
A PREDICTIVE MODEL TO FORECAST CUSTOMER ADOPTION OF ROOFTOP SOLAR

Vivian Sultan Professor of Information Systems and Business Management California State University, Los Angeles College of Business and Economics 5151 State University Dr., ST F617 Los Angeles, CA 90032-8126 Email: vsultan3@calstatela.edu Phone: (818) 419-4666

ENERGY INFORMATICS RESEARCH (GOEBEL ET AL. 2014)

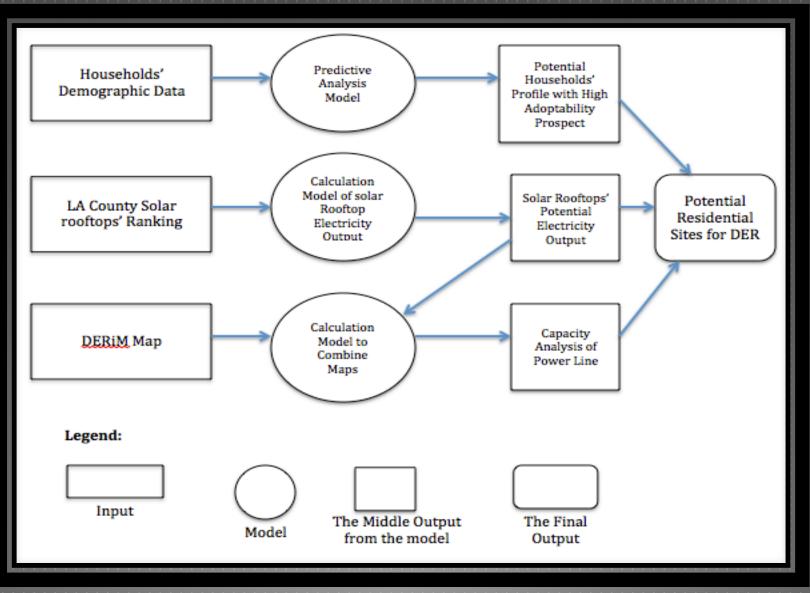
PUBLICATIONS 2016

- "Geographic decision support systems to optimize the placement of distributed energy resources," International Journal of Smart Grid and Clean Energy, 5(3)
- "Is California's aging infrastructure the principal contributor to the recent trend of power outage?" Journal of Communication and Computer, USA, 13 (5)
- "Exploring Geographic Information Systems To Mitigate America's Electric Grid Traffic Congestion Problem," Proceedings of the 4th International Symposium on Computational and Business Intelligence, Switzerland, September 5-7
- "A Predictive Model to Forecast Customer Adoption of Rooftop Solar," Proceedings of the 4th International Symposium on Computational and Business Intelligence, Switzerland, September 5-7
- "Geographic Decision Support Systems To Optimize The Placement Of Distributed Energy Resources," Proceedings of the 22nd Americas Conference on Information Systems, San Diego, August 11-13
- "Is California's aging infrastructure the principal contributor to the recent trend of power outage?" Proceedings of the 22nd Annual California GIS Conference, Anaheim, May 10-12

BACKGROUND AND FOUNDATION

- Worldwide energy demand growing significantly
- Fossil fuels cause irreparable damage to the environment, climate change, air pollution, and a dramatic rise in carbon emissions
- RES is a viable solution
 - Studies to pinpoint the most likely customers to invest in renewable energy technology
- Factors included household income level, house ownership, education level, and other financial factors
- A need of a predictive model for PV rooftop solar adoption

GDSS SOLUTION TO MEET UTILITIES' SPECIFIC GEO-PROCESSING NEEDS


Research Question: How can we forecast residential solar rooftop adoption?

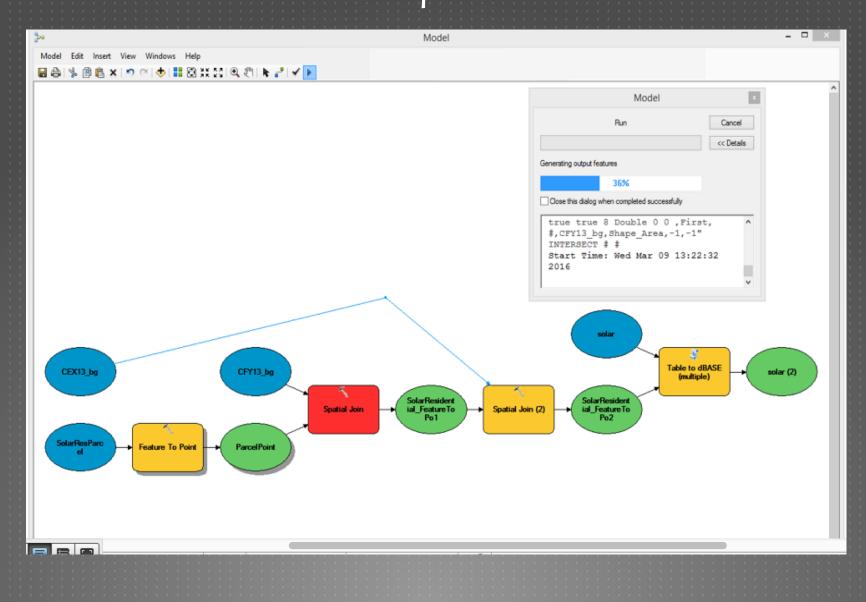
Geographic Decision Support System

An interactive, computer-based system designed to assist in decision making while solving a semi-structured spatial problem

Geographic Decision Support System Model To Optimize DERs' Placement

DATA SOURCES

Solar Parcel Data


- Total roof area and area suitable for solar
- Potential solar system size
- Potential solar annual output
- Potential Cost Savings
- LA County's Solar Map http://solarmap.lacounty.gov

Customer Expenditure & Demographic Data

- Total roof area and area suitable for solar
- Household expenditures
- Spending Potential Index
- Population demographic data
- Household data
- Income data

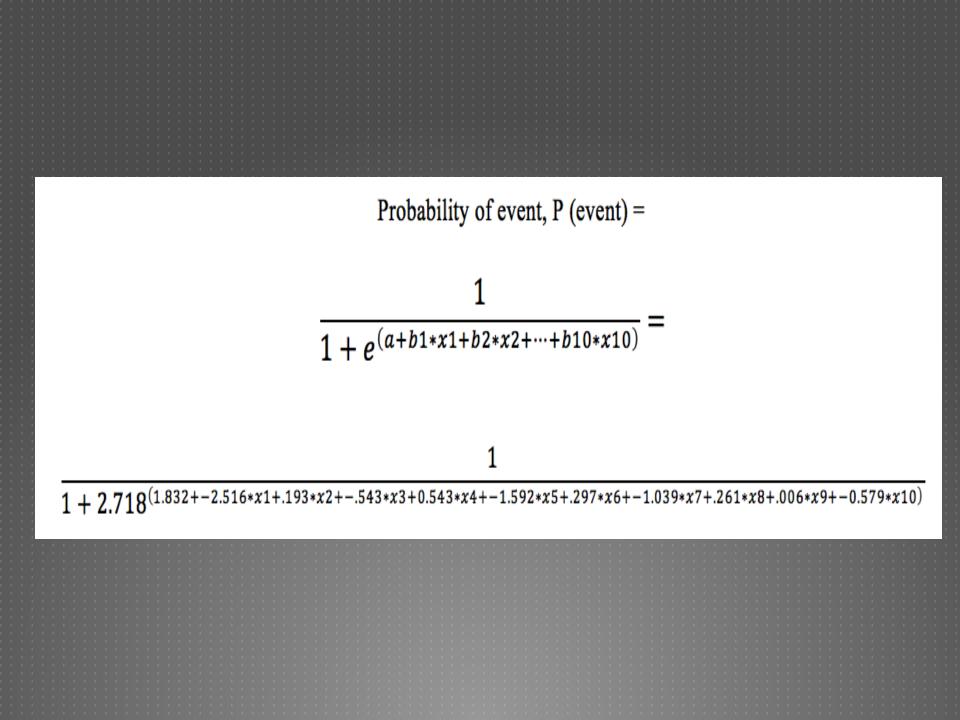
ESRI reports data at the block level

ArcMap Model Builder to add demographic and expenditure data to each parcel

KEY VARIABLES

Dependent variable • The likelihood of a household to adopt solar energy panels

Independent variables • Parcel information parcel age, parcel value, etc. Customer demographics household income, household size, etc. • Expenditure data electricity usage, mortgage value, etc.



Logistic regression To predict the probability that a particular observation will fall into one of the dependent variable's two groups (Adopt/Not adopt solar system)

FINDINGS

Factors emerged as significant predictors
Parcel age
Total area suitable for solar roof top
Average home value
Average household size
Total building area square feet
Average household income
Utility company – only 3 companies showed significant differences between solar adoption groups
LA county cities

Cox and Snell and the Nagelkerke R^2

		В	Wald	df	Sig.	R2
Step 10	Pasadena Water and Power(1)	-2.516	144.542	1	.000	.092137.
	zscoreforAverageHomeValu e	. <mark>193</mark>	6.288	1	.012	.172255
	zscoreforAverageHousehol dSize	546	67.045	1	.000	.183271
	zscoreforAverageHousehol dincome	.543	54.491	1	.000	.195289
	zscoreforTotalbuildingareas quarefeet	-1.592	32.886	1	.000	.216319
	zscoreforTotalaresuitablefor solarrooftopr1r2	. <mark>297</mark>	29.183	1	.000	.223330
	LONGBEACH(1)	-1.039	31.094	1	.000	.229339
	Southern California Edison(1)	.261	5.759	1	.016	.231342
	ParcelAge	. <mark>006</mark> .	7.290	1	.007	.233345
	Glendale Water and Power(1)	579	4.928	1	.026	.234 346
	Constant	1.832	19.300	1	.000	

The study revealed a total of ten variables that significantly impact homeowners' decisions regarding whether or not to install solar rooftops. These ten variables accounted for around 23 percent of solar adoption variances. Future research is needed to expand on this analysis and include the whole state of California, as to apply this analysis to other Energy Informatics cases

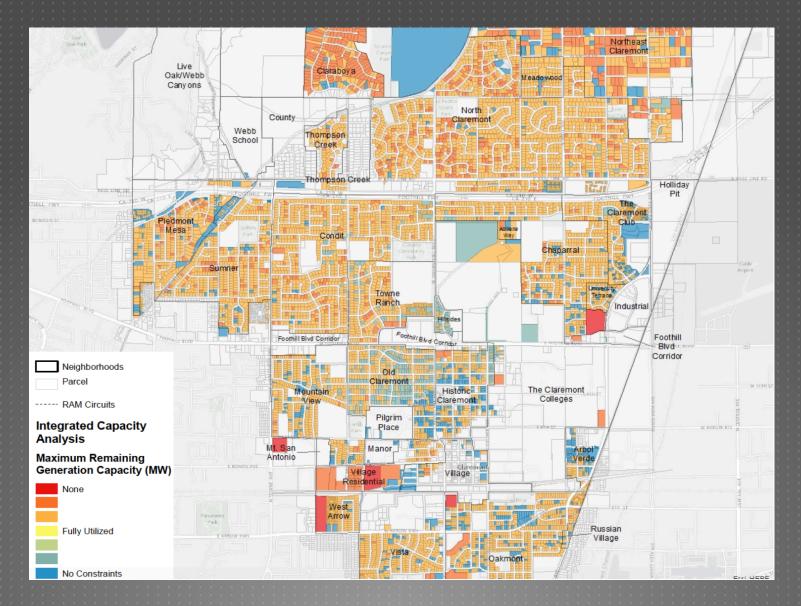
Testing The Model								
Classification Table ^{a,b}								
			Predicted InstallYN10 P					
				InstallYN10				
Observed			0	1	Correct			
Step 0	InstallYN10	0	2414	0	100.0			
		1	807	0	0.0			
	Overall Perc				74.9			
	is included in the	model.						
b. The cut va	alue is .500							
		Classificatio						
Step 10	InstallYN10	0	2270	144	94.0			
		1	521	286	35.4			
	Overall Perc	entage			79.4			

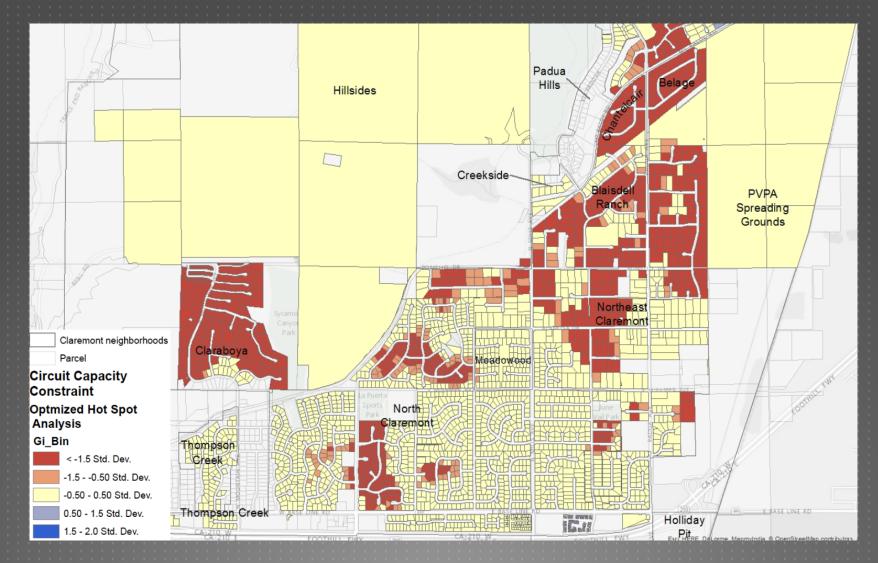
The model successfully classified 94% of households that did not install the solar panels and 35.4% of total cases that did install the solar panel. Overall success

rate of 79.4 %

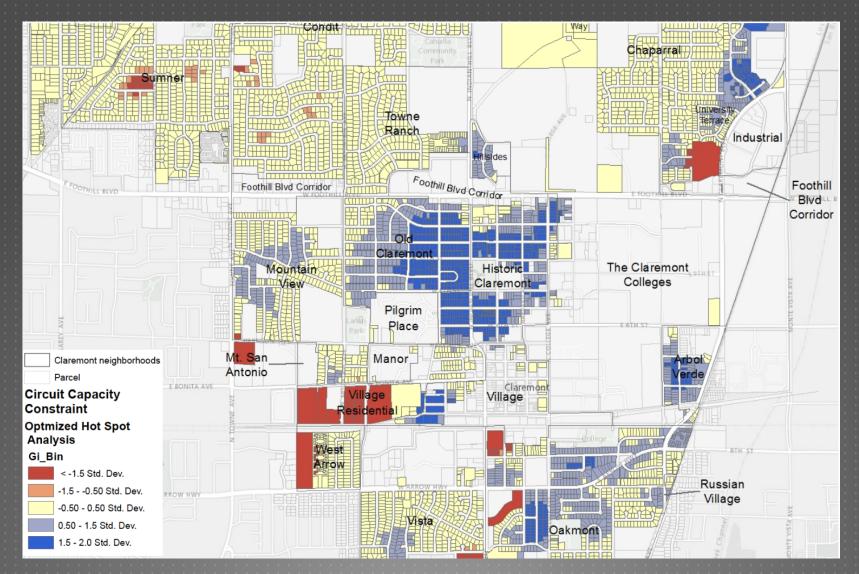
SOLAR ROOFTOP ELECTRICITY OUTPUT

E=A*r*H*PR


E = DER's total energy output A = Total solar panel Area r = solar panel yield H = Annual average solar radiation on tilted panels PR = Performance ratio


ELECTRIC CIRCUIT CAPACITY CONSTRAINT

Maximum Remaining Generation Capacity = Current Capacity Load -(Solar Potential + Existing Generation)


Claremont GDSS Model

Capacity Constraint Hot Spots in City of Claremont

Hosting Capacity Cold Spots in City Of Claremont

Infrastructure Work Prioritization Finding

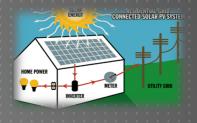

Circuit Name	Infrastructure Work Priority
PADOVA	1
BIG CONE	2
CALSPAR	3
FORBES	4
ANAWALT	5
NEIBEL	6
ALAMOSA	7
ROCK	8
BONTANIC	9
KINGSLEY	10
PITZER	11
WINTHROP	12
LIMBER	13
BASELINE	14
POMALL	15
LEHIGH	16
PALMER	17
MOAB	18
AVENIDA	19

Table 1: The Maximum Residential Solar Rooftops Adoption Scenario

Circuit Name	Infrastructure Work Priority
MOAB	1
BIG CONE	2
PADOVA	3
PALMER	4
LEHIGH	5
KINGSLEY	6
CALSPAR	7
AVENIDA	8
WINTHROP	9
BASELINE	10
LIMBER	11
BONTANIC	12
FORBES	13
NEIBEL	14
POMALL	15
PITZER	16
ALAMOSA	17
ROCK	18
ANAWALT	19

Table 2: The Existing Scenario

The output of this analysis can be utilized by a utility in several ways. It would result in a different prioritization in infrastructure work than those based solely on current or known installation projects. Knowing where solar installations are more likely to occur will impact energy planning.

DATA PREPARATION STEPS

- Data extracted and loaded into ArcMap
- ArcMap model builder to spatially join three map layers
- Unnecessary and null fields eliminated
- Output DBF file saved as a geodatabase and exported as a txt file
- Text file converted to CSV and loaded into Microsoft Azure Machine Learning platform
- SQL query to pull current installations data
- > Output JSON file converted to a CSV file format using Python code
- ArcMap Model Builder to obtain a map layer showing solar installations and their respective expenditure and demographics data
- > Dbf output file converted to a CSV file
 - > Installation data merged with the entire dataset

STATISTICAL TESTS

Testing the four assumptions of logistic regression

- ✓ Sample Representativeness
- The dependent variable to be measured on a dichotomous scale
- One or more independent variables can be either continuous or categorical
- Multicollinearity or rather non multicollinearity of your data

The Hosmer-Lemeshow test

A statistical test for goodness of fit for logistic regression models

STATISTICAL TESTS

Independent-samples t-test

✓ To determine whether or not the mean different between two groups is significantly different

Chi Square test

 To reveal whether or not there is a relationship between two categorical variables

The variance inflation factor (VIF) and tolerance

 To determine if two or more predictor variables in a multiple regression model are correlated