
OGC Testbed-13
Application Deployment and Execution Service ER

Table of Contents
1. Summary . 4

1.1. Requirements . 4

1.2. Key Findings and Prior-After Comparison . 4

1.3. What does this ER mean for the Working Group and OGC in general. 5

1.4. Document contributor contact points . 5

1.5. Future Work . 5

1.6. Foreword. 5

2. References. 6

3. Terms and definitions . 7

3.1. Area Of Interest . 7

3.2. Context Document. 7

3.3. Dockerfile . 7

3.4. Container. 7

3.5. Infrastructure as a Service (IaaS) . 7

3.6. Resource . 7

3.7. Virtual Machine Image . 8

3.8. Thematic Exploitation Platform (TEP) . 8

4. Abbreviated terms. 9

5. Overview. 10

5.1. Scenario . 10

6. Implementation . 13

6.1. Overview. 13

6.2. Application Package . 13

6.3. Data Fetching . 13

6.3.1. Data Discovery. 14

6.4. Application Parameters . 16

6.5. Application Management Client . 16

6.5.1. Solenix implementation . 16

6.6. Application Deployment and Execution Service . 20

6.6.1. Introduction . 20

6.6.2. Deploy . 21

6.6.3. Execute . 26

6.6.4. Bindings . 30

6.6.5. Cuberwerx Backend . 31

6.6.6. Notification. 33

7. Alternative approach . 37

7.1. Overview. 37

7.2. Application Package . 38

7.3. Application Management Client . 40

7.4. Application Deployment and Execution Service . 45

7.5. Interoperability. 48

7.6. REST + JSON Encoding . 49

7.7. Security Aspects . 53

Appendix A: Abstract Test Suite . 54

Appendix C: XML Schema Documents . 56

Appendix B: UML model. 57

Appendix D: Revision History . 58

Appendix E: Bibliography . 59

Publication Date: YYYY-MM-DD

Approval Date: YYYY-MM-DD

Posted Date: YYYY-MM-DD

Reference number of this document: OGC 17-024

Reference URL for this document: http://www.opengis.net/doc/PER/t13-ID

Category: Public Engineering Report

Editor: Your Name

Title: OGC Testbed-13: Application Deployment and Execution Service ER

OGC Engineering Report

COPYRIGHT

Copyright © 2017 Open Geospatial Consortium. To obtain additional rights of use, visit

http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering

Report created as a deliverable in an OGC Interoperability Initiative and is not an official

position of the OGC membership. It is distributed for review and comment. It is subject to

change without notice and may not be referred to as an OGC Standard. Further, any OGC

Engineering Report should not be referenced as required or mandatory technology in

procurements. However, the discussions in this document could very well lead to the

definition of an OGC Standard.

1

http://www.opengis.net/doc/PER/t13-ID
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of

charge and subject to the terms set forth below, to any person obtaining a copy of this

Intellectual Property and any associated documentation, to deal in the Intellectual Property

without restriction (except as set forth below), including without limitation the rights to

implement, use, copy, modify, merge, publish, distribute, and/or sublicense copies of the

Intellectual Property, and to permit persons to whom the Intellectual Property is furnished

to do so, provided that all copyright notices on the intellectual property are retained intact

and that each person to whom the Intellectual Property is furnished agrees to the terms of

this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must

include, in addition to the above copyright notice, a notice that the Intellectual Property

includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY

RIGHTS UNDER ANY PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE

WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED

TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT

HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE

FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR

REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY

WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL

PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT

SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL

PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM,

OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY

DAMAGES WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR

ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN

CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR

PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying

the Intellectual Property together with all copies in any form. The license will also

terminate if you fail to comply with any term or condition of this Agreement. Except as

provided in the following sentence, no such termination of this license shall require the

termination of any third party end-user sublicense to the Intellectual Property which is in

force as of the date of notice of such termination. In addition, should the Intellectual

Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole

opinion be likely to infringe, any patent, copyright, trademark or other right of a third

Testbed

party, you agree that LICENSOR, in its sole discretion, may terminate this license without

any compensation or liability to you, your licensees or any other party. You agree upon

termination of any kind to destroy or cause to be destroyed the Intellectual Property

together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a

copyright in all or part of the Intellectual Property shall not be used in advertising or

otherwise to promote the sale, use or other dealings in this Intellectual Property without

prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall

at all times be the sole entity that may authorize you or any third party to use certification

marks, trademarks or other special designations to indicate compliance with any

LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The

application to this Agreement of the United Nations Convention on Contracts for the

International Sale of Goods is hereby expressly excluded. In the event any provision of this

Agreement shall be deemed unenforceable, void or invalid, such provision shall be

modified so as to make it valid and enforceable, and as so modified the entire Agreement

shall remain in full force and effect. No decision, action or inaction by LICENSOR shall be

construed to be a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may be

downloaded or otherwise exported or reexported in violation of U.S. export laws and

regulations. In addition, you are responsible for complying with any local laws in your

jurisdiction which may impact your right to import, export or use the Intellectual Property,

and you represent that you have complied with any regulations or registration procedures

required by applicable law to make this license enforceable.

3

Chapter 1. Summary
The Testbed-13 EOC effort supports the development of ESA’s Thematic Exploitation

Platforms (TEP) by exercising envisioned workflows for data integration and processing

that are deployed in multiple clouds. The Application Deployment & Execution Service

OGC Engineering Report (ER) identifies the API(s) that supports all functionality provided

to realize the testbed scenario.

This ER will list the requirements fulfilled by Cloud APIs in order to allow an automation

of the application package deployment and execution workflow and capture

implementation process experiences.

1.1. Requirements

This ER will document the automation of the application package deployment taking in

consideration an application package defining:

• Identify the Application to which it refers

• Describe the required execution environment for the application

• Identify how to deploy and launch the application

• Describe the input data collections

• Describe additional input parameters

1.2. Key Findings and Prior-After Comparison

The serialization and deployment of applications behind an OGC WPS service was subject

of several discussions at OGC SWGs and DWGs in the past. A diverse number of issues

were identified but the main barriers were due to the diversity of runtime environment to

support and the respective technology maturity hampered its feasibility.

The advance in container technology together with the concept of federation of Clouds

presents new opportunities to address this issue. Previously the constraints imposed in

describing the runtime environments (e.g. Linux, Java VM, Perl, Python) and the respective

application installation would create a considerable amount of information needed for the

application package information model outside the OGC aegis. With containers most of

these requirements are addressed at their respective level with configuration and software

elements packaged into isolated elements.

This ER will capture implementation process experiences for EP Application Packages and

their deployment in multiple clouds.

Testbed

1.3. What does this ER mean for the Working Group
and OGC in general

This is a write up for why this ER should be important to the working group and OGC.

This paragraph provides recommendations on how to further proceed with the

achievements documented in this ER.

1.4. Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

Name Organization

Pedro Gonçalves Terradue

Peter Vretanos CubeWerx

Patrick Jacques Spacebel

Christophe Noël Spacebel

Paulo Sacramento Solenix

contributor from org

Table 1. Contacts

1.5. Future Work

i.e. "No future work is planned to this document." or "It is expected that this document may

result in changes in other documents."

1.6. Foreword

Attention is drawn to the possibility that some of the elements of this document may be the

subject of patent rights. The Open Geospatial Consortium shall not be held responsible for

identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of

any relevant patent claims or other intellectual property rights of which they may be aware

that might be infringed by any implementation of the standard set forth in this document,

and to provide supporting documentation.

5

Chapter 2. References
The following normative documents are referenced in this document.

NOTE: 	Only normative standards are referenced here, e.g. OGC, ISO or other SDO standards. All other

references are listed in the bibliography. Example:

• OGC 06-121r9, OGC® Web Services Common Standard [https://portal.opengeospatial.org/

files/?artifact_id=38867&version=2]

• OGC 12-084r2, OGC® OGC Context Atom Encoding Standard

[https://portal.opengeospatial.org/files/?artifact_id=55183]

• OGC 14-065, OGC® WPS 2.0 Interface Standard [http://docs.opengeospatial.org/is/14-065/

14-065.html]

• IANA, Link Relations registry [https://www.iana.org/assignments/link-relations/link-

relations.xhtml]

Testbed

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2
https://portal.opengeospatial.org/files/?artifact_id=55183
http://docs.opengeospatial.org/is/14-065/14-065.html
https://www.iana.org/assignments/link-relations/link-relations.xhtml

Chapter 3. Terms and definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common

Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?

artifact_id=38867&version=2] shall apply. In addition, the following terms and definitions

apply.

3.1. Area Of Interest

An Area of Interest is a geographic area that is significant to a user.

3.2. Context Document

A Context Document is a document describing the set of services and their configuration,

and ancillary information (area of interest etc) that defines the information representation

of a common operating picture.

3.3. Dockerfile

A text document that contains all the commands a user could call on the command line to

assemble an image.

3.4. Container

A lightweight and configurable virtual machine with a simulated version of an operating

system and its hardware, which allow software developers to share their computational

environments.

3.5. Infrastructure as a Service (IaaS)

A standardized, highly automated offering, where compute resources, complemented by

storage and networking capabilities are owned and hosted by a service provider and

offered to customers on-demand. Customers are typically able to self-provision this

infrastructure, using a Web-based graphical user interface that serves as an IT operations

management console for the overall environment. Application Programming Interface

(API) access to the infrastructure may also be offered as an option.

3.6. Resource

A resource is a configured set of information that is uniquely identifiable to a user. Can be

realized as in-line content or by one or more configured web services.

7

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2

3.7. Virtual Machine Image

A virtual machine image is a template for creating new instances. A image can be plain

operating systems or can have software installed on them, such as databases, application

servers, or other applications.

3.8. Thematic Exploitation Platform (TEP)

A "Thematic Exploitation Platform" refers to an environment providing a user community

interested in a common Theme with a set of services such as very fast access to (i) large

volume of data (EO/non-space data), (ii) computing resources (iii) processing software (e.g.

toolboxes, RTMs, retrieval baselines, visualization routines), and (iv) general platform

capabilities (e.g. user management and access control, accounting, information portal,

collaborative tools, social networks etc.). The platforms thus provide a complete work

environment for its' users, enabling them to effectively perform data-intensive research and

data exploitation by running dedicated processing software close to the data.

Testbed

Chapter 4. Abbreviated terms
• ADES Application Deployment and Execution Service

• AMC Application Management Client

• API Application Program Interface

• EOC Earth Observation Clouds

• IdP Indentity Provider

• JSF JavaServer Faces

• PEP Policy Enforcement Point

• SAML Security Assertion Markup Language

• STS Security Token Service

• TEP Thematic Exploitation Platform

• WPS Web Processing Service

9

Chapter 5. Overview
This ER reports the implementation experiments for the deployment of applications built in

the context of the European Space Agency (ESA) initiative to build an ecosystem of

Thematic Exploitation Platforms (TEP). A TEP refers to a computing platform that follows a

given set of scenarios for users, data and ICT provision aggregated around an Earth Science

thematic area. The TEP defines three canonical user scenarios covering the EO data

exploitation (users discover and manipulate data), new EO service development (users

deploy a new processor) and new EO product development (users publish new results).

The TEPs are implementing these canonical scenarios and moving the processing to the

data, rather than the data to the users, thereby enabling ultra-fast data access and

processing.

Algorithms are initially developed by a third party developer and subsequently deployed

in a TEP. An application package document that contains all the information necessary to

allow applications (implementing said algorithms) to be specified and deployed in

federated resource providers is one of the main outcomes of this effort.

The application package encoding conveys all the information needed for encapsulating

user applications and enabling their automatic management (upload, deploy, run) in

diverse platforms. The consensus reached in the Testbed-13 EOC thread was to use the

OWS Context document to convey the information model. This document is used as input

parameter to a dedicated WPS service that will create and deploy it in a new WPS instance.

An alternative approach is also proposed that uses the WPS description document to

directly embed the OWS Context Document in an existing WPS Transactional Service.

This ER focuses on both technical approaches, with two sections that describe the different

applications and their respective deployment and execution processes. Both approaches

follow a common scenario described below.

5.1. Scenario

The application package will allow the developer (e.g. Markus) to register an application

that will be deployed in a given ICT provider. The application is first built and registered in

a third-party Application Hub (e.g. DockerHub). The developer will then directly interact

with the Application Management Client (AMC) that will register the application on the

Application Deployment and Execution Service (ADES).

The sequence of actions is described in the following image.

Testbed

Figure 1. Sequence of Deploy and Register Steps

With the application registered, a user (e.g. Jim) can directly interact with the Application

Management Client (AMC) that will allow the execution of the application on the

Application Deployment and Execution Service (ADES).

The sequence of actions for the execution is described in the following image.

11

Figure 2. Sequence of Execution Steps

The overall components and respective flow is presented below.

Figure 3. Overview of Deploy, Register and Execution Scenario

Testbed

Chapter 6. Implementation

6.1. Overview

The Application Package targets applications built by third party developers and contains

all the information necessary for their deployment in different infrastructures. It uses an

ATOM OWS Context document as the document encoding and WPS as the execution

interface. This chapter will address several implementation issues discussed by the EOC

thread with particular focus on the approaches to application packaging, application

execution and data access.

6.2. Application Package

The application package encoding conveys all the information needed for encapsulating

user applications and enabling their automatic management (upload, deploy, run) in

diverse platforms. It uses the OWS Context document encoding to convey the necessary

information model as input parameter to a dedicated WPS service that creates and deploys

it in a new WPS instance. The requirements and respective encoding are described on the

other Testbed-13 EOC ER (OGC 17-023) [2] dedicated to reporting of the Application

Package

6.3. Data Fetching

The ADES provides a framework to deal with the data management tasks regarding the

input file access and the registration of the output files. This is provided by two abstract

functions that deal with the data staging and stage out that is executed by the application.

For data staging the convention is to map a file location from a URL (e.g. S3, FTP, Atom

feed) to a local copy. The actual operation performed depends on the deployed

infrastructure and data access mechanisms and it should be transparent for the application.

It can consist of a simple string transformation based on previous knowledge about the

data storage or to an actual data transfer mechanism that will provide the file data stream

to the local processing.

staging https://iptpoland.pl/store/S1A_IW_RAW__0SDV_20170720…1D5B8_1722.zip
>
/mounted/S1/S1A_IW_RAW__0SDV_20170720T091638_20170720T091710_017553_01D5B8_17
22.zip

Equivalently, for the data stage out, the infrastructure will make available a specific

convention. This operation will map a specific resulting file into the infrastructure publish

13

mechanism guaranteeing the file safeguard and the subsequent access by the WPS client.

stageout FloodMap_20170504_max.tif
> https://store.terradue.com/production/097321986198678956-
W/FloodMap_20170504_max.tif

6.3.1. Data Discovery

The application clients are expected to access EO catalogues using OpenSearch with Geo,

Time and EO extensions that allows standardized and harmonized access to metadata of

satellite Earth observation data. This provides the necessary information for discovery (i.e.

search) and retrieval (i.e. access) of EO data in the different providers. A major issue

detected was the need to register each collection multiple times for each data provider. As

such, each collection needed to be identified not only by the type of data but also the origin

of the storage. For example, Sentinel-2 in the IPT provider was identified in the FedEO

catalogue explicitly as EOP:IPT:Sentinel2, whereas the same data in Amazon, was identified

as EOP:SENTINEL-HUB:Sentinel2. This implies that the same collection needs to have two

different OpenSearch endpoints. When directing the processing to the resources in IPT

Poland it is thus necessary to also provide a specific OpenSearch Description as:

http://geo.spacebel.be/opensearch/request?httpAccept=application/atom%2Bxml&p
arentIdentifier=EOP:IPT:Sentinel2

While in processing in Amazon, the same collection is discovered using

http://geo.spacebel.be/opensearch/request/?httpAccept=application/atom%2Bxml&
parentIdentifier=EOP:SENTINEL-HUB:Sentinel2

To overcome this issue, the thread analysed the possibility to define an optional

OpenSearch parameter that would make the intended download location a query item of

the search. This parameter defined in the EO extension with the template:

 ...&from={eop:accessedFrom}

The parameter value would be string identifying the location from which the resource will

be accessed. Catalogue services that support this extension would then be able to return the

download location in the enclosure atom link according to the requested processing

location access service or, if possible, the real data address. For example, when processing

in IPT Poland, one would add the parameter:

Testbed

 ...&from=eocloud.eu

And would obtain a file directly the corresponding access URL:

 file:///eodata/Sentinel-
2/MSI/L1C/2017/11/03/S2B_MSIL1C_20171102T235229_N0206_R130_T57KUQ_20171103T00
5600.SAFE

If processed in AMAZON, the parameter would have the value:

 ...&from=amazonws

and would obtain the value in the s3 format such as:

s3://sentinel-s2-l1c/tiles/23/M/QM/2017/11/13/0

When the client does not provide an indication of the intended access, catalogue should

return their default location:

 http://scihub.copernicus.eu/apihub/Products('0f1ed8d7-eb6e-51aa-a617-
7f632e8df960')/$value

Catalogue services are also recommended to provide the list of suggested parameters

values in the OpenSearch Description Document. As such, catalogues should return a

Parameter element as the example below:

<param:Parameter name="from" value="{eop:accessedFrom?}" minimum="0"
 title="A string identifying the location from where the download will be
initiated. The response includes the best download location in the enclosure
atom link (rel=’enclosure’) taking in consideration the value of the
parameter." >
 <param:Option value="eocloud.eu" label="IPT Poland Cloud" />
 <param:Option value="amazonws" label="Amazon Cloud" />
 <param:Option value="PSNC" label=" EVER-EST VRE" />
</param:Parameter>

Terradue did an experimental implementation of this issue and the findings will be

15

proposed as Change Request for the 13-026r8 Document to be discussed on the EO Product

Metadata and OpenSearch SWG.

6.4. Application Parameters

The ADES provides a framework to deal with correct assignment of the application

parameters. This is provided by one abstract function that provides the application a

method for accessing the parameters values. For that the application uses a function for

accessing the request parameters that from the command line would behave like:

$ getparam AreaOfInterest
> POLYGON(78427,321478321786, 391267841236 ….)
$ getparam inputcat
>
https://catalog.terradue.com//sentinel1/search?format=atom&uid=S1A_IW_RAW__0S
DV_20170720T091638_20170720T091710_017553_01D5B8_1722

An alternative solution using the environmental variable approach is also described in the

next chapter.

6.5. Application Management Client

6.5.1. Solenix implementation

Introduction

This clause describes the implementation of the Solenix AMC.

The Solenix AMC provides two main GUIs, a Management GUI (e.g. for Marco) and a User

GUI (e.g. for Jim).

The Management GUI implements three basic functionalities:

• Browse Applications: that Marco can use to get a list of applications previously

registered in one of the available ADES implementations

• Register New Application: that Marco can use to upload an Application Package in

OWS Context format for registration in one of the available ADES implementations

• Unregister Application: that Marco can use to unregister an application previously

registered in one of the available ADES implementations

The User GUI instead implements the following functionality:

Testbed

• Execution Listing: that Jim can use to list previously launched application executions,

see their statuses and results

• Application Selection: that Jim can use to select one of the applications previously

registered in one of the available ADES implementations. This triggers the dynamic

and automated generation of user input fields

• Application Usage: highly dependent on the specific application, it allows Jim to

provide all the inputs expected by the application, if necessary allowing him to

perform catalogue searches in order to fill-in some of the inputs

Main GUI Screens

The Figure below shows the main screen of the Solenix AMC. From it, the user (Marco or

Jim) can choose the Management (for Marco) or User GUI (for Jim):

Figure 4. Main screen of Solenix AMC

Management GUI

Once on the Management GUI, Marco can choose to browse registered applications,

register a new application or unregister an application:

17

Figure 5. Solenix AMC Management GUI: Main screen

By clicking on 'Browse Applications', Marco is able to select the specific ADES

implementation and list the applications registered in it. This triggers a WPS

GetCapabilities on the selected ADES:

Figure 6. Solenix AMC Management GUI: Browse Applications

By clicking on 'Register New Application', and after choosing the desired server (an

implementation of the ADES exposing a WPS endpoint), Marco will be able to upload an

Application Package - an instance of OWS Context according to the format agreed in OGC

Testbed-13 (see Exploitation Platform Application Package Engineering Report [2]):

Figure 7. Solenix AMC Management GUI: Register New Application

Once this is done, some summary information about the AP will be shown and Marco will

Testbed

be able to confirm registration in the selected endpoint. This will trigger a WPS Execute

operation on the DeployProcess process exposed by the selected ADES:

Figure 8. Solenix AMC Management GUI: Register New Application, After AP upload

User GUI

Coming back to the main screen and selecting the User GUI, Jim will see the following main

screen, which allows choosing between a list of previous executions and issuing a new

execution:

Figure 9. Solenix AMC User GUI: Main screen

The 'List Executions' page lists previously launched WPS Executions in any of the known

ADES implementations:

19

Figure 10. Solenix AMC User GUI: List of Executions

The 'New Execution' page allows launching new WPS requests on one of the known ADES

implementations and previously registered applications - input fields per application are

dynamically discovered and shown:

Figure 11. Solenix AMC User GUI: New Execution

6.6. Application Deployment and Execution Service

6.6.1. Introduction

This clause describes the two implementations of the ADES by CubeWerx and Terradue.

Both ADES implements the WPS standard (versions 1 & 2). The CubeWerx implementation

Testbed

is part of CubeSERV which is a component of the CubeWerx Suite while the Terradue

implementation is part of the Terradue Cloud Platform.

6.6.2. Deploy

When initially deployed, the both ADES offers two processes, DeployProcess and

UndeployProcess. These processes, in turn, allow application developers to then add

additional processes, each described by an application package (see OGC 17-023).

These methods are designed to emulate the DeployProcess and UndeployProcess requests

defined in the Transactional WPS Extension (see OGC 13-071r1). The primary benefits of

taking this approach, as opposed to implementing OGC 13-071r1, are:

1. Any version of the WPS standard can deploy these methods

2. Existing WPS clients are able to interact with these methods as they do with any other

WPS processes.

The following tables, describe the parameters of the DeployProcess and UndeployProcess

process offerings.

Parameter Name O/M In/Out Description

applicationPackage M In An ATOM-encoded OWS context document
(see OGC 12-084r2) describing the
application to be deployed

deployResult M Out The format of the response to the operation

Table 2. Deploy Process Parameters

Parameter Name O/M In/Out Description

processIdentifier M In The identifier of the process to undeploy

undeployResult M Out The format of the response to the operation

Table 3. Undeploy Process Parameters

NOTE
Only processes added using the DeployProcess method may be

undeployed.

NOTE
The UndeployProcess implementation does not implement the

keepExecutionUnit parameter from OGC 13-071.

21

NOTE

At the moment the ADES uses the application identifier specified in the

application package. This means that there is the possibility of duplicate

identifiers. The CubeWerx server checks for this and throws an

exception if the specified identifier is a duplicate, while the Terradue

implementation replaces the application. An alternative approach could

be for the server to ignore the process identifier specified in the

application package and simply generate a new, unique identifier.

The following XML fragment is generated from both implementations WPS server and

describe the DeployProcess and UndeployProcess processes:

 <ProcessOffering processVersion="1.0.0">
 <Process xml:lang="en">
 <ows:Identifier codeSpace="http://www.opengis.net/tb13/eoc"
>DeployProcess</ows:Identifier>
 <ows:Title>Deploy Process</ows:Title>
 <ows:Abstract>This method will deploy an application encapsulated
within a Docker container as a process accessible through the WPS
interface.</ows:Abstract>
 <Input minOccurs="1">
 <ows:Identifier codeSpace="http://www.opengis.net/tb13/eoc"
>applicationPackage</ows:Identifier>
 <ows:Title>Application Package</ows:Title>
 <ows:Abstract>An application package, encoded as an ATOM-encoded
OWS context document, describing the details of the
application.</ows:Abstract>
 <ComplexData>
 <Format mimeType="application/atom+xml" default="true"/>
 </ComplexData>
 </Input>
 <Output>
 <ows:Identifier codeSpace="http://www.opengis.net/tb13/eoc"
>deployResult</ows:Identifier>
 <ows:Title>Deploy Result</ows:Title>
 <ows:Abstract>The server's response to deploying a process. A
successful response will contain a summary of the deployed
process.</ows:Abstract>
 <ComplexData>
 <Format mimeType="text/xml" default="true"/>
 </ComplexData>
 </Output>
 </Process>
 </ProcessOffering>
 <ProcessOffering processVersion="1.0.0">
 <Process xml:lang="en">

Testbed

 <ows:Identifier codeSpace="http://www.opengis.net/tb13/eoc"
>UndeployProcess</ows:Identifier>
 <ows:Title>Undeploy Process</ows:Title>
 <ows:Abstract>This method removes a previously deployed process from
the WPS.</ows:Abstract>
 <Input minOccurs="1">
 <ows:Identifier codeSpace="http://www.opengis.net/tb13/eoc"
>processIdentifier</ows:Identifier>
 <ows:Title>Process Identifier</ows:Title>
 <ows:Abstract>The identifier of the process to remove from the
WPS.</ows:Abstract>
 <LiteralData>
 <Format mimeType="text/plain" default="true"/>
 <LiteralDataDomain>
 <AnyValue/>
 <ows:DataType
 ows:reference="http://www.w3.org/TR/xmlschema-2/#anyURI
">anyURI</ows:DataType>
 </LiteralDataDomain>
 </LiteralData>
 </Input>
 <Output>
 <ows:Identifier codeSpace="http://www.opengis.net/tb13/eoc"
>undeployResult</ows:Identifier>
 <ows:Title>Undeploy Result</ows:Title>
 <ows:Abstract>This is the server's response when undeploying a
process. A successful response will contain the identifier of the undeployed
process.</ows:Abstract>
 <ComplexData>
 <Format mimeType="text/xml" default="true"/>
 </ComplexData>
 </Output>
 </Process>
 </ProcessOffering>

The following XML schema fragments define the response elements for the DeployProcess

and UndeployProcess methods:

 <element name="DeployResult" type="wps:DeployResultType">
 <annotation>
 <documentation>DeployProcess result.</documentation>
 </annotation>
 </element>
 <complexType name="DeployResultType">
 <sequence>

23

 <element name="DeploymentDone" type="boolean"/>
 <choice>
 <element name="ProcessSummary" type="wps:ProcessSummaryType"
 minOccurs="0">
 <annotation>
 <documentation>If DeploymentDone = true</documentation>
 </annotation>
 </element>
 <element name="FailureReason" type="xs:string">
 <annotation>
 <documentation>If DeploymentDone = false</documentation>
 </annotation>
 </element>
 </choice>
 </sequence>
 </complexType>
 <element name="UndeployResult" type="wps:UndeployResultType">
 <annotation>
 <documentation>UndeployProcess result.</documentation>
 </annotation>
 </element>
 <complexType name="UndeployResultType">
 <sequence>
 <element name="UndeploymentDone" type="boolean"/>
 <choice>
 <sequence>
 <annotation>
 <documentation>If UndeploymentDone = true</documentation>
 </annotation>
 <element ref="ows:Identifier" minOccurs="0">
 <annotation>
 <documentation>Identifier of the undeployed
process.</documentation>
 </annotation>
 </element>
 <element ref="wps:Capabilities" minOccurs="0">
 <annotation>
 <documentation>Updated Capabilities
document.</documentation>
 </annotation>
 </element>
 </sequence>
 <element name="FailureReason" type="xs:string">
 <annotation>
 <documentation>If UndeploymentDone = false</documentation>
 </annotation>
 </element>

Testbed

 </choice>
 </sequence>
 </complexType>

These elements may be returned as bare elements or embedded within a WPS response

documents depending on the response form (i.e. response="raw" or response="document").

Terradue implementation provides a graphical user interface allowing the deployment

directly from the web browser for authorized users.

Figure 12. Terradue User GUI for Deployment

The CubeWerx implementation of the DeployResult and UndeployResult responses deviate

slightly from the schemas defined on OGC 13-071r1. The CubeWerx server will never

generate a "FailureReason" if process deployment or undeployment fails. Instead, the

CubeWerx server will generate an ows:ExpceptionReport as defined in the OGC Web

Service Common Implementation Specification (see OGC 06-121r9). It is unclear what the

benefit of adding yet another communication channel (i.e. "FailureReason) for exceptions is

when one is already defined in OGC 06-121r9. Furthermore, most OGC web service clients

expect that a request will either succeed or generate an ows:ExceptionReport message.

It is understood that OGC 13-071r1 introduced the "FailureReason" element to allow

exceptions in the back-end to be communicated to the calling process but, as the following

example illustrates, this can easily be accomplished using the ows:ExceptionReport:

25

<?xml version="1.0" ?>
<ExceptionReport
 version="2.0.2"
 xmlns="http://www.opengis.net/ows/2.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/ows/2.0
 http://schemas.opengis.net/ows/2.0/owsAll.xsd">
 <Exception exceptionCode="InternalServerError"/>
 <Exception exceptionCode="VirtualMachineException">
 <ExceptionText>The OS of the Docker image is not compatible with the OS
of the VM allocated in the Cloud environment.</ExceptionText>
 </Exception>
</ExceptionReport>

In this example, the code "VirtualMachineException" is used to indicate that the exception

occurred in the backend virtual machine.

6.6.3. Execute

Since deployed applications appear as WPS process offerings, executing a deployed

application is simply a matter of using the wps:Execute operation. The following XML

fragment is an example of such a request:

<?xml version="1.0" encoding="UTF-8"?>
<wps:Execute
 xmlns:wps="http://www.opengis.net/wps/2.0"
 xmlns:ows="http://www.opengis.net/ows/2.0"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/wps/2.0
 http://www.pvretano.com/schemas/wps/2.0/wps.xsd"
 service="WPS"
 version="2.0.0"
 response="document"
 mode="async">
 <wps:Extension>
 <ows:ResponseHandler>
mailto:pvretano_tb13@gmail.com</ows:ResponseHandler>
 </wps:Extension>
 <ows:Identifier>LandCover</ows:Identifier>
 <wps:Input id="Image">
 <wps:Data>
 <wps:LiteralValue dataType="string">/workspace/d7073c5e-825a-4257-
b5e0-62035220bc3d/stagedData</wps:LiteralValue>

Testbed

 </wps:Data>
 </wps:Input>
 <wps:Input id="ReferenceData">
 <wps:Data>
 <wps:LiteralValue dataType="string"
>UEsDBBQAAAAIAGVTU0uEczQWqAIAAAsHAAAaABwARGVwbG95UHJvY2Vzc19EZXNjcmliZS54bWxV
VAkAAz226FlLTfdZdXgLAAEEHgUAAAT+AQAArVVRT9swEH7nV3h5HTQUXqaqDeoKTEigIsi0vU2u
c20Njm3ZF1L+/c5OS5PSbkxaX5L4znfffffddXixKhV7Aeel0aOk3ztNGGhhCqkXo+R7fn3yJbnI
joa19YN7ZwR4P53PwZH5iDH2ZGYTo9EZNbVIEfwo4f5VixNYgagQWCF9Kb1PgrOp0FaYO67jWUz4
...
ZENvdmVyX0FwcGxpY2F0aW9uUGFja2FnZV9XUFNULnhtbFVUBQADG2XzWXV4CwABBB4FAAAE/gEA
AFBLAQIeAxQAAAAIAIJyXkuW2aqtEQIAAN8FAAAVABgAAAAAAAEAAACwgQokAABMYW5kQ292ZXJf
RXhlY3V0ZS54bWxVVAUAA1Nt91l1eAsAAQQeBQAABP4BAABQSwUGAAAAAAgACAAjAwAAaiYAAAAA
 </wps:LiteralValue>
 </wps:Data>
 </wps:Input>
 <wps:Input id="AreaOfInterest">
 <wps:Data>
 <wps:LiteralValue dataType="string">POLYGON((-92.9 16.2, -92.1 16.2,
-92.1 15.4, -92.9 15.4, -92.9 16.2))</wps:LiteralValue>
 </wps:Data>
 </wps:Input>
 <wps:Input id="EPSGCode">
 <wps:Data>
 <wps:LiteralValue dataType="string">4326</wps:LiteralValue>
 </wps:Data>
 </wps:Input>
 <wps:Input id="TargetResolution">
 <wps:Data>
 <wps:LiteralValue dataType="integer">20</wps:LiteralValue>
 </wps:Data>
 </wps:Input>
 <wps:Output id="Image" mimeType="image/tiff" transmission="reference"/>
</wps:Execute>

Terradue implementation provides a graphical user interface allowing the execution

directly from the web browser for authorized users.

27

Figure 13. Terradue User GUI for Deployment

The normal WPS work flow includes using the GetStatus operation to poll the server to

determine the execution status of a running job. The CubeWerx implementation offers this

polling method of monitoring the process BUT it also includes a more efficient notification

approach where the server notifies the client when the operation has completed processing.

The notification is triggered by specifying a value for the vendor-specific responseHandler

parameter on the wps:Execute operation. The value of the response handler can be

something like "mailto:user@server.com" or "sms:4165555555". The details of the response

handler parameter can be found in OGC 16-023r3, clause 7.2.

The example above makes use of WPS request extensibility by embedding the

ows:ResponseHandler element(s) within the wps:Extension element. If one or more

response handlers are specified on an execute request, then the value of the mode

parameter shall be set to "async". If the mode is set to another value the server shall raise an

exception (see OGC 06-121r9, 8.5).

The response to an asynchronous request shall be the standard wps:StatusInfo element (see

OGC 14-065, 9.5) with the modifications shown in the following XML schema fragment:

Testbed

 <element name="StatusInfo">
 <complexType>
 <sequence>
 <element ref="wps:JobID"/>
 <element name="Status">
 <simpleType>
 <union>
 <simpleType>
 <restriction base="string">
 <enumeration value="Succeeded">
 <enumeration value="Failed">
 <enumeration value="Accepted">
 <enumeration value="Running">
 </restriction>
 </simpleType>
 <simpleType>
 <restriction base="string"/>
 </simpleType>
 </union>
 </simpleType>
 </element>
 <element ref="wps:ExpirationDate" minOccurs="0"/>
 <element name="EstimatedCompletion" type="dateTime" minOccurs="0
"/>
 <choice minOccurs="0">
 <element name="NextPoll" type="dateTime"/>
 <element ref="atom:link" maxOccurs="unbounded"/>
 </choice>
 <element name="PercentCompleted" minOccurs="0">
 <simpleType>
 <restriction base="integer">
 <minInclusive value="0"/>
 <maxInclusive value="100"/>
 </restriction>
 </simpleType>
 </element>
 </sequence>
 </complexType>
 </element>

The modification allows zero or more hypermedia controls, in the form of ATOM links, to

be included in the response. The value of the "rel" attribute informs the client what the link

does and should be taken from the IANA Link Relations registry (see IANA) or defined

with the OGC NA. An example of a common "rel" value is "monitor" which refers to a

resource that can be used to monitor the status of a running job. The following XML

29

fragment is an example of a wps:StatusInfo response that includes hypermedia controls:

 <?xml version="1.0" encoding="UTF-8"?>
 <wps:StatusInfo
 xmlns:wps="http://www.opengis.net/wps/2.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/wps/2.0 ../wps.xsd">
 <wps:JobID>1013</wps:JobID>
 <wps:Status>Accepted</wps:Status>
 <atom:link rel="monitor"
 href="http://www.someserver.com/jobs/1013"/>
 <atom:link rel="cancel"
 href="http://www.someserver.com/jobs/cancel/1013"/>
 </wps:StatusInfo>

This hypermedia approach alleviates the client from having to understand how to form a

monitor or cancel request; the client simply needs to understand the link relation and

resolve the accompanying link.

6.6.4. Bindings

In addition the the OGC XML-POST and OGC KVP-GET bindings defined in the WPS 2.0

standard (see OGC 14-065, 10.1, 10.2), the CubeWerx WPS also implements a REST-XML

binding. The following tables summarize each resource that the server offers and the HTTP

methods that may be used on those resources.

Resource path Method Description Parameters Response

/ GET Get a capabilities
document

see OGC 16-121r9,
Table 51

body contains
wps:Capabilities
type2

POST undefined

PUT undefined

DELETE undefined

/process GET wps:DescribeProce
ss app (all)

see OGC 14-065,
Table 383

body contains
wps:ProcessOfferi
ngs type4

POST wps:DeployProces
s op

body contains app
package5

body contains
wps:DeployResul
t response6

PUT undefined

DELETE undefined

Testbed

Resource path Method Description Parameters Response

/process/{id} GET wps:DescribeProce
ss op (id)

see OGC 14-065,
Table 517

body contains
wps:ProcessOfferi
ng type8

POST undefined

PUT undefined

DELETE wps:UndeployPro
cess op

body contains
wps:UndeplyRes
ult9

/job GET wps:GetStatus op
(all)

list of jobs

POST wps:Execute op body contains
wps:Execute type

see OGC 14-065,
Table 45

PUT undefined

DELETE undefined

/job/{jobId} GET wps:GetStatus op
(jobId)

body contains
wps:StatusInfo10

POST undefined

PUT undefined

DELETE wps:Dismiss op body contains
wps:StatusInfo10

NOTES:
1. exclude Service & Request parameters
2. see 14-065, 9.7.2 (wpsGetCapabilities.xsd)
3. exclude Identifier parameter
4. see wpsDescribeProcess.xsd
5. see ES001
6. see OGC 13-071, Clause 8.4
7. exclude service, version, request and identifier parameters
8. see wpsDescribeProcess.xsd
9. see OGC 13-071, Clause 9.4
10 see wpsCommon.xsd

Table 4. Rest XML Binding

The Cuewerx server also implemented the OPTIONS method (see RFC2616, clause 9) which

allows clients to ascertain the methods and representations are support for each resource.

6.6.5. Cuberwerx Backend

The following sequence diagram illustrates the sequence of operations performed by the

WPS on the back end to execute a deployed application.

31

Figure 14. Sequence Diagram for Application Execution

Key:

1. ADES = Application Deployment and Execution Service

2. EFS = Elastic File System

3. EB = Elastic Beanstalk

4. DockerREG = Docker registry

5. DockerENG = Docker engine

6. App = Application bundled in Docker image

Testbed

6.6.6. Notification

Introduction

The WPS standard defines a polling mechanism (see OGC 14-065, 9.4) for monitoring the

status of an executing process to determine when a job is complete. A more efficient

approach would be to have the ADES push a notification to the client when the execution of

a job has been completed.

For TB13 the Cubewerx server has implemented a push notification mechanism based on

the work done during OGC Testbed 12 and described in "Testbed-12 Implementing

Asynchronous Services Response Engineering Report (see OGC 15-023r3, 7.2).

NOTE
This capability is implemented in addition to the standard polling (i.e.

GetStatus) approach defined in the WPS standard (see OGC 14-065,9.9).

ResponseHandler parameter

Push notification is triggered by the presence of the ResponseHandler parameter on a WPS

Execute request. The following XML-schema fragment defines the ResponseHandler

parameter:

 <xsd:element name="ResponseHandler" type="xsd:anyUri"
 minOccurs="0" maxOccurs="unbounded"/>

The ResponseHandler parameter shall be defined in the http://www.opengis.net/ows/2.0

namespace.

One or more ResponseHandler parameters may be specified in an Execute request. The

value of the ResponseHandler shall either be a URL. The form of the URL shall be a valid

expression of one of the notification schemes that the server claims to support in its

capabilities document.

This standard does not define a normative set of notification schemes but possible schemes

include:

Email scheme as per RFC 2368

Example — mailto:tb12@pvretano.com

Sms scheme as per Apple Inc. (see RFC 5724)

Example – sms:1-555-555-5555

33

http://www.opengis.net/ows/2.0

Webhook as per http://www.webhooks.org

Example —  http://www.myserver.com/posthandler

Example:

The following example wpsExecute request shows the use of the ResponseHandler

parameter:

<?xml version="1.0" encoding="UTF-8"?>
<wps:Execute
 xmlns:wps="http://www.opengis.net/wps/2.0"
 xmlns:ows="http://www.opengis.net/ows/2.0"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/wps/2.0
 http://www.pvretano.com/schemas/wps/2.0/wps.xsd"
 service="WPS"
 version="2.0.0"
 response="document"
 mode="async">
 <wps:Extension>
 <ows:ResponseHandler>
mailto:pvretano_tb13@gmail.com</ows:ResponseHandler>
 </wps:Extension> -->
 <ows:Identifier>...</ows:Identifier>
 .
 .
 .
</wps:Execute>

Response

The response to a wps:Execute request that contains ows:ResponseHandler elements is the

standard asynchronous wpsStatusInfo response (see OGC 14-065,9.9.2) that has been

extended to accommodate hypermedia controls. The following XML-Schema fragment

redefines the standard response to include hypermedia controls in the from of ATOM links

(see OGC 12-007r2, 9.1.3):

Testbed

http://www.webhooks.org
http://www.myserver.com/posthandler

 <element name="StatusInfo">
 <complexType>
 <sequence>
 <element ref="wps:JobID"/>
 <element name="Status">
 <simpleType>
 <union>
 <simpleType>
 <restriction base="string">
 <enumeration value="Succeeded"/>
 <enumeration value="Failed"/>
 <enumeration value="Accepted"/>
 <enumeration value="Running"/>
 </restriction>
 </simpleType>
 <simpleType>
 <restriction base="string"/>
 </simpleType>
 </union>
 </simpleType>
 </element>
 <!-- reference to job expiration date -->
 <element ref="wps:ExpirationDate" minOccurs="0"/>
 <element name="EstimatedCompletion" type="dateTime" minOccurs="0
"/>
 <element name="NextPoll" type="dateTime" minOccurs="0"/>
 <element name="PercentCompleted" minOccurs="0">
 <simpleType>
 <restriction base="integer">
 <minInclusive value="0"/>
 <maxInclusive value="100"/>
 </restriction>
 </simpleType>
 </element>
 <element ref="atom:link" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>

This allows zero or more hypermedia controls to be included in the response. Two "rel"

values, rel="monitor" and rel="cancel" are used by the CubeWerx server to provide links

that may be used to monitor the status of a job and links that may be used to cancel a job.

The following example shows the use of hypermedia control in the response to an Execute

request:

35

?xml version="1.0" encoding="UTF-8"?>
<wps:StatusInfo
 xmlns:wps="http://www.opengis.net/wps/2.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/wps/2.0 ../wps.xsd">
 <wps:JobID>urn:cw:wps:jobId:9cf6bcc4-c8ed-11e7-a37a-
1f5a82589b14</wps:JobID>
 <wps:Status>Accepted</wps:Status>
 <atom:link rel="cancel" href="http://www.acme.com/wps?..."/>
 <atom:link rel="monitor" href="http://www.acme.com/wps?service=WPS
&version=2.0&request=GetStatus&..."/>
</wps:StatusInfo>

In this case, the client may follow the rel="cancel" link to cancel the job and may use the

rel="monitor" link to get the current status of a job. The advantage of using hypermedia

controls is that the hypermedia controls are opaque thus relieving the client of having to

know how to construct these URLs. All the clients need to know is how to interpret the rel

value and how to follow links.

Testbed

Chapter 7. Alternative approach

7.1. Overview

The approach described in this chapter is an alternative to the one described in the previous

Implementation chapter. It is based on the use of a Transactional WPS (WPS-T) as described

in the WPS 2.0 Transactional Extension [3] discussion paper. This discussion paper was itself

derived from the WPS 1.0 based Transactional WPS Extension (WPS-T) Specification [4] and

from the experience gained in several ESA projects where the Transactional WPS 1.0 was

used to deploy BPEL workflows, Grid applications, Oozie workflows, and Java

applications.

In this approach, as illustrated in Figure 15, the Application Deployment and Execution

Service (ADES) is essentially a set of WPS-T servers, each server encapsulating a particular

cloud processing environment (e.g. IPT Poland or AWS) where the TEP applications are

deployed and executed. The TEP applications are containerized applications running on

virtual machines equipped with a container execution engine (e.g. Docker Engine) and

possibly container clustering tools (e.g. Docker Swarm, Mesos, or Kubernetes). The

container technology used in this testbed is Docker.

Figure 15. Alternative Approach Overview

37

7.2. Application Package

The Application package proposed in this testbed is an OWS Context document as defined

in the Exploitation Platform Application Package Engineering Report [2] . This document

provides all the information necessary for both the Application Management Client (AMC)

and the Application Deployment and Execution Service to perform their work for the

corresponding application. This information includes a WPS Process Description that

matches the inputs and outputs of the application.

In this approach, instead of embedding (using an OWC Offering) the WPS Process

Description inside the OWS Context document, an enhanced WPS Process Description is

actually used to embed (using OWS Metadata) the remaining part of the OWS Context. This

is done using the ApplicationContext element as illustrated in the XML fragment below.

Therefore, no information is lost when using the enhanced WPS Process Description. The

advantage of this approach is that the discovery (e.g. by the AMC) of Application Packages

coincides with the discovery of WPS Processes.

The source of the Docker image used in this chapter is available on GitHub

(https://github.com/spacebel/landcover) and the image is available on Docker Hub

(https://hub.docker.com/r/cnlspacebel/landcover/).

WPS Process Description with OWS Context

<wps:ProcessOffering xmlns:wps="http://www.opengis.net/wps/2.0" ...
jobControlOptions="async-execute dismiss" outputTransmission="value
reference">
 <wps:Process>
 <ows:Title>Land Cover Mapping</ows:Title>
 <ows:Abstract>Lang Cover Mapping is based on the Sentinel-2
processing workflow generated for the F-TEP platform.</ows:Abstract>
 <ows:Identifier>LandCover</ows:Identifier>
 <ows:Metadata xlink:role=
"http://www.opengis.net//tb13/eoc/applicationContext">
 <eoc:ApplicationContext>
 <feed xmlns="http://www.w3.org/2005/Atom" ... >
 <title>EOC Land Cover Application Package</title>
 ...
 <entry>
 <title>EOC Land Cover Application</title>
 ...
 <!-- DockerImage offering -->
 <owc:offering code=
"http://www.opengis.net/tb13/eoc/docker">
 <owc:content type="text/plain">...</owc:content>
 </owc:offering>

Testbed

https://github.com/spacebel/landcover
https://hub.docker.com/r/cnlspacebel/landcover/

 </entry>
 <entry>
 <title>OpenSearch Collections</title>
 ...
 <!-- OpenSearch offering for IPT Poland -->
 <owc:offering code="http://www.opengis.net/spec/owc-
atom/1.0/req/opensearch">
 <owc:content type=
"application/opensearchdescription+xml" .../>
 </owc:offering>
 <!-- OpenSearch offering for AWS -->
 <owc:offering code="http://www.opengis.net/spec/owc-
atom/1.0/req/opensearch">
 <owc:content type=
"application/opensearchdescription+xml" .../>
 </owc:offering>
 </entry>
 </feed>
 </eoc:ApplicationContext>
 </ows:Metadata>
 <wps:Input>...</wps:Input>
 ...
 <wps:Output>...</wps:Output>
 </wps:Process>
</wps:ProcessOffering>

39

7.3. Application Management Client

The Application Management Client is a generic component that can be used for any TEP

Application. It relies entirely on the information provided in the Application Package (i.e.

the enhanced WPS Process Description described in the previous section) in order to

dynamically build the application specific user interface needed to:

• Discover in the Central Geospatial Resource Catalogue the satellite images (e.g.

Sentinel-2) to be processed,

• Capture the inputs for the execution of the processing TEP Application,

• Monitor the execution status of the TEP application, and

• Download and visualize the processing outputs.

The AMC uses operations provided by the Central Geospatial Resource Catalogue and the

Application Deployment and Execution Service as illustrated in Figure 16.

Figure 16. Sequence of WPS Operations used by Client

Testbed

The TEP Application deployment is performed (at Marco’s request) using the WPS-T

DeployProcess operation. The typical case is when the container image is available on an

external registry. However, if the image is a relatively small layer on top of another image,

this image could also be passed by value in the DeployProcess request and stored in a local

registry.

Figure 17. Deploy Application Screen

The discovery by the AMC of available (i.e. deployed) applications is performed using the

WPS GetCapabilities operation followed by a WPS DescribeProcess operation. The WPS

DescribeProcess operation returns a process description with all the information specific to

the selected application. In particular, the OWS Context contains the entry point in the

Central Geospatial Resource Catalogue i.e. the URL to get the OpenSearch Description

Document (OSDD) and the reference to the container image in a Docker registry. Of course,

the process description also contains all the details regarding the application inputs and

outputs.

Figure 18. Applications Screen

41

The execution of the application is performed (at Jim’s request) using WPS Execute

operation. To capture the inputs, the AMC uses the process description to build the

appropriate user interface. For inputs to be obtained from the Central Geospatial Resource

Catalogue, the AMC uses the information (template and parameters) contained in the

OSDD to build the appropriate user interface.

Figure 19. Execute Application Screen

Figure 20. Product Search Screen

Testbed

Figure 21. Product Selection Screen

To monitor the execution of the applications, the AMC uses the WPS GetStatus operation.

Note that TEP Applications have typically long execution times and are, therefore, executed

in asynchronous mode.

Figure 22. Executions Screen

43

Finally, to get the results generated by the application, the AMC uses the WPS GetResult

operation. Depending on the type of results, a download and/or preview of the results is

also provided.

Figure 23. Execution Result Screen

The TEP Application used in Alternative approach is the Land Cover Mapping application

described in the F-TEP Application in OGC Testbed 13 [8] document.

The development of the testbed AMC is done using a JSF based Web application deployed

in a GlassFish server. The AMC is available at the following location: http://ld-ogc-tb13-

tep.spacebel.be/TB13-WebApp/ .

Testbed

http://ld-ogc-tb13-tep.spacebel.be/TB13-WebApp/
http://ld-ogc-tb13-tep.spacebel.be/TB13-WebApp/

7.4. Application Deployment and Execution Service

The Application Deployment and Execution Service is a component that implements the

WPS-T operations shown on Figure 16. This figure also illustrates the ADES interaction

with the cloud environment and with the containerized TEP Application.

The WPS-T implementation is very close to the WPS 2.0 Transactional Extension [3]

document with some minor differences as explained below. This document covers the

HTTP POST + XML and KVP encodings. REST + JSON encoding is proposed below in a

separate section.

As shown on Figure 24, the Capabilities document is unchanged and contains the list of the

deployment profiles supported by the server.

Figure 24. WPS-T Supported Deployment Profiles in Capabilities Document

The DeployProcess request is modified slightly to include a ProcessOffering (that includes a

ProcessDescription) instead of a ProcessDescription and a DeploymentProfile element is

added to hold the DeploymentProfileName and the ExecutionUnit. A ProfileExtension is

introduced to allow for additional information specific to a particular processing

environment. For example, it could possibly be used to pass the ApplicationContext

described earlier instead of including it in the OWS Metadata of the Process Description.

The ExecutionUnit is made optional (if specified, the corresponding information in the

enhanced WPS Process Description is overwritten) and its InstructionPackage is renamed

simply as Package. This is illustrated on Figure 25.

45

Figure 25. WPS-T DeployProcess Operation

As shown on Figure 26, the UndeployProcess operation is unchanged. The

KeepExecutionUnit is not used in the testbed as this is handled by the Docker Engine.

Figure 26. WPS-T UndeployProcess Operation

As illustrated in Figure 16, the ADES interacts with the Docker Engine and with the TEP

Application. The ADES interacts with the Docker Engine in order to prepare the container

environment (e.g. mounting shared storage in the container and creating environment

variables) and to start the application in the container (resulting in the execution of the shell

script defined in the Docker image). The ADES interacts with the TEP Application through

environment variables to pass WPS inputs and WPS outputs.

Testbed

The values of WPS inputs of LiteralData type and the file location of WPS inputs of

ComplexData type are assigned (by the ADES) to the corresponding environment variables

provided to the TEP Application. The target file location of WPS outputs (of both

LiteralData and ComplexData types) are assigned (by the ADES) to the corresponding

environment variables provided to the TEP Application. It is the responsibility of the ADES

to make the input files available in the container environment by extracting them from the

execute request (data transmission by value), or by fetching them from a remote location

(data transmission by reference with a protocol such as http://), or by mounting them from

a local store (data transmission by reference with a protocol such as file:/// or s3://). It is

the responsibility of the TEP Application to create/append results to ouput files.

To ensure interoperability, a convention is used to name the environment variables i.e. by

prefixing the WPS input identifier with WPS_INPUT_ (e.g. WPS_INPUT_Image) and the

output identifier with WPS_OUTPUT_ (e.g. WPS_OUTPUT_Image). Although not needed

by the Land Cover Mapping application used in the testbed, the convention should also

cover repeated WPS inputs and WPS outputs (e.g. WPS_INPUT_Mask_x with x=1,2,3…) as

well as nested WPS inputs and WPS outputs (e.g. WPS_INPUT_Band_x_IntensityMin).

The development of the testbed ADES is based on 52°North WPS 2.0 implementation that

was used in OGC Testbed 12 (https://github.com/52North/WPS/tree/wps-4.0, Git

revision 9aaa70b341) and is available on GitHub (https://github.com/spacebel/WPS). Its

Wiki (https://github.com/spacebel/WPS/wiki) provides additional details. The ADES is

available at the following location: http://ld-ogc-tb13-tep.spacebel.be:8081/wps/ .

47

http://
file:///
https://github.com/52North/WPS/tree/wps-4.0
https://github.com/spacebel/WPS
https://github.com/spacebel/WPS/wiki
http://ld-ogc-tb13-tep.spacebel.be:8081/wps/

7.5. Interoperability

The approach described in this chapter is an alternative to the approach described in the

Implementation chapter. This section proposes mechanisms that can be used to allow for

interoperability of the above described WPS-T based ADES with other AMC clients and

Application Packages.

Some AMC clients are designed to interface with an ADES service that offers a dedicated

DeployProcess WPS process that is used for the deployment of the TEP Application. The

execution of this process takes the application OWS Context as an input. Therefore, a

similar non-transactional DeployProcess WPS process can be added in the WPS-T based

ADES. This process can extract from the OWS Context all the information needed to invoke

an "internal" DeployProcess operation as illustrated in Figure 27. Once deployed, the

execution of the newly deployed process (e.g. LandCover) is identical for all AMC clients.

A similar approach can be used for the undeployment of the TEP Application using an

UndeployProcess WPS process.

Figure 27. ADES Interoperability

Some ADES servers are designed to interface with an application that uses staging

commands. Therefore, to be able to use the same application container image for all ADES

servers, staging commands can be written to wrap the interface based on environment

variables and volume mounting of shared storage.

Testbed

7.6. REST + JSON Encoding

The REST interface to the Transactional WPS is built on top of the REST binding defined in

chapter 11 of OGC Testbed 12 REST Architecture Engineering Report [5] . No new resources

are needed but, as shown on Figure 28, two new HTTP operations must be defined to

support the deployment and undeployment of WPS processes.

Note that a new HTTP DELETE operation was also added to support the Dismiss extended

WPS operation defined in chapter 12 of the OGC WPS 2.0 Interface Standard [OGC 14-065].

Figure 28. WPS-T REST HTTP Operations

The JSON encoding of the request and responses are derived from XML encoding using the

rules defined in chapter 6 of OGC Testbed 11 Implementing JSON/GeoJSON in an OGC

Standard Engineering Report [6] .

49

An example of the JSON encoding of (the body of) the DeployProcess request is shown

below.

WPS-T JSON DeployProcess Request

{
 "DeployProcess": {
 "service": "WPS",
 "version": "2.0.0",
 "ProcessOffering": {
 "jobControlOptions": "async-execute dismiss",
 "outputTransmission": "value reference",
 "Process": {
 "Title": "Land Cover Mapping",
 "Abstract": "Lang Cover Mapping is based on the Sentinel-2
processing workflow generated for the F-TEP platform.",
 "Identifier": "LandCover",
 "Metadata": {
 "role":
"http://www.opengis.net//tb13/eoc/applicationContext",
 "ApplicationContext": {
 "feed": {
 "title": "EOC Land Cover Application Package",
 ...,
 "entry": [
 {
 "title": "EOC Land Cover Application",
 ...,
 "offering": {
 "code":
"http://www.opengis.net/tb13/eoc/docker",
 "content": {
 "type": "text/plain"
 "content":
"registry.hub.docker.com/cnlspacebel/landcover"
 }
 }
 },
 {
 "title": "OpenSearch Collections",
 ...,
 "offering": [
 {
 "code":
"http://www.opengis.net/spec/owc-atom/1.0/req/opensearch",
 "content": {

Testbed

 "type":
"application/opensearchdescription+xml",
 "href":
"http://geo.spacebel.be/opensearch/description.xml?parentIdentifier=EOP%3AIPT
%3ASentinel2"
 }
 },
 {
 "code":
"http://www.opengis.net/spec/owc-atom/1.0/req/opensearch",
 "content": {
 "type":
"application/opensearchdescription+xml",
 "href":
"http://geo.spacebel.be/opensearch/description.xml?parentIdentifier=EOP%3ASEN
TINEL-HUB%3ASentinel2"
 }
 }
]
 }
]
 }
 }
 },
 "Input": [
 {
 "Title": "Sentinel-2 Image",
 ...
 },
 ...
 }
],
 "Output": {
 ...
 }
 }
 },
 "DeploymentProfile": {
 "DeploymentProfileName": "DockerDeploymentProfile",
 "ExecutionUnit": {
 "Reference": {
 "href": "registry.hub.docker.com/cnlspacebel/landcover"
 }
 }
 }
 }
}

51

The JSON encoding of the (body of the) response to the above DeployProcess request

example is shown below.

WPS-T JSON DeployProcess Response

{
 "DeployResult": {
 "DeploymentDone": "true",
 "ProcessSummary": {
 "jobControlOptions": "async-execute",
 "Title": "Land Cover Mapping",
 "Identifier": "LandCover"
 }
 }
}

The JSON encoding of (the body of) the UndeployProcess response is shown below. The

UndeployProcess request has no body.

WPS-T JSON UndeployProcess Response

{
 "UndeployResult": {
 "UndeploymentDone": "true",
 "Identifier": "LandCover"
 }
}

The plan was to develop the REST + JSON encodings for the WPS-T ADES using the WPS

2.0 REST façade implementation from 52° North that was also used in OGC Testbed 12

(https://github.com/52North/wps-proxy). However, due to lack of time, this

implementation was not done.

Testbed

https://github.com/52North/wps-proxy

7.7. Security Aspects

As illustrated on Figure 15, the security approach to be followed in the testbed, at least for

IPT Poland where an Identity Provider (IdP) and a Security Token Service (STS) are

available, is compliant with the User Management Interfaces for Earth Observation Services [7]

document. The HTTP bindings described in sections 7.1.2 (STS interface) and 7.2.2 (PEP

interface) of that document are used (instead of the SOAP bindings).

Authentication (and Single Sign-On) is performed on the client side (AMC) using a

checkpoint (in this case a Shibboleth Service Provider) that intercepts and redirects, if the

user is not already signed on, access requests to protected AMC resources to a Web page of

the IdP (in this case a Shibboleth IdP) for authentication. Once authenticated, the

checkpoint includes IdP provided assertions (e.g. about the username, email, etc.) in the

HTTP header of the user request and forwards this request to the AMC.

Authentication and authorisation is performed on the server side (ADES) using an STS and

a Policy Enforcement Point (PEP) respectively. According to the "Local STS with External

IdP" approach described in section 6.4.3.3 of [7] , the AMC client sends a signed Request

Security Token (RST) with the username to the STS and gets back a SAML token signed by

STS and encrypted with the public key of the PEP. The AMC then inserts this SAML token

in the HTTP header of all service requests it sends towards the ADES (a new SAML token

must be obtained frequently to avoid token expiration). The PEP then decrypts the SAML

token, verifies the token signature, and performs authorisation using policies based on the

SAML assertions. If authorised, the AMC request is finally forwarded to the ADES (with or

without the decrypted SAML token).

The PEP software provided by ESA for the testbed does not actually perform the

authorisation part, but simply passes the assertions (SAML attributes) to the ADES in the

HTTP header.

Although compliant with section 7.2.2 of [7] , the provided PEP is not inline with the spirit

of the User Management Interfaces for Earth Observation Services [7] document (see section 6.1)

where the PEP was meant to perform authorisation in a transparent (non-intrusive) way i.e.

without impacting the target service (in this case the ADES). Therefore, and also due to lack

of time, the security aspects were not implemented in this testbed.

53

Appendix A: Abstract Test Suite
An Abstract Test Suite may be relevant to an Engineering Report.

An Abstract Test Suite is specified in Clause 9 and Annex A of ISO 19105. That Clause and

Annex specify the ISO/TC 211 requirements for Abstract Test Suites. Examples of Abstract

Test Suites are available in an annex of most ISO 191XX documents, one of the more useful

is in ISO 19136. Note that this guidance may be more abstract than needed in an OGC®

Implementation Standard.

Test identifier /test/case/id

Test purpose: Confirm that the IUT satisfies all applicable requirements for
conformance level 1.

Test method: Functional testing performed in an automated and/or manual manner.

Verify the behaviour of the IUT for the following operations:

• GetCapabilities (mandatory)

• DescribeRecord (mandatory)

• GetRecords (mandatory)

• GetRecordById (mandatory)

• GetRepositoryItem (mandatory)

• GetDomain (optional)

Requirement: OGC 07-110: cl. 2.2

Test type: Capability

Table 5. A.1.1	Conformance level 1

Test identifier http://www.opengis.net/spec/xxx/conf/WRS.General-ValidResponse

Test purpose: The XML response entity is valid.

Test method: Validate content of response entity against corresponding element
declaration.

Requirement: OGC 07-006r1: cl. 10.2.5.1, p. 118

Test type: Capability

Table 6. A.1.2	Test case for validity of XML response entity

Test identifier /test/case/id

Test purpose: Confirm that the IUT satisfies all applicable requirements for
conformance level 1.

Testbed

http://www.opengis.net/spec/xxx/conf/WRS.General-ValidResponse

Test method: Functional testing performed in an automated and/or manual manner.

Verify the behaviour of the IUT for the following operations:

• GetCapabilities (mandatory)

• DescribeRecord (mandatory)

• GetRecords (mandatory)

• GetRecordById (mandatory)

• GetRepositoryItem (mandatory)

• GetDomain (optional)

Requirement: OGC 07-110: cl. 2.2

Test type: Capability

Table 7. A.2.1	Conformance level 2

Test identifier http://www.opengis.net/spec/xxx/conf/WRS.General-ValidResponse

Test purpose: The XML response entity is valid.

Test method: Validate content of response entity against corresponding element
declaration.

Requirement: OGC 07-006r1: cl. 10.2.5.1, p. 118

Test type: Capability

Table 8. A.2.2	Test case for validity of XML response entity

55

http://www.opengis.net/spec/xxx/conf/WRS.General-ValidResponse

Appendix C: XML Schema
Documents
XML Schema Documents may be relevant to an Engineering Report.

The term “XML schema“ means all the XML schema parts having the same XML

namespace, usually separated into multiple XML Schema Document files (with the file type

“.xsd“. The XML schema parts in one XML namespace are usually separated into multiple

XML Schema Documents to ease human understanding.

In addition to this document, this report includes several XML Schema Documents. These

XML Schema Documents are bundled in a zip file with the present document.

The TBD abilities now specified in this document use TBD specified XML Schema

Documents included in the zip file with this document. These XML Schema Documents

combine the XML schema fragments listed in various subclauses of this document,

eliminating duplications.

These XML Schema Documents roughly match the TBD UML packages described in Annex

B, and are named:

TBD.xsd
TBD.xsd

These XML Schema Documents use and build on the OWS common XML Schema

Documents specified [OGC 06-121r3], named:

ows19115subset.xsd
owsCommon.xsd
owsDataIdentification.xsd
owsExceptionReport.xsd
owsGetCapabilities.xsd
owsOperationsMetadata.xsd
owsServiceIdentification.xsd
owsServiceProvider.xsd

All these XML Schema Documents contain documentation of the meaning of each element

and attribute, and this documentation shall be considered normative as specified in

Subclause 11.6.3 of [OGC 06-121r9].

Testbed

GetCapabilities.xsd

<ows:Operation name="GetCapabilities">
 <ows:DCP>
 <ows:HTTP>
 <ows:Post xlink:href="http://www.opengis.net/?">
 <ows:Constraint name="PostEncoding">
 <allowedValues>
 <ows:Value>SOAP</ows:Value>
 </ows:AllowedValues>
 </ows:Constraint>
 </ows:Post>
 </ows:HTTP>
 </ows:DCP>
</ows:Operation>
<ows:Operation name="GetTile">
 <ows:DCP>
 <ows:HTTP>
 <ows:Post xlink:href="http://www.opengis.net/?">
 <ows:Constraint name="PostEncoding">
 <ows:AllowedValues>
 <ows:Value>SOAP</ows:Value>
 </ows:AllowedValues>
 </ows:Constraint>
 </ows:Post>
 </ows:HTTP>
 </ows:DCP>
</ows:Operation>

Appendix B: UML model

A UML model may be relevant to an Engineering Report. This template thus includes this

annex as the place for recording this UML model.

Instructions and guidelines on the usage of UML models are provided in OGC document

OGC-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867].

57

https://portal.opengeospatial.org/files/?artifact_id=38867
https://portal.opengeospatial.org/files/?artifact_id=38867

Appendix D: Revision History

NOTE
Example History (Delete this note).

replace below entries as needed

Date Release Editor Primary
clauses
modified

Descriptions

June 15, 2016 I. Simonis .1 all initial version

July 22, 2016 I. Simonis .9 all comments
integrate

September 7,
2016

S. Simmons 1.0 various preparation for
publication

March 23, 2017 I. Simonis 2.0 all template
simplified

Table 9. Revision History

Testbed

Appendix E: Bibliography
[1] OGC: OGC Testbed 12 Annex B: Architecture (2017).

[2] OGC: OGC 17-023, OGC Testbed-13, EP Application Package ER (2017).

[3] Cauchy A.: OGC 13-071r1, OpenGIS WPS 2.0 Transactional Extension, OGC Discussion

Paper, 2014-05-28 [https://portal.opengeospatial.org/files/?artifact_id=74162]

[4] Schäffer B.: OGC 08-123, Transactional WPS Extension (WPS-T) Specification, OGC

Discussion Paper, 2008-08-20 [https://portal.opengeospatial.org/files/?artifact_id=74161]

[5] OGC: OGC 16-035, Testbed-12 REST Architecture Engineering Report (2016)

[https://portal.opengeospatial.org/files/?artifact_id=71494]

[6] OGC: OGC 15-053r1, Testbed 11 Implementing JSON/GeoJSON in an OGC Standard

Engineering Report, 2015-08-19 [https://portal.opengeospatial.org/files/?

artifact_id=64595]

[7] Denis P., Jacques P.: OGC 07-118r9, OGC User Management Interfaces for Earth

Observation Services, OGC Best Practice, 2014-04-28 [https://portal.opengeospatial.org/

files/?artifact_id=54929]

[8] Tergujeff R., Rauste Y., Seitsonen L.: F-TEP Applications in OGC Testbed 13, 2017-10-27

[https://portal.opengeospatial.org/files/?artifact_id=73732]

59

https://portal.opengeospatial.org/files/?artifact_id=74162
https://portal.opengeospatial.org/files/?artifact_id=74161
https://portal.opengeospatial.org/files/?artifact_id=71494
https://portal.opengeospatial.org/files/?artifact_id=64595
https://portal.opengeospatial.org/files/?artifact_id=64595
https://portal.opengeospatial.org/files/?artifact_id=54929
https://portal.opengeospatial.org/files/?artifact_id=54929
https://portal.opengeospatial.org/files/?artifact_id=73732

	{title}
	Table of Contents
	Chapter 1. Summary
	1.1. Requirements
	1.2. Key Findings and Prior-After Comparison
	1.3. What does this ER mean for the Working Group and OGC in general
	1.4. Document contributor contact points
	1.5. Future Work
	1.6. Foreword

	Chapter 2. References
	Chapter 3. Terms and definitions
	3.1. Area Of Interest
	3.2. Context Document
	3.3. Dockerfile
	3.4. Container
	3.5. Infrastructure as a Service (IaaS)
	3.6. Resource
	3.7. Virtual Machine Image
	3.8. Thematic Exploitation Platform (TEP)

	Chapter 4. Abbreviated terms
	Chapter 5. Overview
	5.1. Scenario

	Chapter 6. Implementation
	6.1. Overview
	6.2. Application Package
	6.3. Data Fetching
	6.3.1. Data Discovery

	6.4. Application Parameters
	6.5. Application Management Client
	6.5.1. Solenix implementation

	6.6. Application Deployment and Execution Service
	6.6.1. Introduction
	6.6.2. Deploy
	6.6.3. Execute
	6.6.4. Bindings
	6.6.5. Cuberwerx Backend
	6.6.6. Notification

	Chapter 7. Alternative approach
	7.1. Overview
	7.2. Application Package
	7.3. Application Management Client
	7.4. Application Deployment and Execution Service
	7.5. Interoperability
	7.6. REST + JSON Encoding
	7.7. Security Aspects

	Appendix A: Abstract Test Suite
	Appendix C: XML Schema Documents
	Appendix B: UML model

	Appendix D: Revision History
	Appendix E: Bibliography

