forecasts 1-2 weeks into the
future

Estimated
Time to
Request
Help drivers decide if they
should wait
Use historical and recent signals to predict
the future wait times across cities and
airports.

Suggestions

Help drivers decide if they
should move
Suggest locations with more opportunities
for matching with riders and help them
navigate there

Geospatial
Representation
How does Uber see the world?

Hexagons!

Partition the world

Index data

Run algorithms

H3

Hexagonal Hierarchical
Geospatial Indexing
System
H3 is an open source geospatial indexing
system using a hexagonal grid that can be
(approximately) subdivided into finer and finer
hexagonal grids, combining the benefits of a
hexagonal grid with S2's hierarchical
subdivisions.

H3
Resolutions

Data SIO, NOAA, U.S. Navy, NGA, GEBCO,
Image Landsat / Copernicus
Image IBCAO

Hierarchical subdivisions
With the largest resolution roughly the size of
continents down to the smallest resolution of
a meter squared. The library gives flexibility
in the size of hexagon to work with

© M.C. Escher / WikiArt.org

Why hexagons?

Why hexagons?

Uniform adjacency
Hexagons have no ambiguous
neighbors

Low shape and area
distortion
Hexagons can fill an icosahedron
and offer low distortion

Data SIO, NOAA, U.S. Navy, NGA, GEBCO,
Image Landsat / Copernicus
Image IBCAO

Global Grid

Many advantages
● Uniform edge length
● Uniform angles
● Optimally compact
● Optimally space-filling
● Uniform adjacency
● Hierarchical relationships
● Low shape distortion
● Low area distortion

Few tradeoffs
● Not completely uniform shape
● Not perfect child containment

Geospatial
Processing
Working with hexagons

Hexagon
Data

Uber on Hexagons
Many decisions are made on small
hexagons

Hexagons Level 9
Larger cities have 500k+ hexagons

Sparse Data

E.g., a few requests in some
hexagons for a whole day

Hexagon
Data
Smoothing
Hexcluster
Clustering hexagons into groups and use
the aggregated values of all the
hexagons in each cluster

● Low computation
● “Arbitrary” boundaries

Kring smoothing
For each hexagon, using the aggregated
values of all its k ring neighbours

● Heavy computation
● Flexible

Hexagon
Data
Smoothing

hexagons

1-ring 6

2-ring 12

3-ring 18

k-ring 6 * k

M hexagons K-ring data
smoothing computation:

M* K * (6 + K*6) / 2

3rd-ring

2nd-ring

1st-ring

Hexcluster
Clustering hexagons into groups and use
the aggregated values of all the
hexagons in each cluster

● Low computation
● “Arbitrary” boundaries

Kring smoothing
For each hexagon, using the aggregated
values of all its k ring neighbours

● Heavy computation
● Flexible

Convolution
Input Matrix Kernel/Filter Output Matrix

(2-D) Convolution
Slide a kernel (small matrix) on top of an
input (big matrix), multiple and add the
corresponding values to produce the
convolution result.

A base component of CNN (Convolutional
Neural Network) in deep learning.

Efficient Implementation
Many efficient implementations of
convolution in popular packages, e.g.,
Scipy, TensorFlow, PyTorch.

GPU Acceleration
GPU is a perfect fit for accelerating
convolution computation.

Convolution
Input Matrix Kernel/Filter Output Matrix

(2-D) Convolution
Slide a kernel (small matrix) on top of an
input (big matrix), multiple and add the
corresponding values to produce the
convolution result.

A base component of CNN (Convolutional
Neural Network) in deep learning.

Efficient Implementation
Many efficient implementations of
convolution in popular packages, e.g.,
Scipy, TensorFlow, PyTorch.

GPU Acceleration
GPU is a perfect fit for accelerating
convolution computation.

Convolution
Input Matrix Kernel/Filter Output Matrix

(2-D) Convolution
Slide a kernel (small matrix) on top of an
input (big matrix), multiple and add the
corresponding values to produce the
convolution result.

A base component of CNN (Convolutional
Neural Network) in deep learning.

Efficient Implementation
Many efficient implementations of
convolution in popular packages, e.g.,
Scipy, TensorFlow, PyTorch.

GPU Acceleration
GPU is a perfect fit for accelerating
convolution computation.

Hexagon
Convolution
Hex Convolution
Conceptually, convolution on hex is similar to
convolution on square grid matrix

Filter
Using different weights in the filter generates
different convolution results. E.g., weighted sum.

Kring data smoothing could be done by using
convolution with weight 1 for each hexagon of K
rings, e.g, 1-ring smoothing

Challenge
None of known convolution implementations is for
hexagon coordinate systems

Optimization and GPU acceleration could not be
applied to hexagons directly

Hexagon
Convolution

Input Kernel/Filter
(Equal Weight)

Output

Hex Convolution
Conceptually, convolution on hex is similar to
convolution on square grid matrix

Filter
Using different weights in the filter generates
different convolution results. E.g., weighted sum.

Kring data smoothing could be done by using
convolution with weight 1 for each hexagon of K
rings, e.g, 1-ring smoothing

Challenge
None of known convolution implementations is for
hexagon coordinate systems

Optimization and GPU acceleration could not be
applied to hexagons directly

Hexagon
Convolution

Input Kernel/Filter
(Equal Weight)

Output

Hex Convolution
Conceptually, convolution on hex is similar to
convolution on square grid matrix

Filter
Using different weights in the filter generates
different convolution results. E.g., weighted sum.

Kring data smoothing could be done by using
convolution with weight 1 for each hexagon of K
rings, e.g, 1-ring smoothing

Challenge
None of known convolution implementations is for
hexagon coordinate systems

Optimization and GPU acceleration could not be
applied to hexagons directly

Hexagon Coordinate
System (1)

Cube Coordinate

● Represents 2-D hexagon grid in a
3-D Cube.

● Memory inefficient

● No direct map from cube coordinate
to a 2-D rectangular grid

Hexagon Coordinate
System (2)

Double Coordinate
● Two double coordinates

○ Double coordinates by
heights (example)

○ Double coordinates by
widths

● Easy map to square grid based on
the coordinate values

● Very inefficiency for convolution as
the cells are not contiguous

Hexagon Coordinate
System (2)

Double Coordinate
● Two double coordinates

○ Double coordinates by
heights (example)

○ Double coordinates by
widths

● Easy map to square grid based on
the coordinate values

● Very inefficiency for convolution as
the cells are not contiguous

Hexagon Coordinate
System (3)

Axial Coordinate

● Map to the square grid well with
missing cells in the corner

● Good fit for the convolution with
extra filtering

Hexagon Coordinate
System (3)

Axial Coordinate

● Map to the square grid well with
missing cells in the corner

● Good fit for the convolution with
extra filtering

Hexagon Convolution (0)

FilterInput

Hexagon Convolution (1)

FilterInput

Hexagon Convolution (2)

Input Filter

Hexagon Convolution (3)
FilterFilter

Input Result

Kring Data
Smoothing

Kring Data Smoothing
Smoothing hexagon data with values in kring
the neighbour hexagons.

● Weights for kring smoothing
○ Equal weight kring smoothing
○ Dynamic weight kring smoothing

● Dynamic kring size for smoothing
○ Run the smoothing for all the kring

sizes separately

Equal Weights Dynamic Weights

Kring Data
Smoothing

Equal Weights Dynamic Weights

Kring Size 1 Kring Size 2

Kring Data Smoothing
Smoothing hexagon data with values in kring
the neighbour hexagons.

● Weights for kring smoothing
○ Equal weight kring smoothing
○ Dynamic weight kring smoothing

● Dynamic kring size for smoothing
○ Run the smoothing for all the kring

sizes separately

Kring Smoothing
Performance
Performance Comparison

● Basic implementation

● Convolution approach with CPU

● Convolution approach with GPU

100x faster than k-ring smoothing
with GPU and 10X faster with CPU

Use cases
How is this used in production?

700+
Hexagons smoothed and
forecasted

30M+
Cities worldwide

10+
Quantities forecasted

Every minute

High throughput and low
latency
Developed as a true streaming framework
from the ground up, Flink has enabled us to
produce forecasts with only a few seconds of
latency

Efficient memory
management
Even with complex custom aggregations we
have been able to keep memory utilization
under 60%

Strong feature set
Operator isolation with keyby lets us use city
specific configurations and the Table API
offers really nice high level abstractions

Resource reduction

Significant savings
The combination of both moving our
pipelines to Flink and leveraging hexagon
convolution has reduced the total
required core count by ~90% and
memory utilization per box by ~70%

Forecasting Flink Pipeline

Summary

● Uber data is aggregated on hexagons using the H3 library

● Geospatial processing is expensive. Leveraging convolution
allows for significant performance gains

● Geospatial processing is expensive. Efficient pipeline
frameworks are critical with Flink being a very natural fit

Q&A
Additional resources:

● Uber Marketplace
● Uber github

