
OGC 04-060r1

Copyright © Open Geospatial Consortium, Inc. (2005)

Open Geospatial Consortium Inc.

Date: 2004-08-20

Reference number of this OGC Project document: OGC 04-060r1

Version: 1.0.0

Category: OGC Discussion Paper

Editor: Jérôme Sonnet

OWS 2 Common Architecture:

WSDL SOAP UDDI

Copyright notice

Copyright © Open Geospatial Consortium, Inc. (2005)

Warning

This document is not an OGC Specification or Standard. It is distributed for review
and comment. It is subject to change without notice and may not be referred to as
an OGC Standard.

Recipients of this document are invited to submit, with their comments, notification
of any relevant patent rights of which they are aware and to provide supporting
documentation.

Document type: OGC Discussion Paper
Document stage: Final
Document language: English

OGC 04-060r1

ii Copyright © Open Geospatial Consortium, Inc. (2005)

Contents

i. Preface... i

ii. Submitting organizations .. i

iii. Document Contributor Contact Points.. i

iv. Revision history.. i

v. Changes to the OGC Abstract Specification .. ii

vi. Future Work.. ii

Foreword... iv

Introduction..v

1 Scope..1

2 Conformance ..1

3 Normative references...1

4 Terms and definitions ..1
4.1 SOAP...1
4.2 UDDI ...2
4.3 WSDL..2

5 Conventions ..2
5.1 Symbols (and abbreviated terms)...2
5.2 UML Notation ..3

6 WSDL..4
6.1 Introduction..4
6.1.1 About WSDL ..4
6.1.2 WSDL versions...5
6.1.3 Abstract and implementation parts ...5
6.1.4 Bindings ..5
6.1.5 WS-I Profile..6
6.2 WSDL as a normative part to OGC implementation specification...................6
6.3 WSDL issues ...6
6.3.1 Complex types in HTTP bindings ..6
6.3.2 WCS and WMS Specification problem..7
6.3.3 Unified WSDL for KVP and XML...7
6.3.4 Conclusion ..7

7 WSDL for existing OGC Services ..8
7.1 KVP bindings ...8
7.1.1 Using existing schemas ..8

OGC 04-060r1

Copyright © Open Geospatial Consortium, Inc. (2005) iii

7.1.2 WSDL for WCS 1.0.0...9
7.1.3 WSDL for WFS 1.0.0 ...10
7.1.4 WSDL for WMS 1.1.1..11
7.1.5 WSDL for CS-W 2.0 ..11
7.1.6 WSDL for Common Implementation Specification 1.0.0.................................11
7.1.7 WSDL Interoperability Experiments...11
7.2 XML & SOAP Bindings ..12
7.3 Issues with SOAP ...13
7.3.1 SOAP document/literal as the default OGC choice ..13
7.3.2 SOAP for large binary transport..13

8 UDDI ...13
8.1 Registration of OGC Web Services into UDDI ...14
8.1.1 The UDDI data model..14
8.1.2 WSDL and UDDI registries ..14
8.2 Two ways assertion ..15
8.2.1 Use case ...15
8.2.2 Implementation 1:Illustrate Scenario with no custom UDDI objects15
8.2.3 Observations and Conclusions..18
8.3 Developing a custom validating Taxonomy...19
8.3.1 Technical aspects..19
8.3.2 Service registration with validation with user defined checked taxonomy23
8.3.3 Conclusions and observations...29

9 MapInfo - TIEs Executive Summary ...29

10 MapInfo - Report on WSDL WFS ...30
10.1 Problems ...30
10.1.1 Schema Definitions...30
10.1.2 Problem...30
10.1.3 Solution ...30
10.2 Members of Type Object...30
10.2.1 Problem...30
10.2.2 Solution ...30
10.3 Multiple Occurrence of Elements of the Same Type ..31
10.3.1 Problem...31
10.3.2 Solution ...32
10.4 Schemas...32

11 MapInfo - Report on WSDL WFS ...32
11.1 Overview ...32
11.2 Steps ..33
11.3 Tools ..33
11.4 Notes ..33
11.5 Java Use of WFS ..33
11.5.1 WSDL Validation...33
11.5.2 Stub Generation ...36
11.5.3 Using the Stub ..36

OGC 04-060r1

iv Copyright © Open Geospatial Consortium, Inc. (2005)

11.5.4 Conclusions...36
11.6 .Net Use of WFS ...36
11.6.1 WSDL Validation...36
11.6.2 Stub Generation ...41
11.6.3 Using the Stub ..41
11.6.4 Conclusions...41

12 MapInfo - Report on WSDL WMS ..41
12.1 Overview ...41
12.2 Steps ..42
12.3 Tools ..42
12.4 Notes ..42
12.5 Java Use of WMS WSDL ..42
12.5.1 WSDL Validation...42
12.5.2 Stub Generation ...44
12.5.3 Using the Stubs...47
12.5.4 Conclusions...47
12.6 .Net Use of WMS WSDL ...48
12.6.1 WSDL Validation...48
12.6.2 Stub Generation ...50
12.6.3 Using the Stub ..52
12.6.4 Conclusions...52

13 Galdos Simple WSDL/SOAP Experiment for WFS ...53
13.1 Experiment Description...53
13.2 Experiment Results..54

14 Ionic Experiment Summary..63
14.1 Overview ...63
14.2 Current implementations of the specifications..63
14.2.1 Tools 63
14.2.2 Tools compliance..64
14.2.3 Reference implementations ...64
14.3 Test Results...64

15 Intergraph - WSDL/BPEL TIEs..65

OGC 04-060r1

i. Preface

This document presents the result of the OWS 2 Common Architecture thread. This
group has focused on adding WSDL/SOAP/UDDI support to existing OGC Web
Services.

ii. Submitting organizations

The following organizations submitted this document to the Open Geospatial Consortium
Inc.

IONIC Software s.a.

iii. Document Contributor Contact Points

All questions regarding this submission should be directed to the editor or the submitters:

CONTACT COMPANY ADDRESS PHONE/FAX EMAIL

Jerome Sonnet IONIC Software +32 4 364 0 364 js@ionicsoft.com

Philippe Duchesne IONIC Software +32 4 364 0 364 phd@ionicsoft.com

Michael Abate MapInfo

Will Wilbrink MapInfo

Ron Lake Galdos

Louis Reich CSC (Nasa) lreich@csc.com

iv. Revision history

Date Release Author Paragraph modified Description

2004-03-23 0.0.1 Jerome
Sonnet

First draft Setup a TOC

Copyright © Open Geospatial Consortium, Inc. (2005)

OGC 04-060r1

2004-04-12 0.0.2 Jerome
Sonnet

 Add WCS experiment output

2004-05-26 0.0.3 Philippe
Duchesne

 Refine WSDL chapter

2004-07-15 0.0.4 Philippe
Duchesne

 Add WSDL introduction and concepts

2004-08-05 0.0.5 Jerome
Sonnet

 Add UDDI Description

2004-08-20 0.0.6 Jerome
Sonnet

 Integrate other participants contribution

2007-10-01 0.0.7 Philippe
Duchesne

 describe SOAP issues
add UDDI registration description

v. Changes to the OGC Abstract Specification

The OGC Abstract Specification does not require changes to accommodate the technical
contents of this document.

vi. Future Work

Future work may include but is not limited to:

• Improve the use of technologies related to WSDL/SOAP such as BPEL to create
service chaining using OGC services. This has been experimented by the IH4DS
thread, but experimentation can really go further.

o Business Process Execution Language for Web Services Version 1.1
http://www-128.ibm.com/developerworks/library/ws-bpel/

• Use other technologies related to SOAP such as messages routing, encryption,
signature…

o SOAP Security Extensions: Digital Signature
http://www.w3.org/TR/SOAP-dsig/

o XML Encryption Syntax and Processing
http://www.w3.org/TR/xmlenc-core/

ii Copyright © Open Geospatial Consortium, Inc. (2005)

http://www-128.ibm.com/developerworks/library/ws-bpel/
http://www.w3.org/TR/SOAP-dsig/
http://www.w3.org/TR/xmlenc-core/

OGC 04-060r1

Copyright © Open Geospatial Consortium, Inc. (2005) iii

OGC 04-060r1

Foreword

Attention is drawn to the possibility that some of the elements of this part of OGC 04-
060r1 may be the subject of patent rights. The Open Geospatial Consortium Inc. shall not
be held responsible for identifying any or all such patent rights.

This work is an Interoperability report computed by the OGC Web Services 2 Common
Architecture thread.

This document presents the work done and the issue encountered during the creation of
the different change proposals that add support for UDDI/WSDL/SOAP to the WMS,
WFS, WCS and CS-W specifications.

This is not a normative document.

iv Copyright © Open Geospatial Consortium, Inc. (2005)

OGC 04-060r1

Introduction

This document reports the activity of the Common Architecture thread of the OGC Web
Service 2 Testbed. The focus of the Common Architecture tread has been to add support
for WSDL/SOAP/UDDI to OGC baseline services and to test these implementations
using COTS development tools.

The majority of this document describes implementation issues and problems the group
encountered while defining the usage of these technologies in conjunction with OGC web
service interfaces. The appendices in this document describe lessons learned using
WSDL and SOAP definitions with various COTS development environments.

Best use of this document requires that the reader have at least a basic knowledge of
WSDL/SOAP/UDDI.

Copyright © Open Geospatial Consortium, Inc. (2005) v

OpenGIS® Discussion Paper OGC 04-060r1

Copyright © Open Geospatial Consortium, Inc. (2005) 1

Introductory element — Main element

1 Scope
This OGC document reports the work that occurred in the OWS2 Test Bed Common
Architecture thread. This thread focused on the use of UDDI/WSDL/SOAP in the OGC
Web Services architecture. It also provides guidelines for the use of these technologies.

2 Conformance
Not required for an IP IPR, DIPR, or Discussion Paper.

3 Normative references
OGC 02-058, Web Feature Service (WFS-1.0.0).

OGC 02-059, Filter Encoding (Filter-1.0.0).

OGC 01-068r3, Web Map Service (WMS-1.1.1).

OGC 02-024, Web Coverage Service (WCS-1.0.0).

OGC 04-021r2, Catalog Interface (CAT-2.0.0).

OGC 03-029, Messaging Framework (DP).

http://www.w3.org/TR/wsdl, Web Services Description Language (WSDL) 1.1.

http://www.w3.org/TR/soap, SOAP Version 1.2.

http://uddi.org/pubs/uddi_v3.htmx, UDDI Version 3.0.1.

4 Terms and definitions

4.1 SOAP

SOAP is a lightweight protocol for exchange of information in a decentralized,
distributed environment. It is an XML based protocol that consists of three parts: an

http://uddi.org/pubs/uddi_v3.htmx

OGC 04-060r1

envelope that defines a framework for describing what is in a message and how to
process it, a set of encoding rules for expressing instances of application-defined
datatypes, and a convention for representing remote procedure calls and responses. SOAP
can potentially be used in combination with a variety of other protocols; however, the
only bindings defined in this document describe how to use SOAP in combination with
HTTP and HTTP Extension Framework.

4.2 UDDI

Universal Description, Discovery and Integration, or UDDI, is the name of a group of
web-based registries that expose information about a business or other entity[2] and its
technical interfaces (or API’s). These registries are run by multiple Operator Sites, and
can be used by anyone who wants to make information available about one or more
businesses or entities, as well as anyone that wants to find that information.

4.3 WSDL

WSDL is an XML format for describing network services as a set of endpoints operating
on messages containing either document-oriented or procedure-oriented information. The
operations and messages are described abstractly, and then bound to a concrete network
protocol and message format to define an endpoint. Related concrete endpoints are
combined into abstract endpoints (services). WSDL is extensible to allow description of
endpoints and their messages regardless of what message formats or network protocols
are used to communicate, however, the only bindings described in this document describe
how to use WSDL in conjunction with SOAP 1.1, HTTP GET/POST, and MIME.

5 Conventions

5.1 Symbols (and abbreviated terms)

ISO International Organization for Standardization

KVP Key-Value Pair

OGC Open Geospatial Consortium

SOAP Simple Object Access Protocol

UDDI Universal Description, Discovery and Integration

WCS Web Coverage Service

WFS Web Feature Service

WMS Web Map Service

 Copyright © Open Geospatial Consortium, Inc. (2005)

OGC 04-060r1

WSDL Wed Service Description Language

XML eXtended Markup Language

5.2 UML Notation

The diagrams that appear in this document are presented using the Unified Modeling
Language (UML) static structure diagram. The UML notations used in this document are
described in the diagram below.

Association between classes

role-1 role-2

Association Name
Class #1 Class #2

Association Cardinality

Class Only one

Class Zero or more

Class Optional (zero or one)

1..* Class One or more

n Class Specific number

Aggregation between classes

Aggregate
Class

Component
Class #1

Component
Class #2

Component
Class #n

……….

0..*

0..1

Class Inheritance (subtyping of classes)
Superclass

Subclass #1

…………..

Subclass #2 Subclass #n

Figure 1 — UML notation

In this diagram, the following three stereotypes of UML classes are used:

a) <<Interface>> A definition of a set of operations that is supported by objects having
this interface. An Interface class cannot contain any attributes.

b) <<DataType>> A descriptor of a set of values that lack identity (independent
existence and the possibility of side effects). A DataType is a class with no
operations whose primary purpose is to hold the information.

c) <<CodeList>> is a flexible enumeration that uses string values for expressing a list of
potential values.

Copyright © Open Geospatial Consortium, Inc. (2005) 3

OGC 04-060r1

In this document, the following standard data types are used:

a) CharacterString – A sequence of characters

b) Integer – An integer number

c) Double – A double precision floating point number

d) Float – A single precision floating point number

6 WSDL

6.1 Introduction

OWS 1.1 pointed out the need for an Interface Definition Language to describe OGC
services; WSDL was chosen as an instance of such a language.

6.1.1 About WSDL

The Web Services Description Language (WSDL) is an XML-based language used to
describe the services a business offers and to provide a way for individuals and other
businesses to access those services electronically. The WSDL document specification
helps improve interoperability between applications, regardless of the protocol or the
encoding scheme.

WSDL picks up where XML Schema left off by providing a way to group messages into
operations and operations into interfaces (port types). It also provides a way to define
bindings for each interface and protocol combination along with the endpoint address for
each one. A complete WSDL definition contains all of the information necessary to
invoke a Web service.

WSDL definitions make it possible to generate code that implements the given interface,
on either the client or the server, making Web services accessible to the masses.
Therefore, service owners that want to make it easy for others to access their services
should make WSDL definitions available.

 Copyright © Open Geospatial Consortium, Inc. (2005)

OGC 04-060r1

WSDL plays an important role in the overall Web services architecture since it describes
the complete contract for application communication.

6.1.2 WSDL versions

WSDL 1.1 (http://www.w3.org/TR/wsdl) is the version currently most used and
supported by existing tools; WSDL 1.2 (renamed 2.0 because of its substantial
differences from 1.1) is at the moment in draft and not widely supported yet.

The work and conclusions described in this report are in respect of version 1.1.

6.1.3 Abstract and implementation parts

A WSDL document defines services as a collection of endpoints, but separates the
abstract definition (the interface) from the concrete implementation :

- message,operation and portType elements provide abstract definitions for
the data being exchanged and the operations being performed by a service complying
with the WSDL document;

- A set of bindings is provided, each binding defining how to map the interface port
types to a concrete set of ports, usually by providing encoding and connection
parameters specific to an instance of the service.

XML

� HTTP POST,
XML-encoded

� SOAP

KVP

� HTTP GET

� HTTP POST,
URL-encoded

6.1.4 Bindings

The implementation part of WSDL defines the bindings, which basically specify the
encoding to use with a particular instance of a service. The most popular binding is
SOAP, but other bindings include HTTP GET or POST.

Those bindings can be divided into Key-Value Pairs (KVP) or XML bindings.

As described in this diagram, the KVP messages are used in the case of HTTP GET and
URL-encoded POST. The XML messages are used in the POST using XML document
and in the SOAP bindings.

Copyright © Open Geospatial Consortium, Inc. (2005) 5

OGC 04-060r1

6.1.5 WS-I Profile

The Web Services Interoperability Organization (WS-I) is an open industry effort
chartered to promote Web services interoperability across platforms, applications, and
programming languages. The organization brings together several Web services leaders
to respond to provide guidance, recommended practices, and supporting resources for
developing interoperable Web services.

The WS-I Basic Profile provides interoperability guidance for core Web services
specifications such as SOAP, WSDL, and UDDI.

OWS2 takes WS-I recommendations into consideration in the schemas design, but does
not consider WS-I compliancy as a must-have. In short, we did followed all the
recommendations, but it forbids the use of GET and POST binding which is not
something we can afford in an OGC context.

6.2 WSDL as a normative part to OGC implementation specification

The abstract part of the WSDL descriptions will be considered as a mandatory, normative
part in the OGC service implementation specifications

However, it is not required for a service to publish such a description. But if one is
published, it must conform to the one of the OGC.

We probably need to work on the definition of the conformance of two WSDL
description to allow integration in CITE testing

6.3 WSDL issues

6.3.1 Complex types in HTTP bindings

This dichotomy in the encoding unfortunately affects the abstract part of WSDL, because
WSDL definitions using KVP bindings (i.e. HTTP GET and POST bindings) do not
allow messages with complex types for message parts. Instead, each HTTP parameter
must be matched by a SimpleType part on its own, thereby preventing the use of message
types that do not have a flat structure.

Although some tools currently support KVP encoding on complex types, such support
varies greatly from one tool to another, and is not specified in any way in the WSDL
specification. Therefore using KVP with complex types is not a viable solution to
consider.

Given that, it is not possible to define a unique abstract part that is independent of the
implementation for HTTP Bindings.

 Copyright © Open Geospatial Consortium, Inc. (2005)

Carl Reed
What should it conform to and which “one” of the OGC?

OGC 04-060r1

6.3.2 WCS and WMS Specification problem

The WCS GetCoverage and the WMS GetMap (with Dimensions) cannot be fully
mapped into a KVP definition. The reason is that these operations introduce arbitrary
parameter names (e.g. BAND=….), and KVP definitions in WSDL must be exhaustive
regarding the parameters used.

The solution is to change this organisation of the KVP encoding as

PARAMETERNAME = Comma separated list of names

PARAMETERVALUE = Comma separated list of values

Example :

&GroundTemperature=0/10
&AirTemperature=-5/0,5/10

would become something like

&AXISNAMES=GroundTemperature,AirTemperature
&AXISVALUES=0/10,(-5/0,5/10)

Two actions has been taken to resolve this issues :

1. The WCS and WMS RWG have been requested to change this encoding to allow
a WSDL description of their interface.

2. The Common implementation WG has been requested to include a quote saying
dynamic parameter is forbidden in OGC KVP request encoding.

6.3.3 Unified WSDL for KVP and XML

Current state of Web Services stack as defined by the W3C does not provide the required
technical solution to meet this requirement. Some implementation allows specific
encoding of mapping, but we have chosen not to use these “vendor specific” extensions
in the OGC specifications.

This section is made available to those how may want to describe the way this issue may
be solved in the future (Stephane?).

6.3.4 Conclusion

XML bindings (esp. SOAP) seem to be the way to go to; they should be used where
possible and taken into account when defining new services; they offer all the flexibility
needed in terms of message complexity and permit to leverage the XML schema
definitions of the existing services.

Copyright © Open Geospatial Consortium, Inc. (2005) 7

OGC 04-060r1

However, KVP bindings cannot be overlooked, as many existing services support only
such bindings, and we cannot expect all those services to be upgraded to SOAP.

Since a unique abstract part cannot be defined for both KVP and XML bindings, specific
message types will have to be defined.

It was agreed not to try to merge both and that we will leave that to future work as
technologies will be available and/or supported by COTS tools.

For clarity, the message definitions in WSDL documents will be followed by _KVP or
_XML.

7 WSDL for existing OGC Services
This section describes the use of WSDL to describe the existing OGC Web Service
interfaces. This includes

� WCS 1.0.0

� WFS 1.0.0

� WMS 1.1.0 (1.1.1?)

� CS-W 2.0.0

Each paragraph below will address the problems encountered to map the interfaces to
WSDL (if any); this will be done first for KVP bindings, then for SOAP bindings. The
WSDL documents as well as the required information will be part of the respective
change requests. This document intends to contain justification of implementation
choices, not results. Of course, a pointer to the appropriate OGC document numbers will
be provided with each change proposal.

7.1 KVP bindings

7.1.1 Using existing schemas

As noted above, input messages in KVP bindings cannot have complex types for their
parts. However, output messages can, and existing schemas can be used to define the
response and fault messages of existing services.

This implies using the existing elements in the response part definition

<message name="GetCapaResult">
 <part name="response" element="wcs:WCS_Capabilities"/>
</message>

 Copyright © Open Geospatial Consortium, Inc. (2005)

OGC 04-060r1

and using the mime:mimeXML in the operation binding :

<operation name="GetCapabilities">
 [...]
 <output>
 <mime:mimeXML/>
 </output>
</operation>

That way, the GetCapabilities response should be validated against the WCS_Capabilities
element definition.

7.1.2 WSDL for WCS 1.0.0

There is a strong incompatibility between the current OGC WCS GET interface and the
possibility of WSDL. The WCS specification 1.0.0 requires the use of arbitrary parameter
names (e.g. BAND=...), and the WSDL message definition needs to be exhaustive about
the possible parameter names.

The WG agreed to compute a change proposal against the specification and to suggest the
Common Implementation specification to include a paragraph about this issue.

7.1.2.1 Binary response

There is an issue with operations that only provide a binary as response message. This
limitation applies to WCS GetCoverage and WMS GetMap. There exists no such thing as
an 'xsd:binary' type, which would be needed to define the response message part.

Actually it doesn't make much sense to define a raw, unencoded binary type within an
XML schema, but then how should we map the binary response of the remote service to
some message part ?

This seems to be a known but unresolved issue in the W3C note. See WSD Issues List
and the post from Jeff Lansing http://dev.w3.org/cvsweb/2002/ws/desc/issues/wsd-
issues.html?rev=1.2#x7.

7.1.2.2 Optional parts (and by extension, Get parameters)

According to the WSDL note, The 'minOccurs' attribute cannot be set on a wsdl:part
element, meaning we cannot define an optional parameter in the KVP encoding.

There seems to be no way to get around this limitation; all message parts will be
mandatory.

Copyright © Open Geospatial Consortium, Inc. (2005) 9

http://dev.w3.org/cvsweb/2002/ws/desc/issues/wsd-issues.html?rev=1.2
http://dev.w3.org/cvsweb/2002/ws/desc/issues/wsd-issues.html?rev=1.2

OGC 04-060r1

See http://groups.yahoo.com/group/wsdl/message/454.

7.1.3 WSDL for WFS 1.0.0

Some changes has been necessary to be able to describe the WFS using WSDL. Because
of these problems, the conclusion is that no 1.0.0 version of WFS can be described using
WSDL, so we made some schema fixes to version 1.0.1.

Here is a summary of the changes that we had to do in the WFS 1.0.0 schemas,

WFS-basic

� included WFS-capabilities.xsd to incorporate capabilities elements

� moved wfs:WFS_Capabilities element to the section for response messages

WFS-transaction

� removed duplicate type definition, EmptyType (also defined in WFS-
capabilities.xsd)

WFS-capabilities

� import filterCapabilities.xsd from "http://www.opengis.net/ows" namespace

� renamed duplicate element declarations to resolve name collisions, substituting
lower case for first letter: query, insert, update, delete, lock (also the references in
OperationType)

� renamed component elements of RequestType in the same manner to resolve
duplicates: getCapabilities, describeFeatureType, etc.

� renamed duplicate type definitions to resolve name collisions:
getCapabilitiesType, transactionType, etc.

filterCapabilities.xsd

� changed target namespace to "http://www.opengis.net/ows" namespace from
"http://www.opengis.net/ogc", as this was the simplest way to resolve the many
name collisions (most filter elements are redefined for inclusion in capabilities
documents)

Moreover, when binding an interface to an HTTP method, the WS-I Basic profile (and
consequently most tools) doesn't allow any operations to be omitted (R2718), so all of
them have to be bound to that method (e.g. GET).

XML Spy 2004 rel. 3 (Enterprise ed.) does not process HTTP bindings. However, if the
HTTP endpoints and bindings are stubbed out it does construct and submit SOAP request
messages; the target service responds appropriately.

 Copyright © Open Geospatial Consortium, Inc. (2005)

http://groups.yahoo.com/group/wsdl/message/454

OGC 04-060r1

7.1.4 WSDL for WMS 1.1.1

The WMS service is subject to the same problems as described in the WCS part, namely
the binary response problem, and the lack of a minOccurs attribute. Besides that, there’s
also a problem due to the lack of WMS XMLSchema, as described below.

7.1.4.1 WSDL description of Services using DTDs

Current WMS services return XML responses validated with a DTD document, ignoring
any namespace definition.

This prevents the validation of WSDL response messages against a XML schema for the
WMS, since the schema definitions must be in the scope of some namespace (this is not
mandatory in the schema spec, but in practice having a WSDL document using schemas
without namespaces leads to many more problems).

There are two solutions to this issue:

� Specify the part encoding as text/xml without specifying the kind of element
returned. This will lower the granularity of the code generated by tools, but it will
work with existing services.

� Change the implementation specification to use XML Schema definition

7.1.5 WSDL for CS-W 2.0

The only problem we encounter in Catalog Service-Web is that a GetRecords request
may be processed asynchronously, but a WSDL interface definition allows only one
output message to be specified. A type definition was added to the wrapper schema to
provide a choice between a normal GetRecordsResponse and an asynchronous response
(i.e. an acknowledgement).

7.1.6 WSDL for Common Implementation Specification 1.0.0

The group recommend that the Common Implementation Specification specify a common
usage for WSDL. A formal change proposal has been developed to include a section that
describes the normative impact of including WSDL description in a specification and the
way it shall be used.

7.1.7 WSDL Interoperability Experiments

Copyright © Open Geospatial Consortium, Inc. (2005) 11

OGC 04-060r1

Various tools has been used to experiment the produced WSDL. In particular, the IH4DS
thread have used the XSDL description of the OWS to integrate them with a workflow
engine provided by Oracle (was Collaxa BPEL). See the IH4DS IPRs and the Annexes
for more details about these experiments.

7.2 XML & SOAP Bindings

This section will describes the WSDL part for SOAP access to existing OGC Web
Service interfaces. This means, we will reject any try to change message semantic sor
encoding sthat are not an absolute requirement to make a SOAP message workcorrectly.

The path chose reduce sthe impact on existing specification sand
existing implementations. It requires only theembed dingof the
existing XML message in the body of the SOAP envelopes, using
document/literal option sof the SOAP protocol. This form of a
SOAP envelope is the one that has the most support from the
industry. This choice has proven to be very efficient for existing
implementations and has working quite well with existing COTS
SOAP Tools.

OGC
Payload

SOAP

Nevertheless, we envision that more SOAP functionalities may be
used by future OGC Services. An interesting document that
provides more information on this areaof research is the
Messaging Framework Discussion Paper (See Section 3).

We have identified some general issues regarding SOAP as a transport mechanism. This
section will address them and provide a comprehensive answer to them.

 Copyright © Open Geospatial Consortium, Inc. (2005)

OGC 04-060r1

7.3 Issues with SOAP

7.3.1 SOAP document/literal as the default OGC choice

When using SOAP binding in a WSDL document, one has to choose the style and
encoding of the SOAP messages. A WSDL SOAP binding can be either an RPC style
binding or a document style binding. Furthermore, A SOAP binding can have an encoded
use or a literal use. Of the four resulting combinations, document/literal binding was
chosen for OGC messages, because it is the one that matches best the way transport
layers are designed in current OGC services (XML messages validated by OGCschemas)
and because it allows for direct use of OGC schemas in the SOAP messaging scheme.

See http://www-106.ibm.com/developerworks/webservices/library/ws-whichwsdl/ for
more information on encodings, styles and how to use them.

7.3.2 SOAP for large binary transport

Transport of large binary data as part of SOAP messages can be an issue, and is involved
is several OGC services (e.g. WMS maps, WCS coverage data).

Two approaches can be taken to cope with binary data inside SOAP messages. One is to
put data inline in the messages; but since SOAP messages are XML-encoded and can’t
contain raw binary data, data has to be encoded (using hex- or base64-encoding) to get
valid XML documents. To achieve this, extra encoding and decoding steps are needed.
Therefore, that approach needs much more processing and bandwidth and puts
performance at stake. The other approach is to put binary data as attachment to the SOAP
messages, using a standard such as MIME; this combination (SOAP with MIME
attachments, a.k.a. SwA) is the subject of a W3C Note (http://www.w3.org/TR/SOAP-
attachments) and is part of the WS-I guidelines. It has the advantage of avoiding
encoding of data; however, resulting messages, as a whole, are no longer valid XML
messages, and may cause problems if routed through XML-based frameworks that do not
recognize MIME messages.

Using SOAP with attachments seems the way to go, and WSDL documents created in the
scope of OWS-2 were designed with that approach in mind. However, support for MIME
messages in existing XML tools (e.g. BPEL) should be investigated.

The Attachments Profile (http://www.ws-i.org/Profiles/Basic/2003-
08/AttachmentsProfile-1.0.htm), part of the WS-I Profile, provides guidelines on how to
use MIME or DIME attachments within SOAP messages.

8 UDDI
The overall goal of this initiative is to use OGC web services in conjunction with the
industry standards WSDL/SOAP/UDDI. This part will focus on the registration process
of OGC web service into public UDDI Registries.

Copyright © Open Geospatial Consortium, Inc. (2005) 13

http://www-106.ibm.com/developerworks/webservices/library/ws-whichwsdl/
http://www.w3.org/TR/SOAP-attachments
http://www.w3.org/TR/SOAP-attachments
http://www.ws-i.org/Profiles/Basic/2003-08/AttachmentsProfile-1.0.htm
http://www.ws-i.org/Profiles/Basic/2003-08/AttachmentsProfile-1.0.htm

OGC 04-060r1

8.1 Registration of OGC Web Services into UDDI

This first step will provide a methodology to register a W*S into a public UDDI registry.
It will cover the most common use of UDDI, the registration of Web Services.

8.1.1 The UDDI data model

As far as web services registration is concerned, the UDDI data model is made up of
several main entities :

8.1.2 WSDL and UDDI registries

The Oasis note on how to use WSDL in a UDDI registry (http://www.oasis-
open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm) provides a good
starting point to describe how one should register a web service into a UDDI registry,
using its WSDL documents.

That document proposes a methodology for mapping WSDL data model entities onto
UDDI data model entities. Basically, that methodology maps each building block of a
WSDL document to a separate UDDI entity : a tModel for portTypes, another tModel for
bindings, a UDDI businessService for the WSDL service, and a bindingTemplate for the
WSDL Port.

One remark about the Oasis guidelines is that they assume the WSDL bindings to be part
of the reusable portion of WSDL that will be shared between services; in other words,
they consider bindings as part of the interface. This does not invalidate the methodology
described in the note, but raises the issue of whether bindings should be considered
normative or not.

 Copyright © Open Geospatial Consortium, Inc. (2005)

http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm

OGC 04-060r1

8.2 Two ways assertion

This second step will exercise another concept of UDDI registries, it is the ability to
manage and to assert relationships between business entities.

8.2.1 Use case

In this experiment the use case is as is,

• An OGC member claims compliance of its product in UDDI.

The assertion is visible to the member and to the OGC. All other parties does
not see it yet. It must be validated by the OGC.

• The OGC assert the claim is right.

Since the OGC recognise the claim as true, it becomes available to all
parties that accesses the UDDI registry.

• A third party contact the OGC member and ask for compliance.

• The OGC member claims again compliance of its product.

• The third party can check using the UDDI registry that the claim is recognised as
valid by the OGC.

m

 UDDI

This case raise some questions about the security in U
goal of the industry leaders that support UDDI. And
in publishing the compliance of its member into a pub

8.2.2 Implementation 1:Illustrate Scenario with no

The first implementation used the Systinet UDDI
unchecked relationship taxonomy provided in the UDD

The following snapshots of the Systinet UI screens illu

Copyright © Open Geospatial Consortium, Inc. (2005)
Third Party
claim

assert
contact

clai

check
DDI registries, which is one major
also whether the OGC is interested
lic registry.

 custom UDDI objects

User interface and the predefined
I specification.

strate the process:

15

OGC 04-060r1

Figure 1: Illustrates OGC member adding assertion on WCS Compliance

Figure 2:Illustrates UDDI response to add assertion request

Figure 3: Illustrates the alerting of the OGC Administrator of the assumption

 Copyright © Open Geospatial Consortium, Inc. (2005)

OGC 04-060r1

Figure 4: Shows the OGC view after approving the assumption

Figure 5 shows a user requesting a business that are related to OGC:

Copyright © Open Geospatial Consortium, Inc. (2005) 17

OGC 04-060r1

8.2.3 Observations and Conclusions

This experiment showed that it was easy to add assertions at a business entity level in
UDDI using a standard taxonomy and UI. However, the scope of the experiment made it
impossible to addresses some questions about the security in UDDI registries, which is
one major goal of the industry leaders that support UDDI.

 Also given the fact that the assertion capability can only be made at the business entity
layer and there are no current plans to extend the capability to include service
descriptions, it is questionable whether there is significant value to this functionality. For
example, it is questionable whether the OGC is interested in publishing either its
membership list or the compliance of its member into a public Web Service registry.

However the background work in setting up the test UDDI registry led us to a better
understanding of the validation services provided by UDDI for various classes.

This functionality became the focus of the remainder of the experiment.

 Copyright © Open Geospatial Consortium, Inc. (2005)

OGC 04-060r1

8.3 Developing a custom validating Taxonomy

In the previous experiment we felt a small set of term/classes that were valid values of the
conformance class would be valuable. However, the relationship taxonomy was not
validated so any test could be inserted for the value. This is shown in the following figure
where “great” is given as a value to relationship.

After much experimenting we were able to use the Systinet UDDI and a Systinet method
which allows keyword value pairs to be validated against an XML list in the tmodel.

While this made the assertion experiment more interesting since a controlled vocabulary
could be entered, the restriction of business entity relationships only still could not be
overcome.

However, the fact that the validation service could be a user defined web service led to a
very interesting sequence of experimentsdiscussed in the remainder of this section.

8.3.1 Technical aspects

In order to create a custom validating taxonomy in Systinet UDDI Registry 5.0 the
following steps need to be taken:

Copyright © Open Geospatial Consortium, Inc. (2005) 19

OGC 04-060r1

1. A checked taxonomy should be created with the specification of external Java class
that would perform actual validation.

2. The validating class needs to be implemented. The class must implement
org.systinet.uddi.client.valueset.validation.v3.UDDI_ValueSetValidation_PortType
interface. This interface declares jut one method:

public DispositionReport
validate_values(Validate_values body) throws
UDDIException

The Validate_values object contains at least one tModel, businessEntity,
businessService, bindingTemplate or publisherAsertion, which contains reference to
the taxonomy validated by this web service. No matter what exact UDDI structures are
passed into this method, eventually KeyedReferences that are contained in these
structures will be validated:

private void validate(KeyedReferenceArrayList
keyedReferenceArrayList, DispositionReport
report) throws UDDIException {

 for (Iterator iter =
keyedReferenceArrayList.iterator();
iter.hasNext();) {

 KeyedReference keyedReference =
(KeyedReference) iter.next();

 if
(TMODEL_KEY.equalsIgnoreCase(keyedReference.
getTModelKey())) {

 if
(!isWithinBoundingBox(keyedReference.getKeyV
alue())) {

 String message = "Given point
is not within Bounding Box " +
keyedReference.toXML();

report.addResult(createResult(UDDIErrorCodes
.E_INVALID_VALUE, message));

 }
 }
 }
 }

3. Once the taxonomy and the class are created, the taxonomy needs to be uploaded to
the registry and the class needs to be put on the registry's classpath.

In this example, a pair of (X,Y) coordinates is validated against predefined bounding
box. In other words, if the pair is inside of the box it is considered to be valid:

 public static boolean
isWithinBoundingBox(String input)

 {
 boolean answer = false;
 try

 Copyright © Open Geospatial Consortium, Inc. (2005)

OGC 04-060r1

 {
 StringTokenizer tokenPoint = new

StringTokenizer(input,", ");
 Point point = new Point

(Double.parseDouble(tokenPoint.nextToken()),

Double.parseDouble(tokenPoint.nextToken()));
 answer = BB.isPointWithin(point);
 }
 catch (Throwable e)
 {
 e.printStackTrace();

 }
 return answer;
 }

So, for example, if a tModel created containing the X,Y pair and it needs to be validated
against the taxonomy, Java code that does it may look like this:

 TModel tModel = new TModel();
 tModel.setName(new Name(name));
 tModel.addDescription(new

Description(description));

 tModel.setCategoryBag(new CategoryBag());

tModel.getCategoryBag().addKeyedReference(ne
w
KeyedReference(BoundingBoxValidation.TMODEL_
KEY, keyValue));

 Save_tModel save = new Save_tModel();
 save.addTModel(tModel);
 save.setAuthInfo(authInfo);
 UDDI_Publication_PortType publishing =

getPublishingStub();
 System.out.print("Save in progress ...");
 TModelDetail tModelDetail =

publishing.save_tModel(save);\

If validation of the values contained in the tModel successful, the tModel will be saved,
otherwise DispositionReport containing the failure information will be returned from the
validation service. This code from the validation service illustrates that:

 ResultArrayList results =
report.getResultArrayList();

 if (results == null || results.size() ==
0)

 return
DispositionReport.DISPOSITION_REPORT_SUCCESS
;

 throw new UDDIException(report);

Validation can be performed via Registry's Web UI. First, the taxonomy cab browsed:

Copyright © Open Geospatial Consortium, Inc. (2005) 21

OGC 04-060r1

Then, if values (5,5) that are valid according to the business logic of the taxonomy's
validation service are input, the previously published tModel can be found. Thus, the
values are validated via the service:

However, if values that are not valid are input (11,11), different result is returned:

 Copyright © Open Geospatial Consortium, Inc. (2005)

OGC 04-060r1

In this case, the bounding box is defined as 4 points:

(0,0),(0,10),(10,10),(10,0).

8.3.2 Service registration with validation with user defined checked taxonomy

In this example, previously created is modified and used to validate a service.
Taxonomy's validator class is modified to validate whether a four given points constitute
a valid bounding box and if that box is within the bounding box defined by taxonomy:

 public static boolean isWithinBoundingBox(String input)
 {
 boolean answer = false;
 try
 {

Copyright © Open Geospatial Consortium, Inc. (2005) 23

OGC 04-060r1

 StringTokenizer tokenPoint = new StringTokenizer(input,", ");
 Point pointLL = new Point (Double.parseDouble(tokenPoint.nextToken()),
 Double.parseDouble(tokenPoint.nextToken()));
 Point pointUL = new Point (Double.parseDouble(tokenPoint.nextToken()),
 Double.parseDouble(tokenPoint.nextToken()));
 Point pointUR = new Point (Double.parseDouble(tokenPoint.nextToken()),
 Double.parseDouble(tokenPoint.nextToken()));
 Point pointLR = new Point (Double.parseDouble(tokenPoint.nextToken()),
 Double.parseDouble(tokenPoint.nextToken()));

 answer = BB.isValidBox(pointLL,pointUL,pintUR,pointLR) &&
 BB.isPointWithin(pointLL) && BB.isPointWithin(pointUL) &&
 BB.isPointWithin(pointUR) && BB.isPointWithin(pointLR);
 }
 catch (Throwable e)
 {
 e.printStackTrace();
 }

 return answer;
 }

Lets say someone wishes to publish a service that is described by a bounding box.
Additionally that bounding box must be valid according to earlier created taxonomy.
Thus, it needs to be validated against the taxonomy. Java code that does it may look like
this:

 BusinessService service = new BusinessService();
 service.setBusinessKey("uddi:b2844320-f072-11d8-8249-f35ef0b08247");
 service.setNameArrayList(new NameArrayList());
 service.getNameArrayList().add(new Name(name));
 service.addDescription(new Description(description));
 service.setCategoryBag(new CategoryBag());
 service.getCategoryBag().addKeyedReference(new
KeyedReference(BoundingBoxValidation.TMODEL_KEY, keyValue));

 Save_service save = new Save_service();
 save.addBusinessService(service);
 save.setAuthInfo(authInfo);

 UDDI_Publication_PortType publishing = getPublishingStub();
 System.out.print("Save in progress ...");
 ServiceDetail serviceDetail = publishing.save_service(save);
 System.out.println(" done");
 return serviceDetail;

If validation of the values associated with the service successful, the service will be
saved, otherwise DispositionReport containing the failure information will be returned
from the validation service. This code from the validation service illustrates that:

 Copyright © Open Geospatial Consortium, Inc. (2005)

OGC 04-060r1

 ResultArrayList results = report.getResultArrayList();

 if (results == null || results.size() == 0)

 return DispositionReport.DISPOSITION_REPORT_SUCCESS;

 throw new UDDIException(report);

Log 1 is a record adding service with category value that is valid by bounding box
taxonomy

Running ValidationDemo demo...

**

*** Systinet Registry Demo - BoundingBoxValidationDemo ***

**

Saving tModel where

Enter name [Coordinates values]:

Enter description [Demonstrates Bounding Box validation service]:

Default bounding box is used. It will be validated against the taxonomy. In this case it is
outside of the bounds defined by taxonomy.

BBox [1,1,1,4,4,4,4,1]:

Using Security at url https://sindbad.gsfc.nasa.gov:8443/uddi/security ..

 done

Logging in .. done

name = Coordinates values

Copyright © Open Geospatial Consortium, Inc. (2005) 25

OGC 04-060r1

description = Demonstrates Bounding Box validation service

keyValue = 1,1,1,4,4,4,4,1

Using Publishing at url https://sindbad.gsfc.nasa.gov:8443/uddi/publishing .. done

Save in progress ... done

Service 1 : uddi:7497d270-1318-11d9-9ec3-4b0f99d09ec3

<businessService serviceKey="uddi:7497d270-1318-11d9-9ec3-4b0f99d09ec3"
businessKey="uddi:b2844320-f072-11d8-8249-f35ef0b08247" xmlns="urn:uddi-org:api_v3">

 <name>Coordinates values</name>

 <description>Demonstrates Bounding Box validation service</description>

 <categoryBag>

 <keyedReference tModelKey="uddi:csc.com:demo:BoundingBox" keyValue="1,1,1,4,4,4,4,1"/>

 </categoryBag>

</businessService>

**

Logging out .. done

The run shows that business service was saved and its XML representation printed to the
screen.

 Copyright © Open Geospatial Consortium, Inc. (2005)

OGC 04-060r1

Log 2 shows adding service with category value that is not valid by bounding box
taxonomy

Running ValidationDemo demo...

**

*** Systinet Registry Demo - BoundingBoxValidationDemo ***

**

Saving tModel where

Enter name [Coordinates values]:

Enter description [Demonstrates Bounding Box validation service]:

BBox [1,1,1,4,4,4,4,1]: 11,11,11,14,14,14,14,11

Using Security at url https://sindbad.gsfc.nasa.gov:8443/uddi/security .. done

Logging in .. done

name = Coordinates values

description = Demonstrates Bounding Box validation service

Key value is the value of bounding box that is going to be validated against the
taxonomy. In this case it is outside of the bounds defined by taxonomy.

keyValue = 11,11,11,14,14,14,14,11

Using Publishing at url https://sindbad.gsfc.nasa.gov:8443/uddi/publishing .. done

Save in progress ...Exception in thread "main"
org.systinet.uddi.client.v3.UDDIException:

Copyright © Open Geospatial Consortium, Inc. (2005) 27

OGC 04-060r1

<dispositionReport xmlns="urn:uddi-org:api_v3">

 <result errno="20200">

 <errInfo errCode="E_invalidValue">

 Given box is not within Bounding Box <keyedReference

 tModelKey="uddi:csc.com:demo:BoundingBox"

 keyValue="11,11,11,14,14,14,14,11"

 xmlns="urn:uddiorg:api_v3"/>

 </errInfo>

 </result>

</dispositionReport>

The run shows that business service was not saved. The XML representation of
Disposition Report was printed to the screen. The report encapsulates the error given by
the validation service.

Note:

• in these example the bounding box represented by these 4 points is used inside of the
taxonomy: (0,0),(0,10),(10,10),(10,0).

• When value are input via WEB UI, they are provided as 8 comma separated numbers.
Each two of these numbers represent one of the corners of the bounding box in this
order: lower left, upper left, upper right, lower right.

 Copyright © Open Geospatial Consortium, Inc. (2005)

OGC 04-060r1

Previously added service can be browsed through the registry UI:

8.3.3 Conclusions and observations

I think this is a significant result and should be investigated further in our discussions of
UDDI and ebxml registry/repository. This experiment took less than 5 mandays to
implement but we had already gathered a fair amount of UDDI v3 experience from the
previous portions of the OWS 2 CA experience. The goal was to discover if there were
obvious limits on the use of UDDI version 3 validation web services using the Systinet
v5 UDDI server.

The key point is that the item to be validated is passed to the specified validation web
service as a string, the string is then parsed by the validation service. This means we
might be able to validate GML bounding shapes(assuming a GML validator exists) for
services in a taxonomy/class. I believe that it would be relatively easy to implement
complex validation services.

9 MapInfo - TIEs Executive Summary
During the OWS-2 kick-off in Washington, MapInfo volunteered to write .NET and Java
WFS and WMS clients. Attached are reports on our efforts. Also included is a document
with tips for .NET development that the OWS-2 common architecture team might find
useful.

We used Visual Studio .Net and Eclipse with the plug-ins for WSDL. These two IDE’s
are the most popular in the software development industry. The testing can be
summarized as follows:

 WFS WMS

Copyright © Open Geospatial Consortium, Inc. (2005) 29

OGC 04-060r1

Validate WSDL fail pass

Generate Java Stubs not possible pass with changes

Execute Java Demo not possible not possible

Generate .NET Stubs not possible fail

Execute .NET Demo not possible not possible

It appears that the current stub generators are limited and not able to use the current
WSDL files for WFS and WMS. Another way of looking at it -- maybe the current GML,
WFS and WMS schemas are too advanced and perhaps OGC should investigate a basic
profile for web services support.

10 MapInfo - Report on WSDL WFS

10.1 Problems

10.1.1 Schema Definitions

10.1.2 Problem

Microsoft expects all XML Schema definitions within one namespace to be placed into a
single file.

10.1.3 Solution

Collapse all types within the same namespace into a single file.

10.2 Members of Type Object

10.2.1 Problem

Wsdl.exe utility will generate members of type ‘object’ for definitions like:

<element ref="xls:_RequestParameters" minOccurs="0"/>

10.2.2 Solution

Use the following format for definitions instead:

<element name="_RequestParameters " type="xls:AbstractRequestParametersType"/>

 Copyright © Open Geospatial Consortium, Inc. (2005)

OGC 04-060r1

10.3 Multiple Occurrence of Elements of the Same Type

10.3.1 Problem

For multiple occurrences of elements of the same type wsdl.exe generates erroneous
mappings.

For example:

For:

<complexType name="PointToPointDistanceType">
 <sequence>
 <element name="startPoint" type="gml:Point"/>
 <element name="endPoint" type="gml:Point"/>
 </sequence>
 <attribute name="distanceType" type="mixls:DistanceCalculationType"/>
 <attribute name="distanceUnit" type="xls:DistanceUnitType" default="KM"/>
</complexType>

The mapping generated is:

 /// <remarks/>

[System.Xml.Serialization.XmlElementAttribute(Namespace="http://www.ope
ngis.net/gml")]

 public PointType Point;

 /// <remarks/>

 [System.Xml.Serialization.XmlElementAttribute("Point",
Namespace="http://www.opengis.net/gml")]

 public PointType Point1;

And will produce the following exception:

Copyright © Open Geospatial Consortium, Inc. (2005) 31

OGC 04-060r1

10.3.2 Solution

The class generated should be changed to

 /// <remarks/>

 [System.Xml.Serialization.XmlElementAttribute("Point",
Namespace="http://www.opengis.net/gml")]

 public PointType Point;

 /// <remarks/>

 [System.Xml.Serialization.XmlElementAttribute("Point1",
Namespace="http://www.opengis.net/gml")]

 public PointType Point1;

10.4 Schemas

The utilities wsdl.exe and xsd.exe generate a single C# class as an output for as many
schemas as you specify. In other words, if one service references some types or elements
of the schema the output class will contain all types for namespaces specified.

11 MapInfo - Report on WSDL WFS

11.1 Overview

This section reviews testing of the WFS WSDL contribution. The files from the folder
WFS-1.1 posted to the OGC Web Services, Phase 2 section of the OGC portal was used
for this test.

 Copyright © Open Geospatial Consortium, Inc. (2005)

OGC 04-060r1

11.2 Steps

1. Validation of WSDL

2. Generation of stubs to call services

3. Use of stubs in a program to test services

11.3 Tools

• Eclipse 3.0.0 (http://www.eclipse.org/platform)

• WSDL/SOAP Validation Plug-in for Eclipse (http://www.eclipse.org/wsvt/)

• WSDL2Java (http://ws.apache.org/axis)

• Visual Studio .NET 2003 Architect Edition

• XMLSPY 5 Professional Edition

11.4 Notes

• Validation was done using the WSDL validation plug-in for Eclipse

• Generation of Java stubs was attempted using WSDL2Java

11.5 Java Use of WFS

11.5.1 WSDL Validation

The first attempt at validation was done on the WSDL files as they came from the zip
file. Each WSDL file was put through the validation process and the following errors
were the result.

Copyright © Open Geospatial Consortium, Inc. (2005) 33

http://www.eclipse.org/platform
http://www.eclipse.org/wsvt/
http://ws.apache.org/axis

OGC 04-060r1

Next all of the WSDL files were combined in order to avoid any problems due to
imports. Also, the validation tool reported errors on the documentation tags in the WSDL
so these were removed. This step removed all but two of the errors, and these two errors
are accounted for in the Issues section of the README.txt that accompanied the zip file.

 Copyright © Open Geospatial Consortium, Inc. (2005)

OGC 04-060r1

Copyright © Open Geospatial Consortium, Inc. (2005) 35

OGC 04-060r1

11.5.2 Stub Generation

Stub generation was attempted but failed.

11.5.3 Using the Stub

Stub testing was not possible.

11.5.4 Conclusions

Most of the errors initially reported were due to problems with import statements, once
all files were combined only two errors were reported. Stub generation failed but fixing
the two errors exposed in validation may allows stubs to be generated.

11.6 .Net Use of WFS

11.6.1 WSDL Validation

First the Add Reference command was used on the WSDL. VS .NET was not able to
understand the WSDL.

 Copyright © Open Geospatial Consortium, Inc. (2005)

OGC 04-060r1

Copyright © Open Geospatial Consortium, Inc. (2005) 37

OGC 04-060r1

The command line tool wsdl.exe was used on the WSDL as well. It reported back that no
classes were generated, probably due to the fact that it could not understand the WSDL.

 Copyright © Open Geospatial Consortium, Inc. (2005)

OGC 04-060r1

Next Add Reference was used on the combined WSDL file. This time VS .NET was able
to understand the file but reported errors that would not allows it to generated stubs. The
errors reported were:

The document at the url file:///C:/Documents and Settings/miabate/miabate's Documents/My Work
Files/Visual Studio Projects/GaldosTest/wfs-galdos-vega.wsdl was not recognized as a known document
type.

The error message from each known type may help you fix the problem:

- Report from 'WSDL Document' is 'There is an error in XML document (141, 4).'.

 - More than one message named 'GetCapabilitiesRequest' was specified. Each message must have a
unique name.

- Report from 'DISCO Document' is 'Discovery document at the URL file:///C:/Documents and
Settings/miabate/miabate's Documents/My Work Files/Visual Studio Projects/GaldosTest/wfs-galdos-
vega.wsdl could not be found.'.

 - The document format is not recognized.

- Report from 'XML Schema' is 'Expected Schema root. Make sure that the root element is <schema> and
the namespace is 'http://www.w3.org/2001/XMLSchema' for an XSD schema or 'urn:schemas-microsoft-
com:xml-data' for an XDR schema. An error occurred at , (2, 2).'.

Copyright © Open Geospatial Consortium, Inc. (2005) 39

OGC 04-060r1

 Copyright © Open Geospatial Consortium, Inc. (2005)

OGC 04-060r1

11.6.2 Stub Generation

Stub generation was attempted on the combined WSDL file using wsdl.exe. This attempt
resulted in errors that are documented in the Issues section of the README.txt that
accompanies the zip file.

11.6.3 Using the Stub

Stub testing was not possible.

11.6.4 Conclusions

VS .NET was not able to understand the WSDL in the multiple file format. Once the
WSDL files were combined VS .NET was able to understand the WSDL but then found
errors that would not allows it to create stubs. If the errors are resolved then .NET stub
generation may be possible. The errors that were reported are documented in the
README.txt file that accompanies the zip file the WSDL came in.

12 MapInfo - Report on WSDL WMS

12.1 Overview

This report reviews testing of the Ionic OWS2 WMS WSDL contribution. The files from
the folder “Ionic WSDL, 4th it.zip” posted to the OGC Web Services, Phase 2
section of the http://portal.opengeospatial.org

Copyright © Open Geospatial Consortium, Inc. (2005) 41

http://portal.opengeospatial.org/

OGC 04-060r1

12.2 Steps

4. Validation of WSDL

5. Generation of stubs to call services

6. Use of stubs in a program to test services

12.3 Tools

• Eclipse 3.0.0 (http://www.eclipse.org/platform)

• WSDL/SOAP Validation Plug-in for Eclipse (http://www.eclipse.org/wsvt/)

• WSDL2Java (http://ws.apache.org/axis)

• Visual Studio .NET 2003 Architect Edition

• XMLSPY 5 Professional Edition

12.4 Notes

• Validation was done using the WSDL validation plug-in for Eclipse

• Generation of Java stubs was attempted using WSDL2Java

12.5 Java Use of WMS WSDL

12.5.1 WSDL Validation

Validation of the succeed with the files straight from the zip archive that was downloaded
from http://portal.opengeospatial.org/

 Copyright © Open Geospatial Consortium, Inc. (2005)

http://www.eclipse.org/platform
http://www.eclipse.org/wsvt/
http://ws.apache.org/axis
http://portal.opengeospatial.org/

OGC 04-060r1

Copyright © Open Geospatial Consortium, Inc. (2005) 43

OGC 04-060r1

12.5.2 Stub Generation

WSDL2Java was not able to generate Java stubs based on the WSDL documents. This
error message seems odd since the WSDL documents did validate. Taking into consider
importing problems the wms.wsdl and wms_abstract.wsdl files were combined
but generation met with the same error even though the combined file passed validation
as well. (Note: adding ogc_common.wsdl to the combined file might have fixed the
problem but was not completed due to validation errors that were produced when
combining the file was attempted)

 Copyright © Open Geospatial Consortium, Inc. (2005)

OGC 04-060r1

The fault element that caused stub generation to fail was removed and stub generation
was attempted again. This time the generator reported that stub generation had succeeded.
Further investigation revealed that only code for the types that the service uses were
generated. Code to communicate with the service had not been generated. Only type
classes were generated because the WSDL only contained HTTP services, no SOAP
services.

Copyright © Open Geospatial Consortium, Inc. (2005) 45

OGC 04-060r1

One of the HTTP services was converted to a SOAP service with SOAP bindings and
stub generation was attempted. This type generation created code to communicate with
the services.

 Copyright © Open Geospatial Consortium, Inc. (2005)

OGC 04-060r1

12.5.3 Using the Stubs

The WSDL only specified HTTP services so it was expected that an attempt to
communicate with the services using SOAP stubs would result in error.

12.5.4 Conclusions

The WSDL documents validated without any need for modification but then
WSDL2Java failed to generate Java stubs based on the documents. By removing the
element that was causing stub generation to fail it was possible to generated classes for
the types that the service used but it was still not possible to generate code that would be
used to communicate with the service. After converting a HTTP service to a SOAP
service stub generation succeed but the operation was not supported on the server end.
The failure of the SOAP stubs was expected and is reasonable since the WSDL specified
HTTP services and the address provided for the stub to communicate would be expecting
HTTP communication. All that is required for the WSDL is a SOAP service on the server
end and a modification to account for the error that was reported in the first stub
generation attempt.

Copyright © Open Geospatial Consortium, Inc. (2005) 47

OGC 04-060r1

12.6 .Net Use of WMS WSDL

12.6.1 WSDL Validation

First an attempt to add a Web Reference based on the supplied WSDL documents was
made. VS .NET was unable to validate the information to determine the methods that
should be supplied.

 Copyright © Open Geospatial Consortium, Inc. (2005)

OGC 04-060r1

Next the files ogc_common.wsdl, wms.wsdl, and wms_abstract.wsdl were
combined to avoid errors due to imports. With the combined file VS .NET was able to
determine the methods the service exposed.

Copyright © Open Geospatial Consortium, Inc. (2005) 49

OGC 04-060r1

12.6.2 Stub Generation

Using the combined file that passed validation in the previous step an attempt to import
the web service was made. VS .NET was not able to generate .NET stubs to work with
the service. There were no “errors” but two “warnings” generated. The first warning
(Custom tool warning: DiscoCodeGenerator unable to initialize code generator. No code generated.)
seems to indicate that an error occurred somewhere and due to the error code could not be
generated

 Copyright © Open Geospatial Consortium, Inc. (2005)

OGC 04-060r1

Stub generation was also attempted using the command line tool wsdl.exe. Using
wsdl.exe on the multiple wsdl files that were posted resulted in errors.

The wsdl files were then combined and wsdl.exe was used again, this time only warnings
were generated.

Copyright © Open Geospatial Consortium, Inc. (2005) 51

OGC 04-060r1

The warnings generated from wsdl (shown below) indicate that there is a problem with
the input types of the web service methods.

It was possible to generated C# classes for the types that the web service uses by using
the command line tool xsd.exe

12.6.3 Using the Stub

Stub testing was not possible.

12.6.4 Conclusions

VS .NET was able to understand the WSDL documents when they were
combined into one file. When trying to generate the .NET stubs VS encountered an error
that caused code generation to fail. By using the command line tool wsdl.exe and the
wsdl combined in to one file it was possible to see the errors that caused stub generation
to fail. Though stub generation failed it was possible to generate classes for the types that
the service uses.

 Copyright © Open Geospatial Consortium, Inc. (2005)

OGC 04-060r1

13 Galdos Simple WSDL/SOAP Experiment for WFS

13.1 Experiment Description

This short report summarizes a simple experiment to test the use of WSDL and
SOAP for the OGC Web Feature Service.

The WSDL document used is contained in Appendix A of this report.

The WSDL document was generated using the XMLSpy 2004 Enterprise Edition
which provides functionality for editing and analyzing WSDL documents. This
was reported on in an earlier document posted to the project (OWS 2.0) portal at
OGC.

This report uses the previous WSDL document to automatically generate and
send SOAP messages to a Galdos WFS supporting SOAP.

The experiment was conducted as follows:

4. The WSDL document was edited to use the service location
http://dali.galdosinc.com:8081/wfs-soap/services/WFSSOAPService.
This is the location of a Galdos test WFS used for CITE.

5. The WSDL document for WFS (testWSDL.wsdl) was read into XMLSpy
2004 Enterprise Edition and the WSDL validated by XMLSpy. Note that
XMLSpy is rather forgiving of WSDL errors relative to other tools that we
have tried. This will be reported on in another report.

6. XMLSpy 2004 provides the ability to generate and send SOAP messages
based on processing the WSDL document.

The objective of the experiment was then to create and send SOAP messages
from the XMLSpy SOAP tool to the Galdos WFS listed in the WSDL document.

This experiment was quite successful. The following operations were tested
successfully as document in this report:

1. GetCapabilities

2. DescribeFeature

3. GetFeature

4. GetFeatureWithLock

The architecture of the experiment is shown in Figure 1.

Copyright © Open Geospatial Consortium, Inc. (2005) 53

http://dali.galdosinc.com:8081/wfs-soap/services/WFSSOAPService

OGC 04-060r1

XMLSpy 2004

Enterprise Edition

WFS WSDL

SOAP Response

SOAP Request Galdos Cartalinea™

Web Feature Service

Figure 1. Experiment Architecture

13.2 Experiment Results

This section summarizes the results of the experiment in a series of annotated screen
shots.

t

Fi

Prompt for WSDL documen

gure 1. Selecting the WSDL Document for WFS

Copyright © Open Geospatial Consortium, Inc. (2005)

OGC 04-060r1

Display of Service
Operations from the
WSDL document.

Figure 2. Selecting an operation based on the WSDL Document

Automatically generated
SOAP message

Figure 3. The Generated SOAP message for Get Capabilities

Copyright © Open Geospatial Consortium, Inc. (2005) 55

OGC 04-060r1

Now we have XMLSpy send the message to the service referenced by WSDL.

Figure 4. Sending the SOAP message via XMLSpy

Note that in this case we do not need to do anything to the message at all.

 Copyright © Open Geospatial Consortium, Inc. (2005)

OGC 04-060r1

Figure 5. The Response Capabilities Document

Copyright © Open Geospatial Consortium, Inc. (2005) 57

OGC 04-060r1

Figure 6. The Capabilities Document – Oops no SOAP in here !!

Note that we have requested a capabilities document via SOAP that does not reference a
SOAP “DCP” at all!!

This time we needed to add a namespace
declaration and the name of the feature type
whose schema description we require.

Figure 7. The Describe Feature Request generated from WSDL

 Copyright © Open Geospatial Consortium, Inc. (2005)

OGC 04-060r1

Figure 8. The Describe Feature Response

Copyright © Open Geospatial Con
This time we take the GetFeature message
generated by the SOAP tool (XMLSpy) and
decide which feature types to request.

sortium, Inc. (2005) 59

OGC 04-060r1

Figure 9. GetFeature Request with Filter Part Removed – “Inserts” Feature Type

Figure 10. GetFeature Response

 Copyright © Open Geospatial Consortium, Inc. (2005)

OGC 04-060r1

Figure 11. GetFeatureWithLock Request

Copyright © Open Geospatial Consortium, Inc. (2005) 61

OGC 04-060r1

Figure 12. GetFeatureWithLock Response

Figure 13. LockFeature Request

 Copyright © Open Geospatial Consortium, Inc. (2005)

OGC 04-060r1

Figure 14. LockFeature Response

14 Ionic Experiment Summary

14.1 Overview

The experiments described below cover the validation and use of the WSDL documents
for WCS, WMS, WFS to generate stubs and register with UDDI services.

14.2 Current implementations of the specifications

Below is a description of the tools used, and how they seem to follow the specifications.

14.2.1 Tools

The tools used for these experiments are :

- Soapclient (http://www.soapclient.com)

- Mindreef’s Soapscope (http://www.mindreef.com/)

- Systinet Eclipse plugin
(http://www.systinet.com/products/wasp_developer/overview)

Copyright © Open Geospatial Consortium, Inc. (2005) 63

http://www.soapclient.com/
http://www.mindreef.com/
http://www.systinet.com/products/wasp_developer/overview

OGC 04-060r1

- JDeveloper (http://otn.oracle.com/products/jdev/)

- XMLSpy (http://www.xmlspy.com/)

14.2.2 Tools compliance

14.2.2.1 KVP bindings

SoapClient is the only straightforward tool available, but far too permissive. It doesn’t
map the response to the WSDL response message; simply returns the raw response.

Systinet plugin is supposed to handle KVP bindings, but is very picky (check its
description)

14.2.2.2 XML/POST bindings

No tools could be successfully tested with XML/POST binding.

14.2.2.3 XML/SOAP bindings

SoapClient supports SOAP bindings, but chokes on complex WSDL imports and
schemas (esp. WCS and WFS).

XMLSpy is fairly trustworthy, although too permissive on some points. It doesn’t seem to
handle binary responses.

SoapScope is a good reference.

14.2.2.4 UDDI

JDeveloper supports UDDI browsing and querying, but fails to parse WSDL files with
imported XSD schemas

Systinet plugin supports UDDI browsing and querying and successfully retrieves WSDL
files to build stubs from them.

14.2.3 Reference implementations

There is a need for reference implementations of WSDL, SOAP and UDDI on which to
rely, since the specifications are sometimes unclear (esp. WSDL).

None of the tools used in these experiments seem to completely support what they
should. Some other tools should be tested, such as JAXRPC, Axis, Wasp.

14.3 Test Results

 KVP XML

 Copyright © Open Geospatial Consortium, Inc. (2005)

http://otn.oracle.com/products/jdev/
http://www.xmlspy.com/

OGC 04-060r1

WCS

- GetCapabilities

- DescribeCoverage

- GetCoverage

(tested using SoapClient)

- OK

- OK

- NOK, check issue ## (CR on optional
params)

SoapClient fails to read the schemas
tested using SoapScope, XMLSpy

- OK

- OK

- response comes back OK, BUT don’t
know how to map binary part in WSDL
message (check issue #01)

WMS

- GetCapabilities

- GetMap

(tested using SoapClient)

- response comes back OK, but we lack a
WMS schema to define the WSDL
message (check issue ##)

- OK

SoapClient is able to read the schemas, but
no POST implementation of a WMS is
available to our knowledge.

15 Intergraph - WSDL/BPEL TIEs
The behavior of a web service is defined by a WSDL document. And the structure of
each of the messages exchanged by a web service operation are generally defined within
one or more XML schemas.

With the growing acceptance of web services, a number of tools have emerged which aid
in the construction of web services and web service clients. Those tools offer facilities for
constructing new WSDL documents; a typical tool also provides the ability to consume
an existing WSDL document and its related schemas for the purpose of creating a web
service client. And of course there are many tools for constructing and validating XML
schemas.

The W3C has published and continues to maintain specifications (recommendations) that
define XML, XML schemas, WSDL and related technologies. The tool vendors create
their tools based on the W3C specifications. Of course, there are differences in
appearance and method of operation among the tools on the market. However, one would
expect these tools to arrive at the same interpretation of a particular WSDL file and its
related schemas. In practice, however, we found that *not* to be the case. Although there
certainly were occasions where the tools would agree on an issue with with a WSDL file
or schema, there were also situations where the tools would not agree.

There are different possibilities as to why these tools may sometimes not agree on the
status of a particular WSDL or schema file:

Copyright © Open Geospatial Consortium, Inc. (2005) 65

OGC 04-060r1

 Copyright © Open Geospatial Consortium, Inc. (2005)

• The tool itself is flawed. XML, XML schemas and WSDL are relatively new to
the world of computing and the tools have not yet reached a level of maturity.

• The W3C specification is "vague" with respect to a particular guideline and the
tool vendors arrived at different interpretations.

• The tool stops short of implementing a particular aspect of the specification,
failing to detect a problem.

Given imperfect tools, an implementer is faced with two choices:

• Convincing the vendor to fix the tool in a timely fashion, or

• Altering the WSDL and/or schemas to accomodate the tool.

For the OWS2 effort, we took both approaches. The Common Architecture group
provided assistance to the IH4DS group which constructed BPEL Service Chains using
the Oracle BPEL Designer and BPEL Process Manager. Oracle's BPEL tools are still in
beta, and exhibited some shortcomings. Some of the problems that were identified Oracle
was able to fix. And in some cases the BPEL tools indicated problems with our WSDL
and/or schemas and we took actions fix them.

[As of this writing, we are still tracking down some schema related issues. As a
workaround, we have developed simplified WSDL files that have no dependence on
external schema files. All WSDL messages are defined with elements which are either
XML simple types or a special `anyType' type which can accommodate any XML
element structure.]

During the course of the OWS2 effort, we explored a number of WSDL and schema
validation test tools:

WSDL:

• XMLSpy Enterprise Edition (Altova)

• SoapScope (Mindreef)

• Oracle BPEL Designer

XML Schema:

• XMLSpy Enterprise Edition

• Schema Quality Checker (SQC) (IBM)

• XML Schema Validator (XSV) (University of Edinburgh)

• MSXML SP2 (Microsoft)

	Scope
	Conformance
	Normative references
	Terms and definitions
	SOAP
	UDDI
	WSDL

	Conventions
	Symbols (and abbreviated terms)
	UML Notation

	WSDL
	Introduction
	About WSDL
	WSDL versions
	Abstract and implementation parts
	Bindings
	WS-I Profile

	WSDL as a normative part to OGC implementation specification
	WSDL issues
	Complex types in HTTP bindings
	WCS and WMS Specification problem
	Unified WSDL for KVP and XML
	Conclusion

	WSDL for existing OGC Services
	KVP bindings
	Using existing schemas
	WSDL for WCS 1.0.0
	Binary response
	Optional parts (and by extension, Get parameters)

	WSDL for WFS 1.0.0
	WSDL for WMS 1.1.1
	WSDL description of Services using DTDs

	WSDL for CS-W 2.0
	WSDL for Common Implementation Specification 1.0.0
	WSDL Interoperability Experiments

	XML & SOAP Bindings
	Issues with SOAP
	SOAP document/literal as the default OGC choice
	SOAP for large binary transport

	UDDI
	Registration of OGC Web Services into UDDI
	The UDDI data model
	WSDL and UDDI registries

	Two ways assertion
	Use case
	Implementation 1:Illustrate Scenario with no custom UDDI objects
	Observations and Conclusions

	Developing a custom validating Taxonomy
	Technical aspects
	Service registration with validation with user defined checked taxonomy
	Conclusions and observations

	MapInfo - TIEs Executive Summary
	MapInfo - Report on WSDL WFS
	Problems
	Schema Definitions
	Problem
	Solution

	Members of Type Object
	Problem
	Solution

	Multiple Occurrence of Elements of the Same Type
	Problem
	Solution

	Schemas

	MapInfo - Report on WSDL WFS
	Overview
	Steps
	Tools
	Notes
	Java Use of WFS
	WSDL Validation
	Stub Generation
	Using the Stub
	Conclusions

	.Net Use of WFS
	WSDL Validation
	Stub Generation
	Using the Stub
	Conclusions

	MapInfo - Report on WSDL WMS
	Overview
	Steps
	Tools
	Notes
	Java Use of WMS WSDL
	WSDL Validation
	Stub Generation
	Using the Stubs
	Conclusions

	.Net Use of WMS WSDL
	WSDL Validation
	Stub Generation
	Using the Stub
	Conclusions

	Galdos Simple WSDL/SOAP Experiment for WFS
	Experiment Description
	Experiment Results

	Ionic Experiment Summary
	Overview
	Current implementations of the specifications
	Tools
	Tools compliance
	KVP bindings
	XML/POST bindings
	XML/SOAP bindings
	UDDI

	Reference implementations

	Test Results

	Intergraph - WSDL/BPEL TIEs

