

CENTRE DE RECHERCHE INFORMATIQUE DE MONTRÉAL

Apache Spark MLlib applied to geospatial imagery for flood indication

APACHECON 2018

Jean-Francois Rajotte, Tom Landry, Cédric Noiseux, Martin Sotir, Ayoub Tlili, Mario Beaulieu, Samuel Foucher

Montréal, Québec, Canada SEPTEMBER 26TH, 2018

PRINCIPAL PARTENAIRE FINANCIER

Économie, Science et Innovation Québec 🏼 🐼

- Applied research center
- 4 teams : Vision, NLP & Speech, Data Science, Model
- More about us
 - o <u>www.crim.ca</u>
 - <u>https://www.linkedin.com/company/crim/</u>
 - <u>https://medium.com/crim</u>

Overview

- Motivation
 - "NextGen" project at CRIM to advance compute and Machine Learning
 - Participation to OGC Testbed-14, Earth Observation and Machine Learning threads/tasks
 - Domain expert method of water detection from satellite images in flooding scenarios

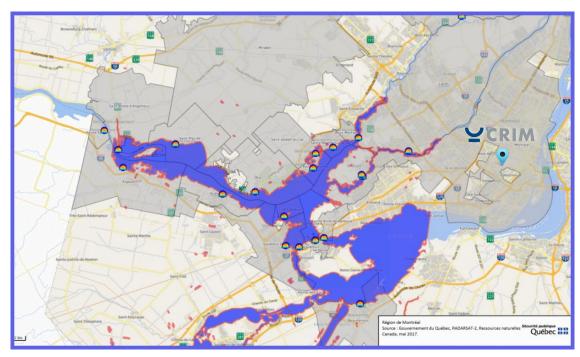
• Our approach

- Apache Spark
- Deep learning and transfer learning
- Deep Learning Pipelines
- Water detection at scale
 - Deep learning approach
 - Distributed detection with DLP

Motivation : OGC Testbed-14

- CRIM editors of OGC 18-038 ML Engineering Report (**ER**). Other contribs:
 - Training DL models to detect features on Very High Resolution (VHR) imagery
 - Processing SAR (radar) images in ML systems
- CRIM as participants in Earth Observation & Clouds (**EOC**)
 - Implement application packaging, workflows and app deployment
 - Application for flood detection using optical & SAR imagery
- Same remote sensing techniques and data used in EOC and ML ER
- Both considers a disaster scenario: flooding

Motivation : disaster in Québec!



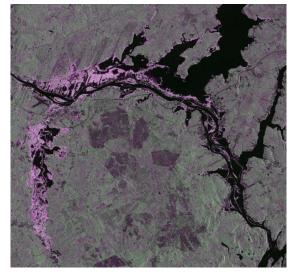
2017 flood map in Montreal area, made from RADARSAT-2 images. Source: Quebec Ministry of Public Safety

Lac Saint-Pierre, Québec

Deux-Montagnes, Québec

Satellite Radar Imagery

- Seeing large regions through clouds valuable in disasters.
- Detect water from floods, but also ice that clogs rivers.
- Great contrast between water and non-water.



Source: MDA

Source: IceEye, ESA

Active sensing: Synthetic Aperture Radar (SAR)

- Optical sensors (CCD, CMOS) are passive, only measuring reflected sunlight
- Radar sensors are *active*
 - microwave beam is sent down towards Earth
 - reflections read by sensor at different polarizations
- Sentinel-1 satellite:
 - 20m x 20m pixel resolution (after geometric corrections)
 - Up to 250km swath

Water Detection on Satellite Radar Images

Motivation :

- Simple use case to showcase the **scalability** of satellite image analysis.
- Scientists working on water detection at CRIM

Approach :

Replace domain expert method with neural network in **Apache Spark** to reproduce its results.

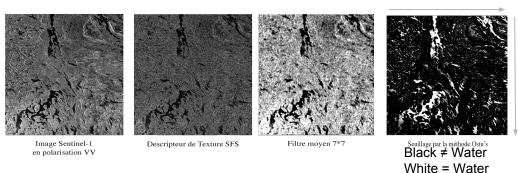
Raw images \rightarrow Neural Network \rightarrow Water detection

Note: we are not the first to use deep learning on satellite images for water detection

Water Detection : Domain Expert Method

- Acquire raw images
- Geometric correction (satellite-earth interactions)
- Handcrafted feature : Structural Feature Set (related to local homogeneity)
- Mean filter (reduce noise)
- Thresholding (water definition)

\rightarrow Water segmentation

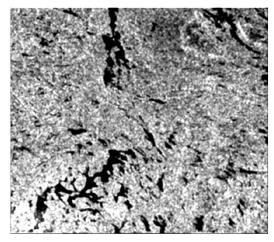


150km

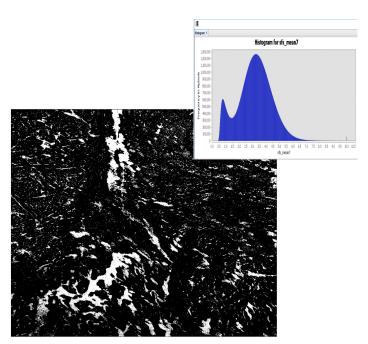
150km

Water Detection : Domain Expert Method

Thresholding on SFS image



SFS + Filtre moyen 7*7



Seuillage par la méthode Ostu's

How to scale this method?

Currently : domain expert workstation using Sentinel Application Toolbox (SNAP). Contains most remote sensing processes to build apps, but runs locally.

Processing performance issues:

- Storage
- Data locality

Other solutions:

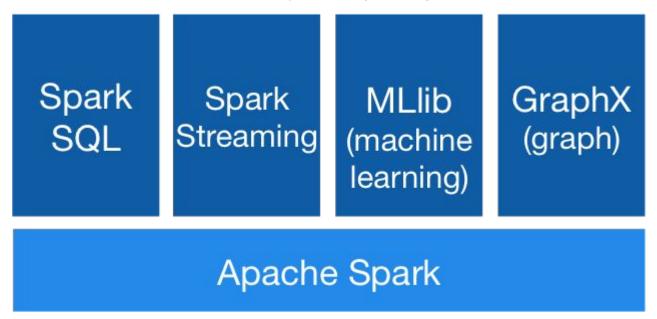
- Cloud
- Microservices
- Lamda/server

Our solution

- Deep learning model **target** = domain expert water detection
- Distributed parallel computing
- \rightarrow Apache Spark + HDFS + YARN

Apache Spark

Open source distributed "in-memory" computing framework



Apache Spark

Dataframe

- Spark's most common data structure API
- Concept inspired by R but distributed.

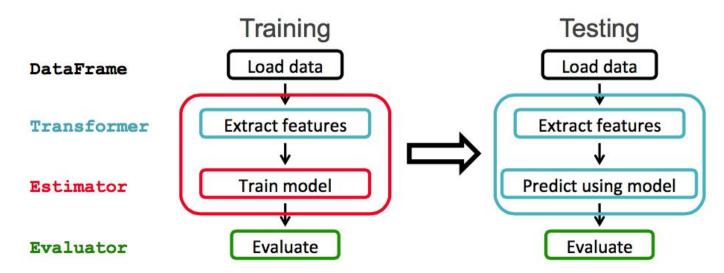
Spreadsheet on a single machine

Table or DataFrame partitioned across servers in a data center

		en		
·	· · · · · ·	·	\mapsto	0
			\mapsto	0
			\mapsto	0

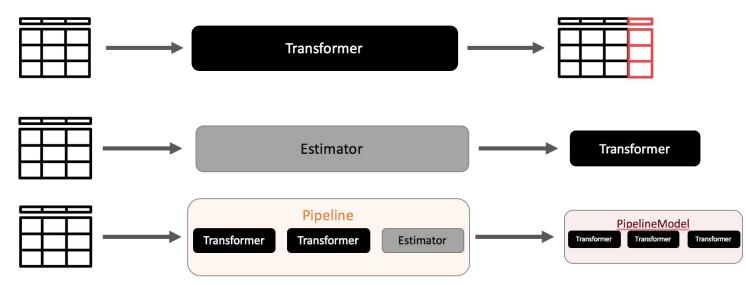
https://databricks.com/glossary/what-are-dataframes

Machine learning library



https://databricks.com/session/deep-dive-into-deep-learning-pipelines

Pipelines



https://medium.com/rv-data/my-first-foray-into-spark-mllib-2907dde75f73

MLlib

No deep learning ...except Multilayer perceptron classifier

MLlib: Main Guide Basic statistics

· Extracting, transforming

and selecting features Classification and

Collaborative filtering

Advanced topics

API Guide

Basic statistics

regression

Clustering

· Classification and

Collaborative filtering

· Dimensionality reduction

Feature extraction and

transformation

Data types

Frequent Pattern Mining

· Model selection and tuning

MLlib: **BDD**-based

Pipelines

Regression

Clustering

Classification and regression

This page covers algorithms for Classification and Regression. It also includes sections discussing specific classes of algorithms, such as linear methods, trees, and ensembles.

More -

Table of Contents

Classification

- Logistic regression
 - Binomial logistic regression
 - Multinomial logistic regression
- Decision tree classifier
- Random forest classifier
- Gradient-boosted tree classifier
- Multilayer perceptron classifier
- Linear Support Vector Machine
- One-vs-Rest classifier (a.k.a. One-vs-All)
- Naive Bayes
- Regression
 - Linear regression
 - Generalized linear regression
 - Decision tree regression

 - Gradient-boosted tree regression

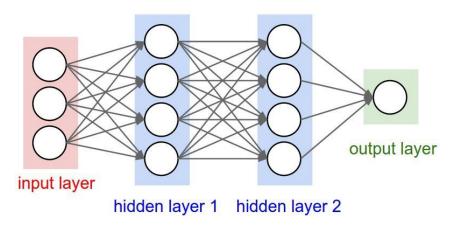
 - Isotonic regression
- Frequent pattern mining Evaluation metrics
- PMML model export
- Optimization (developer)

- Output Columns
- Tree Ensembles
 - Random Forests

17

- - Available families
- Random forest regression
- Survival regression
- Linear methods
- Decision trees

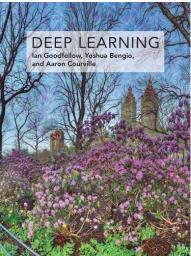
Deep Learning



It is common practice to separate the data in two disjoint sets:

- **train set**: Used to teach the network a given task
- **test set**: To evaluate the network's performance on data never seen

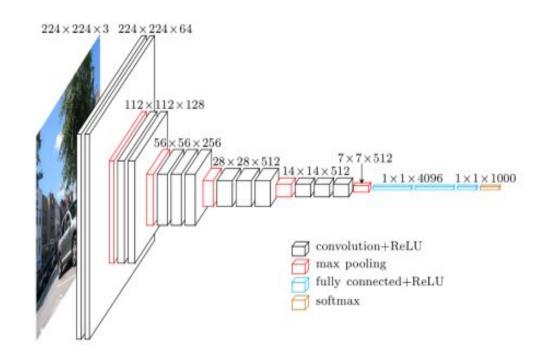
For more information, read:



Deep learning: vision

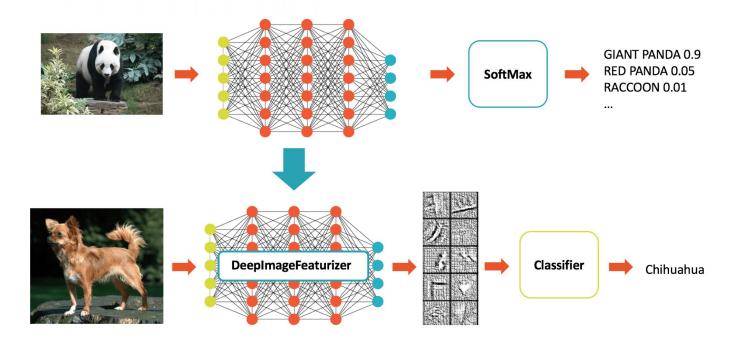
VGG-16

- Object recognition
- 2014 ImageNet competition winner
- Trained to classify images



Transfer learning

Needs much less training data than "original" training



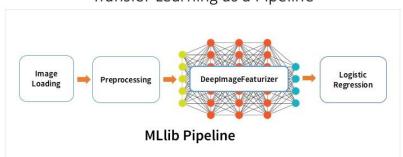
- From Databricks (released summer 2017)
- Open source

https://github.com/databricks/tensorframes https://github.com/databricks/spark-deep-learning

• Based on Tensorframe (databricks):

"This package is experimental and is provided as a technical preview only. While the interfaces are all implemented and working, there are still some areas of **low performance**."

• Version 1.2



Transfer Learning as a Pipeline

- Tensorflow and tensorflow-backed Keras
- Pre-trained model available through DeepImageFeaturizer

```
from pyspark.ml.classification import LogisticRegression
from pyspark.ml import Pipeline
from sparkdl import DeepImageFeaturizer
featurizer = DeepImageFeaturizer(inputCol = "image", outputCol = "features", modelName = "InceptionV3")
lr = LogisticRegression(maxIter = 20, regParam = 0.05, elasticNetParam = 0.3, labelCol = "label")
p = Pipeline(stages=[featurizer, lr])
p_model = p.fit(train_df)
```

• Transformers can also be created from custom TF/Keras models

A native image support in Spark

Images loading (imageSchema) (Spark 2.3)

from pyspark.ml.image import ImageSchema
image_df = ImageSchema.readImages("/data/myimages")

Or, using a custom decoding function

from sparkdl.image import imageIO image_df = imageIO.readImagesWithCustomFn(sample_img_dir, decode_f = imageIO.PIL_decode)

Transfer learning with DeepImageFeaturizer

```
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
from pyspark.ml import Pipeline
from sparkdl import DeepImageFeaturizer

featurizer = DeepImageFeaturizer(inputCol="image", outputCol="features", modelName="InceptionV3")
lr = LogisticRegression(maxIter=20, regParam=0.05, elasticNetParam=0.3, labelCol="label")
p = Pipeline(stages=[featurizer, lr])

model = p.fit(train_images_df)  # train_images_df is a dataset of images and labels

# Inspect training error
df = model.transform(train_images_df.limit(10)).select("image", "probability", "uri", "label")
predictionAndLabels = df.select("prediction", "label")
evaluator = MulticlassClassificationEvaluator(metricName="accuracy")
print("Training set accuracy = " + str(evaluator.evaluate(predictionAndLabels)))
```

Available pretrained models: InceptionV3, Xception, ResNet50, VGG16, VGG19

Also available but **not** used here:

- Distributed hyperparameter tuning
- Deploying models as a SQL functions

from pyspark.ml.image import ImageSchema

image_df = ImageSchema.readImages(sample_img_dir)
image_df.registerTempTable("sample_images")

SELECT my_custom_keras_model_udf(image) as predictions from sample_images

Detection at scale

- Images are very large (dimension = 30k 40k pixels)
- The whole conventional process takes about 3-4h of manipulation per radar image.

Goal : Leverage Deep Learning Pipelines shortcut the water detection process.

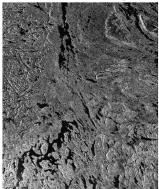
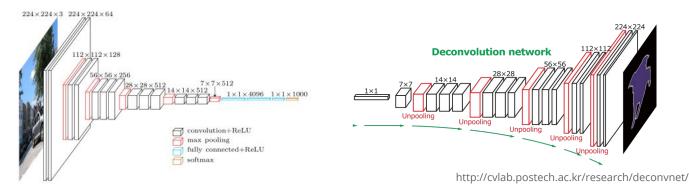


Image Sentinel-1 en polarisation VV

Seuillage par la méthode Ostu's

Detection at scale : model

Adding deconvolution layers to VGG-16 in order to make pixel-level prediction using KERAS.



- Remove the top layers (Fully Connected + ReLu + softmax)
- Add **deconvolution layers** (Padding + Conv2D + Normalization + Upsampling) until desired output shape reached
- For pixel-level prediction, the output resolution equals the input image resolution (224 x 224)
- Image segmentation is then possible

Detection at scale

Our cluster

- 6 nodes: Total of 96 cores,
 750 Gb RAM for spark executors
- CPUs: 16 cores, 2.6 GHz Ivy Bridge Intel(R) Xeon(R) CPU E5-2650 v2 (2014)
- Spark 2.3, Yarn, HDFS (Cloudera distribution)
- Deep Learning Pipeline 1.2.0 With Tensorframe 0.5 and Tensorflow 1.10

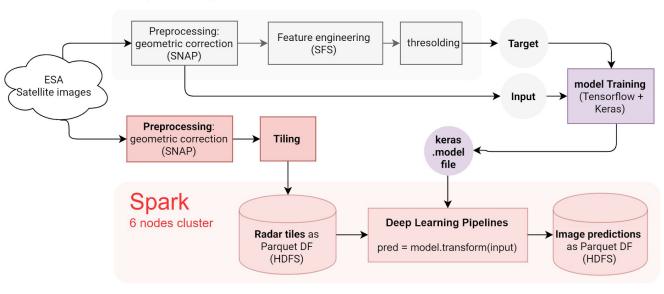
Our data

- Images from Québec (May '18)
- 130 satellite images (900Gb)
- 1.6M tiles of size 224x224
- 80 billions predicted pixels

- Model training set = 2000 tiles
- Test set = 500 tiles

Detection at scale

1. The domain expert workflow is used to create a training sets



Only a few images are used.

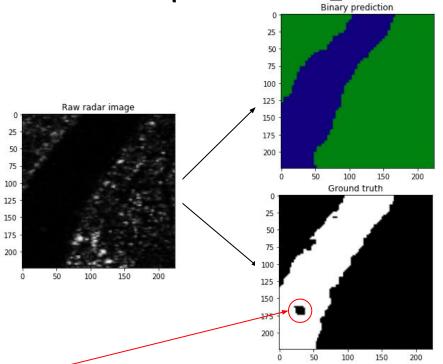
2. A convolutionnal neural network is trained to replicate the target water segmentation

The model is trained with Keras on single machine (GPU recommeded).

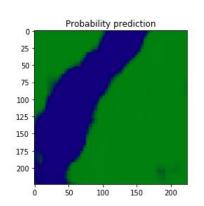
3. Batch segmentation are performed on the spark cluster

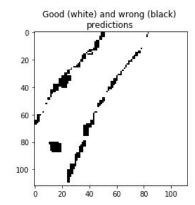
For now, geometric corrections and tiling are still performed out of the cluster.

Results: promising

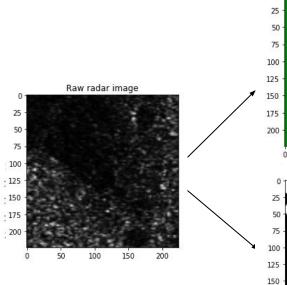


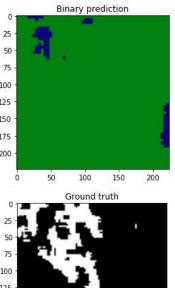
The domain expert method can introduce noise in the "detected" water, which is not detected in our predicted image for this example.





Results: error





100

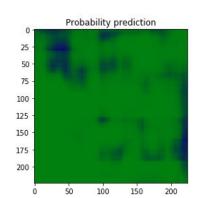
50

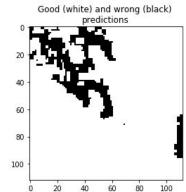
150

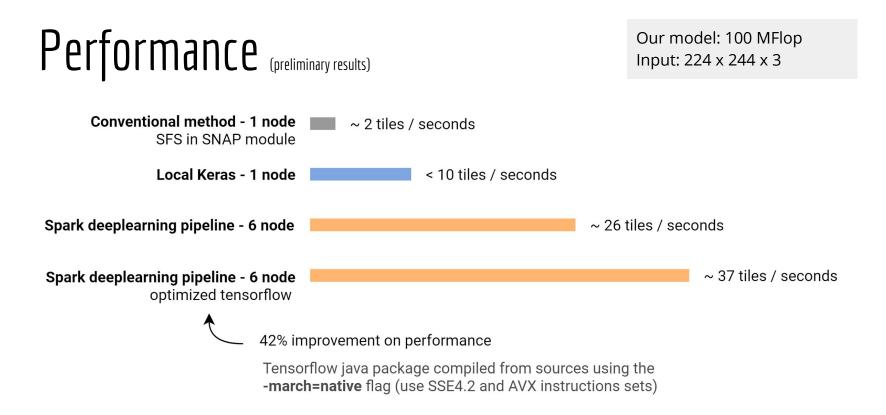
200

175 · 200 ·

Ó







Using GPUs would have been significatively faster, but Spark Deep Learning allows us to leverage our existing spark cluster and HDFS storage with no configuration modification.

Possible Improvements

Processing

- Add preprocessing on spark (GDAL, GeoTrellis, xarray)
 - Will allow to put images directly on HDFS
- Using GPU (Cloud, HPC clusters, ...)

Accuracy

- More training data
- Hyperparameter tuning
- Fully trained network

Lessons Learned

- DLP is a very simple way to predict with deep learning models at scale
- The technology is still very new and has many low hanging fruits of optimization
- Locally compiled tensorflow can lead to performance gain
- **Small images** storages on hdfs : serialized as parquet (spark ImageSchema) is a good option
- Looking for easy tool geospatial tools for Spark (to leverage more images info: time, geo...)
 - Gdal is difficult to use with spark + hdfs
 - Maybe geotrellis, geopyspark
 - Support of OGC standards to consume data, produce maps, store detections, find in catalogs, etc.
- Deconvolution method on VGG-16 gives reasonable results on prediction (WIP...)
- ImageNet transfer learning is applicable to non-optic images (cross-domain transfer)

Conclusion and Outlook

- DLP is a good solution to leverage existing Spark cluster into a prediction.
- DL is a promising solution to enhance existing "classical" geoscience models.
- Our approach can easily be adapted to
 - another (better) domain expert method
 - other types of detections (just need a target to train the network)

Further developments

- Flood monitoring with image time series provided by a data cube
- Use of other reference target domains (burn scars, ice, etc.)
- Advancement of ML best practices at OGC, towards standardisation

Backup

Some references

https://docs.databricks.com/applications/deep-learning/deep-learning-pipelines.html

https://databricks.com/blog/2017/06/06/databricks-vision-simplify-large-scale-deep-learning.html

https://towardsdatascience.com/deep-learning-with-apache-spark-part-2-2a2938a36d35

https://www.slideshare.net/databricks/build-scale-and-deploy-deep-learning-pipelines-using-apachespark-90948963

