
®

OGC Testbed-14:
Modernizing web service

standards The next version of the
WFS

(and other OGC services)

1

Final Demonstration meeting
ESA/ESRIN, January 2019

2

Key characteristics, strong points:

• Access to spatial databases over HTTP –
read and write

• Fine-grained access to spatial data – by
feature or even by property

• Full support for GML application schemas
• Advanced queries via Filter Encoding

(ISO 19143:2010)
• Very powerful – supports many advanced

use cases
• Captures community requirements

collected over the last 20 years

Issues, weak points:

• Architecture was bleeding edge 20 years
ago, but outdated today and not
consistent with the Web architecture

• Significant initial investment required to
understand and implement WFS as a
server or client
– Feature-rich, modular structure hard to

understand
– Too many OGC/WFS-specific concepts

• Strong reliance on XML (Capabilities,
Filter Encoding, GML, XML Schema)

• A database interface without
considerations for access control

WFS 2.X (aka OGC 09-025r2)

3

Key characteristics, strong points:

• Access to spatial databases over HTTP –
read and write

• Fine-grained access to spatial data – by
feature or even by property

• Full support for GML application schemas
• Advanced queries via Filter Encoding

(ISO 19143:2010)
• Very powerful – supports many advanced

use cases
• Captures community requirements

collected over the last 20 years

WFS 2.X (aka OGC 09-025r2)

Issues, weak points:

• Architecture was bleeding edge 20 years
ago, but outdated today and not
consistent with the architecture of the
Web

• Significant initial investment required to
understand and implement WFS as a
server or client
– Feature-rich, modular structure hard to

understand
– Encapsulates too many OGC/WFS-

specific concepts
• Strong reliance on XML (Capabilities,

Filter Encoding, GML, XML Schema)
• A database interface without

considerations for access control

4

• BREAK FREE of technological and documentation legacy
• Use a developer-driven process, do not standardize anything that has not been proven

to be useful and developer-friendly – in client and server implementations
• Build on the knowledge about the community requirements, but modernize the

architecture, align it with the current practices on the Web
• Modularize the standards into multiple parts – part 1, the “core”, should specify a

simple interface to access spatial data that is already sufficient for many use cases
• Remove dependency to XML and XML Schema – in fact, remove dependency to any

particular encoding and relax requirements for validation against a schema, at least in
the core

• Where possible, replace WFS/FES-specific resources and re-use existing resources
that Web developers are familiar with and which are supported by libraries that are
freely available

• Support secured services
• WFS 3.0 is intended to be simpler to use and more modern, but still an evolution

from the previous versions and their implementations

Conclusions for the next revision of WFS/FES

5

Background:
W3C/OGC Spatial Data on the Web Best Practices

6

OpenAPI – replaces Capabilities in WFS 3.0
Supports code-generation, security and more

7

Encodings:
Rules for HTML, GeoJSON, GML – all optional

8

Web architecture:
Hypermedia driven, conform to HTTP, support for HTML, …

9

Development of the new version
in public GitHub repository

10

• WFS 3.0, Part 1:
– Draft has been available for some time
– Multiple implementations are available
– Multiple avenues of validation pursued including a hack-a-thon in Fort

Collins early in 2018
– Under review by the joint ISO/OGC working group
– Release candidate based on implementation feedback in mid/late 2019
– We are not is a hurry; want to let the draft “bake” well

• Additional parts, Filter Encoding:
– Work ongoing on additional extensions

l crs, transactions, advanced queries, etc.
– Includes existing work from revision of WFS/FES 2.0 since 2012
– Depending on progress and community interest
– Verify the modularization approach during 2018

l Which brings us to TB14 ...

Status and plans

11

Next Generation APIs - WFS 3.0

• Objective was to develop and test

Web Feature Services (WFS) 3.0

• Experiment with new WFS 3.0

specification, OpenAPI, Swagger

• Test security mechanisms based on

OpenID Connect and OAuth 2.0

• Assess WFS 3.0 extensions and

methods to ease geospatial

enterprise transition to next

generation APIs

12

Background

12
Before we get into details of the Next Generation APIs ER… let’s discuss the basics of WFS 3.0, OpenAPI, Swagger

13

Collections

13

Foundation of WFS 3.0 is set of resources which define ‘core' of the specification. The core provides simple API to access
geospatial feature resources as 'collections’. For example, path above lists collections offered by the server.

GET /collections

WFS 3.0

14

Feature Resources

14

GeoJSON is a recommended encoding for collections provided by WFS 3.0, along with HTML. For example, path above
returns metadata about a geospatial feature collection

GET / collections/agriculturesrf

WFS 3.0

15

HTTP Methods & Uniform Interface

15

In this approach, the agriculturesrf feature resource is accessed from WFS 3.0 API using the HTTP verb GET.
Using HTTP methods GET, POST, PUT, DELETE can make things much easier for developers because the interface is
uniform.

GET / collections/agriculturesrf

WFS 3.0

16

Resource Oriented Approach

16

WFS 3.0 consistent with emerging OGC Web API Guidelines and resource oriented approach described in Testbed 12.

Advanced functionality is separated into WFS 3.0 extensions – transactions for updates, feature generalization etc.

Level 3

Hypermedia

Level 2

HTTP Verbs

Level 1

Focus on

Resources

Level 0

Focus on Services

Identify geospatial
Resources…

GET http://www.ogc.com /collections

Maps

Tiles

Coverages

Processes

Features

Don’t define

‘operations’,

just build the

APIs using HTTP

Verbs.

Build links between your

related geospatial

Resources. For example,

a map leads to the

image or feature that it

comes from.

Tiles Render Collections

Collections

Use HTTP Verbs (GET, POST,
PUT, DELETE) on Resources…

Start building
Associations…

Resource /collections

17

Landing Page

17

Each WFS 3.0 deploys a landing page available at the 'root' path of the API. Landing page provides links to the resources
offered by the service including links to the API description (OpenAPI & others) , supported conformance classes, feature
collections description and the feature resources themselves.

GET /

WFS 3.0

18

OpenAPI and Swagger

18

WFS 3.0 minimizes use of WFS-specific components. Uses OpenAPI to provide simple, developer and tool-friendly
description of the API. The OpenAPI document can be used in tools such as Swagger.

GET /api

WFS 3.0

19

OpenID Connect and OAuth 2.0

19

OpenAPI on WFS 3.0 supports multiple security frameworks. For Testbed 14, OpenID Connect and OAuth 2.0 were
assessed. OpenID Connect is an authentication layer on top of OAuth 2.0, an authorization framework.

OAuth 2.0
OpenID
Connect

20

Experiments - Demonstration Scenario

20
Participants assessed the ability of WFS 3.0 to support simulated users in a humanitarian relief scenario.

21

Component Implementation Design

21
Test architecture included a sequence of interactions between APIs, client applications and security frameworks…

22

Technology Integration Experiments

22

Architecture was tested in a series of Technology Integration Experiments (TIEs) and demonstrated in the context of
unsecured APIs and Clients and secure APIs and Clients…

23
23

TIEs for Landing Pages, OpenAPIs, Core Conformance classes…

24
24

TIEs for Landing Pages, OpenAPIs, Core Conformance classes…

25
25

TIEs for Landing Pages, OpenAPIs, Core Conformance classes…

26
26

TIEs for Landing Pages, OpenAPIs, Core Conformance classes…

27
27

TIEs for Landing Pages, OpenAPIs, Core Conformance classes…

28

Secured WFS 3.0

28

Configuration of OAuth2.0 and OpenID Connect in the Next Generation APIs - WFS 3.0 component implementation design.
The client application with security handling is provided by GIS.FCU. Authorization Server is provided by Deimos.

29

Secured WFS 3.0

29

In the client application users can choose different OAuth 2.0 permission flows – Implicit Grant, Authorization Code Grant,
Password Grant, Dynamic Client Registration flow, etc…

30

Secured WFS 3.0

30

Testing of security for WFS 3.0 focused on access control for WFS 3.0 Core APIs including the API Definition (path /api),
Conformance statements (path /conformance), and the Dataset Distribution (path /collections) resources

31

Security (in OpenAPI)

"security": [
…,
{ "oauth2": ["profile",

"openid", "email"] },
...

],

"securitySchemes": {
…,
"oauth2": {
"type": "oauth2",
"flows": {
"implicit": {
"authorizationUrl": "https://tb14.cubewerx.com/cubewerx/oauth/authorize",
"scopes": {
"profile": "requests access to the end-user's profile",
"openid": "OpenID Connect scope",
"email": "requests access to the end-user's e-mail address"

}
},
"password": {
"tokenUrl": "https://tb14.cubewerx.com/cubewerx/oauth/token",
"scopes": {
"openid": "OpenID Connect scope",
"profile": "requests access to the end-user's profile",
"email": "requests access to the end-user's e-mail address"

}
},
"authorizationCode": {
"authorizationUrl": "https://tb14.cubewerx.com/cubewerx/oauth/authorize",
"tokenUrl": "https://tb14.cubewerx.com/cubewerx/oauth/token",
"scopes": {
"openid": "OpenID Connect scope",
"profile": "requests access to the end-user's profile",
"email": "requests access to the end-user's e-mail address"

}
}

}
},
…

}

32

Security (lessons learned)

• Servers that support HTML are also clients and so the client workflow
needs to be implemented as well.

• OpenID Connect security scheme in the OpenAPI definition is not
visible/supported in the HTML generated by SwaggerUI

• OpenAPI security object does sufficiently describe Oauth/OpenID but does
not cover all OGC requirements (Chuck H.)

• Chicken-egg-problem. In order to access secured resources need to read
OpenAPI document but must be a “light” OpenAPI document providing just
enough info to allow authentication.

• As with other aspects of WFS 3.0, security scheme negotiation must take
place between clients and servers

• Cross-Origin Resource Sharing (CORS) scenarios

33

Extensions

• A number of WFS 3.0 extensions where implemented and tested in the

NextGen thread during TB14

• Some of these extensions were for adding new parts to the specification

• Some of these extensions where to test the limits of the API and assess its

suitability for resources other than features (e.g. maps, tiles)

è Coordinate Reference

Systems (by reference)

extension

è Geometry simplification

extension

è Collections selections

extension

è Property selection extension

è Asynchronous request

extension

è Hierarchical path extension

è Map extension

è Tile extension

è OpenSearch query extension

è Advanced adhoc query

extension

è Transactions extension

34

So What?

• So why is this work important to an imagery organization?
• A fast growing pool of imagery data also generates a fast growing pool of

feature data (i.e. derived information)
• In order to to be able to query this information, say to produce some non-

imagery information like a report or chart, you need an easy to use,
modern, capable and extensible API and that is what we a striving for with
WFS 3.0

• Finally, the WFS 3.0 pattern is now being applied to other OGC web
services
l We saw in the previous presentations the application of the pattern to

WPS
l The pattern is also being applied of WCS, CSW, WMTS, etc...

