

SPECIFICATION
Volume 1

Version 3.2

Update 1

22 February 2016

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

ii

© 2016 Presagis. All Rights Reserved.

Copyright

Common Database (CDB)

© 2016 Presagis. All Rights Reserved.

THIS DOCUMENT AND ITS CONTENT (“INFORMATION”) ARE PROVIDED "AS IS"

WITHOUT WARRANTY OR CONDITION OF ANY KIND. USE OF THE INFORMATION

IS AT YOUR OWN RISK. PRESAGIS DOES NOT MAKE ANY REPRESENTATION OR

WARRANTY ABOUT THE QUALITY, ACCURACY, RELIABILITY, COMPLETENESS OR

CURRENCY OF THE INFORMATION. PRESAGIS DOES NOT ASSUME ANY

RESPONSIBILITY FOR ANY ERROR, OMISSION OR INACCURACY IN THE

INFORMATION. IN NO EVENT SHALL PRESAGIS BE LIABLE FOR ANY DAMAGE

RESULTING FROM RELIANCE ON OR USE OF THE INFORMATION.

You may, free of charge, further distribute the Information or any portion thereof without any

restriction, on the conditions that You:

- make no modification to the Information without Presagis’ prior written consent,

- keep intact all proprietary notices, and

- provide attribution to Presagis when the Information is used for publication purposes.

Unless in the public domain or specifically credited to another copyright holder, Presagis is the

owner of all intellectual property rights in and to the Information. All trademarks contained in

this document are the property of their respective owners.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

iii

© 2016 Presagis. All Rights Reserved.

Revision History

The new revision history is presented in reversed chronological order where the most recent

revision appears at the top of the table.

Version Date Description

3.2

Update 1

22 February 2016 Changes:

- Corrected the definition of GSModelCMT

- Added GSModelInteriorCMT

- Added new contributors to Chapter 11

- Added a note to Chapter 4 to allow compressing ZIP files

- Added Section 5.8.1.1 to define a limit on GSModel archives

- Added Dataset 312, T2DModelCMT

- Corrected the Feature Data Dictionary

- Simplified Section 6.8

- Added Section 5.7.1.6.4 and 5.7.1.9

- Added Appendix A.21

- Added a Priority to FACC codes (in the FDD)

- Added countries to Appendix I

- Updated CDB_Attributes.xml

- Restored the NVT Attribute

- Updated the WGP Attribute

- Changed Restriction 3 of Section 6.2.2.1

- Addition of new Airliners to Appendix O

- Added new base materials for use in building interiors

- Added the ‘update’ attribute to Version.xml

3.2 19 March 2014 Changes:

- Updated the list of DIS codes found in

/CDB/Metadata/Moving_Model_Codes.xml

- Editorial changes to volume 1 and 2 to remove markups and

highlights, promote a consistent use of various terms and

expressions, check spelling, correct the formatting, etc.

12 February 2014 First public release of version 3.2 of the CDB Specification.

The changes with respect to the first release candidate of 19

December 2013 are the followings:

- Revised the implementation of the Primary Alternate

Elevation (formely Subordinate Terrain Offset)

- Added the Subordinate Alternate Bathymetry

- Introduced the concept of Mesh Type and added an optional

channel to the Primary Terrain Elevation and Subordinate

Bathymetry components to store the Mesh Type.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

iv

© 2016 Presagis. All Rights Reserved.

19 December 2013 First release candidate of version 3.2 of the CDB Specification.

- The changes with respect to the first draft of December 2012

take into account comments received from users and address

concerns about compatibility with version 3.0.

December 2012 First Draft of version 3.2 of the CDB Specification.

Old Revision History

The old revision history is presented in chronological order where the most recent revision

appears at the bottom of the table.

Revision Level Date Description

V1.0 – First Draft October 28, 2005 First draft available for comments from

industry

V2.0 – Second Draft March 16, 2006 Second draft of the CDB Specification

V2.1 – Third Draft October 25, 2006 Third draft of the CDB Specification

V2.2 – Fourth Draft June 15, 2007 Fourth draft of the CDB Specification

V2.3 – Fifth Draft July 9, 2007 Fifth draft of the CDB Specification

V2.4 – Sixth Draft October 5, 2007 Sixth draft of the CDB Specification

V2.5 – Seventh Draft November 9, 2007 Seventh draft of the CDB Specification

V3.0 – Draft December 21, 2007 First draft of CDB 3.0

V3.0 – Draft 2 March 27, 2008 Second draft of CDB 3.0

V3.0 – Draft 3 June 25, 2008 Third draft of CDB 3.0

V3.0 September 2008 Official release of CDB 3.0

V3.1 – Draft November 2009 First draft of CDB 3.1

V3.1 May 2010 Official Release of CDB 3.1

V3.1 – Correction 1 December 2011 Editorial Corrections to CDB 3.1

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

v

© 2016 Presagis. All Rights Reserved.

Abstract

The CDB Specification provides the means for a single, versionable, simulation-rich,

synthetic representation of the earth. A database that conforms to this Specification is

referred to as a Common DataBase (CDB). A CDB provides for a synthetic environment

repository that is plug-and-play interoperable between database authoring workstations.

Moreover, a CDB can be used as a common on-line (or runtime) repository from which

various simulator client-devices can simultaneously retrieve and modify, in real-time,

relevant information to perform their respective runtime simulation tasks; in this case, a

CDB is plug-and-play interoperable between CDB-compliant simulators. A CDB can be

readily used by existing simulation client-devices (legacy Image Generators, Radar

simulator, Computer Generated Forces, etc.) through a data publishing process that is

performed on-demand at runtime.

The application of CDB to future simulator architectures will significantly reduce

runtime-source level and algorithmic correlation errors, while reducing development,

update and configuration management timelines. With the addition of the HLA/FOM and

DIS protocols, the application of the CDB Specification provides a Common

Environment to which inter-connected simulators share a common view of the simulated

environment.

The CDB Specification is an open format Specification for the storage, access and

modification of a synthetic environment database. The Specification defines the data

representation, organization and storage structure of a worldwide synthetic representation

of the earth as well as the conventions necessary to support all of the subsystems of a full-

mission simulator. The Specification makes use of several commercial and simulation

data formats endorsed by leaders of the database tools industry.

The CDB synthetic environment is a representation of the natural environment including

external features such as man-made structures and systems. It encompasses the terrain

relief, terrain imagery, three-dimensional (3D) models of natural and man-made cultural

features, 3D models of dynamic vehicles, the ocean surface, and the ocean bottom,

including features (both natural and man-made) on the ocean floor. In addition, the

synthetic environment includes the specific attributes of the synthetic environment data as

well as their relationships.

A CDB contains datasets organized in layers, tiles and levels-of-detail; together, these

datasets represent the features of a synthetic environment for the purposes of distributed

simulation applications. The organization of the synthetic environmental data in a CDB

is specifically tailored for real-time applications.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

vi

© 2016 Presagis. All Rights Reserved.

Distribution Package

The CDB Specification is distributed as an archive whose name is:

CDB Specification – Version x.y[.z].zip

The archive contains two root folders:

/Documents/

contains the PDF documents making up the Specification

/CDB/

illustrates the directory structure and filenaming conventions of a CDB; it also

contains the Metadata folder where developers will find important XML files

The important files of the distribution package are the followings:

/Documents/CDB Specification - Volume 1.pdf

/Documents/CDB Specification - Volume 2.pdf

/CDB/Metadata/*.xml

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

vii

© 2016 Presagis. All Rights Reserved.

Table of Contents

1 Introduction .. 1-1
1.1 Purpose ... 1-1

1.2 Document Structure ... 1-1

1.3 Scope .. 1-2

1.3.1 What is the CDB Specification .. 1-3

1.3.1.1 Use of CDB as an Off-line Database Repository... 1-5

1.3.1.2 Use of CDB as a Combined Off-line and Run-time Database Repository 1-9

1.3.2 What the CDB Specification Is Not ... 1-12

1.3.3 What is a CDB ... 1-13

1.4 Key Features and Characteristics of the CDB Specification 1-14

1.4.1 Synthetic environment Database for Simulation Applications 1-14

1.4.2 Logical Addressability ... 1-14

1.4.3 High Spatial Resolution and Scalability .. 1-15

1.4.4 Earth Geodetic Spatial Representation Model ... 1-15

1.4.5 Tile/Layer/Level-of-Detail Structure ... 1-15

1.4.5.1 Tiles.. 1-15

1.4.5.2 Layers ... 1-16

1.4.5.3 Levels-of-Detail ... 1-16

1.4.6 Platform Independence .. 1-17

1.4.6.1 System Software Independence ... 1-18

1.4.6.2 System Hardware Independence .. 1-19

1.4.7 Synthetic Environment Scalability & Adaptability 1-22

1.4.8 Platform Scalability ... 1-24

1.4.9 Simulator Wide Unique Data Representation, Data Normalization 1-26

1.4.10 Compression of Storage Intensive Imagery Datasets 1-27

1.4.11 Compression of other Raster Datasets ... 1-28

1.5 Key Benefits of the CDB Specification ... 1-28

1.5.1 Improved Synthetic environment DB Generation Timeline 1-28

1.5.2 Interoperable Simulation-Ready Synthetic environment DB 1-29

1.5.3 Improved Client-device Robustness/Determinism .. 1-30

1.5.4 Runtime-Adjustable Synthetic Environment DB Correlation and Fidelity ... 1-30

1.5.5 Increased Synthetic Environment DB Longevity .. 1-31

1.5.6 Reduced Synthetic Environment DB Storage Infrastructure Cost 1-31

1.6 CDB Primer ... 1-32

1.6.1 CDB Specification Data Representation and Organization 1-32

1.6.2 CDB Specification Logical Structure .. 1-34

1.6.3 CDB Structure, Organization on Media and Conventions 1-35

1.6.4 Typical Implementation on a Simulator .. 1-35

1.6.4.1 Database Generation Facility ... 1-37

1.6.4.2 Database Generation Flow ... 1-37

1.6.4.3 Update Manager ... 1-41

1.6.4.4 CDB Servers .. 1-42

1.6.4.5 Other Applications of the CDB Specification ... 1-46

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

viii

© 2016 Presagis. All Rights Reserved.

1.6.5 Use of CDB in Applications Requiring Dynamic Synthetic Environments .. 1-47

1.6.6 Synthetic Environment Database Correlation .. 1-48

2 CDB Concepts .. 2-1
2.1 Partitioning the Earth into Tiles ... 2-1

2.1.1 Description ... 2-2

2.1.2 Tile Levels-of-Detail (Tile-LODs) .. 2-5

2.1.2.1 Tile-LOD Area Coverage Rules .. 2-9

2.1.2.2 Tile-LOD Hierarchy Rules .. 2-10

2.1.2.3 Tile-LOD Replacement Rules.. 2-10

2.1.3 Handling of the North and South Pole ... 2-11

2.2 File System Requirements ... 2-11

2.2.1 Character Set .. 2-12

2.2.2 A word about case-sensitiveness ... 2-13

2.3 Light Naming ... 2-13

2.3.1 Adding Names to the CDB Light Name Hierarchy 2-16

2.4 Model Component Naming.. 2-16

2.4.1 Adding New Model Components .. 2-17

2.5 Materials .. 2-17

2.5.1 Base Materials .. 2-18

2.5.1.1 Base Material Table (BMT) ... 2-19

2.5.2 Composite Materials .. 2-19

2.5.2.1 Composite Material Substrates .. 2-19

2.5.2.2 Composite Material Tables (CMT) .. 2-21

2.5.2.3 Example 1 .. 2-23

2.5.2.4 Example 2 .. 2-23

2.5.3 Bringing it all Together .. 2-23

2.5.4 Determination of Material Properties by SEM .. 2-24

2.5.4.1 Example ... 2-26

2.5.5 Generation of Materials for Inclusion in CDB Datasets 2-26

3 CDB Structure .. 3-1
3.1 Top-Level CDB Structure Description .. 3-1

3.1.1 Metadata Directory .. 3-2

3.1.2 Metadata File Examples ... 3-4

3.2 CDB Configuration Management .. 3-4

3.2.1 CDB Version .. 3-4

3.2.1.1 CDB Extensions ... 3-6

3.2.2 CDB Version Directory Structure .. 3-6

3.2.3 CDB File Replacement Mechanism... 3-7

3.2.3.1 How to Handle Archives .. 3-9

3.2.3.2 How to Handle the Metadata Directory ... 3-9

3.2.4 CDB Configuration .. 3-9

3.2.5 Management of CDB Configurations and Versions 3-10

3.3 CDB Model Types ... 3-10

3.3.1 GTModel (Geotypical 3D Model) ... 3-11

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

ix

© 2016 Presagis. All Rights Reserved.

3.3.2 GSModel (Geospecific 3D Model) .. 3-11

3.3.3 T2DModel (Tiled 2D Model) .. 3-12

3.3.4 MModel (Moving 3D Model) .. 3-12

3.3.5 Use of GSModels and GTModels .. 3-12

3.3.6 Organizing Models into Levels of Details ... 3-16

3.3.7 Organizing Models into Datasets ... 3-17

3.3.8 Terms and Expressions .. 3-18

3.3.8.1 Feature Classification ... 3-18

3.3.8.2 Model Name... 3-18

3.3.8.3 DIS Entity Type ... 3-19

3.3.8.4 Texture Name ... 3-19

3.3.8.5 Level of Detail ... 3-20

3.4 GTModel Library Datasets .. 3-20

3.4.1 GTModel Directory Structure 1: Geometry and Descriptor 3-20

3.4.1.1 GTModelGeometry Entry File Naming Convention 3-21

3.4.1.2 GTModelGeometry Level of Detail Naming Convention 3-22

3.4.1.3 GTModelDescriptor Naming Convention ... 3-23

3.4.1.4 Examples .. 3-23

3.4.2 GTModel Directory Structure 2: Texture, Material, and CMT 3-24

3.4.2.1 GTModelTexture Naming Convention .. 3-25

3.4.2.2 GTModelMaterial Naming Convention ... 3-25

3.4.2.3 GTModelCMT Naming Convention .. 3-26

3.4.2.4 Examples .. 3-26

3.4.3 GTModel Directory Structure 3: Interior Geometry and Descriptor 3-27

3.4.3.1 GTModelInteriorGeometry Naming Convention .. 3-28

3.4.3.2 GTModelInteriorDescriptor Naming Convention ... 3-29

3.4.3.3 Examples .. 3-29

3.4.4 GTModel Directory Structure 4: Interior Texture, Material, and CMT 3-30

3.4.4.1 GTModelInteriorTexture Naming Convention .. 3-31

3.4.4.2 GTModelInteriorMaterial Naming Convention ... 3-31

3.4.4.3 Example 1 .. 3-32

3.4.4.4 Example 2 .. 3-33

3.4.5 GTModel Directory Structure 5: Signature ... 3-33

3.4.5.1 Naming Convention ... 3-34

3.4.5.2 Examples .. 3-35

3.4.6 GTModel Complete Examples .. 3-35

3.5 MModel Library Datasets .. 3-36

3.5.1 MModel Directory Structure 1: Geometry and Descriptor 3-36

3.5.1.1 MModelGeometry Naming Convention .. 3-37

3.5.1.2 MModelDescriptor Naming Convention ... 3-38

3.5.1.3 Examples .. 3-38

3.5.2 MModel Directory Structure 2: Texture, Material, and CMT 3-38

3.5.2.1 MModelTexture Naming Convention .. 3-39

3.5.2.2 MModelMaterial Naming Convention .. 3-39

3.5.2.3 MModelCMT Naming Convention ... 3-40

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

x

© 2016 Presagis. All Rights Reserved.

3.5.2.4 Examples .. 3-40

3.5.3 MModel Directory Structure 3: Signature ... 3-41

3.5.3.1 Naming Convention ... 3-42

3.5.3.2 Examples .. 3-42

3.5.4 MModel Complete Examples .. 3-43

3.6 CDB Tiled Datasets ... 3-43

3.6.1 Tiled Dataset Types ... 3-43

3.6.1.1 Raster Datasets ... 3-44

3.6.1.2 Vector Datasets .. 3-44

3.6.1.3 Model Datasets... 3-45

3.6.2 Tiled Dataset Directory Structure .. 3-46

3.6.2.1 Directory Level 1 (Latitude Directory) .. 3-47

3.6.2.2 Directory Level 2 (Longitude Directory) ... 3-48

3.6.2.3 Directory Level 3 (Dataset Directory) ... 3-51

3.6.2.4 Directory Level 4 (LOD Directory) ... 3-52

3.6.2.5 Directory Level 5 (UREF Directory) ... 3-52

3.6.3 Tiled Dataset File Naming Conventions .. 3-53

3.6.3.1 File Naming Convention for Files in Leaf Directories (UREF Directory) 3-53

3.6.3.2 File Naming Convention for Files in ZIP Archives 3-55

3.7 Navigation Library Dataset .. 3-58

3.7.1 NavData Structure .. 3-58

3.7.2 Naming Convention ... 3-58

3.7.2.1 Examples .. 3-58

4 CDB File Formats .. 4-1

5 CDB Datasets .. 5-1
5.1 Metadata Datasets .. 5-1

5.1.1 Light Name Hierarchy Metadata ... 5-2

5.1.1.1 Client Specific Lights Definition Metadata ... 5-3

5.1.2 Model Components Definition Metadata ... 5-6

5.1.3 Base Material Table ... 5-7

5.1.4 Default Values Definition Metadata .. 5-7

5.1.5 Specification Version Metadata – Deprecated ... 5-8

5.1.6 Version Metadata ... 5-8

5.1.7 CDB Attributes Metadata .. 5-9

5.1.7.1 Definition of the <Attribute> Element ... 5-9

5.1.7.2 Definition of the <Unit> Element .. 5-10

5.1.7.3 Definition of the <Scaler> Element ... 5-11

5.1.7.4 Example of CDB_Attributes.xml ... 5-12

5.1.8 Geomatics Attributes Metadata .. 5-12

5.1.9 Vendor Attributes Metadata ... 5-12

5.1.10 Configuration Metadata ... 5-13

5.1.10.1 A Note about Folder Path .. 5-13

5.1.10.2 Example ... 5-13

5.2 Navigation Library Datasets .. 5-14

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

xi

© 2016 Presagis. All Rights Reserved.

5.2.1 Schema Files .. 5-19

5.2.1.1 Example ... 5-19

5.2.2 Key Datasets .. 5-21

5.2.2.1 Example ... 5-21

5.3 CDB Model Textures ... 5-22

5.4 GTModel Library Datasets .. 5-24

5.5 MModel Library Datasets .. 5-26

5.6 Tiled Raster Datasets ... 5-28

5.6.1 Tiled Elevation Dataset .. 5-33

5.6.1.1 Terrain Mesh Types ... 5-34

5.6.1.2 List of all Elevation Dataset Components ... 5-35

5.6.1.3 Primary Terrain Elevation Component .. 5-37

5.6.1.4 Primary Alternate Terrain Elevation Component .. 5-39

5.6.1.5 Terrain Constraints... 5-41

5.6.1.6 MinElevation and MaxElevation Components .. 5-45

5.6.1.7 MaxCulture Component ... 5-54

5.6.1.8 Subordinate Bathymetry Component ... 5-56

5.6.1.9 Subordinate Alternate Bathymetry Component ... 5-59

5.6.1.10 Subordinate Tide Component .. 5-60

5.6.2 Tiled Imagery Dataset .. 5-64

5.6.2.1 Raster-Based Imagery File Storage Extension Naming 5-64

5.6.2.2 List of all Imagery Dataset Components ... 5-71

5.6.2.3 Visible Spectrum Terrain Imagery (VSTI) Components 5-72

5.6.2.4 Visible Spectrum Terrain Light Map (VSTLM) Component 5-75

5.6.3 Tiled Raster Material Dataset .. 5-76

5.6.3.1 List of all Raster Material Dataset Components .. 5-79

5.6.3.2 Composite Material Index Component .. 5-79

5.6.3.3 Composite Material Mixture Component .. 5-80

5.6.3.4 Composite Material Table Component .. 5-81

5.7 Tiled Vector Datasets ... 5-82

5.7.1 Introduction to Vector Datasets ... 5-82

5.7.1.1 Shapefile Type Usage and Conventions .. 5-85

5.7.1.2 CDB Attribution... 5-87

5.7.1.3 CDB Attributes .. 5-95

5.7.1.4 Explicitly Modeled Representations .. 5-138

5.7.1.5 Implicitly Modeled Representations .. 5-139

5.7.1.6 Handling of Topological Networks ... 5-139

5.7.1.7 Handling of Light Points .. 5-143

5.7.1.8 Allocation of CDB Attributes To Vector Datasets 5-143

5.7.2 Tiled Navigation Dataset ... 5-147

5.7.2.1 Default Read Value .. 5-148

5.7.2.2 Default Write Value ... 5-148

5.7.3 Tiled GSFeature Dataset .. 5-148

5.7.3.1 Default Read Value .. 5-149

5.7.3.2 Default Write Value ... 5-149

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

xii

© 2016 Presagis. All Rights Reserved.

5.7.4 Tiled GTFeature Dataset .. 5-150

5.7.4.1 Default Read Value .. 5-151

5.7.4.2 Default Write Value ... 5-151

5.7.5 Tiled GeoPolitical Feature Dataset .. 5-151

5.7.5.1 Boundary and Location Features ... 5-152

5.7.5.2 Elevation Constraint Features .. 5-153

5.7.5.3 Default Read Value .. 5-155

5.7.5.4 Default Write Value ... 5-155

5.7.6 Tiled RoadNetwork Dataset ... 5-155

5.7.6.1 Default Read Value .. 5-156

5.7.6.2 Default Write Value ... 5-156

5.7.7 Tiled RailRoadNetwork Dataset .. 5-156

5.7.7.1 Default Read Value .. 5-157

5.7.7.2 Default Write Value ... 5-157

5.7.8 Tiled PowerLineNetwork Dataset .. 5-157

5.7.8.1 Default Read Value .. 5-158

5.7.8.2 Default Write Value ... 5-158

5.7.9 Tiled HydrographyNetwork Dataset .. 5-158

5.7.9.1 Default Read Value .. 5-159

5.7.9.2 Default Write Value ... 5-159

5.7.10 Tiled Vector Composite Material Table (VCMT) 5-160

5.7.10.1 Data Type ... 5-160

5.7.10.2 Default Read Value .. 5-160

5.7.10.3 Default Write Value ... 5-160

5.8 Tiled Model Datasets ... 5-160

5.8.1 Tiled GSModel Datasets .. 5-160

5.8.2 Tiled T2DModel Datasets .. 5-162

6 CDB OpenFlight Models ... 6-1
6.1 OpenFlight File Header .. 6-1

6.2 OpenFlight Model Tree Structure .. 6-1

6.2.1 CDB Model Tree Structure .. 6-3

6.2.2 T2DModel Tree Structure .. 6-3

6.2.2.1 Restrictions .. 6-5

6.2.2.2 Node Attributes .. 6-5

6.2.3 The Use of Node Names .. 6-5

6.2.4 Model Master File .. 6-6

6.2.5 Referencing Other OpenFlight Files .. 6-7

6.2.5.1 Models Straddling Multiple Files .. 6-7

6.2.5.2 Models with Multiple Model-LODs .. 6-8

6.3 Modeling Conventions ... 6-8

6.3.1 Model Coordinate Systems .. 6-8

6.3.1.1 Origin ... 6-9

6.3.1.2 Local Coordinate Systems ... 6-13

6.3.1.3 Units ... 6-13

6.3.1.4 Roll, Pitch, Yaw ... 6-14

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

xiii

© 2016 Presagis. All Rights Reserved.

6.3.2 Geometry.. 6-14

6.3.3 Roof Tagging ... 6-15

6.3.4 Relative Priority ... 6-15

6.4 Model Identifiers .. 6-16

6.4.1 GSModel and GTModel Identifier... 6-16

6.4.2 MModel Identifier .. 6-16

6.4.3 2DModel Identifier .. 6-17

6.5 Model Zones .. 6-17

6.5.1 Definition ... 6-17

6.5.2 Global Zones .. 6-18

6.5.3 Zone Attributes .. 6-19

6.5.3.1 Material .. 6-19

6.5.3.2 Temperature ... 6-19

6.5.4 Implementation Guidelines .. 6-20

6.5.5 Model Zone Naming .. 6-23

6.5.6 Usages .. 6-24

6.5.6.1 Model Landing Zones .. 6-24

6.5.6.2 Model Footprint Zones .. 6-24

6.5.6.3 Model Cutout Zones .. 6-26

6.5.6.4 Model Interior Zones ... 6-27

6.6 Model Points .. 6-39

6.6.1 Definition ... 6-39

6.6.2 Usages .. 6-39

6.6.2.1 Model DIS Origin .. 6-39

6.6.2.2 Model Viewpoint ... 6-42

6.6.2.3 Model Attach Point .. 6-43

6.6.2.4 Model Anchor Point ... 6-43

6.6.2.5 Model Center of Mass .. 6-43

6.7 Model Conforming... 6-44

6.7.1 Non Conformal (Absolute) Mode .. 6-45

6.7.2 Point Conformal Mode .. 6-45

6.7.3 Vertex Conformal Mode .. 6-46

6.7.4 Line Conformal Mode .. 6-47

6.7.5 Plane Conformal Mode .. 6-48

6.7.6 Surface Conformal Mode ... 6-50

6.8 Model Levels-of-Detail .. 6-51

6.8.1 LOD Node Types ... 6-53

6.8.1.1 Note on Additive LODs ... 6-53

6.8.2 LOD Node Ordering .. 6-54

6.8.3 LOD Significant Size ... 6-55

6.8.3.1 Definition of Significant Size .. 6-56

6.8.3.2 Estimating the Size of the Model ... 6-56

6.8.3.3 How to use the Significant Size ... 6-56

6.8.4 LOD Limits .. 6-56

6.8.4.1 How to Assign CDB LODs.. 6-57

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

xiv

© 2016 Presagis. All Rights Reserved.

6.8.5 LOD Generation Guidelines .. 6-58

6.9 Model Switch Nodes .. 6-58

6.9.1 Definition ... 6-59

6.9.2 Usage.. 6-59

6.9.2.1 Articulations with Discreet Positions... 6-59

6.9.2.2 Damage States .. 6-59

6.9.2.3 Temporal Anti-aliasing .. 6-62

6.10 Model Articulations ... 6-64

6.10.1 Definition ... 6-64

6.10.2 Usage.. 6-65

6.10.2.1 Rotating Parts ... 6-65

6.11 Model Light Points .. 6-66

6.12 Model Attributes .. 6-67

6.12.1 Definition ... 6-67

6.12.2 Vendor Attributes... 6-68

6.12.3 Examples .. 6-68

6.13 Model Textures .. 6-69

6.13.1 Handling of Multi-textures .. 6-69

6.13.1.1 Base Texture Layer .. 6-69

6.13.1.2 Subordinate Texture Layer .. 6-70

6.13.1.3 Texture Mapping Conventions .. 6-71

6.13.2 Default Gamma Corrections .. 6-72

6.13.3 Texture Dimension... 6-72

6.13.3.1 Texture Mipmap ... 6-72

6.13.3.2 Texture Size ... 6-73

6.13.3.3 Texel Size... 6-73

6.13.4 Texture Palette ... 6-73

6.13.4.1 MModel Example .. 6-73

6.13.4.2 GTModel Example... 6-73

6.13.4.3 GSModel Example ... 6-74

6.13.4.4 T2DModel Example... 6-74

6.13.5 Usages .. 6-75

6.13.5.1 Model Shadow Textures .. 6-75

6.13.5.2 Model Skin Textures .. 6-77

6.13.5.3 Model Night Maps ... 6-80

6.13.5.4 Model Light Maps .. 6-82

6.13.5.5 Model Tangent-space Normal Maps .. 6-85

6.13.5.6 Model Detail Texture Maps ... 6-86

6.13.5.7 Model Contaminant and Skid Mark Textures .. 6-87

6.13.5.8 Model Cubic Reflection Maps ... 6-87

6.13.5.9 Model Gloss Maps ... 6-89

6.13.5.10 Model Material Textures .. 6-89

6.14 Model Descriptor (Metadata) Datasets .. 6-90

6.14.1 Model Name... 6-90

6.14.2 Model Identification ... 6-91

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

xv

© 2016 Presagis. All Rights Reserved.

6.14.2.1 Moving Model Identification ... 6-91

6.14.2.2 Cultural Feature Identification ... 6-91

6.14.3 Model Mass .. 6-91

6.14.4 Model Parts .. 6-92

6.14.5 Model Textures .. 6-92

6.14.5.1 Texture Metadata ... 6-93

6.14.5.2 Texture Switch ... 6-94

6.14.6 Model Configurations .. 6-95

6.14.6.1 Defining Stations in a Configuration ... 6-95

6.14.6.2 Defining Equipment in a Station.. 6-95

6.14.6.3 Defining Equipment Names ... 6-96

6.14.7 Model Composite Materials ... 6-97

7 CDB Radar Cross Section (RCS) Models .. 7-1
7.1 Introduction .. 7-1

7.2 RCS Data Model .. 7-1

7.2.1 RCS Model Structure ... 7-1

7.3 RCS Polar Diagram Data Representation using Shapefile 7-2

7.3.1 Shapefile Internal Data Structure ... 7-2

7.3.1.1 RCS Model Class-Level Attributes: .. 7-6

7.3.1.2 RCS Instance-Level Attribute Data ... 7-11

7.3.2 Multi-Variant RCS Model Applicability ... 7-13

7.3.3 Model’s Articulations Effect on RCS Data ... 7-34

8 Glossary .. 8-1

9 Acronyms and Abbreviations ... 9-1

10 Reference Documents .. 10-1

11 List of Contributors ... 11-1

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

xvii

© 2016 Presagis. All Rights Reserved.

List of Figures

Figure P-1: Current Approach to Synthetic Environment Generation .. 4

Figure P-2: CDB Approach to Synthetic Environment Generation .. 6

Figure 1-1: Use of CDB as an Off-line Database Repository .. 1-6

Figure 1-2: SE Workflow with CDB as an Off-line Database Repository 1-7

Figure 1-3: Use of CDB as an Off-line and On-line Database Repository 1-10

Figure 1-4: SE Workflow with CDB as Combined Off-line/Runtime Database Repository 1-11

Figure 1-5: Variable Allocation of LOD ... 1-18

Figure 1-6: Typical Evolution of a Database ... 1-23

Figure 1-7: Typical Implementation of CDB Specification on High-end Simulator 1-25

Figure 1-8: Typical Implementation of CDB Specification on Desktop Computer 1-26

Figure 1-9: Pipelined DB Update Process ... 1-29

Figure 1-10: CDB Specification Tile/Layer Structure ... 1-35

Figure 1-11: Typical CDB Implementation on a Suite of Simulators 1-37

Figure 1-12: Typical DB Generation - CDB Used as DB Repository 1-38

Figure 1-13: Typical DB Generation Flow - CDB Used as DB & Sim Repository 1-40

Figure 1-14: Versioning Paradigm Applied to Dynamic SE ... 1-48

Figure 1-15: Sources of Synthetic environment Database Correlation Errors 1-53

Figure 1-16: Overload Limit of Least Capable Client-Device .. 1-55

Figure 1-17: Overload Limit of Each Client-Device ... 1-56

Figure 1-18: Operating Limit of Least Capable Client-Device ... 1-56

Figure 1-19: Individually Adjusted to the Operating Limit of Each Client-Device 1-57

Figure 1-20: Adjusted by the Simulator Operator at Scenario Startup 1-57

Figure 2-1: CDB Earth Slice Representation ... 2-3

Figure 2-2: Variation of Longitudinal Dimensions versus Latitude .. 2-4

Figure 2-3: Tile-LOD Hierarchy .. 2-8

Figure 2-4: Earth Slice Example (Five Levels-of-Detail) .. 2-10

Figure 2-5: Extract from Light Naming Hierarchy .. 2-15

Figure 2-6: Seabed Composite Material .. 2-20

Figure 2-7: Oil Tank Composite Materials .. 2-20

Figure 2-8: Thermal Simulation of Oil Tank Composite Materials .. 2-21

Figure 2-9: Flow of Material Attribution Data .. 2-24

Figure 2-10: Linking CDB Base Materials to SEM Base Materials .. 2-25

Figure 2-11: SEM Base Material Properties Table .. 2-25

Figure 3-1: UML Diagram of CDB Version Concept ... 3-5

Figure 3-2: A Valid Chain of CDB Versions ... 3-5

Figure 3-3: UML Diagram of CDB Extension Concept .. 3-6

Figure 3-4: Adding content to the CDB ... 3-7

Figure 3-5: Modifying Content of the CDB .. 3-8

Figure 3-6: Deleting Content from the CDB ... 3-8

Figure 3-7: UML Diagram of CDB Configuration Concept ... 3-9

Figure 3-8: Allocation of CDB Geocells with Increasing Latitude ... 3-50

Figure 5-1: Center Grid Data Elements ... 5-31

Figure 5-2: Corner Grid Data Elements ... 5-31

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

xviii

© 2016 Presagis. All Rights Reserved.

Figure 5-3: Center Data Elements as a Function of LODs .. 5-32

Figure 5-4: Corner Data Elements as a Function of LODs .. 5-32

Figure 5-5: Example of Digital Elevation Model (DEM) .. 5-33

Figure 5-6: DEM Depicted as a Grid of Elevations at Regular Sample Points 5-34

Figure 5-7: CDB Mesh Types .. 5-35

Figure 5-8: Primary Terrain Elevation Component ... 5-37

Figure 5-9: Modeling of Wells, Overhanging Cliffs and Tunnels ... 5-38

Figure 5-10: Encoding of Lat/Long Offsets ... 5-40

Figure 5-11: Grid Element Coverage within a CDB Tile .. 5-40

Figure 5-12: Storage Tank Point-Feature .. 5-44

Figure 5-13: Road Lineal Feature .. 5-45

Figure 5-14: LOD Structure of Raster Datasets ... 5-46

Figure 5-15: Generation of LODs for the MinMaxElevation Dataset (1D) 5-48

Figure 5-16: Generation of LODs for the MinMaxElevation Dataset (2D) 5-49

Figure 5-17: Generation of LODs for the MinMaxElevation Dataset (1D) – Special Case 5-50

Figure 5-18: Availability of LODs for Elevation and MinMaxElevation Datasets 5-51

Figure 5-19: Missing MinMaxElevation Datasets ... 5-54

Figure 5-20: Primary Terrain Elevation and Subordinate Bathymetry Components 5-57

Figure 5-21: Derived Earth Elevation Values .. 5-58

Figure 5-22: Example of Primary Terrain Elevation and Bathymetry Components 5-58

Figure 5-23: Terrain Elevation, Bathymetry and Tide Components ... 5-62

Figure 5-24: Derived Earth Elevation, Water Elevation and Surface Elevation Values 5-62

Figure 5-25: Projection of Terrain Imagery Dataset onto Terrain Elevation Dataset 5-73

Figure 5-26: Image Classification Example .. 5-77

Figure 5-27: Example of a Raster Material Dataset ... 5-78

Figure 5-28: Instance-level Attribution Schema .. 5-90

Figure 5-29: Class-level Attribution Schema .. 5-91

Figure 5-30: Relation between Shapes and Attributes ... 5-94

Figure 5-31: RTAI Typical Usage Histogram ... 5-126

Figure 5-32: Example of a Topological Network .. 5-139

Figure 5-33: Example of International Boundaries ... 5-152

Figure 5-34: Example of City Locations ... 5-153

Figure 5-35: Example of State Capital Locations and Time Zone Boundaries 5-153

Figure 6-1: General OpenFlight Tree Structure ... 6-2

Figure 6-2: Internal Structure of CDB Models .. 6-3

Figure 6-3: Internal Structure of T2DModels .. 6-4

Figure 6-4: Typical Structure of a Model Master File ... 6-7

Figure 6-5: Model Coordinate System ... 6-9

Figure 6-6: Coordinate System – Aircraft ... 6-10

Figure 6-7: Coordinate System – Helicopter ... 6-10

Figure 6-8: Coordinate System – Ship ... 6-11

Figure 6-9: Coordinate System – Ground-based Model .. 6-11

Figure 6-10: Coordinate System – Lifeform .. 6-12

Figure 6-11: Coordinate System – Cultural Feature .. 6-12

Figure 6-12: Coordinate System – Power Pylon.. 6-13

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

xix

© 2016 Presagis. All Rights Reserved.

Figure 6-13: Model Global Zone ... 6-18

Figure 6-14: Simple Zone .. 6-20

Figure 6-15: Articulated Zone ... 6-20

Figure 6-16: Zone Hierachy ... 6-21

Figure 6-17: Simple Zone Graphical Representation .. 6-21

Figure 6-18: Additive LOD to Control the Graphical Representation 6-22

Figure 6-19: Exchange LODs to Select the Graphical Representation 6-22

Figure 6-20: Switch Node to Select the Graphical Representation ... 6-23

Figure 6-21: Footprint Zone Structure ... 6-26

Figure 6-22: Cutout Zone Structure ... 6-27

Figure 6-23: Model Shell Structure ... 6-28

Figure 6-24: Model Interior Structure .. 6-29

Figure 6-25: Interior Zone Structure .. 6-30

Figure 6-26: Floor Zone Structure ... 6-33

Figure 6-27: Room Zone Structure .. 6-34

Figure 6-28: Fixture Zone Structure .. 6-35

Figure 6-29: Fixture Zone Structure .. 6-36

Figure 6-30: Partition Zone Structure .. 6-37

Figure 6-31: Aperture Structure ... 6-38

Figure 6-32: Surface Zone Structure .. 6-38

Figure 6-33: Orientation of the Chinook Helicopter .. 6-40

Figure 6-34: The Body of the Chinook Helicopter .. 6-41

Figure 6-35: The DIS Origin of the Chinook Helicopter ... 6-42

Figure 6-36: Conforming Vertices to Terrain .. 6-44

Figure 6-37: Origin Conformal Mode .. 6-46

Figure 6-38: Vertex Conformal Mode Example .. 6-47

Figure 6-39: Line Conformal Mode ... 6-48

Figure 6-40: Plane Conformal Mode ... 6-49

Figure 6-41: Application of Line and Plane Conformal Modes on 3D Roads 6-50

Figure 6-42: Surface Confomal Mode ... 6-51

Figure 6-43: Exchange and Additive LOD Nodes ... 6-53

Figure 6-44: Exchange LOD Nodes .. 6-54

Figure 6-45: General Damage State Tree Structure ... 6-60

Figure 6-46: Damage States Ordering ... 6-61

Figure 6-47: Example of a Texture Representing a Rotor ... 6-62

Figure 6-48: Multiple Versions of Rotating Parts .. 6-63

Figure 6-49: Using Shadow Polygons ... 6-75

Figure 6-50: Example of a Shadow Map in the XY Plane .. 6-76

Figure 6-51: The M1A2 Abrams with a Desert Camouflage .. 6-77

Figure 6-52: The M1A2 Abrams with a Forest Camouflage ... 6-78

Figure 6-53: M1A2 Desert Skin Mosaic .. 6-79

Figure 6-54: Base Texture ... 6-81

Figure 6-55: Night Map ... 6-81

Figure 6-56: Light Map .. 6-83

Figure 6-57: Combined Effect of Base Textures and Light Maps ... 6-84

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

xx

© 2016 Presagis. All Rights Reserved.

Figure 6-58: Combined Effect of Night and Light Maps .. 6-84

Figure 6-59: Normal Map Sample ... 6-85

Figure 6-60: Detail Texture Map Sample .. 6-86

Figure 6-61: Environment Used to Produce Reflection Map .. 6-87

Figure 6-62: Resulting Reflection Map ... 6-88

Figure 6-63: Rendered Reflection Map onto Reflecting Cube .. 6-88

Figure 7-1: Graphical Representation of the 3D Model RCS Shape Data 7-3

Figure 7-2: Polar Diagram of RCS Data in Planar Representation ... 7-4

Figure 7-3: Polar Diagram of RCS Data in Spherical Representation ... 7-5

Figure 7-4: UML Representation of the 3D Model RCS Shapefile Structure 7-12

Figure 7-5: Example of RCS Shapefile ... 7-13

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

xxi

© 2016 Presagis. All Rights Reserved.

List of Tables

Table 1-1: Summary of Synthetic Environment Database Correlation Errors 1-51

Table 2-1: Intervals for DTED Level 2 .. 2-2

Table 2-2: Size of CDB Geocell per Zone ... 2-2

Table 2-3: CDB Geocell Unit Size in Arc Seconds ... 2-5

Table 2-4: CDB LOD vs Tile and Grid Size .. 2-6

Table 2-5: Character Set Used for CDB Files and Folders .. 2-12

Table 2-6: Components of a Base Material ... 2-18

Table 3-1: CDB LOD vs Model Resolution .. 3-16

Table 3-2: GTModelGeometry Directory Structure .. 3-21

Table 3-3: GTModelGeometry Entry File Naming Convention .. 3-22

Table 3-4: GTModelGeometry Level of Detail Naming Convention 3-22

Table 3-5: GTModelDescriptor Naming Convention .. 3-23

Table 3-6: GTModelTexture Directory Structure .. 3-24

Table 3-7: GTModelTexture Naming Convention .. 3-25

Table 3-8: GTModelMaterial Naming Convention ... 3-25

Table 3-9: GTModelMaterial Naming Convention ... 3-26

Table 3-10: GTModelInteriorGeometry Directory Structure .. 3-28

Table 3-11: GTModelInteriorGeometry Naming Convention ... 3-29

Table 3-12: GTModelInteriorDescriptor Naming Convention .. 3-29

Table 3-13: GTModelInteriorTexture Directory Structure .. 3-31

Table 3-14: GTModelInteriorTexture Naming Convention .. 3-31

Table 3-15: GTModelInteriorMaterial Naming Convention ... 3-32

Table 3-16: GTModelSignature Directory Structure ... 3-33

Table 3-17: GTModelSignature Naming Convention ... 3-35

Table 3-18: MModelGeometry Directory Structure .. 3-37

Table 3-19: MModelGeometry Naming Convention .. 3-37

Table 3-20: MModelDescriptor Naming Convention .. 3-38

Table 3-21: MModelTexture Directory Structure .. 3-39

Table 3-22: MModelTexture Naming Convention .. 3-39

Table 3-23: MModelMaterial Naming Convention ... 3-40

Table 3-24: MModelMaterial Naming Convention ... 3-40

Table 3-25: MModelSignature Directory Structure ... 3-41

Table 3-26: MModelSignature Naming Convention ... 3-42

Table 3-27: CDB LOD versus Feature Density ... 3-44

Table 3-28: Tiled Dataset Directory Structure ... 3-47

Table 3-29: NbSliceIDIndex for every CDB Zones .. 3-50

Table 3-30: Tiled Dataset File Naming Convention 1 ... 3-54

Table 3-31: GTModelGeometry Entry File Directory Structure ... 3-58

Table 3-32: NavData Naming Convention .. 3-58

Table 4-1: CDB File Format Compatibility ... 4-3

Table 5-1: Component Selectors for Metadata Datasets .. 5-1

Table 5-2: Component Selectors for Navigation Dataset .. 5-15

Table 5-3: List of Navigation Components ... 5-16

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

xxii

© 2016 Presagis. All Rights Reserved.

Table 5-4: List of Navigation Schema Attributes .. 5-19

Table 5-5: Example of a Navigation Schema .. 5-19

Table 5-6: List of Navigation Key Attributes .. 5-21

Table 5-7: Example of Navigation Keys ... 5-21

Table 5-8: Component Selectors for CDB Model Textures .. 5-23

Table 5-9: Component Selectors for GTModel Datasets ... 5-24

Table 5-10: Component Selectors for Mmodel Datasets ... 5-26

Table 5-11: Elevation Dataset Components .. 5-36

Table 5-12: Partial List of Hypsography FACCs (for Offline Terrain Constraining) 5-42

Table 5-13: List of Hypsography FACCs (for Online Terrain Constraining) 5-43

Table 5-14: XML Tags for the JPEG 2000 Metadata .. 5-71

Table 5-15: Imagery Dataset Components .. 5-72

Table 5-16: VSTI Default Read Values ... 5-74

Table 5-17: Raster Material Dataset Components ... 5-79

Table 5-18: Component Selector 2 for Vector Datasets .. 5-84

Table 5-19: Boundary Type Enumeration Values ... 5-99

Table 5-20: Location Accuracy Enumeration Values .. 5-113

Table 5-21: Location Type Enumeration Values ... 5-115

Table 5-22: Populated Place Type Enumeration Values ... 5-125

Table 5-23: Surface Roughness Enumeration Values ... 5-129

Table 5-24: Structure Shape Category Enumeration Values ... 5-131

Table 5-25: Structure Shape of Roof Enumeration Values ... 5-134

Table 5-26: Urban Street Pattern Enumeration Values .. 5-136

Table 5-27: Allocation of CDB Attributes to Vector Datasets .. 5-144

Table 5-28: Tiled Navigation Dataset .. 5-148

Table 5-29: Component Selectors for GSFeature Dataset ... 5-149

Table 5-30: Component Selectors for GTFeature Dataset ... 5-150

Table 5-31: Component Selectors for GeoPolitical Feature Dataset 5-151

Table 5-32: Component Selectors for RoadNetwork Dataset .. 5-155

Table 5-33: Component Selectors for RailRoadNetwork Dataset ... 5-157

Table 5-34: Component Selectors for PowerLineNetwork Dataset .. 5-158

Table 5-35: Component Selectors for HydrographyNetwork Dataset 5-159

Table 5-36: Vector Composite Material Table Component .. 5-160

Table 5-37: Component Selectors for GSModel Datasets ... 5-161

Table 5-38: Component Selectors for T2DModel Datasets ... 5-162

Table 6-1: Sample XML Tag Used in a Comment Record ... 6-6

Table 6-2: XML Tags for Zones .. 6-18

Table 6-3: OpenFlight Records for a Zone .. 6-18

Table 6-4: XML Tags for Hot Spots .. 6-20

Table 6-5: Footprint Zone XML Tags ... 6-26

Table 6-6: XML Tags for Landing Zones.. 6-27

Table 6-7: Shell Zones XML Tags .. 6-29

Table 6-8: Interior Zone XML Tags .. 6-29

Table 6-9: UHRB Class Names and corresponding CDB Zone Names 6-31

Table 6-10: XML Tags for Zone Connections .. 6-31

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

xxiii

© 2016 Presagis. All Rights Reserved.

Table 6-11: Examples of Absolute and Relative Paths .. 6-32

Table 6-12: Floor Zone XML Tags ... 6-33

Table 6-13: Room Zone XML Tags .. 6-34

Table 6-14: Fixture Zone XML Tags ... 6-35

Table 6-15: Partition Zone XML Tags .. 6-36

Table 6-16: Aperture Zone XML Tags .. 6-37

Table 6-17: XML Tags for Points .. 6-39

Table 6-18: OpenFlight Records for a Point .. 6-39

Table 6-19: XML Tags for the DIS Origin .. 6-40

Table 6-20: XML Tags for a Viewpoint .. 6-43

Table 6-21: XML Tags for Attach Point .. 6-43

Table 6-22: XML Tags for Anchor Point .. 6-43

Table 6-23: XML Tags for Center of Mass ... 6-44

Table 6-24: Conformal Modes ... 6-45

Table 6-25: Maximum Number of Vertices per Model-LOD ... 6-57

Table 6-26: XML Tags to Create a CDB Switch ... 6-59

Table 6-27: OpenFlight Records to Create a CDB Switch .. 6-59

Table 6-28: XML Tags for Damage State Switch ... 6-60

Table 6-29: Example of a Damage State Switch with Two Transitions 6-60

Table 6-30: XML Tags for Motion Blur Switch .. 6-63

Table 6-31: Example of a Motion Blur Switch with One Transition .. 6-64

Table 6-32: XML Tags for DOF .. 6-64

Table 6-33: OpenFlight Records for a Light Point .. 6-67

Table 7-1: ModelSignature Significant Angle per LOD .. 7-4

Table 7-2: XML Tags for Hot Spots .. 7-6

Table 7-3: RCS Instance Attribute Fields .. 7-12

Table 7-4: Radar Model Numbers ... 7-13

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

P-1

© 2016 Presagis. All Rights Reserved.

Preface

Intended Audience

The primary audience for this document includes distributed simulation system

developers and synthetic environment database tool developers whose applications

are intended to read and/or write synthetic environment database files. To this end,

this document discusses concepts incorporated in the Specification and contains a

detailed description of the physical layout of the files as represented on disk.

This document assumes the reader is familiar with:

(1) Synthetic environment creation and generation process.

(2) Existing database interchange and database visualization standards (such as

SEDRIS, SIF, OpenFlight, DIS, DIGEST, Shapefile, TIFF, JPEG, etc.).

(3) Image Generation and radar simulation principles.

(4) Sensor subsystems used in aircraft and other vehicles (Radar, Night Vision

Image Intensifiers, Infrared (IR) sensors, Laser Range Finders, etc.) requiring

the use of synthetic environment databases.

(5) Simulator client-devices (such as Computer Generated Forces, Air/Ground

Traffic Control, Weather, etc.) requiring the use of synthetic environment

databases.

(6) Principles of Object-Oriented (OO) programming.

Problem Definition

Complex mission simulators include a wide range of subsystems designed to simulate

on-board equipment and to provide a rich gaming environment complete with

weather, computer generated forces, ordnance, air traffic, networked players, etc.

Each of these subsystems typically utilizes a proprietary runtime database (and

format) for its synthetic representation of the gaming area. Traditionally, these

application-specific formats have been generated off-line at a database generation

facility using a variety of tools and processes. This approach has several inherent

disadvantages, including length of time needed for synthetic environment production

for multiple simulation applications, loss of correlation due to compilation

differences, complexity in configuration management, and an inefficient update

process. The abundance of distinct database formats creates several challenges for

configuration management, resulting in mismatched correlation of the various cues,

and in the increased timeline needed to generate these databases. The CDB

Specification is a new approach that establishes a set of industry-standard formats and

conventions for all simulator client subsystems (aka simulator client-devices).

Digital computer based flight simulation dates back to the mid-60s. Many legacy

processes and assumptions have predicated the creation, maintenance, and

modification of traditional military tactical training flight simulator synthetic

environment databases (DBs). Early approaches were usually constrained by severe

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

P-2

© 2016 Presagis. All Rights Reserved.

hardware, software and data source limitations. This in turn would force simulation

engineers to make important compromises between a subsystem’s targeted fidelity

and its level of generality, scalability, abstraction, and correlation with other

simulator client-devices. Industry wide standardization could not be readily achieved

because technologically viable options only offered partial solutions to these needs.

Digital technologies have made tremendous strides in the past 10 years and are

narrowing the “gap” between what is required for training and what the technology

can now deliver. As this trend continues, simulation engineers can re-examine all of

these earlier trade-offs, and redress past compromises.

The approach to visual system synthetic environments is rife with such compromises.

For instance, most DB formats in use today still require a full off-line re-compilation

of the DB into a (usually proprietary) runtime format, even for a small-area update.

As a result, the creation and update of such databases is still a recurring labor-

intensive exercise. Separate, non-harmonized, Image Generator (IG) manufacturer

proprietary tools are required to generate and modify the DB, resulting in sometimes

incongruous, incomplete, and closed DB formats. The typical evolution of the DB

format poses important configuration control challenges due to the required

reconciliation of incompatible revisions of these DB formats. The entire process is

further aggravated by the time-consuming off-line compilation of visual, sensor,

threat, and air traffic DBs.

The confluence of digital multi-spectral high-resolution satellite imagery and highly

capable visual systems has created dramatic new Mission Planning and Mission

Rehearsal capabilities. As a result, recent environment databases built to take

advantage of these new capabilities require orders of magnitude more storage than

equivalent databases just a few years ago.

It is clear that, if left unchecked, these factors will become important cost drivers and

currently impact simulators (see Figure P-1: Current Approach to Synthetic

Environment Generation) in the following areas:

(1) Size of the Synthetic Environment Storage:

In order to satisfy the runtime device loadable representation of each of the

simulator client-devices, the synthetic environment is replicated several times.

Most runtime device-loadable formats do not take advantage of modern

compression schemes. Furthermore, each of runtime device-loadable formats

imposes its own distinct database structure; in many cases, the organization of

the runtime database is not sufficiently flexible to permit small-area changes

without a recompilation of the database. Each recompilation generates a

complete copy of the database that must then be deployed and put under

configuration control.

(2) Longevity of the Synthetic Environment Database:

The runtime loadable representation of each of the simulator client-devices is

closely associated with the fidelity, the features, and the format restrictions

imposed by the simulator client-devices. Increasingly, the design of simulator

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

P-3

© 2016 Presagis. All Rights Reserved.

client-devices is being influenced by the rapidly evolving Commercial-Off-

The-Shelf (COTS) technology. However, few of the benefits of the new

simulator technology can be realized unless the runtime DB is rebuilt to the

new simulator capabilities.

(3) Scalability of the Synthetic Environment Database:

The runtime loadable representation typically provided by current vendors for

each of the simulator client-devices is closely aligned to the total content and

density limits imposed by each simulator client-devices. Once “frozen” into

the runtime loadable DB, it is difficult to fully take advantage of emerging

simulator technologies capable of handling greater DB content/density.

(4) Environment Database Correlation:

Correlation between simulator client-devices is aggravated due to the alternate

data representations demanded by each of the (often proprietary) simulator

client-devices. Data representations can vary in resolution, precision, and in

fidelity. A solution to the correlation issue is costly because each of the

runtime DBs must be re-compiled to the capabilities of the most limited

simulator client-device.

(5) Database Availability Timeline:

The extensive off-line compilation process that produces the runtime

databases is time-consuming; furthermore, this is aggravated because

important amounts of data are replicated in each of the runtime device-

specific databases. While a parallel processing approach could alleviate this,

many of current database compilation tools are not capable of supporting this.

The transfer of the replicated databases from the DB generation facility to the

simulator(s) wastes additional time. Finally, small-area updates are time-

consuming because of the monolithic structure of the client-device runtime

DBs.

(6) Configuration management:

The configuration management of distinct simulator client-devices requires

additional effort because the client-specific runtime DBs must each be re-

derived and re-compiled from the raw source data. The evolution of the (often

proprietary) runtime DB formats poses additional configuration control

challenges because prior versions of the format cannot be fully reconciled

with new ones. Hence, backward compatibility cannot always be assured.

Finally, the runtime DBs are often massive entities; small area-updates cannot

be undertaken without re-compiling the entire DB.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

P-4

© 2016 Presagis. All Rights Reserved.

Figure P-1: Current Approach to Synthetic Environment Generation

The CDB Specification addresses these and other shortcomings through a common

database Specification. It is intended as a simulation Specification for use in

producing a unified synthetic representation of the world. A database built to the

CDB Specification is referred to as a Common Database (CDB). A CDB is a single-

copy data repository from which various simulator client-devices are able to

simultaneously retrieve, in real-time, relevant information to perform their respective

runtime simulation tasks.

The CDB Specification enhances unity and correlation between various simulator

level client-devices (e.g., Visual, Radar), while improving database maintainability.

As a result, one of the main benefits of the CDB Specification is the elimination of

several types of correlation errors attributable to alternate, sometimes conflicting data

representations required by each the simulator client-devices. The Specification

achieves this by allowing all simulator clients-devices to share, in runtime, a single

repository of the synthetic environment information. In addition, a CDB can also be

used as a master repository for the authoring tools; as a result CDB content can be

interchanged between DB workstations. Finally, in the case where one or more of the

client-devices are not compliant to this CDB Specification, it is possible to revert to

the conventional compilation paradigm, (i.e., compile the CDB into one or more

client-device loadable (usually proprietary) representations).

The CDB Specification internal data representation model is based on the native

formats used by industry-standard toolsets. As a result, it eliminates the time-

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

P-5

© 2016 Presagis. All Rights Reserved.

consuming off-line database compilation process for each of the clients. The CDB

Specification redefines a new balance between off-line and on-line compilation

processes because modern computer platforms can now accomplish most of the

compilation process in real-time
1
.

The CDB Specification addresses the issues that have characterized the simulation

industry for past decades (see Figure P-2: CDB Approach to Synthetic Environment

Generation), as follows:

(1) Size of Synthetic Environment Storage:

The CDB consolidates the synthetic environment into a single data repository

that provides a static representation of the earth. It includes all the relevant

information so that all the simulator client-devices can perform their

respective simulation tasks in order to meet the training and mission rehearsal

requirements. It avoids any data content duplication. Storage intensive

datasets can be optionally compressed using modern third-party algorithms.

The CDB Specification provides a fine-grain versioning scheme that avoids

the replication of the entire DB when effecting small-area updates.

(2) Scalability of Synthetic Environment Database:

A CDB can be built to a size or a density that far exceeds the capabilities of

some or all of its client-devices. The data structure of the CDB Specification

makes it possible to implement runtime filtering schemes to adjust the loaded

CDB content density to the specific capabilities of the client-devices. As a

result, a CDB can be scaled to take advantage of future simulator

technological improvements.

(3) Environment DB Correlation:

Since CDB content is unique (without data duplication), runtime source level

correlation errors among clients are eliminated, thereby ensuring inter-

subsystem coherence and simulator interoperability. In addition, it is possible

to improve correlation by adjusting the runtime publishing process associated

with each client-device.

(4) Database Availability Timeline:

The CDB generation process allows for small database incremental updates,

thereby shortening generation and build process times. Furthermore, the

translation step into CDB format is rather straightforward since the CDB

Specification is based on industry-standard native tool formats.

(5) Configuration Management:

Configuration management effort is reduced, because a single CDB

corresponds to the synthetic environment of all the client-devices in the

simulator. Furthermore, while a CDB is conceptually a single, yet layered

1 The CDB Specification does require however, that most of its dataset be generated in a level-of-detail hierarchy.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

P-6

© 2016 Presagis. All Rights Reserved.

entity, the Specification internally supports incremental updates resulting in

efficient storage and handling of CDB versions.

Figure P-2: CDB Approach to Synthetic Environment Generation

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-1

© 2016 Presagis. All Rights Reserved.

Chapter 1

1 Introduction

1.1 Purpose

This Specification provides a full description of a data model (aka schema) for the

synthetic representation of the world. The representation of the synthetic

environment in CDB format is intended for use by authoring tools and by various

simulator client-devices that are able to simultaneously retrieve, in real-time, relevant

information to perform their respective runtime simulation tasks. With the addition

of the DIS protocol, the application of the CDB Specification provides a Common

Environment to which inter-connected simulators share a common view of the

simulated environment.

1.2 Document Structure

A significant portion of the CDB Specification concerns itself with aspects of the data

model that relate to the structure of the database repository on the storage subsystem.

The organization of the CDB data into tiles, levels-of-detail and datasets is embodied

through a set of conventions that prescribe the CDB directory hierarchy and file

naming conventions. All aspects of the CDB structure are covered in Chapter 3.

A second important aspect of the CDB Specification deals with all of the naming

conventions that are internal to the CDB. Names provide the simulator client-devices

the necessary means to understand the meaning of and to control the various elements

modeled within the synthetic environment. For example, the CDB naming

conventions provide all the simulator client-devices the means to control cultural

lighting, to articulate a landing gear on an aircraft, to animate a trailing wake on a

ship, to control the heat emitted by a tank engine, to position a car on the ground, etc.

Names also provide the means to attribute lights and to attribute materials. All of the

CDB Concepts are stated in Chapter 2 that also deals with the naming and handling of

materials that make up the synthetic environment.

Chapter 4, CDB File Formats provides a description of all the formats prescribed by

the CDB Specification.

Chapter 5, CDB Datasets provides a detailed description of all CDB datasets.

OpenFlight plays a significant role within the CDB Specification since all of the

statically positioned cultural features and the moving models are represented in this

format. However, for it to be truly useful in the context of simulation, the OpenFlight

format must be supplemented with a set of agreed-upon conventions that can be used

by all client-devices and the simulation software. Chapter 6, CDB OpenFlight

Models establishes all such OpenFlight conventions for the CDB Specification.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-2

© 2016 Presagis. All Rights Reserved.

For devices such as Radars, a geometric representation of a model may often provide

a level of fidelity which is insufficient or inappropriate for use in simulation or

alternately, it may not be feasible to compute a radar cross-section (RCS) of the

model in real-time. Alternately, a user may wish to incorporate real-world RCS data

into the simulator client-devices in order to further improve simulation fidelity. To

this end, the CDB Specification defines a RCS (Radar Cross-Section) model

representation for use by Sensor Simulation client-devices such as Radar and/or

Sonar. Chapter 7, CDB Radar Cross Section (RCS) Models establishes a set of

conventions that permit RCS representations using the Shapefile format.

The CDB Specification relies heavily on five established industry formats, namely the

TIFF format (Appendix B), the OpenFlight format (Appendix C), the RGB format

(Appendix P), the Shapefile format (Appendix D) and the JPEG 2000 file format

(Appendix T). These Specifications have been included as appendices to this

Specification. Each of these documents has been annotated to reflect the conventions

established by the CDB Specification. The conventions define how TIFF,

OpenFlight, RGB, Shapefile and JPEG 2000 formatted files are to be interpreted by

CDB-compliant simulator readers.

Appendices E and F provide the CDB light type naming hierarchy and the CDB

model component hierarchies respectively while Appendix L provides the material

list for the CDB Specification.

Other Appendices further describes other aspects of the CDB Specifications like

providing the CDB Directory Naming and Structure (Appendix M), the mapping of

FACC Codes (Appendix N), the List of Texture Component Selectors (Appendix O),

the SGI Image File Format (Appendix P), the Table of Dataset Codes (Appendix Q)

or how some datasets are derived from others (Appendix R).

1.3 Scope

The Specification defines an earth synthetic environment data model and the

representation, organization, storage structure and conventions necessary to support

all of the subsystems of a full-mission simulator. The Specification makes use of

several commercial and simulation data formats endorsed by leaders of the database

tools industry.

The CDB synthetic environment is a representation of the natural environment

including external features such as man-made structures and systems. It encompasses

the terrain relief, terrain imagery, three-dimensional (3D) models of natural and man-

made cultural features, 3D models of vehicles, the ocean surface, and the ocean

bottom, including features (both natural and man-made) on the ocean floor. In

addition, the synthetic environment includes the specific attributes of the synthetic

environment data as well as their relationships.

A database that conforms to the CDB Specification (i.e., a CDB) contains datasets

organized in layers, tiles and levels-of-detail; together, these datasets represent the

features and models of a synthetic environment for the purposes of distributed

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-3

© 2016 Presagis. All Rights Reserved.

simulation applications. The organization of the synthetic environmental data in a

CDB is specifically tailored for real-time applications.

1.3.1 What is the CDB Specification

The CDB Specification is an open synthetic environment database Specification to

which the U.S. Government has unrestricted rights. The CDB Specification is rooted

in a group of formats well established within the simulation industry. To each of

these formats, the CDB Specification provides a comprehensive set of conventions

appropriate to the field of simulation. The Specification defines all aspects of data

representation and organization, storage structure to support full-mission simulation.

A database that conforms to the CDB Specification (i.e., a CDB) contains datasets

organized in layers and tiles that represent the features of a synthetic environment for

the purposes of distributed simulation applications. A CDB can be readily used by

existing simulation client-devices (legacy IGs, Radars, CGF, etc.) through a

publishing process performed in real-time. The data structures used in CDB

Specification synthetic environment databases are different than those used in

relational databases mostly because the CDB has chosen to standardize on formats

adopted by the simulation community. This facilitates the work required to adapt

existing authoring tools to read/write/modify the CDB and the task to develop

runtime publishers (RTP) designed to operate on these data structures.

The CDB Specification is fundamentally about:

1. A representation of the natural earth and man-made synthetic environment for

the field of simulation.

2. A turnkey, as-is representation of the Synthetic Environment (SE) for use in

real-time distributed simulation.

The synthetic environment is a representation of the natural environment at a specific

geographical location including the external features of the man-made structures and

systems. Therefore, the synthetic environment includes the terrain, the terrain

features (both natural and man-made), three-dimensional (3D) models of vehicles, the

ocean surface, and the ocean bottom, including features (both natural and man-made)

on the ocean floor. In addition, the synthetic environment includes the specific

attributes of the synthetic environment data as well as their relationships. The CDB

Specification is more than just a means of creating visual (aka out-the-window)

scenery. Unlike other Specifications that only deal with data representational types of

polygons, colors, and textures, it deals with all the data representational types needed

in high-end virtual and constructive simulation applications.

The bulk of the CDB internal data representation is based on five commercial data

formats endorsed by leaders of the simulation database tools industry, namely:

TIFF/GeoTIFF: for the representation of terrain altimetry, terrain surface

characteristics relevant to simulation.

OpenFlight: for the representation of 3D culture and moving models.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-4

© 2016 Presagis. All Rights Reserved.

RGB: for the textures associated with 3D culture and moving models.

Shapefile: for the instancing and attribution of statically positioned point, lineal and

areal 2D/3D culture features.

JPEG 2000: for a representation of terrain raster imagery comprising a well defined

and accepted compression method that allows both lossy and lossless schemes.

The CDB Specification storage structure allows efficient searching, retrieval and

storage of any information contained within the CDB. The storage structure portion

of the Specification defines a comprehensive binary file description, (i.e., it specifies

the exact format of all files used in the implementation of the Specification). Storage

structure aspects include descriptions of each information field used within CDB

Specification files, including data types and data type descriptions.

The CDB Specification relies on three important means to organize the environmental

data:

1. Tiles: The CDB storage structure allows efficient searching
2
, retrieval and

storage of any information contained within the CDB. The storage structure

portion of the Specification geographically divides the world into geodetic

tiles (bound by latitudes and longitudes), each containing a specific set of

features (such as terrain altimetry, vectors) and models (such as OpenFlight

models, RCS models), which are in turn represented by the datasets (see

Figure 1-10: CDB Specification Tile/Layer Structure). The datasets define the

basic storage unit used in a CDB. The geographic granularity is at the tile

level while the information granularity is at the dataset level. As a result, the

CDB storage structure permits flexible and efficient updates due to the

different levels of granularity with which the information can be stored or

retrieved

2. Layers: The CDB standard data representation model is also logically

organized as distinct layers of information. The layers are notionally

independent from each other (i.e., changes in one layer do not impose changes

in other layers).

3. Levels-of-Detail (LODs): The availability of LOD representations is critical

to real-time performance. Most simulation client-devices can readily take

advantage of an LOD structure because, in many cases, less detail/information

is necessary at increasing distances from the simulated ownship. As a result,

many client-devices can reduce (by 100-fold or more) the required bandwidth

to access environmental data in real-time. The availability of levels-of-detail

permits client-devices to deal with databases having near-infinite content.

The CDB standard is structured into an LOD hierarchy consisting of up to 34

LODs. The CDB standard requires that each geographic area be reduced into

a LOD hierarchy in accordance to the availability of source data.

2 A information is retrieved by means of an implicit index defined by this Specification

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-5

© 2016 Presagis. All Rights Reserved.

The Specification does not define or enforce an operating system or file system;

nonetheless, the implementation of a CDB storage sub-system must conform to

absolute minimum file system requirements called for by the Specification.

1.3.1.1 Use of CDB as an Off-line Database Repository

Figure 1-1: Use of CDB as an Off-line Database Repository, illustrates the

deployment process of a CDB when it is used solely as an off-line Master database

repository. This approach follows the SE deployment paradigm commonly used

today within the simulation community. The use of the CDB as an off-line

environmental data repository offers immediate benefits, namely…

 SE Standardization through a public, open, fully-documented database schema

that is already supported by several SE authoring tools.

 SE Plug-and-Play Portability and Interoperability across various vendor SE

authoring toolsets

 SE Correlation through the elimination of source correlation errors through

normalization of all data sets (a single representation for each dataset)

 SE Re-use by eliminating dependencies that are specific to the simulation

application, the Database Generation tool suite, the simulation program, the

technology

 SE Scalability which results in near-infinite SE addressability, spatial resolution

and content density in each of the SE datasets.

 3D Model Library Management through built-in provisions for the cataloging of

models

 SE Versioning Mechanism allowing instant access to prior versions and

simplified configuration management

 Cooperative SE Workflow through an internal SE structure which favors team

work. The SE workflow can be allocated by specialty (e.g., altimetry, satellite

imagery, vector data) or by geographic footprint.

 Straightforward SE Archival and Recovery

Note that the use of the CDB as an off-line repository does not impose any change to

the simulation training equipment (i.e., no modifications to client-devices are

required
3
). However, the deployment of the synthetic environment is similar to the

conventional approaches used in industry requiring the time-consuming, storage-

intensive, off-line compilation of proprietary runtime databases to each client-device.

Furthermore, the computing demands on the database generation facility are

3 Or alternately, runtime publishers need not be developed for client-devices

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-6

© 2016 Presagis. All Rights Reserved.

significantly greater because the entire database must be published off-line for each

client-device before it can be deployed. These costs rapidly escalate with the

complexity and size of the synthetic environment, the number of supported client-

devices and the number of supported training facilities. For complex databases, these

costs can far outweigh the costs of the runtime publishers attached to each simulator

client-device.

Figure 1-1: Use of CDB as an Off-line Database Repository

In most modern SE tool suites in-use today, the Data Preparation step shown in

Figure 1-2: SE Workflow with CDB as an Off-line Database Repository consists of

many sub-steps usually applied in sequence to each of the datasets (aka layers) of the

SE. In effect, this aspect of the modeler’s responsibilities is virtually identical to that

of a GIS
4
 specialist. As a result, many of the simulation equipment vendors offer SE

authoring tools that integrate best-of-breed COTS
5
 GIS tools into their respective

tool suites. The steps include:

 Format conversion: raw source data is provided to modelers in literally hundreds

of formats. Early on in the SE generation process, modelers typically settle on a

single format per SE layer (e.g., terrain altimetry, imagery, attribution)

 Error handling: raw source often contains errors or anomalies that, if left

undetected, corrupt and propagate through the entire SE data preparation pipeline.

4 Geographic Information Systems

5 Commercial-Off-The-Shelf

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-7

© 2016 Presagis. All Rights Reserved.

As a minimum, these errors must be detected early on in the process. More

advanced tools can correct many of these automatically, particularly if there is

some redundancy across the layers of data.

 Data geo-referencing: this is the process of assigning a unique location (latitude,

longitude and elevation) to each piece of raw data entering the SE pipeline.

 Data Registration: each dataset is manipulated so that it coincides with

information contained in the other datasets. These manipulations include

projections, coordinate conversions, ortho-rectification, correction for lens

distortions, etc. For images, this process is also known as rectification.

 Data Harmonization: the raw data of a dataset varies over a geographic extent if

it was obtained under different conditions, such as from two or more sensors with

differing spectral sensitivity characteristics, resolution, in different seasons, under

different conditions of weather, illumination, vegetation and human activity. The

modeler must factor for these variations when selecting and assembling the

datasets into a self-coherent SE.

Figure 1-2: SE Workflow with CDB as an Off-line Database Repository

The effort expended during the Data Preparation and Modeling step is mostly

independent of the targeted simulation devices and the targeted applications.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-8

© 2016 Presagis. All Rights Reserved.

Consequently, the results of the data preparation step can be stored into a Refined

Source DataBase (RSDB) and then re-targeted at modest cost to one or more

simulation devices.

The standardization of RSDBs can greatly enhance their portability and re-usability.

Unfortunately, standardization has not been the focus of most SE authoring tool

vendors nor of simulation equipment vendors. The CDB now offers a standardized

means to capture the effort expended during the Data Preparation and Modeling step.

In effect, the CDB becomes a master repository where refined source can be

“accumulated” and managed under configuration control.

While standardization of format/structure is essential to achieve high portability,

inter-operability and re-use, the SE content must be ideally developed so that its

content is truly independent of the training application. Therefore, we strongly

recommend that the SE content of the CDB repository be developed to be

independent of the training application.

Historically, SEs were developed for a single, targeted simulation application (e.g.,

tactical fighter, civil and air transport, rotary wing, or ground/urban warfare). In

effect, the intended training application played an important role in determining the

RSDB content because SE developers were constrained by the capabilities of the

authoring tools and of the targeted simulation device. Unfortunately, this tailoring of

SE was performed too early during the SE workflow and severely limited the

applicability and re-use of the SE. Application tailoring can require either data

intensification
6
 or data decimation

7
 . Note that the process of data intensification and

decimation lends themselves to computer automation and can be performed during

the off-line publishing process. In the future, we anticipate some data intensification

to be done in real-time time.

Once the SE developer has completed his work in creating the various data layers of

the Refined Source DataBase, he must off-line publish (aka “compile”) the SE into

one or more device-specific data publishing steps. As we will discuss in section

1.3.1.2, Use of CDB as a Combined Off-line and Run-time Database Repository, the

device-specific off-line compilation step can be entirely omitted if the targeted

training equipment is CDB-compliant.

While an off-line publishing approach does not offer all of the benefits described in

section 1.3.1.1, it nonetheless provides an easy, low-effort, migration path to CDB.

Any equipment vendor can easily publish the RSDB into his proprietary runtime

format. Firstly, the publishing process is facilitated by the fact that the CDB

6 Data Intensification is the process of augmenting or deriving added detail from the information found in the raw data. For

instance, intensification can be used to augment flattened terrain imagery with 3D cultural detail relief. A typical example of

this consisting in populating forested areas found in the terrain imagery with individual three-dimensional trees.

7 Data Decimation is the process of removing or simplifying the informational content found in the raw data. For instance,

decimation can be used to transform individually modeled buildings into simplified city blocks or to reduce the resolution of

terrain imagery. Data decimation is usually undertaken to ensure that the SE falls within the capabilities of the targeted

simulator system.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-9

© 2016 Presagis. All Rights Reserved.

specification internally use of industry standard formats (e.g., TIFF, JPEG,

OpenFlight, and Shape). As a result, it bears much commonality with other database

interchange formats. However, the CDB goes much further in that it “wraps” these

formats into a global, standardized data model suited to high-end real-time

simulations. This greatly facilitates the work of SE developers. Thus, the CDB

provides a far simpler and straightforward means of interchanging refined source

data, when compared to alternatives such as SIF, SEDRIS, OpenFlight that have

partial pre-defined data models that are not sufficiently comprehensive for use in real-

time simulations.

1.3.1.2 Use of CDB as a Combined Off-line and Run-time Database Repository

A CDB can be both used an off-line repository for the database authoring tools or as

an on-line (or runtime) repository for the simulators. When used as a runtime

repository, the CDB offers plug-and-play interchangeability between simulators that

conform to the CDB specification. Since the CDB can be used directly by some or all

of the simulator client-devices, it is considered a run-time environment database.

In addition to the benefits outlined in section 1.3.1.1, Use of CDB as an Off-line

Database Repository, the use of the CDB as a combined off-line and run-time

repository offers many additional benefits, in particular:

 SE Plug-and-Play Portability and Interoperability across CDB-compliant

simulators and simulator confederacies (be it tactical air, rotary, urban/ground,

sea).

 Reduced Mission Rehearsal Timeline by eliminating SE generation steps (off-line

publishing, database assembly and data automation

 Simplified Deployment, Configuration Control and Management of Training

Facility SE Assets by eliminating the duplication of SE runtime DBs for each

simulator and each client-device of each simulator.

 Single, centralized storage system for the SE runtime repository (can be extended

to a web-enabled CDB)

 Seamless integration of 3D models to the simulator.

 Fair Fight/Runtime Content Correlation through the adjustment of runtime level-

of-detail control limits at each client-device.

Figure 1-3: Use of CDB as an Off-line and On-line Database Repository, illustrates

the CDB as an off-line Master database repository for the tools and as an on-line

Master database repository for the training facilities. Note that the deployment of the

synthetic environment to the training facilities involves a simple copy operation. The

deployment of the CDB is further simplified through an incremental versioning

scheme. Since only the differences need be stored within the CDB, new versions can

be generated and deployed efficiently.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-10

© 2016 Presagis. All Rights Reserved.

Figure 1-3: Use of CDB as an Off-line and On-line Database Repository

The CDB specification standardizes formats and conventions related to synthetic

environments for use in simulation. However, many additional benefits can be

garnered if the CDB is also used as an on-line database repository; this is particularly

true when one considers the effort expended in the deployment of the synthetic

environment to the training and/or mission rehearsal facilities.

When used as an on-line database repository, there is no need to store and maintain

off-line published versions of the database for each client-device (as illustrated in

Figure 1-3). As a result, the storage and computing demands on the database

generation facility are significantly lowered. This is especially true of database

generation facilities whose mandate involves the generation of complex synthetic

environments for use by several training facilities.

Figure 1-1: Use of CDB as an Off-line Database Repository, illustrates the simplified

database generation workflow resulting from a CDB that is used as both an offline

and a runtime SE repository.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-11

© 2016 Presagis. All Rights Reserved.

Figure 1-4: SE Workflow with CDB as Combined Off-line/Runtime Database Repository

This approach permits the CDB representation of the synthetic environment to be

“dissociated” from the resolution, fidelity, precision, structure and format imposed by

the internals of client-devices. Compliancy to the CDB specification can be achieved

either by modification of the client-device internal software to make it CDB-native or

by inserting a runtime publishing process that transforms the CDB data into the

client-device’s legacy native runtime format. In the later case, this process is done in

real-time, on a demand-basis, as the simulator “flies” within the synthetic

environment. Note that since the simulated ownship moves at speeds that are

bounded by the capabilities of the simulated vehicle, it is not necessary to instantly

publish the entire synthetic environment before undertaking a training exercise; the

runtime publishers need only respond to the demands of the client-devices. When the

simulated ownship’s position is static, runtime publishers go idle. As the ownship

starts advancing, client-devices start demanding for new regions, and runtime

publishers resume the publishing process. Publishing workload peaks at high-speed

over highly resolved areas of the synthetic environment.

Note that virtually all simulation client-devices in existence today natively ingest

proprietary native runtime formats. As a result, a runtime publisher is required to

transform the CDB data into legacy client device’s native runtime format. The

runtime publishing process is performed when the CDB is paged-in from the CDB

storage device. Appendix A of the CDB Specification provides a set of guidelines

regarding the implementation of Runtime Publishers.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-12

© 2016 Presagis. All Rights Reserved.

1.3.2 What the CDB Specification Is Not

The representation and sharing of synthetic environment data plays a key role in the

interoperation of systems and applications that use such data. In the mid to late 90’s

some specifications/standards were conceived to provide a means of sharing synthetic

environment data, in source form, for a wide variety of applications. They provided a

standardized means to share native databases, thereby avoiding direct and (often

inefficient) conversion of the data to/from (often proprietary) native database format.

Their mandate was about:

1. providing a representation of synthetic environment data for the modeling and

simulation field; and

2. providing the means to freely interchange synthetic environment datasets.

Such Specifications addressed the interchange of data, representing the

simulated natural environment, in advance of the runtime use.

The CDB Specification, on the other hand, is primarily intended as a distributed

simulator runtime synthetic environment database Specification. It is a Specification

optimized for distributed simulation applications that require very large synthetic

environment databases for use in high-end simulation, mission planning/rehearsal.

The CDB Specification datasets extend the simulation beyond just “classic out-the-

window” visualization since it supports the simulation of sensors, such as FLIR,

NVG, Radar and other simulation subsystems such as Computer Generated Forces

and NAVAIDS.

The CDB Specification concerns itself with the modeled data representation and

attribution of terrain, objects and entities within the synthetic environment. However,

it does not concern itself with the movement, change in shape, physical properties

and/or behavior of such objects and entities; this falls under the domain of synthetic

environment simulations.

The CDB Specification does not concern itself with representations of celestial bodies

(such as the Sun, Moon, stars, and planets). Rather, it assumes that the modeled

representation (e.g., the Sun/Moon disk representation in an IG) of celestial bodies is

internally held within the appropriate simulator client-devices.

Due to its real time vocation, the CDB Specification limits the number of units of

measure for each physical quantity. For instance, all terrain surface coordinates are

represented in lat-long while all other distances are in meters. This is in stark contrast

to DB interchange standards, which permits a large set of units for each physical

quantity (for example distance can be expressed in feet, meters, miles, parsecs, light-

years, nautical miles, inverse-meters, angstroms, microns).

The CDB Specification provides a high degree of flexibility in setting content. There

is no mandatory “coverage completeness requirement” imposed by the CDB

Specification. This permits the generation of a CDB even when a database modeler is

confronted with limited data availability. It is understood however, that a CDB that is

minimally populated will be of limited value to many simulation applications. Hence,

the applicability of any CDB is clearly related to the richness, quality and resolution

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-13

© 2016 Presagis. All Rights Reserved.

of its content. It is anticipated that additional standardization will be required to

prescribe content appropriate to targeted simulation applications. In its current form,

the CDB Specification does not mandate on synthetic environmental richness, quality

and resolution.

Given the mandate of the CDB Specification to be platform independent, it cannot

provide the implementation details of specific off-line database compilers or runtime

publishers attached to specific client-devices. Furthermore, since there is no

standardization of the SE representation internal to client-devices (they vary by type
8
,

by vendors), it is unlikely that such information would completely satisfy the interests

of all developers. More importantly, the structure and format of synthetic

environment data ingested by each client-device is typically proprietary; as a result, it

is impossible to fully describe the effort required to develop CDB off-line compilers

and/or CDB runtime publishers.

1.3.3 What is a CDB

A CDB corresponds to a static synthetic representation of the whole earth; it is

geographically divided of into geodetic tiles (bound by latitudes and longitudes), each

containing one or more specific sets of features. It uses the WGS-84 earth model to

provide geodetic interoperability. Each of the simulator client-devices accesses the

CDB geospecific information using the WGS-84 geodetic coordinate system.

A CDB contains the features and modeled representation of the synthetic

environment. It contains terrain altimetry; its raster imagery, its attribution as well as

3D feature with their modeled geometry, texture and attribution. The Specification

also makes provision for the representation of moving models. The representation of

moving models is comprehensive and goes well beyond other visualization standards

because it makes provisions for the standardized simulator naming conventions,

material and feature attribution, radar/laser reflectivity, aircraft and airport lighting

systems, armaments, special effects, collision points/volumes just to name a few.

The Specification governs all aspects of the CDB, as follows:

• Data content and representation of the synthetic environment

• Structure and organization of the synthetic environment

• File format of the synthetic environment as stored on media

The CDB Specification describes a modeled synthetic environment representation for

distributed simulation applications. Section 1.6.5, Use of CDB in Applications

Requiring Dynamic Synthetic Environments discusses how a CDB-compliant

simulator could be adapted to handle modifications of the synthetic environment in

real-time.

Given the CDB’s structured representation and attribution of terrain, objects and

entities, it is now possible to design a broad range of synthetic environment

8 It is precisely the intent of the CDB Specification to provide such standardization.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-14

© 2016 Presagis. All Rights Reserved.

simulations that modify synthetic environments in real-time. Such simulations can

modify the CDB and notify their changes to the other simulation federate that share a

CDB. This provides a synthetic environment that is persistent and fully correlated

across all simulation federates. For example, terrain trafficability could be handled

by a new SE simulation that dynamically calculates soil moisture content as a

function of localized rain precipitation and soil types/composition. A second

simulation would then derive the resulting soil physics and determine vehicle wheel

slippage across the varying terrain conditions.

The modification/notification approach is well-suited for a broad gamut of SE

simulations; however, some simulations are very data intensive and would require

excessive broadcasting bandwidths to other federates. In such cases, these dynamic

simulations would have to be replicated in the other client-devices of the federation.

Good examples of this are visual system special effects (e.g., rotor downwash effect,

missile plumes, muzzle flashes, cast landing lights); typically such simulations are

proprietary and intrinsic to the client-devices. Other examples of this include the

varying effects of weather
9
 (local winds, temperature, humidity, particulates, etc.) and

oceans (currents, temperature, etc.).

1.4 Key Features and Characteristics of the CDB Specification

The following paragraphs provide an overview of key features and characteristics of

the CDB Specification.

1.4.1 Synthetic environment Database for Simulation Applications

The CDB Specification is a simulator-level synthetic environment database

Specification for use in real-time. The Specification is open, platform-independent

and client-device independent. The Specification defines all aspects of data

representation and organization, and storage structure necessary to support full-

mission real-time simulation. The CDB Specification synthetic environment

databases contain datasets that represent the features of a synthetic environment for

the purposes of simulation applications. The CDB provides a time-invariant synthetic

environment representation of the Earth, composed as terrain, natural/man-made

features and moving models for use by SE authoring tools and simulators.

1.4.2 Logical Addressability

The CDB Specification provides for near-infinite addressability. The amount of

information associated with a CDB is limited only by available disk storage. The

CDB Specification allows for a nearly infinite number of identifiers within a single

CDB. Addressability is not expected to be a limiting factor even if we assume a

yearly doubling of storage capacity.

9 Time-varying weather simulation effects could be simulated by a “weather server” simulation subsystem which in turn can

rely on the terrain elevation and terrain material datasets to perform its simulation of weather in real-time.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-15

© 2016 Presagis. All Rights Reserved.

1.4.3 High Spatial Resolution and Scalability

The CDB Specification provides for near-infinite resolution due its organization of

data in LODs. The CDB Specification grid-organized data (e.g., elevation, ground

raster imagery, ground properties) is structured into an LOD hierarchy consisting of

up to 34 LODs. Grid-organized data can be represented to a resolution of 13 microns.

The CDB Specification also provides for near-infinite cultural content. The CDB

Specification for vector data (3D point, lineal and areal features) is also structured

into a LOD hierarchy consisting of up to 34 LODs. At the finest possible LOD, a

CDB can contain in excess of 100 million cultural features per square meter.

The CDB Specification permits each geographic area to be modeled at a distinct LOD

in accordance to the availability of source data. Since this capability is provided at a

tile-level, it is storage-efficient.

1.4.4 Earth Geodetic Spatial Representation Model

Geo-referenced data constitute a major aspect of the CDB Specification synthetic

environment data. It uses a geographic coordinate representation (WGS-84 lat/long,

elevation) for the earth’s terrain surfaces and ocean floor. Furthermore, natural and

man-made objects are positioned and oriented using geodetic coordinates. The CDB

Specification provides geodetic coverage for the entire earth.

1.4.5 Tile/Layer/Level-of-Detail Structure

The CDB Specification offers a structure that is well suited for the efficient access of

its contents. To this end, it relies on three important means to organize the synthetic

environment data:

• Tiles

• Layers

• Level-of-Detail (LOD)

1.4.5.1 Tiles

The CDB Specification relies on a top-level tile structure designed to organize the

data for efficient access in real-time. The tile structure provides an effective means

for simulator client-devices to access the datasets of a geographical area at a selected

LOD. Since the spatial dimension of tiles varies inversely with LOD (i.e.,

resolution), client-devices can readily predict the amount of data contained within the

tile; as a result, the management of memory within client-devices is simplified and

much more deterministic.

The CDB Specification Data Representation Model (DRM) is logically organized as a

strip of geo-unit aligned tiles along each earth slice. Each earth slice is divided into a

decreasing number of tiles to account for the fact that the length of an earth slice

decreases with increasing latitude.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-16

© 2016 Presagis. All Rights Reserved.

1.4.5.2 Layers

The CDB Specification DRM is also logically organized as distinct layers of

information. The layers are theoretically independent from each other, (i.e., changes

in one layer do not impose changes in other layers).

Layers are additive in fidelity, (i.e., the achievable level of the simulation fidelity

increases with the number of layers).

Secondly, unavailable layers are automatically defaulted. A database modeler need

not fully populate the CDB. There is no mandatory “coverage completeness

requirement” imposed by the CDB Specification. This feature permits the generation

of a CDB even when database modelers are confronted with limited data availability.

The usefulness/faithfulness of the synthetic environment increases with the number of

available layers.

The layering mechanism improves the efficiency of the client-devices since they need

only access (and be aware) of the datasets that are relevant to them, at their prescribed

level of fidelity. For instance, a simulator CGF client-device will not likely have a

reason to use ground raster imagery; however, it is quite likely interested in accessing

ground surface properties when determining traffic-ability.

1.4.5.3 Levels-of-Detail

The availability of LOD representations is critical to real-time performance,

especially when dealing with grid-organized data. Most simulation client-devices can

readily take advantage of an LOD structure because, in many cases, less

detail/information is necessary at increasing distances from the simulated ownship.

As a result, many client-devices can reduce (by 100-fold or more) the required

bandwidth to access synthetic environment data in real-time.

Additionally, the availability of LODs can be readily exploited by simulator client-

devices to improve their algorithmic efficiency. Devices such as Image Generators

(IGs) can readily take advantage of an LOD structure because image perspective

naturally reduces image detail with distance as a result of the perspective computation

inherent to the IG; as a result, much less geometric detail and texture detail need be

processed or considered at far range.

The spatial sampling pitch of each successive LOD follows power of two

progressions; this is a pre-requisite for the efficient and deterministic management of

memory by all client-devices of a typical simulator.

The terrain LOD can be controlled to the tile level. Since the CDB Specification

supports a variable LOD hierarchy spanning up to 34 levels, it is possible to control

the allocation of LODs by area. The variable LOD hierarchy provides for efficient

use of storage because the LOD hierarchy needs to be deepened only in the areas

where higher resolution is desired. Figure 1-5: Variable Allocation of LOD, illustrates

an earth strip made up of a series of tiles; some portions of the strip have been

modeled with 3, 4, or 5 LODs according to the application requirements.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-17

© 2016 Presagis. All Rights Reserved.

1.4.6 Platform Independence

The constraints imposed by the CDB Specification are minimal and are designed to

allow its implementation on any of the widely available computer hardware

platforms, operating systems, file systems and transport protocols.

On CDB-compliant simulator client-devices
10

, any CDB can run “as-is” without the

traditional off-line compilation step. This allows the simulation user community to

freely exchange CDBs across simulators either through the exchange of physical

media (or entire storage subsystems) or via network. As a result, a CDB can run

without change regardless of the computer platforms, simulator system software and

simulator client-devices. While the CDB Specification does not explicitly mandate

the use of specific computer platforms and system software, it does however specify a

set of minimum criteria as listed below.

10 A CDB-compliant client-device is a client-device that inputs synthetic environment data that conforms to the format,

structure and conventions of this Specification. Any client-device that does not natively conform to this Specification must

reformat and restructure the CDB data to the device’s native format/structure through the use of a runtime publisher. A

client-device need not input all of the CDB datasets and attributes to be CDB-compliant.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-18

© 2016 Presagis. All Rights Reserved.

Figure 1-5: Variable Allocation of LOD

1.4.6.1 System Software Independence

The following paragraphs explain the various software requirements.

1.4.6.1.1 File System

The CDB Specification is file system independent, (i.e., it does not mandate the use

of a specific file system). However, compliance to the CDB Specification does

require that the file system be able to support a minimal set of capabilities. All

modern file systems in use today conform to the minimal set of capabilities described

in Section 2.2, File System File Naming Conventions.

1.4.6.1.2 Operating System

The CDB Specification is Operating System (OS) independent; it does not mandate

the use of a specific OS. However, compliance to the Specification does require that

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-19

© 2016 Presagis. All Rights Reserved.

the operating system be able to support a minimal set of capabilities. All modern

operating systems in use today conform to the minimal set of capabilities listed

below. This includes Windows32, NT, UNIX, Linux, IRIX, Solaris, etc.

The CDB Specification assumes that the operating system supports, as a minimum,

the following:

1. Byte-stream random file access

2. 32-bit integers, natively

3. A 32-bit address space

4. Floating point support (per IEEE-754), natively

5. 2GB virtual address space per process

6. Memory paging

7. Network communication

1.4.6.1.3 Transport Protocols

The CDB Specification is transport protocol-independent; it does not mandate the use

of specific transport protocols. Furthermore, the Specification does not explicitly rely

on or specify any transport protocols.

1.4.6.2 System Hardware Independence

The CDB Specification is hardware independent; it does not mandate the use of

particular hardware platforms. Furthermore, any general-purpose hardware

compatible with modern Operating Systems (OS) can be used for a CDB

Specification implementation
11

.

The CDB Specification assumes that the system hardware supports, as a minimum,

the subsystems described in the following sections.

1.4.6.2.1 Processor/Memory

The CDB Specification is processor-independent; it does not mandate the use of a

specific processor type. However, compliance to the CDB Specification does require

that the processor be able to support a minimal set of capabilities. All modern

processor systems in use today conform to the stated minimal set of capabilities listed

below. This includes processors such as the Pentium, XEON, Celeron, Duron,

Athlon, MIPS, and PowerPC. The CDB Specification does not impose requirements

on hardware/memory over and above those mandated by the commonly available OS;

as a minimum, the CDB Specification itself requires support for:

1. 8-bit, 16-bit, and 32-bit signed and unsigned integers, natively

11 The CDB Specification internally uses conventional “atomic” data types, namely signed/unsigned n-byte quantities,

ASCII strings, IEEE-754 floats (single/double). While it is theoretically possible to build a CDB Specification-compliant

software implementation on a processor platform that does not explicitly support these atomic types, it is clear that such

implementation would be inefficient.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-20

© 2016 Presagis. All Rights Reserved.

2. A 32-bit address space

3. 32-bit and 64-bit double precision floating point values (IEEE-754), natively

4. 2 GB virtual address space

5. Virtual memory space

6. Immediate and indirect memory addressing modes

1.4.6.2.2 Storage Subsystem

The CDB Specification does not impose requirements on the storage subsystem other

than those mandated by the selected OS and the selected file system. As a minimum,

it must be able to support file system as previously specified. An empty CDB

requires very little in terms of storage; it will likely fit on a few diskettes or a single

CD. However, a typical CDB is expected to range from hundreds of Mbytes to

hundreds of Tbytes.

1.4.6.2.3 IO Subsystem

The CDB Specification does not impose requirements on its IO subsystem other than

those mandated by the selected OS, specifically:

1. Disk I/O subsystem

2. Network I/O subsystems

1.4.6.2.4 Client-Device Independence

The CDB Specification is client-device independent; it caters to the collective needs

of all client-devices likely encountered on a tactical mission simulator; the

Specification itself is completely independent of any vendor-specific devices.

NOTE: Each client-device is matched either to an off-line compiler or to a runtime

publisher. In the runtime case, the runtime publisher transforms this data

into the client-device’s legacy native data format and structures the CDB

synthetic environment data as it is paged-in by its client-device.

Regardless of its use as an off-line or on-line repository, the CDB

eliminates all client-format dependencies. Alternately, the client-device

may be designed / modified to be CDB-native, in which case a separate

runtime publisher is not required. Note that the CDB Specification makes

use of data types commonly available in standard computer platforms

(floats, integers, etc.). While it would be theoretically possible to cater to

a client-device that does not support the CDB Specification “atomic” data

types, it would unduly load the attached on-line publisher. As a result, it

is recommended that all client-devices provide hardware support for the

CDB atomic data types.

The CDB Specification limits its scope to synthetic representations of the earth; its

internal data is organized and optimized to reflect its intended use in simulation

applications. The concept of an earth model and the means to represent earth surface

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-21

© 2016 Presagis. All Rights Reserved.

regions with associated cultural features figure prominently within the Specification

because they are important to the targeted CDB applications
12

.

Since it is the client-devices that initiate access to the CDB, they must each be

theoretically “aware” of at least the geodetic earth model. Otherwise, the contents

and the structure of the CDB can be completely abstracted from the client-device.

The runtime publishers provide the necessary level of abstraction. The level of

abstraction provided by the publishers is purely a function of the selected

implementation of the client-device and its associated publishers. It is entirely

acceptable, for the client-device to understand and to be completely “aware” of the

CDB as it is defined by the CDB Specification. In this case, such a device would not

require a runtime publisher, because it is already CDB-native.

The runtime publishers bridge the gap between the information content requested by

the attached client-device and the information content and structure available to them

in the CDB. As a result, the runtime publishers must each be theoretically “aware” of

the following CDB concepts:

1. Tile:

Ability to understand the concept of earth surface areas hierarchically

subdivided in accordance to the CDB Specification

2. Level of detail:

Ability to understand the concept of resolution or level-of-detail, for terrain,

cultural vector data, raster imagery, and model geometry

3. Terrain surface representation:

Ability to understand concepts pertinent to earth surface geometry and

attribution

4. Cultural vector data (point, linear, areal):

Ability to understand the concept of point, linear and areal cultural data and

related attribution, fixed or conformed to earth surface

5. Grid-organized data and meshes:

Ability to understand the concept of grid-organized single-value datasets (e.g.,

elevation grid) and multi-value datasets (e.g., color triplets)

6. Imagery:

Ability to understand the concept color raster imagery mapped onto terrain

surfaces or models

7. Model geometry (incl. light points):

Ability to understand the concept of general surface geometry

12 Conversely, the Specification is not optimized to represent CAD/CAE data for use in manufacturing.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-22

© 2016 Presagis. All Rights Reserved.

8. Model positioning capability:

Ability to differentiate between statically and dynamically positioned models

9. Descriptive attribution:

Ability to understand the attribution concepts pertinent to the client-device

1.4.7 Synthetic Environment Scalability & Adaptability

The concept of scalability when applied to synthetic environments not only applies to

the geographic extent of the database but more importantly, it also reflects the ability

to scale the environment in resolution and fidelity. These concepts are fully

supported by the CDB Specification and are explained below:

1. Geographic extent:

Correspond to the range of geographic extent of the earth surface that can be

modeled.

2. Resolution:

Correspond to the range of information density (for instance, the number of

elevation values per km2) of the modeled datasets.

3. Fidelity:

Correspond to the amount and type of synthetic environment data that can be

modeled to support higher-fidelity simulator client-devices
13

. Consider for

instance a simulator capable of supporting a single-surface earth skin

representation versus one capable of representing tunnels, bathymetric data,

location-dependent tide heights, location-dependent wave heights, etc.

Clearly, the amount of information required by the higher-fidelity simulator is

greater.

4. Precision:

Correspond to the range of numerical precision (i.e., number of bits allocated

to represent a quantity) of the modeled datasets.

Today, modelers face difficult challenges if they want a synthetic environment that is

both scalable and adaptive. The solution to this difficult issue extends beyond the

“mechanics” of achieving backward/forward compatibility; it also requires a

complete “dissociation” of the database from any of the constraints imposed by the

client-devices. It is current practice today for modelers to repeatedly adjust the

13 The CDB Specification supports this concept through two mechanisms:

 Data defaulting: The CDB Specification is tolerant to missing data, because all attributes, layers and datasets have

Specification default behaviors. As more of the data is provided, the fidelity of the environmental database increases.

 Additive layering: The CDB Specification offers a layered environment database organization. The layer organization is

“fidelity-ordered”, (i.e., basic layers appear first in the hierarchy while the layers needed for a higher-fidelity simulation

appear later in the hierarchy).

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-23

© 2016 Presagis. All Rights Reserved.

content, resolution and density of synthetic environment databases to closely match

the capabilities and performance of the targeted client-devices. When content is

added to the database, previously modeled content is usually removed or simplified.

Under such constraints, it is difficult for a modeler to build a synthetic environment

database capable of meeting anything but its immediate requirements.

Figure 1-6: Typical Evolution of a Database shows the typical evolution of a modeled

region for use in a mission rehearsal. The initial version of the region may have only

a few high-resolution/high-fidelity areas; however, over a given time period,

modelers will be asked to model additional target areas. As a result, the size,

complexity, resolution and fidelity of the synthetic environment database gradually

increase. Without built-in provisions for scalability, significant rework of the

database is required each time a target area is added.

Figure 1-6: Typical Evolution of a Database

The CDB Specification, on the other hand, offers a new paradigm: the “dissociation”

of the synthetic environment database’s extent, resolution, fidelity, precision,

structure and format from its client-devices. This concept is not limited to aspects of

formatting, numerical representation, internal structure, file structure, file systems,

etc. More importantly, the concept also covers aspects relating to synthetic

environment database fidelity and resolution. Historically, the fidelity and resolution

of synthetic environment databases has been intimately linked to the capabilities of

the targeted simulator client-devices. More often than not, the source data was

manipulated and adapted to constraints imposed by the client-devices. As a result,

the content, resolution and density of synthetic environment databases were

repeatedly adjusted to closely match the capabilities and performance of the targeted

client-devices. The amount of time devoted to repeatedly adding/editing/removing

content, and then repeatedly re-publishing would largely exceed the effort of creating

and building the original synthetic environment database. The CDB Specification

offers the means to break this inter-dependence.

When assembling a CDB, the synthetic environment database modeler is permitted

(within their time-cost budget) to include content that significantly exceeds the

capabilities of their simulator(s). The job of “adjusting” content to client-devices is

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-24

© 2016 Presagis. All Rights Reserved.

relegated to the runtime publishers; the modeler is freed from this labor-intensive,

repetitive task.

In a typical CDB Specification implementation, it is anticipated that client-devices

will independently control their respective runtime publishers so that the runtime

published synthetic environment corresponds to their inherent capabilities (resolution,

fidelity, etc.).

Nonetheless, the runtime publishing paradigm offers interesting new possibilities.

For instance, it would be possible to individually adjust the fidelity and resolution of

the synthetic environment for each client-device; this adjustment could be done at any

time. As a result, it is possible to control and adjust the overall simulator fidelity and

correlation to a level that was previously unachievable.

1.4.8 Platform Scalability

The CDB Specification does not enforce a particular computer hardware

infrastructure. The selected infrastructure allocated to the handling of the CDB is

largely determined by the overall simulation requirements. Any leeway the simulator

architect may have at their disposal when trading-off various simulator performance

parameters against each other, are as follows:

1. Geographic extent

2. SE/Simulator Resolution

3. SE/Simulator Fidelity

4. SE/Simulator Precision

5. Desired level of client-devices correlation

6. Client-level SE load management

7. Simulated aircraft speed

8. CDB sharing

An experienced simulation engineer can typically undertake this analysis; however,

the process requires a good understanding of the content available in the targeted

CDB(s) and of the content each client-device needs in order to meet its stated level of

performance and fidelity. If for cost considerations the system engineer is unable to

reconcile both, he can relax or trade-off some of the above parameters.

Alternately, it is possible to implement a simulator with client-devices (or attached

publishers) that are capable of automatically adjusting resolution and fidelity in order

to overcome performance limitations attributable to the CDB storage infrastructure

and/or runtime publishers.

Figure 1-7: Typical Implementation of CDB Specification on High-end Simulator,

below is a system block diagram of a typical implementation of the CDB

Specification on a high-end tactical flight simulator. The runtime CDB system serves

the combined needs of a mission functions computer, an OTW/NVG IG, a FLIR IG,

Radar and a CGF subsystem equipped with its own terrain server. The runtime CDB

system is scaled to reflect the collective capabilities of the attached client-devices; as

a result, the storage system is configured to supply the necessary bandwidth.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-25

© 2016 Presagis. All Rights Reserved.

Similarly, the IO bandwidth of the CDB servers and processing performance of the

runtime publishers are scaled to satisfy the demands of their respective client-devices.

Figure 1-7: Typical Implementation of CDB Specification on High-end Simulator

Figure 1-8: Typical Implementation of CDB Specification on Desktop Computer,

below shows a modest application of the CDB Specification; it consists of a single

desktop computer equipped with both stealth viewer and radar simulation application

software. Each application is front-ended by a runtime publisher that in turn

interfaces to the CDB via a standard file system. Given the more modest platform

resources, some trade-offs in either resolution or fidelity might be required. This can

be implemented in the runtime publisher or in the client-device application software.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-26

© 2016 Presagis. All Rights Reserved.

Figure 1-8: Typical Implementation of CDB Specification on Desktop Computer

1.4.9 Simulator Wide Unique Data Representation, Data Normalization

A CDB is a single repository for the entire simulator’s synthetic environment DB.

The CDB’s internal structure ensures that all datasets are uniquely represented yet

available (through a publishing process) to each of the simulator client-devices at

runtime. This paradigm eliminates the extensive duplication of datasets that are

shared by two or more client-devices.

The CDB Specification is technically a normalized data model in the sense that it best

meets the logical data design objectives of correctness, consistency, simplicity, non-

redundancy and stability. Ignoring any tailoring or tuning for particular application

requirements or performance, a normalized design provides the following advantages:

1. Minimize amount of space required to store data:

Normalization precludes storing data items in multiple places.

2. Minimize risk of data inconsistencies within the database:

Since datasets are stored in only one place, there is no risk of datasets

becoming inconsistent (uncorrelated).

3. Minimize possible update and delete anomalies:

A normalized CDB eliminates the concerns related to update or delete

operations.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-27

© 2016 Presagis. All Rights Reserved.

4. Maximize the stability of the data structure:

The process of normalization helps in associating attributes with entities based

on the inherent properties of the data rather than on particular application

requirements. Thus, new application requirements are less likely to force

changes on the CDB Specification database design.

1.4.10 Compression of Storage Intensive Imagery Datasets

The CDB Specification prescribes the use of an industry standard compression

algorithm for its storage intensive raster imagery datasets. This not only provides a

substantial reduction in storage, but also reduces the data transmission bandwidths

associated with simulator’s access to the synthetic environment database at runtime.

As a result of its storage efficiency, the CDB Specification relies on relatively few

data formats for storing its datasets; there is no benefit (other than storage efficiency)

to be gained in supporting any other specialized data formats whose underlying

objective is only for storage efficiency. The CDB Specification embodies the

JPEG 2000 industry standard format for raster imagery because it has comparable

storage efficiency to all of these image formats without sacrificing any generality.

JPEG 2000 has been chosen by the CDB Specification as a format for the storage of

OTW raster imagery because of the following characteristics:

1. High compression efficiency:

Compression better than 0.25 bits per pixels. Virtually indiscernible loss in

image quality for 10:1 – 20:1 compression.

2. Lossless and lossy compression:

Lossless compression ratios approx. 1.7:1

3. Perceptual color space internal coding:

Allow dark images to be reconstructed without banding artifacts.

4. High dynamic range:

Compress and decompress images with various dynamic ranges (e.g., 1-bit to

16-bit) for each color component.

5. Large images sizes:

Up to (2^32 - 1)

There are other characteristics of the JPEG 2000 that are worth mentioning but are

not directly beneficial to the CDB Specification. Those are:

1. Progressive image reconstruction:

Allow images to be reconstructed with increasing pixel accuracy and

resolution.

2. Region of interest coding:

Permits certain Region of Interest (ROI’s) in the image to be coded and

transmitted with better quality and less distortion than the rest of the image.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-28

© 2016 Presagis. All Rights Reserved.

3. Seamless quality and resolution scalability:

Without having to download the entire file

4. Error resilience during transfers.

JPEG 2000 will be solely targeted at Raster Imagery data only. The reason is simply

because of its highly efficient compression scheme that fits well with the goal of

reducing the huge datasets associated with Imagery. Other raster-based datasets

defined in the CDB will solely be using the TIFF format due to their more

manageable size.

1.4.11 Compression of other Raster Datasets

In general, all TIFF/GeoTIFF files benefit from LZW compression when their content

is not of type floating-point. For this reason, and as a general practice, the CDB

Specification recommends the compression of all TIFF-based raster datasets

containing integer values.

1.5 Key Benefits of the CDB Specification

The following outline the key benefits of using the CDB Specification.

1.5.1 Improved Synthetic environment DB Generation Timeline

Important reductions in both the DB generation and DB update timeline are expected

from the CDB Specification because:

1. There is no need to compile distinct synthetic environment runtime databases

for each of the simulator client-devices.

2. All of the datasets common to two of more client-devices need not be

duplicated. All associated client-specific structures are also eliminated.

3. Tiles and layers are technically independent from each other; as a result, there

is no need to reprocess neighboring tiles and coincident layers. However, one

exception to this relates to the level-of-detail generation.

4. The CDB Specification tile structure permits users to “pipeline” or overlap the

DB creation/update process, see Figure 1-9: Pipelined DB Update Process,

with DB transfer process
14

.

14 Assuming the DB toolset (used by the modelers at the DB Generation Facility) allow its users to manipulate

Environmental DB content on a small-area basis.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-29

© 2016 Presagis. All Rights Reserved.

Figure 1-9: Pipelined DB Update Process

5. The CDB Specification tile structure lends itself naturally to the concurrent or

“parallel” production of the CDB.

6. The CDB Specification internal versioning mechanism lends itself well to

CDB updates because only the affected tiles or layers need be re-transmitted

to the simulator. This represents a significant timesaving, especially in cases

where small updates are constantly applied to a comparatively large CDB.

7. The conversion of the synthetic environment from its tool-native

representation into a form directly entered by each of the simulator client-

devices is broken down into several publishings accomplished in real-time on

behalf of each of client-device. This approach permits the CDB Specification

representation of the synthetic environment to be “dissociated” from the

resolution, fidelity, precision, structure and format imposed by each client-

devices. Collectively, the runtime publishers handle the more complex

portion of the workload; they transform the CDB data into a form that is

ingested on-the-fly by the client-device. This process is done in real-time, on

a demand-basis, as the simulator progresses within the synthetic environment.

Since there is one publisher for each of the client-device, the publishing

workload is typically distributed across several computer platforms.

Furthermore, since the simulated ownship moves at speeds that are bounded

by the capabilities of the simulated vehicle, it is not necessary to instantly

publish the entire synthetic environment before undertaking a training

exercise; the runtime publishers need only respond to the demands of the

client-devices. When the simulated ownship’s position is static, runtime

publishers go idle. As the ownship starts advancing, client-devices start

demanding for new regions, and publishers resume the publishing process.

Publishing workload peaks at high-speed over highly resolved areas of the

synthetic environment.

1.5.2 Interoperable Simulation-Ready Synthetic environment DB

A CDB-compliant database CDB is a fully interoperable, simulator-ready synthetic

environment DB, (i.e., it can be used “as-is” on any CDB-compliant simulator).

Because the CDB is free of any simulator dependencies, there is no need to undertake

a time-consuming and expensive rework of the runtime database(s) in order to adapt

it (them) to the format, structure, content, and precision constraints imposed by the

simulator.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-30

© 2016 Presagis. All Rights Reserved.

1.5.3 Improved Client-device Robustness/Determinism

The CDB Specification tile organization provides the means to implement

deterministic loading and/or paging of the CDB because each tile corresponds to the

same amount of data (i.e., a “quanta” of information called a LOD-tile), regardless of

its position on earth and regardless of its assigned LOD. This is a key characteristic

of the CDB Specification and is necessary to ensure deterministic operation of client-

devices, even when the CDB’s resolution varies considerably from region to region or

when the CDB is modeled at an extremely high-resolution. It is quite straightforward

for a client-device to determine the amount of memory it must locally allocate when

loading (or paging-in) a geographical area of interest. If the geographical area of

interest exceeds the client-device’s capabilities, it can easily revert to a coarser LOD,

hence gracefully degrading, as opposed to aborting (due to an internal failure in

allocating sufficient memory) or “skipping” over the offending area.

Consider for instance, a CDB modeled to a background area terrain texture resolution

of 10 m, and a target area modeled to a resolution of 1cm. The target area holds

1,000,000 fold more data per unit of geographic area than the background area.

Furthermore, assume that the client-device is not designed to take advantage of the

CDB LOD tile structure, i.e., it always loads or pages its data as fixed-dimension

(geographically speaking) areas. Upon requesting a fixed-dimension portion within

the target area, the client-device would receive 1,000,000 fold more data than in the

background area. Clearly, such a device would require an enormous amount of

physical memory to alleviate such a variation in resolution. The CDB Specification

offers a more manageable alternative because the CDB is allocated into fixed-sized

LOD tiles. Hence, the client-device’s paging manager can first break down the

requested area into tiles at the requested LOD; from this, the paging manager can

easily predict the amount of storage needed to hold the requested area in memory; if it

exceeds the client-device capabilities the client-device can revert to a coarser LOD.

The CDB tile organization lends itself to robust, deterministic management of

memory within client-devices because memory can be allocated/de-allocated in fixed

sized quantities. As a result, client-devices need not concern themselves with

complex and non-deterministic memory de-fragmentation schemes that do not lend

themselves to real-time applications.

1.5.4 Runtime-Adjustable Synthetic Environment DB Correlation and Fidelity

The CDB Specification plays a critical role in improving the internal correlation of a

synthetic environment because it eliminates the replication of runtime databases for

each of the client-devices. The prior art in simulation mandated replicated copies of

the synthetic environment database; each were constrained to content, formats, and

structures specific to each client-device. As a result, the potential for correlation

errors abounded. The CDB Specification resolves this by defining a single, usable in

real-time, open, synthetic environment database representation.

The CDB “runtime publishing” paradigm now permits the simulator vendor the

means to not only control client-device load but to globally re-examine and control

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-31

© 2016 Presagis. All Rights Reserved.

the level of correlation within a simulator (or across simulators). While the CDB

Specification does not provide explicit jurisdiction over the implementation of this

mechanism in the client-devices and/or publishers, it is nonetheless possible to

improve parametric correlation, at runtime, via control of the client-

devices/publishers.

This topic is discussed in more detail in Section 1.6.6, Synthetic Environment

Database Correlation.

1.5.5 Increased Synthetic Environment DB Longevity

The longevity of synthetic environment databases for use in simulation has

traditionally been a source of considerable aggravation within the user-community.

At the source-level, the issue was partially resolved through the inception of

standards such as SEDRIS SIF. These standards largely isolated the synthetic

environment source data from the tools and platforms. As a result, source-level

synthetic environment databases are no longer subject to obsolescence when vendors

abandon a tool/platform. The advent of such Specifications permitted the modeler to

abstract the source-level synthetic environment database from the tools and platforms

that are used to create the synthetic environment database.

While this is a step in the right direction, it must be realized that a considerable level

of effort (both human and machine) is required to adapt source-level data to a form

that is directly usable by each of the simulator client-devices, also known as the

runtime-level vendor-specific database format; this is referred to as the “compilation”

process. More often than not, the source data is manipulated and adapted to

constraints imposed by one or more simulator client-devices. In most cases, the

content, resolution and density of synthetic environment databases are repeatedly

adjusted to closely match the capabilities and performance of the targeted client-

devices. While it is true that the native tool format database remains independent of

the targeted client-devices, it is clear that content of the source-level database roughly

corresponds to the capabilities of the then-current client-devices. As a result, source-

level databases become quickly outdated and do require a complete rebuild to take

advantage of new simulator capabilities.

The CDB Specification avoids these pitfalls because the CDB need not be adapted to

the constraints imposed by simulator client-devices; that role is relegated to the

runtime publishers. Hence, the synthetic environment database can be built, right

from the start, to a level of fidelity commensurate with the anticipated useful life of

the targeted simulator(s).

1.5.6 Reduced Synthetic Environment DB Storage Infrastructure Cost

For equivalent synthetic environment DB content, the CDB Specification offers a

significant storage space savings and significant reductions in the required

interconnect infrastructure to supply the synthetic environment DB to the

simulator(s).

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-32

© 2016 Presagis. All Rights Reserved.

The reduction in equipment and labor can be attributed to the following CDB

features:

1. Simulator-wide unique data representation: eliminate duplication of datasets

across client-devices.

2. Compression of storage-intensive datasets: provides effective compression of

key datasets.

3. Fine-grain versioning:

CDB is internally versioned. It is possible to revert to prior representations of

the SE without restoring stored back-ups of the CDB. Because the underlying

mechanism is fine-grained, only in affected geographic areas or datasets of the

CDB need to be versioned.

1.6 CDB Primer

The following paragraphs provide the description and focus of the CDB

Specification.

1.6.1 CDB Specification Data Representation and Organization

The CDB Specification provides the means of describing all of the feature sets

relevant to simulation (such as terrain, 3D objects). These feature sets are logical

regroupings of datasets that are used directly by the simulator client-devices.

In its initial implementation, the Specification supports the following representations:

1. Terrain:

Is a representation of the terrain shape/elevation, raster imagery, surface

attribution and other surface characteristics relevant to distributed simulations.

2. Point feature:

Is a representation of a single location in space or on the earth’s surface. It

consists of a single <latitude, longitude> coordinate with or without an

elevation. When a point feature does not have an elevation, it is deemed to be

on the surface of the earth. It is often associated with a 3D model. The

information includes point-feature type identification, location, orientation,

connectivity, attribution and other characteristics relevant to simulation.

3. Linear feature:

Is the representation of predominantly man-made multi-segmented line-

oriented features conformed relative to the terrain (such as runways, roads,

transmission lines, fences). The information includes linear feature type

identification, location, orientation, lineal geometry, connectivity, attribution

and other surface characteristics relevant to simulation.

4. Areal feature:

Is a representation of closed area-oriented features conformed relative to the

terrain such as forested areas, fields. The information includes areal feature

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-33

© 2016 Presagis. All Rights Reserved.

type identification, location, orientation, 2D geometry, connectivity,

attribution and other surface characteristics relevant to simulation.

5. 3D cultural model:

Is a model that is statically positioned on the terrain or bathymetry skin.

Cultural models are often a 3D representation of a man-made or a natural

object positioned and conformed relative to the terrain. The information

includes its geometry, articulations, raster imagery (texture, normal map, light

map, etc.), lighting systems, and other characteristics relevant to simulation.

6. Moving model:

Is a model that is not fixed at one location in the synthetic environment

database. The simulation host can update the position and orientation of a

moving model at every simulation iteration cycle. A moving model is a 3D

representation of man-made objects free to move within the CDB. The

information includes feature type identification, (vehicle class, type, model,

etc.), geometry, articulations, raster imagery (texture, normal map, light map,

etc.), lighting systems, connectivity to special effects, attribution and other

characteristics relevant to simulation

7. Materials:

Is a symbolic representation of the surface materials for all of the elements

contained within the CDB. Client-devices are required to simulate the

synthetic environment over different portions of the electromagnetic

spectrum: IR (e.g., FLIR, NVG), microwaves (e.g., Radar), audio (e.g.,

Sonar), etc. The fidelity of the sensor synthetic environment simulation

model that runs in each of the client-devices is highly dependent on the

richness and completeness of properties that characterize the synthetic

environment database in the electromagnetic spectrum of interest.

NOTE: One of the primary objectives of this Specification is to provide and

integrate all of the data required by all sensor devices, not just IGs

producing the Out-The-Window (OTW) scenes. In addition, the mandate

of this Specification is to accomplish this objective in a device-

independent fashion. The CDB Specification provides a means for client-

devices to retain their internal Sensor Synthetic Environment Model

(SEM), and yet do so without introducing device dependencies within the

CDB synthetic environment. To accomplish this objective, client-device

vendors must provide the appropriate SEM properties for the prescribed

CDB Base Materials (see Appendix L), since none of the (vendor/device-

specific) material properties are stored within the CDB.

8. Navigational data:

Is a representation of ARINC-424 and DAFIF data in the form of NAVAIDs,

Airport/Heliport, Runway/Helipad, Waypoints, Routes, Holding Patterns,

Airways, Airspace, etc.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-34

© 2016 Presagis. All Rights Reserved.

In order to represent the above feature sets, the CDB Specification logically organizes

its data in mutually exclusive datasets. Furthermore, the CDB Specification is

platform and client-device independent; as a result, the internal data representation is

free of client-device specifics and more closely aligned to DB structures/formats

supported by prominent industry standard tools.

The CDB Specification native coordinate system is geodetic (latitude, longitude, and

elevation) based on the WGS-84 earth model. All the simulator client-devices can

access CDB geospecific information using this convention.

1.6.2 CDB Specification Logical Structure

The CDB Specification is a simulator format for simulation and as such, its storage

structure is optimized for simulator client-devices runtime performance. Therefore,

the internal storage structure is designed with these specific considerations in mind,

i.e., as follows:

1. It promotes efficient real-time CDB data access by the simulator client-

devices without degrading their performance. The structure allows

simultaneous accesses by all of the various simulator client-devices.

2. It promotes efficient database updates and deployment in order to reduce the

deployment of a CDB onto one or more simulators.

To address these objectives, the storage structure geographically divides the world

into geodetic tiles (bound by latitudes and longitudes), each containing a specific set

of features (such as terrain altimetry, vectors), models (such OpenFlight models, RCS

models), which are in turn represented by the datasets (see Figure 1-10: CDB

Specification Tile/Layer Structure). The datasets define the basic storage unit used in

a CDB. The geographic granularity is at the tile level while the information

granularity is at the dataset level. As a result, the CDB storage structure permits

flexible and efficient updates due to the different levels of granularity with which the

information can be stored or retrieved. At the database generation facility, it is

possible to effect small updates, either at the tile level; the feature set level or the

dataset level. Similarly, the storage structure fully supports real-time retrieval of

CDB content at the tile level and the dataset level. Finally, the CDB’s incremental

versioning mechanism allows users to efficiently deploy updates to a CDB; only the

files whose content differs from a prior version need be generated and transferred

from the database generation facility to the simulation facility.

Another benefit of the CDB Specification storage structure is its ability to support the

concurrent generation and deployment.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-35

© 2016 Presagis. All Rights Reserved.

Figure 1-10: CDB Specification Tile/Layer Structure

1.6.3 CDB Structure, Organization on Media and Conventions

This CDB Specification describes the CDB data content, representation, as well as the

logical organization of the CDB data stored on the CDB server disks:

1. Database Structure:

Database structure comprises all of the data structures used to access database

content (such as file paths, Level-of-Detail (LOD), lists) to speed up access,

information layering, versioning and configuration management.

2. Naming Conventions:

Use to describe a naming hierarchy for cultural models, moving models, lights

and model components.

1.6.4 Typical Implementation on a Simulator

This section is included here to illustrate a typical implementation of CDB

Specification on a flight simulator, when used as an on-line (or runtime) repository.

The Specification does not mandate particular simulator architecture or the use of

specific computer platforms. The selected implementation varies with the required

level of fidelity and performance of the simulator and its client-devices.

NOTE: Legacy simulator client-devices can be readily retrofitted for compatibility

with the CDB Specification by inserting a runtime publisher in their SE

paging pipeline.

As shown in Figure 1-11: Typical CDB Implementation on a Suite of Simulators

below, a typical implementation of a CDB Specification System consists of the

following main components:

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-36

© 2016 Presagis. All Rights Reserved.

1. Database Generation Facility (DBGF) and CDB Master Store:

A geo-graphically co-located group of workstation(s), computer platforms,

input devices (digitizing tablets, etc.), output devices (stereo viewers, etc.),

modeling software, visualization software, CDB server, CDB off-line

publishing software and any other associated software and hardware used for

the development/modification of the CDB. The CDB Master Store consists of

a mass storage system (typically a storage array) and its associated network.

It is connected to a dedicated DBGF Server.

2. Update Manager (UM):

The Update Manager software consists of both client and server software.

The Update Manager Server (UMS) software is located at the DBGF. It

manages the CDB updates (versions) and runs in the same platform as the

DBGF Server. The Update Manager Client (UMC) software is located at the

Simulator Facility and runs on the Update Manager Platform shown in Figure

1-11: Typical CDB Implementation on a Suite of Simulators. It

communicates with the UMS to transfer the CDB (partial or complete copy)

and its updates.

3. Simulator Facility CDB Repository:

The simulator repository consists of a mass storage system (typically a storage

array) and its associated network infrastructure. It is connected to the UMC

(primarily for update purposes) and the CDB Servers (for simulator client-

device runtime access).

4. CDB servers:

Is an optional
15

 gateway to CDB mass storage and applicable infrastructure.

The CDB servers access, filter and distribute CDB data in response to requests

from the simulator runtime publishers.

5. Runtime publishers:

A term used to describe the computer platforms, and the software that

translates and optimizes, at runtime, CDB synthetic environment database to a

client-device specific legacy runtime format. Data is pulled from the CDB

server and in turn published in response to requests from its attached simulator

client-device.

6. Simulator client-devices:

Are simulation sub-systems (IGs, radar, weather server, Computer Generated

Forces (CGF) terrain server, etc.) that require a complete or partial synthetic

representation of the world. CDB runtime clients may require a CDB runtime

publisher to convert the CDB into a form they can directly input.

15 Optionally needed for a large-scale CDB repository whose storage system is based on a Storage Area Network (SAN).

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-37

© 2016 Presagis. All Rights Reserved.

Figure 1-11: Typical CDB Implementation on a Suite of Simulators

1.6.4.1 Database Generation Facility

The DBGF is used for the purpose of CDB creation and CDB updates. Each

workstation is equipped with one or more specialized tools. The tool suite provides

the means to generate and manipulate the synthetic environment.

1.6.4.2 Database Generation Flow

The CDB considerably simplifies the database generation process, particularly all

aspects of database generation that deal with database layering, formatting, structure

and level-of-detailing.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-38

© 2016 Presagis. All Rights Reserved.

Figure 1-12: Typical DB Generation - CDB Used as DB Repository

Figure 1-12: Typical DB Generation - CDB Used as DB Repository and Figure 1-13:

Typical DB Generation Flow - CDB Used as DB & Sim Repository illustrate a

typical database generation workflow with the CDB used as a DB workstation

repository and the CDB used as a Repository for the DB workstation and the

simulator. Both approaches share the same steps, namely:

• Source data collection and preparation: This step usually involves the

loading of raw (usually) uncorrected data and the conversion to formats native

to the database toolset.

• Source data preparation: This step usually involves the detection/correction

of errors, the harmonization of the data and the correction of errors. In this

context, errors signify all instances where the data fails to meet prescribed

criteria. For instance, errors can be as straightforward as corrupted digital

data. More subtle forms of errors could be textures that fail to meet various

brightness, contrast, chrominance, and distortion criteria. Harmonizing data

requires that data sources be coherent with each other. An example of non-

harmonized dataset is a terrain imagery mosaic built from pictures taken in

different seasons, with different illumination conditions, with/without clouds,

etc.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-39

© 2016 Presagis. All Rights Reserved.

• 3D modeling of features: This step involves the creation of 3D

representations for culture features (buildings, trees, vehicles, etc.), the

creation and mapping of texture patterns/imagery to the geometrical

representation, the generation of the model LOD, and the generation of

appropriate attribution data so that the simulator can control the model and

have it respond to the simulated environment.

• Database automation: Modern database generation tools offer an increasing

level-of-automation to the modelers, thereby improving the DB generation

timeline (for example, a forest tool that controls the placement of individual

trees correlated to the underlying terrain imagery). Over the past few years,

tool vendors have introduced a broad set of tools aimed at eliminating highly

repetitive modeling tasks; this includes tools for runway generation (including

the positioning of stripes, lights, signs, markings, etc.), road/railroad

generation, cultural feature extraction from stereo pairs, cultural feature

footprint extraction from image classification processes, terrain grid

generation from stereo pairs, terrain surface material classification, etc.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-40

© 2016 Presagis. All Rights Reserved.

Figure 1-13: Typical DB Generation Flow - CDB Used as DB & Sim Repository

The result of the above steps yields a group of independent, layered and correlated

datasets, (i.e., datasets that are geographically aligned in latitude/longitude (but not

always elevation)), all sharing compatible projections, with all of the necessary

attribution.

In the non-CDB approach illustrated in Figure 1-12: Typical DB Generation - CDB

Used as DB Repository, the correlated layered datasets are collapsed into a single

global database during the database compilation process. In many database tools, the

generation of the terrain plays a pivotal role in the database assembly process because

all of the cultural features are conformed and constrained to the terrain representation

and structure. Most client-devices in existence today have interdependent terrain

geometry, raster imagery and culture; as a result of this, most tools in use today

resolve these inter-dependencies during this critical and computationally expensive

database assembly step. The resultant database is stored on disk at the DB generation

facility. Following the assembly process, the modeler is required to run an off-line

compilation process for each of the supported client-devices. The compilation

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-41

© 2016 Presagis. All Rights Reserved.

process must resolve all of differences between the tool-native representation and the

client-device internal representation. During this step, the off-line compiler performs

a series of steps that transforms the database into an alternative form (usually

proprietary) that resolves:

1. its internal formats

2. its structure and organization (for example, its level-of-detail representations)

3. its naming conventions

4. the number precision and number representation of its data

5. the type and fidelity of data/parameters it uses for its internal algorithms

(typically light parameters, FLIR/NVG parameters, etc.)

6. its performance limitations

As stated earlier in Section 1.3.1.1, the CDB can be used as an off-line repository for

the authoring tools and as an on-line repository for the simulator(s). In the latter case,

there is no need for an off-database compilation process because this step is in-effect

performed on-line by the runtime database publishers. Furthermore, since the CDB

datasets adhere to data formats commonly in use, most authoring tools in existence

today, have the necessary software to read/write data in the mandated formats.

Out of the many steps typically required by the off-line compilation, the CDB only

requires that levels-of-detail be generated for the terrain elevation, raster imagery, and

the grouping of cultural features. These improvements are expected to yield

important savings in man-hrs, machine-hrs and storage when compared to the non-

CDB approach.

1.6.4.3 Update Manager

The creation of the CDB and subsequent updates are performed at the DBGF. The

Update Manager (UM) keeps track of these updates and synchronizes the Simulator

CDB Repository to the DBGF. The CDB Specification permits flexible and efficient

access of the CDB and does so with different levels of granularity; thus, it is possible

to perform modifications to the CDB on a complete tile, or on individual datasets of a

tile. This permits rapid deployment of the CDB, a feature that is particularly valuable

for mission planning and rehearsal. With few exceptions
16

, there is no inter-

dependency between datasets and it is possible to modify a dataset (such as the terrain

imagery) without reprocessing the complete tile; only the modified dataset requires

re-processing. The CDB Specification supports the concurrent creation/modification

of the CDB with its deployment. Once a tile, a feature set, or a dataset has been

processed, it may be transferred to the simulator facility concurrently with other work

performed at the DBGF.

Updates to the simulator CDB repository are performed by the UM. The simulator

CDB repository is configured to provide storage for a (partial or complete) copy of

16 The only exceptions to this CDB principle are the MinElevation, MaxElevation datasets which are slaved to the Terrain

Elevation dataset and the MaxCulture dataset which is slaved to the GSFeature/GTFeature dataset.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-42

© 2016 Presagis. All Rights Reserved.

the Database Generation Facility (DBGF) CDB master store. The Update Manager

transfers the CDB and its updates by area of interest, allowing for partial updates or

even complete copies of the CDB. The Update Manager (UM) simulator CDB

repository is used by one or more co-located simulators to retrieve the CDB in real-

time.

Additionally, the UM manages the facility’s release of the CDB. It maintains

versioning information as supplied by the DBGF. Based upon this information, it is

possible to request or approve CDB updates to the facility from the UM.

1.6.4.4 CDB Servers

When the CDB is used as an on-line (or runtime) repository, a set of CDB servers

(i.e., the server complex) are required in order to fetch data in real-time from the

simulator CDB repository. Each of the CDB servers responds to the requests made

by the simulator client-device runtime publishers.

1.6.4.4.1 Runtime Publishers

When the CDB is used as an on-line (or runtime) repository, a set of runtime

publishers are required in order to transform the CDB data into legacy client-devices

(simulator subsystems) internal format
17

. The runtime publishers provide a key role

in further enhancing overall algorithmic correlation within and across simulators.

Each publisher communicates to the CDB server complex and the attached simulator

client-device as follows:

1. Receive update requests for synthetic environment data from their respective

simulator client-devices.

2. Relays the update request to the CDB server complex.

3. Once the update request is acknowledged and the data retrieved by the CDB

server complex, the runtime publisher pulls CDB data from the CDB server

complex and converts and formats this data into a form directly usable by the

simulator client-device. This processing is accomplished in real-time.

4. Transfers the converted CDB data to the simulator client-device.

1.6.4.4.2 Simulator Client-devices

The paragraphs below provide a short description of the client-devices found on a

typical simulator and the global types of information required from the CDB.

17 Alternately, client-devices can be designed / modified to natively handle the CDB’s data model, thereby obviating the

need for a separate runtime publishing step.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-43

© 2016 Presagis. All Rights Reserved.

1.6.4.4.2.1 Visual Subsystems

Typical visual subsystems compute and display in real-time, 3D true perspective

scenes depicting rehearsal and training environments for OTW, IR, simulated Night

Vision Goggles (NVG), and 3D stealth IG viewing purposes.

1.6.4.4.2.2 Out-The-Window Image Generator (OTW IG)

The IG portion of the visual system provides a wide range of features designed to

replicate real-world environments. High density and high complexity 3D models can

be superimposed onto high-resolution terrain altimetry and raster imagery. Scene

complexity with proper object detail and occulting provide critical speed, height and

distance cueing. Special effects are implemented throughout the database to enhance

the crew’s experience and overall scene integrity. Typical IGs optimize the density,

distribution and information content of visual features in the scene(s) for all

conditions of operations.

The visual subsystem uses time invariant information held in the CDB such as:

1. Terrain altimetry and raster imagery data

2. Cultural feature data

3. Light point data

4. Airport data

5. Material attribution data

1.6.4.4.2.3 Infrared IG

Included in the CDB coding is the material attribution used by a typical physics-based

Infrared Sensor Synthetic environment Model. This model computes, in real-time,

the amount of radiated and propagated energy within the simulated thermal bands.

A typical thermal model takes into account the following material properties:

1. Solar absorbance

2. Surface emissivity:

This coefficient reflects the degree of IR radiation emitted by the surface.

3. Thermal conductivity

4. Thermal inertia:

This coefficient describes the material ability to gain/lose its heat to a still-air

environment.

1.6.4.4.2.4 Night Vision Goggles Image Generation

Included in the CDB coding is the material attribution (exclusive of any properties)

used by NVG simulation models.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-44

© 2016 Presagis. All Rights Reserved.

1.6.4.4.2.5 Ownship-Centric Mission Functions

Visual subsystems typically provide a set of ownship-centric Mission Functions

(MIF) for use in determining:

1. The Height Above Terrain (HAT), Height Above Culture (HAC), and Height

Above Ocean (HAO). This function may report the material type of the texel

or the polygon, and the normal of the surface immediately beneath the point.

2. Ownship Collision Detection (CD) with terrain, 3D culture and moving

models. This may include long thin objects such as power lines.

3. Line Of Sight (LOS) and Laser Ranging Function (LRF) originating from the

ownship. This function may return the range, the material type and the

normal of the nearest encountered element in the database. The maximum

length of a requested vector is typically limited to the paged-in database.

The mission functions provided by an IG base their computations on a database that

has LOD representations equivalent to those used by OTW IGs. Since the visual

subsystem scene management mechanisms are essentially slaved to the ownship’s

position, the terrain accuracy (e.g., its LOD), the cultural density/LOD and the texture

resolution decrease with distance from the ownship. As a result, the IG-based

mission functions computations are best suited for ownship functions. In cases where

the database needs to be interrogated randomly anywhere in the gaming area,

simulator client-devices such as Computer Generated Forces (via a terrain server) are

best suited because their architecture is not ownship-centric.

1.6.4.4.2.6 Computer Generated Forces (CGF)

CGF provides a synthetic tactical environment for simulation-based training. It

simulates behaviors and offers interactions between different entities within the

simulation. It models dynamics, behavior doctrines, weather conditions,

communications, intelligence, weapons and sensor interactions, as well as terrain

interactions. CGF offers modeling of physics-based models in a real-time natural and

electronic warfare environment for air, land and sea simulations.

Typically, CGF is able to create a realistic simulated multi-threat, time-stressed

environment comprising items such as:

1. Friendly, enemy and neutral entities operating within the gaming area

2. Interaction with weather conditions currently in the simulation

3. Entities with representative dynamics (velocity, acceleration, etc.), signatures,

vulnerabilities, equipment, communications, sensors, and weapons

4. CGF uses time invariant information held in CDB such as:

a. Terrain altimetry and raster imagery

b. Cultural features

c. Linear (vector) and areal information

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-45

© 2016 Presagis. All Rights Reserved.

d. Sensor signatures

e. Moving Models

1.6.4.4.2.7 Weather Simulation

The Weather Simulation (WX) involves computing and analyzing the various weather

components and models around important areas defined in a simulation, in order to

produce realistic real-life scenarios for the sub-systems being affected by weather

effects. As such, a weather data server typically handles the weather simulation; this

server handles requests for weather-related data such as temperature, 3D winds,

turbulence gradients, and complex weather objects such as clouds, frontal systems or

storm fronts.

WX uses time invariant information held in CDB such as terrain elevation and

(potentially) significant features with 3D modeled representations to compute weather

and wind patterns.

1.6.4.4.2.8 Radar

Typical Radar Simulation Models require modeling of all real-life and man-made

effects or objects that can cause significant echo returns from the wavelengths of the

simulated Radar RF main beam and side lobes. Additionally, LOS computations are

necessary for proper target occultation by the Radar.

The Radar subsystem uses time invariant information held in CDB such as:

1. Terrain altimetry and Raster materials

2. Cultural features with either 2D and 3D modeled representations

3. Material properties

4. Land/Coastline/Man-Made features

5. Target shapes (RCS polar diagrams, 3D models)

1.6.4.4.2.9 Navigation System

The Navigation System provides the navigation information around the areas and

routes as defined in a simulation in order to provide precise NAVAIDs data which

will generate well correlated sub-systems being part of such simulation scenarios.

As such, the Navigation System Simulation handles navigation aids information

requests from other simulator client-devices such as:

1. Tactical Air Navigation (TACAN)

2. Automatic Direction Finder (ADF)

3. VHF Omni Range (VOR)

4. Instrument Landing System (ILS)

5. Microwave Landing System (MLS)

6. Doppler Navigation System (DNS)

7. Global Positioning System (GPS)

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-46

© 2016 Presagis. All Rights Reserved.

8. Inertial Navigation Unit (INU)

9. Non-Directional Beacons (NDB)

In addition to the NAVAIDs, the navigational data include datasets such as:

1. Communications Stations data

2. Airport/Heliport (including SIDs, STARs, Terminal Procedure/Approaches,

Gates)

3. Runway/Helipad

4. Waypoints

5. Routes

6. Holding Patterns

7. Airways

8. Airspaces

NAV uses time invariant information held in CDB such as:

1. ICAO code and Airport Identifier

2. NAVAIDs frequency, channel, navigational range, power

3. Declination

4. Magnetic variations

5. Communications Stations data

6. Airport/Heliport

7. Runway/Helipad

1.6.4.5 Other Applications of the CDB Specification

While the Specification was initially targeted primarily for use in flight simulator

applications, it is entirely suited to a broad range of other applications that make use

of the same datasets; these include (and are not limited to):

1. Ground warfare simulation

2. Anti-submarine warfare

3. Visualization

4. Modeling and Simulation

5. Urban Planning

6. Natural Resource Management

7. Emergency Management

The implementation of the CDB Specification on legcy simulator client-devices

usually mandates the use of the runtime publishers; these costs are largely offset by

the consolidation (and substantial reduction) of storage and associated infrastructure.

In the future, it is anticipated that the runtime publishing computer infrastructure will

be largely “absorbed” by higher performance client-devices that will natively process

the CDB without an intermediate conversion into a legacy internal format.

In applications that are less demanding than flight simulation, the CDB Specification

can be implemented without resorting to high-performance computer platforms. For

instance, the simulator repository mass storage system (shown in Figure 1-11: Typical

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-47

© 2016 Presagis. All Rights Reserved.

CDB Implementation on a Suite of Simulators) can be a single disk storage device.

In demanding applications, the simulator repository can be implemented as a large-

scale Storage Area Network (SAN). Similarly, the UM, the CDB server and each of

the client-device runtime publishers can be implemented as software tasks within a

single computer platform, or can even be migrated to software tasks running

internally within the client-devices. Figure 1-8: Typical Implementation of CDB

Specification on Desktop Computer, illustrates a desktop trainer consisting of a

Stealth Viewer and radar simulations, implemented as software applications running

on a single computer platform; both applications pull their synthetic environment data

from a disk-resident CDB.

1.6.5 Use of CDB in Applications Requiring Dynamic Synthetic Environments

A CDB-compliant simulator already incorporates most of the architectural features

required to support the handling of Dynamic Synthetic Environments (aka DSE).

Figure 1-14: Versioning Paradigm Applied to Dynamic SE, illustrates how CDB-

compliant simulator architecture can be extended to permit the runtime modification

of the CDB. This can be accomplished by leveraging simulator architectures that

natively adhere to the CDB data schema and to the CDB versioning capabilities.

This capability requires that the simulator be equipped with a Dynamic Synthetic

Environment Generator whose interfaces conform to the CDB Specification; all other

elements of the simulator architecture are identical to those of a CDB-compliant

simulator.

Two applications of this principle could be envisaged:

1. DB update from DIS: This is the so-called “Dynamic Terrain/Synthetic

Environment”, where a group of confederates interoperate over a DIS network

by receiving update commands that trigger runtime modification of the CDB.

2. DB creation/update from live data feed: Terrain areas could be created or

modified on-the-fly, based on live data (such as terrain imagery or LIDAR

data transmitted by a UAV) and provided instantly to the confederates.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-48

© 2016 Presagis. All Rights Reserved.

Figure 1-14: Versioning Paradigm Applied to Dynamic SE

1.6.6 Synthetic Environment Database Correlation

Synthetic environment correlation issues arise whenever two or more devices exhibit

a discernible level of informational inconsistency. Correlation of synthetic

environment databases has long been a problem in simulation, primarily aggravated

by the fact that each of the simulator client-devices used distinct runtime databases.

There are many different types of correlation errors, and each have a contribution to

the overall correlation problems that has plagued simulators for several years. They

are defined here as follows:

1. Raw source correlation: Is the degree of informational consistency between

two or more sets of raw data
18

 (i.e., inputs to a modeling station) representing

aspects of the same environment (for instance, the correlation errors arising

from Digital Terrain Elevation Data (DTED) elevation data that does not

perfectly match to satellite raster imagery due to oblique view distortions

induced by the satellite). Correlation errors are intrinsic to the process of

gathering data because since there is no means to gather all of the required

data from a single device, at a single instant in time. Instead, datasets (e.g.,

elevation, raster imagery, geometry) are each gathered from various devices of

various types (with distinct precision, formats, capabilities, fidelity) at

different times. This in turn leads to a broad range of correlation errors

typically resolved by the modeler during the final assembly of the synthetic

environment from its sources.

18 In this context, raw source denotes any input to the modeling workstation that is used to assemble the synthetic

environment; consequently, the data may have undergone some level of post-processing (such as image color-balancing,

image ortho-rectification, etc.) or may be in a specialized source interchange format (such as SIF, SEDRIS, etc.).

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-49

© 2016 Presagis. All Rights Reserved.

2. Source database self-correlation: Is the degree of informational consistency

between the internal datasets of a source database produced by a DB

generation toolset. To a large extent, the effort expended at DB generation

time consists in eliminating (or at least reducing) correlation errors arising

from miss-correlated raw source data.

3. Runtime database correlation: Is the degree of informational consistency

between two or more runtime client-specific databases representing the same

synthetic environment
19

. The likelihood of achieving correlated runtime

client-device databases is particularly low when different authoring tools (and

possibly different source data) are used to assemble each of the compiled

runtime databases. In recent years, some authoring tools have been improved

to automatically produce a set of client-device database from one common

repository (internal to the tools). Nonetheless, it is still current practice within

the simulation community to independently deploy the simulator client-device

databases; as a result, correlation errors may occur especially if the master

database repository is constantly evolving. The CDB Specification eliminates

database correlation errors since only one database is used to represent the

same synthetic environment. The CDB is a single database that can be

accessed simultaneously by all simulator client-devices at runtime. By

definition, it addresses all runtime database-level correlation errors.

4. Numerical accuracy correlation: Is the degree of informational consistency

between the outputs of two or more devices, with each device performing the

same algorithms, using the same control parameters but performing internal

computations to a different numerical accuracy. Consider for example two

devices computing the sin of an angle, one with a series of 10 terms, and

another with an interpolation of a look-up table with 100 entries, or one device

using 32-bit signed integers for its internal computations and the other using

single-precision floats. The CDB Specification reduces numerical accuracy

correlation errors because a single representation is used for each dataset.

Note however that numerical correlation may deteriorate due to the variances

in numerical precision inherent to each client-device.

5. Algorithmic correlation: Is the degree of informational consistency between

the outputs of two or more devices, with each device performing its internal

computations to the same numerical accuracy, but using different algorithms

with possibly different control parameters. Consider for example, two devices

meshing terrain from a regular grid of elevation points, one using a regular

mesh of right-handed triangles using the elevation points as vertices, and the

other with a DeLauney triangulated mesh derived from the grid of elevation

points. Algorithmic correlation errors can be introduced anywhere in the

dataset processing chain, ranging from the raw source level right through to

the internals of the simulator client-devices. While it is not possible to

19 A runtime client-specific database is a device-loadable database format that can be processed by a target device.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-50

© 2016 Presagis. All Rights Reserved.

mandate complete algorithmic uniformity throughout this elaborate chain, the

CDB Specification offers solutions to this issue
20

. Firstly, only one database

is produced, so all DB authoring tool algorithmic correlation issues are

eliminated. Note that the implementation of runtime publishers on a simulator

can play a role in improving overall algorithmic correlation
21

.

6. Parametric correlation: Is the degree of informational consistency between

the outputs of two or more devices, with each device performing the same

algorithms with identical numerical precision with different control

parameters (e.g., consider two devices generating regular meshes of right-

handed triangles based on a regular grid of elevation points organized by

LOD, one using an LOD meshing tolerance parameter of 1m and the other one

using 2m). Note that it is clearly possible to create a synthetic environment

database whose content is at a level of resolution, fidelity and accuracy that

can overwhelm any client-device; however, the amount and type of data that

is rejected by each type of client-device can vary considerably. For example,

a NAVAIDs data server client-device need only be concerned with Digital

Aeronautical Flight Information File (DAFIF™), and as a result is virtually

unaffected by changes in the resolution of the terrain elevation data which

could easily increase terrain SE content by 100-fold. The implementation of

the CDB Specification on a simulator can reduce and/or eliminate parametric

error by exercising explicit control, at run-time, on the resolution of the data

processed by the client-devices. This approach is much preferable to off-line

published approaches where parametric correlation is established during the

compilation of the runtime databases and cannot be changed once the runtime

database is produced.

Table 1-1: Summary of Synthetic Environment Database Correlation Errors, provides

a summary of the different types of correlation errors and how/where such errors can

be addressed. Figure 1-15: Sources of Synthetic environment Database Correlation

Errors, illustrates the conventional synthetic environment database process from raw

source, the assembly of datasets at the DB workstation, the publishing into runtime

databases, and the rendering by the simulator client-devices.

20 For instance, the CDB does not impose the terrain skinning and meshing conventions that each of the runtime publisher

generates for its attached client-device. However, it is understood that if all client-devices would use the CDB meshing

conventions natively, correlation issues between clients would be significantly reduced.

21 Since each dataset is uniquely represented, it is possible to share a greater number of algorithms between CDB runtime

publishers. This ensures that datasets are processed in an identical fashion whenever two or more publishers share the same

algorithm.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-51

© 2016 Presagis. All Rights Reserved.

Table 1-1: Summary of Synthetic Environment Database Correlation Errors

Correlation Description Addressed by

C
D

B
 S

p
e
c

S
im

 D
ev

ic
es

D
a
ta

b
a

se
 T

o
o

ls

Data

Raw Source Raw source correlation errors

caused by data collections at

different times and from

different devices. Also caused

by registration errors.

Toolset and human

operators address raw

source correlation errors

ensuring that data is

properly corrected and

registered.

 X

Datasets Dataset correlation errors are

caused by discrepancies

between co-located dataset

layers.

Toolset ensures that

dependent dataset layers are

updated together, while

CDB Specification

minimizes these

dependencies.

X X

Runtime

Sources

Information from several

runtime databases contains

conflicting information.

CDB Specification

addresses runtime source

correlation by enforcing a

single runtime database.

X

Computational

Algorithmic Different client-devices may

use different algorithms to

filter information and to

simulate real-world device.

Simulation clients address

algorithmic correlation

errors. They ensure that the

different algorithms used

are compatible.

 X

Parametric Same client-devices may run

with different initial

parameters.

A simulation that would

ensure each client-device

runs at just discernible error

levels.

 X

Accuracy Different computational

platforms may run at different

numerical accuracies.

Using the same platform

with identical numerical

accuracy for all client-

devices and servers.

Developing software

according to strict rules and

guidelines addresses

computational accuracy

correlation errors.

X X X

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-52

© 2016 Presagis. All Rights Reserved.

Correlation Description Addressed by

C
D

B
 S

p
e
c

S
im

 D
ev

ic
es

D
a
ta

b
a

se
 T

o
o

ls

Temporal

Synchronism Lags and delays introduced by

networking systems as well as

subsystems using different

time bases may cause

subsystems to be

unsynchronized.

Through system

architecture, system is

designed to use proper

bandwidths and

computational methods to

reduce latencies. All

simulator client-devices use

the same clock.

 X

Paging latency Paging and runtime publishing

may introduce delays long

enough to prevent some

simulation clients to get

information on time.

Paging and runtime

publishing tasks and client-

device paging software

ensures that runtime

information is available on

time.

 X

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-53

© 2016 Presagis. All Rights Reserved.

Figure 1-15: Sources of Synthetic environment Database Correlation Errors

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-54

© 2016 Presagis. All Rights Reserved.

The implementation of the CDB Specification on a simulator can also provide the

means to reduce and control the sources of parametric correlation at the client-device

level. The underlying cause of parametric correlation usually points to the intrinsic

capabilities (i.e., the performance and functionality) of each client-device. Since

many client-devices are unable to cope with the synthetic environment database at its

full fidelity, the off-line compilers “filter-out” portions of the database (e.g., level of

resolution, level of fidelity) in order to meet the limited functionality or the real-time

constraints of the targeted device. In order to further control processing variations,

some client-devices are equipped with the means to dynamically “filter-out” portions

of the database in order to meet real-time constraints. The filters can be typically

controlled statically (and sometimes even dynamically) through the use of

parameters.

The amount and type of data that is rejected by each type of client-device can vary

considerably. This is the underlying cause of parametric correlation errors. In

conventional simulator client-devices, the handling of parametric correlation is

handled in a half-hazard fashion, largely because the “filter parameters” are either

fixed or inaccessible to the user. Distinct database compilers generate distinct

runtime databases, each configured with their respective filtering parameters.

The CDB Specification offers multi-tiered solutions to this problem. Firstly, since it

has a unique data representation, the resolution, fidelity and accuracy of the synthetic

environment database, as seen by each of runtime publisher attached to the client-

devices, is completely correlated. Secondly, since the publishing process is done on-

line, it is possible to provide the user access to the filter parameters so that he can

globally control resolution, fidelity and accuracy (and hence correlation) of the

synthetic environment database across all simulator client-devices. While the CDB

Specification does not provide explicit jurisdiction over the implementation of this

mechanism in the client-devices/publishers, it is nonetheless possible to improve

parametric correlation, at runtime, via control of the client-devices/publishers. This

new paradigm now permits the simulator user the means to not only control client-

device load but to globally re-examine and control the level of correlation within a

simulator (or across simulators).

The control of parametric correlation requires a working understanding of the

characteristics of the client-device. At a minimum, one must consider the operating

limits of all client-devices and ensure that the runtime publishers limit synthetic

environment content to the limits imposed by the client-devices
22

. Secondly, one

must have a working model of the “filter parameters” made available by the client-

devices or by their runtime publishers. Thirdly, one must have a working

performance model of each client-device. Finally, one must have an understanding of

“just discernible threshold” of correlation as it applies to each client-device. For

example, it is unlikely that increasing the terrain resolution from 1m to ½m would

produce a discernible change in how a CGF system allows simulated players to

22 For instance, an IG might refuse to operate if confronted with an area modeled with 1 millimeter OTW texture.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-55

© 2016 Presagis. All Rights Reserved.

interact realistically with one another. As a result, the ½m terrain resolution of the

CGF system is below the “just discernible threshold” of that device. The ½m data

can be discarded without reducing the level of correlation provided by that client-

device.

As mentioned earlier, the runtime publishing paradigm permits the simulator user the

means to control client-device load and to globally re-examine and control the level

of correlation within a simulator (or across simulators). Several choices are possible,

depending on the flexibility offered in the implementation of the runtime publishers

and the client-devices. The choices are:

1. Publishers globally adjusted to overload limit of least capable client-device

(see Figure 1-16: Overload Limit of Least Capable Client-Device):

Figure 1-16: Overload Limit of Least Capable Client-Device

a. Assuming sufficient (parameter) controls in each of the client-devices,

parametric correlation errors can be eliminated by setting the filter

parameters of all client-devices/publishers to the least-capable client-

device in the simulator.

b. Success is contingent on suitable set of parameters in each client-

device.

c. The result is full correlation with no overloads, but with the lowest

observed DB fidelity.

2. Publishers individually adjusted to the overload limit of each client device

(see Figure 1-17: Overload Limit of Each Client-Device):

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-56

© 2016 Presagis. All Rights Reserved.

Figure 1-17: Overload Limit of Each Client-Device

a. This is the approach used in virtually all simulators in operation today.

b. Result is partial correlation with no overloads, and high-observed DB

fidelity.

3. Publishers adjusted to the CDB content, but globally adjusted to the operating

limit of the least capable client-device (see Figure 1-18: Operating Limit of

Least Capable Client-Device):

Figure 1-18: Operating Limit of Least Capable Client-Device

a. Client-devices are allowed to overload in areas where database content

is deemed critical.

b. Result is full correlation, possible overloads with high-observed DB

fidelity.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

1-57

© 2016 Presagis. All Rights Reserved.

4. Publishers adjusted to the CDB content, but individually adjusted to the

operating limit of each client-device (see Figure 1-19: Individually Adjusted

to the Operating Limit of Each Client-Device):

Figure 1-19: Individually Adjusted to the Operating Limit of Each Client-Device

a. Client-devices are allowed to overload in areas where database content

is deemed critical.

b. Result is, possible overloads and the highest observed DB fidelity.

5. Publishers adjusted by the simulator operator at scenario startup (see Figure

1-20: Adjusted by the Simulator Operator at Scenario Startup):

Figure 1-20: Adjusted by the Simulator Operator at Scenario Startup

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

2-1

© 2016 Presagis. All Rights Reserved.

Chapter 2

2 CDB Concepts

This chapter presents basic CDB concepts of the Specification. These concepts are

either reused by other concepts or used repeatedly throughout the Specification.

2.1 Partitioning the Earth into Tiles

The CDB tiling approach has the following characteristics:

1. The earth model is divided (in latitude) into slices.

2. The slice’s x-axis is aligned to WGS-84 lines of latitude.

3. The slice’s y-axis is aligned to WGS-84 lines of longitude.

4. The number of units along the slice’s y-axis for a given level of detail is

the same for all slices. The earth surface geodetic dimension in arc-

second of y-axis units within an earth slice is exactly the same, regardless

of latitude.

5. The geodetic dimension of an x-axis unit in arc-second is constant within

a zone, but is re-defined at pre-selected latitudes to achieve a greater level

of spatial sampling uniformity in all tiles; this overcomes the narrowing

effect of increased latitudes on longitudinal distances. The definition of

zones in the CDB is the same as those in DTED (with the exception of the

poles).

6. The number of units along the slice’s x-axis for a given level of detail is

the same within each zone.

7. The number of units along the slice’s y-axis is constrained to a multiple of

2
n
 in all slices.

8. The number of units along the slice’s x-axis will vary depending on which

zone the latitude of the slice belongs. At this point we introduce the

concept of a CDB Geocell, which differs slightly from a DTED cell. Both

DTED and the CDB have Geocells whose height is 1 degree but whose

width varies depending on its latitude. The only difference is that the

CDB provides for an additional zone at each of the poles. Table 2-2

shows the dimensions of a CDB Geocell per zones of latitude. For

instance, in latitude zone 5, which goes from –50° to 50° of latitude, a

CDB Geocell is 1° × 1°, in zone 4 and 6 which goes from latitude 50° to

70° the cell size is 1° × 2°. The main reason to introduce this concept is to

maintain a reasonable eccentricity between the sides by trying to keep

them as close to a square as possible. Variable CDB Geocell size in the

CDB Specification reduces the simulator client-device processing

overheads associated with the switching from one zone to another (due to

small number of zones across the earth), reduces the variation of

longitudinal dimensions (in meters) to a maximum of 50% and improves

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

2-2

© 2016 Presagis. All Rights Reserved.

storage efficiency. Two criteria are used to define the size of a CDB

Geocell:

a. A CDB Geocell must contain a whole number of DTED Geocells; in

other words a CDB Geocell must start and end on a whole degree

along the longitudinal axis. This is done so as to facilitate mapping

from CDB Geocells to DTED Geocells,

b. The length of the CDB Geocell must be a whole factor of 180, in other

words length of 1, 2, 3, 4, 6 and 12 degrees are legal but lengths of 7

and 8 degrees would not be since these are not exact factors of 180.

Table 2-1: Intervals for DTED Level 2

DTED

Zone

Latitude Range

(Degrees)

Latitude Interval

(Arc seconds)

Longitude Interval

(Arc seconds)

I 0 – 50 N-S 1 1

II 50 – 70 N-S 1 2

III 70 – 75 N-S 1 3

IV 75 – 80 N-S 1 4

V 80 – 90 N-S 1 6

Table 2-2: Size of CDB Geocell per Zone

CDB

Zone

Latitude Range

(Degrees)

CDB Geocell size

(° Lat × ° Lon)

Number of

DTED Geocells

0 –90 ≤ lat < –89 1 × 12 12

1 –89 ≤ lat < –80 1 × 6 6

2 –80 ≤ lat < –75 1 × 4 4

3 –75 ≤ lat < –70 1 × 3 3

4 –70 ≤ lat < –50 1 × 2 2

5 –50 ≤ lat < +50 1 × 1 1

6 +50 ≤ lat < +70 1 × 2 2

7 +70 ≤ lat < +75 1 × 3 3

8 +75 ≤ lat < +80 1 × 4 4

9 +80 ≤ lat < +89 1 × 6 6

10 +89 ≤ lat < +90 1 × 12 12

2.1.1 Description

The CDB Specification represents the earth as a fixed number of slices divided

equally along a latitude axis as illustrated in Figure 2-1: CDB Earth Slice

Representation.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

2-3

© 2016 Presagis. All Rights Reserved.

Figure 2-1: CDB Earth Slice Representation

The earth surface coordinate system conventions used for each slice consists of a

regular two-dimensional grid where the x-axis is always pointing east, aligned to

WGS-84 lines of latitude and where the y-axis is always pointing north, aligned with

WGS-84 lines of longitude. The earth surface origin, reference point (lat:0, long:0)

on the CDB earth representation, is defined by the intersection of the WGS-84

equator and the WGS-84 international 0° meridian. The x=0 and y=0 reference is at

(lat:0, long:0) x is positive going East and negative going West; y is positive North of

the equator and negative South.

Every x and y unit corresponds to a fixed increment of longitude and latitude in arc-

second. The x-axis and y-axis fixed increment unit are referred hereafter a XUnit and

YUnit. Since the y-axis of the slices is aligned with WGS-84 lines of longitude, y-

axis coordinate units are uniformly distributed between the equator and the poles in

both geodetic system terms (arc-second) and in Cartesian system terms (meter). This

property naturally leads to define the same number of YUnit per slice; this however is

not the case with the x-axis. As illustrated in Figure 2-2: Variation of Longitudinal

Dimensions versus Latitude, the Cartesian space distance between such x-axis values

diminishes as we move towards the poles. In order to maintain size constancy, the

CDB Specification provides a piecewise solution similar to that used by NGA DTED

data. The world is divided into eleven zones. All CDB Geocells within a slice are

one degree of latitude high (the height of a slice) and of varying width in longitude

depending on the zone to which they belong.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

2-4

© 2016 Presagis. All Rights Reserved.

Figure 2-2: Variation of Longitudinal Dimensions versus Latitude

In order to meet one of the previously mentioned real-time considerations, the

number of y-axis units for one Geocell, NbYUnitInCDBGeocell, is set to a power of

two. This has been chosen as 1024 to give a north-south grid post spacing of

approximately 109 meters at the default Level of Detail (LOD 0); this spacing is the

same for all earth slices.

 𝑁𝑏𝑌𝑈𝑛𝑖𝑡𝐼𝑛𝐶𝐷𝐵𝐺𝑒𝑜𝑐𝑒𝑙𝑙 = 1024 (2–1)

The CDB Specification also imposes an integer number of slices along latitude lines.

NbEarthSlice is the number of earth slice from South Pole to North Pole and is equal

to 180 since each slide is one degree.

 𝑁𝑏𝐸𝑎𝑟𝑡ℎ𝑆𝑙𝑖𝑐𝑒 = 180 (2–2)

Furthermore, the number of x-axis units, NbXUnitInCDBGeocell, is also maintained

to be the same as that of NbYUnitInCDBGeocell for all CDB Geocells. As previously

stated, the cell width in longitude is adjusted at specific latitudes to maintain a

reasonable aspect ratio. As a consequence the area defined by the corner coordinates

(x,y), (x+1, y) (x, y+1), (x+1,y+1), decreases when moving toward the poles in the

same zone and increases when moving toward the equator.

 𝑁𝑏𝑋𝑈𝑛𝑖𝑡𝐼𝑛𝐶𝐷𝐵𝐺𝑒𝑜𝑐𝑒𝑙𝑙 = 𝑁𝑏𝑌𝑈𝑛𝑖𝑡𝐼𝑛𝐶𝐷𝐵𝐺𝑒𝑜𝑐𝑒𝑙𝑙 (2–3)

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

2-5

© 2016 Presagis. All Rights Reserved.

The geodetic dimension of a YUnit is referred to as ArcSecLatUnitInCDBGeocell; it

is the same for all slices and is determined by Equation (2–4).

𝐴𝑟𝑐𝑆𝑒𝑐𝐿𝑎𝑡𝑈𝑛𝑖𝑡𝐼𝑛𝐶𝐷𝐵𝐺𝑒𝑜𝐶𝑒𝑙𝑙 =

180 degrees × 3600 arcsec/degree

𝑁𝑏𝑌𝑈𝑛𝑖𝑡𝐼𝑛𝐶𝐷𝐵𝐺𝑒𝑜𝐶𝑒𝑙𝑙 × 𝑁𝑏𝐸𝑎𝑟𝑡ℎ𝑆𝑙𝑖𝑐𝑒

𝐴𝑟𝑐𝑆𝑒𝑐𝐿𝑎𝑡𝑈𝑛𝑖𝑡𝐼𝑛𝐶𝐷𝐵𝐺𝑒𝑜𝐶𝑒𝑙𝑙 =
180 degrees × 3600 arcsec/degree

1024
unit
slice

× 180 slices

𝐴𝑟𝑐𝑆𝑒𝑐𝐿𝑎𝑡𝑈𝑛𝑖𝑡𝐼𝑛𝐶𝐷𝐵𝐺𝑒𝑜𝐶𝑒𝑙𝑙 = 3.515625 arcsec/unit

(2–4)

ArcSecLatUnitInCDBGeocell is a constant defined by the CDB earth model and

cannot be set to any other value.

Similarly, the geodetic dimension of a XUnit is referred to as

ArcSecLongUnitInCDBGeocell; it varies at specific latitudes and is shown in Table

2-3: CDB Geocell Unit Size in Arc Seconds. As shown in the table, maintaining the

NbXUnitInCDBGeocell constant causes abrupt changes in

ArcSecLongUnitInCDBGeocell at specific latitudes. This is done, however, to

achieve our objective of maintaining a reasonable aspect ratio across the earth model.

Table 2-3: CDB Geocell Unit Size in Arc Seconds

Zone
CDB Geocell size

(° Lat × ° Lon)

ArcSecLatUnit

InCDBGeocell

ArcSecLongUnit

InCDBGeocell

0 1 × 12 3.515625 42.187500

1 1 × 6 3.515625 21.093750

2 1 × 4 3.515625 14.062500

3 1 × 3 3.515625 10.546875

4 1 × 2 3.515625 7.031250

5 1 × 1 3.515625 3.515625

6 1 × 2 3.515625 7.031250

7 1 × 3 3.515625 10.546875

8 1 × 4 3.515625 14.062500

9 1 × 6 3.515625 21.093750

10 1 × 12 3.515625 42.187500

2.1.2 Tile Levels-of-Detail (Tile-LODs)

Since the CDB Specification defines NbXUnitInCDBGeocell and

NbYUnitInCDBGeocell as being the same and since NbYUnitInCDBGeocell is

constrained to a power of two, the CDB tile representation can readily reference

square areas at a specified level-of-detail. These areas are delimited by longitude and

latitude extents. By convention, LOD 0 always corresponds to the earth slice size of

NbXUnitInCDBGeocell × NbYUnitInCDBGeocell with a Cartesian unit spacing in the

range of one hundred meters at the slice’s zones boundaries and at the equator.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

2-6

© 2016 Presagis. All Rights Reserved.

Numerically increasing levels of LOD (e.g., 1, 2, 3) correspond to tile datasets with

progressively finer resolution (smaller spatial sampling intervals).

The x-axis and y-axis fixed increment unit per LOD, XUnitLOD and YUnitLOD, are

given per Equation (2–5).

𝑋𝑈𝑛𝑖𝑡𝐿𝑂𝐷 =

𝑋𝑈𝑛𝑖𝑡

2𝐿𝑂𝐷

𝑌𝑈𝑛𝑖𝑡𝐿𝑂𝐷 =
𝑌𝑈𝑛𝑖𝑡

2𝐿𝑂𝐷

(2–5)

Similarly, the number of units in the x-axis and y-axis and the total number of units in

a CDB geocell, respectively defined by NbXUnitInCDBGeocellLOD,

NbYUnitInCDBGeocellLOD, and TotalNbUnitInSliceLOD, are computed by Equation

(2–6).

 𝑁𝑏𝑋𝑈𝑛𝑖𝑡𝐼𝑛𝐶𝐷𝐵𝐺𝑒𝑜𝑐𝑒𝑙𝑙𝐿𝑂𝐷 = 𝑁𝑏𝑋𝑈𝑛𝑖𝑡𝐼𝑛𝐶𝐷𝐵𝐺𝑒𝑜𝑐𝑒𝑙𝑙 × 2𝐿𝑂𝐷

𝑁𝑏𝑌𝑈𝑛𝑖𝑡𝐼𝑛𝐶𝐷𝐵𝐺𝑒𝑜𝑐𝑒𝑙𝑙𝐿𝑂𝐷 = 𝑁𝑏𝑌𝑈𝑛𝑖𝑡𝐼𝑛𝐶𝐷𝐵𝐺𝑒𝑜𝑐𝑒𝑙𝑙 × 2𝐿𝑂𝐷

𝑇𝑜𝑡𝑎𝑙𝑁𝑏𝑈𝑛𝑖𝑡𝐼𝑛𝐶𝐷𝐵𝐺𝑒𝑜𝑐𝑒𝑙𝑙𝐿𝑂𝐷

= 𝑁𝑏𝑋𝑈𝑛𝑖𝑡𝐼𝑛𝐶𝐷𝐵𝐺𝑒𝑜𝑐𝑒𝑙𝑙𝐿𝑂𝐷
× 𝑁𝑏𝑌𝑈𝑛𝑖𝑡𝐼𝑛𝐶𝐷𝐵𝐺𝑒𝑜𝑐𝑒𝑙𝑙𝐿𝑂𝐷

(2–6)

The CDB standardizes tile sizes to 1024 × 1024 (e.g., 1024 XUnitLOD by 1024

YUnitLOD). Thus, for positive LODs, every tile quadruples its geographic area

coverage as the LOD decreases. Since the CDB Specification limits each earth slice

to NbYUnitInCDBGeocell (or 111319 m), tiles at LOD 0 have the same height as the

height of an earth slice. For negative LODs, the same tile size is maintained. This

imposes that the number of units in both x-axes and y-axes are recursively divided by

two for every subsequent level until the total number of unit reaches one by one unit.

LOD –10 is the coarsest LOD represented by a CDB slice. The finest available LOD

number for the CDB is 23. Table 2-4 presents the complete list of CDB LODs with

the corresponding grid size, tile size, and the resulting approximate grid spacing at the

equator.

Table 2-4: CDB LOD vs Tile and Grid Size

CDB LOD
Grid Size

(n × n)

Approximate Tile Edge Size

(meters)

Approximate Grid Spacing

(meters)

-10 1 1.11319 × 10
+05
 1.11319 × 10

+05

-9 2 1.11319 × 10
+05
 5.56595 × 10

+04

-8 4 1.11319 × 10
+05
 2.78298 × 10

+04

-7 8 1.11319 × 10
+05
 1.39149 × 10

+04

-6 16 1.11319 × 10
+05
 6.95744 × 10

+03

-5 32 1.11319 × 10
+05
 3.47872 × 10

+03

-4 64 1.11319 × 10
+05
 1.73936 × 10

+03

-3 128 1.11319 × 10
+05
 8.69680 × 10

+02

-2 256 1.11319 × 10
+05
 4.34840 × 10

+02

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

2-7

© 2016 Presagis. All Rights Reserved.

CDB LOD
Grid Size

(n × n)

Approximate Tile Edge Size

(meters)

Approximate Grid Spacing

(meters)

-1 512 1.11319 × 10
+05
 2.17420 × 10

+02

0 1024 1.11319 × 10
+05
 1.08710 × 10

+02

1 1024 5.56595 × 10
+04
 5.43550 × 10

+01

2 1024 2.78298 × 10
+04
 2.71775 × 10

+01

3 1024 1.39149 × 10
+04
 1.35887 × 10

+01

4 1024 6.95744 × 10
+03
 6.79437 × 10

+00

5 1024 3.47872 × 10
+03
 3.39719 × 10

+00

6 1024 1.73936 × 10
+03
 1.69859 × 10

+00

7 1024 8.69680 × 10
+02
 8.49297 × 10

-01

8 1024 4.34840 × 10
+02
 4.24648 × 10

-01

9 1024 2.17420 × 10
+02
 2.12324 × 10

-01

10 1024 1.08710 × 10
+02
 1.06162 × 10

-01

11 1024 5.43550 × 10
+01
 5.30810 × 10

-02

12 1024 2.71775 × 10
+01
 2.65405 × 10

-02

13 1024 1.35887 × 10
+01
 1.32703 × 10

-02

14 1024 6.79437 × 10
+00
 6.63513 × 10

-03

15 1024 3.39719 × 10
+00
 3.31756 × 10

-03

16 1024 1.69859 × 10
+00
 1.65878 × 10

-03

17 1024 8.49297 × 10
-01
 8.29391 × 10

-04

18 1024 4.24648 × 10
-01
 4.14696 × 10

-04

19 1024 2.12324 × 10
-01
 2.07348 × 10

-04

20 1024 1.06162 × 10
-01
 1.03674 × 10

-04

21 1024 5.30810 × 10
-02
 5.18369 × 10

-05

22 1024 2.65405 × 10
-02
 2.59185 × 10

-05

23 1024 1.32703 × 10
-02
 1.29592 × 10

-05

As a result, at LOD −10, a tile covers an area of approximately 111 km × 111 km and

is represented by a single grid element. At the opposite end of the table, at LOD 23, a

tile covers a minuscule area of 13 mm × 13 mm with a corresponding grid spacing of

about 13 μm.

Note the line corresponding to LOD 0; it highlights the point where the grid size stops

increasing while the tile size starts decreasing. Figure 2-3 illustrates the hierarchy of

CDB Tile LODs.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

2-8

© 2016 Presagis. All Rights Reserved.

Figure 2-3: Tile-LOD Hierarchy

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

2-9

© 2016 Presagis. All Rights Reserved.

2.1.2.1 Tile-LOD Area Coverage Rules

A tile from LOD –10 to LOD 0 occupies the area of exactly one CDB Geocell. This

is true for all CDB Geocells from all CDB Zones. Starting with LOD 1 and up, this

area is recursively subdivided into smaller tiles, every level corresponding to a finer

representation of the previous level allowing for multiple levels of details.

Consequently, tiles at a given LOD never overlap with others of the same LOD, and

are always aligned with at least two of the edges of tiles at the previous LOD.

Figure 2-4, Earth Slice Example (Five Levels-of-Detail), shows an earth slice

represented with five distinct LODs. In the illustration, certain CDB Geocell of the

earth slice is represented with all five LODs, while others have only three or four

LODs. Each Geocell, when present, is represented by an instance of at least the

coarsest tile supported by the CDB Specification, i.e., one tile at LOD −10. In

addition, if a tile exists at LOD n, not all 4 tiles at LOD n+1 need to exist. However,

if a tile is present at LOD n, it implies that a coarser tile exists at LOD n−1 covering

the area of the tile at LOD n, until LOD −10 is reached.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

2-10

© 2016 Presagis. All Rights Reserved.

Figure 2-4: Earth Slice Example (Five Levels-of-Detail)

2.1.2.2 Tile-LOD Hierarchy Rules

The CDB Specification further imposes that the LOD hierarchy of all tiled dataset

must be complete for every CDB Geocell. However, each CDB Geocell may have a

different number of Tile-LODs.

2.1.2.3 Tile-LOD Replacement Rules

In general, finer tiles replace coarser tiles. The actual rules are:

1. For negative levels of details, a tile at LOD n replaces exactly one tile at

LOD n−1 since both tiles cover the same area.

2. For positive levels of details, a tile at LOD n is replaced by 4 tiles at LOD n+1

since tiles from LOD n+1 cover only a quarter of the area covered by the tile

at LOD n.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

2-11

© 2016 Presagis. All Rights Reserved.

In the case of positive LODs, note that it is not necessary that all 4 tiles from

LOD n+1 exist; as long as one of the four tiles is present, the replacement of the tile

at LOD n can take place.

For instance, one tile at LOD −1 is replaced by one tile at LOD 0 which is in turn

replaced by four tiles at LOD 1. The replacement of coarser tiles with finer tiles stops

when no finer tiles exist.

2.1.3 Handling of the North and South Pole

Zones 0 and 10 (South and North Pole) are processed differently than the other zones.

As per Table 2-2: Size of CDB Geocell per Zone, this corresponds to an earth slice of

1 × 30 CDB Geocells.

As shown in Figure 2-2: Variation of Longitudinal Dimensions versus Latitude, a

single CDB Geocell at the poles covers 12 degrees in longitude and 1 degree in

latitude within a single slice. As a geographic position gets closer and closer to the

poles in terms of latitude, fewer points are required in the data grid; however the CDB

Geocell still has a regular rectangular shape. Therefore, this implies that grid points

will be progressively super sampled in longitude in order to respect the grid format of

the CDB.

In CDB Zone 0, the bottom edges of the 30 geocells of the zone all converge and

collapse to a single point, the South Pole. However, the data that belong exactly to

the South Pole is found in a single Geocell, the one whose lower left corner is at −90°

of latitude and 0° of longitude. The redundant data representing the South Pole found

in the other 29 geocells of zone 0 is ignored.

Similarly, in CDB Zone 10, the top edges of the 30 geocells of the zone also converge

and collapse to a single point, the North Pole. Again, the data that belong exactly to

the North Pole is found in a single Geocell whose lower left corner is at +89° of

latitude and 0° of longitude. The redundant data representing the North Pole found in

the other 29 geocells of zone 10 is ignored. The case of raster datasets that make use

of the corner grid conventions is an exception since the CDB does not provide the

means of representing data at precisely the North Pole (+90° of latitude and 0° of

longitude). In this case, it is recommended that client-devices use the average of the

nearest grid elements in the immediate vicinity of the North Pole.

2.2 File System Requirements

The CDB Specification is file system independent, (i.e., it does not mandate the use

of a specific file system). However, compliance to the CDB Specification does

require that the file system be able to support a minimal set of capabilities listed

below:

1. File name/Directory name structure:

a. Character set: in accordance to Table 2-5: Character Set Used for CDB

Files and Folders.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

2-12

© 2016 Presagis. All Rights Reserved.

b. Length of filename (including path to file): 256 characters or more.

c. Length of filename extension: “dot” followed by three characters or

more

2. Minimum Directory structure:

a. Number of files or directories in root directory: 256 entries or more.

b. Number of files or directories per directory (except root): 2048 entries

or more

c. Depth of directory hierarchy: 9 or more (assuming at least 256 entries

per directory level).

d. Directory size: 128 KB or more (assuming 64 bytes per directory

entry).

3. File Size: 64 Mbytes or more.

4. Number of files per volume: 41,600 files or more (assuming 650 MB CD

with 16 Kbyte files.

5. Support for removable media.

6. Support for bootable/non-bootable volume.

2.2.1 Character Set

Table 2-5: Character Set Used for CDB Files and Folders

Dec Hex Char Dec Hex Char Dec Hex Char

32 20 64 40 @ 96 60 `

33 21 ! 65 41 A 97 61 a

34 22 “ 66 42 B 98 62 b

35 23 # 67 43 C 99 63 c

36 24 $ 68 44 D 100 64 d

37 25 % 69 45 E 101 65 e

38 26 & 70 46 F 102 66 f

39 27 ' 71 47 G 103 67 g

40 28 (72 48 H 104 68 h

41 29) 73 49 I 105 69 i

42 2A * 74 4A J 106 6A j

43 2B + 75 4B K 107 6B k

44 2C , 76 4C L 108 6C l

45 2D - 77 4D M 109 6D m

46 2E . 78 4E N 110 6E n

47 2F / 79 4F O 111 6F o

48 30 0 80 50 P 112 70 p

49 31 1 81 51 Q 113 71 q

50 32 2 82 52 R 114 72 r

51 33 3 83 53 S 115 73 s

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

2-13

© 2016 Presagis. All Rights Reserved.

Dec Hex Char Dec Hex Char Dec Hex Char

52 34 4 84 54 T 116 74 t

53 35 5 85 55 U 117 75 u

54 36 6 86 56 V 118 76 v

55 37 7 87 57 W 119 77 w

56 38 8 88 58 X 120 78 x

57 39 9 89 59 Y 121 79 y

58 3A : 90 5A Z 122 7A z

59 3B ; 91 5B [123 7B {

60 3C < 92 5C \ 124 7C |

61 3D = 93 5D] 125 7D }

62 3E > 94 5E ^ 126 7E ~

63 3F ? 95 5F _ 127 7F

2.2.2 A word about case-sensitiveness

One of the intent guiding the development of the CDB Specification is the possibility

of implementing it on modern operating systems whether they are Windows-like or

Unix-like.

Throughout this Specification, the reader will notice that file names and directory

paths are specified using a mix of upper and lower cases. This choice is made to

improve and ease the readability of those names.

However, it is important to note that no two names are to differ only by their case.

After all, a name is used to designate a single object or concept whether that name is

spelled in lowercase or uppercase or even using mixed case. For instance, the terms

house, House, and HOUSE (and even HoUsE) all convey the same idea of a residence

where people live. And this stays true for all combination of cases.

As a result, the CDB Specification demands that all names appear exactly as specified

in this document, including the appendices.

2.3 Light Naming

The CDB Specification provides the means to unambiguously tag any modeled light

point
45

 with a descriptive name. This provides client-devices with the information

necessary to control all light points that have been tagged with a name that conforms

to this Specification.

45 The CDB Specification does not distinguish between a light-point and a light-source. In the simulation industry, the term

light-point refers to a point source of light that does not illuminate its immediate surroundings. Likewise, the term light-

source refers to a point source of light capable of illuminating its immediate surroundings.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

2-14

© 2016 Presagis. All Rights Reserved.

The CDB Specification provides a comprehensive set of light types, particularly well

suited to the needs of Visual simulation. Light types include those found on:

 cultural features including point, lineals, areals, and specialized airport

systems

 air, land, and surface platforms

 life forms

 munitions

Each light type defined by this Specification, corresponds to a real-world light type.

The Specification provides a definition of each light type, which is representative of

the light type’s function rather that its characteristics. The client-devices use the light

type name as an index to derive the properties and characteristics of the light. The

approach is client-device independent because the (device-specific) client rendering

parameters are not stored in the CDB and are therefore invisible to the modeler and

the database tools. The modeler/tools need not be concerned with dozens of

parameters that describe the light’s properties and characteristics. The client-devices

internally build and initialize a table of light properties and characteristics for their

respective use. The table is nominally built at CDB load time and is built to match

the device’s inherent capabilities and level-of-fidelity.

The light point types are structured in a hierarchy that is designed to simplify the

modeler’s workload. Increasing levels of specialization are possible if a modeler

specifies light names located in deeper levels of the light naming hierarchy, i.e., the

more specialized the light, the deeper the level.

An extract from the light naming hierarchy is illustrated in Figure 2-5: Extract from

Light Naming Hierarchy as an example. This portion of the light naming hierarchy

concerns itself with lights used for “Line-based Cultural” light points (e.g., streets,

highways). Immediately below the “Line-Based” level, the modeler can choose from

a wide selection of lights such as Fluorescent_Light, Incandescent_Light, or

Sodium_Light. A modeler that does not want to concern itself with the particular

characteristics of highway lights may choose to tag its lights with a name that is

higher up in CDB light name hierarchy. On the other hand, a modeler that has more

elaborate source data and has more time at his disposal may choose to differentiate

between “Multilane_Divided_Hwy” and “Highway” and/or “Sodium” and

“Incandescent” lighting (further down in the CDB light name hierarchy).

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

2-15

© 2016 Presagis. All Rights Reserved.

Figure 2-5: Extract from Light Naming Hierarchy

The name of a light is composed as follows. Starting from the top-most level of the

hierarchy, concatenate each of the names encountered with the backslash
46

 “\”

character. Go down through hierarchy until the desired level of specificity is

encountered.

Here are a few examples:

 \Light\Platform: A light suitable for use on all platforms

 \Light\Platform\Air\Aircraft_Helos\Formation_Light: A formation light for

use on aircraft and helicopter platforms

 \Light\Platform\Land\Headlight\High_Beam_Light: A high-beam head-light

for use on land vehicles

 \Light\Cultural\Line-based\Highway: A light suitable to depict highway

lighting

 \Light\Cultural\Line-based\Highway\Incandescent_Light: A light used to

depict incandescent highway lighting

46 The CDB Specification uses the backslash character as a separator for light names. In no time should the reader assume

that the Specification is favoring the Windows operating system which is also using the backslash as a separator when

building directory paths. Again, the backslash is simply a separator for names.

Hazard W hite light indicating the presence of an hazard around the airport

Flashing_Light W hite hazard flashing light

Hi_Intensity_Light W hite Hi-Intensity hazard light

Line -B ase d Generic Line based lights (Linear features as Roads)

Fluorescent_Light Fluorescent based Light

Incandescent_Light Incandescent based Light

Mercury_Light Mercury based Light

Metal_Halide_Light Metal Halide based Light

Sodium_Light Sodium based Light

Multilane_Divided_Hwy Generic Multi- lane divided highway lights

Incandescent_Light Incandescent based Light

Mercury_Light Mercury based Light

Metal_Halide_Light Metal Halide based Light

Sodium_Light Sodium based Light

Median Median divider Lights

Edge Highway edge/sidewalk lights

Multilane_Hwy Generic Multi- lane highway lights

Incandescent_Light Incandescent based Light

Mercury_Light Mercury based Light

Metal_Halide_Light Metal Halide based Light

Sodium_Light Sodium based Light

Median Median divider Lights

Edge Highway edge/sidewalk lights

Highway Generic Single Lane Highway

Incandescent_Light Incandescent based Light

Mercury_Light Mercury based Light

Metal_Halide_Light Metal Halide based Light

Sodium_Light Sodium based Light

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

2-16

© 2016 Presagis. All Rights Reserved.

2.3.1 Adding Names to the CDB Light Name Hierarchy

The hierarchy also permits modelers to reference light types that are not defined by

the current version CDB Specification. This can be achieved by adhering to the

following procedure.

First, the modeler or the simulator vendor is required to a) create a new light type

name with its corresponding light code, b) provide a definition for the light type name

c) insert the new light type into the light name hierarchy d) edit the Lights.xml

metadata file to reflect the change to the Light Name Hierarchy and e) optionally

provide values for Description, Intensity, Color, Frequency, Duty_Cycle… in the

Lights_xxx.xml files. If the new entry has no values for Description, Intensity, etc,

the new light type will immediately inherit all of the properties and characteristics of

CDB-native light types higher up in the light hierarchy. If the new entry requires one

or more of the fields stated in Section 2.3.2, Light Type Modeler Tuning, it will be

assigned those characteristics.

Note that the level of rendering fidelity is a function of customer requirements and/or

the vendor’s capabilities.

The user may also elect to propose his new light name for inclusion into subsequent

versions of the CDB Specification.

Since the light type codes are global to the CDB, it is strongly recommended that

none of the existing light type codes be modified when adding a new light type;

failure to do this would require a complete recompilation of the CDB in order to map

light point type name to their newly assigned light point type codes. For this reason,

it is recommended that the CDB tools create new light type codes so that light

relationships within the CDB remain coherent.

2.4 Model Component Naming

The CDB Specification provides the means to unambiguously tag any portion of a 3D

model (moving model or cultural feature) with a descriptive name. As a result, client-

devices have the information necessary to control all of the model components that

have been tagged with a name that conforms to this Specification.

The CDB Specification provides a comprehensive set of model components,

particularly well suited to the needs of simulation. Model components include those

used on:

1. air platforms

2. buildings

3. land platforms

4. missile and rocket platforms

5. surface (maritime) platforms

6. pylons and posts

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

2-17

© 2016 Presagis. All Rights Reserved.

Each model component defined by this Specification (refer to Appendix F for a

listing of the Model Components) corresponds to a real-world model component.

The client-devices use the name as an index to provide the simulation software the

needed control over the component in question.

Examples of model components are Cockpit, Turret, Rudder, Engine, Anchor,

Flight_Deck, Tire, Landing_Gear, Chimney, etc.

Chapter 6, CDB OpenFlight Models provides details on how to use one of these

names to identify a particular model component.

2.4.1 Adding New Model Components

The user may propose missing model component names for inclusion into subsequent

versions of the Specification. In the meantime, the missing name can be used to tag a

specific model component and a simulation client-device can use that name to detect

and control the new component.

2.5 Materials

This portion of the CDB Specification deals with the handling of materials that make

up the synthetic environment. The CDB Specification provides a flexible means to

store and represent materials found in the CDB representation of the synthetic

environment.

In general, materials are inputs to production or manufacturing. They are often raw -

that is unprocessed, but are sometimes processed before being used in more advanced

production processes. A material represents the substance or substances out of which

a thing is or can be made.

The CDB Specification provides the means to represent:

• Basic (homogeneous) materials such as steel, aluminum, copper, sand, soil,

stone, glass, concrete, wood, water, rubber. CDB materials are chosen for

their relevance to simulation, in particular, thermal spectrum simulation.

• Aggregates or mixtures of basic materials

• Composite materials, i.e., a structured arrangement of basic materials or of

aggregates which together represent a composite’s material that has:

o A Surface Substrate

o A Primary Substrate

o One or more optional Secondary Substrates

Appendix L of this Specification provides a list of CDB Base Materials. All

references to Composite Materials must, in the end, resolve down to one or more of

the stated CDB Base Materials.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

2-18

© 2016 Presagis. All Rights Reserved.

Sensor simulation typically requires a simulation of the device itself, supplemented

by a complete simulation of the synthetic environment over the portion of the

electromagnetic spectrum that is relevant to this device. The former simulation is

referred to as the Sensor Simulation Model (SSM) while the latter is called the Sensor

Environmental Model (SEM). Most SEMs in existence today rely heavily on

environmental database whose content is designed to match the functionality, fidelity,

structure and format requirements of the SEM. The level of realism possible by the

SEM depends heavily on the quality, quantity and completeness of the data available.

This makes the environmental database highly device-specific.

The task of determining a definitive list of material properties that would

accommodate all of the above requirements for the today’s sensor types, vendor

implementations and SEMs would be a significant challenge. Instead, the CDB

Specification defines and publicly defines a list of materials that can be used in a

CDB. It is the responsibility of vendors to (internally) define the properties (that

satisfies the sensor type) for these CDB materials. Vendors are totally free to select

material properties that satisfy the fidelity, functionality and precision requirements

of the SEM for the sensor type of interest. Section A.1 of Appendix A provides a

rationale for the approach taken by the CDB Specification.

2.5.1 Base Materials

A Base Material represents a basic (primitive) material such as water, vegetation,

concrete, glass, steel. Each Base Material has a unique name. The components of a

Base Material are listed in Table 2-6: Components of a Base Material. The Base

Material name must be unique, since it can be used as an index or search key in other

tables (described in subsequent sections) of the CDB structure.

Table 2-6: Components of a Base Material

Component Description

Name * Name used to represent a Basic Material.

Description

Describes the essential nature of the basic material

represented. A typical example can also be provided in the

description field

* Uniquely identifies the Base Material.

The Base Material’s name always begins with the “BM_” string, followed by a

unique arbitrary string that respects the following conventions:

• Contains letters, digits, the underscore (_) or the hyphen (-) characters.

• The Base Material Name including its prefix string is limited to 32 characters.

The description of a material class gives the essential nature of the basic material

represented. Appendix L presents all of the Base Materials currently defined by the

CDB Specification.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

2-19

© 2016 Presagis. All Rights Reserved.

2.5.1.1 Base Material Table (BMT)

A Base Material Table (BMT) is provided for run-time access by client applications.

See section 5.1.3, Base Material Table for details on the file format.

2.5.2 Composite Materials

This section provides additional description and details regarding the layered

substrate structure to Base Materials, aka Composite Materials.

Each Composite Material consists of a primary substrate component, an optional

surface component and one or more optional secondary substrate components. Each

of these components is in turn composed of one or more Base Materials described in

the previous section. Components that are composed of two or more Base Materials

are aggregates. Each Composite Material has a primary substrate as a minimum. The

primary and secondary substrates can be optionally assigned a thickness (in meters).

By definition, the surface substrate corresponds to the first µm to mm of a Composite

Material. The surface substrate does not change the nature of the primary substrate;

its purpose is to differentiate the object's primary substrate from its coating.

Each substrate is defined by a variable-size structure that references one or more Base

Materials. Each Base Material is assigned a weight ranging from 1% to 100%. The

sum of the weights assigned to the Base Materials of each component must sum to

100%. For example, a mixture aggregate of 75% sand and 25% soil, would be

constructed as a Composite Material with a primary substrate component with Base

Materials BM_SAND (75% weight) and BM_SOIL (25% weight); in this example,

there is no surface substrate and no secondary substrates.

2.5.2.1 Composite Material Substrates

A substrate provides a means to describe the material composition of “hidden”

materials located beneath (or inside) the surface of a feature. This information is not

explicitly modeled using (for instance) polygons; instead it is an essential

characteristic of the material that makes up the modeled feature.

Consider a seabed consisting of a silt deposit (Figure 2-6: Seabed Composite

Material). Such a deposit might have a thickness of a few centimeters. In our model,

it is considered too thick to be considered the surface substrate of the seabed. In fact,

below this silt deposit, there can be sand with a thickness of a few dozen centimeters,

followed by rock of (essentially) infinite thickness. A sonar device can use the

thickness information provided by the Seabed Composite Material, to generate

multiple echoes, corresponding to each substrate.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

2-20

© 2016 Presagis. All Rights Reserved.

Figure 2-6: Seabed Composite Material

As a second example, consider a half-filled refinery oil tank (see Figure 2-7: Oil Tank

Composite Materials).

Figure 2-7: Oil Tank Composite Materials

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

2-21

© 2016 Presagis. All Rights Reserved.

In order to capture different thermal signatures for the top and bottom portions of the

tank, a modeler uses two different Composite Materials:

For the top half of the tank, the modeler uses a Composite Material consisting of paint

(surface substrate), metal (primary substrate) and air (secondary substrate).

For the bottom half of the tank, the modeler uses a Composite Material consisting of

paint (surface substrate), metal (primary substrate) and oil (secondary substrate).

 Thermal Infrared Visible
Figure 2-8: Thermal Simulation of Oil Tank Composite Materials

Note that since the metal substrate is several centimeters thick, it is not considered to

be the surface substrate of the oil. Figure 2-8: Thermal Simulation of Oil Tank

Composite Materials, illustrates the different simulation responses for a FLIR and an

OTW CDB client device for this particular example.

2.5.2.2 Composite Material Tables (CMT)

Composite Material Tables provide the means by which Composite Materials can be

defined. Each entry within a Composite Material Table defines a structured

arrangement of basic materials or of aggregates (i.e., a Composite Material). Each

Composite Material entry is assigned a Composite Material Index (and an optional

name). CDB datasets can then make use of the index value in order to select

Composite Materials.

There are several Composite Material Tables spread across the CDB hierarchy. Note

however that all Composite Material Tables follow a common XML notation that

describes each Composite Material into its primary substrate, surface and secondary

substrate components. Composite Materials Tables can take various forms, either as

distinct XML files or embedded XML code within a file.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

2-22

© 2016 Presagis. All Rights Reserved.

Here is the XML notation for a Composite Material Table:

<Composite_Material_Table>

 <Composite_Material index="...">

 <Name>...</Name>

 <Surface_Substrate>

 <Material>

 <Name>...</Name>

 <Weight>...</Weight>

 </Material>

 <!-- Insert other Material as needed -->

 </Surface_Substrate>

 <Primary_Substrate>

 <Material>

 <Name>...</Name>

 <Weight>...</Weight>

 </Material>

 <!-- Insert other Material as needed -->

 <Thickness>...</Thickness>

 </Primary_Substrate>

 <Secondary_Substrate>

 <Material>

 <Name>...</Name>

 <Weight>...</Weight>

 </Material>

 <!-- Insert other Material as needed -->

 <Thickness>...</Thickness>

 </Secondary_Substrate>

 <!-- Insert other Secondary_Substrate as needed -->

 </Composite_Material>

 <!-- Insert other Composite_Material as needed -->

</Composite_Material_Table>

There can be only one Primary_Substrate and it is mandatory. There can be only one

Surface_Substrate and it is optional. The Secondary_Substrate and the Thickness are

optional. To specify aggregates (more than one material attribute in the MIT), the

Material block is repeated. The Secondary_Substrate is provided (and optionally

repeated) to described composite (stratified) materials. They appear in order starting

from the Surface_Substrate, if present, followed by the Primary_Substrate (nearest to

the surface), and followed by the Secondary Substrate, if present. The base materials

that make each substrate must be listed in decreasing order of weighting.

Each composite material must be tagged with a non-negative integer index, zero

being reserved for default value that is assigned by the database tools. In addition,

each composite material can be optionally tagged with a descriptive name. The CDB

composite material table mechanism provides the means to tag each CDB composite

material with a database tool-specific or modeler-specific composite material name.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

2-23

© 2016 Presagis. All Rights Reserved.

2.5.2.3 Example 1

Consider a linear feature in the CDB that corresponds to a painted stripe on a runway

surface. The linear feature is stored in the Man-Made Lineal dataset; the linear

feature references an entry into the Geocell’s Composite Material Table. That

reference is the index of the Composite Material for painted asphalt. The entry

pointed to describes a Composite Material whose Primary Substrate is 100%

BM_ASPHALT and whose Surface Substrate is 100% BM_PAINT-ASPHALT.

2.5.2.4 Example 2

Consider a terrain areal feature in the GSFeature dataset of the CDB. The areal

feature covers a large wetland area that contains 4 Base Materials, namely BM_SOIL

(21%), BM_WATER-FRESH (51%), BM_LAND-LOW_MEADOW (26%) and

BM_SAND (2%). The areal feature references an entry into the Geocell’s Composite

Material Table. That reference is the name of the Composite Material for wetlands.

The entry describes a Composite Material whose Primary Substrate is composed of

four Base Materials, namely water (with 51% weight), low height vegetation (with

26% weight), soil (with 21% weight) and sand (with 2% weight).

2.5.3 Bringing it all Together

Figure 2-9: Flow of Material Attribution Data illustrates the flow of material

attribution data from features in the CDB right through to the client-device.

Each of the raster features of the CDB can (and should) reference a Composite

Material. The reference points to an entry into a Composite Material Table. Each

CDB tile has a Composite Material Table. The impact of additions, deletions, and

modifications to the Composite Material Table are limited to only those features that

make up the tile; this reduces the compilation time associated with the production of

Composite Material Table data.

Likewise, zones and polygons within an OpenFlight model can optionally reference

one or more Composite Materials. The references each point to entries into a

Composite Material Table that is associated with the model. Each model can have an

associated Composite Material Table. The impact of additions, deletions, and

modifications to the Composite Material Table are limited to only those features that

make up the model; this reduces the generation time associated with the production of

Composite Material Table data for the model.

In turn, each of the entries in the Material Composite Table has one or more

references to Base Materials entries of the Base Materials Table. The Base Materials

Table is global to the CDB and its contents are defined and governed by this

Specification.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

2-24

© 2016 Presagis. All Rights Reserved.

Figure 2-9: Flow of Material Attribution Data

2.5.4 Determination of Material Properties by SEM

The association of material properties to features in the CDB requires two distinct

steps.

1. The first step consists in establishing a correspondence between all of the

Base Materials in the CDB and the Base Materials directly supported by

the SEM of the client-device. This is a manual task performed by the

SEM specialist(s). The specialist must ensure that his SEM has a

corresponding Base Material for each of the CDB Base Materials. In

cases where the SEM is simple, it is possible for two or more CDB Base

Materials to point to the same SEM Base Material. Alternately the SEM

specialist may chose to create new SEM Base Materials that correspond

more closely to the CDB’s Base Materials. The result of this process is a

SEM look-up.

2. The second step is typically undertaken during the CDB initialization by

the client-device running the SEM. During this initialization phase, the

SEM reads the content of the global Base Material Table and the SEM

look-up provided by the SEM specialist. This look-up establishes an

indirect link between the Base Materials in the CDB and the material

properties of the client-device’s SEM Base Materials. In fact, the indirect

key3

key18

key21

key13

key7

key36

key28

key24

key31

key4

 m aterial0

m aterial1

m aterial2

m aterial3

m aterial4

m aterial5

m aterial6

m aterial7

m aterial8

m aterial9

m aterial10

m aterial11

m aterial12

m aterial13

m aterial14

m ateria l15

m aterial16

m aterial17

m aterial18

m aterial19

D ataset

Composite

M ateria l

T able

CD B’s Base

M ateria l

T able

SE M Base

M ateria l T able

Feature locally

references a

C om posite M aterial

Local to C D B Tile G lobal to C D B Local to the C lient-device SEM

P 1 S 1 S 2 S 1

C M IX

P 2 P 3

Surface substrate

Prim ary substrate
Secondary

 substrate

Secondary

 substrate

C om posite M aterials each referen ce

one or m ore (global) Base M aterials

C D B’s Base M aterials each reference

SE M Base M aterials and hence SE M

m aterial properties

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

2-25

© 2016 Presagis. All Rights Reserved.

link (i.e., the look-up table) can be eliminated if the client device

internally builds a Materials Properties Table that uses the CDB material

keys directly (as illustrated in Figure 2-11: SEM Base Material Properties

Table).

Figure 2-10: Linking CDB Base Materials to SEM Base Materials

Figure 2-11: SEM Base Material Properties Table

key3

key18

key21

key13

key7

key36

key28

key24

gen31

key4

 m aterial0

m aterial1

m aterial2

m aterial3

m aterial4

m aterial5

m aterial6

m aterial7

m aterial8

m aterial9

m aterial10

m aterial11

m aterial12

m aterial13

m aterial14

m aterial15

m aterial16

m aterial17

m aterial18

m aterial19

CD B Base

M ateria l

SE M 's Base

M ateria l T able

Step 2

G lobal: B elongs to th e C D B Externa l: B elongs to the SEM

10

7

9

17

2

0

4

11

1

12

SE M 's

Look-U p

T able

key36

gen31

key7

key28

key18

key21

key3

key24

key4

key37

key151

key13

Step 1

References fro m

Composite M ateria ls

R un-tim e

0

1

2

3

4

5

6

7

8

9

O ff- line

key3

key18

key21

key13

key7

key36

key28

key24

gen31

key4

CD B Base

M ateria l

T able

SE M 's

Base M ateria l

P roperties T able

References fro m

Composite M ateria ls

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

2-26

© 2016 Presagis. All Rights Reserved.

2.5.4.1 Example

In the example of Section 2.5.2.4, Example 2, we have a Composite Material

consisting of four Base Materials. For the purpose of this example, we will associate

hypothetical keys to these materials:

 water (key3 = "BM_WATER-FRESH", BMT's index 0)

 vegetation (key21 = " BM_LAND-LOW_MEADOW", BMT's index 2)

 soil (key7 = " BM_SOIL ", BMT's index 4)

 sand (key4 = " BM_SAND ", BMT's index 9)

The SEM specialist establishes the following correspondence between the CDB Base

Materials and his materials (step 1):

 key3 to material 8 ("Lake", SEM list's index 8)

 key21 to material 3 ("Uncultivated Land", SEM list's index 3)

 key7 to material 7 ("Soil", SEM list's index 7)

 key4 to material 12 ("Sand", SEM list's index 12)

During the CDB initialization process (step 2), a look-up table is built as follows:

 BMT’s index 0 is associated to SEM list's index 8

 BMT’s index 2 is associated to SEM list's index 3

 BMT’s index 4 is associated to SEM list's index 7

 BMT’s index 9 is associated to SEM list's index 12

2.5.5 Generation of Materials for Inclusion in CDB Datasets

In the case of vector data, the generation of the material information typically requires

the modeler to apply an image classification process to the terrain raster imagery.

Many industry-standard tools offer this classification capability.

Following this step, the resultant material classified raster imagery is vectorized into

areals and/or lineals. Note that the quality of the image classification typically

improves with the availability of multi-spectral terrain imagery data. Also note that

these two steps can be skipped if the vectorized datasets already exist in digital form.

The classification of the terrain imagery can be done directly against the Base

Materials defined by Appendix L of this Specification. In this case, the modeler need

not be aware of the Base Materials mandated by the CDB Specification. This can be

done because the tools can abstract these Base Materials and provide the modeler

with an alternate selection of materials. The selection of materials provided to the

modeler is quite arbitrary. This indirect step allows modelers to work with the

“materials” they are familiar with. Nonetheless, the tools must, in the end, build the

Composite Material Tables required by the CDB Specification and resolve all

material references into the Base Materials supported by this Specification. In effect,

the Composite Material Table is used to map the modeler’s materials into CDB Base

Materials.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

2-27

© 2016 Presagis. All Rights Reserved.

Alternately, the classification of the terrain imagery can be done against whatever

“material classes” modelers are accustomed to use when conducting such

classifications. In this case, the SEM specialist can define corresponding Composite

Materials for each of these material classes so that they resolve down to the Base

Materials supported by the CDB.

In the case of 3D models, the modeler is required to appropriately tag zones or

selected polygons with the appropriate materials. Here again, the modeler need not

be aware of the Base Materials mandated by the CDB Specification and can work

with the materials he is most familiar with.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-1

© 2016 Presagis. All Rights Reserved.

Chapter 3

3 CDB Structure

This chapter defines the structure of the CDB, i.e., the name of all directories forming

the CDB hierarchy, as well as the name of all files found in the CDB hierarchy. An

important feature of the CDB Specification is the fact that all CDB file names are

unique and that the filename alone is sufficient to infer the path to get to the file.

The CDB is composed of several datasets that usually reside in their own directory

structure; however some datasets share a common structure. The following sections

present the directory structures of all CDB datasets.

3.1 Top-Level CDB Structure Description

The top-level directory structure of the CDB from the root directory is described

below. All of the synthetic environment content falls in these directories:

1. \CDB\:

This is the root directory of the CDB. It does not need to be “\CDB\” and can

be any valid path name on any disk device or volume under the target file

system it is stored on. In order for the text of this Specification to remain

readable, all examples referring to the root CDB path name will start with

\CDB\. A CDB cannot be stored directly in the root directory of a disk device

or volume. A CDB path name cannot be within another CDB or CDB version.

The length of the path name leading to the CDB root directory should be small

enough such that the platform file system can store all possible file path names

stored within a CDB. All of the files stored within a CDB must be under the

root directory or within a subdirectory under the root directory of the CDB, as

specified in this document. Run-time applications must be given the path and

device on which the CDB is stored in order to access the CDB.

The CDB Specification also has provisions for the handling of multiple,

incremental versioning of the CDB. To support this capability, run time

applications must first access a predetermined version of the CDB and all its

predecessors to determine content changes to the CDB. If no change is

encountered in any of the incremental versions, the applications are required to

use the content of the active default CDB. The versioning mechanism is done

at the file level. Refer to Section 3.2, CDB Configuration Management, for

details on how CDB supports incremental versioning.

2. \CDB\Metadata\:

The directory that contains the specific XML metadata files which are global

to the CDB. The directory structure and metadata descriptions are defined in

Section 3.1.1, Metadata Directory.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-2

© 2016 Presagis. All Rights Reserved.

3. \CDB\GTModel\:

This is the entry directory that contains the Geotypical Models Datasets. The

directory structure is as defined in Section 3.4, GTModel Library Datasets.

4. \CDB\MModel\:

This is the entry directory that contains the Moving Models Datasets. The

directory structure is defined in Section 3.5, MModel Library Datasets.

5. \CDB\Tiles\:

This is the entry directory that contains all tiles within the CDB instance. The

directory structure is defined in Section 3.6, CDB Tiled Datasets.

6. \CDB\Navigation\:

This is the entry directory that contains the global Navigation datasets. The

directory structure is defined in Section 3.7, Navigation Library Dataset

Most of the CDB datasets are organized in a tile structure and stored under

\CDB\Tiles\ directory. The tile structure facilitates access to the information in real-

time by the runtime client-devices. However, for some datasets such as Moving

Models or geotypical models datasets that require minimal storage, there is no

significant advantage to be added from such a tile structure. Such datasets are

referred to as global datasets; they consist of data elements that are global to the earth,

i.e., no structure other than the datasets is provided.

3.1.1 Metadata Directory

There is one directory containing metadata files that are global to the overall CDB

structure. \CDB\Metadata contains metadata files that define the various sets of

naming hierarchies and definitions used throughout the CDB. File content is

described in Section 5.1, Metadata Datasets. Most metadata files (except one) are

optional and CDB users must implement default behaviors, according to information

contained in this Specification. The \CDB\Metadata directory contains the following

metadata files:

1. “Lights” Definitions Metadata file:

This file contains the metadata that defines the light points name hierarchy for

the CDB. Refer to Section 2.3, Light Naming, for a description of the light

type hierarchy. A listing of the CDB light type hierarchy can be found in

Appendix E. The hierarchy found in Appendix E must be used when

“Lights.xml” is not found in the metadata directory. Refer to section 5.1.1

Light Name Hierarchy Metadata for a description of the light point name

hierarchy file.

2. “Model_Components” Definitions Metadata file:

This file contains the metadata that defines the CDB model components.

Refer to Section 2.4, Model Component Naming, for a description of the

model components. A listing of the CDB model components can be found in

Appendix F. Refer to section 5.1.2 Model Components Definition Metadata

for a description of the model component file.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-3

© 2016 Presagis. All Rights Reserved.

3. “Materials” Definitions Metadata file:

This file contains the base material names for the CDB. Refer to Section 2.5,

Materials, for a description of the CDB materials. A listing of the CDB Base

Materials can be found in Appendix L. The base material names found in

appendix L must be used when the “Materials.xml” file is not found in the

metadata directory. Refer to section 5.1.3 Base Material Table for a

description of the materials definition file.

4. “Defaults” Definitions Metadata file:

This file contains the default values for each of the CDB datasets. Refer to

Chapter 5, CDB Datasets, for a description of the CDB datasets. Appendix S

lists the various default values as documented throughout this Specification.

Defaults values found in appendix S must be used if the “Defaults.xml” file is

not found in the metadata directory. Refer to section 5.1.4 Default Values

Definition Metadata for a description of the defaults definition file.

5. “Specification_Version” Metadata file (deprecated)

6. “Version” Metadata file:

This metadata file is mandatory and identifies the content of one CDB

Version. The concept is described in section 3.2.1, CDB Version; the content

of the file is defined in section 5.1.6, Version Metadata.

7. “CDB_Attributes” Metadata file:

This file is used to describe all the CDB attributes that are supported by the

CDB Specification. A complete listing and description of CDB attributes is

provided in section 5.7.1.3, CDB Attributes of this Specification. The file is

described in section 5.1.7 CDB Attributes Metadata.

8. “Geomatics_Attributes” Metadata file:

This file is used to describe all Geomatics attributes that may be referenced by

this CDB (refer to section 5.7.1.2.6.2, Geomatics Attributes for a description

of Geomatics attributes). Note that the usage of Geomatics attribution falls

outside of the jurisdiction of the CDB Specification. Nonetheless, the CDB

Specification provides a standardized mechanism to allow users to fully

describe each of the Geomatics attributes they wish to insert within the CDB

repository structure. The file is described in section 5.1.8, Geomatics

Attributes Metadata.

9. “Vendor_Attributes” Metadata file:

This file is used to describe all Vendor attributes that may be referenced by

this CDB (refer to section 5.7.1.2.6.3, Vendor Attributes for a description of

Vendor attributes). Note that the usage of Vendor attribution falls outside of

the jurisdiction of the CDB Specification. Nonetheless, the CDB

Specification provides a standardized mechanism to allow users to fully

describe each of the Vendor attributes they wish to insert within the CDB

repository structure. The file is described in section 5.1.9, Vendor Attributes

Metadata.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-4

© 2016 Presagis. All Rights Reserved.

10. Client-specific Metadata files:

These files are limited to “Lights_xxx.xml” Definitions Metadata files and

offer a complementary approach to modifying the appearance of lights for

specific client-devices. The “xxx” suffix is a 32-character string placeholder

that stands for the client-device name. There can only be one such file per

client-device and the files for each client-device are optional. Refer to section

5.1.1.1, Client Specific Lights Definition Metadata for a description of the

client specific lights definition file.

11. “Configuration” Metadata file:

This file provides the means of defining CDB Configurations. The concept is

defined in section 3.2.4, CDB Configuration; the content of the file is defined

in section 5.1.10, Configuration Metadata.

3.1.2 Metadata File Examples

Each CDB Version has a metadata file whose complete path and file name is:

\CDB\Metadata\Version.xml

A Forward Looking Infrared client device named “FLIR” has a client specific

metadata file having the following directory path and file name:

\CDB\Metadata\Lights_FLIR.xml

3.2 CDB Configuration Management

The CDB Configuration and CDB Version mechanisms allow users to manage the

Common Database (CDB). The two mechanisms permit the users to implement

Configuration Management (CM) and versioning by offering the following

capabilities:

 The Common Database (CDB) can have multiple simultaneous independent CDB

Configurations.

 Each CDB Configuration is defined by an ordered list of CDB Versions.

 A CDB Version is either a collection of pure CDB Datasets or a collection of

user-defined datasets

o in which case the CDB Version is called a CDB Extension

3.2.1 CDB Version

A CDB Version is a collection of pure CDB Datasets and/or user-defined datasets. A

CDB Version contains data belonging to a single version of the Specification. A

CDB Version may refer to another CDB Version. This is the basis for the CDB File

Replacement Mechanism. The concept of a CDB Version is illustrated by the UML

diagram below.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-5

© 2016 Presagis. All Rights Reserved.

-CDB Datasets

-CDB Specification Version

-CDB Version

CDB Version

-data

CDB Dataset

0..*
0..1

Figure 3-1: UML Diagram of CDB Version Concept

The diagram shows that a CDB Version contains CDB Datasets; in addition it states

which CDB Specification Number has been used to build the CDB content; finally,

the CDB Version has a reference to another CDB Version. This reference allows the

creation of a chain of CDB Versions. By chaining two CDB Versions together, the

user can replace files in a previous CDB Version with new ones in a newer CDB

Version. The figure below illustrates the chaining of CDB Versions belonging to

different CDB Specification Number.

CDB Version 2 CDB Version 1

CDB Spec 3.1 CDB Spec 3.0

CDB Version 3

CDB Spec 3.2

Figure 3-2: A Valid Chain of CDB Versions

The figure above shows three (3) CDB Versions, each containing data compliant to a

different version of the Specification. It shows that CDB Version 3 (on the left)

complies with version 3.2 of the Specification and refers (the blue line) to CDB

Version 2 (in the middle), a 3.1-compliant database, which in turn refers to CDB

Version 1 (to the right), a 3.0-compliant database.

Each CDB Version has its own Version.xml file in its Metadata folder. As such, the

smallest CDB Version contains a single file:

\CDB\Metadata\Version.xml

Since a CDB is made of at least one CDB Version, an empty and valid CDB has

exactly one file, Version.xml, and all other datasets assume their default values.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-6

© 2016 Presagis. All Rights Reserved.

3.2.1.1 CDB Extensions

A CDB Extension is a special CDB Version that is making use of the extension

mechanism defined by this Specification to supplement the CDB with user-defined

data. The actual way user-defined data is formatted and stored in a CDB Extension

falls outside the realm of the Specification and is completely left to the user. The

following UML diagram defines the CDB Extension concept.

-CDB Datasets

-CDB Specification Version

-CDB Version

CDB Version

-name

-version

CDB Extension

-data

User Dataset

0..*

-data

CDB Dataset

0..*

0..1

Figure 3-3: UML Diagram of CDB Extension Concept

The diagram shows that a CDB Extension inherits all the attributes of a CDB Version

and adds its own attributes, a name and a version number (of the extension). A client

application checks the name attribute to recognize and process known CDB

Extensions; unrecognized CDB Extensions are skipped.

To illustrate the rule, assume that CDB Version 2 from Figure 3-2 above is in fact a

CDB Extension whose name is not recognized by the client application; then the

client must skip CDB Version 2 and continue its processing with CDB Version 1.

3.2.2 CDB Version Directory Structure

The files and the directory structure of CDB Versions are defined in subsequent

section of this chapter. There can be an arbitrary number of CDB Versions in the

CDB.

The root of each CDB Version can have any valid path name
47

 on any disk device or

volume under the target file system it is stored on. A CDB Version cannot be stored

directly in the root directory of a disk device or volume. A CDB Version path name

cannot be within another CDB Version. The length of the path name leading to the

47 As defined in section 2.2, File System

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-7

© 2016 Presagis. All Rights Reserved.

CDB Version directory should be small enough such that the platform file system can

store all possible file path names stored within a CDB version.

The path to the boot CDB Version is the entry point that must be provided to all

client-device applications when loading the CDB synthetic environment. Run-time

applications must have access, directly or indirectly, to all disk devices and volumes

as well as all paths to all linked CDB Versions simultaneously.

3.2.3 CDB File Replacement Mechanism

The CDB File Replacement Mechanism allows content to be added, deleted and

modified from the CDB. A file is said to exist in two (or more) CDB Versions when

its relative path and name are the same in each version. This mechanism describe

herein defines how to handle identical files found in multiple CDB Versions. Each

CDB Version can contain a set of additions, modifications and deletions with respect

to prior CDB Versions.

Figure 3-4 illustrates the case where a modeler has created a CDB Version that

contains an additional level-of-detail to a wellhead OpenFlight model. When

processed by a client application, the “effective” CDB now contains both the

AA051_Wellhead_LOD0.flt and the AA051_Wellhead_LOD1.flt files.

Figure 3-4: Adding content to the CDB

The process of modifying files is similar to adding files; any files that have been

modified are inserted in a new CDB Version. Figure 3-5: Modifying Content of the

CDB, illustrates the case where a modeler has modified level-of-detail #1 of a

wellhead OpenFlight model. When processed by a client application, the “effective”

CDB now contains the modified version of the AA051_Wellhead_LOD1.flt.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-8

© 2016 Presagis. All Rights Reserved.

Figure 3-5: Modifying Content of the CDB

A CDB Version can be created when content needs to be deleted from a prior CDB

Version. The instruction to remove content from the CDB is triggered from the null

files (e.g., files that are empty and whose size is zero) that are encountered within a

CDB Version. Whenever a client application encounters a null file, it stops searching

for it in prior CDB Versions and consider the file absent from the CDB. Figure 3-6:

Deleting Content from the CDB, illustrates the case where a modeler has deleted

level-of-detail #1 of a wellhead OpenFlight model. When processed by a client

application, the “effective” CDB no longer contains the AA051_Wellhead_LOD1.flt

OpenFlight file.

Figure 3-6: Deleting Content from the CDB

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-9

© 2016 Presagis. All Rights Reserved.

3.2.3.1 How to Handle Archives

The CDB File Replacement Mechanism works at the file level, as the name implies.

For this reason, in the case of geospecific 3D model (GSModel) datasets whose files

are stored in ZIP files, the replacement is done at the ZIP level; i.e., the content of the

current version of the ZIP file completely replaces the previous version.

3.2.3.2 How to Handle the Metadata Directory

The File Replacement Mechanism does not apply to the content of the Metadata

directory because the files in a CDB Version must be generated, interpreted and

processed with their own metadata. Stated otherwise, the Metadata of a CDB Version

belongs solely to the files residing inside that CDB Version. When generating a CDB

Version, the content generation tool must also generate the Metadata that will permit

a client device to consume and interpret its content. Consequently, when a client

device consumes data from a particular CDB Version, it must retrieve and use the

Metadata of that CDB Version to correctly interpret the data obtained from it.

3.2.4 CDB Configuration

A CDB Configuration defines a list of CDB Versions. The following UML diagram

presents the CDB Configuration concept.

CDB Configuration

+Comment
+CDB Version Lists

CDB Version List

+CDB Specification Version
+CDB Versions

CDB Version

+Comment
+Path

CDB Extension

+Name
+Version

1..*

1..*

Figure 3-7: UML Diagram of CDB Configuration Concept

The UML diagram tells us that a CDB Configuration is a collection of one to many

Lists of CDB Versions. Each list of CDB Versions belongs to a single version of the

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-10

© 2016 Presagis. All Rights Reserved.

CDB Specification and has a collection of one to many CDB Versions. Note that a

CDB Extension is a CDB Version that is making use of the extension mechanism

defined by this Specification to supplement the CDB with user-defined data.

The Configuration.xml metadata file provides the means of defining a CDB

Configuration. The file resides in the Metadata folder of the CDB as follows:

\CDB\Metadata\Configuration.xml

When a client application opens a CDB, it searches the Metadata folder for the

presence of the Configuration.xml file. If the file is found, the client uses its content

to access all CDB Versions that are making up this CDB configuration. Otherwise,

the client falls back to the mechanism associated with Version.xml. Note that when

the client finds Configuration.xml, it does not need to open any of the Version.xml

files associated with the CDB Versions referred to by the CDB Configuration; i.e., the

purpose of the Configuration.xml file is to avoid reading multiple Version.xml files

scattered all over the CDB.

3.2.5 Management of CDB Configurations and Versions

The performance of real-time simulation systems is directly affected by the number of

CDB versions in the currently active CDB configuration. Unless the number of

versions is bounded, performance guarantees cannot be provided by client-devices.

Since a CDB is usually intended for use in real-time simulation systems, it is strongly

recommended that all CDB chains be limited to no more than 8 CDB versions
48

.

Failure to do this may result in unsuitable delays when performing simulator

repositions or may lead to paging artifacts at higher speeds and/or lower-altitudes.

Client-device data sheets should specify the criteria under which performance can be

guaranteed for the specified training requirements.

In the case where a CDB is solely intended as an off-line (read-write) repository it is

permissible to have chains with up to 50 versions. Database processing times may

increase with chain lengths, commensurate with storage system access times.

3.3 CDB Model Types

The cultural features of a CDB can be represented using one of the following types of

modeled representations:

a) GTModel: 3D modeled geotypical representation of a point-feature that is

anchored to the ground.

48 For instance, this would allow for configurations that consist of 1 version for a background world, 3 versions for each of

the CDB specification versions, 1 version for dynamic changes, and 3 modeling content versions (1 content version for each

specification version).

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-11

© 2016 Presagis. All Rights Reserved.

b) GSModel: 3D modeled geospecific representation of a point-, lineal- or areal-

feature that is anchored to the ground.

c) T2DModel: 2D modeled geospecific or geotypical representations of point-, lineal

and areal features that are anchored to the ground.

d) MModel: 3D modeled representations of point-features that are not anchored to

the ground.

The modeled representation of a feature primarily consists of its geometry and

textures, and encompasses its exterior and interior.

In this Specification, the following terms and expressions will be used:

 The term Model refers to all of the modeled representations of a cultural

feature.

 The term Model-LOD refers to a specific level of detail of a Model.

 The term 2DModel refers to the modeled representations of a 2D feature, i.e.,

a feature that has no significant height with respect to the underlying terrain.

 The term 2DModel-LOD refers to a specific level of detail of a 2DModel.

 The term 3DModel refers to the modeled representation of a 3D feature that

can be readily distinguished from the underlying terrain. In the case where the

3DModel is unique, it is referred to as a GSModel. In the case where the

3DModel is instanced, it is referred to as a GTModel. A 3DModel that is

capable of movement is called a MModel. In the case where a MModel is

positioned by the modeler, it is called a statically-positioned MModel.

 The term 3DModel-LOD refers to a specific level of detail of a 3DModel.

3.3.1 GTModel (Geotypical 3D Model)

A feature is said to have a 3D geotypical modeled representation if it is associated

with a 3D Model that is typical of the feature’s shape, size, textures, materials, and

attributes. The use of geotypical models is appropriate if the modeler does not wish

to fully replicate all of the unique characteristics (e.g., shape, size, texture) of a

feature, as they are in the real-world. When a feature is represented by a geotypical

model, the modeler is in effect stating that two or more features of the same type (i.e.,

same FACC) have the same modeled representation.

3.3.2 GSModel (Geospecific 3D Model)

A feature is said to have a 3D geospecific modeled representation if it is associated

with a 3D model that is unique in shape, size, texture, materials, and attributes. The

use of geospecific models is appropriate if the modeler wishes to fully replicate all of

the unique characteristics (e.g., shape, size, texture) of a feature, as they are in the

real-world. As a result, a geospecific model corresponds to a unique real-world, and

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-12

© 2016 Presagis. All Rights Reserved.

usually recognizable, cultural feature. Real-world features such as the Eiffel Tower,

the Pentagon, or the CN Tower, to name a few, are usually modeled as geospecific.

3.3.3 T2DModel (Tiled 2D Model)

A feature is said to have a 2D modeled representation if it is associated with a

modeled representation that has no significant height with respect to the underlying

terrain and generally conforms to the terrain profile. It is convenient to think of the

2D Models as a complement and as an extension to the Elevation, Imagery, and

Raster Material datasets. 2D Models provide the means to represent 2D surface

features that are conformed to the underlying terrain:

a) Modeled representation of geotypical and geospecific 2D lineal-features such as

roads, runways and taxiways, stripes.

b) Modeled representation of geotypical and geospecific 2D areal-features such as

aprons, surface markings, contaminants, land usage (campgrounds, farms, etc.).

2D Models can also be used to model geotypical terrain textures as a mesh of 2D

textured polygons overlaying the terrain. This modeling technique replicates

approaches used in early Image Generators which had limited ability to page-in

geospecific terrain textures.

3.3.4 MModel (Moving 3D Model)

A moving model is typically characterized as such if it can move (on its own) or be

moved. More specifically within the context of the CDB Specification, the model is

not required to be attached to a cultural point feature.

During the course of a multi-player simulation
49

, each client-device is typically

solicited to provide a modeled representation of each of the players. The activation of

such players requires that the client-device access the appropriate modeled

representation for each of players. There are a large number of military simulations

where the player types are characterized by their DIS code. To this end, the CDB

provides a moving model library whose structure provides a convenient

categorization of models by their DIS code.

3.3.5 Use of GSModels and GTModels

Sections 3.3.1 and 3.3.2 illustrate cases where the choice to represent a feature with

either a geotypical (GTModels) or a geospecific model (GSModels) is more clear-cut.

This section gives additional insight into the considerations and trade-offs that go

with associating a point-feature with either a geotypical or a geospecific modeled

representation. By characterizing a feature as geotypical, the modeler makes a

49 The players may be virtual (e.g., other simulators), synthetic (e.g., computer-generated simulations) or may be live (real-

world players playing alongside virtual or synthetic players).

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-13

© 2016 Presagis. All Rights Reserved.

statement as to the expected usage of the feature (and its associated modeled

representation) within the CDB.

When a feature is tagged as geotypical…

a) the modeler is making a statement about his knowledge of the very high

probability of repeatedly encountering that model type within the CDB and…

b) the modeler is making a statement that he will likely associate the same modeled

representation (same shape, size, texture, materials, or attributes, etc.) for the

feature type – as a result, the client-devices can count on the fact that the model

will be heavily replicated throughout the CDB. The characterization of a model

as geotypical tells the consumers of the CDB that the model is heavily used

throughout the CDB and that it may be cached in memory for re-use.

The manner in which geotypical models are stored / accessed differs from their

geospecific counterparts. Geotypical models are stored in their own directory

structure; this group of models is referred collectively as the GTModel library. The

storage structure of the GTModel library provides a convenient categorization of

models by their FACC and their level-of-detail. As a result, geotypical models can be

managed as a global library of 3D models that are used to fill the CDB with cultural

detail.

The above discussion applies equally to statically-positioned moving models. The

manner in which statically-positioned moving model features (and their modeled

representations) are stored and accessed is similar to geotypical models; it differs

however in the fact that the MModel library provides a categorization of models by

their DIS code. The model is fetched from the MModel library regardless of whether

it is used as statically-positioned model by the modeler or whether it is dynamically-

positioned by the client-device during the simulation.

Conversely, when a feature is tagged as geospecific…

a) the modeler is making a statement about his knowledge that the feature will be

encountered only once within the CDB or…

b) the modeler is making a statement regarding his intention to associate a unique

modeled representation (different shape, size, texture, materials, or attributes, etc.)

for that feature – as a result, the client-devices can assume that the feature will

never share the same modeled representation with other features (e.g., no model

replication) within the CDB. Real-world recognizable cultural point features (say

the Eiffel Tower, the Pentagon, the CN Tower) are usually modeled as

geospecific.

GSModels have a storage organization that is consistent with Tiled datasets. The

storage organization of tiled datasets has been optimized to efficiently access CDB

content by its lat-long location, its level-of-detail and its dataset component type.

Like all of the CDB Tiled datasets, geospecific models are stored in the \CDB\Tiles\

directory. As a result, client-devices can reference each model with a unique directory

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-14

© 2016 Presagis. All Rights Reserved.

path and a unique file name which is derived from the model’s unique position, level-

of-detail, and its FACC feature code.

In most cases, the decision to invoke a modeled representation of a feature as either

geotypical or geospecific is clear. When it comes to real-world recognizable cultural

features, the representation of these features is clearly a geospecific model because it

is encountered once in the entire CDB and it is unique in its shape, texture, etc. At

the end of the spectrum, many simulation applications use a generic modeled

representation for each feature type and then instance that modeled representation

throughout the synthetic environment. For this case, the choice is clearly geotypical.

There are cases however, where the decision to represent features as either geotypical

or geospecific is not as clear-cut. For instance, a modeler may not be satisfied with a

single modeled representation for all the hospital features (FACC-FSC = AL015-

006); accordingly, he may wish to model two or more variants of hospitals in the

CDB. While each of these modeled representation may not be real-world specific,

they are nonetheless variants of hospitals (say by size or by region or country for

example). Usually, the primary motivation for such variations is one of esthetics and

realism; it is not necessarily motivated by the need to accurately reflect real-world

features.

In making his decision, the modeler should factor-in the following trade-offs:

a) CDB Storage Size: The size of the CDB is smaller when the cultural features

reference geotypical models rather than geospecific models. This is due to the

fact that the modeled representation of geotypical model is not duplicated within

each tile – instead, the model appears once in the GTModel library dataset

directory. Clearly, a geotypical model is the preferred choice if the modeler

wishes to assign and re-use the same modeled representation for a given feature

type.

b) Client-device Memory Footprint: By assigning a geotypical model to a feature,

the modeler provides a valuable “clue” to the client-device that the feature will be

instanced throughout the CDB with the same modeled representation. As a result,

client-device should dedicate physical memory for the storage of the geotypical

models for later use.

c) GTModel Library Management: The CDB’s Feature Data Dictionary (FDD) is

based on the DIGEST, DGIWG, SEDRIS and UHRB geomatics standards. These

standards are commonly used for the attribution of source vector data in a broad

range of simulation applications. The CDB Feature Data Dictionary acts much

like what an English dictionary is to a collection of novels. As a result, it is

possible to develop a universal GTModel Library which is totally independent of

the CDB content (just like a dictionary is independent of books). This universal

GTModel Library can be simply copied into the \CDB\GTModel directory. The

structure of the GTModel Library is organized in accordance to the CDB’s FDD –

in other words, the models are indexed using the CDB Feature Access Code

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-15

© 2016 Presagis. All Rights Reserved.

(FACC). The indexing approach greatly simplifies the management of the model

library since every model has a pre-established location in the library.

d) CDB Generation and Update: As mentioned earlier, the size of the CDB is

smaller when the cultural features reference geotypical models rather than

geospecific models. This is due to the fact that the modeled representation of

geotypical model is not duplicated within each tile – instead, the model appears

once in the GTModel library dataset directory. This reduces the amount of time

required by the tools to generate and store the CDB onto the disk storage system.

The second benefit of geotypical models comes in the case where a modeler

wishes to change the modeled representation of one or more geotypical features

type across the entire CDB. Changes to the modeled representation of a feature

type can easily be performed by simply overwriting the desired model in model

library. From then on, all features of that type now reference the updated model –

no other changes to the CBD are required.

Note that since the size of the GTModel library is likely to exceed the client-device’s

model memory, the client-device must implement a caching scheme which

intelligently discards models or portions of models that are deemed less important,

used infrequently or not used at all
50

. It is up to the client-device to accommodate for

the disparity between the size of client-device’s model memory and the size of the

GTModel library. Clearly when the disparity is large, the caching algorithm is

solicited more frequently and there is more “trashing” of the cache’s content. The

key to a successful implementation of a caching scheme resides in an approach which

discards information not actively or currently used by the client-device. The CDB

specification offers a rich repertoire of attribution information so that client-devices

can accomplish this task optimally
51

. Consequently, the client-devices can smartly

discard model data that is not in use (e.g., models and/or, textures) during the course

of a simulation. Note that in more demanding cases, client-devices may have to

resort to a greater level of sophistication and determine which levels-of-detail of the

model geometry and/or model texture are in use in order to accommodate cache

memory constraints. It is clearly in the modeler’s interest to avoid widespread usage

of model variants within the GTModel Library. In doing so, the modeler overly

relies on the client-devices abilities to smartly manage its model cache
52

. As a result,

run-time performance may suffer.

50 For example, a caching scheme could be based on the model’s frequency of use (computed by the client-device during the

simulation), the model’s Relative Tactical Importance Code (RTAI), the model’s Bounding Sphere (BSR) and scale

(SCAL), and the model’s Bounding Box (BBH, BBL, BBW). Failure to cache the model would result in the wasteful

refetching of the geotypical model from the disk storage system each time it is invoked. This would greatly increase disk

storage system IO and reduce client-device paging performance. In the worst-case, the client-device’ performance from a

memory usage and disk storage bandwidth point-of-view is no worse than of geospecific models

51 Failure to cache the model would result in the wasteful refetching of the geotypical model from the disk storage system

each time it is invoked. This would greatly increase disk storage system IO and reduce client-device paging performance.

52 Client-devices with less capable memory management might simply refuse to load geotypical models once the memory is

exhausted.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-16

© 2016 Presagis. All Rights Reserved.

As mentioned earlier, the modeled representation of a geotypical model is not

duplicated within each tile – instead, the model appears once in the GTModel library

dataset directory. As a result, once the model is loaded into memory, it can be

referenced without inducing a paging event to the CDB storage system. Clearly, the

paging requirements associated with geotypical features are negligible. As a result,

paging performance is improved because of the reduced IO requirements on the CDB

storage system.

3.3.6 Organizing Models into Levels of Details

The geometry, texture, and signature datasets of 3D models are organized into levels

of details (LOD) based on their resolutions. The expression of the model resolution

depends on the dataset; the resolution of the model geometry is called its Significant

Size (SS); the texture resolution is expressed by its Texel Size (TS); and for the radar

signature of a model, its resolution is simply its size and is measured by the diameter

of its Bounding Sphere (BSD).

The lower bounds (LB) of SS, TS, and BSD for a given LOD can be expressed by the

following set of equations.

𝐿𝐵𝑆𝑆 > 111319 2𝐿𝑂𝐷+11⁄ 𝑚

𝐿𝐵𝑇𝑆 > 111319 2𝐿𝑂𝐷+14⁄ 𝑚

𝐿𝐵𝐵𝑆𝐷 > 111319 2𝐿𝑂𝐷+8⁄ 𝑚

In all three equations, the value 111319 represents the approximate length in meters

of an arc of one degree at the equator
53

.

For convenience, the following table gives the CDB LOD associated with these three

measures of the resolution of a model. Note that all values are expressed in meters

using a scientific notation with 6 decimals.

Table 3-1: CDB LOD vs Model Resolution

 ModelGeometry ModelTexture ModelSignature

CDB LOD Significant Size Texel Size Bounding Sphere

-10 SS > 5.565950 × 10
+4
 TS > 6.957438 × 10

+3
 BSD > 4.452760 × 10

+5

-9 SS > 2.782975 × 10
+4
 TS > 3.478719 × 10

+3
 BSD > 2.226380 × 10

+5

-8 SS > 1.391488 × 10
+4
 TS > 1.739359 × 10

+3
 BSD > 1.113190 × 10

+5

-7 SS > 6.957438 × 10
+3
 TS > 8.696797 × 10

+2
 BSD > 5.565950 × 10

+4

-6 SS > 3.478719 × 10
+3
 TS > 4.348398 × 10

+2
 BSD > 2.782975 × 10

+4

-5 SS > 1.739359 × 10
+3
 TS > 2.174199 × 10

+2
 BSD > 1.391488 × 10

+4

-4 SS > 8.696797 × 10
+2
 TS > 1.087100 × 10

+2
 BSD > 6.957438 × 10

+3

-3 SS > 4.348398 × 10
+2
 TS > 5.435498 × 10

+1
 BSD > 3.478719 × 10

+3

-2 SS > 2.174199 × 10
+2
 TS > 2.717749 × 10

+1
 BSD > 1.739359 × 10

+3

53 The actual equation to obtain the values of 111319 m is 𝐿 = 𝑎 ×
𝑃𝐼

180°
 where “a” is the length of the major semi-axis of the

WGS-84 ellipsoid; “a” is also known as the equatorial radius.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-17

© 2016 Presagis. All Rights Reserved.

 ModelGeometry ModelTexture ModelSignature

CDB LOD Significant Size Texel Size Bounding Sphere

-1 SS > 1.087100 × 10
+2
 TS > 1.358875 × 10

+1
 BSD > 8.696797 × 10

+2

0 SS > 5.435498 × 10
+1
 TS > 6.794373 × 10

+0
 BSD > 4.348398 × 10

+2

1 SS > 2.717749 × 10
+1
 TS > 3.397186 × 10

+0
 BSD > 2.174199 × 10

+2

2 SS > 1.358875 × 10
+1
 TS > 1.698593 × 10

+0
 BSD > 1.087100 × 10

+2

3 SS > 6.794373 × 10
+0
 TS > 8.492966 × 10

−1
 BSD > 5.435498 × 10

+1

4 SS > 3.397186 × 10
+0
 TS > 4.246483 × 10

−1
 BSD > 2.717749 × 10

+1

5 SS > 1.698593 × 10
+0
 TS > 2.123241 × 10

−1
 BSD > 1.358875 × 10

+1

6 SS > 8.492966 × 10
−1
 TS > 1.061621 × 10

−1
 BSD > 6.794373 × 10

+0

7 SS > 4.246483 × 10
−1
 TS > 5.308104 × 10

−2
 BSD > 3.397186 × 10

+0

8 SS > 2.123241 × 10
−1
 TS > 2.654052 × 10

−2
 BSD > 1.698593 × 10

+0

9 SS > 1.061621 × 10
−1
 TS > 1.327026 × 10

−2
 BSD > 8.492966 × 10

−1

10 SS > 5.308104 × 10
−2
 TS > 6.635129 × 10

−3
 BSD > 4.246483 × 10

−1

11 SS > 2.654052 × 10
−2
 TS > 3.317565 × 10

−3
 BSD > 2.123241 × 10

−1

12 SS > 1.327026 × 10
−2
 TS > 1.658782 × 10

−3
 BSD > 1.061621 × 10

−1

13 SS > 6.635129 × 10
−3
 TS > 8.293912 × 10

−4
 BSD > 5.308104 × 10

−2

14 SS > 3.317565 × 10
−3
 TS > 4.146956 × 10

−4
 BSD > 2.654052 × 10

−2

15 SS > 1.658782 × 10
−3
 TS > 2.073478 × 10

−4
 BSD > 1.327026 × 10

−2

16 SS > 8.293912 × 10
−4
 TS > 1.036739 × 10

−4
 BSD > 6.635129 × 10

−3

17 SS > 4.146956 × 10
−4
 TS > 5.183695 × 10

−5
 BSD > 3.317565 × 10

−3

18 SS > 2.073478 × 10
−4
 TS > 2.591847 × 10

−5
 BSD > 1.658782 × 10

−3

19 SS > 1.036739 × 10
−4
 TS > 1.295924 × 10

−5
 BSD > 8.293912 × 10

−4

20 SS > 5.183695 × 10
−5
 TS > 6.479619 × 10

−6
 BSD > 4.146956 × 10

−4

21 SS > 2.591847 × 10
−5
 TS > 3.239809 × 10

−6
 BSD > 2.073478 × 10

−4

22 SS > 1.295924 × 10
−5
 TS > 1.629905 × 10

−6
 BSD > 1.036739 × 10

−4

23 SS > 0 TS > 0 BSD > 0

When using the table to perform a lookup, first compute the value of SS, TS, or BSD,

then scan through the lines of the table starting at the top with LOD −10; when the

computed value is larger than the lower bound of the LOD, select that LOD. Since

the values of SS, TS, and BSD are, by definition, always positive, the search for a

LOD will always be successful; in the worst case, the search will end with the last

line of the table.

3.3.7 Organizing Models into Datasets

GSModel, GTModel, and MModel are organized into multiple datasets representing

their exterior shell and interior, and their geometry and texture. The exterior of a

model is called its shell and is composed of a set of datasets representing its geometry

(ModelGeometry and ModelDescriptor) and its textures (ModelTexture,

ModelMaterial, and ModelCMT). Similarly, the interior of a model is divided into

geometry (ModelInteriorGeometry and ModelInteriorDescriptor) and textures

(ModelInteriorTexture, ModelInteriorMaterial, and ModelInteriorCMT) datasets.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-18

© 2016 Presagis. All Rights Reserved.

3.3.8 Terms and Expressions

When referring to 3D Models, the Specification makes use of a number of terms and

expressions that are frequently mentioned throughout the text; these terms and

expressions are defined below.

3.3.8.1 Feature Classification

The CDB Specification has an important Feature Data Dictionary (FDD) whose

origins are traceable to the DIGEST v2.1 Specification. However, the current FDD is

a consolidation of the DIGEST, DGIWG, SEDRIS, and UHRB dictionaries. The

CDB FDD makes use of FACC codes to classify features. To provide an even better

classification of features, the Specification defines an additional attribute called the

FACC feature sub-code (FSC). By extending the FACC hierarchy structure in this

manner, it is possible to define a broader set of model types than is possible with

strict implementation of the FACC feature codes. The FACC sub-code value and its

significance depend on the FACC feature code. Refer to Appendix N for a list of the

FACC feature sub-code.

FACC and FSC are two CDB attributes defined in sections 5.7.1.3.24 and 5.7.1.3.25

respectively.

One of the uses of FACC feature codes by the Specification is to create a hierarchy of

subdirectories by taking advantage of the manner in which a FACC is built. A FACC

feature code is a 5-character code where the first character represents a category of

features, the second represents a subcategory of the current category, and the last

three characters represent a specific type in the subcategory. The Specification will

use these three parts to compose the following hierarchy of folders:

\A_Category\B_Subcategory\999_Type\

Where A is the first character of the FACC code, Category is the category name, B is

the second character of the FACC code, Subcategory is the subcategory name, 999

are the 3
rd

, 4
th

, and 5
th

 characters of the FACC code, and Type feature type as per

Appendix N.

3.3.8.2 Model Name

When a feature is represented by a 3D model, the model itself is given a name that is

used to better describe or differentiate two features having the same FACC and FSC

codes. Even though the model name is left to the discretion of the modeler, the

Specification recommends the use of the FACC name as the model name. FACC

names are listed in appendix N. In the case of Moving Models, the model name is the

human-readable version of its DIS Entity Type.

The model name corresponds to the MODL attribute defined in section 5.7.1.3.41.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-19

© 2016 Presagis. All Rights Reserved.

3.3.8.3 DIS Entity Type

CDB Moving Models make use of the DIS standard (see reference [7]) to create the

directory structures where MModel datasets are stored. The DIS standard uses a

structure called the DIS Entity Type to identify a “moving model”; this structure is

made of seven fields named:

1. Kind

2. Domain

3. Country

4. Category

5. Subcategory

6. Specific

7. Extra

The first four fields (kind, domain, country and category) are used to create four

subdirectories in the moving model datasets hierarchy. Each of the directory names is

composed of the field’s value (1 to 3 digits), followed by an underscore “_”, and

concatenated with the field’s name as per Appendix M.

Another directory name is created by concatenating all fields with the underscore

character. This character string also forms the Moving Model DIS Code (MMDC)

attribute later defined in section 5.7.1.3.40.

Together, these five directories classify CDB Moving Models into a DIS-like

structure that looks like this:

.\1_Kind\2_Domain\3_Country\4_Category\1_2_3_4_5_6_7\

The above directory structure is used, for instance, by the MModelGeometry dataset

later defined in section 3.5.1.

3.3.8.4 Texture Name

The name of 3D model textures is a character string having a minimum of 2

characters and a maximum length of 32 characters. The first two characters must be

alphanumeric. Examples of valid texture names are Brick, M1A2, house, City_Hall,

etc. A name such as C-130 is invalid because the second character (“-“) is not

alphanumeric.

The acronym TNAM represents the texture name and is used to compose texture file

and directory names. The following directory structure is used by CDB Model

texture-related datasets:

\A\B\TNAM\

The directory represented by \A corresponds to the first character of TNAM in

uppercase. The second directory, \B, corresponds to the second character of TNAM

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-20

© 2016 Presagis. All Rights Reserved.

in uppercase. As a result, a texture named “house” will be stored in a directory tree

with the following structure:

\H\O\house\

3.3.8.5 Level of Detail

The terms “Level of Detail” and its acronym “LOD” are generally well known to the

intended audience of this Specification. In the context of the CDB Specification,

filenames and directory names will be composed from the concept of LOD. The

Specification uses a numeric scale to classify a LOD between 34 levels numbered

from −10 to +23. The details will be provided later in the document. At this point, it

is sufficient to define the convention used throughout the Specification to designate a

particular LOD.

The Specification designates a LOD by appending its level to the uppercase letter L.

When the level is negative, the uppercase letter C is used in lieu of the minus sign.

The numeric values of all levels are represented by 2-digit numbers. As a result,

LODs are designated as LC10 for level −10, L00 for level 0, or L23 for level 23.

3.4 GTModel Library Datasets

The \CDB\GTModel\ folder is the root directory of the GTModel library which is

composed of the following datasets:

1. GTModelGeometry

2. GTModelTexture

3. GTModelDescriptor

4. GTModelMaterial

5. GTModelCMT

6. GTModelInteriorGeometry

7. GTModelInteriorTexture

8. GTModelinteriorDescriptor

9. GTModelInteriorMaterial

10. GTModelInteriorCMT

11. GTModelSignature

These datasets are stored in five (5) different directory structures described in the

subsections below.

3.4.1 GTModel Directory Structure 1: Geometry and Descriptor

This directory structure holds the geometry-related datasets of the GTModel Library;

they are:

1. Dataset 500, GTModelGeometry Entry File

2. Dataset 510, GTModelGeometry Level of Detail

3. Dataset 503, GTModelDescriptor

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-21

© 2016 Presagis. All Rights Reserved.

The directory structure has 5 levels and is based on the FACC code of the model (see

section 3.3.8.1).

Table 3-2: GTModelGeometry Directory Structure

Directory

Level

Directory

Name
Description

Level 1 500_GTModelGeometry The name of the directory is composed of

the dataset code followed by an underscore

and the dataset name.

Level 2 A_Category The first character of the FACC code is

called the “Feature Category”. The name

of the directory is composed of the first

character (denoted A) of the category name

followed by an underscore and the category

name (denoted Category) as per Appendix

N.

Level 3 B_Subcategory The second character of the FACC code is

called the “Feature Subcategory”. The

name of the directory is composed of the

first character (denoted B) of the

subcategory name followed by an

underscore and the subcategory name

(denoted Subcategory) as per Appendix N.

Level 4 999_Type The 3
rd

, 4
th

, and 5
th

 characters of the FACC

code are called the “Feature Type”. The

name of the directory is composed of the

feature type (denoted 999) followed by an

underscore and the name (denoted Type)

associated with the feature type as per

Appendix N.

Level 5 LOD Character L followed by the LOD number

corresponding to the Significant Size for

positive levels of detail. Characters LC

followed by the LOD number

corresponding to the Significant Size for

negative levels of detail.

3.4.1.1 GTModelGeometry Entry File Naming Convention

The files of the GTModelGeometry Entry File dataset are stored in level 4 of the 5-

level directory structure presented above. The names of the files adhere to the

following naming convention:

D500_Snnn_Tnnn_FACC_FSC_MODL.flt

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-22

© 2016 Presagis. All Rights Reserved.

The following table defines each field of the file name and Table 5-9 provides the

values of the Component Selectors to complete the name.

Table 3-3: GTModelGeometry Entry File Naming Convention

Field Description

D500 Character D followed by the 3-digit code assigned to the dataset

Snnn Character S followed by the 3-digit Component Selector 1

Tnnn Character T followed by the 3-digit Component Selector 2

FACC Five-character FACC feature code as defined in Appendix N

FSC Three-digit integer representing the FACC feature sub-code (FSC) as

defined in Appendix N

MODL 32-character Model Name String

flt The file type associated with the dataset (OpenFlight file)

3.4.1.2 GTModelGeometry Level of Detail Naming Convention

The files of the GTModelGeometry Level of Detail dataset are stored in level 5 of its

directory structure. The names of the files adhere to the following naming

convention:

D510_Snnn_Tnnn_LOD_FACC_FSC_MODL.flt

The following table defines each field of the file name and Table 5-9 provides the

values of the Component Selectors to complete the name.

Table 3-4: GTModelGeometry Level of Detail Naming Convention

Field Description

D510 Character D followed by the 3-digit code assigned to the dataset

Snnn Character S followed by the 3-digit Component Selector 1

Tnnn Character T followed by the 3-digit Component Selector 2

LOD This field is identical to the name of the LOD directory (level 5) where

the file is stored.

FACC Five-character FACC feature code as defined in Appendix N

FSC Three-digit integer representing the FACC feature sub-code (FSC) as

defined in Appendix N

MODL 32-character Model Name String

flt The file type associated with the dataset (OpenFlight file)

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-23

© 2016 Presagis. All Rights Reserved.

3.4.1.3 GTModelDescriptor Naming Convention

The files of the GTModelDescriptor dataset are stored in level 4 of the 5-level

directory structure presented above. The names of the files adhere to the following

naming convention:

D503_Snnn_Tnnn_FACC_FSC_MODL.xml

The following table defines each field of the file name and Table 5-9 provides the

values of the Component Selectors to complete the name.

Table 3-5: GTModelDescriptor Naming Convention

Field Description

D503 Character D followed by the 3-digit code assigned to the dataset

Snnn Character S followed by the 3-digit Component Selector 1

Tnnn Character T followed by the 3-digit Component Selector 2

FACC Five-character FACC feature code as defined in Appendix N

FSC Three-digit integer representing the FACC feature sub-code (FSC) as

defined in Appendix N

MODL 32-character Model Name String

xml The file type associated with the dataset

3.4.1.4 Examples

The following example illustrates the directory structure that would store the entry

file of all geotypical buildings with a FACC code of AL015:

\CDB\GTModel\500_GTModelGeometry\A_Culture\L_Misc_Feature\

015_Building\

Where \CDB\GTModel is the root of all geotypical model datasets,

\500_GTModelGeometry is the directory containing all FACC categories, \A_Culture

is the directory containing all FACC subcategories of category A (named Culture),

\L_Misc_Feature is the directory containing all FACC types of category A and

subcategory L (named Misc_Feature), \015_Building is the directory containing all

OpenFlight files representing geotypical buildings whose FACC types are 015

(named Building).

Examples of files found in the above directory are:

.\D500_S001_T001_AL015_004_Castle.flt

.\D500_S001_T001_AL015_015_School.flt

.\D500_S001_T001_AL015_021_Garage.flt

.\D500_S001_T001_AL015_037_Fire_Station.flt

.\D500_S001_T001_AL015_050_Church.flt

Note that all filenames start with a common portion (D500_S001_T001_AL015) and

that only their FSC and MODL portions vary.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-24

© 2016 Presagis. All Rights Reserved.

If the castle above (AL015_004_Castle) is represented with 3 levels of details, say

LOD 3, 5 and 8, they would be stored in .\L03\, .\L05\, and .\L08\ giving file names

such as these:

.\L03\D510_S001_T001_L03_AL015_004_Castle.flt

.\L05\D510_S001_T001_L05_AL015_004_Castle.flt

.\L08\D510_S001_T001_L08_AL015_004_Castle.flt

Again, the descriptor associated with the same castle (AL015_004_Castle) would be

found in this file:

.\D503_S001_T001_AL015_004_Castle.xml

3.4.2 GTModel Directory Structure 2: Texture, Material, and CMT

This directory structure holds the texture-related datasets of the GTModel Libray;

they are:

1. Dataset 501, GTModelTexture (Deprecated)

2. Dataset 511, GTModelTexture

3. Dataset 504, GTModelMaterial

4. Dataset 505, GTModelCMT

The directory structure has 4 levels and is based on the texture name.

Table 3-6: GTModelTexture Directory Structure

Directory

Level

Directory

Name
Description

Level 1 501_GTModelTexture The name of the directory is composed of the

dataset code followed by an underscore and

the dataset name.

Level 2 A The name of the directory corresponds to the

first character of texture name (TNAM), in

uppercase.

Level 3 B The name of the directory corresponds to the

second character of texture name (TNAM), in

uppercase.

Level 4 TNAM The texture name has from 2 to 32 characters.

The first two characters must be

alphanumeric.

Note that for compatibility with version 3.0 of the Specification, the name of the

directory at level 1 is kept to 501_GTModelTexture eventhough dataset 501 has been

deprecated and replaced with dataset 511 in version 3.1 of the Specification.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-25

© 2016 Presagis. All Rights Reserved.

3.4.2.1 GTModelTexture Naming Convention

The names of the GTModelTexture files adhere to the following naming convention:

D511_Snnn_Tnnn_LOD_TNAM.rgb

The following table defines each field of the file name and Table 5-8 provides the

values of the Component Selectors to complete the name.

Table 3-7: GTModelTexture Naming Convention

Field Description

D511 Character D followed by the 3-digit code assigned to the dataset.

Snnn Character S followed by the 3-digit Component Selector 1

Tnnn Character T followed by the 3-digit Component Selector 2

LOD The Level of Detail corresponding to the Texel Size of the texture as

explained in section 3.3.8.5.

TNAM The texture name; identical to the folder name where the texture resides.

rgb The file type associated with the dataset (SGI Image)

3.4.2.2 GTModelMaterial Naming Convention

The names of the GTModelMaterial files adhere to the following naming convention:

D504_Snnn_Tnnn_LOD_TNAM.tif

The following table defines each field of the file name and Table 5-9 provides the

values of the Component Selectors to complete the name.

Table 3-8: GTModelMaterial Naming Convention

Field Description

D504 Character D followed by the 3-digit code assigned to the dataset.

Snnn Character S followed by the 3-digit Component Selector 1

Tnnn Character T followed by the 3-digit Component Selector 2

LOD The Level of Detail corresponding to the Texel Size of the texture as

explained in section 3.3.8.5.

TNAM The material texture name; identical to the folder name where the

material texture resides.

tif The file type associated with the dataset (TIFF file)

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-26

© 2016 Presagis. All Rights Reserved.

3.4.2.3 GTModelCMT Naming Convention

The names of the GTModelCMT files adhere to the following naming convention:

D505_Snnn_Tnnn_TNAM.xml

The following table defines each field of the file name and Table 5-9 provides the

values of the Component Selectors to complete the name.

Table 3-9: GTModelMaterial Naming Convention

Field Description

D505 Character D followed by the 3-digit code assigned to the dataset.

Snnn Character S followed by the 3-digit Component Selector 1

Tnnn Character T followed by the 3-digit Component Selector 2

TNAM The material texture name; identical to the folder name where the

material texture resides.

xml The file type associated with the dataset

3.4.2.4 Examples

The following example illustrates the directory structure that would store all files

associated with a texture named ‘Brick’:

\CDB\GTModel\501_GTModelTexture\B\R\Brick\

Where \CDB\GTModel is the root of all geotypical model datasets,

\501_GTModelTexture is the directory containing all geotypical textures, \B is the

directory containing all textures whose name start with the letter ‘B’ or ‘b’, \R is the

directory containing all textures whose name have the letter ‘R’ or ‘r’ in the second

position, and \Brick is the directory containing all texture-related files whose name is

‘Brick’. Note that the second letter of the texture name is a lowercase ‘r’ but the

corresponding directory name is an uppercase ‘R’.

If the Brick texture has a resolution of 1 cm and a dimension of 256 x 256 pixels,

Table 3-1 tells us that the finest LOD will be 10 (TS = 0.01 m) and the coarsest will

be 2 (TS = 2.56 m), and the following files would be found in the above directory:

.\D511_S001_T001_L02_Brick.rgb

.\D511_S001_T001_L03_Brick.rgb

.\D511_S001_T001_L04_Brick.rgb

.\D511_S001_T001_L05_Brick.rgb

.\D511_S001_T001_L06_Brick.rgb

.\D511_S001_T001_L07_Brick.rgb

.\D511_S001_T001_L08_Brick.rgb

.\D511_S001_T001_L09_Brick.rgb

.\D511_S001_T001_L10_Brick.rgb

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-27

© 2016 Presagis. All Rights Reserved.

The following example illustrates the directory structure that would store all LODs of

a material texture whose name is Church-Gothic:

\CDB\GTModel\501_GTModelTexture\C\U\Church-Gothic\

Again, note that the second letter of the material texture name is a lowercase ‘u’ but

the corresponding directory name is an uppercase ‘U’.

If the material texture has a resolution of 15 cm and a dimension of 256 x 256 pixels,

the finest LOD will be 6 and the coarsest will be −2, and the following files would be

found in the above directory:

.\D504_Snnn_Tnnn_LC02_Church-Gothic.tif

.\D504_Snnn_Tnnn_LC01_Church-Gothic.tif

.\D504_Snnn_Tnnn_L00_Church-Gothic.tif

.\D504_Snnn_Tnnn_L01_Church-Gothic.tif

.\D504_Snnn_Tnnn_L02_Church-Gothic.tif

.\D504_Snnn_Tnnn_L03_Church-Gothic.tif

.\D504_Snnn_Tnnn_L04_Church-Gothic.tif

.\D504_Snnn_Tnnn_L05_Church-Gothic.tif

.\D504_Snnn_Tnnn_L06_Church-Gothic.tif

The composite material table associated with the above material textures would reside

in the same directory and be named:

.\D505_Snnn_Tnnn_Church-Gothic.xml

3.4.3 GTModel Directory Structure 3: Interior Geometry and Descriptor

This directory structure holds the datasets related to the geometry of the interior of a

GTModel; they are:

1. Dataset 506, GTModelInteriorGeometry

2. Dataset 508, GTModelInteriorDescriptor

The directory structure has 5 levels and is based on the FACC code of the model (see

section 3.3.8.1).

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-28

© 2016 Presagis. All Rights Reserved.

Table 3-10: GTModelInteriorGeometry Directory Structure

Directory

Level

Directory

Name
Description

Level 1 506_GTModelInteriorGeometry The name of the directory is

composed of the dataset code

followed by an underscore and the

dataset name.

Level 2 A_Category The first character of the FACC

code (denoted A), called the

“Feature Category”, followed by an

underscore and the category name

(denoted Category) as per

Appendix N.

Level 3 B_Subcategory The second character of the FACC

code (denoted B), called the

“Feature Subcategory”, followed by

an underscore and the subcategory

name (denoted Subcategory) as per

Appendix N.

Level 4 999_Type The 3
rd

, 4
th

, and 5
th

 characters of the

FACC code (denoted 999), called

the “Feature Type”, followed by an

underscore and the name (denoted

Type) associated with the feature

type as per Appendix N.

Level 5 LOD The Level of Detail corresponding

to the Significant Size of the model

as explained in section 3.3.8.5.

3.4.3.1 GTModelInteriorGeometry Naming Convention

The files of the GTModelInteriorGeometry dataset are stored in level 5 of its

directory structure. The names of the files adhere to the following naming

convention:

D506_Snnn_Tnnn_LOD_FACC_FSC_MODL.flt

The following table defines each field of the file name and Table 5-9 provides the

values of the Component Selectors to complete the name.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-29

© 2016 Presagis. All Rights Reserved.

Table 3-11: GTModelInteriorGeometry Naming Convention

Field Description

D506 Character D followed by the 3-digit code assigned to the dataset

Snnn Character S followed by the 3-digit Component Selector 1

Tnnn Character T followed by the 3-digit Component Selector 2

LOD This field is identical to the name of the LOD directory (level 5) where

the file is stored.

FACC Five-character FACC feature code as defined in Appendix N

FSC Three-digit integer representing the FACC feature sub-code (FSC) as

defined in Appendix N

MODL 32-character Model Name String

flt The file type associated with the dataset (OpenFlight file)

3.4.3.2 GTModelInteriorDescriptor Naming Convention

The files of the GTModelInteriorDescriptor dataset are stored in level 4 of the 5-level

directory structure presented above. The names of the files adhere to the following

naming convention:

D508_Snnn_Tnnn_FACC_FSC_MODL.xml

The following table defines each field of the file name and Table 5-9 provides the

values of the Component Selectors to complete the name.

Table 3-12: GTModelInteriorDescriptor Naming Convention

Field Description

D508 Character D followed by the 3-digit code assigned to the dataset

Snnn Character S followed by the 3-digit Component Selector 1

Tnnn Character T followed by the 3-digit Component Selector 2

FACC Five-character FACC feature code as defined in Appendix N

FSC Three-digit integer representing the FACC feature sub-code (FSC) as

defined in Appendix N

MODL 32-character Model Name String

xml The file type associated with the dataset.

3.4.3.3 Examples

The following example illustrates the directory structure that would store the interior

of all geotypical buildings represented at LOD 3 and whose FACC are AL015:

\CDB\GTModel\506_GTModelInteriorGeometry\A_Culture\

L_Misc_Feature\015_Building\L03\

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-30

© 2016 Presagis. All Rights Reserved.

Where \CDB\GTModel is the root of all geotypical model datasets,

\505_GTModelInteriorGeometry is the directory containing all FACC categories,

\A_Culture is the directory containing all FACC subcategories of category A (named

Culture), \L_Misc_Feature is the directory containing all FACC types of category A

and subcategory L (named Misc_Feature), \015_Building is the directory containing

all level of details representing geotypical buildings whose FACC types are 015

(named Building), and \L03 is the directory containing the OpenFlight files

representing LOD 3 of these buildings.

Examples of files found in the above directory are:

.\D506_S001_T001_L03_AL015_004_Castle.flt

.\D506_S001_T001_L03_AL015_015_School.flt

.\D506_S001_T001_L03_AL015_021_Garage.flt

.\D506_S001_T001_L03_AL015_037_Fire_Station.flt

.\D506_S001_T001_L03_AL015_050_Church.flt

Note that all filenames start with a common portion (D506_S001_T001_L03_AL015)

and that only their FSC and MODL portions vary.

The descriptors associated with the interior of these models would be found in level 4

of the directory structure in the following files:

\CDB\GTModel\506_GTModelInteriorGeometry\A_Culture\

L_Misc_Feature\015_Building\

.\D508_S001_T001_AL015_004_Castle.xml

.\D508_S001_T001_AL015_015_School.xml

.\D508_S001_T001_AL015_021_Garage.xml

.\D508_S001_T001_AL015_037_Fire_Station.xml

.\D508_S001_T001_AL015_050_Church.xml

3.4.4 GTModel Directory Structure 4: Interior Texture, Material, and CMT

This directory structure holds the datasets related to the textures of the interior of a

GTModel; they are:

1. Dataset 507, GTModelInteriorTexture

2. Dataset 509, GTModelInteriorMaterial

3. Dataset 513, GTModelInteriorCMT

The directory structure has 4 levels and is based on the texture name.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-31

© 2016 Presagis. All Rights Reserved.

Table 3-13: GTModelInteriorTexture Directory Structure

Directory

Level

Directory

Name
Description

Level 1 507_GTModelInteriorTexture The name of the directory is

composed of the dataset code

followed by an underscore and the

dataset name.

Level 2 A The name of the directory

corresponds to the first character of

texture name (TNAM), in uppercase.

Level 3 B The name of the directory

corresponds to the second character of

texture name (TNAM), in uppercase.

Level 4 TNAM The texture name has from 2 to 32

characters. The first two characters

must be alphanumeric.

3.4.4.1 GTModelInteriorTexture Naming Convention

The names of the GTModelInteriorTexture files adhere to the following naming

convention:

D507_Snnn_Tnnn_LOD_TNAM.rgb

The following table defines each field of the file name and Table 5-8 provides the

values of the Component Selectors to complete the name.

Table 3-14: GTModelInteriorTexture Naming Convention

Field Description

D507 Character D followed by the 3-digit code assigned to the dataset

Snnn Character S followed by the 3-digit Component Selector 1

Tnnn Character T followed by the 3-digit Component Selector 2

LOD The Level of Detail corresponding to the Texel Size of the texture as

explained in section 3.3.8.5.

TNAM The texture name; identical to the folder name where the texture resides.

rgb The file type associated with the dataset (SGI Image)

3.4.4.2 GTModelInteriorMaterial Naming Convention

The names of the GTModelInteriorMaterial files adhere to the following naming

convention:

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-32

© 2016 Presagis. All Rights Reserved.

D509_Snnn_Tnnn_LOD_TNAM.tif

The following table defines each field of the file name and Table 5-9 provides the

values of the Component Selectors to complete the name.

Table 3-15: GTModelInteriorMaterial Naming Convention

Field Description

D509 Character D followed by the 3-digit code assigned to the dataset

Snnn Character S followed by the 3-digit Component Selector 1

Tnnn Character T followed by the 3-digit Component Selector 2

LOD The Level of Detail corresponding to the Texel Size of the texture as

explained in section 3.3.8.5.

TNAM The material texture name; identical to the folder name where the

material texture resides.

tif The file type associated with the dataset (TIFF file)

3.4.4.3 Example 1

The following example illustrates the directory structure that would store all LODs of

a texture whose name is BeigeGypseWall:

\CDB\GTModel\507_GTModelInteriorTexture\B\E\BeigeGypseWall\

Where \CDB\GTModel is the root of all geotypical model datasets,

\507_GTModelInteriorTexture is the directory containing all geotypical interior

textures, \B is the directory containing all textures whose name start with the letter B,

\R is the directory containing all textures whose name start the letter ‘B’ followed by

the letter ‘E’, and \BeigeGypseWall is the directory containing all LODs of the

texture representing a beige gypse wall. Note that the second letter of the texture

name is a lowercase ‘e’ but the corresponding directory name is an uppercase ‘E’.

If the texture has a resolution of 1 cm and a dimension of 256 x 256 pixels, the finest

LOD will be 10 and the coarsest will be 2, and the following files would be found in

the above directory:

D507_S001_T001_L02_BeigeGypseWall.rgb

D507_S001_T001_L03_BeigeGypseWall.rgb

D507_S001_T001_L04_BeigeGypseWall.rgb

D507_S001_T001_L05_BeigeGypseWall.rgb

D507_S001_T001_L06_BeigeGypseWall.rgb

D507_S001_T001_L07_BeigeGypseWall.rgb

D507_S001_T001_L08_BeigeGypseWall.rgb

D507_S001_T001_L09_BeigeGypseWall.rgb

D507_S001_T001_L10_BeigeGypseWall.rgb

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-33

© 2016 Presagis. All Rights Reserved.

3.4.4.4 Example 2

The following example illustrates the directory structure that would store all LODs of

a material texture associated with the interior of a gothic church and whose name is

Church-Gothic:

\CDB\GTModel\507_GTModelInteriorTexture\C\H\Church-Gothic\

Where \CDB\GTModel is the root of all geotypical model datasets,

\507_GTModelInteriorTexture is the directory containing all geotypical interior

material textures, \C is the directory containing all textures whose name start with the

letter C, \H is the directory containing all textures whose name start the letter ‘C’

followed by the letter ‘H’, and \Church-Gothic is the directory containing all LODs of

the material texture called Church-Gothic. Note that the second letter of the material

texture name is a lowercase ‘h’ but the corresponding directory name is an uppercase

‘H’.

If the material texture has a resolution of 1 cm and a dimension of 256 x 256 pixels,

the finest LOD will be 10 and the coarsest will be 2, and the following files would be

found in the above directory:

D509_Snnn_Tnnn_L02_Church-Gothic.tif

D509_Snnn_Tnnn_L03_Church-Gothic.tif

D509_Snnn_Tnnn_L04_Church-Gothic.tif

D509_Snnn_Tnnn_L05_Church-Gothic.tif

D509_Snnn_Tnnn_L06_Church-Gothic.tif

D509_Snnn_Tnnn_L07_Church-Gothic.tif

D509_Snnn_Tnnn_L08_Church-Gothic.tif

D509_Snnn_Tnnn_L09_Church-Gothic.tif

D509_Snnn_Tnnn_L10_Church-Gothic.tif

3.4.5 GTModel Directory Structure 5: Signature

This directory structure holds the datasets related to the radar signature of a

GTModel; they are:

1. Dataset 502, GTModelSignature (Deprecated)

2. Dataset 512, GTModelSignature

The directory structure has 5 levels and is based on the FACC code of the model (see

section 3.3.8.1).

Table 3-16: GTModelSignature Directory Structure

Directory

Level

Directory

Name
Description

Level 1 502_GTModelSignature The name of the directory is composed of

the dataset code followed by an underscore

and the dataset name.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-34

© 2016 Presagis. All Rights Reserved.

Directory

Level

Directory

Name
Description

Level 2 A_Category The first character of the FACC code is

called the “Feature Category”. The name

of the directory is composed of the first

character (denoted A) of the category name

followed by an underscore and the category

name (denoted Category) as per Appendix

N.

Level 3 B_Subcategory The second character of the FACC code is

called the “Feature Subcategory”. The

name of the directory is composed of the

first character (denoted B) of the

subcategory name followed by an

underscore and the subcategory name

(denoted Subcategory) as per Appendix N.

Level 4 999_Type The 3
rd

, 4
th

, and 5
th

 characters of the FACC

code are called the “Feature Type”. The

name of the directory is composed of the

feature type (denoted 999) followed by an

underscore and the name (denoted Type)

associated with the feature type as per

Appendix N.

Level 5 LOD Character L followed by the LOD number

corresponding to the Significant Size for

positive levels of detail. Characters LC

followed by the LOD number

corresponding to the Significant Size for

negative levels of detail.

Note that for compatibility with version 3.0 of the Specification, the name of the

directory at level 1 is kept to 502_GTModelSignature eventhough dataset 502 has

been deprecated and replaced with dataset 512 in version 3.1 of the Specification.

3.4.5.1 Naming Convention

The names of the GTModelSignature files adhere to the following naming

convention:

D512_Snnn_Tnnn_LOD_FACC_FSC_MODL.xxx

The following table defines each field of the file name and Table 5-9 provides the

values of the Component Selectors to complete the name.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-35

© 2016 Presagis. All Rights Reserved.

Table 3-17: GTModelSignature Naming Convention

Field Description

D512 Character D followed by the 3-digit code assigned to the dataset

Snnn Character S followed by the 3-digit Component Selector 1

Tnnn Character T followed by the 3-digit Component Selector 2

LOD This field is identical to the name of the LOD directory (level 5) where

the file is stored.

FACC Five-character FACC feature code as defined in Appendix N

FSC Three-digit integer representing the FACC feature sub-code (FSC) as

defined in Appendix N

MODL 32-character Model Name String

xxx The file type associated with the dataset (ESRI Shapefile)

3.4.5.2 Examples

The following example illustrates the directory structure that would store the

signature of all geotypical buildings represented at LOD 3 and whose FACC are

AL015:

\CDB\GTModel\502_GTModelSignature\A_Culture\L_Misc_Feature\

015_Building\L03\

Where \CDB\GTModel is the root of all geotypical model datasets,

\502_GTModelSignature is the directory containing all FACC categories, \A_Culture

is the directory containing all FACC subcategories of category A (named Culture),

\L_Misc_Feature is the directory containing all FACC types of category A and

subcategory L (named Misc_Feature), \015_Building is the directory containing all

level of details representing the signature of geotypical buildings whose FACC types

are 015 (named Building), and \L03 is the directory containing the Shapefiles

representing LOD 3 of these buildings.

Examples of files found in the above directory are:

.\D512_S001_T001_L03_AL015_004_Castle.shp

.\D512_S001_T001_L03_AL015_004_Castle.shx

.\D512_S001_T001_L03_AL015_004_Castle.dbf

.\D512_S001_T017_L03_AL015_004_Castle.dbf

3.4.6 GTModel Complete Examples

The following examples illustrate the locations and names of all files of the GTModel

Library.

\CDB\GTModel\500_GTModelGeometry\A_Culture\L_Misc_Feature\

015_Building\

D500_S001_T001_AL015_004_Castle.flt (Entry File)

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-36

© 2016 Presagis. All Rights Reserved.

D503_S001_T001_AL015_004_Castle.xml (Descriptor)

Lnn\D510_S001_T001_Lnn_AL015_004_Castle.flt (LOD)

\CDB\GTModel\501_GTModelTexture\C\A\Castle\

D511_Snnn_Tnnn_Lnn_Castle.rgb (Texture)

D504_Snnn_Tnnn_Lnn_Castle.tif (Material)

D505_Snnn_Tnnn_Castle.xml (CMT)

\CDB\GTModel\502_GTModelSignature\A_Culture\L_Misc_Feature\

015_Building\Lnn\

D512_Snnn_Tnnn_Lnn_AL015_004_Castle.shp (Signature)

D512_Snnn_Tnnn_Lnn_AL015_004_Castle.shx

D512_Snnn_Tnnn_Lnn_AL015_004_Castle.dbf

D512_Snnn_Tnnn_Lnn_AL015_004_Castle.dbt

\CDB\GTModel\506_GTModelInteriorGeometry\A_Culture\

L_Misc_Feature\015_Building\

D508_S001_T001_AL015_004_Castle.xml (Descriptor)

Lnn\D506_S001_T001_Lnn_AL015_004_Castle.flt (LOD)

\CDB\GTModel\507_GTModelInteriorTexture\C\A\Castle\

D507_Snnn_Tnnn_Lnn_Castle.rgb (Texture)

D509_Snnn_Tnnn_Lnn_Castle.tif (Material)

D513_Snnn_Tnnn_Castle.xml (CMT)

3.5 MModel Library Datasets

The \CDB\MModel\ folder is the root directory of the MModel library which is

composed of the following datasets.

1. MModelGeometry

2. MModelDescriptor

3. MModelTexture

4. MModelMaterial

5. MModelCMT

6. MModelSignature

These datasets are stored in three (3) different directory structures described in the

subsections below.

3.5.1 MModel Directory Structure 1: Geometry and Descriptor

This directory structure is owned by the MModelGeometry dataset that is assigned

dataset code 600. The structure has 6 levels and is based on the DIS Entity Type (see

section 3.3.8.3). The same directory structure.is used to store the files of the

MModelDescriptor dataset.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-37

© 2016 Presagis. All Rights Reserved.

Table 3-18: MModelGeometry Directory Structure

Directory

Level

Directory

Name
Description

Level 1 600_MModelGeometry The name of the directory is composed of

the dataset code followed by an underscore

and the dataset name.

Level 2 9_Kind The numeric code assigned to the DIS

Entity Kind followed by an underscore and

the name of this kind as per Appendix M.

Level 3 9_Domain The numeric code assigned to the DIS

Domain followed by an underscore and the

name of the domain as per Appendix M.

Level 4 9_Country The numeric code assigned to the DIS

Country followed by an underscore and the

name of this country as per Appendix M.

Level 5 9_Category The numeric code assigned to the DIS

Catagory followed by an underscore and the

name of this category as per Appendix M.

Level 6 9_9_9_9_9_9_9 All 7 fields of the DIS Entity type

concatenated and separated by an

underscore.

3.5.1.1 MModelGeometry Naming Convention

The names of all MModelGeometry files adhere to the following naming convention:

D600_Snnn_Tnnn_MMDC.flt

The following table defines each field of the file names and Table 5-10 provides the

values of the Component Selectors to complete the name.

Table 3-19: MModelGeometry Naming Convention

Field Description

D600 Character D followed by the 3-digit code assigned to the dataset.

Snnn Character S followed by the 3-digit value of Component Selector 1

Tnnn Character T followed by the 3-digit value of Component Selector 2

MMDC The Moving Model DIS Code is the same as directory level 6 above

flt The file type associated with the dataset (OpenFlight file)

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-38

© 2016 Presagis. All Rights Reserved.

3.5.1.2 MModelDescriptor Naming Convention

The MModelDescriptor dataset is assigned dataset code 603 and the names of all

MModelDescriptor files adhere to the following naming convention:

D603_S001_T001_MMDC.xml

The following table defines each field of the file names and Table 5-10 provides the

values of the Component Selectors to complete the name.

Table 3-20: MModelDescriptor Naming Convention

Field Description

D603 Character D followed by the 3-digit code assigned to the dataset.

S001 Character S followed by the 3-digit value of Component Selector 1

T001 Character T followed by the 3-digit value of Component Selector 2

MMDC The Moving Model DIS Code is the same as directory level 6 above

xml The file type associated with the dataset (XML File)

3.5.1.3 Examples

The following example illustrates the directory structure that would store the M1A2

SEP version of the M1 Abrams tank.

\CDB\MModel\600_MModelGeometry\1_Platform\1_Land\

225_United_States\1_Tank\1_1_225_1_1_8_0\

Where \CDB\MModel is the root of all moving model datasets,

\600_MModelGeometry is the directory containing the geometry and descriptor of all

moving models, \1_Platform is the directory containing all DIS Entity of Kind 1

(named Platform), \1_Land is the directory containing all DIS platforms of Domain 1

(named Land), \225_United_States is the directory containing all DIS land platforms

of Country 225 (called United_States), \1_Tank is the directory containing all DIS

land platforms of Category 1 (named Tank), and \1_1_225_1_1_8_0 is the directory

containing all geometry and descriptor files of the M1A2 SEP Abrams tank.

Examples of files found in the above directory are:

D600_S001_T001_1_1_225_1_1_8_0.flt

D603_S001_T001_1_1_225_1_1_8_0.xml

3.5.2 MModel Directory Structure 2: Texture, Material, and CMT

This directory structure is owned by the MModelTexture dataset that is assigned

dataset code 601. The structure has 4 levels and is based on the texture name (see

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-39

© 2016 Presagis. All Rights Reserved.

section 3.3.8.4). The same directory structure.is used to store the files of the

MModelMaterial and MModelCMT datasets.

Table 3-21: MModelTexture Directory Structure

Directory

Level

Directory

Name
Description

Level 1 601_MModelTexture The name of the directory is composed of the

dataset code followed by an underscore and

the dataset name.

Level 2 A The name of the directory corresponds to the

first character of the texture name (TNAM), in

uppercase.

Level 3 B The name of the directory corresponds to the

second character of the texture name (TNAM),

in uppercase.

Level 4 TNAM The texture name has from 2 to 32 characters.

The first two characters must be alphanumeric.

3.5.2.1 MModelTexture Naming Convention

The names of all MModelTexture files adhere to the following naming convention:

D601_Snnn_Tnnn_Wnn_TNAM.rgb

The following table defines each field of the file names and Table 5-8 provides the

values of the Component Selectors to complete the name.

Table 3-22: MModelTexture Naming Convention

Field Description

D601 Character D followed by the 3-digit code assigned to the dataset.

Snnn Character S followed by the 3-digit value of Component Selector 1

Tnnn Character T followed by the 3-digit value of Component Selector 2

Wnn Character W followed by the 2-digit Texture Size Code

TNAM The texture name; identical to directory level 4 above

rgb The file type associated with the dataset (SGI Image)

3.5.2.2 MModelMaterial Naming Convention

The MModelMaterial dataset is assigned dataset code 604 and the names of all

MModelMaterial files adhere to the following naming convention:

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-40

© 2016 Presagis. All Rights Reserved.

D604_Snnn_Tnnn_Wnn_TNAM.tif

The following table defines each field of the file names and Table 5-10 provides the

values of the Component Selectors to complete the name.

Table 3-23: MModelMaterial Naming Convention

Field Description

D604 Character D followed by the 3-digit code assigned to the dataset.

Snnn Character S followed by the 3-digit value of Component Selector 1

Tnnn Character T followed by the 3-digit value of Component Selector 2

Wnn Character W followed by the 2-digit Texture Size Code

TNAM The texture name; identical to directory level 4 above

tif The file type associated with the dataset (TIFF File)

3.5.2.3 MModelCMT Naming Convention

The MModelCMT dataset is assigned dataset code 605 and the names of all

MModelCMT files adhere to the following naming convention:

D605_S001_T001_TNAM.xml

The following table defines each field of the file names and Table 5-10 provides the

values of the Component Selectors to complete the name.

Table 3-24: MModelMaterial Naming Convention

Field Description

D605 Character D followed by the 3-digit code assigned to the dataset

S001 Character S followed by the 3-digit value of Component Selector 1

T001 Character T followed by the 3-digit value of Component Selector 2

TNAM The texture name; identical to directory level 4 above

xml The file type associated with the dataset

3.5.2.4 Examples

Assuming that the textures, materials, and CMT of the M1A2 SEP are called

M1A2_SEP, the following directory structure would store them.

\CDB\MModel\601_MModelTexture\M\1\M1A2_SEP\

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-41

© 2016 Presagis. All Rights Reserved.

Where \CDB\MModel is the root of all moving model datasets, \601_MModelTexture

is the directory containing the textures, material textures, and CMTs of all moving

models, \M is the directory containing all files whose TNAM field starts with the

letter ‘m’ or ‘M’, \1 is the directory containing all files whose TNAM field starts with

‘m1’ or ‘M1’, and \M1A2_SEP is the directory containing all texture-related files

whose TNAM is M1A2_SEP.

Examples of files found in the above directory are:

D601_S005_T001_W10_M1A2_SEP.rgb

D604_S001_T001_W09_M1A2_SEP.tif

D605_S001_T001_M1A2_SEP.xml

3.5.3 MModel Directory Structure 3: Signature

This directory structure is dedicated to the MModelSignature dataset that is assigned

dataset code 606. The structure has 7 levels and is based on the DIS Entity Type (see

section 3.3.8.3).

Table 3-25: MModelSignature Directory Structure

Directory

Level

Directory

Name
Description

Level 1 606_MModelSignature The name of the directory is composed of

the dataset code followed by an underscore

and the dataset name.

Level 2 9_Kind The numeric code assigned to the DIS Entity

Kind followed by an underscore and the

name of this kind as per Appendix M.

Level 3 9_Domain The numeric code assigned to the DIS

Domain followed by an underscore and the

name of the domain as per Appendix M.

Level 4 9_Country The numeric code assigned to the DIS

Country followed by an underscore and the

name of this country as per Appendix M.

Level 5 9_Category The numeric code assigned to the DIS

Catagory followed by an underscore and the

name of this category as per Appendix M.

Level 6 9_9_9_9_9_9_9 All 7 fields of the DIS Entity type

concatenated and separated by an

underscore.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-42

© 2016 Presagis. All Rights Reserved.

Directory

Level

Directory

Name
Description

Level 7 LOD Character L followed by the LOD number

corresponding to the Significant Size for

positive levels of detail. Characters LC

followed by the LOD number corresponding

to the Significant Size for negative levels of

detail.

3.5.3.1 Naming Convention

The names of all MModelSignature files adhere to the following naming convention:

D606_Snnn_Tnnn_LOD_MMDC.shp

D606_Snnn_Tnnn_LOD_MMDC.shx

D606_Snnn_Tnnn_LOD_MMDC.dbf

D606_Snnn_Tnnn_LOD_MMDC.dbt

The following table defines each field of the file names and Table 5-10 provides the

values of the Component Selectors to complete the name.

Table 3-26: MModelSignature Naming Convention

Field Description

D606 Character D followed by the 3-digit code assigned to the dataset.

Snnn Character S followed by the 3-digit value of Component Selector 1

Tnnn Character T followed by the 3-digit value of Component Selector 2

LOD This field is identical to the name of the LOD directory (level 7) where

the file is stored.

MMDC The Moving Model DIS Code is the same as directory level 6

shp

shx

dbf

dbt

The file type associated with the dataset (ESRI Shapefile)

3.5.3.2 Examples

The following example illustrates the directory structure that would store LOD 4 of

the RCS Signature of the M1A2 SEP Abrams tank.

\CDB\MModel\606_MModelSignature\1_Platform\1_Land\

225_United_States\1_Tank\1_1_225_1_1_8_0\L04

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-43

© 2016 Presagis. All Rights Reserved.

Where \CDB\MModel is the root of all moving model datasets,

\606_MModelGeometry is the directory containing the RCS signature of all moving

models, \1_Platform is the directory containing all DIS Entity of Kind 1 (named

Platform), \1_Land is the directory containing all DIS platforms of Domain 1 (named

Land), \225_United_States is the directory containing all DIS land platforms of

Country 225 (called United_States), \1_Tank is the directory containing all DIS land

platforms of Category 1 (named Tank), \1_1_225_1_1_8_0 is the directory containing

all levels of detail of the RCS signature of the M1A2 SEP Abrams tank, and \L04 is

the directory containing the Shapefiles representing LOD 4 of RCS signature of the

tank.

Examples of files found in the above directory are:

D606_Sxxx_Txxx_L04_1_1_225_1_1_8_0.shp

D606_Sxxx_Txxx_L04_1_1_225_1_1_8_0.shx

D606_Sxxx_Txxx_L04_1_1_225_1_1_8_0.dbf

D606_Sxxx_Txxx_L04_1_1_225_1_1_8_0.dbt

3.5.4 MModel Complete Examples

The following examples, based on the M1A2 SEP, illustrate the naming conventions

of all MModel datasets.

\CDB\MModel\600_MModelGeometry\1_Platform\1_Land

\225_United_States\1_Tank\1_1_225_1_1_8_0\

D600_Snnn_Tnnn_1_1_225_1_1_8_0.flt (Geometry)

D603_S001_T001_1_1_225_1_1_8_0.xml (Descriptor)

\CDB\MModel\601_MModelTexture\M\1\M1A2_SEP\

D601_Snnn_Tnnn_Wnn_M1A2_SEP.rgb (Texture)

D604_Snnn_Tnnn_Wnn_M1A2_SEP.tif (Material)

D605_S001_T001_M1A2_SEP.xml (CMT)

\CDB\MModel\606_MModelSignature\1_Platform\1_Land

\225_United_States\1_Tank\1_1_225_1_1_8_0\Lnn\

D606_Snnn_Tnnn_Lnn_1_1_225_1_1_8_0.shp (Signature)

D606_Snnn_Tnnn_Lnn_1_1_225_1_1_8_0.shx

D606_Snnn_Tnnn_Lnn_1_1_225_1_1_8_0.dbf

D606_Snnn_Tnnn_Lnn_1_1_225_1_1_8_0.dbt

3.6 CDB Tiled Datasets

The \CDB\Tiles\ folder is the root directory of all tiled datasets; they all share a

similar directory structure described below. All tiled datasets implement the CDB

tiling scheme described in Section 2.1, Partitioning the Earth into Tiles.

3.6.1 Tiled Dataset Types

There are three principal types of tiled datasets:

1. Raster Datasets

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-44

© 2016 Presagis. All Rights Reserved.

2. Vector Datasets

3. Model Datasets

3.6.1.1 Raster Datasets

Data elements within a tile are organized into a regular grid where data elements are

evenly positioned at every XUnitLOD and YUnitLOD as described in Section 2.1.2, Tile

Levels-of-Detail (Tile-LODs). This type of organization is referred to as a Raster

Dataset. Raster Datasets always have a fixed number of elements corresponding to

the number of units shown in Table 2-4: CDB LOD vs Tile and Grid Size. An

example of a raster dataset is terrain imagery.

Note: Partially-filled Tile-LODs are not permitted by the CDB specification. In the case
where data at the Tile-LOD’s resolution does not fully cover the Tile-LOD’s
geographic footprint, the modeler (or the tools) must fill the remainder area of the
Tile-LOD with the “best available” data. There are two cases to consider:

Case I: In the case where coarser LODm data exists for the remainder area of the Tile-
LODn, the LODm data should be interpolated to LODn.

Case II: In the case where coarser LODm does not exist for the remainder area of the Tile-
LODn, then the remainder area of Tile-LODn should be filled with the default value
for this dataset.

3.6.1.2 Vector Datasets

The point features, the lineal features, and the areal features of the CDB are organized

into several Vector Datasets and into levels of details.

The level-of-detail organization of the Vector Datasets mimics the concept of map

scaling commonly found in cartography (for example a 1:50,000 map). If we pursue

the analogy with cartography, increasing the LOD number (increasingly finer detail)

of a dataset is equivalent to decreasing the map’s scaling (1:n map scaling where n is

decreasing). As is the case with cartography, the Tile-LOD number provides a clear

indication of both the positional accuracy and of the density of features.

Consequently, the CDB specifies an average value for the density of features for each

LOD of the Vector Dataset hierarchy. Table 3-27 below defines these values. For

each CDB LOD, the table provides the maximum number of points allowed per Tile-

LOD and the resulting average Feature Density.

Table 3-27: CDB LOD versus Feature Density

CDB LOD
Maximum Number of

Points per Tile

Approximate Tile Edge Size

(meters)

Average Point Density

(points/m
2
)

-10 1 1.11319 × 10
+05
 8.06977 × 10

-11

-9 1 1.11319 × 10
+05
 8.06977 × 10

-11

-8 1 1.11319 × 10
+05
 8.06977 × 10

-11

-7 1 1.11319 × 10
+05
 8.06977 × 10

-11

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-45

© 2016 Presagis. All Rights Reserved.

CDB LOD
Maximum Number of

Points per Tile

Approximate Tile Edge Size

(meters)

Average Point Density

(points/m
2
)

-6 4 1.11319 × 10
+05
 3.22791 × 10

-10

-5 16 1.11319 × 10
+05
 1.29116 × 10

-09

-4 64 1.11319 × 10
+05
 5.16466 × 10

-09

-3 256 1.11319 × 10
+05
 2.06586 × 10

-08

-2 1024 1.11319 × 10
+05
 8.26345 × 10

-08

-1 4096 1.11319 × 10
+05
 3.30538 × 10

-07

0 16384 1.11319 × 10
+05
 1.32215 × 10

-06

1 16384 5.56595 × 10
+04
 5.28861 × 10

-06

2 16384 2.78298 × 10
+04
 2.11544 × 10

-05

3 16384 1.39149 × 10
+04
 8.46177 × 10

-05

4 16384 6.95744 × 10
+03
 3.38471 × 10

-04

5 16384 3.47872 × 10
+03
 1.35388 × 10

-03

6 16384 1.73936 × 10
+03
 5.41553 × 10

-03

7 16384 8.69680 × 10
+02
 2.16621 × 10

-02

8 16384 4.34840 × 10
+02
 8.66485 × 10

-02

9 16384 2.17420 × 10
+02
 3.46594 × 10

-01

10 16384 1.08710 × 10
+02
 1.38638 × 10

+00

11 16384 5.43550 × 10
+01
 5.54551 × 10

+00

12 16384 2.71775 × 10
+01
 2.21820 × 10

+01

13 16384 1.35887 × 10
+01
 8.87281 × 10

+01

14 16384 6.79437 × 10
+00
 3.54912 × 10

+02

15 16384 3.39719 × 10
+00
 1.41965 × 10

+03

16 16384 1.69859 × 10
+00
 5.67860 × 10

+03

17 16384 8.49297 × 10
-01
 2.27144 × 10

+04

18 16384 4.24648 × 10
-01
 9.08576 × 10

+04

19 16384 2.12324 × 10
-01
 3.63430 × 10

+05

20 16384 1.06162 × 10
-01
 1.45372 × 10

+06

21 16384 5.30810 × 10
-02
 5.81489 × 10

+06

22 16384 2.65405 × 10
-02
 2.32595 × 10

+07

23 16384 1.32703 × 10
-02
 9.30382 × 10

+07

For positive LODs, each Tile-LOD of the vector datasets is subject to a limit of

16,384 points to describe the features, whether the file contains point, lineal, or areal

features. For negative LODs, this limit is recursively divided by 4 until it reaches the

value 1.

3.6.1.3 Model Datasets

The last type of tiled datasets is used to store 2D and 3D Models and will be later

described in their own sections.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-46

© 2016 Presagis. All Rights Reserved.

3.6.2 Tiled Dataset Directory Structure

The vast majority of CDB datasets are tiled; the complete list follows.

1. Elevation

2. MinMaxElevation

3. MaxCulture

4. Imagery

5. RMTexture

6. RMDescriptor

7. GSFeature

8. GTFeature

9. GeoPolitical

10. VectorMaterial

11. RoadNetwork

12. RailRoadNetwork

13. PowerLineNetwork

14. HydrographyNetwork

15. GSModelGeometry

16. GSModelTexture

17. GSModelSignature

18. GSModelDescriptor

19. GSModelMaterial

20. GSModelCMT

21. GSModelInteriorGeometry

22. GSModelInteriorTexture

23. GSModelInteriorDescriptor

24. GSModelInteriorMaterial

25. GSModelInteriorCMT

26. T2DModelGeometry

27. T2DModelCMT

28. Navigation

All these datasets share the same 5-level directory structure defined below.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-47

© 2016 Presagis. All Rights Reserved.

Table 3-28: Tiled Dataset Directory Structure

Directory

Level

Directory

Name
Description

Level 1 Lat Geocell Latitude – This directory level divides

the CDB along lines of latitude aligned to

Geocells. By convention the name of the

directory is based on the latitude of the south

edge of the Geocell.

Level 2 Lon Geocell Longitude – This directory level

divides the CDB along lines of longitude

aligned to Geocells. By convention the name of

the directory is based on the longitude of the

west edge of the Geocell.

Level 3 nnn_DatasetName Tiled Dataset Name – The name of the

directory is composed of the 3-digit dataset

code (denoted nnn) followed by an underscore

and the dataset name. Dataset codes are listed

in Appendix Q.

Level 4 LOD This directory level divides each of the tiled

datasets of the Geocell into its Level of Details

Level 5 UREF This directory level divides a particular level of

details into rows of tiles. UREF is a reference

to the Up Index of a tile.

The above directory structure results in the following path to all files of the tiled

datasets.

\CDB\Tiles\Lat\Lon\nnn_DatasetName\LOD\UREF\

Directory levels are further described below.

3.6.2.1 Directory Level 1 (Latitude Directory)

This section provides the algorithm to determine the name of the directory at level 1

of the Tiles hierarchy.

The directory name starts with either an “N” (North) for latitudes greater than or

equal to 0 (lat ≥ 0) or a “S” (South) for latitude less than 0 (lat < 0); this “N,S” prefix

is followed by two digits:

if lat < 0 the directory name is “S(NbSliceID/2 − SliceID)”

if lat ≥ 0 the directory name is “N(SliceID − NbSliceID/2)”

SliceID and NbSliceID are computed as per the following equations:

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-48

© 2016 Presagis. All Rights Reserved.

where…

lat : is the latitude of the CDB tile

DlatCell : is the size in degree of a CDB Geocell in latitude

The CDB Specification sets DlatCell to 1 degree anywhere on earth, which gives 180

earth slices (NbSliceID = 180) and a SliceID ranging from 0 to 179. Note that the

latitude range of the CDB Specification Earth Model Tiled Datasets is –90 ≤ lat < 90;

Refer to Section 2.1.3, Handling of the North and South Pole for the handling of the

latitude of +90.

Note that the directory name corresponds to the latitude of the southwest corner of the

CDB Geocell. Moreover, future releases of the CDB Specification shall retain the

same value of DlatCell. Note that a modification of the value of DlatCell would

entail substantial changes to the resulting CDB directory and file naming thus

requiring a re-compilation of existing CDBs.

3.6.2.1.1 Examples

Data elements located at a latitude of −5.2° will be found under the directory named:

\CDB\Tiles\S06

Data elements located at a latitude of +62.3° will be found under the directory named:

\CDB\Tiles\N62

3.6.2.2 Directory Level 2 (Longitude Directory)

This section provides the algorithm to determine the name of the directory at level 2

of the Tiles hierarchy.

The directory name prefix is “E” (East) for longitudes greater than or equal to 0 (lon

≥ 0) and “W” (West) for longitudes less than 0 (lon < 0); three digits follow the

prefix:

if lon < 0 the name is “W(NbSliceIDIndexEq/2 − SliceIDIndex)”

if lon ≥ 0 the name is “E(SliceIDIndex − NbSliceIDIndexEq/2)”

SliceIDIndex and NbSliceIDIndexEq are computed as per the following equations:

DLatCell
NbSliceID

DLatCell

lat
SliceID

90
int2

90
int

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-49

© 2016 Presagis. All Rights Reserved.

where…

lon is the longitude of the CDB tile

Note that SliceIDIndex and NbSliceIDIndex are a function of both latitude and

longitude; however, NbSliceIDIndexEq is the number of SliceIDIndex at the equator.

First, the longitude size of the CDB Geocell (DLonCell) must be determined:

where…

DLonCellBasic is the width of a CDB Geocell in degrees at the equator

DLonZone(lat) is the number of DLonCellBasic in a given zone as per Table 3-29:

NbSliceIDIndex for every CDB Zones. DLonZone(lat) is a function of the latitude.

The CDB Specification sets DLonCellBasic to 1 degree, which gives 360 CDB

Geocells (NbSliceIDIndexEq=360) at the equator. Table 3-29: NbSliceIDIndex for

every CDB Zones, provides the values for NbSliceIDIndex at given latitudes.

SliceIDIndex ranges from 0 to NbSliceIDIndexEq-1 at all latitudes. Note that the

longitude range of the CDB Specification Earth Model Tiled Datasets is –180 ≤ lon <

180 which implies that an application must convert a longitude of 180 to –180 before

computing SliceIDIndex.

Since DLonCellBasic is set to 1 degree, the index SliceIDIndex will increment by

DLonZone(lat); therefore, the directory name corresponds to the longitude of the

southwest corner of the CDB Geocell. Moreover, future release of the CDB

Specification should retain the same value of DLonCellBasic. Doing otherwise will

cause substantial modifications to the repository file naming convention and tile

content thus requiring a conversion of the CDB instance.

sicDLonCellBa
ndexEqNbSliceIDI

DLonCell
ndexNbSliceIDI

latDLonZone
DLonCell

lon
exSliceIDInd

180
int2

180
int2

)(
180

intint

)(latDLonZonesicDLonCellBaDLonCell

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-50

© 2016 Presagis. All Rights Reserved.

Figure 3-8: Allocation of CDB Geocells with Increasing Latitude

Table 3-29: NbSliceIDIndex for every CDB Zones

Latitude DLonZone(lat) NbSliceIDIndex

+89 ≤ lat < +90 12 30

+80 ≤ lat < +89 6 60

+75 ≤ lat < +80 4 90

+70 ≤ lat < +75 3 120

+50 ≤ lat < +70 2 180

–50 ≤ lat < +50 1 360

–70 ≤ lat < –50 2 180

–75 ≤ lat < –70 3 120

–80 ≤ lat < –75 4 90

–89 ≤ lat < –80 6 60

–90 ≤ lat < –89 12 30

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-51

© 2016 Presagis. All Rights Reserved.

3.6.2.2.1 Examples

Data elements located at a latitude of −5.2° and a longitude of +45.2° will be found

under the directory named:

\CDB\Tiles\S06\E045

Data elements located at a latitude of +62.3° and a longitude of –160.4° will be found

under the directory named:

\CDB\Tiles\N62\W162

The reason for “W162” instead of “W161” is that at latitudes between 50° and 70°,

the CDB Geocells have a width of 2 degrees as indicated in Table 3-29:

NbSliceIDIndex for every CDB Zones. “W162” corresponds to the southwest corner

of the corresponding CDB Geocell.

3.6.2.3 Directory Level 3 (Dataset Directory)

The name of the directory at level 3 is composed of the dataset code and dataset

name. The complete list is provided in Appendix Q. Examples are provided below.

3.6.2.3.1 Examples

The elevation and the imagery of the geocell located at a latitude of −6° and a

longitude of +45° will be found under the directories named:

\CDB\Tiles\S06\E045\001_Elevation

\CDB\Tiles\S06\E045\004_Imagery

The list of geospecific features of the geocell located at a latitude of +62° and a

longitude of –160° will be found under the directory named:

\CDB\Tiles\N62\W160\100_GSFeature

The network of roads covering the geocell located at a latitude of +62° and a

longitude of –160° will be found under the directory named:

\CDB\Tiles\N62\W160\201_RoadNetwork

The geometry and textures of a geospecific 3D model located at latitude of −5.2° and

a longitude of +45.2° will be found under the directories named:

\CDB\Tiles\S06\E045\300_GSModelGeometry

\CDB\Tiles\S06\E045\301_GSModelTexture

The geometry of tiled 2D models covering the geocell located at a latitude of −5° and

a longitude of +45° will be found under the directories named:

\CDB\Tiles\S05\E045\310_T2DModelGeometry

To complete these examples, the files associated with the Navigation dataset and

covering the geocell located at a latitude of +36° and a longitude of −88° will be

found under the directory named:

\CDB\Tiles\N36\W088\401_Navigation

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-52

© 2016 Presagis. All Rights Reserved.

3.6.2.4 Directory Level 4 (LOD Directory)

This directory level contains all of the Level of Details directories supported by the

corresponding datasets.

All coarse LOD tiles, ranging from LOD –10 to LOD –1, are stored in a single

directory uniquely named \LC. The remaining finer LODs (i.e., LOD 0 to LOD 23)

have their own corresponding directories, named \Lxx where xx is the 2-digit LOD

number.

3.6.2.4.1 Examples

LOD 2 of the terrain elevation of the geocell located at a latitude of −6° and a

longitude of +45° will be found under the directory named:

\CDB\Tiles\S06\E045\001_Elevation\L02

LOD −6 of the same dataset for the same geocell will be found in:

\CDB\Tiles\S06\E045\001_Elevation\LC

3.6.2.5 Directory Level 5 (UREF Directory)

The UREF directory level subdivides a geocell into a number of rows to limit the

number of entries in a directory.

The number of files at a given LOD is proportional to 2
2×LOD

. For instance, LOD 10

represents about one million files. The introduction of the UREF directory level

reduces the number of files per directory to the order of 2
LOD

.

The name of the directory is composed of the character U (Up direction) followed by

the Up index (or the row number) of the tile, as described in this section.

The number of rows in a CDB Geocell at a given LOD is given by the following

equation:

𝑈𝑁𝑅𝑜𝑤𝐿𝑜𝑑 = 𝑚𝑎𝑥 (𝑖𝑛𝑡 (
2𝐿𝑜𝑑+10

210
) , 1)

…which simplifies to:

𝑈𝑁𝑅𝑜𝑤𝐿𝑜𝑑 = 𝑚𝑎𝑥(2𝐿𝑜𝑑, 1)

The index of a row ranges from 0 for the bottom row to UNRowLod−1 for the upper row.

For any given latitude lat, its Up Index URef is determined by first computing DLat:

𝐷𝐿𝑎𝑡 = (𝑙𝑎𝑡 + 90) − 𝑖𝑛𝑡 (
𝑙𝑎𝑡 + 90

𝐷𝐿𝑎𝑡𝐶𝑒𝑙𝑙
) × 𝐷𝐿𝑎𝑡𝐶𝑒𝑙𝑙

…which simplifies to the following for computer language that support modulo:

𝐷𝐿𝑎𝑡 = 𝑚𝑜𝑑(𝑙𝑎𝑡 + 90, 𝐷𝐿𝑎𝑡𝐶𝑒𝑙𝑙)

Then the index of the UREF can be evaluated as follows:

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-53

© 2016 Presagis. All Rights Reserved.

𝑈𝑅𝑒𝑓 = 𝑖𝑛𝑡 (
𝐷𝐿𝑎𝑡 × 2𝐿𝑜𝑑

𝐷𝐿𝑎𝑡𝐶𝑒𝑙𝑙
)

Knowing that the value of DLatCell is 1° for the whole CDB, the resulting formulas

become:

𝐷𝐿𝑎𝑡 = 𝑚𝑜𝑑(𝑙𝑎𝑡 + 90, 1)

𝑈𝑅𝑒𝑓 = 𝑖𝑛𝑡(𝐷𝐿𝑎𝑡 × 2𝐿𝑂𝐷)

3.6.2.5.1 Examples

At a latitude of −5.2° and at LOD 2, the UREF index computed from the above

formulas will be:

𝐷𝐿𝑎𝑡 = 𝑚𝑜𝑑(−5.2 + 90, 1) = 𝑚𝑜𝑑(84.8, 1) = 0.8

𝑈𝑅𝑒𝑓 = 𝑖𝑛𝑡(0.8 × 22) = 𝑖𝑛𝑡(0.8 × 4) = 𝑖𝑛𝑡(3.2) = 3

Assuming a longitude of +45.2°, the elevation data corresponding to this coordinate

will be found under the directory named:

\CDB\Tiles\S06\E045\001_Elevation\L02\U3

A geospecific feature whose significant size qualifies it for LOD 7 and positioned at a

latitude of +62.3° will produce the following UREF index:

𝐷𝐿𝑎𝑡 = 𝑚𝑜𝑑(62.3 + 90, 1) = 𝑚𝑜𝑑(152.3, 1) = 0.3

𝑈𝑅𝑒𝑓 = 𝑖𝑛𝑡(0.3 × 27) = 𝑖𝑛𝑡(0.3 × 128) = 𝑖𝑛𝑡(38.4) = 38

Assuming a longitude of –160.4°, the data will be found under the directory named:

\CDB\Tiles\N62\W162\100_GSFeature\L07\U38

3.6.3 Tiled Dataset File Naming Conventions

There are two sets of naming conventions for tiled datasets. The first one

corresponds to the name of files located in the leaf directories of the \CDB\Tiles

hierarchy. The second set of names applies to files found inside ZIP archives.

3.6.3.1 File Naming Convention for Files in Leaf Directories (UREF Directory)

All files stored in the UREF subdirectory of section 3.6.2.5 have the following

naming convention:

LatLon_Dnnn_Snnn_Tnnn_LOD_Un_Rn.xxx

The following table defines each field of the file name and chapter 5, CDB Datasets,

provides the dataset codes and the component selectors to complete the name.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-54

© 2016 Presagis. All Rights Reserved.

Table 3-30: Tiled Dataset File Naming Convention 1

Field Description

Lat Geocell Latitude – Identical to the name of the directory defined in section

3.6.2.1, Directory Level 1 (Latitude Directory).

Lon Geocell Longitude – Identical to the name of the directory defined in

section 3.6.2.2, Directory Level 2 (Longitude Directory).

Dnnn Character D followed by the 3-digit code assigned to the dataset.

Snnn Character S followed by the 3-digit value of Component Selector 1.

Tnnn Character T followed by the 3-digit value of Component Selector 2.

LOD Level of Detail – As defined in section 3.3.8.5, Level of Detail.

Un UREF – Identical to the name of the directory as defined in section 3.6.2.5,

Directory Level 5 (UREF Directory).

Rn RREF – A reference to the Right Index of a tile. Character R (Right

direction) followed by the column number as described in this section.

xxx File extension as per file type.

The RREF token divides a particular level of details into columns of tiles. The

number of columns in a CDB Geocell at a given LOD is given by the following

equation:

𝑅𝑁𝐶𝑜𝑙𝐿𝑜𝑑 = 𝑚𝑎𝑥 (𝑖𝑛𝑡 (
2𝐿𝑜𝑑+10

210
) , 1)

…which simplifies to:

𝑅𝑁𝐶𝑜𝑙𝐿𝑜𝑑 = 𝑚𝑎𝑥(2𝐿𝑜𝑑 , 1)

The index of a column ranges from 0 for the leftmost column to RNColLod−1 for the

rightmost column. For any given lat/lon coordinate, its Right Index RRef is

determined by first computing DLon:

𝐷𝐿𝑜𝑛 = (𝑙𝑜𝑛 + 180) − 𝑖𝑛𝑡 (
𝑙𝑜𝑛 + 180

𝐷𝐿𝑜𝑛𝐶𝑒𝑙𝑙
) × 𝐷𝐿𝑜𝑛𝐶𝑒𝑙𝑙

…which simplifies to the following for computer language that support modulo:

𝐷𝐿𝑜𝑛 = 𝑚𝑜𝑑(𝑙𝑜𝑛 + 180, 𝐷𝐿𝑜𝑛𝐶𝑒𝑙𝑙)

Then the Right Index RRef can be evaluated as follows:

𝑅𝑅𝑒𝑓 = 𝑖𝑛𝑡 (
𝐷𝐿𝑜𝑛 × 2𝐿𝑜𝑑

𝐷𝐿𝑜𝑛𝐶𝑒𝑙𝑙
)

By substituing DLonCell that is defined in section 3.6.2.2, Directory Level 2

(Longitude Directory), we obtain the following set of equations:

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-55

© 2016 Presagis. All Rights Reserved.

𝐷𝐿𝑜𝑛 = 𝑚𝑜𝑑(𝑙𝑜𝑛 + 180, 𝐷𝐿𝑜𝑛𝑍𝑜𝑛𝑒(𝑙𝑎𝑡))

𝑅𝑅𝑒𝑓 = 𝑖𝑛𝑡 (
𝐷𝐿𝑜𝑛 × 2𝐿𝑜𝑑

𝐷𝐿𝑜𝑛𝑍𝑜𝑛𝑒(𝑙𝑎𝑡)
)

The value of DLonZone is provided by Table 3-29: NbSliceIDIndex for every CDB

Zones.

3.6.3.1.1 Examples

Continuing from the examples in section 3.6.2.5.1, at a latitude of −5.2° and a

longitude of +45.2° and at LOD 2, the RREF index computed from the above

formulas will be:

𝐷𝐿𝑜𝑛 = 𝑚𝑜𝑑(45.2 + 180, 𝐷𝐿𝑜𝑛𝑍𝑜𝑛𝑒(−5.2)) = 𝑚𝑜𝑑(225.2, 1) = 0.2

𝑅𝑅𝑒𝑓 = 𝑖𝑛𝑡 (
0.2 × 22

𝐷𝐿𝑜𝑛𝑍𝑜𝑛𝑒(−5.2)
) = 𝑖𝑛𝑡 (

0.2 × 4

1
) = 𝑖𝑛𝑡(0.8) = 0

The primary elevation data corresponding to this coordinate will be found in the file

named:

S06E045_D001_S001_T001_L02_U3_R0.tif

A man-made point feature whose significant size qualifies it for LOD 7, positioned at

a latitude of +62.3° and a longitude of -160.4° will produce the following RREF

index:

𝐷𝐿𝑜𝑛 = 𝑚𝑜𝑑(−160.4 + 180, 𝐷𝐿𝑜𝑛𝑍𝑜𝑛𝑒(62.3)) = 𝑚𝑜𝑑(19.6, 2) = 1.6

𝑅𝑅𝑒𝑓 = 𝑖𝑛𝑡 (
1.6 × 27

𝐷𝐿𝑜𝑛𝑍𝑜𝑛𝑒(62.3)
) = 𝑖𝑛𝑡 (

1.6 × 128

2
) = 𝑖𝑛𝑡(102.4) = 102

Resulting in the following file names:

N62W162_D100_S001_T001_L07_U38_R102.shp

N62W162_D100_S001_T001_L07_U38_R102.shx

N62W162_D100_S001_T001_L07_U38_R102.dbf

N62W162_D100_S001_T001_L07_U38_R102.dbt

3.6.3.2 File Naming Convention for Files in ZIP Archives

The following GSModel datasets reside inside ZIP archives.

1. GSModelGeometry

2. GSModelTexture

3. GSModelMaterial

4. GSModelDescriptor

5. GSModelCMT

6. GSModelInteriorGeometry

7. GSModelInteriorTexture

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-56

© 2016 Presagis. All Rights Reserved.

8. GSModelInteriorMaterial

9. GSModelInteriorDescriptor

10. GSModelInteriorCMT

These files are stored in archives whose names follow the naming convention defined

in section 3.6.3.1 above; the files inside those archives follow the naming conventions

defined here.

LatLon_Dnnn_Snnn_Tnnn_LOD_Un_Rn_"extra_tokens".xxx

The extra tokens are described in the next sections.

3.6.3.2.1 GSModel Geometry File Naming Conventions

The files from the GSModelGeometry and GSModelInteriorGeometry datasets have

the following naming convention:

LatLon_Dnnn_Snnn_Tnnn_LOD_Un_Rn_FACC_FSC_MODL.flt

The FACC, FSC, and MODL tokens are as defined in section 3.3.8.1, Feature

Classification, and section 3.3.8.2, Model Name.

3.6.3.2.2 GSModel Texture File Naming Conventions

The files from the GSModelTexture and GSModelInteriorTexture datasets have the

following naming convention:

LatLon_Dnnn_Snnn_Tnnn_LOD_Un_Rn_TNAM.rgb

The TNAM token is as defined in section 3.3.8.4, Texture Name.

3.6.3.2.3 GSModel Material File Naming Conventions

The files from the GSModelMaterial and GSModelInteriorMaterial datasets have the

following naming convention:

LatLon_Dnnn_Snnn_Tnnn_LOD_Un_Rn_TNAM.tif

The TNAM token is as defined in section 3.3.8.4, Texture Name.

3.6.3.2.4 GSModel Descriptor File Naming Conventions

The files from the GSModelDescriptor and GSModelInteriorDescriptor datasets have

the following naming convention:

LatLon_Dnnn_Snnn_Tnnn_LOD_Un_Rn_FACC_FSC_MODL.xml

The FACC, FSC, and MODL tokens are as defined in section 3.3.8.1, Feature

Classification, and section 3.3.8.2, Model Name.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-57

© 2016 Presagis. All Rights Reserved.

3.6.3.2.5 GSModel CMT File Naming Conventions

The files from the GSModelCMT and GSModelInteriorCMT datasets have the

following naming convention:

LatLon_Dnnn_Snnn_Tnnn_LOD_Un_Rn_TNAM.xml

The TNAM token is as defined in section 3.3.8.4, Texture Name.

3.6.3.2.6 Examples

All archives at LOD 7 that are located at a latitude of +62.3° and a longitude

of -160.4° will be named:

N62W162_Dnnn_S001_T001_L07_U38_R102.zip

For each model dataset that uses an archive, the name of the archive will be:

N62W162_D300_S001_T001_L07_U38_R102.zip (Geometry)

N62W162_D301_S001_T001_L07_U38_R102.zip (Texture)

N62W162_D302_S001_T001_L07_U38_R102.zip (Signature)

N62W162_D303_S001_T001_L07_U38_R102.zip (Descriptor)

N62W162_D304_S001_T001_L07_U38_R102.zip (Material)

N62W162_D309_S001_T001_L07_U38_R102.zip (CMT)

N62W162_D305_S001_T001_L07_U38_R102.zip (Interior Geometry)

N62W162_D306_S001_T001_L07_U38_R102.zip (Interior Texture)

N62W162_D307_S001_T001_L07_U38_R102.zip (Interior Descriptor)

N62W162_D308_S001_T001_L07_U38_R102.zip (Interior Material)

N62W162_D311_S001_T001_L07_U38_R102.zip (Interior CMT)

Examples of files found inside the above archives are:

N62W162_D300_S001_T001_L07_U38_R102_AL015_116_AcmeFactory.flt

N62W162_D301_Snnn_Tnnn_L07_U38_R102_AcmeFactory.rgb

N62W162_D302_Snnn_Tnnn_L07_U38_R102_AL015_116_AcmeFactory.shp

N62W162_D302_Snnn_Tnnn_L07_U38_R102_AL015_116_AcmeFactory.shx

N62W162_D302_Snnn_Tnnn_L07_U38_R102_AL015_116_AcmeFactory.dbf

N62W162_D303_S001_T001_L07_U38_R102_AL015_116_AcmeFactory.xml

N62W162_D304_Snnn_Tnnn_L07_U38_R102_AcmeFactory.tif

N62W162_D305_S001_T001_L07_U38_R102_AL015_116_AcmeFactory.flt

N62W162_D306_S001_T001_L07_U38_R102_AcmeFactoryWall.rgb

N62W162_D306_S001_T001_L07_U38_R102_AcmeFactoryFloor.rgb

N62W162_D306_S001_T001_L07_U38_R102_AcmeFactoryCeiling.rgb

N62W162_D307_S001_T001_L07_U38_R102_AL015_116_AcmeFactory.xml

N62W162_D308_Snnn_Tnnn_L07_U38_R102_AcmeFactory.tif

N62W162_D309_S001_T001_L07_U38_R102_AcmeFactory.xml

N62W162_D311_S001_T001_L07_U38_R102_AcmeFactory.xml

Finally, the geometry of the tiled 2D model corresponding to the above tile will be

named:

N62W162_D310_S001_T001_L07_U38_R102.flt

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-58

© 2016 Presagis. All Rights Reserved.

3.7 Navigation Library Dataset

The \CDB\Navigation\ folder is the root directory of the Navigation library which is

composed of a single dataset.

1. NavData

The purpose of the Navigation library is to include all of the information which is

either not geographically located, or has a global geographical coverage and can be

used as a lookup to the Navigation Tile-LODs.

3.7.1 NavData Structure

The NavData dataset is assigned dataset code 400 and has a single level directory

structure.

Table 3-31: GTModelGeometry Entry File Directory Structure

Directory

Level

Directory

Name
Description

Level 1 400_NavData The name of the directory is composed of the dataset

code followed by an underscore and the dataset name.

3.7.2 Naming Convention

All files of the NavData dataset have the following naming convention:

D400_Snnn_Tnnn.dbf

The following table defines each field of the file name and section 5.2 provides the

values of the Component Selectors to complete the name.

Table 3-32: NavData Naming Convention

Field Description

D400 Character D followed by the 3-digit code assigned to the dataset.

Snnn Character S followed by the 3-digit Component Selector 1

Tnnn Character T followed by the 3-digit Component Selector 2

dbf The file type associated with the dataset (dBASE III+ file)

3.7.2.1 Examples

The Schema file (T002) of the Airport component (S001) of the NavData dataset is

stored in:

\CDB\Navigation\400_NavData\D400_S001_T002.dbf

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

3-59

© 2016 Presagis. All Rights Reserved.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

4-1

© 2016 Presagis. All Rights Reserved.

Chapter 4

4 CDB File Formats

The CDB Specification internal formats are based on the formats used by industry-

standard toolsets. As a result, the Specification eliminates the time-consuming off-

line database assembly and database publishing process usually imposed by each of

the clients. Refer to Section 1.6.4.2, Database Generation Flow for a more

comprehensive discussion of this topic.

Furthermore, the translation step into CDB format is typically trivial since the CDB

Specification is based on industry-standard native tool formats.

The CDB Specification permits any CDB to run “as-is”, without any offline assembly

(aka compilation), translation, conversion, on any CDB-compliant simulator client-

device platform. This allows the simulator user community AND the database

creation community to freely exchange CDBs across simulators and database

generation facilities either through the exchange of physical media (or entire storage

subsystems) or via network. As a result, a CDB can be run and exchanged without

change on any CDB-compliant simulator client-devices or any database generation

workstations, regardless of the computer platforms, simulator system software.

This chapter concerns itself with the formats used by the CDB. The formats used by

the CDB Specification are:

1. TIFF (*.tif): used for the representation of all datasets whose inherent

structure reflects that of a two-dimensional regular grid in a Cartesian

coordinate system. The primary use of TIFF within a CDB is for the

representation of terrain elevation and raster imagery. To qualify as a

CDB-compliant TIFF reader, the reader must satisfy the requirements

described in Appendix B of this Specification. It is to be noted that the

LZW compression algorithm within the TIFF format is supported and

encouraged by the CDB Specification when the data type of the content of

the file is of integral type. As a consequence, it is strongly recommended

to compress TIFF files containing integer values but to avoid compression

if the file contains floating-point values.

2. GeoTIFF (*.tif): used for the representation of all datasets whose

inherent structure reflects that of a two-dimensional regular grid of a

Geographic coordinate system. The primary use of GeoTIFF within a

CDB is for the representation of terrain elevation (note: the use GeoTIFF

is preferred over TIFF in the case of terrain elevation). CDB-compliant

GeoTIFF readers do not concerns themselves with any of the GeoTIFF

specific tags because the CDB Specification provides all of the

conventions to geo-reference each geographic dataset. However, it is

strongly recommended that database generation tools be fully compliant to

GeoTIFF; this provision eliminates the need for the tools to be aware of

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

4-2

© 2016 Presagis. All Rights Reserved.

the CDB conventions governing the content of each geo-referenced

dataset.

3. SGI Format (*.rgb): used for the representation of 3D model textures.

The file format allows for the representation of an image with 1, 2, 3, or 4

channels. A single channel image represents a grey-shaded texture; a two-

channel image represents a grey-shaded texture with an alpha component

providing the transparency; a three-channel image represents a color

(RGB) texture; finally, a four-channel image is a color (RGB) texture with

an alpha channel providing the transparency. CDB-compliant RGB

readers must be fully compliant with the SGI Image File Format

Specification. Its use is limited to 3D models.

4. JPEG 2000 (*.jp2): used for the representation of an image encoded in

accordance to the JPEG 2000 standard. CDB-compliant JPEG 2000

readers must be fully compliant with the JPEG 2000 standard while

reading such still image file types. JPEG 2000 encoded images can be

used for the representation of geo-referenced terrain imagery with some

degree of compression levels and is only applicable in the case of terrain

raster imagery.

5. OpenFlight (*.flt): used for the representation of 3-dimensional

geometric representation of all models (statically positioned cultural

models, moving models). To qualify as a CDB-compliant OpenFlight

reader, the reader must satisfy the requirements described in Appendix C

of this Specification.

6. Shape (*.shp, *.shx, *.dbf, *.dbt): used for the representation and

attribution of the vector feature datasets in a CDB. To qualify as a CDB-

compliant Shape reader, the reader must satisfy the requirements

described in Appendix D of this Specification.

7. Extensible Mark-up Language (*.xml): used to store metadata that

describes CDB versioning, describes CDB Composite and Base material

structure, defines CDB light type naming conventions and hierarchy, and

defines CDB model component hierarchy.

8. Cross-platform and interoperable file storage and transfer format

(*.zip): used to archive and store geospecific 3D model datasets. The ZIP

format is mainly used as a container to regroup files located in a given

directory. Compressing ZIP files is allowed; the application creating the

file is free to decide whether or not it compresses its content.

Appendices B, C, D of this Specification define the required compliancy of CDB

readers for the TIFF, OpenFlight and Shape formats. Appendix T describes the

JPEG 2000 file format and the last section of Appendix D describes the dBASE III+

file format used by the Shapefile standard. For all other formats (used by this

Specification), CDB readers must be fully compliant.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

4-3

© 2016 Presagis. All Rights Reserved.

Table 4-1: CDB File Format Compatibility

File Format
Versions Supported by

CDB
CDB Client-device Behavior

for Prior Versions

*.tif 6.0 Ignores data

*.rgb 1.0 Ignores data

*.jp2 1.0 Ignores data

*.flt 16.0 Ignores data

*.shp, *.shx ERSI White Paper, July 98 Ignores data

*.dbf, *.dbt dBASE III+ and above Ignores data

*.xml 1.0 Ignores data

*.zip 6.3.1 Ignores data

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-1

© 2016 Presagis. All Rights Reserved.

Chapter 5

5 CDB Datasets

This chapter provides the description of the content of CDB datasets, except

OpenFlight and RCS models that are covered in the following chapters. Chapter 5

also provides the Component Selectors necessary to complete the file names

associated with all CDB datasets.

5.1 Metadata Datasets

Metadata datasets contain information, global to the CDB that define its structure,

naming hierarchies, default values, allowable values, and status. All metadata files

are formatted using eXtended Markup Language (XML) files and their XML schemas

can be found in the \CDB\Metadata\Schema\ folder delivered with the

Specification.

The table below lists all metadata files that are allowed and defined by the

Specification. Note that a dataset code and component selectors are assigned to each

metadata file eventhough these codes do not participate in the construction of their

file names. Dataset codes are assigned to metadata datasets for consistency with all

other CDB Datasets.

Table 5-1: Component Selectors for Metadata Datasets

CS1 CS2 File Name

Dataset 700, Metadata

001 - Lights.xml

002 - Model_Components.xml

003 - Materials.xml

004 - Defaults.xml

005 - Specification_Version.xml (Deprecated)

006 - Version.xml

007 - CDB_Attributes.xml

008 - Geomatics_Attributes.xml

009 - Vendor_Attributes.xml

010 - Configuration.xml

Dataset 701, Client-Specific Metadata

- - Lights_xxx.xml

For client-specific metadata, the Specification only reserves one dataset code but no

component selector. The mechanism is kept for backward compatibility with

previous version of the Specification. However, its use is strongly discouraged

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-2

© 2016 Presagis. All Rights Reserved.

because it defeats the very intent of the CDB, which is to promote correlation

between client devices by having a single source of data.

5.1.1 Light Name Hierarchy Metadata

The light name hierarchy for the CDB is described in detail within the table found in

Appendix E of this Specification. For run-time access of this data, clients must be

able to retrieve such information. To this end, the Lights Hierarchy Definition

metadata is stored in an XML file in the metadata CDB directory as described in

Section 3.1.1, Metadata Directories. The name of the file is “Lights.xml”.

The XML file provides a description of the entire naming hierarchy, including the

hierarchical relationship of the levels with respect to each other and the position of

each light type within this hierarchy. In addition to the name of each light type, the

“Lights.xml” file contains a unique code with each light type.

In the case of light features (Airport Features - Lights and Environmental Lights tiled

datasets), the light type code provides a storage-efficient means to attribute each light,

since only the code is used to attribute light features. Database tools are required to

map the light type name string provided by the modeler into a light type code.

In the case of light features that are part of OpenFlight models, the light type name

string provided by the modeler is used “as-is” within the model to attribute each of

the light features.

Client-devices are required to internally build and initialize a table of light properties

and characteristics for their respective use. This table could be indexed at runtime

using the light type code. The table can be built at CDB load time and should match

the device’s inherent capabilities and level-of-fidelity; this flexibility can be achieved

because the “Lights.xml” file communicates the lights naming hierarchy to the client-

devices.

The client-devices are required by the CDB specification to ensure that properties and

characteristics of lower-tier names in the light point hierarchy inherit the properties

and characteristics of the higher-tier names in the light name hierarchy. This feature

allows modelers to add new light names to the light name hierarchy and be assured

that the new light names will immediately inherit all of the properties and

characteristics of the parent names even if the simulator vendor does not update any

of the client-devices.

The light type code can range from 0 to 9,999. The light type codes are used by the

Airport Features - Lights and Environmental Lights tiled datasets of the CDB. It is up

to the CDB creation tools to ensure that the light type code does in fact correspond to

the light type name assigned by the modeler.

Below is a small sample of the CDB light name hierarchy in XML format.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-3

© 2016 Presagis. All Rights Reserved.

<Lights>

 <Light type="Light" code="0">

 <Description>

 All Purpose Generic light

 </Description>

 <Light type="Platform" code="1">

 <Description>

 Platform light

 </Description>

 <Light type="Air" code="2">

 <Description>

 Aircraft light

 </Description>

 <Light type="Aircraft_Helos" code="3">

 <Description>

 Light for Aircraft and Helicopters

 </Description>

 <Light type="Anti-collision" code="4">

 <Description>

 Anti collision light – normally red flashing

 </Description>

 <Light type="Bottom_Light" code="5">

 <Description>

 Anti-collision found on bottom of the fuselage

 </Description>

 <Light type="NVG_Bottom_Light" code="6">

 <Description>

 Anti-collision found on bottom of fuselage in NVG mode

 </Description>

 </Light>

 </Light>

 </Light>

 ... other light definitions of type Platform-Air-Aircraft_Helos

 </Light>

 ... other light definitions of type Platform-Air

 </Light>

 ... other light definitions of type Platform

 </Light>

 </Light>

</Lights>

Note that light code numbering need not be consecutive. Light codes have a one-to-

one association with light types; consequently, the light codes are unique among all

light types.

5.1.1.1 Client Specific Lights Definition Metadata

Client-devices use the light type code as an index to look-up the client-specific

properties and characteristics of each light type. This approach is client-device

independent because the (device-specific) client’s rendering parameters are local to

its implementation. As a result, modelers need not bother setting or even

understanding the many parameters specific to each light type and to each client-

device type.

The CDB specification also offers a complementary approach to modifying the

appearance of lights. This approach provides basic control over light intensity, color,

lobe width and aspect, frequency and duty cycle to client devices. The approach also

permits a modeler to add new light types to the CDB light hierarchy.

Example:

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-4

© 2016 Presagis. All Rights Reserved.

As an example, we will create a client-specific lights definition metadata file for a

hypothetical client-device. The information would be held in the Lights_xxx.xml

metadata file corresponding to the client-device for which lights are to be tuned.

There can be one file per client-device and the file for each client-device is optional.

The file is not required if the modeler does not wish to adjust the basic characteristics

of one or more light types for the associated client-device, or he/she doesn’t require

new light types to be added to the CDB light hierarchy. The metadata file would be

loaded by the client-device whose name matches the “xxx” character string of the

Lights_xxx.xml file. As for the Lights, the file would be located at the top of the

CDB storage hierarchy in directory \CDB\Metadata\ as described in Section 3.1.1,

Metadata Directories.

Nominally, the Lights_xxx.xml consists of light type entries corresponding to the

light types the modeler wishes to add/modify. Each entry in the Lights_xxx.xml file

consists of one or optional fields.

Consider the case of a simulator equipped with a client-device rendering simulated

imagery for model “A” NVG goggles and a second client-device rendering simulated

imagery for model “B” NVG goggles. After viewing the CDB on the simulator, the

modeler wishes to diminish the intensity of the \Lights\Cultural\Line-based\Highway

lights for model “A” NVG goggles to 90% of the intensity calculated by the

simulator. To do this, the modeler creates a Lights_NVG_A.xml, creates a light type

entry for \Lights\Cultural\Line-based\Highway and provides an intensity field with

value of 0.9. Note that all other characteristics of the light type in this client-device

are unaffected since the modeler did not provide additional fields. Furthermore, the

characteristics of the light type in all other client-devices remain unaffected since the

modeler did not provide other Lights_xxx.xml files.

The XML schema for the fields of the Lights_xxx.xml is delivered with the

Specification in \CDB\Schema\Lights_Tuning.xsd. The fields are:

• Intensity: When a light type is non-native to the CDB specification, which

means that it is without a corresponding entry in Appendix E, Intensity

represents the light point intensity for the client-device (range normalized

from 0.0 to 1.0). When the light entry is native to the CDB specification,

Intensity is used as a floating-point intensity modifier that multiplies the

intensity calculated by the client-device. In both cases, Intensity defaults to a

value of 1.0.

• Color: When a light type is non-native to the CDB specification, Color is a

floating-point RGB triplet that represents the color of the light type for the

client-device (range normalized from 0.0 to 1.0). When the light entry is

native to the CDB specification, Color is a floating-point RGB triplet that

multiplies the RGB value calculated by the client-device. Color applies only

to visual system client-device types. If absent in a light type entry, Color

defaults to a value of white (1.0, 1.0, 1.0).

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-5

© 2016 Presagis. All Rights Reserved.

• Directionality: A string that categorizes the light type as “Omnidirectional”,

“Directional” or “Bidirectional”. If absent in a light type entry, Directionality

defaults to the value “Omnidirectional”.

• Lobe_Width: Represents the identifying section for the light’s lobe width

characteristics, which can have a horizontal and vertical attribute.

o Horizontal: When a light type is

non-native to the CDB

specification, the Horizontal field

represents the light point’s half-

intensity horizontal lobe width

for the client-device (range from

0.0 to 360.0). When the light

entry is native to the CDB specification, Horizontal field is used as a

floating-point modifier that multiplies the horizontal lobe width

calculated by the client-device. Applies only to Directional and

Bidirectional light types. If absent in a light type entry, Horizontal

field defaults to a value of 1.0.

o Vertical: When a light type is non-native to the CDB specification,

Vertical field represents the light point’s half-intensity vertical lobe

width for the client-device (range from 0.0 to 360.0). When the light

entry is native to the CDB specification, Vertical field is used as a

floating-point modifier that multiplies the vertical lobe width

calculated by the client-device. This applies only to Directional and

Bidirectional light types. If absent in a light type entry, Vertical field

defaults to a value of 1.0.

• Residual_Intensity: When a light type is non-native to the CDB specification,

Residual_Intensity represents the residual intensity of the light. Residual

intensity is the intensity of the light (range normalized from 0.0 to 1.0) outside

of the lobe defined by Lobe_Width:Horizontal and Lobe_Width:Vertical

fields. When the light entry is native to the CDB specification,

Residual_Intensity is used as a floating-point modifier that multiplies the

residual intensity calculated by the client-device. This applies only to

Directional and Bidirectional light types. If absent in a light type entry,

Residual_Intensity defaults to a value of 1.0.

• Frequency: A floating-point value greater than or equal to 0.0 that sets the

blink or rotating frequency of the light in Hertz (cycles per second). A value

of 0.0 disables all blinking and rotating properties. If absent in a light type

entry, Frequency defaults to a value of 0.0.

• Duty_Cycle: A floating-point value ranging from 0.0 to 1.0 that sets the duty

cycle of the light. Duty cycle is defined as the percentage of time the light is

turned on over a complete cycle. A value of 0.0 permanently turns the light

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-6

© 2016 Presagis. All Rights Reserved.

off. A value of 1.0 turns it on. The value is ignored if Frequency = 0.0. If

absent in a light type entry, Duty_Cycle defaults to a value of 0.5.

Here is a sample of a Lights_xxx.xml file where a modeler has exercised explicit

control over the properties of an anti-collision light and a landing light.

<Lights_Tuning>

 <Light type="\Light\Platform\Air\Aircraft_Helos\Anti-collision">

 <Description>Tuned for MH-47 CMS</Description>

 <Intensity>0.75</Intensity>

 <Color>1.0 0.0 0.0</Color>

 <Directionality>Omnidirectional</Directionality>

 <Frequency>0.5</Frequency>

 <Duty_Cycle>0.2</Duty_Cycle>

 </Light>

 <Light type="\Light\Platform\Air\Aircraft_Helos\Landing">

 <Description>...</Description>

 <Intensity>1.0</Intensity>

 <Color>1.0 0.9 0.9</Color>

 <Directionality>Directional</Directionality>

 <Residual_Intensity>0.05</Residual_Intensity>

 <Lobe_Width>

 <Horizontal>30.0</Horizontal>

 <Vertical>25.0</Vertical>

 </Lobe_Width>

 </Light>

</Lights_Tuning>

5.1.2 Model Components Definition Metadata

The CDB specification provides the means to unambiguously tag any portions of a

3D model (moving model or cultural feature with a modeled representation) with a

descriptive name. Component model names are stored in the model components

definition file, “\CDB\Metadata\Model_Components.xml” as described in Section

3.1.1, Metadata Directories. Appendix F lists all available model components. The

XML schema is provided in \CDB\Metadata\Schema\Model_Components.xsd

delivered with the Specification.

The following shows a content sample of the model component definition file:

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-7

© 2016 Presagis. All Rights Reserved.

<Model_Components>

 <Component name="Artillery_Gun">

 <Description>

 1) Refers to any engine used for the discharge of large

 projectiles and served by a crew of men.

 2) Cannon-like weapons operated by more than one person.

 </Description>

 </Component>

 <Component name="Windshield">

 <Description>

 A transparent screen located in front of the occupants of a

 vehicle to protect them from the wind and weather.

 </Description>

 </Component>

 ... other components

</Model_Components>

5.1.3 Base Material Table

CDB Base Materials are listed in Appendix L and stored an XML file named

\CDB\Metadata\Materials.xml, as mentionned in section 3.1.1. The format of the file

is defined by an XML schema that is delivered with the Specification in the file

named \CDB\Metadata\Schema\Base_Material_Table.xsd.

Here is an excerpt of the CDB Base Material Table showing the definitions of the

first and the last base materials of the Specification.

<Base_Material_Table>

 <Base_Material>

 <Name>BM_ASH</Name>

 <Description>

 The solid remains of a fire

 </Description>

 </Base_Material>

...

 <Base_Material>

 <Name>BM_WOOD-DECIDUOUS</Name>

 <Description>

 Trunks, branches of live deciduous trees

 </Description>

 </Base_Material>

</Base_Material_Table>

5.1.4 Default Values Definition Metadata

Default values for all datasets can be stored in the default values metadata file

“\CDB\Metadata\Defaults.xml” as described in Section 3.1.1, Metadata Directories.

Default values defined throughout the CDB specification are listed in Appendix S.

The XML schema is provided in \CDB\Metadata\Schema\Defaults.xsd delivered with

the Specification. There are two types of default values: read and write default values

(‘R’ or ‘W’.) Generally, read default values are values to be used when optional

information is not available. Write default values are default values to be used by

CDB creation tools to fill mandatory content when information is either missing or

not available. The default value name is a unique name identifying a default value for

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-8

© 2016 Presagis. All Rights Reserved.

a given dataset. Valid default value names are listed in Appendix S. Each default

value has a type. Valid default value data types are “float”, “integer” and “string”.

The following is an excerpt of a “Defaults.xml” file containing the default terrain

elevation value.

<Default_Value_Table>

 <Default_Value>

 <Dataset>001_Elevation</Dataset>

 <Name>Default_Elevation-1</Name>

 <Description>Default Primary Terrain Elevation</Description>

 <Type>float</Type>

 <Value>0.0</Value>

 <R_W_Type>R</R_W_Type>

 </Default_Value>

 <!-- Insert other Default Values in accordance to the table above -->

</Default_Value_Table>

5.1.5 Specification Version Metadata – Deprecated

The content of Specification_Version.xml has been merged into Version.xml; as

such, the use of the file is deprecated as of this version of the Specification.

5.1.6 Version Metadata

Each CDB Version requires a version control file that is called Version.xml. Its

contents are as follows:

<Version>

 <PreviousIncrementalRootDirectory name="Path to another CDB Version"/>

 <Comment>A comment to describe this CDB Version</Comment>

 <Specification version="3.2|3.1|3.0" update="n"/>

 <Extension name="name of the extension" version="version of this extension"/>

</Version>

The complete XML schema can be found in \CDB\Metadata\Schema\Version.xsd

delivered with the Specification.

The optional <PreviousIncrementalRootDirectory> element is used to refer to another

CDB Version. This is the mechanism to use to chain together two CDB versions.

The optional <Comment> element is a free-format text to describe the purpose and/or

the nature of the data of this CDB Version. The optional <Specification> element

indicates the version of the CDB Specification that is used to produce the content of

this CDB Version. Note that version numbers of the Specification are limited to the

existing versions: 3.2, 3.1, and 3.0. Other values are not permitted. Finally, the

optional <Extension> element indicates that this CDB Version is in fact a CDB

Extension. Since all elements are optional, a valid CDB Version contains at the very

minimum one file, Version.xml, which can be empty.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-9

© 2016 Presagis. All Rights Reserved.

A version control file that does not have a CDB Extension indicates that the CDB

Version holds content that strictly follows the CDB Specification.

A CDB Extension corresponds to user defined information, which is not described or

supported by the CDB Specification, stored within the CDB Version. As an example,

such additional information could be client or vendor-specific information used to

increase system performance. Any user defined information shall not replace or be

used in place of existing CDB information. A CDB Extension should only contain

vendor or device specific information. CDB content adhering to the CDB

specification should only be found in the CDB versions. Client devices not

concerned with a CDB extension should ignore all non-CDB compliant content,

without loss of information.

5.1.7 CDB Attributes Metadata

The CDB attributes are listed and described in section 5.7.1.3 CDB Attributes. The

metadata for these attributes is stored in \CDB\Metadata\CDB_Attributes.xml and the

schema can be found in \CDB\Metadata\Schema\Vector_Attributes.xsd. In essence,

the file is the transposition of the text found in section 5.7.1.3 CDB Attributes into a

format more appropriate for a computer program.

Its contents are as follows:

<Vector_Attributes>

 <Attributes>

 <Attribute>...</Attributes>

 ...

 <Attribute>...</Attributes>

 </Attributes>

 <Units>

 <Unit>...</Unit>

 ...

 <Unit>...</Unit>

 </Units>

 <Scalers>

 <Scaler>...</Scaler>

 ...

 <Scaler>...</Scaler>

 </Scalers>

</Version>

The file is composed of three majors sections, the first one being the most important.

The file has a list of attributes, followed by two lists of units and scalers that are

referenced by individual attribute.

5.1.7.1 Definition of the <Attribute> Element

Each attribute is defined as follows:

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-10

© 2016 Presagis. All Rights Reserved.

<Attribute code="..." symbol="...">

 <Name>...</Name>

 <Description>...</Description>

 <Level>...</Level>

 <Value>...</Value>

</Attribute>

The code is the integer value assigned to each attribute listed in section 5.7.1.3, CDB

Attributes. The symbol is the unique character string identifying the attribute. The

<Name> is the long form of the symbol. The <Description> is a free form text

describing the attribute. The <Level> is defined below and provides the schema level

of the attribute. The <Value> element provides the information required to interpret

(parse) the value assigned to this attribute.

The schema level is defined as follow:

<Level>

 <Instance>...</Instance>

 <Class>...</Class>

 <Extended>...</Extended>

</Level>

The <Level> provides a mean to state if the attribute is Preferred, Supported,

Deprecated, or Not Supported for each of the schema level.

The definition of <Value> is as follow:

<Value>

 <Type>...</Type>

 <Format>...</Format>

 <Precision>...</Precision>

 <Range>...</Range>

 <Unit>...</Unit>

 <Scaler>...</Scaler>

</Value>

The <Type> is one of Text, Numeric, or Boolean. In the case of a numeric data type,

the <Format> indicates if it is a Floating-Point or an Integer value. For a floating

point type, the <Precision> provides the number of digits before and after the decimal

point. For numeric types, the <Range> provides the minimum and maximum values;

the <Unit> is a reference to a unit code; and the <Scaler> is a reference to a scaler

code; both codes being respectively defined in subsequent <Units> and <Scalers>

sections.

5.1.7.2 Definition of the <Unit> Element

The <Units> section is a list of <Unit> definitions as follow:

<Unit code="..." symbol="...">

 <Name>...</Name>

 <Description>...</Description>

</Unit>

The code is a positive integer used as a key when a <Value> references a unit. The

symbol is the character string that is commonly recognized as the unit identifier. The

<Name> is the long form of the unit symbol and <Description> is a free-form text

describing this unit.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-11

© 2016 Presagis. All Rights Reserved.

5.1.7.3 Definition of the <Scaler> Element

The <Scalers> section is a list of <Scaler> definitions as follow:

<Scaler code="..." symbol="...">

 <Name>...</Name>

 <Description>...</Description>

 <Multiplier>...</Multiplier>

</Scaler>

The code is a positive integer used as a key when a <Value> references a scaler. The

symbol is the character string that is commonly recognized as the scaler identifier.

The <Name> is the long form of the scaler symbol and <Description> is a free-form

text describing this scaler. Finally, <Multiplier> is the numerical multiplier applied

to the base unit.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-12

© 2016 Presagis. All Rights Reserved.

5.1.7.4 Example of CDB_Attributes.xml

The following example illustrates how to define an attribute:

<Vector_Attributes>

 <Attributes>

 <Attribute code="2" symbol="AO1">

 <Name>Angle of Orientation</Name>

 <Description>Angle of Orientation with greater than 1 degree resolution.

 The angular distance measured from true north (0 deg) clockwise to the

 major (Y) axis of the feature. If the feature is square, the axis 0

 through 89.999 deg shall be recorded. If the feature is circular, 360.000

 deg shall be recorded.

 </Description>

 <Level>

 <Instance>Preferred</Instance>

 <Extended>Supported</Extended>

 </Level>

 <Value>

 <Type>Numeric</Type>

 <Format>Floating-point</Format>

 <Precision>3.3</Precision>

 <Range interval="Right-Open">

 <Min>0</Min>

 <Max>360</Max>

 </Range>

 <Unit>2</Unit>

 </Value>

 </Attribute>

 </Attributes>

 <Units>

 <Unit code="2" symbol="deg">

 <Name>degree</Name>

 <Description>To mesure an angle</Description>

 </Unit>

 </Units>

 <Scalers>

 <Scaler code="2" symbol="k">

 <Name>kilo</Name>

 <Description>A multiplier: thousand</Description>

 <Multiplier>1000</Multiplier>

 </Scaler>

 </Scalers>

</Vector_Attributes>

The schema explains the use of the interval attribute of the <Range> element.

5.1.8 Geomatics Attributes Metadata

Geomatics attributes (section 5.7.1.2.6.2), are listed in “Geomatics_Attributes.xml”

(section 3.1.1). The file uses the Geomatics_Attributes.xsd schema.

5.1.9 Vendor Attributes Metadata

Vendor attributes (section 5.7.1.2.6.3), are listed in “Vendor_Attributes.xml”

(section 3.1.1). The file uses the Vendor_Attributes.xsd schema.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-13

© 2016 Presagis. All Rights Reserved.

5.1.10 Configuration Metadata

The Configuration metadata file provides the means of defining CDB Configurations.

The syntax of the file is given below. The complete XML schema is provided in

/CDB/Metadata/Schema/Configuration.xsd delivered with the Specification.

<Configuration>

 <Comment> An optional comment describing this CDB Configuration. </Comment>

 <Version>

 <Folder path="..."/>

 <Comment> An optional comment describing this CDB Version. </Comment>

 <Specification version="..."/>

 <Extension name="..." version="..."/>

 </Version>

 <!-- Other versions as needed -->

</Configuration>

A <Configuration> is a list of one or more <Version> elements. A <Version> has a

mandatory <Folder> element to provide the path to the CDB Version. The other

three (3) elements have the same definitions as that of section 5.1.6, Version

Metadata.

5.1.10.1 A Note about Folder Path

The use of a relative path to a CDB Version ensures a greater form of interoperability

between operating systems and file systems. However, the Specification does not

prevent the use of absolute paths
60

. A relative path is expressed relative to the root of

the CDB Version containing the Configuration file.

5.1.10.2 Example

Assume that we want to assemble two CDB Versions into a single CDB

Configuration. The first CDB Version is located in /CDB/myVersion and has the

following Version.xml file.

<Version>

 <PreviousIncrementalRootDirectory name="/CDB/theVersion"/>

 <Comment> This is the comment describing myVersion. </Comment>

 <Specification version="3.2"/>

</Version>

The second CDB Version complies with version 3.0 of the Specification, is located in

/CDB/theVersion, and has the following Version.xml file.

60 On Windows, the path can even be specified using the UNC notation.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-14

© 2016 Presagis. All Rights Reserved.

<Version>

 <Comment> This is the comment describing theVersion. </Comment>

</Version>

The resulting CDB Configuration is stored in /CDB/myConfiguration and its

Configuration.xml file could look like this:

<Configuration>

 <Comment>

 This is an example of a CDB Configuration referring to two CDB Versions.

 </Comment>

 <Version>

 <Folder path="../myVersion"/>

 <Comment> This is the comment describing myVersion. </Comment>

 <Specification version="3.2"/>

 </Version>

 <Version>

 <Folder path="../theVersion"/>

 <Comment> This is the comment describing theVersion. </Comment>

 <Specification version="3.0"/>

 </Version>

</Configuration>

Notice the use of relative paths to refer to the CDB Versions. Also notice the

addition of the <Specification> element to the second <Version> to explicitly state

that it contains data complying with version 3.0 of the Specification.

5.2 Navigation Library Datasets

The NavData dataset represents the navigation portion of a CDB. It supports several

simulation subsystems such as the Instrument Landing System (ILS), Inertial

Navigation/Global Positioning System, and Microwave Landing System

Communications. The dataset also provides descriptions of airspaces, airways,

heliports, helipads, gates, runways, approaches, and terminals. It also provides

information regarding climb procedures out of airports.

The NavData dataset is broken down into a collection of 46 (forty-six) components

related to the Flight Navigation. Together, these 46 components combine all of the

information currently provided by the following two organizations:

 Navigation System Data Base (produced by Jeppesen) around the ARINC

Standard 424-16

 Product Standard for the Digital Aeronautical Flight Information File

(DAFIF) produced by the National Intelligence Geospatial Agency

The component selector 2 is set to 001 for basic navigation records and these files are

located in the tiled Navigation dataset directories. The component selector 2 is set to

002 for schema files and a value between 101 and 126 for key datasets. Schema and

key datasets are located in the global Navigation directory. Component selector 1 and

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-15

© 2016 Presagis. All Rights Reserved.

the file type are as per Table 5-28: Tiled Navigation Dataset. It provides a list of all

CDB Navigation components with their designated names and description.

Table 5-2: Component Selectors for Navigation Dataset

CS1 CS2
File

Extension

Component

Name
Component Description

Dataset 400, NavData

001-046 002 *.dbf Schema Lists the data attributes for the given

component

101-126 *.dbf Key Dataset Sorted lists used to perform queries within the

NavData

- T002: Schema file

- T101: Storage number search key

- T102: Ident search Key

- T103: ICAO search Key

- T104: Frequency search Key

- T106: IATA search Key

- T107: Type search Key

- T108: Additional Ident 1 search Key

- T109: Additional ICAO 1 search Key

- T110: Channel search Key

- T111: Additional Ident 2 search Key

- T114: Range search Key

- T115: Sequence search Key

- T116: Country search Key

- T117: Boundary search Key

- T118: Code search Key

- T120: Additional Ident 3 search Key

- T121: Reserved

- T122: Additional Type 1 search Key

- T123: Additional ICAO 2 search Key

- T126: Additional Ident 4 search Key

The Navigation Dataset uses the Shapefile format. Each of the Navigation features

are represented by point features in *.shp files. Each point feature is matched to a

group of attributes (describes in Appendix H) provided by the *.dbf and, optionally,

*.dbt portions of the Shapefile format. Appendix I provides the enumeration codes

for the Navigation data fields.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-16

© 2016 Presagis. All Rights Reserved.

Table 5-3: List of Navigation Components

Component Name CS1 Shape Type Component Description

Airport 1 Point Area or land that is used (or intended for

use) for the landing and take-off of

aircraft.

AirRefueling 2 Point A specifically designated airspace

where air-to-air refueling operations are

normally conducted.

AirRefuelingControl 3 Point Information regarding the Air Traffic

Control Center that controls the airspace

within which the refueling track or

anchor is located.

AirRefuelingFootnote 4 Point Supplemental notes defining an Air

Refueling component

AirRefuelingPoint 5 Point Single Point from an Air Refueling

structure

AirRefuelingSegment 6 Multipoint Segment from an Air Refueling

structure

AirspaceBoundary 7 Point Designated airspace within which some

or all aircraft may be subject to air

traffic control.

AirwayRestriction 8 Point Altitude and time restrictions for

airways, airway segments, or sequences

of airway segments

Approach 9 Multipoint Preplanned instrument flight rule (IFR)

for air traffic control approach

procedures.

ArrestingGear 10 Point Safety device consisting of engaging or

catching devices, and energy absorption

devices for the purpose of arresting both

tail hook and/or non-tail hook equipped

aircraft

COMMS 11 Point Voice, radio communications, and

facility call sign and frequencies

available for same operations between

the airport environment and aircraft.

ControlAirspace 12 Multipoint Sequential listing of vertical and lateral

limits, defining airspaces of different

classifications, within which air traffic

control service is provided

EnrouteAirway 13 Point A specified route designed for

channeling the flow of traffic as

necessary for the provision of air traffic

services

FirUir 14 Multipoint Flight Information region - Upper

Information Region. Designated

airspace within which some or all

aircraft may be subject to air traffic

control.

Gate 15 Point Passenger gate at an airport

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-17

© 2016 Presagis. All Rights Reserved.

Component Name CS1 Shape Type Component Description

GLS 16 Point GNSS Landing System

Helipad 17 Line Designated area usually with a prepared

surface used for take-off and landing of

helicopters

Heliport 18 Point Area or land intended to be used for

landing and takeoff of helicopters

HoldingPattern 19 Point Flight path maintained by an aircraft

that is awaiting permission to land

ILS 20 Multipoint Instrument landing system - Precision

instrument approach system normally

consisting of electronic components and

visual aids

Marker 21 Point Transmitter that radiates vertically a

distinctive pattern for providing position

information to aircrafts

MilitaryTrainingRoute 22 Point Routes used by the Department of

Defense and associated Reserve and Air

Guard Units for the purpose of

conducting low altitude navigation and

tactical training in both IFR and VFR

weather conditions below 10,000 feet

MSL at airspeeds in excess of 250 KTS

IAS.

MilitaryTrainingRouteAirspa

ce

23 Point Special use airspace or military

operations area associated with a

Military Training Route

MilitaryTrainingRouteDescri

ption

24 Point Supplemental information regarding a

Military Training Route

MilitaryTrainingRouteOverla

y

25 Multipoint The width left and right of centerline

based on a set of widths at Point Ident

and another set of width at the Next

Point Ident in one segment record.

MLS 26 Multipoint Microwave Landing System - precision

instrument approach system normally

consisting of electronic components and

visual aids

MSA 27 Point Minimum Safe Altitude - altitude below

which it is hazardous to fly owing to

presence of high ground or other

obstacles

Navaid 28 Multipoint Electronic device on the surface, which

provides point-to-point guidance

information or position data to aircraft

in flight

OffRouteTerrainClrAltitude 29 Polygon Off-Route Terrain Clearance Altitude -

Clearance altitudes in non-mountainous

and in mountainous areas

ParachuteJumpArea 30 Point An area designated for parachute

jumping activities.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-18

© 2016 Presagis. All Rights Reserved.

Component Name CS1 Shape Type Component Description

ParachuteJumpAreaBoundary 31 Multipoint Boundary of a Parachute Jump Area

PathPoint 32 Point

PreferredRoute 33 Point A system of routes designed to

minimize route changes during the

operational phase of flight and to aid in

the efficient management of air traffic.

PresetSite 34 Point Preset Site

RestrictiveAirspace 35 Multipoint Airspace of defined dimensions

identified by an area on the surface of

the earth wherein activities must be

confined

Runway 36 Line Rectangular area on a land airport

prepared for the landing and takeoff

runs of aircraft along its length

SID 37 Multipoint Standard Instrument Departure -

preplanned instrument flight rule (IFR)

for air traffic control departure

procedure

SpecialUse Airspace 38 Point Airspace of defined dimensions wherein

activities must be confined because of

their nature and/or wherein limitations

may be imposed upon aircraft

operations that are not a part of those

activities.

STAR 39 Multipoint Standard Terminal Arrival - preplanned

instrument flight rule (IFR) air traffic

control arrival procedure

SupplTerminalData 40 Point Supplemental terminal data

TerminalProcClimb 41 Point Terminal Procedure Climb - Min or

ATC Climb rates

TerminalProcFeedRoute 42 Multipoint Terminal Procedure Feeder Route - A

route depicted on Instrument Approach

Procedures to designate routes for

aircraft to proceed from the en route

structure to the Initial Approach Fix

TerminalProcMin 43 Point Terminal Procedure Minima - Height

minima data for Terminal Procedure

VFRRoute 44 Multipoint Preplanned arrival or departure routes

for helicopters or light fixed wing

aircraft to specified airports or heliports

using/in Visual Flight Rules (VFR

VFRRouteSegment 45 Multipoint Segment of a VFR Route

Waypoint 46 Point Predetermined geographical position,

used for route or instrument approach

definition or progress reporting

purposes

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-19

© 2016 Presagis. All Rights Reserved.

5.2.1 Schema Files

The schema file lists the data attributes for the given NavData component. It contains

the following columns:

Table 5-4: List of Navigation Schema Attributes

Attribute Type Length Definition

ShortName String 11 A null-terminated string (ten characters or less).

Short-hand name of the attribute used in the tiled

ShapeFiles (the dBASE III+ .dbf format limits the

field names to 10 characters or less)

DataType String 255 The data type for the attribute

KeyId Int 4 Index key for the attribute, used when performing a

query. Not all attributes have an assigned index

key, as only a few attributes can be used to perform

a query. For each attribute with an index key, an

index key dataset will be created.

For schema files, the value of CS2 shall be T002.

Each attribute with an index Key (KeyId) has an index key dataset created. The index

key dataset includes the last three characters of the KeyId inside the component

selector 2 (ex. KeyId 2101 would be dataset component selector 2 – T101).

5.2.1.1 Example

Here is the data content of the schema file for the Airport dataset

(D400_S001_T002.dbf):

Table 5-5: Example of a Navigation Schema

ShortName DataType KeyId

StoraNumbe Uint64 2101

AHGT Logical

AlterNam String

AsCoStNumb Uint64

BeacoAvail Logical

City String

CivMilTyp CivilMilitaryType

ClearStatu ClearanceStatus

Country CountryEntry 2116

DayliTim Float32

DayTimFram String

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-20

© 2016 Presagis. All Rights Reserved.

ShortName DataType KeyId

FlipPage String

FuelType String

HydElePres Logical

IataCode String

IcaoCode String 2103

Ident String 2102

IfrCapab Logical

IslanGrou String

Jasu String

LonRunLeng Uint32

LonRunSurf PavementType

MagTruIndi MagneticTrueIndication

MagneVaria Float32

MgrsPosit String

Name String

NavIcaCod String

NavaiIden String

Notam NotamSystem

OilType String

OperaAgenc String

OperaHour OperatingHours

Point1 GeoCoordinate

Remark String

ServiRemar String

SpeedLimit Uint32

SpeLimAlti Sint32

StateName StateEntry

SupFluTyp String

TerraImpac Logical

Timezone Float32

TransAltit Sint32

TransLeve Sint32

As per this example, four Airport attributes can be used to perform queries:

 StoraNumbe (key index 2101)

 Ident (key index 2102)

 IcaoCode (key index 2103)

 Country (key index 2116)

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-21

© 2016 Presagis. All Rights Reserved.

5.2.2 Key Datasets

The index Key Datasets are sorted lists used to perform queries within the NavData.

For each attribute that has an index key in the schema file, an index Key Dataset must

be created. For Key Datasets, the Dataset Component Selector 2 shall include the last

three digits of the index key from the schema file.

Table 5-6: List of Navigation Key Attributes

Attribute Type Length Definition

Value String 255 Value of the data attribute sorted in

increasing order (numbers or characters)

Lat ID Signed Integer 3 Latitude index of the Geocell which

contains the data record

Lon ID Signed Integer 4 Longitude index of the Geocell which

contains the data record

Row ID Integer 4 Index of the data record in the Geocell

starting at 1.

This information can then be used to rapidly lookup which CDB Tile contain the data

in the pageable NAV dataset (401) and use the Object ID to access the data record in

this dataset.

The Storage number is a Primary Surrogate key that uniquely identifies each record

within each NAV dataset sub components.

5.2.2.1 Example

For the Airport NavData Component, there shall be 4 key datasets (for attributes

StoraNumber, Ident, IcaoCode and Country):

\CDB\Navigation\400_NavData\D400_S001_T101.dbf

(StoraNumber, key index 2101)

\CDB\Navigation\400_NavData\D400_S001_T102.dbf

(Ident, key index 2102)

\CDB\Navigation\400_NavData\D400_S001_T103.dbf

(IcaoCode, key index 2103)

\CDB\Navigation\400_NavData\D400_S001_T116.dbf

(Country, key index 2116)

The following is an excerpt from the D400_S001_T102.dbf file (Key Dataset for the

Ident attribute):

Table 5-7: Example of Navigation Keys

Value Object ID Lon ID Lat ID

00CA 2 -117 35

00UT 3 -113 37

00WI 6 -90 44

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-22

© 2016 Presagis. All Rights Reserved.

Value Object ID Lon ID Lat ID

01LS 4 -92 30

01MT 3 -115 48

01WI 2 -91 44

02P 0 -78 40

03AZ 5 -111 31

03CO 3 -105 40

03GA 5 -84 31

04CA 10 -118 34

04MS 4 -91 32

04NV 1 -116 35

05CL 2 -123 38

05LS 2 -93 31

05UT 0 -111 37

06FA 0 -81 26

06MN 1 -93 47

06MO 7 -95 39

06TE 10 -96 30

07FA 7 -81 25

07MT 1 -107 48

For example, the Airport with Ident 04CA shall be found in the Geocell with

southwest corner at N34:00:00/W118:00:00. It will be the 10th record in the

corresponding Shapefile.

Here is an example of the Storage number being used as a reference between

Navigation types:

 Type: Approach

 Attributions:

o StoraNumbe → Storage number (Approach)

o AirStoNumb → Airport storage number (referenced)

In this case, we see the Approach navigation type referencing the Airport navigation

type by using the Airport Storage number.

5.3 CDB Model Textures

The following table provides the Component Selectors associated with all kinds of

textures that are usable on geotypical (GT), geospecific (GS), moving (MM), and

tiled (T2D) models.

In the context of CDB model textures, the first component selector is known as the

“Texture Kind” and the second component selector is simply called the “Texture

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-23

© 2016 Presagis. All Rights Reserved.

Index”. Column 1 lists all texture kinds supported by the Specification. The second

column gives the range of indices allowed for each kind.

Table 5-8: Component Selectors for CDB Model Textures

CS1

(Kind)

CS2

(Index)

Component

Name

Component

Description

001 001 Year-Round

Texture

Base textures for year-round usage on model shells or general

base textures for model interiors.

002 001..012 Monthly

Texture

Base textures for monthly usage on the shell of models

(enumeration values in Appendix O, details in section 6.13.5.2)

003 001..004 Seasonal

Texture

Deprecated – Replaced with kind 009

004 001..999 Uniform Paint

Scheme

Base textures for Moving Models with Uniform Paint Schemes

(enumeration values in Appendix O, details in section 6.13.5.2)

005 001..999 Camouflage

Paint Scheme

Base textures for Moving Models with Camouflage Paint

Schemes (enumeration values in Appendix O, details in section

6.13.5.2)

006 001..999 Airline Paint

Scheme

Base textures for Moving Models with Airline Paint Schemes

(enumeration values in Appendix O, details in section 6.13.5.2)

007 001..999 Shadow Map Base textures of Moving Models Shadows to be projected onto

terrain and/or culture (details in section 6.13.5.1.2)

008 001..999 Motion Blur

Texture

Base textures for use with rotating parts (details in section

6.9.2.3)

009 001..004 Quarterly

Texture

Base textures for quarterly usage on the shell of models

(enumeration values in Appendix O, details in section 6.13.5.2)

051 001..999 Night Map Subordinate textures to simulate the effect of lights inside 3D

model shells (details in section 6.13.5.3)

052 001..999 Tangent-Space

Normal Map

Subordinate textures used to simulate the effect of irregular

surfaces (details in section 6.13.5.5)

053 001..999 Light Map Subordinate textures to simulate the effect of lights on

surrounding surfaces (detail in section 6.13.5.4)

054 001..999 Contaminant Subordinate textures to represent the presence of particules on

runways, taxiways, and roads in general (enumeration values in

Appendix O, details in section 6.13.5.7)

055 001..999 Skid Mark Subordinate textures to represent the visible mark left by any

solid which moves against another one; especially marks of tires

on roads and runways (enumeration values in Appendix O,

details in section 6.13.5.7)

056 001..999 Detail Texture Subordinate texture used to add detail to the surface. In most

cases, modelers use detail textures to add a finer scaled texture to

the base texture (details in section 6.13.5.6)

057 001..999 Cubic

Reflection Map

Subordinate textures to simulate reflective surfaces (details in

section 6.13.5.8)

058 001..999 Gloss Map Subordinate textures providing the glossiness of a surface on a

per-pixel basis (details in section 6.13.5.9)

099 001 Night Map Deprecated – Replaced with kind 051

002 Bump Map Deprecated – Replaced with kind 052

003 Light Map Deprecated – Replaced with kind 053

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-24

© 2016 Presagis. All Rights Reserved.

Appendix O enumerates all textures allocated to kind 002, 003, 004, 005, 006, and

055.

5.4 GTModel Library Datasets

Table 5-9 provides the component selector values associated with all GTModel

datasets.

Table 5-9: Component Selectors for GTModel Datasets

CS1 CS2
File

Extension

Component

Name

Component

Description

Dataset 500, GTModelGeometry

001 001 *.flt Geometry

Entry File

OpenFlight files containing the references to both the

shell and interiors of all levels of detail of geotypical

models.

Dataset 510, GTModelGeometry

001 001 *.flt Geometry

Level of

Detail

OpenFlight files containing the geometry of the shell of

geotypical models for a given level of detail.

Dataset 506, GTModelInteriorGeometry

001 001..999 *.flt Interior

Geometry

OpenFlight files describing the geometry of the interior

of geotypical models for a given level of detail. The

value of Component Selector 2 is the file number.

Multiple files are used when the complexity of the

interior justifies using more than one file.

Dataset 503, GTModelDescriptor

Dataset 508, GTModelInteriorDescriptor

001 001 .xml Descriptor Provides the metadata associated with a GTModel.

See section 6.14, Metadata, for a description of the

content.

NOTE: A model descriptor includes a Composite

Material Table for the exclusive use by its

corresponding model geometry datasets above. This

CMT is not to be confused with the GTModelCMT and

GTModelInteriorCMT datasets below.

Dataset 511, GTModelTexture

Dataset 507, GTModelInteriorTexture

- - *.rgb Texture Individual base and subordinate textures applied on

model geometry, see the complete list in section 5.3,

CDB Model Textures.

Dataset 504, GTModelMaterial

Dataset 509, GTModelInteriorMaterial

001 001..255 *.tif Composite

Material

Index

Each texel is an index into the associated Composite

Material Table (dataset 505 and 513 below). CS2 is

the layer number.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-25

© 2016 Presagis. All Rights Reserved.

CS1 CS2
File

Extension

Component

Name

Component

Description

002 001..254 *.tif Composite

Material

Mixture

Each texel indicates the proportion (between 0.0 and

1.0) of the composite material found in the

corresponding material layer. Component Selector 2 is

the layer number. When the texels are of integral

types, they are scaled to the range 0.0 to 1.0.

Dataset 505, GTModelCMT

Dataset 513, GTModelInteriorCMT

001 001 *.xml Composite

Material

Table

The Composite Material Table is associated with

Material Textures; it contains the definition of the

composite materials referenced by the model material

datasets above. Its format is as specified in section

2.5.2.2, Composite Material Tables (CMT)

Dataset 512, GTModelSignature (See notes 1 and 2 below)

001..999 001..016 *.shp

*.shx

*.dbf

RCS

Signature

The Shapefile containing the Radar Cross Section of a

geotypical model as described in Chapter 7.

017..032 *.dbf RCS Class

Attributes

The class-level attributes associated with the RCS

Signature file as described in Chapter 7.

Note 1: For GTModelSignature dataset, CS1 refers to the “RCS Frequency” and is

used to indicate at which frequency (in MegaHertz) the dataset was generated for.

The value of CS1 represents a power of 10 of the frequency and ranges from 1 to 999.

The range of frequencies that can be represented is from 10
1
 MHz to 10

999
 MHz.

Note 2: For GTModelSignature dataset, CS2 refers to the “RCS Polarization Type”

and is used to indicate how the electromagnetic field is polarized at transmission and

reception by typical Radar. The value can range from 1 to 16 for the instanced-level

attributes and from 17 to 32 for the class-level attributes.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-26

© 2016 Presagis. All Rights Reserved.

Polarization Type (CS2)
Description

Instance Attribute Class Attribute

1 17 LINEAR Polarization

2 18 CIRCULAR Polarization

3 19 ELLIPTICAL Polarization

4 20 SINGLE HH Polarization

5 21 SINGLE HV Polarization

6 22 SINGLE VV Polarization

7 23 SINGLE VH Polarization

8 24 DUAL HH-HV Polarization

9 25 DUAL VV-VH Polarization

10 26 DUAL HH-VV Polarization

11 27 ALTERNATING HH-HV Polarization

12 28 ALTERNATING VV-VH Polarization

13 29 POLARIMETRIC HH Polarization

14 30 POLARIMETRIC VV Polarization

15 31 POLARIMETRIC HV Polarization

16 32 POLARIMETRIC VH Polarization

5.5 MModel Library Datasets

Table 5-10 provides provide the component selector values associated with all

Mmodel datasets.

Table 5-10: Component Selectors for Mmodel Datasets

CS1 CS2
File

Extension

Component

Name

Component

Description

Dataset 600, MmodelGeometry (See note 1 below)

001..999 001..999 *.flt Geometry OpenFlight files containing the geometry of

Mmodels as described in Chapter 6.

Dataset 601, MmodelTexture

- - *.rgb Texture Individual base and subordinate textures applied on

model geometry, see the complete list in section

5.3, CDB Model Textures.

Dataset 603, MmodelDescriptor

001 001 *.xml Descriptor Provides the metadata associated with a Mmodel.

See section 6.14, Metadata, for a description of the

content.

NOTE: The MmodelDescriptor includes a

Composite Material Table for the exclusive use by

the MmodelGeometry dataset. This CMT is not to

be confused with the MModelCMT dataset below.

Dataset 604, MmodelMaterial

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-27

© 2016 Presagis. All Rights Reserved.

CS1 CS2
File

Extension

Component

Name

Component

Description

001 001..255 *.tif Composite

Material

Index

Each texel is an index into the Composite Material

Table (dataset 605). Component selector 2 is the

layer number.

002 001..254 *.tif Composite

Material

Mixture

Each texel indicates the proportion (between 0.0

and 1.0) of the composite material found in the

corresponding material layer. Component Selector

2 is the layer number. When the texels are of

integral types, they are scaled to the range 0.0 to

1.0.

Dataset 605, MModelCMT

001 001 *.xml Composite

Material

Table

This is the composite material table for use with

MmodelMaterial dataset. Its content is described

in section 2.5.2.2, Composite Material Tables

(CMT).

Dataset 606, MmodelSignature (See notes 2 and 3 below)

001..999 001..016 *.shp

*.shx

*.dbf

RCS

Signature

The Shapefile containing the Radar Cross Section

of a moving model as described in Chapter 7.

017..032 *.dbf RCS Class

Attributes

The class-level attributes associated with the RCS

Signature file as described in Chapter 7.

Note 1: For the MmodelGeometry dataset, the geometry of a moving model can be

made of one or more parts, each stored in one or more files depending on how

complex a part is.

The value of CS1 represents the part number. A Moving Model has at least one part,

the model itself that is also used as a master file for all the other parts when

applicable. This is part number 1. Other parts are numbered sequentially. An

example of an extra part is a removable external fuel tank.

The value of CS2 is the file number. It is used when the complexity of a part requires

using more than one file. The file number starts with 1. A part that references

external files does it through OpenFlight Xref nodes.

Note 2: For MmodelSignature dataset, CS1 refers to the “RCS Frequency” and is

used to indicate the range of frequencies (in MegaHertz) the dataset was generated

for. The range is the set of frequencies from 10
CS1-1

 MHz without exceeding 10
CS1

MHz.

Note 3: For MmodelSignature datasets, CS2 refers to the “RCS Polarization Type”

and is used to indicate how the electromagnetic field is polarized at transmission and

reception by typical Radar. The value can range from 1 to 16 for the instance-level

attributes of polarizations and from 17 to 32 for the class-level attributes of

polarizations.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-28

© 2016 Presagis. All Rights Reserved.

Polarization Type (CS2)
Description

Instance Attribute Class Attribute

1 17 LINEAR Polarization

2 18 CIRCULAR Polarization

3 19 ELLIPTICAL Polarization

4 20 SINGLE HH Polarization

5 21 SINGLE HV Polarization

6 22 SINGLE VV Polarization

7 23 SINGLE VH Polarization

8 24 DUAL HH-HV Polarization

9 25 DUAL VV-VH Polarization

10 26 DUAL HH-VV Polarization

11 27 ALTERNATING HH-HV Polarization

12 28 ALTERNATING VV-VH Polarization

13 29 POLARIMETRIC HH Polarization

14 30 POLARIMETRIC VV Polarization

15 31 POLARIMETRIC HV Polarization

16 32 POLARIMETRIC VH Polarization

5.6 Tiled Raster Datasets

A raster dataset consist in an evenly spaced grid of data elements that are positioned

(in geographic units) along the north-south and east-west axis. This section describes

all of the CDB raster datasets.

Most of the CDB raster datasets are broken down further into components. A

component is a specialization of the dataset. For example, bathymetry is a

specialization of altimetry data because it is targeted to the representation of

submerged terrain surfaces; the bathymetric depth data represents altimetry (e.g.,

heights) with respect to the Primary Elevation component. Together, the Primary

Elevation and Bathymetry components form the Elevation Dataset.

A component can be either 1) “primary”, (i.e., it can be used on a stand-alone basis)

or 2) “subordinate”, (i.e., it must be used in conjunction with one or more primary

components and one or more subordinate components). Subordinate components

depend on information contained within another component. Subordinate

components are used to progressively add complexity and/or information to a primary

component or to another subordinate component. For instance, the Elevation

component is a primary component that contains information to allow a simulator

client-device to accurately represent the terrain profile or determine the terrain height.

On the other hand, Bathymetry is a subordinate component because it cannot be used

stand-alone and that it is implicitly subordinate to the Elevation component. It uses

the Elevation component to determine the depth of an ocean.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-29

© 2016 Presagis. All Rights Reserved.

In addition to the notion of primary and subordinate, the CDB embodies the notion of

Component Alternates. A component is said to be an alternate component if it can be

used interchangeably with other components.

The two concepts can be used in combination as follows:

1. Primary

2. Subordinate or

3. Primary Alternate

4. Subordinate Alternate

A component is Primary if the component is not dependent on another component,

i.e., it can be used on a stand-alone basis. Conversely, a component is said to be

Subordinate if the dataset is dependent on another component, be it a primary

component or another subordinate component. For example, the Bathymetric

component is referenced to the CDB Primary terrain elevation component; as a result,

it is a subordinate component. The Primary elevation component is a primary

component because it does not depend on any other component.

A component is Primary Alternate if a) the component is not dependent on another

component, be it a primary component or another subordinate component and b)

other primary components can be used interchangeably with the component. For

example, the VSTI Q1, Q2, Q3 and Q4 components are all primary alternate

components, because they each form the primary layer of terrain imagery, yet they

can be used interchangeably.

Primary

(Elevation)

Subordinate

(Bathymetry)

Primary

Subordinate

Alternate #1

Subordinate

Alternate #2

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-30

© 2016 Presagis. All Rights Reserved.

Finally, a component is Subordinate Alternate if a) if the component is dependent on

another component, be it a primary component or another subordinate component and

b) other subordinate components can be used interchangeably with the component.

In the case of alternate components, one of them is designated as the default

component; in the event that an alternate component is missing in the CDB, the

client-devices are required to revert to the default alternate component.

Since subordinate components usually improve the overall fidelity of the dataset,

client-devices can revert to the primary component in the event that a subordinate

component is missing in the CDB. This behavior allows the CDB Specification to

meet one important objective which is to allow any simulator client-device with

relatively low performance to still be able to run a CDB implementation (scalability).

Conceptually, the raster dataset tile’s internal grid structure uniformly subdivides the

tile in both axes. The main characteristic of raster tile is that the number of data

elements and the position of every data element are implicit. The application must

derive the data element position from the geodetic tile position. The tile grid

structure is aligned to the tile edge boundary. The grid elements are organized in

row, column order, starting from the northwest corner scanning towards the southeast.

This is true for tiles in both the south and north hemisphere. The CDB Specification

accommodates for data elements that can be aligned either to the centers or to the

corners of the internal tile grid structure. In both cases, the number of data elements

in the tile is a power of two. Furthermore, data elements can either represent values

representative of samples on the earth surface (e.g., altitude at a point) or values

representative of a surface area on the earth surface (average altitude over square

area).

Figure 5-1: Center Grid Data Elements, illustrates a CDB tile with a grid of “center

grid data elements” overlaid onto the tile’s grid structure with the addressing

conventions and the alignment of the samples and areas assigned to each of the data

elements.

Primary

Alternate

(Q1 VSTI)

Primary

Alternate

(Q2 VSTI)

Primary

Alternate

(Q3 VSTI)

Primary

Alternate

(Q4 VSTI)

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-31

© 2016 Presagis. All Rights Reserved.

Figure 5-1: Center Grid Data Elements

Figure 5-2: Corner Grid Data Elements, illustrates a CDB tile with a grid of “corner

grid data elements” overlaid onto the tile’s grid structure with the addressing

conventions and the alignment of the samples and areas corresponding to the data

elements.

Figure 5-2: Corner Grid Data Elements

Figure 5-3: Center Grid Data Elements as a Function of LODs, illustrates an

implementation of center grid data elements with four levels-of-details. Note the shift

in position of the data element centers along the x- and y-axis as we shift to

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-32

© 2016 Presagis. All Rights Reserved.

progressively coarser levels-of-detail. Note also that the edges of the data elements

areas stay aligned with x- and y-axis as we shift to progressively coarser levels-of-

detail.

Figure 5-3: Center Grid Data Elements as a Function of LODs

Figure 5-4: Corner Grid Data Elements as a Function of LODs, illustrates an

implementation of corner grid data elements with four levels-of-details. Note the

shift in the edge of the data element area along the x- and y-axis as we shift to

progressively coarser levels-of-detail. Note also that the position of the data elements

areas stay aligned with x- and y-axis as we shift to progressively coarser levels-of-

detail.

Figure 5-4: Corner Grid Data Elements as a Function of LODs

Sections 5.6.1, 5.6.2, and 5.6.3 describe all of the raster datasets, namely the Tiled

Elevation Dataset, the Tiled Imagery Dataset, and the Tiled Raster Material Dataset;

each of these sections describes the associated “corner” versus “center” conventions.

This convention is intrinsic to the corresponding dataset and is not parametrical. Any

changes to these implicit properties require an additional specific dataset to ensure

compatibility with applications.

The latitude and longitude of an implicit corner data element (in a tile) with

coordinates (i, j) is computed as per the following equation (note the equation for

XunitLOD and YunitLOD can be found in eq. 3-4)

(eq. 5-1)

Where TileLatitude, TileLongitude are the tile coordinates at the upper left corner and

(i, j) are the data element coordinates.

LOD

LOD

XUnitiudeTileLongitLongitude

YUnitjdeTileLatituLatitude

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-33

© 2016 Presagis. All Rights Reserved.

Similarly, the position of an implicit center data element in a tile is computed as per

the following equation:

(eq. 5-2)

5.6.1 Tiled Elevation Dataset

In a CDB, terrain elevation is depicted by a grid of data elements at regular

geographic intervals and at prescribed locations within the tile; each grid element is

associated with an elevation value. The resultant is a Digital Elevation Model (DEM)

of the earth surface with respect (above or below) to the WGS-84 reference ellipsoid.

The Elevation Dataset implicitly follows the corner grid element conventions.

Figure 5-5: Example of Digital Elevation Model (DEM)

The (x, y) coordinates of each grid element are its longitude and latitude, respectively.

The Elevation dataset holds the vertical extent of the terrain. In Figure 5-6: DEM

Depicted as a Grid of Elevations at Regular Sample Points, obstacles such as a tower

and a building have been overlaid on the terrain grid to demonstrate that obstacle

heights are relative to the terrain height.

LOD

LOD

XUnitiudeTileLongitLongitude

YUnitjdeTileLatituLatitude

5.0

5.0

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-34

© 2016 Presagis. All Rights Reserved.

Figure 5-6: DEM Depicted as a Grid of Elevations at Regular Sample Points

The CDB LOD structure lends itself to variable levels of terrain elevation fidelity, on

a per Tile-LOD basis. The selected grid spacing is a function of the height and

geographic precision that is desired. Through the use of LODs, one can specify a grid

spacing appropriate to the required terrain fidelity requirements. For instance, the

accurate depiction of a runway profile (say down to 1 ft height precision) would

typically require a relatively fine pitch terrain elevation LOD even if the area is

nominally flat. Similarly, the accurate representation of sharp altitude discontinuities

(e.g., cliffs) also requires increasingly finer elevation grids to capture the cliff profile

correctly.

Negative elevation values do not imply that the elevation point is submerged; rather, a

negative value merely indicates that its altitude is below the WGS-84 reference

ellipsoid.

The CDB Specification defines a number of subordinate elevation components that

are used in combination with the primary component of the Elevation Dataset.

5.6.1.1 Terrain Mesh Types

The CDB Specification defines two mesh types to connect each grid post to its

neighbors. The purpose of the mesh type is to minimize the error in the

representation of the Terrain Profile built from the components of the Elevation

dataset. Figure 5-7 below illustrates the supported CDB Mesh Types.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-35

© 2016 Presagis. All Rights Reserved.

Figure 5-7: CDB Mesh Types

Mesh type 0 connects the southwest grid post to its northeast neighbor while mesh

type 1 does the same for the northwest and southeast posts.

5.6.1.1.1 Data Type

The mesh type is represented by an unsigned integer of a size that is large enough to

accommodate the range of mesh types defined by the Specification. As of this

version of the Specification, there are only two values defined; as such, an 8-bit

unsigned integer is sufficient and appropriate to store the mesh type.

5.6.1.1.2 Default Value

By default, when the mesh type is not specified or not available, a value of zero is

assumed.

5.6.1.2 List of all Elevation Dataset Components

The Elevation Dataset is comprised of several components listed here and detailed in

the subsequent sections.

Mesh Type 0 Mesh Type 1

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-36

© 2016 Presagis. All Rights Reserved.

Table 5-11: Elevation Dataset Components

CS1 CS2
File

Extension

Component

Name

Component

Description

Dataset 001, Elevation

001 001 *.tif Primary

Terrain

Elevation

A grid of data representing the Elevation at the

surface of the Earth. Stored as a 1 or 2-channel

TIFF image. When present, the second channel

provides the mesh type of each grid element.

001 002 *.tif Primary

Terrain

Elevation

Control

Deprecated

001 003 *.tif Primary

Alternate

Terrain

Elevation

A grid of data representing the Elevation of the

surface of the Earth at specified Latitude and

Longitude offsets inside each grid element. Stored

as a 4-channel TIFF image.

002..099 001 *.tif Subordinate

Terrain

Elevation

Deprecated

002..099 002 *.tif Subordinate

Terrain

Elevation

Control

Deprecated

100 001 *.tif Subordinate

Bathymetry

A grid of data representing the Depth of water with

respect to the selected Terrain Elevation

component. Store as a 1 or 2-channel TIFF image.

When present, the second channel provides the

mesh type of each grid element.

100 002 *.tif Subordinate

Alternate

Bathymetry

A grid of data representing the Depth of water at

specified Latitude and Longitude offsets inside

each grid element with respect to the selected

Terrain Elevation component. Stored as a 4-

channel TIFF image.

101 001 *.tif Subordinate

Tide

Elevation

A grid of data representing the average height

variation of water with respect to the Primary

Terrain Elevation Component.

Dataset 002, MinMaxElevation

001 001 *.tif Minimum

Elevation

Minimum height (on a per tile LOD basis) of the

Primary Terrain Elevation Dataset Component

(excluding all cultural features).

001 002 *.tif Maximum

Elevation

Maximum height (on a per tile LOD basis) of the

Primary Terrain Elevation Dataset Component

(excluding all cultural features).

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-37

© 2016 Presagis. All Rights Reserved.

CS1 CS2
File

Extension

Component

Name

Component

Description

Dataset 003, MaxCulture

001 001 *.tif Primary

Maximum

Culture

Elevation

Maximum height (on a per tile LOD basis) of the

bounding boxes of all cultural features held in the

vector tiled datasets within the geographic footprint

of the area represented by the sample value.

5.6.1.3 Primary Terrain Elevation Component

The Primary Terrain Elevation component of the Elevation dataset represents the

surface of the Earth, i.e., the emerged part of the Earth’s crust, the surface of

persistent bodies of water (e.g., ocean, lakes, rivers), and the permanent ice-covered

parts of the Earth. However, the Primary Terrain Elevation values exclude the

heights of natural vegetation and man-made cultural features.

Figure 5-8: Primary Terrain Elevation Component

By definition, the Primary Terrain Elevation component represents a single elevation

value at each grid element of the dataset. As a result, each value of the Primary

Terrain Elevation component corresponds to the elevation of the highest Earth surface

at the specified latitude and longitude coordinate. Consider the example illustrated in

Figure 5-8: Primary Terrain Elevation Component. The diagram illustrates a region

of Earth with a well, an overhanging cliff, and a network of tunnels. Using solely the

Primary Terrain Elevation component, the resulting terrain representation

corresponds to the continuous terrain profile represented by the red dotted line; as a

result, the underside of the overhanging cliff, the tunnels, and the vertical walls of the

well are not represented.

To represent terrain walls, overhanging cliffs, wells, tunnels and mineshafts, modelers

are required to supplement the Primary Terrain Elevation component with terrain-

conformed 3D models as illustrated in Figure 5-9: Modeling of Wells, Overhanging

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-38

© 2016 Presagis. All Rights Reserved.

Cliffs and Tunnels. Embedded within such 3D models are special cutout zones which

represent the clipping geometry that is used to cut out the terrain skin.

Figure 5-9: Modeling of Wells, Overhanging Cliffs and Tunnels

Model cutouts are explained in section 6.5.6.3, Model Cutout Zones and model

conforming modes are described in section 6.7, Model Conforming.

5.6.1.3.1 Data Type

The Primary Terrain Elevation component of the Elevation dataset is represented as a

1 or 2-channel TIFF image. The first channel contains the Elevation of the grid post;

the optional second channel indicates the Mesh Type used to connect the four grid

posts that are adjacent to the grid element. The elevation is represented by a floating-

point or signed integer value expressed in meters and relative to the WGS-84

reference ellipsoid. Integer values for tiles at LOD larger than 0 are scaled according

to the following formula:

𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 = 𝐼𝑛𝑡𝑉𝑎𝑙𝑢𝑒 × 2−𝐿𝑂𝐷

Integer values can make use of TIFF’s 8-bit, 16-bit, or 32-bit representation.

The Mesh Type is stored as an unsigned 8-bit integer.

5.6.1.3.2 Default Read Value

Simulator client-devices should assume an Elevation value of Default_Elevation-1 if

the data values of the Primary Terrain Elevation component are not available (files

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-39

© 2016 Presagis. All Rights Reserved.

associated with the Primary Terrain Elevation component for the area covered by a

tile, at a given LOD or coarser, are either missing or cannot be accessed). The default

value is stored in \CDB\Metadata\Defaults.xml. In absence of a default value, the

CDB Specification states that client-devices use a value of zero.

If the TIFF file has a single channel image, client devices assume a Mesh Type of

zero.

5.6.1.3.3 Default Write Value

The files associated with the Primary Terrain Elevation component for area covered

by a tile at a given LOD need not be created if the source data is not available. Tiles

partially populated with data are not permitted. If the tool generating the Primary

Terrain Elevation does not support the optional Mesh Type, the optional second

channel of the file need not be created; in which case the TIFF file becomes a single

channel image.

5.6.1.4 Primary Alternate Terrain Elevation Component

The accurate delineation of man-made elevation features such as roads, railroads,

runways, and natural elevation features such as ridgelines, coastlines requires very

high levels-of-detail for the Primary Terrain Elevation component. Such cases

typically require an elevation grid pitch of approximately ½ m or better (the

equivalent of 8 million triangles per square kilometer) resulting in unnecessary large

storage and runtime processing. The Primary Alternate Terrain Elevation component

offers an effective solution to handle these use-cases.

The Primary Alternate Terrain Elevation component provides the means to accurately

delineate terrain features without having to revert to very fine LODs of the Primary

Terrain Elevation component. To do this, the Primary Alternate Terrain Elevation

component encodes information that re-positions each elevation sample anywhere

within its assigned grid element. In other words, the “phase” of each terrain elevation

sample can be specified along the latitude and longitude axes. In effect, the Primary

Alternate Terrain Elevation component provides the means to locally increase the

altimetric precision of the modeled representation of a terrain profile. While it would

be possible for a modeler to manually control the position of individual elevation

points, it is expected that the SE tools automate this process by considering elevation

constraint points, lineals and areals provided by the modeler.

The constituents of the Primary Alternate Terrain Elevation are the elevation and

mesh type at the specified latitude and longitude offsets inside each grid element.

These four constituents are represented as 4 channels of a TIFF image.

The latitude and longitude offsets are expressed as unsigned 8-bit integer values that

provide position offsets expressed as 1/256th of the grid spacing for the LOD in

question. Note that since the movement of each elevation point is constrained to the

inside of its respective grid element, it is impossible to disrupt the (regular grid)

topology of the elevation grid; furthermore, it is impossible to have elevation points

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-40

© 2016 Presagis. All Rights Reserved.

that move outside of the confines of the tile-LOD. Figure 5-10 illustrates the valid

offset values inside each grid element of a tile-LOD.

Figure 5-10: Encoding of Lat/Long Offsets

Figure 5-11 illustrates the coverage of grid elements inside a CDB tile. It shows that

a grid post is allowed to move inside the area covered by its grid element.

Figure 5-11: Grid Element Coverage within a CDB Tile

The Latitude Offset is expressed as an 8-bit unsigned integer value ranging from 0 to

255. The value is scaled so that each grid element is fragmented in 256 equal parts in

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-41

© 2016 Presagis. All Rights Reserved.

the latitude direction. Thus, the elevation point cannot be positioned on the latitude of

the next grid element directly north of the current grid element.

The Longitude Offset is expressed as an 8-bit unsigned integer value ranging from 0

to 255. The value is scaled so that each grid element is fragmented in 256 equal parts

in the longitude direction. Thus, the elevation point cannot be positioned on the

longitude of the next grid element directly east of the current grid element.

5.6.1.4.1 Data Type

The first channel of the TIFF image contains the Elevation component and is

represented as a floating-point or signed integer value. Integer values for tiles at

LOD larger than 0 are scaled according to the following formula:

𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 = 𝐼𝑛𝑡𝑉𝑎𝑙𝑢𝑒 × 2−𝐿𝑂𝐷

Integer values can make use of TIFF’s 8-bit, 16-bit, or 32-bit representation.

The second channel of the TIFF image contains the Mest Type and is stored as an

unsigned 8-bit integer.

The third and fourth channels contain the Latitude and Longitude Offset components

and are stored as unsigned 8-bit integers.

5.6.1.4.2 Default Read Value

Simulator client-devices should assume an Elevation value of Default_Elevation-1 if

the data values of the Primary Alternate Terrain Elevation component are not

available (files associated with the Primary Alternate Terrain Elevation component

for the area covered by a tile, at a given LOD or coarser, are either missing or cannot

be accessed). The default value is stored in \CDB\Metadata\Defaults.xml. In absence

of a default value, the CDB Specification states that client-devices use a value of

zero.

The default Mesh Type, Latitude and Longitude Offsets are zero.

5.6.1.4.3 Default Write Value

The files associated with the Primary Alternate Terrain Elevation component for an

area covered by a tile at a given LOD need not be created if the source data is not

available. Tiles partially populated with data are not permitted.

5.6.1.5 Terrain Constraints

There are many instances where modelers may wish to take advantage of the

availability of position and altitude of cultural features in order to locally control the

terrain elevation data at a point, along a specified contour line or within a given area.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-42

© 2016 Presagis. All Rights Reserved.

This operation is usually performed off-line by the modeler and requires that the

Elevation dataset be edited and re-generated offline.

Table 5-12: Partial List of Hypsography FACCs (for Offline Terrain Constraining)

The Data Dictionary of CDB Specification makes provision for the representation of

many hypsography features within the Geopolitical Dataset (see Table 5-12: Partial

List of Hypsography FACCs (for Offline Terrain Constraining). By virtue of their

semantics, these features have no associated modeled representation. The modeler can

use these hypsography features to control the generation of the Terrain Elevation grid

during the off-line CDB compilation process. This terrain constraining operation can

be performed by the SE tools as the CDB is “assembled and compiled”. Note that

runtime client-devices do not constrain the Terrain Elevation Dataset to hypsography

features. When terrain constraining is performed off-line, hypsography features must

have AHGT set to True, thereby instructing the SE Tools to constrain the terrain

elevation using the supplied (lat-long-elev) coordinates. The Shapefile feature must

be a PointZ, a MultiPointZ, a PolyLineZ, a PolygonZ or a MultiPatch.

While these hypsography features can be used by the off-line SE tools to control the

terrain skinning process, these features can be instead converted into Constraint

Features, thereby deferring the terrain constraining process to runtime client-devices.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-43

© 2016 Presagis. All Rights Reserved.

Constraint Features are features that instruct client-devices to runtime-constrain the

terrain Elevation Dataset to a set of prescribed elevation values. This provides

modelers the ability to accurately control terrain elevation profiles even if the Terrain

Elevation Dataset is of modest resolution and is regularly-gridded; furthermore, the

original Elevation Dataset remains unaffected. In effect, the Constraint Features

provides a storage-efficient means of capturing terrain contours without having to re-

generate / reskin the terrain to a higher-resolution.

Note that this operation is performed on Elevation Datasets that are regularly-gridded

or irregularly-gridded. This capability is particularly effective when modelers wish to

accurately control terrain elevation profiles but only have regularly-gridded source

elevation data of modest resolution at their disposal. Each of these features is

associated with vertices that define elevation at the supplied lat-long coordinate(s).

This approach provides a level-of-control similar to that of Terrain Irregular

Networks (TINs).

The following Constraint Features are used for Online Terrain Constraining:

 Elevation Constraint Point (CA099-000): In the case of PointZ and MultiPointZ

features, the coordinates are used by the client-device to control the terrain

elevation at the specified (lat-long). The Feature’s AHGT attribute must be set to

TRUE. Note that features implemented as Shapefile Point, PointM, MultiPoint,

MultiPointM are ignored.

 Elevation Constraint Line (CA099-001): In the case of PolyLineZ features, the

coordinates are used by the client-device to control the terrain elevation at the

specified (lat-long). The Feature’s AHGT attribute must be set to TRUE. Note

that features implemented as Shapefile PolyLine and PolyLineM are ignored.

 Elevation Constraint Area (CA099-002): In the case of PolygonZ and MultiPatch

features, the coordinates are used by the client-device to control the terrain

elevation at the specified (lat-long). The Feature’s AHGT attribute must be set to

TRUE. Note that features implemented as Shapefile Polygon and PolygonM are

ignored.

Table 5-13: List of Hypsography FACCs (for Online Terrain Constraining)

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-44

© 2016 Presagis. All Rights Reserved.

An example of a point-feature is illustrated in Figure 5-12 . This picture shows a

storage tank located atop a hill. Given the high terrain relief in this area, the modeler

is concerned that the terrain may slope significantly in the immediate vicinity of the

storage tank, particularly at coarser LODs of the uniform-sampled terrain elevation

grid. As a result, he defines a PointZ Constraint Point feature that coincides with the

position of the storage tank. AHGT set to True so that the client-device will constrain

the Terrain Elevation dataset to the supplied value.

Figure 5-12: Storage Tank Point-Feature

A second example of this principle illustrated in Figure 5-13, this time applied to a

road lineal-feature. This picture shows a divided highway running alongside a

mountainous area. Given the high terrain relief in this area, the modeler is concerned

that the terrain may slope significantly in the immediate vicinity of the road,

particularly at the coarser LODs of the uniform-sampled terrain elevation grid. As a

result, he defines a PolyLineZ Constraint Lineal feature that coincides with the

centerline of the road; AHGT set to True so that the client-device will constrain the

Terrain Elevation dataset to the supplied coordinates of the lineal feature.

The CDB Specification has well over 50 FACCs whose semantics are related to

abstract elevation-related features (such as CA010 Contour line; CA020 Ridge line;

CA025 Valley line; CA026 Breakline …) With the exception of VG018, all of them

have semantics that imply a single elevation value. The Feature “Variable

Displacement Line”, FACC VG018, is an exception; it allows for a (relative)

elevation value for each of the vertices of the “Variable Displacement Line”.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-45

© 2016 Presagis. All Rights Reserved.

Figure 5-13: Road Lineal Feature

In the case where features overlap one other, client-devices are required to use the

Layer Priority Number (LPN) attribute; this attribute is mandatory for geographically

overlapping features. The LPN attribute is a number in the 0-32767; low numeric

values correspond to low priority. The LPN attribute is used to control the order in

which the features are applied to (e.g. rendered into) the Elevation dataset. Features

are applied in succession in low-to-high priority order into the Terrain Elevation

dataset.

5.6.1.6 MinElevation and MaxElevation Components

The MinElevation and MaxElevation components are part of the MinMaxElevation

dataset whose purpose is to provide the CDB with the necessary data and structure to

achieve a high level of determinism in computating line-of-sight intersections with

the terrain. The values of each component are with respect to WGS-84 reference

ellipsoid. Since both the MinElevation and the MaxElevation values are provided by

this Specification, any line-of-sight algorithm can rapidly assess an intersection status

of the line-of-sight vector with the terrain. An overview of the algorithm governing

the line-of-sight computations can be found in Section A.13 of Appendix A.

The MinElevation and MaxElevation values follow the “center grid data element”

convention of the CDB Specification.

The generation of the MinMaxElevation dataset is quite simple. In essence, each

center grid element in the MinElevation component represents the lowest altitude for

the area represented by that grid element. Likewise, each center grid element in the

MaxElevation component represents the highest altitude for the area represented by

that grid element.

The MinMaxElevation dataset components are derived from the Primary Terrain

Elevation and Primary Alternate Terrain Elevation components. As a result, the

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-46

© 2016 Presagis. All Rights Reserved.

MinMaxElevation dataset cannot have more LODs than the Terrain Elevation

component it is based on.

5.6.1.6.1 Level of Details

As can be seen in Figure 5-14: LOD Structure of Raster Datasets, the

MinMaxElevation dataset LODs share the same structure as the Elevation dataset.

Figure 5-14: LOD Structure of Raster Datasets

The generation of each successive LOD of the MinElevation and MaxElevation

components is illustrated in Figure 5-15: Generation of LODs for the

MinMaxElevation Dataset (1D) and again in more detail in Figure 5-16: Generation

of LODs for the MinMaxElevation Dataset (2D).

The detailed algorithm for the generation of the MinMaxElevation dataset is as

follows:

1. For a geocell, determine the finest available LOD of the Primary Terrain

Elevation and Primary Alternate Terrain Elevation components, (call it LOD

= n)

2. For each tile at LOD = n, the MinElevation (and MaxElevation) grid elements

are generated by taking the corresponding minimum (and maximum) of the

surrounding four “corner grid data elements” of LOD = n of the Primary

Terrain Elevation component (illustrated as red dots in Figure 5-15:

Generation of LODs for the MinMaxElevation Dataset (1D)). If the Primary

Alternate Terrain Elavation component exists at LOD = n, the value of the

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-47

© 2016 Presagis. All Rights Reserved.

Elevation must be taken into account because it provides a better estimate of

the minimum or maximum elevation of the grid element. In other words, each

MinElevation sample value represents the minimum for the area formed by

the surrounding four “corner grid data elements” of the Primary Terrain

Elevation plus the contribution of the Primary Alternate Terrain Elavation for

the grid element. Likewise, each MaxElevation sample represents the

maximum of the area formed by the surrounding four “corner grid data

elements” of the Primary Terrain Elevation plus the contribution of the

Primary Alternate Terrain Elevation for the grid element, illustrated as green

dots in Figure 5-15: Generation of LODs for the MinMaxElevation Dataset

(1D).

Note that the generation of the rightmost (column) and topmost (row) of

values of a tile requires access to the adjacent tiles of the Primary Terrain

Elevation. Note however that the availability of Primary Elevation Data at

LOD = n within the entire CDB geocell cannot be guaranteed since the CDB

permits the generation of the Terrain Elevation Dataset at different resolutions

for each geographic area as illustrated in Figure 5-18: Availability of LODs

for Elevation and MinMaxElevation Datasets.

As a result, a slight adjustment to the above algorithm is needed in order to

cater to the case where Elevation data is missing in adjacent tiles. There are

two cases to consider:

i. If Elevation data in the adjacent tiles (above and/or to the right) is not

available at n ≥ LOD ≥ −10 , then one or more of the 4 corner grid

elements samples will be missing, hence will not be available to

“participate” in the min() or max() function. In other words, the min() and

max() functions must be designed to cater to a variable number of inputs

depending on the availability of valid corner grid elements.

ii. If Elevation data in adjacent tile(s) is not available at LOD = n but is

available at a coarser LOD (call it LOD = m, where m ≥ −10), then the

corner grid Elevation values of the LOD = m must be propagated to finer

LOD = n so that they can participate in the min() or max() functions. This

principle is illustrated in Figure 5-17: Generation of LODs for the

MinMaxElevation Dataset (1D) – Special Case.

3. Each grid element value of the next coarser level-of-detail (LOD = n-1) of the

MinElevation (and MaxElevation) dataset is generated by taking the minimum

(and maximum) of four surrounding values of LOD = n of the MinElevation

(and MaxElevation) dataset, illustrated as red dots in Figure 5-15: Generation

of LODs for the MinMaxElevation Dataset (1D).

4. Repeat steps 2 and 3 for levels of detail LOD = n-2, n-3, until LOD −10 is

reached.

5. Perform step 4, but this time with LOD = m, (m ≥ −10). Note that if Primary

Elevation data in adjacent tile(s) is not available at LOD = m but is available

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-48

© 2016 Presagis. All Rights Reserved.

at a coarser LOD (call it LOD = p, where p ≥ −10), then the corner grid

Elevation values of the LOD = p must be propagated to finer LOD = m so that

they can participate in the min() or max() functions.

6. Repeat until all LODs have been processed. Note that the MaxElevation tiles

at LOD = −10 contain a single value which represents the highest elevation

point for the entire geocell. Likewise, each of the MaxElevation tiles at LOD

= −9 contains four values which correspond to the highest elevation points in

each of the four quadrants of the corresponding geocell.

Figure 5-15: Generation of LODs for the MinMaxElevation Dataset (1D)

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-49

© 2016 Presagis. All Rights Reserved.

Figure 5-16: Generation of LODs for the MinMaxElevation Dataset (2D)

Min-Max value @ LOD 'n-1'

Min-Max value @ LOD 'n-2'

Min-Max value @ LOD 'n-3'

Finest Primary Elevation LOD 'n' Grid Post

Min-Max value @ LOD 'n'

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-50

© 2016 Presagis. All Rights Reserved.

Figure 5-17: Generation of LODs for the MinMaxElevation Dataset (1D) – Special Case

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-51

© 2016 Presagis. All Rights Reserved.

Figure 5-18: Availability of LODs for Elevation and MinMaxElevation Datasets

The CDB Specification does not require that the entire LOD hierarchy be stored for

the MinMaxElevation dataset. In fact, it is possible to omit some of the finest levels-

of-detail from the hierarchy. The CDB Specification recommends that the

MinElevation and MaxElevation need only be stored to LOD = n - 4 and coarser

(where n is the finest available LOD of the Primary Terrain Elevation component in a

geocell). For example if Primary Terrain Elevation data is available for LOD = 15,

then the MinMaxElevation hierarchy need only be provided for LOD = -10 to LOD =

11. Note, that LOD = -10 to LOD = 0 are always required subject to the availability

of Primary Terrain Elevation data (these guidelines are explained in more detail in

section 5.6.1.6.4, Default Write Value).

Note that the presence of the MinMaxElevation dataset has a negligible effect on the

size of the CDB. In fact, the dataset adds only 1% of additional storage over and

above that required by the Primary Terrain Elevation component. This is a small

price to pay in order to provide the means to significantly speed-up line-of-sight

computations in applications requiring the utmost in determinism and real-time.

5.6.1.6.2 Data Type

The MinElevation and MaxElevation components are represented as floating-point or

signed integer values. Integer values for tiles at LOD larger than 0 are scaled

according to the following formula:

𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 = 𝐼𝑛𝑡𝑉𝑎𝑙𝑢𝑒 × 2−𝐿𝑂𝐷

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-52

© 2016 Presagis. All Rights Reserved.

Integer values can make use of TIFF’s 8-bit, 16-bit, or 32-bit representation.

5.6.1.6.3 Default Read Value

The Line-of-Sight algorithm is described in Section A.13 of Appendix A. Note that

the algorithm starts with the coarsest LOD of the MinMaxElevation dataset; the

algorithm recursively executes with progressively finer level-of-detail versions of the

MinMaxElevation dataset until the algorithm decides it no longer needs to access

finer levels or until the algorithm no longer finds finer levels of the MinMaxElevation

dataset.

If none of the LODs of the MinMaxElevation dataset are provided, then simulator

client-devices should assume default MinElevation and MaxElevation values. The

default values for these datasets can be found in \CDB\Metadata\Defaults.xml and

can be provided to the client-devices on demand. Handling of defaults falls under the

following two cases:

1. CASE I: In the case where the tile-LOD for the MinElevation and the

Primary Terrain Elevation components are both missing, the CDB

Specification recommends a default setting of

Default_MinElevation_CaseI = Default_Elevation-1. Similarly, where a

tile-LOD for MaxElevation and the Primary Terrain Elevation

components are both missing, the CDB Specification recommends a

default setting of Default_MaxElevation_CaseI = Default_Elevation-1.

2. CASE II: In the case where the tile-LOD for the MinElevation is missing

and the Primary Terrain Elevation is not missing, the CDB Specification

recommends a default setting of Default_MinElevation_CaseII = as

supplied in Defaults.xml. In the event where this default value is not

supplied, the CDB Specification recommends that client-devices use a

default value of -400 m (corresponding to the shore of the Dead Sea) for

MinElevation.

3. Similarly, when MaxElevation is missing and the Primary Terrain

Elevation is not missing, the CDB Specification recommends a default

setting of Default_MaxElevation_CaseII = as supplied in Defaults.xml. In

the event this default value is not supplied, the CDB Specification

recommends that client-devices use a default value of 8846 m

(corresponding to the peak of Mount Everest) for MaxElevation.

5.6.1.6.4 Default Write Value

The files associated with the MinElevation and MaxElevation components for the

area covered by a tile at a given LOD should not be created if the Primary Terrain

Elevation data is not available.

The CDB Specification recommends that the MinElevation and MaxElevation

components be generated in accordance to the following guidelines:

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-53

© 2016 Presagis. All Rights Reserved.

1. If the finest LOD of the Primary Terrain Elevation component is available

at LOD ≥ 4, then all LODs ranging from -10 ≤ LOD ≤ (n – 4) of the

MinElevation and MaxElevation components should be generated (where

n is the finest available LOD of the Primary Terrain Elevation

component). The technique illustrated in Figure 5-15: Generation of

LODs for the MinMaxElevation Dataset (1D) should be used to populate

the LOD hierarchy. Gaps (i.e., missing levels) in the MIP-MAP hierarchy

are not permitted. It is not permitted to generate MinElevation and

MaxElevation components tiles that are partially populated with data.

2. If the finest available LOD of the Primary Terrain Elevation component is

available at LOD ≤ 3, then all LODs ranging from -10 ≤ LOD ≤ 0 of the

MinElevation and MaxElevation components should be generated. The

technique illustrated in Figure 5-15: Generation of LODs for the

MinMaxElevation Dataset (1D) should be used to populate the LOD

hierarchy. Gaps (i.e., missing levels) in the MIP-MAP hierarchy are not

permitted. It is not permitted to generate MinElevation and MaxElevation

components tiles that are partially populated with data.

In the event where parts of a MinElevation tile cannot be determined due to missing

primary elevation tiles, the CDB Specification recommends to use a default value of

Default_MinElevation_CaseIII, -400 m (corresponding to the shore of the Dead Sea)

for MinElevation. Similarly, in the event where parts of a MaxElevation tile cannot

be determined due to missing primary elevation tiles, the CDB Specification

recommends to use a default value of Default_MaxElevation_CaseIII, 8846 m

(corresponding to the peak of Mount Everest) for MaxElevation. Figure 5-19:

Missing MinMaxElevation Datasets shows this case:

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-54

© 2016 Presagis. All Rights Reserved.

Figure 5-19: Missing MinMaxElevation Datasets

5.6.1.7 MaxCulture Component

The purpose of the MaxCulture component is to provide the necessary data and

structure for an optimal level of determinism in the computation of line-of-sight, path

finding and obstacle avoidance algorithms with the cultural features of the CDB. The

values of this component are based on the heights of culture features with respect to

the corresponding LOD of the culture, be it its bounding sphere, its bounding box or

its modeled representation (if supplied). In this context, the cultural features of the

CDB are those represented by all Tiled Vector Datasets (see Section 5.7) excluding

those related to NAV.

Since MinElevation, MaxElevation and MaxCulture components are provided by this

Specification, any line-of-sight algorithm can rapidly assess an intersection status of

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-55

© 2016 Presagis. All Rights Reserved.

the line-of-sight vector with the terrain and/or with the cultural features of the CDB.

Furthermore, since the MaxCulture component follows the same conventions as the

MinElevation and MaxElevation components, it is easy for the LOS algorithm to

combine the values to determine the highest/lowest point (with or without cultural

features) in a given geographic area. The culture-variant of the LOS algorithm is

virtually identical to the terrain-only case. Before undertaking its computations, the

LOS algorithm must add the values of MaxCulture to the MaxElevation values, once

adjusted for LOD, and then perform the first LOS determination based on this. If an

intersection is detected with MaxCulture, the final determination of intersection is

conducted at first with the bounding box of the cultural feature, then with the actual

geometry of the cultural feature (if available).

Note that the geographic areas where MaxCulture is zero can be used to quickly

identify the absence of any obstacles that can potentially affect the route of an entity.

The MaxCulture component also follows the “center grid data element” convention of

the CDB Specification. In the case where a cultural feature has no modeled

representation, the MaxCulture component must be generated from the feature’s

bounding volume that overlaps each MaxCulture grid data element. If the feature has

an associated modeled representation, the grid data of the MaxCulture component

must be generated from the model geometry.

5.6.1.7.1 Level of Details

The coarser LODs of the MaxCulture component are iteratively derived from the

finest generated LOD.

Since the MaxCulture component is intended to be used in conjunction with the

MaxElevation component, it is recommended that the number of LODs for the

MaxCulture component be equal or greater than the MaxElevation component.

5.6.1.7.2 Data Type

The MaxCulture component is represented as floating-point or signed integer values.

Integer values for tiles at LOD larger than 0 are scaled according to the following

formula:

𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 = 𝐼𝑛𝑡𝑉𝑎𝑙𝑢𝑒 × 2−𝐿𝑂𝐷

Integer values can make use of TIFF’s 8-bit, 16-bit, or 32-bit representation.

5.6.1.7.3 Default Read Value

If none of the LODs of the MaxCulture dataset are provided, then simulator client-

devices should assume default MaxCulture values. The default values for these

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-56

© 2016 Presagis. All Rights Reserved.

datasets can be found in \CDB\Metadata\Defaults.xml and can be provided to the

client-devices on demand. Handling of defaults fall under the following two cases:

1. CASE I: In the case where the MaxCulture component is missing, but

there is at least one vector dataset; client-devices should assume a default

MaxCulture value of Default_MaxCulture_CaseI. In the event this default

value is not supplied, the CDB Specification recommends that client-

devices use a value of 600 m (corresponding to the tip of World’s tallest

tower plus a margin of 47 m).

2. CASE II: In the case where the MaxCulture component is missing, but

there is not a single vector dataset; client-devices should assume a default

MaxCulture value of Default_MaxCulture_CaseII. In the event this

default value is not supplied, the CDB Specification recommends that

client-devices use a value of 0 m.

5.6.1.7.4 Default Write Value

The files associated with the MaxCulture components for the area covered by a tile at

a given LOD should not be created if the Primary Terrain Elevation data is not

available.

The CDB Specification strongly recommends that the MaxCulture dataset be

generated in accordance to the following guidelines:

1. If the finest LOD of any vector tiled datasets is available at LOD ≥ 6, then all

LODs ranging from -10 ≤ LOD ≤ (n – 6) of the MaxCulture dataset should be

generated (where n is the finest available LOD of any vector tiled datasets).

The technique illustrated in Figure 5-15: Generation of LODs for the

MinMaxElevation Dataset (1D) should be used to populate the LOD

hierarchy. Gaps (i.e., missing levels) in the MIP-MAP hierarchy are not

permitted. It is not permitted to generate MaxCulture dataset tiles that are

partially populated with data.

2. If the finest LOD of any vector tiled datasets is available at LOD ≤ 5, then all

LODs ranging from -10 ≤ LOD ≤ 0 of the MaxCulture dataset should be

generated (where n is the finest available LOD of any vector tiled datasets).

The technique illustrated in Figure 5-15: Generation of LODs for the

MinMaxElevation Dataset (1D) should be used to populate the LOD

hierarchy. Gaps (i.e., missing levels) in the MIP-MAP hierarchy are not

permitted. It is not permitted to generate MaxCulture dataset tiles that are

partially populated with data.

5.6.1.8 Subordinate Bathymetry Component

The Subordinate Bathymetry component consists of a grid of data values that

represent the depth of water (be it of fresh water bodies or of the ocean) with respect

to the corresponding data values of the Terrain Elevation (be it the Primary Terrain

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-57

© 2016 Presagis. All Rights Reserved.

Elevation or Primary Alternate Terrain Elevation components). The Subordinate

Bathymetry component follows the corner grid element conventions.

The generation of Bathymetry values is best explained by the illustration found in

Figure 5-20: Primary Terrain Elevation and Subordinate Bathymetry Components. In

areas where Primary Terrain Elevation values correspond to the surface of a body of

water, each Bathymetry value represents the height difference between the

corresponding Primary Terrain Elevation value (the reference) and the Earth’s Crust.

In all other areas, the Bathymetry values represent the height difference between the

nearby water body and the Earth’s Crust. Appendix A.8 provides the mandated

behavior of client-devices when reading a LOD of a primary component and

combining it with another LOD of a subordinate component such as the Bathymetry.

Figure 5-20: Primary Terrain Elevation and Subordinate Bathymetry Components

Positive (depth) values of Bathymetry indicate that the corresponding grid element is

submerged, i.e., the Earth’s Crust is below the elevation values in the Primary Terrain

Elevation component. Zero values correspond to the shoreline of the water body.

Negative values of Bathymetry indicate that the grid element is above water. The use

of negative values of Bathymetry in the vicinity of shorelines provides a better means

of interpolating Bathymetry along shorelines; such interpolation improve the

precision of shoreline contours that can be derived from the isoline B = 0.

In areas that are submerged, the Primary Terrain Elevation component represents the

surface of the water, not the elevation of the Earth’s Crust. The height of any point of

the Earth’s Crust with respect to the WGS-84 reference ellipsoid can be determined

using Equation (eq. 5-3).

 Ee = E – max(0,B) (eq. 5-3)

Where E = Terrain Elevation component

 B = Bathymetry component

 Ee = Earth’s Crust Elevation

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-58

© 2016 Presagis. All Rights Reserved.

The resulting profile of the Earth’s Crust is shown in Figure 5-21: Derived Earth

Elevation Values.

Figure 5-21: Derived Earth Elevation Values

The Bathymetry component needs to be provided only in areas on the Earth’s surface

where water is present. Below is another example of the relations between the

Primary Elevation component and the Subordinate Bathymetry component.

Figure 5-22: Example of Primary Terrain Elevation and Bathymetry Components

5.6.1.8.1 Data Type

The Subordinate Bathymetry component of the Elevation dataset is represented as a 1

or 2-channel TIFF image. The first channel contains the Depth of the grid post; the

optional second channel indicates the Type of Mesh used to connect the four grid

posts that are adjacent to the grid element. The depth is represented by a floating-

point or signed integer value expressed in meters and relative to the Primary Terrain

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-59

© 2016 Presagis. All Rights Reserved.

Elevation component. Integer values for tiles at LOD larger than 0 are scaled

according to the following formula:

Depth = 𝐼𝑛𝑡𝑣𝑎𝑙𝑢𝑒 × 2−𝐿𝑂𝐷

Integer values can make use of TIFF’s 8-bit, 16-bit, or 32-bit representation.

The Mesh Type is stored as an unsigned 8-bit integer.

5.6.1.8.2 Default Read Value

Simulator client-devices should assume a Depth value of Default_Bathymetry if the

data values are not available. The default value can be found in

\CDB\Metadata\Defaults.xml. In the case where the default value cannot be found,

the CDB Specification states that client-devices use a value of zero. The default

Mesh Type is zero.

5.6.1.8.3 Default Write Value

The files associated with the Subordinate Bathymetry component for area covered by

a tile at a given LOD need not be created if the source data is not available. Tiles

partially populated with data are not permitted. If the tool generating the Subordinate

Bathymetry component does not support the optional Mesh Type, the optional second

channel of the file need not be created; in which case the TIFF file becomes a single

channel image.

5.6.1.9 Subordinate Alternate Bathymetry Component

The Subordinate Alternate Bathymetry component is similar to the Primary Alternate

Terrain Elevation component; it provides a better delineation of the shoreline and

bottom of water bodies such as oceans, lakes, and rivers. To do this, the Subordinate

Alternate Bathymetry component encodes information that re-positions each depth

samples anywhere within its assigned grid element. In other words, the “phase” of

each bathymetry depth sample can be specified along the latitude and longitude axes.

In effect, the Subordinate Alternate Bathymetry component provides the means to

locally increase the precision of the modeled representation of the floor of water

bodies. Again, it is expected that the SE tools produce the Subordinate Alternate

Bathymetry component by considering constraint points, lineals and areals provided

by the modeler.

The constituents of the Subordinate Alternate Bathymetry are the depth and mesh

type at the specified latitude and longitude offsets inside each grid element. These

four constituents are represented as 4 channels of a TIFF image.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-60

© 2016 Presagis. All Rights Reserved.

5.6.1.9.1 Data Type

The first channel of the TIFF image contains the Depth component and is represented

as a floating-point or signed integer value. Integer values for tiles at LOD larger than

0 are scaled according to the following formula:

𝐷𝑒𝑝𝑡ℎ = 𝑆𝑎𝑚𝑝𝑙𝑒 × 2−𝐿𝑂𝐷

Integer samples can make use of TIFF’s 8-bit, 16-bit, or 32-bit representation.

The second channel of the TIFF image contains the Mest Type and is stored as an

unsigned 8-bit integer.

The third channel of the TIFF image contains the Latitude Offset and is stored as an

8-bit unsigned integer value ranging from 0 to 255. The value is scaled so that each

grid element is fragmented in 256 equal parts in the latitude direction. Thus, the grid

post cannot be positioned on the latitude of the next grid element directly north of the

current grid element.

The fourth channel of the TIFF image contains the Longitude Offset and is stored as

an 8-bit unsigned integer value ranging from 0 to 255. The value is scaled so that

each grid element is fragmented in 256 equal parts in the longitude direction. Thus,

the grid post cannot be positioned on the longitude of the next grid element directly

east of the current grid element.

5.6.1.9.2 Default Read Value

Simulator client-devices should assume a Depth of zero (as well as a Latitude and

Longitude Offsets of zero and a Mesh Type of zero) when the Subordinate Alternate

Bathymetry component is not available.

5.6.1.9.3 Default Write Value

The files associated with the Subordinate Alternate Bathymetry component for an

area covered by a tile at a given LOD need not be created if the source data is not

available. Tiles partially populated with data are not permitted.

5.6.1.10 Subordinate Tide Component

The Tide component represents the height variation of water (be it of fresh water

bodies of water or of the ocean) with respect to the Primary Elevation component.

The Tide component implicitly follows the corner grid element conventions. Each

value in the Tide component must be matched to the available LOD elevation values

of the Primary Elevation component.

The Tide component needs only to be provided in areas on the Earth’s surface that are

in the vicinity of water bodies. The information held in the Terrain Elevation and

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-61

© 2016 Presagis. All Rights Reserved.

Tide components permits a means for client-devices to accurately determine the

shoreline profile as a function of the tide level. When provided, the Tide component

permits client devices to compute the elevation (with respect to the WGS-84 mean

sea-level reference) in areas permanently or potentially submerged. The Tide

component need not be limited to oceans; it can also be used to specify the variation

of height of any body of water (rivers, lakes, gulfs, etc.).

The Tide component also permits simulation of tides that varies with location. In

order to determine the shoreline profile at a given location, the simulator client-

devices must first determine the height of (say) the ocean in the immediate vicinity of

that location. The sophistication of this calculation can vary greatly with simulation

fidelity. A discussion of possible alternatives regarding the fidelity of simulation

Tide simulation models can be found in Section A.8 of Appendix A.

With the CDB Tide component, simulator client-devices can readily determine the

height of the ocean (or any water surface whose height varies) at any point and as a

result can derive the geometry of the shoreline
61

. While a stored vector shoreline

representation might provide a more straightforward means of representing the

shoreline geometry for some client-devices, that representation would not lend itself

to determining the variation of the shoreline geometry with varying tides.

Furthermore, a vectorized representation of the shoreline geometry would essentially

be a single-level of detail of the shoreline geometry; as a result, it would need to be

generated at a resolution designed to match the highest LOD Terrain Elevation data.

Coarser shoreline LODs would essentially be samples of the shoreline vector

geometry at progressively greater spatial intervals.

The CDB Tide component represents the height variation of water surfaces anywhere

on the Earth’s surface. The variation need not be limited to the effect of tides
62

. The

Tide component represents the height variation of the water surface above and below

the mean water surface level.

61 While a stored vector shoreline representation might have provided a more straightforward means of representing the

shoreline geometry for some client-devices, that representation was rejected because it would not lend itself to determining

the variation of the shoreline geometry with varying tides.

62 For instance, it could represent the nominal seasonal variations of water level of lakes and rivers.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-62

© 2016 Presagis. All Rights Reserved.

Figure 5-23: Terrain Elevation, Bathymetry and Tide Components

Figure 5-24: Derived Earth Elevation, Water Elevation and Surface Elevation Values

From the above components, simulation client devices can compute a) the elevation

of the water Ew, b) the elevation of the earth’s surface Ee (be it submerged or

potentially submerged), and c) the surface elevation of the earth / water Es. These

computations can be performed in all areas where the Bathymetry and Tide

components are available (e.g., areas submerged or potentially submerged). The

values for Ew, Ee, and Es are referenced to the WGS-84 mean sea-level reference

level. Equation (eq. 5-4) though (eq. 5-6) can be used to compute Ew, Ee and Es:

 Ew = E + min(0,B) + T (eq. 5-4)

 Ee = E – max(0,B) (eq. 5-5)

 Es = max(Ee, Ew) (eq. 5-6)

Where E = Terrain Elevation component

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-63

© 2016 Presagis. All Rights Reserved.

 B = Bathymetry component

 T = Tide component

 Ew = Derived water elevation value

 Ee = Derived earth elevation value

 Es = Derived surface elevation

Client devices interested in computing the height of the ownship over terrain or water

can use equation (eq. 5-7).

 HAT = O - Es (eq. 5-7)

Where O = Ownship Altitude

Finally, client devices interested in determining the depth of water D, can use

equation (eq. 5-8).

 D = min(0, Ew - Ee) (eq. 5-8)

NOTE: A computed value of D of 0 means the point is above water.

5.6.1.10.1 Data Type

Tide components are represented as floating-point or signed integer values. Integer

values for tiles at LOD larger than 0 are scaled according to the following formula:

Tide = 𝐼𝑛𝑡𝑣𝑎𝑙𝑢𝑒 × 2−𝐿𝑂𝐷

Integer values can make use of TIFF’s 8-bit, 16-bit, or 32-bit representation.

5.6.1.10.2 Default Read Value

Simulator client-devices should assume default Tide values if the data values are not

available (files associated with the Tide component for the area covered by a tile, at a

given LOD or coarser, are either missing or cannot be accessed). The default value

can be provided to the client-devices on demand. The CDB Specification

recommends a default tide value of 2.5m (published average magnitude of tides

worldwide).

Simulator client-devices should assume a default Tide value of Default_Tide if the

data values are not available (files associated with the Tide component for the area

covered by a tile, at a given LOD or coarser, are either missing or cannot be

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-64

© 2016 Presagis. All Rights Reserved.

accessed). The default value can be found in \CDB\Metadata\Defaults.xml and can

be provided to the client-devices on demand. In the case where the default value

cannot be found, the CDB Specification recommends that client-devices use a default

tide value of 2.5m (average magnitude of tides worldwide).

5.6.1.10.3 Default Write Value

The files associated with the Tide component for area covered by a tile at a given

LOD need not be created if the source data is not available. Tiles partially populated

with data are not permitted.

5.6.2 Tiled Imagery Dataset

In a CDB, the terrain imagery is depicted on a grid at regular geographic intervals.

Each of the components of the Imagery Dataset corresponds to the raster imagery

draped over the terrain skin derived from the Primary Terrain Elevation Dataset. The

Raster Imagery Dataset implicitly follows the center grid element conventions.

The CDB Specification provides for a set of alternate terrain imagery representations

corresponding to the visible spectrum terrain imagery at different periods of the year.

Together, these representations are stored in a set of Visible Spectrum Terrain

Imagery (VSTI) components. Each of these representations can be either

monochrome or color.

In addition, the CDB Specification provides for a subordinate light map

representation that can be applied to the selected VSTI component for a night-time

representation of lighting patterns created by the projection of light-sources onto the

terrain surface. The light-map can be either monochrome or color.

5.6.2.1 Raster-Based Imagery File Storage Extension Naming

As briefly mentioned earlier in Section 1.4.10, the CDB Specification introduces the

notion of support for JPEG 2000 raster-based storage format for raster imagery files.

Since the CDB Specification enforces a unique filename for each dataset file, a

different file extension is required for such a dataset file format to distinguish it from

TIFF for other raster based datasets, thus any raster imagery dataset shall be stored

under the “.jp2” file extension.

5.6.2.1.1 JPEG 2000 Metadata

In addition to the compressed image data, the JPEG 2000 files may contain metadata

to hold additional data boxes. They are the Intellectual Property box, XML box, URL

box and UUID box. Among them, the XML box is perfectly suited to store formatted

metadata concerning the source of this data, or the security attributes associated with

the file usage. Below is the XML format description of such metadata to be

supported as part of this CDB Specification. It is to be noted that the existence of this

XML metadata box does not contain any information necessary for decoding the

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-65

© 2016 Presagis. All Rights Reserved.

image portion, and the correct interpretation of the XML data will not change the

visual appearance of the image. This metadata is divided in two distinct elements,

namely ORIGIN and SECURITY.

5.6.2.1.1.1 Origin of data

XML Tag Name Format Description Values

datetime STRING File Date & Time: This field shall

contain the file’s origination in the format

CCYYMMDDhhmmss, where CC is the

first two digits of the year (00-99), YY is

the last two digits of the year (00-99),

MM is the month (01-012), DD is the day

(01-31), hh is the hour (00-23), mm is the

minute (00-59), and ss is the second (00-

59). UTC is assumed to be the time zone

designator to express the time of day.

Default is 14 spaces

Date Format:

CCYYMMDDhhmmss

originatingstationid STRING Originating Station ID: This field shall

contain the identification code or name of

the originating organization, system,

station, or product. It shall not be filled

with spaces.

This 10-character field

must NOT be blank

originatorname STRING Originator’s Name: This field shall

contain a valid name for the operator who

originated the file. If the field is all

spaces, it shall represent that no operator

is assigned responsibility for origination.

Default is 24 spaces

originatorphone STRING Originator’s Phone Number. This field

shall contain valid phone number for the

operator who originated the file. If the

field is all spaces, it shall represent that

no phone number is available for the

operator assigned responsibility for

origination.

Default is 18 spaces

originatororganization STRING Originator’s Organization. This field

shall contain a valid name of the

supporting organization.

Default is 80 spaces

originatoraddress STRING Originator’s Address. This field shall

contain a valid address of the supporting

organization.

Default is 256 spaces

originatoremail STRING Originator’s Electronic Mail Address.

This field shall contain a valid email

address of the supporting organization.

Default is 100 spaces

originatorwebsite STRING Originator’s Web Site Address. This

field shall contain a valid web site address

of the supporting organization.

Default is 100 spaces

originatorremark STRING Originator’s Remark Text. This field

shall contain description text for any

special remarks concerning the file.

Default is 100 spaces

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-66

© 2016 Presagis. All Rights Reserved.

5.6.2.1.1.2 Security

Attribute Name Format Description Values

classificationlevel BYTE File Security Classification:

This field shall contain a 1-

character valid value

representing the classification

level of the entire file.

Valid values are:

T (=Top Secret),

S (=Secret),

C (=Confidential),

R (=Restricted),

U (=Unclassified).

system STRING File Security Classification

System: This field shall

contain valid values indicating

the national or multinational

security system used to

classify the file. If this field is

all blank spaces, it shall imply

that no security classification

system applies to the file.

Default is 2 spaces

Country Codes per FIPS 10-4

shall be used to indicate

national security systems;

codes found in DIAM 65-19

shall be used to indicate

multinational security systems.

codewords STRING File Codewords: This field

shall contain a valid indicator

of the security compartments

associated with the file.

Default is 11 spaces

controlhandling STRING File Control and Handling.

This field shall contain valid

additional security control

and/or handling instructions

(caveats) associated with the

file. Values include digraphs

found in DIAM 65-19 and/or

MIL_STD_2500B-Table A-4.

The digraph may indicate

single or multiple caveats.

The selection of a relevant

caveat(s) is application

specific. If this field is all

spaces, it shall imply that no

additional control and

handling instructions apply to

the file.

Default is 2 spaces

Values include one or more of

the tri/digraphs found in

DIAM 65-19 and/or

MIL_STD_2500B-Table A-4.

Multiple entries shall be

separated by a single space

releaseinstructions STRING File Releasing Instructions.

This field shall contain a valid

list of country and/or

multilateral entity codes to

which countries and/or

multilateral entities the file is

authorized for release. If this

field is all spaces, it shall

imply that no file release

instructions apply.

Default is 20 spaces

Valid items in the list are one

or more country codes as

found in FIPS 10-4 and/or

codes identifying multilateral

entities as found in DIAM 65-

19.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-67

© 2016 Presagis. All Rights Reserved.

Attribute Name Format Description Values

declassificationtype STRING File Declassification Type.

This field shall contain a valid

indicator of the type of

security declassification or

downgrading instructions

which apply to the file.

If this field is all spaces, it

shall imply that no file security

declassification or

downgrading instructions

apply.

Default is 2 spaces

Valid values are:

DD (=declassify on a specific

date),

DE (=declassify upon

occurrence of an event),

GD (=downgrade to a

specified level on a specific

date),

GE (=downgrade to a specified

level upon occurrence of an

event),

O (=OADR),

X (= exempt from automatic

declassification).

declassificationdate STRING File Declassification Date.

This field shall indicate the

date on which a file is to be

declassified if the value in File

Declassification Type is DD.

If this field is all spaces, it

shall imply that no file

declassification date applies.

Default is 8 spaces

 Date Format:

CCYYMMDD

declassificationexemption STRING File Declassification

Exemption. This field shall

indicate the reason the file is

exempt from automatic

declassification if the value in

File Declassification Type is

X.

If this field is all spaces, it

shall imply that a file

declassification exemption

does not apply.

Default is 4 spaces

Valid values are X1 through

X8 and X251 through X259.

X1 through X8 correspond to

the declassification

exemptions found in DOD

5200.1-R, paragraphs 4-

202b(1) through (8) for

material exempt from the 10-

year rule. X251 through X259

correspond to the

declassification exemptions

found in DOD 5200.1-R,

paragraphs 4-301a(1) through

(9) for permanently valuable

material exempt from the 25-

year declassification system.

filedowngrade BYTE File Downgrade. This field

shall indicate the classification

level to which a file is to be

downgraded if the values in

File Declassification Type are

GD or GE. If this field is all

spaces, it shall imply that file

security downgrading does not

apply.

Default is 1 space

Valid values are:

S (=Secret),

C (=Confidential),

R (=Restricted).

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-68

© 2016 Presagis. All Rights Reserved.

Attribute Name Format Description Values

filedowngradedate STRING File Downgrade Date. This

field shall indicate the date on

which a file is to be

downgraded if the value in

File Declassification Type is

GD. If this field is all spaces,

it shall imply that a file

security downgrading date

does not apply.

Default is 8 spaces

 Date Format:

CCYYMMDD

classificationtext STRING File Classification Text. This

field shall be used to provide

additional information about

file classification to include

identification of

declassification or

downgrading event if the

values in File Declassification

Type are DE or GE. It may

also be used to identify

multiple classification sources

and/or any other special

handling rules. If this field is

all spaces, it shall imply that

additional information about

file classification does not

apply.

Default is 43 spaces

Values are user defined free

text.

classificationauthoritytype BYTE File Classification Authority

Type. This field shall indicate

the type of authority used to

classify the file. If this field is

all spaces, it shall imply that

file classification authority

type does not apply.

Default is 1 single space

Valid values are:

O (= original classification

authority),

D (= derivative from a single

source),

M (=derivative from multiple

sources).

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-69

© 2016 Presagis. All Rights Reserved.

Attribute Name Format Description Values

classificationauthority STRING File Classification Authority:

This field shall identify the

classification authority for the

file dependent upon the value

in File Classification Authority

Type. If this field is all

spaces, it shall imply that no

file classification authority

applies.

Default is 40 spaces

Values are user defined free

text which should contain the

following information:

- original classification

authority name and position or

personal identifier if the value

in File Classification Authority

Type is O;

- title of the document or

security classification guide

used to classify the file if the

value in File Classification

Authority Type is D; and

Derive-Multiple if the file

classification was derived

from multiple sources. In the

latter case, the file originator

will maintain a record of the

sources used in accordance

with existing security

directives. One of the multiple

sources may also be identified

in File Classification Text if

desired.

classificationreason BYTE File Classification Reason:

This field shall contain values

indicating the reason for

classifying the file. If this

field is all spaces, it shall

imply that no file classification

reason applies.

Default is 1 single space

Valid values are A through G.

These correspond to the

reasons for original

classification per E.O. 12958,

Section 1.5.(a) through (g).

classificationsourcedate STRING File Security Source Date:

This field shall indicate the

date of the source used to

derive the classification of the

file. In the case of multiple

sources, the date of the most

recent source shall be used. If

this field is all spaces, it shall

imply that a file security

source date does not apply.

Default is 8 spaces

 Date Format:

CCYYMMDD

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-70

© 2016 Presagis. All Rights Reserved.

Attribute Name Format Description Values

controlnumber STRING File Security Control Number:

This field shall contain a valid

security control number

associated with the file. The

format of the security control

number shall be in accordance

with the regulations governing

the appropriate security

channel(s). If this field is all

spaces, it shall imply that no

file security control number

applies.

Default is 15 spaces

filecopynumber INT File Copy Number: This field

shall contain the copy number

of the file. If this field is all

zeros, it shall imply that there

is no tracking of file’s number

of copies.

Default is 00000

Number can range between:

00000 to 99999

numberofcopies INT File Number of Copies: This

field shall contain the total

number of copies of the file. If

this field is all zeros, it shall

imply that there is no tracking

of numbered file copies.

Default is 00000

Number can range between:

00000 to 99999

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-71

© 2016 Presagis. All Rights Reserved.

5.6.2.1.1.3 JPEG 2000 XML Example

Table 5-14: XML Tags for the JPEG 2000 Metadata

<?xml version="1.0" encoding="UTF-8"?>

<JP2METADATA name="JPEG2000XML"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="JP2MetaData.xsd">

 <ORIGIN>

 <datetime> </datetime>

 <originatingstationid> </originatingstationid>

 <originatorname> </originatorname>

 <originatorphone> </originatorphone>

 <originatororganization> </originatororganization>

 <originatoraddress> </originatoraddress>

 <originatoremail> </originatoremail>

 <originatorwebsite> </originatorwebsite>

 <originatorremark> </originatorremark>

 </ORIGIN>

 <SECURITY>

 <classificationlevel> </classificationlevel>

 <system> </system>

 <codewords> </codewords>

 <controlhandling> </controlhandling>

 <releaseinstructions> </releaseinstructions>

 <declassificationtype> </declassificationtype>

 <declassificationdate> </declassificationdate>

 <declassificationexemption> </declassificationexemption>

 <filedowngrade> </filedowngrade>

 <filedowngradedate> </filedowngradedate>

 <classificationtext> </classificationtext>

 <classificationauthoritytype> </classificationauthoritytype>

 <classificationauthority> </classificationauthority>

 <classificationreason> </classificationreason>

 <securitysourcedate> </securitysourcedate>

 <controlnumber> </controlnumber>

 <filecopynumber> </filecopynumber>

 <numberofcopies> </numberofcopies>

 </SECURITY>

</JP2METADATA>

5.6.2.2 List of all Imagery Dataset Components

The Imagery Dataset is comprised of several components listed here and detailed in

the subsequent sections.

http://www.w3.org/2001/XMLSchema-instance

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-72

© 2016 Presagis. All Rights Reserved.

Table 5-15: Imagery Dataset Components

CS1 CS2
File

Extension

Component

Name

Component

Description

Dataset 004, Imagery

001 001 *.jp2 Yearly VSTI

Representation

Corresponds to the terrain imagery draped

(orthographically) over the terrain skin derived

from the Primary Terrain Elevation Dataset.

This is the preferred Dataset Component for

year-round representative terrain imagery. It

may be single-channel monochrome or 3-

channel color image. This Dataset Component

follows the center grid conventions. Can be

used interchangeably with all other Alternate

VSTI representations.

002 001..004 *.jp2 Seasonal VSTI

Representations

Deprecated – Replaced with Quarterly VSTI

Representations below

003 001..012 *.jp2 Monthly VSTI

Representations

Monthly equivalent of Yearly VSTI

representation, i.e., this is the preferred Dataset

Component for month-based representative

terrain imagery. Can be used interchangeably

with all other Alternate VSTI representations.

004 001..004 *.jp2 Quarterly VSTI

Representations

Equivalent to Yearly VSTI representation but

for the selected quarter of the year. Can be used

interchangeably with all other Alternate VSTI

representations.

005 001 *.jp2 Subordinate

VSTLM

Corresponds to the terrain light maps draped

(orthographically) over the terrain skin derived

from the Primary Terrain Elevation Dataset. It

may be single-channel monochrome or 3-

channel color image. This Dataset Component

follows the center grid conventions.

5.6.2.3 Visible Spectrum Terrain Imagery (VSTI) Components

The VSTI component provides the visible spectrum imagery that is geo-graphically

draped (and usually ortho-rectified) over the geometric representation of the terrain

skin that is stored in the Primary Terrain Elevation Dataset. The CDB Specification

provides the means to (optionally) store alternate representations of the terrain

imagery in order to provide the simulation client-devices terrain representations that

best represent the time-of-year being simulated. There are three alternate approaches

to the generation and storage of the VSTI Imagery Dataset and they are organized as

follows:

1. Yearly: The first approach requires a single, year-round representation of the

terrain imagery.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-73

© 2016 Presagis. All Rights Reserved.

2. Quarterly: The second approach requires four variants of the terrain

imagery, one per calendar-year quarter
63

.

3. Monthly: The third approach requires monthly-variants of the terrain

imagery, one per month.

The VSTI Imagery Datasets can be provided and stored in any combination, be it

yearly, quarterly and/or monthly.

The VSTI dataset implicitly follows the center grid element conventions.

Figure 5-25: Projection of Terrain Imagery Dataset onto Terrain Elevation Dataset

The CDB grid representation of this raster imagery assumes a gamma of 1.0 (see

Appendix G) and a color space model in conformance with Windows sRGB or YUV

Color Space Profile. sRGB is the default color space in Windows, based on the IEC

61966-2-1 Standard. CDB terrain imagery can optionally be compressed into

JPEG 2000 with varying degrees of quantization (quality) levels. However, if using a

quantization level different than 0, lossy image results in possible image degradation

and artifact addition.

5.6.2.3.1 Data Type

The VSTI component is represented as single-channel gray-scale images, or as triple-

channel non-paletted color images in JPEG 2000 format. The use of transparency on

terrain imagery is not allowed.

63 Each quarter corresponds to specific months of the year. This concept of calendar-year quarters is distinct from the

concept of seasons whereby the later depends on whether the user is in the northern or the southern hemisphere of Earth.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-74

© 2016 Presagis. All Rights Reserved.

5.6.2.3.2 Default Read Value

Simulator client-devices should default the VSTI values if the data values are not

available (files associated with the VSTI dataset for the area covered by a tile, at a

given LOD or coarser, are either missing or cannot be accessed). The default value

can be found in \CDB\Metadata\Defaults.xml and can be provided to the client-

devices on demand. In the case where the default value cannot be found, the CDB

Specification recommends that client-devices use a default value of half-intensity

(0.5). Note that the default values are expressed as floating-point numbers ranging

from 0.0 to 1.0. This ensures that the default is interpreted in a consistent manner

independently of the data representation in the *.jp2 file.

Simulation client-devices are required to select the VSTI texture that best represents

the simulation date. The retrieval of VSTI textures by the client-devices must follow

the following conventions:

1. The simulation date is converted to a month of the year

2. If the monthly VSTI representation for that month number is absent, then the

client-device is required to determine which quarter of the year it is and search

for the quarterly representation of the VSTI

3. If a quarterly representation is absent, then the client-device is required to

search for a yearly representation of the VSTI

4. if the yearly representation is absent, then the client-device is required to

default to the Yearly default values found in \CDB\Metadata\Defaults.xml as

follows:

a. Default_VSTI_Y_Mono

b. Default_VSTI_Y_Red

c. Default_VSTI_Y_Green

d. Default_VSTI_Y_Blue

The above conventions are summarized in Table 5-16.

Table 5-16: VSTI Default Read Values

Monthly Quarterly Yearly Default

January 001

001

001

Default_VSTI_Y_Mono

Default_VSTI_Y_Red

Default_VSTI_Y_Green

Default_VSTI_Y_Blue

February 002

March 003

April 004

002 May 005

June 006

July 007

003 August 008

September 009

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-75

© 2016 Presagis. All Rights Reserved.

Monthly Quarterly Yearly Default

October 010

004 November 011

December 012

5.6.2.3.3 Default Gamma Correction

The default gamma correction is defined by Default_Imagery_Gamma found in the

Defaults.xml metadata file. If Default_Imagery_Gamma is not found in

Defaults.xml, or if Defaults.xml is not found in the metadata directory, assume a

default gamma correction of 1.0.

5.6.2.3.4 Default Write Value

The files associated with the VSTI component for area covered by a tile at a given

LOD need not be created if the source data is not available. Tiles partially populated

with data are not permitted.

5.6.2.4 Visible Spectrum Terrain Light Map (VSTLM) Component

The VSTLM component provides the visible spectrum terrain light maps that are

orthographically draped over the terrain skin (e.g., Primary Terrain Elevation Dataset)

and onto T2DModels. In addition, client-devices can also use the VSTLM

component to orthographically project the light map onto GTModels, GSModels and

statically-positioned MModels.

Light maps fall under the category of subordinate textures. The light maps are used

in low illumination conditions (dusk, dawn, night) to represent the combined

illumination effect of man-made light sources (primarily lamp-posts) on the terrain.

The technique provides a convenient means to produce interesting and entirely

predictable lighting effects without resorting to computationally intensive local light

sources.

The light map adds to the lighting levels provided by the simulated ambient light

level; the combined ambient lighting and the light map together modulate the

underlying VSTI. Light maps can be created in a number of ways, either manually

with a tool such as Photoshop, from night-time imagery or finally from an off-line

rendering process that simulates the illumination effect of the urban lighting sources

onto the terrain.

5.6.2.4.1 Data Type

The VSTLM component is represented as single-channel gray-scale images, or as

triple-channel color images. The data is stored in JPEG 2000 format. Note that in the

case of a monochrome VSTLM, the implied chrominance of the VSTLM is white.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-76

© 2016 Presagis. All Rights Reserved.

5.6.2.4.2 Default Read Value

Simulator client-devices should default the VSTLM values if the data values are not

available (files associated with the VSTLM dataset for the area covered by a tile, at a

given LOD or coarser, are either missing or cannot be accessed). The default value

can be found in \CDB\Metadata\Defaults.xml and can be provided to the client-

devices on demand. In the case where the default value cannot be found, the CDB

Specification recommends that client-devices use a default value of zero-intensity

(0.0). Note that the default values are expressed as floating-point numbers ranging

from 0.0 to 1.0. This ensures that the default is interpreted in a consistent manner

independently of its representation in the *.jp2 file. The default values are:

 Default_VSTLM_Mono

 Default_VSTLM_Red

 Default_VSTLM_Green

 Default_VSTLM_Blue

5.6.2.4.3 Default Gamma Correction

The default gamma correction is defined by Default_Imagery_Gamma found in the

Defaults.xml metadata file. If Default_Imagery_Gamma is not found in

Defaults.xml, or if Defaults.xml is not found in the metadata directory, assume a

default gamma correction of 1.0.

5.6.2.4.4 Default Write Value

The files associated with the VSTLM component for area covered by a tile at a given

LOD need not be created if the source data is not available. Tiles partially populated

with data are not permitted.

5.6.3 Tiled Raster Material Dataset

Historically, Digital Feature Analysis (DFAD) and VPF (Vector Product Format) data

have been used to provide the terrain and cultural content information used by the

real-time sensors, the computer generated forces and the visual systems. The

vectorized outlines of areas tagged with attribution data had a cartoon-like appearance

because they did not capture the richly varying mixture of materials. Each geometric

shape would be represented as a single material type resulting in simplistic sensor

scenes. Sometimes, a locally applied texture pattern would be applied to add some

realism to the single material type. While it is still possible to build a CDB in this

manner, the preferred approach involves the use of the Raster Material Dataset

described here. The Raster Material Dataset can be readily derived from the (image)

classification of mono, color or multi-spectral imagery. This Dataset is a material-

coded image with mixturing data. It is independent of wavelength (visible, infrared,

etc.) and is designed to support geospecific, multi-spectral scene simulation across

any computing platform. The Raster Material Dataset is typically generated from

material classification and mixturing analysis (see Figure 5-26: Image Classification

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-77

© 2016 Presagis. All Rights Reserved.

Example). It can be developed directly from geospecific imagery, (e.g., SPOT,

Landsat) and have a one-to-one correspondence with the image data. The Raster

Material Dataset results in a smoothly varying simulation database free of hard edges

characteristically found in vectorized DFAD outlines.

Figure 5-26: Image Classification Example

The Raster Material Dataset provides the means to store the types of materials and the

area coverage of each material within each pixel of the dataset. In all other aspects, it

follows conventions similar to the VSTI dataset.

A Raster Material Dataset consists of a set or stack of “n” Material Layers. This

stacking arrangement permits the modeler to assign up to “n” materials to the area

covered by each pixel of the Raster Material Dataset. The Raster Material Dataset

also consists of a stack of “n-1” mixture layers; the mixture layers define the

proportions of materials at each pixel. The CDB Specification makes provision for

up to 255 materials, (i.e., any pixel within the Raster Material Dataset can be assigned

up to 255 materials).

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-78

© 2016 Presagis. All Rights Reserved.

Figure 5-27: Example of a Raster Material Dataset

Figure 5-23: Terrain Elevation, Bathymetry and Tide Components, provides an

example of a Raster Material Dataset consisting of 3 material layers and two

associated mixture layers. The first Material Layer (i.e., layer 1) consists of a regular

grid of pixels; each pixel contains a code that represents the (composite) material with

largest area coverage. Likewise, the second Material Layer consists of a grid of

pixels whose code represents the (composite) material with second-highest area

coverage. Additional layers are added until the area corresponding to the combined

area of all (composite) materials at each pixel sums to 100%. Note that in layer 2, the

material layer value of some pixels can be ignored (shown as “-“ in the illustration)

because layer 1 had a material mixture value of 100%. Similarly, the material layer

value of some pixels in layer 3 can also be ignored because the mixture layers 1 and 2

add to 100%. In these cases, the CDB Specification recommends that the layer value

be assigned a Default_Material_Layer value of 0.

NOTE: The numeric value for Default_Material_Layer is zero (“0”) and is reserved by the
CDB Specification.

Mixture Layers represent the percentage area coverage of each material within each

pixel of each mixture. Since all layers must add to 100%, it is possible to represent

“n” Material Layers with a set of “n-1” Mixture Layers. The last layer is implicit, and

it is set to (100% - Sum of areas from previous layers). In the case where there is a

single Material Layer, there is no need to store the (implicit) Mixture Layer. When

there are two or more Material Layers, the Mixture Layer(s) must be generated.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-79

© 2016 Presagis. All Rights Reserved.

5.6.3.1 List of all Raster Material Dataset Components

The Raster Material Dataset is comprised of several components listed here and

detailed in the subsequent sections.

Table 5-17: Raster Material Dataset Components

CS1 CS2
File

Extension

Component

Name

Component

Description

Dataset 005, RMTexture

001 001..255 *.tif Composite

Material

Index

Each texel is an index into the Composite Material

Table (dataset 006). CS2 is the layer number.

Corresponds to a 2D grid of composite material

indices draped (orthographically) over the terrain

skin derived from the Primary Terrain Elevation

Dataset.

002 001..254 *.tif Composite

Material

Mixture

Each texel indicates the proportion (between 0.0

and 1.0) of the composite material found in the

corresponding material layer. CS2 is the layer

number. Corresponds to a 2D grid draped

(orthographically) over the terrain skin derived

from the Primary Terrain Elevation Dataset. This

Dataset component follows the center grid

conventions.

Dataset 006, RMDescriptor

001 001 *.xml Composite

Material

Table

The Composite Material Table is referenced by the

Composite Material Index component and contains

the definitions of the composite materials of a Tile-

LOD.

5.6.3.2 Composite Material Index Component

As mentioned earlier, the CDB Specification allows pixels of the Raster Material

Dataset to consist of several (up to 255) composite materials. To accomplish this, it

uses a layering concept that permits the assignment of several composite materials for

each pixel in the Material Dataset. As a result, the chosen representation for the

Raster Material Dataset consists of a set or stacks of “n” Material Layers, where “n”

is the maximum number of composite materials encountered in any pixel of the CDB

tile at the specified LOD.

The code assigned to each pixel of each Material Layer is the index of a Composite

Material found in the Terrain Composite Material Table (TCMT) defined in 5.6.3.4.

Each pixel of the first Material Layer (e.g., layer “1”) consists of a code that

represents the composite material with largest area coverage for that pixel. Likewise,

each pixel of the second Material Layer consists of a code that represents the

composite material with second-highest area coverage for that pixel. Additional

layers are added until the area corresponding to the combined area of all composite

materials at each pixel sums to 100%.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-80

© 2016 Presagis. All Rights Reserved.

5.6.3.2.1 Data Type

The Material Layer components are each represented as single-channel, material

coded one byte unsigned integer value images stored in TIFF.

5.6.3.2.2 Default Read Value

If none of the Material Layer components are available (files associated with the

Material Layer dataset for the area covered by a tile, at a given LOD or coarser, are

either missing or cannot be accessed), simulator client-devices should default to a

single Material Layer component whose content defaults to a single default

Composite Material. The default Composite Material can be found in

\CDB\Metadata\Defaults.xml and can be provided to the client-devices on demand.

The default value is:

• Default_Material_Layer (0)

In the case where the default value cannot be found, the CDB Specification

recommends that client-devices default to single substrate composite material whose

base material is:

• Default_Base_Material (BM_LAND-MOOR)

5.6.3.2.3 Default Write Value

The files associated with the Material Layer components for the area covered by a tile

at a given LOD need not be created if the source data is not available. Tiles partially

populated with data are not permitted.

5.6.3.3 Composite Material Mixture Component

A Mixture Layer accompanies each Material Layer; its dimensions are identical to

those of the Material Layer. The pixel values of the Mixture Layer “n” represent the

area coverage of Material Layer “n”. Since all layers must add to 100%, it is possible

to represent “n” Material Layers with a set of “n-1” Mixture Layers. As a result, the

last layer is implicit, and it is set to (100% - Sum of areas from previous layers). In

the case where there is a single Material Layer, there is no need to store the (implicit)

Mixture Layer. When there are two or more Material Layers, the Mixture Layer(s)

must be generated.

5.6.3.3.1 Data Type

The Material Mixture components are each stored in a single-channel TIFF file. All

values range from 0.0 (0%) to 1.0 (100%). Integral types represent scaled integers to

fit the range 0.0 to 1.0; floating-point values are limited to the range 0.0 to 1.0.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-81

© 2016 Presagis. All Rights Reserved.

5.6.3.3.2 Default Read Value

If none of the Material Mixture components are available (files associated with the

Material Mixture dataset for the area covered by a tile, at a given LOD or coarser, are

either missing or cannot be accessed), simulator client-devices should assume equal

mixturing for all available Material Layers.

5.6.3.3.3 Default Write Value

The files associated with the Material Mixture components for the area covered by a

tile at a given LOD need not be created if the source data is not available. Tiles

partially populated with data are not permitted.

5.6.3.4 Composite Material Table Component

This Composite Material Table is called the Terrain CMT, or just TCMT; it provides

a list of the Composite Materials shared by the Material Layers of the Material

Dataset. There is one TCMT for each CDB tile.

5.6.3.4.1 Data Type

The TCMT follows the syntax described in Section 2.5.2.2, Composite Material

Tables (CMT).

5.6.3.4.2 Default Read Value

Simulator client-devices should default the Terrain Composite Material Table if file

associated with the Terrain Composite Material Table for the area covered by a tile, at

a given LOD, is either missing or cannot be accessed. The default values for the

Terrain Composite Material Table can be found in \CDB\Metadata\Defaults.xml and

can be provided to the client-devices on demand. The default value is a single

Composite Material and is named:

• Default_Material_Layer (0)

If the default information cannot be found within the \CDB\Metadata\Defaults.xml

file, the CDB Specification recommends defaulting to single substrate composite

material whose base material is named:

• Default_Base_Material (BM_LAND-MOOR)

If an index is not found in the Terrain Composite Material Table, use the same

defaulting mechanism.

5.6.3.4.3 Default Write Value

The files associated with the Terrain Composite Material Table for the area covered

by a tile at a given LOD need not be created if the source data is not available. Tiles

partially populated with data are not permitted.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-82

© 2016 Presagis. All Rights Reserved.

5.7 Tiled Vector Datasets

Vector tiles differ from their raster counterpart in three important ways. First of all, a

vector tile’s internal structure permits a non-uniform distribution of elements within

the tile, (i.e., the position of each element within the tile is explicit). Secondly, the

vector tile’s internal structure permits a variable number of elements within the tile

confines. Finally, it is possible to control the distribution of the element types from a

single list.

Conceptually, the LOD of a vector tile implicitly provides the average density of

elements within the tile. The run-time level-of-detail behavior that controls the

rendered number of data elements depends on various parameters and on the off-line

filtering process.

NOTE: The LOD referred to in this section concerns itself with the grouping of

cultural features into tiles at specified LODs, and not with the geometric accuracy or

detail of the modeled representation of these features.

5.7.1 Introduction to Vector Datasets

The CDB Specification uses ESRI Shapefiles to represent vector data and attributes.

All shape types are supported to represent point, lineal, and areal features.

A point feature is a geographic entity where its simplest representation resolves to a

point with general attributes such as size, position, or material. A lineal feature is a

geographic entity that defines a one-dimensional feature such as a road, a canal, a

river. An areal feature is a geographic entity where its simplest representation

resolves to a two-dimension feature with general attributes such as size, position and

contours. In this context, a geographic entity is always specified by latitude and

longitude coordinates; in turn, the geographic entity is conformed onto the terrain by

the client-device.

The lineal and areal feature’s representation abstractly resolves to a one or a two

dimensional feature. Unless otherwise specifically mentioned in the CDB

Specification, lineal and areal feature’s representations are not used to model a

geometrical representation. However, these features may optionally reference an

explicitly modeled representation (for example an OpenFlight model) located in the

geospecific model or the geotypical model datasets.

As per ESRI Shapefile Technical Description, the set of attributes of Vector features

are stored in dBASE III+ files. Refer to Appendix D for the file format description.

The CDB Specification provides three attribution schemas to represent attribution

data:

• Instance-level attribution schema

• Class-level attribution schema

• Extended-level attribution schema

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-83

© 2016 Presagis. All Rights Reserved.

To completely represent the vector data and attributes in a given tile, the CDB

Specification requires that a Vector dataset consists of some of all of the following

files:

• *.shp – feature shape files that provides the geometric aspects of each

instance of a vector feature (point, lineal, and areal features). All instances of

the feature must be of the same Shape type. While the Shapefile format

supports up to 13 different types (each one stored in a different shape file),

CDB Specification requires a maximum of one Shapefile type for point

features, a maximum of one Shapefile type for lineal features and a maximum

of one Shapefile type for areal features for each tile (for a maximum of 3

feature Shapefiles per tile).

• *.shx – feature index files that stores the file offsets and content lengths for

each of the records of the feature files. The only purpose of these files is to

provide a simple means for clients to step through the individual records of

the feature files (i.e., it contains no CDB modeled data).

• *.dbf – feature instance-level files that provide the instance-level attribution

data for each of the records of the feature.

• *.dbf – feature class-level files that provide the class-level attribution data for

each class of features present in the feature shape files.

• *.dbf – feature extended-level files that provide optional extended-level

attribution data for entries in either the feature instance- or class-level files.

• *.shp – figure point shape files allow modelers the ability to assign specific

attribution for each point in lineal or areal features. Without this additional

Shapefile, the Shapefile format only allows specifying a single attribution for

the entire lineal or areal feature. The CDB Specification extends the concept

to allow specific attribution to each point of these features while enforcing

position correlation. For instance, in case of a PowerLine feature, it is

possible to associate, within the same dataset, a different geometric

representation of a PowerLine pylon for each point of the lineal and still

maintain the relationship between the point and the lineal.

• *.shx – figure point index files that stores the file offsets and content lengths

for each of the records of the figure point shape files.

• *.dbf – figure point instance-level files that provide the instance-level

attribution data for each of the records of the figure point shape files.

• *.dbf – figure point class-level files that provide the class-level attribution

data for each class of features present in the figure point shape files

• *.dbf – figure point extended-level files that provide optional extended-level

attribution data for entries in either the figure point instance- or class-level

files.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-84

© 2016 Presagis. All Rights Reserved.

• *.dbf – 2D relationship files. These files establish the relationship of point,

lineal, and areal features of a single or different datasets in a tile and between

tiles.

In addition to *.shp, *.dbf and *.shx files, the Shapefile standard also refers to a

memo file with a *.dbt file that is used to store comment fields associated with the

attribution *.dbf file.

All of the information that is needed to instance features is organized in accordance to

the CDB tile structure. All the tiled Vector dataset files are located in the same

directory; the dataset’s second component selector (CS2) is used to differentiate

between files with the same extension or with the same Vector features. Table 5-18:

Component Selector 2 for Vector Dataset, presents the list of codes that are allocated.

Note that Vector datasets do not necessarily use all of the Dataset Component

Selector 2 reserved codes. Users of the CDB Specification should refer to the

appropriate section for an enumeration of the supported File Component Selector 2

codes as well as the ones specific to the Dataset.

The Vector dataset concept and the FACC concepts overlap somewhat; some of the

Vector datasets are generalizations or specializations of FACCs. Appendix N

provides a recommended mapping of the FACC attributes across the CDB Datasets.

Note that the same feature should not have two representations.

Table 5-18: Component Selector 2 for Vector Datasets

CS2 File Extension Dataset Component Name Supported Shape Type

001 *.shp

*.shx

*.dbf

Point features Point, PointZ, PointM,

MultiPoint, MultiPointZ,

MultiPointM

002 *.dbf Point feature class-level attributes N/A

003 *.shp

*.shx

*.dbf

Lineal features PolyLine, PolyLineZ,

PolyLineM

004 *.dbf Lineal feature class-level attributes N/A

005 *.shp

*.shx

*.dbf

Areal features Polygon, PolygonZ,

PolygonM, Multipatch

006 *.dbf Areal feature class-level attributes N/A

007 *.shp

*.shx

*.dbf

Lineal figure point features Point, PointZ, PointM,

MultiPoint, MultiPointZ,

MultiPointM

008 *.dbf Lineal figure point feature class-level attributes N/A

009 *.shp

*.shx

*.dbf

Areal figure point features Point, PointZ, PointM,

MultiPoint, MultiPointZ,

MultiPointM

010 *.dbf Areal figure point feature class-level attributes N/A

011 *.dbf 2D relationship tile connections N/A

012 Deprecated N/A

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-85

© 2016 Presagis. All Rights Reserved.

CS2 File Extension Dataset Component Name Supported Shape Type

013 Deprecated N/A

014 Deprecated N/A

015 *.dbf 2D relationship dataset connections N/A

016 *.dbf Point feature extended-level attributes N/A

017 *.dbf Lineal feature extended-level attributes N/A

018 *.dbf Areal feature extended-level attributes N/A

019 *.dbf Lineal Figure Point extended-level attributes N/A

020 *.dbf Areal Figure Point extended-level attributes N/A

5.7.1.1 Shapefile Type Usage and Conventions

This section establishes conventions globally applicable to the usage of all Shapefile

features.

For explicitly modeled point cultural features:

Each point-feature of the CDB can be optionally associated with a GSModel, a

GTModel or MModel. The rendering of GSModels, GTModels or MModels by

client-devices requires an associated point-feature. The linkage is made through

point-feature attributes which together provide the information needed by client-

devices to locate the Model from the appropriate Dataset at the appropriate level-of-

detail. The following feature attributes provide the necessary linkage:

 FACC-FSC: Feature Code and Subcode

 MODL: Model Name

 MODT: Model Type

 MLOD: Model Level-of-Detail

 MMDC: Moving Model DIS Code

In the Shapefile, the position of all points is expressed using WGS-84 geographic

coordinates (latitude, longitude, altitude), as explained in Appendix K. If the feature

has an associated model, client-devices are required to position the model’s origin at

the specified coordinate, orient the model’s Y-axis in accordance to the AO1

attribute, and align the model’s Z-axis so that it points up. In the case of Shape types

that do not have a Z component value, the object’s height value is referenced to the

underlying terrain; as a result, client-devices are required to position the model’s

origin wrt underlying terrain elevation dataset. For Point features with a Z

component, client-devices are required to position the model as per the AHGT

attribute value. If AHGT is true, the model’s origin is positioned to the value

specified by the Z component (Absolute Terrain Altitude), irrelevant of the terrain

elevation dataset. If AHGT is false or not present, the model’s origin is positioned to

the value specified by the underlying terrain offset by the Z component value.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-86

© 2016 Presagis. All Rights Reserved.

For modeled light points:

It is common practice within the simulation industry to model light points without

their associated support structures. In this case, the preferred way to model light

points is through the use of point-features within the Airport and Environmental

Light-Point Features Datasets of the CDB; consequently, there are no Models

associated with Airport and Environmental Light-Point Features.

Note however that is entirely permissible to also model lights points with their

associated support structures. In this case, the CDB OpenFlight Model representing

the support structure also contains light points as specified in section 6.11, Model

Light Points.

The “modeling” of light points is accomplished via the following light-point feature

attributes:

 LTYP: Light Type

 LPH: Light Phase

 AO1: Angle of Orientation

The position of light points are expressed using WGS-84 geographic coordinates

(latitude, longitude, altitude), as explained in Appendix K. Client-devices are

required to position the center of the light point at the specified coordinate, orient

directional light points in accordance to the AO1 attribute. The elevation angle

component of a directional light point is intrinsic to its type (for instance a

VASI\TypeT\2.5_Degree\Fly-Up1_light should be used to represent a Type VASI

light used for a 2.5 degree glide slope). In the case of Shape types that do not have a

Z component value, the light point’s height value is referenced to the underlying

terrain; as a result, client-devices are required to elevate the light point’s center wrt

underlying terrain elevation dataset. For Light Point features with a Z component,

client-devices are required to position the light point’s center as per the AHGT value.

If AHGT is true, the light point’s center is positioned to the value specified by the Z

component (Absolute Terrain Altitude), irrelevant of the terrain elevation dataset. If

AHGT is false or not present, the light point’s center is positioned to the value

specified by the underlying terrain offset by the Z component value.

For point, lineal and areal features that are not modeled:

The CDB data model does not make mandatory that all features of the CDB be

modeled; as a result, each feature is optionally associated with a GSModel, a

GTModel or a MModel.

The position of vertices is expressed using WGS-84 geographic coordinates (latitude,

longitude, altitude), as explained in Appendix K. In the case of Shape types that do

not have a Z component value, the vertex’s height value is referenced to the

underlying terrain; as a result, client-devices are required to position the vertex’s

origin wrt underlying terrain elevation dataset. For Shape types with a Z component,

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-87

© 2016 Presagis. All Rights Reserved.

client-devices are required to position the vertex as per the AHGT value. If AHGT is

true, the vertex is positioned to the value specified by the Z component (Absolute

Terrain Altitude), irrelevant of the terrain elevation dataset. If AHGT is false or not

present, the vertex is positioned to the value specified by the underlying terrain offset

by the Z component value.

AHGT attribute, when present, is always ignored when the Z component value does

not exist.

The bounding box coordinates Xmin, Ymin, Xmax, Ymax required by some Shape

types are expressed using WGS-84 geographic coordinates (in accordance to

Appendix K).

The value of M and Mrange found in some of the Shape types (PointM, MultiPointM,

PolygonM, and PolyLineM) is ignored by client-devices.

5.7.1.1.1 Notes about Shapefile Polygon Shapes

Even though the Shapefile standard is very versatile, it also enforces some guidelines

with respect to the Polygon Shapes. Those guidelines are referred to in Appendix D –

Shapefile July 1998 Technical Description – Annotated.

The key aspects that should be respected while generating Polygon Shapes are re-

listed below:

• Has no self-intersections or co-linear segments

• Has no identical consecutive points (no zero-length segments)

• Does not degenerate into zero-area parts

• Does not have clock-wise inner rings (“Dirty Polygon”)

Although the above are guidelines, Shapefile readers shall handle such cases with

proper error handling and reporting.

5.7.1.2 CDB Attribution

Attributes are used to describe one or more real or virtual characteristics of a feature.

Features can be assigned a variable number of attributes.

5.7.1.2.1 Attribute Code

A unique four-digit numeric code is associated to each attribute. For example, the

attribute "Angle of Orientation" has an attribute code of “0003”.

5.7.1.2.2 Attribute Identifier

A unique three-character or four-character alphanumeric identifier is associated to the

attributes that are governed by this Specification. Attributes other than those

governed by the CDB Specification may not have an assigned identifier. For

example, the CDB attribute "Length" has the “LEN” identifier. The identifier is a

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-88

© 2016 Presagis. All Rights Reserved.

case-sensitive string of up to 10 characters. In the case of instance-level and class-

level attributes, the identifier is used as the name of the *.dbf column.

5.7.1.2.3 Attribute Semantics

Each attribute is associated with a textual description (describing semantic

information), which provides a human readable definition of the attribute.

5.7.1.2.4 Attributes Values

A value can be assigned to each attribute. The data type, length, format, range, usage,

units, compatibility and schema of each attribute value is governed by this

Specification. Attribute values give quantitative/qualitative meaning to the attribute.

5.7.1.2.5 Attribute Usage

CDB attribution usage falls in the following categories:

Mandatory: A mandatory attribute is an attribute whose value must be provided for

all of the features of a specified dataset, i.e., a producer of CDB data (e.g., tools) is

required to generate values for mandatory attributes. Consumers of CDB data (tools

and/or simulator client-devices) can rely on the availability of mandatory attributes.

A CDB with missing mandatory attributes is considered non-compliant by this

Specification.

Recommended: A recommended attribute is an attribute whose value should be

provided for all of the features of a specified dataset. Consumers of CDB data (tools

and/or simulator client-devices) can always rely on the availability of recommended

attributes since the attribute value is either provided explicitly by the CDB or

provided implicitly as a defaulted value in accordance to section 5.7.1.3, CDB

Attributes. A CDB with defaulted recommended attributes is considered compliant

by this Specification; however, the performance of one or more of the client-devices

(commonly found on simulation devices) may be adversely affected.

Optional: An optional attribute is an attribute whose value may (optionally) be

provided for all of the features of a specified dataset. Consumers of CDB data (tools

and/or simulator client-devices) cannot rely on the availability of optional attributes.

A CDB with missing optional attributes is considered compliant by this Specification;

however, the performance of one or more of the client-devices (commonly found on

simulation devices) may be enhanced by including the optional attributes.

Dependent: A dependent attribute is an attribute whose value depends on another

attribute, be it mandatory, recommended, or optional. The attribute is considered

mandatory if the attribute it depends on is mandatory. Likewise, the attribute is

considered recommended if the attribute it depends on is recommended. Finally, the

attribute is considered optional if the attribute it depends on is optional.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-89

© 2016 Presagis. All Rights Reserved.

Note that attribute usage information for each of the CDB attributes can be found in

section 5.7.1.3, CDB Attributes and in Table 5-27: Allocation of CDB Attributes to

Vector Datasets

5.7.1.2.6 Attribution Data Compatibility

The CDB Specification provides a flexible means to tag features with attribution data.

The CDB Specification accommodates the vast majority of attribution data that is in

use today and available through formats and products supported by the NGA and

other US governmental agencies. The CDB Specification provides the means to

attribute features with attribution data with varied origins.

5.7.1.2.6.1 CDB Attributes

CDB attributes are attributes whose semantics, data type, length, format, range,

usage, units, compatibility and schema are entirely governed by the CDB

specification. Most of these attributes are unique to the CDB Specification, i.e., these

attributes are not found in source data that conforms to various (US) governmental

standards and Specifications. As a result, this attribution data must be derived via

CDB tool automation or provided directly by the user.

5.7.1.2.6.2 Geomatics Attributes

Geomatics attributes are attributes whose semantics, data type, length, format, range,

usage, and units, are governed by various governmental/industrial Specifications and

standards. Such attributes are generally found in source data that conforms to such

standards and specifications. While the CDB Specification itself does not define and

govern the usage of these attributes, it nonetheless accommodates their storage within

the repository structure of the CDB.

5.7.1.2.6.3 Vendor Attributes

Vendor attributes are attributes whose semantics, data type, length, format, range,

usage, and units are governed by one or more vendors. In general, such attributes

cannot be used by other vendors since they are often proprietary. Such attributes

exclude the above two types of attributes and are generally unique to each vendor.

While the CDB Specification itself does not define and govern the usage of these

attributes, it nonetheless accommodates their storage within a CDB.

5.7.1.2.7 Attribution Schemas

The CDB Specification offers three different attribution schemas. Each of the

schemas offers different trade-offs in the manner attribution data is accessed and

stored. Each of these schemas is largely motivated by the storage size considerations,

and flexibility in the manner attribution data can be assigned to individual features

and to groups of features.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-90

© 2016 Presagis. All Rights Reserved.

The three attribution schemas supported by the CDB Specification are:

 Instance-level schema

 Class-level schema

 Extended-level schema

The preferred attribution schema is Instance-level. This choice reduces the number of

files that must be read by client-devices and, thus, improves their runtime

performance.

5.7.1.2.7.1 Instance-level Schema

This is the preferred attribution schema that can be used with all CDB attributes

allowed for a given type of features. This is the only attribution schema that can be

used with features whose attributes and attribute values vary with each instance of a

feature in a dataset. The attributes and their values are specified as attribution

columns in the instance-level *.dbf file that accompanies the dataset’s *.shp file. This

.dbf file is referred to as the Dataset Instance-level.dbf file.

Each instance of a feature is characterized by a corresponding set of instance-level

attributes implemented as a row within the instance-level *.dbf file. Each attribute is

uniquely defined by an attribute identifier. Each row of this instance-level *.dbf file

contains the instance-level attribute values for a corresponding feature in the *.shp

file. The first column of each row within the instance-level *.dbf is always the

classname (CNAM). If the classname is not used, its value is set to blank, and all of

the classname attributes must be added to the instance-level *.dbf file. The number of

columns in a Dataset Instance-level *.dbf file is different for each dataset. All of the

instance-level attributes are CDB attributes.

Figure 5-28: Instance-level Attribution Schema

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-91

© 2016 Presagis. All Rights Reserved.

5.7.1.2.7.2 Class-level Schema

This attribution schema can be used for features whose attributes and attribute values

can be shared by one or more of the instances of a feature in a dataset.

The attributes and their values are logically re-grouped under a classname (CNAM

attribute) that stands for the group of attributes specific to that class. Each row of the

class-level *.dbf file corresponds to a classname found in the instance-level *.dbf

shape file. Each attribute class is characterized by a set of attributes implemented as a

row within the class-level *.dbf file. Each attribute is uniquely defined by an attribute

identifier. The first column of the file is the classname and acts as the primary key to

access table entries; all other rows correspond to the attributes represented by the

classname. All of the class-level attributes are CDB attributes.

Figure 5-29: Class-level Attribution Schema

Eventhough Class-level schema can be seen as a mean to group common CDB

attributes into a single file, it is recommended to store them all using Instance-level

schema. Doing so reduces the number of files that must be read by client-devices

and, thus, improves their runtime performance.

5.7.1.2.7.3 Extended-level Schema

The CDB Specification provides an alternate attribution schema that can be used (in

many cases) to supplement the instance-level and class-level schemas.

The extended-level schema can be used to represent CDB attributes, Geomatics

attributes and Vendor attributes. However, the extended-level schema is the only

means by which Geomatics attributes and Vendor attributes can be accessed.

Linkage to the extended-level CDB attribution data is accomplished through the

CEAI attribute; CEAI is an index to a link list of CDB attributes stored in the

extended-level *.dbf file. Similarly, the GEAI and VEAI attributes are also indices to

link lists of attributes stored in the extended-level *.dbf file.

5.7.1.2.7.4 Structure of Extended-level dbf Files

Each row of the Extended-Level *.dbf files correspond to an attribute. Each attribute

row consists of four columns as follows:

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-92

© 2016 Presagis. All Rights Reserved.

Column 1 – LNK (Link): The first column is a numeric 6-digit index to the next

entry of a link list of attributes (a value of 0 marks the end of the list). The LNK field

provides a means to organize attributes into link lists of attributes that in turn can be

associated with a feature.

Column 2 – GRP (Group): The second column provides an 8-character string that is

used to name the group to which the extended attributes belongs to. The actual value

of this character string is arbitrary and provides an indication of the source of the

attribute. In practice, attributes belongs to one of three (3) groups: CDB, Geomatics,

and Vendor. If the extended-level attribute is one of the CDB attributes of section

5.7.1.2.7.5, the group name is “CDB”. If the extended-level attribute belongs to one

of the Geomatics standards (such as “DIGEST”, “VMAP”, “SEDRIS”, “DGIWG”,

“UHRB”), it is recommended to use the name of the standard as the group name. If

the extended-level attribute is a vendor-specific attribute, then the group name should

represent the name of the vendor (such as “CAE-M”, “Presagis”, “Thales”,

“Rockwell”).

Column 3 – EAC (Environment Attribute Code): The third column provides a

unique four-digit numeric code for each attribute type. The codes for the CDB

attributes can be found in section 5.7.1.3, CDB Attributes. Note however, that the

codes for the Geomatics and Vendor attributes are not specified by this Specification.

Instead, this Specification provides a metadata schema that allows developers to

describe these attributes. See section 5.1.7, CDB Attributes Metadata, for details.

Column 4 – EAV (Environment Attribute Value): The fourth column provides a

data value for the attribute. The data value is represented by general-purpose 16-

character alphanumeric string. In the case where more than 16-characters are needed

to represent a data value, the remaining characters are provided by appending

consecutive row(s) with the same GRP and EAC values; the value of LNK is

incremented for each of the consecutive row(s). The interpretation of the data value

is governed by metadata that describes the data type, the data format, the allowable

range of the data, the numerical precision of the data, the units associated with the

data, etc for each attribute type.

5.7.1.2.7.5 Example

The following example illustrates the relations between Shapefiles and dBASE files

where instance, class, and extended-level attributes are stored. The example focuses

on extended-level attributes. Note that it is possible to extend the list of instance and

class attributes through the use of the CEAI, GEAI, and VEAI attributes.

The attributes associated with the instance of Shape 2 are extended with CDB

attributes because CEAI has the value 4; that is an index into the Extended-level

attributes dBASE file, it points to record 4. By following the link (LNK) in each

record, the complete list of extended attributes contains records 4, 5, and 8. These

records add 3 CDB attributes: 5, 54, and 25. These codes respectively correspond to

APID, RWID, and GAID. Their respective values are Airport CYUL, Runway 06L,

and Gate B23.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-93

© 2016 Presagis. All Rights Reserved.

The attributes that belong to the “Container” class are also extended with CDB

attributes as indicated by the value 6 of the CEAI attribute. Record 6 adds CDB

attribute 29, LACC, with a value of 1; record 7 adds CDB attribute 60, SSC, with a

value of 84.

The attributes of the “Railroad” class are extended by Geomatics attributes as

indicated by GEAI and its value of 1. This adds 3 DIGEST geomatics attributes

(numbered 1, 2 and 3) that are defined in Geometics_Attributes.xml.

Finally, the “Highway” class attributes are extended with a single vendor attribute

stored in record 9 and 10 (VEAI points to record 9 which points to record 10). The

client detects that this is a single attribute (and not two separate attributes) because

the two records have identical values for their GRP and EAC attributes. The vendor

is identified as “ABC Inc.”; attribute 1, defined in Vendor_Attributes.xml, has the

value “1234567890ABCDEFGHIJ”.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-94

© 2016 Presagis. All Rights Reserved.

Figure 5-30: Relation between Shapes and Attributes

Note that it is possible to simultaneously extend a record (instance and class) with

CDB, Geomatics, and vendor attributes. The example does not illustrate this situation

to keep it (relatively) simple.

Shapefile (*.shp)

C
N

A
M

A
O

1

LE
N

L

LP
N

R
TA

I

SC
A

Lx

SC
A

Ly

SC
A

Lz

C
EA

I

G
EA

I

V
EA

I

…

Shape 1 House 5.2° - - 89% 1.0 1.0 1.0 - - -

Shape 2 Highway - 82 500 m 1 71% - - - 4 - -

Shape 3 Highway - 33 565 m 1 99% - - - - - -

Shape 4 Railroad - 154 000 m 1 85% - - - - - -

Shape 5 Highway - 53565 m 1 99% - - - - - -

… …

Header

C
N

A
M

B
SR

FA
C

C

FS
C

C
EA

I

G
EA

I

V
EA

I

…

Record 1 Container 15.2 m VX000 000 6 - -

Record 2 Railroad - AN010 000 - 1 -

Record 3 Highway - AP030 002 - - 9

Record 4 …

Header LN
K

EA
C

Record 1 2 1

Record 2 3 2

Record 3 0 3

Record 4 5 5

Record 5 8 54

Record 6 7 29

Record 7 0 60

Record 8 0 25

Record 9 10 1

Record 10 0 1

Instance-Level Attributes (*.dbf)

Class-Level Attributes (*.dbf)

G
R

P

DIGEST

DIGEST

ABC Inc.

1234567890ABCDEF

GHIJ

CYUL

06L

1

84

B23

CDB

CDB

CDB

CDB

CDB

ABC Inc.

XYZ...

6.45

1

EA
V

Extended-Level Attributes (*.dbf)

DIGEST

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-95

© 2016 Presagis. All Rights Reserved.

5.7.1.3 CDB Attributes

This section provides a list and description of the attributes that are governed by the

CDB Specification. Note that it is possible to provide attributes other than those

listed here by making use of the Geomatics and Vendor Extended-level attribution

schema.

5.7.1.3.1 ATARS Extended Attribute Code (AEAC) – Deprecated

Description: A unique numeric identifier that points to the entry number of the

ATARS Extended Attribution file for the current dataset. This entry

is provided for legacy database generation facility considerations

only; CDB-compliant devices are not required to read and interpret

this field. The ATARS Extended Attribution file should be located

in the same directory as the instance-level attribution file. An empty

AEAC field (i.e., null string) is allowed.

Identifier: AEAC

Code: 0001

Data Type: numeric

Length: 9 characters

Format: integer

Range: 0 to 999,999,999

Usage Note: Optional. Use when ATARS extended attribution is required.

Unit: N/A

Compatibility: CDB 3.0

5.7.1.3.2 Absolute Height Flag (AHGT)

Description: Indicates how to interpret the Z component of a vertex.

Identifier: AHGT

Code: 0002

Data Type: Logical

Length: 1 character

Format: N/A

Range: F, f, N, n (false) and T, t, Y, y (true)

Usage Note: Optional. Specifies how to interpret shape type features with a Z

component. If AHGT is true, the feature is positioned to the value

specified by the Z component (Absolute Terrain Altitude), irrelevant

of the terrain elevation dataset. If AHGT is false or not present, the

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-96

© 2016 Presagis. All Rights Reserved.

feature is positioned to the value specified by the underlying terrain

offset by the Z component value. Refer to section 5.7.1.1, Shapefile

Type Usage and Conventions for more details. AHGT can be

present only in datasets using PointZ, PolylineZ, PolygonZ and

MultiPointZ Shape types. AHGT should not be present for all other

Shape types or must be ignored otherwise. Refer to Appendix A –

“How to Interpret the AHGT, HGT, BSR, BBH, and Z Attributes”

for additional usage guidelines.

Unit: N/A

Default: False

Compatibility: CDB 3.0

NOTE: It is recommended that the AHGT flag be set to false because it facilitates the creation of
CDB datasets that are independent of each others. When the Z coordinate (altitude)
of a feature is relative to the ground, the terrain elevation dataset can be updated
without the need to recompute the altitude of the feature.

CAUTION: When the AHGT flag is set to true, the feature will be at a fixed WGS-84 elevation
independently of the terrain LOD selected by the client-device. As a result, there is
no guarantee that the feature (and its modeled representation) will remain above the
terrain across all terrain LODs.

RECOMMENDATION: Limit the use of AHGT=TRUE to data whose source is inherently
absolute. Such source data include geodetic marks or survey marks that provide a
known position in terms of latitude, longitude, and altitude. Good examples of such
markers are boundary markers between countries.

5.7.1.3.3 Angle of Orientation (AO1)

Description: Angle of Orientation with greater than 1 degree resolution – The

angular distance measured from true north (0°) clockwise to the

major (Y) axis of the feature.

Identifier: AO1

Code: 0003

Data Type: numeric

Length: 7 characters

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-97

© 2016 Presagis. All Rights Reserved.

Format: floating-point (recommended precision of 3.3)

Range: 0.000 to 360.000

Usage Note: Recommended. CDB readers should default to a value of 0.000 if

AO1 is missing. Applicable to Point, Light Point, Moving Model

Location and Figure Point features. When used in conjunction with

the PowerLineNetwork dataset, AO1 corresponds to the orientation

of the Y-axis of the modeled pylon. The modeled pylon should be

oriented (in its local Cartesian space) so that the wires nominally

attach along the Y-axis. Refer to Appendix A – “Creating a 3D

Model for a Powerline Pylon” for additional usage guidelines.

Unit: degree

Default: 0.000

Compatibility: CDB 3.0, DIGEST v2.1

5.7.1.3.4 Airport Feature Name (APFN) – Deprecated

Description: This name is used to distinguish and categorize features within the

list of available Airport Lineal features and Airport Areal features.

Identifier: APFN

Code: 0004

Data Type: text

Length: 24 characters

Format: Alpha characters

Range: N/A

Usage Note: N/A

Unit: N/A

Default: N/A

Compatibility: CDB 3.0

5.7.1.3.5 Airport ID (APID)

Description: A unique alphanumeric identifier that points to a record in the

NavData Airport or Heliport dataset (i.e., a link to the Airport or the

Heliport description in the NavData dataset). This ID is the value of

the field Ident of the Airport or Heliport dataset. Note that all of the

lights located in vector datasets that are associated with the operation

of an airport (including runway lights and lighting systems) are

required to reference an airport or heliport in the NavData dataset.

All man-made features associated with an airport or heliport must be

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-98

© 2016 Presagis. All Rights Reserved.

assigned an APID attribute; the APID attribute is not required for

features unrelated to airports or heliports.

Identifier: APID

Code: 0005

Data Type: alphanumeric

Length: 6 characters

Format: N/A

Range: N/A

Usage Note: Recommended for all Airport Light Points and airport-related

T2DModels (such as runway/taxiway/apron surfaces, and markings)

Failure to appropriately tag airport culture with APID attribute will

result in reduced control of airport-related culture by simulator.

Optional for Location Points, Environmental Light Points, and

Moving Model Location features that fall within the confines of an

airport and for which control of the feature is desirable.

Unit: N/A

Default: None

Compatibility: CDB 3.0

5.7.1.3.6 Bounding Box Height (BBH)

5.7.1.3.7 Bounding Box Width (BBW)

5.7.1.3.8 Bounding Box Length (BBL)

Description: The Height/Width/Length of the Bounding Box of the 3D model

associated with a point feature. It is the dimension of the box

centered at the model origin and that bounds the portion of the model

above its XY plane, including the envelopes of all articulated parts.

BBH refers to height of the box above the XY plane of the model,

BBW refers to the width of the box along the X-axis, and BBL refers

to the length of the box along the Y-axis. Note that for 3D models

used as cultural features, the XY plane of the model corresponds to

its ground reference plane. The value of BBH, BBW and BBL

should be accounted for by client-devices (in combination with other

information) to determine the appropriate distance at which the

model should be paged-in, rendered or processed. BBH, BBW and

BBL are usually generated through database authoring tool

automation.

Identifiers: BBH, BBW, BBL

Codes: 0006, 0007, 0008

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-99

© 2016 Presagis. All Rights Reserved.

Data Type: numeric

Length: 9 characters

Format: floating-point (recommended precision 5.3)

Range: 0.000 to 99999.999

Usage Note: Optional on features for which a MODL has been assigned. The

dimension of the bounding box is intrinsic to the model and identical

for all LOD representations. Refer to Appendix A – “How to

Interpret the AHGT, HGT, BSR, BBH, and Z Attributes” for

additional usage guidelines.

Unit: meters

Default: BBH defaults to the value of BSR

 BBW and BBL default to twice the value of BSR

Compatibility: CDB 3.0

5.7.1.3.9 Boundary Type (BOTY)

Description: A value that uniquely attributes a boundary according to the

enumerators found here.

Identifier: BOTY

Code: 0009

Data Type: Enumeration per Table 5-19: Boundary Type Enumeration Values

Length: 3 characters

Format: integer

Range: 0 to 999

Usage Note: Optional. See table below for a list of accepted values. Can be used

only with Boundary Point, Lineal or Areal Feature Datasets (which

are part of the Geopolitical Datasets)

Unit: N/A

Default: 0

Compatibility: CDB 3.0

Table 5-19: Boundary Type Enumeration Values

BOTY Code Description

0 Unknown

1 Continental

2 International

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-100

© 2016 Presagis. All Rights Reserved.

3 Interstate

4 Inter-provincial

5 Territorial

6 Economic

7 Regional

8 Communal

9 Tourist

10 Private Zone

11 Military District

12 Disputed

13 Populated Place

14 Non-capital City

15 Time Zone Delimiter

16 International Date Line

17 Capital City

997 Unpopulated

998 Not Applicable

999 Other

5.7.1.3.10 Bounding Sphere Radius (BSR)

Description: The radius of a feature. In the case where a feature references an

associated 3D model, it is the radius of the hemisphere centered at

the model origin and that bounds the portion of the model above its

XY plane, including the envelopes of all articulated parts. Note that

for 3D models used as cultural features, the XY plane of the model

corresponds to its ground reference plane. The value of BSR should

be accounted for by client-devices (in combination with other

information) to determine the appropriate distance at which the

model should be paged-in, rendered or processed. When the feature

does not reference a 3D model, BSR is the radius of the abstract

point representing the feature (e.g., a city).

Identifier: BSR

Code: 0010

Data Type: numeric

Length: 9 characters

Format: floating-point (recommended precision 5.3)

Range: 0.000 to 99,999.999

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-101

© 2016 Presagis. All Rights Reserved.

Usage Note: Mandatory for features for which a MODL has been assigned, but

optional for geopolitical point features. The dimension of the

bounding sphere is intrinsic to the model and identical for all LOD

representations. Refer to Appendix A – “How to Interpret the

AHGT, HGT, BSR, BBH, and Z Attributes” for additional usage

guidelines.

Unit: meters

Default: None

Compatibility: CDB 3.0

5.7.1.3.11 CDB Extended Attribute Index (CEAI)

Description: An index that points to a row entry of a CDB Extended Attribution

file for the current dataset. This entry permits users to store an index

to a link list set of CDB-specific attributes. CDB-compliant devices

must be capable of reading and interpreting this field. Usage of this

attribution is not portable to other simulators because it falls outside

of the documented CDB attribution scheme. The CDB Extended

Attribution file should be located in the same directory as the

instance-level attribution file. An empty CEAI attribute is allowed.

Note that the first entry in the CDB Extended Attribution file has an

index of 1.

Identifier: CEAI

Code: 0011

Data Type: numeric

Length: 6 characters

Format: integer

Range: 1 to 999,999

Usage Note: Optional. Use when CDB extended attribution is required. A

“blank” or a value of 0 indicates that there are no CDB Extended

attributes.

Unit: N/A

Default: None

Compatibility: CDB 3.0.

5.7.1.3.12 CDB Extended Attribute Code (CEAC) – Deprecated

Description: A unique numeric identifier that points to the entry number of a

CDB Extended Attribution file for the current dataset. This entry

permits users to store a link to a set of CDB-specific attributes

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-102

© 2016 Presagis. All Rights Reserved.

beyond those explicitly supported by the current version of this

Specification. CDB-compliant devices may optionally read and

interpret this field due to program requirements that cannot be

supported by the current version of the CDB. Usage of this

attribution is not portable to other simulators because it falls outside

of the documented CDB attribution scheme. The CDB Extended

Attribution file should be located in the same directory as the

instance-level attribution file. An empty CEAC field is allowed.

Identifier: CEAC

Code: 0012

Data Type: numeric

Length: 9 characters

Format: integer

Range: 0 to 999,999,999

Usage Note: Optional. Use when CDB extended attribution is required.

Unit: N/A

Default: None

Compatibility: CDB 3.0

5.7.1.3.13 Composite Material Index (CMIX)

Description: Index into the Composite Material Table is used to determine the

Base Materials composition of the associated feature. Refer to

Section 2.5, Material Naming Conventions for a description on

material naming conventions.

Identifier: CMIX

Code: 0013

Data Type: numeric

Length: 6 characters

Format: integer

Range: 0 to 999,999

Usage Note: Mandatory on most datasets.

Unit: N/A

Default: None

Compatibility: CDB 3.0

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-103

© 2016 Presagis. All Rights Reserved.

5.7.1.3.14 Class Name (CNAM)

Description: A name that represents the Attribution Class. The class-level

attribution schema is described in Section 5.7.1.2.7.2, Class-level

Schema. Attributes are referenced via this classname. The

classname is used as the primary key to perform searches within the

Dataset Class Attribute file.

Identifier: CNAM

Code: 0014

Data Type: text

Length: 32 characters

Format: lexical

Range: N/A

Usage Note: Each row of a class-level dBASE file must have a valid CNAM

entry; the CNAM must be unique within the file. Each row of an

instance-level *.dbf can optionally use the CNAM to refer to class

attributes; blank indicates “no class attribute”.

Unit: N/A

Default: None

Compatibility: CDB 3.0

5.7.1.3.15 Damage Level (DAMA)

Description: Represents the level of damage of the feature and its model, if

applicable. The level is expressed as a percentage where a value of 0

means no damage at all and a value of 100 means fully damaged and

completely destroyed. In the case of network datasets, the level of

damage shall be interpreted as a measure of the incapacity of the

feature to perform its function. For instance, a road network whose

damage level is 75% tells the client that it is only able to perform

25% of its intended function. As a result, a certain client may decide

that it cannot use the road network while another client may continue

to do so.

Identifier: DAMA

Code: 0067

Data Type: numeric

Length: 3 characters

Format: integer

Range: 0 to 100

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-104

© 2016 Presagis. All Rights Reserved.

Unit: Percentage

Default: 0

Compatibility: CDB 3.2

Usage Note: In the context of HLA/DIS, the concept of DAMA maps directly to

the concepts of Damage State for which the standards define 4 states

named No Damage, Slight Damage, Moderate Damage, and

Destroyed. The Specification suggests the following mapping

between CDB DAMA and HLA/DIS states.

From CDB to HLA/DIS From HLA/DIS to CDB

 DAMA < 25 No Damage No Damage 0

25 ≤ DAMA < 50 Slight Damage Slight Damage 33

50 ≤ DAMA < 75 Moderate Damage Moderate Damage 66

75 ≤ DAMA Destroyed Destroyed 100

5.7.1.3.16 DIGEST Extended Attribute Code (DEAC) – Deprecated

Description: A unique numeric identifier that points to the entry number of the

DIGEST Extended Attribution file for the current dataset. This entry

is provided for legacy database generation facility considerations

only; it provides a means for the CDB to act as a repository for

legacy DIGEST attribution. CDB-compliant devices are not

required to read and interpret this field. The DIGEST Extended

Attribution file should be located in the same directory as the

instance-level attribution file. An empty DEAC field (i.e., null

string) is allowed.

Identifier: DEAC

Code: 0015

Data Type: numeric

Length: 9 characters

Format: integer

Range: 0 to 999,999,999

Usage Note: Optional. Use when DIGEST extended attribution is required.

Unit: N/A

Default: None

Compatibility: CDB 3.0.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-105

© 2016 Presagis. All Rights Reserved.

5.7.1.3.17 Depth below Surface Level (DEP)

Description: The depth of a feature. If the feature has no modeled representation,

its depth is measured as the distance from the surface level to the

lowest point of the feature below the surface
64

. If the feature has an

associated 3D model, the depth is measured as the distance from the

XY plane of the model to the lowest point of the model below that

plane. DEP values are positive numbers.

Identifier: DEP

Code: 0016

Data Type: numeric

Length: 9 characters

Format: floating-point (recommended precision 5.3)

Range: 0.000 to 99999.999

Usage Note: In the case of ground features, DEP refers to the portion of the

feature (or its modeled representation) that is underground. In the

case of moving models that are used as geotypical features, DEP

refers to the portion of the model that is below the waterline (i.e., the

XY plane). In the case of network lineal features such as roads,

railroads and powerlines, DEP refers to the depth of the feature

under the ground in its vicinity. In the case of hydrographic features,

DEP refers to the depth of rivers, lakes, etc
65

. This data is typically

used by client-devices that need to determine whether or not a

waterway is navigable by ships with a specific draw.

Unit: meters

Default: 0.000

Compatibility: CDB 3.0, DIGEST 2.1

5.7.1.3.18 Directivity (DIR)

Description: The side or sides of a feature that has the greatest reflectivity

potential. This data is typically needed for Radar simulation. DIR is

used solely for lineal features in accordance to DFAD conventions

If DIR is not equal to 3, then AO1 is the angular distance measured

from true north (0 deg) clockwise to the reflective side of the feature.

Identifier: DIR

64 Surface here refers to the terrain in the immediate vicinity of the feature.

65 Note, that the CDB has provision for a raster dataset to represent the bathymetry. When provided, the dataset provides a

much more detailed underwater profile of hydrographic features.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-106

© 2016 Presagis. All Rights Reserved.

Code: 0017

Data Type: numeric

Length: 3 characters.

Format: integer. Enumerated per DIGEST

 1: Uni-directional

2: Bi-directional

 3: Omni-directional

Range: 0 to 999

Usage Note: Recommended for lineal features. If absent, client-devices are

required to default to a value of 3 – Omni-directional

Unit: N/A

Default: 3

Compatibility: CDB 3.0 and DIGEST

5.7.1.3.19 Density Measure (DML)

Description: Percentage light coverage at night (expressed as a percentage) within

the area delimited by an areal feature.

Identifier: DML

Code: 0018

Data Type: numeric

Length: 3 characters

Format: integer

Range: 0 to 100

Usage Note: Recommended. Applies to Geopolitical Dataset areal features that

delineate inhabited areas. If this field is absent, client-devices shall

assume 0%.

Unit: Percentage

Default: 0

Compatibility: CDB 3.0

5.7.1.3.20 Density Measure (% roof cover) (DMR)

Description: Roof cover measure by percent within area of feature.

Identifier: DMR

Code: 0019

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-107

© 2016 Presagis. All Rights Reserved.

Data Type: numeric

Length: 3 characters

Format: integer

Range: 0 to 100

Usage Note: Recommended for Areal features. If absent, client-devices shall

assume 0%.

Unit: percentage

Default: 0

Compatibility: CDB 3.0, DIGEST 2.1

5.7.1.3.21 Density Measure (structure count) (DMS)

Description: Number of man-made, habitable structures per square kilometer.

Identifier: DMS

Code: 0020

Data Type: numeric

Length: 5 characters

Format: integer

Range: 0 to 99,999 (Note: differs from DIGEST range of -32767 to 32768)

Usage Note: Recommended for Areal features. If absent, client-devices shall

assume 0.

Unit: N/A

Default: 0

Compatibility: CDB 3.0, DIGEST 2.1

5.7.1.3.22 Density Measure (% tree/canopy cover) (DMT)

Description: Canopy cover measure by percent within area of feature during the

summer season.

Identifier: DMT

Code: 0021

Data Type: numeric

Length: 3 characters

Format: integer

Range: 0 to 100

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-108

© 2016 Presagis. All Rights Reserved.

Usage Note: Recommended for Areal features. If absent, client-devices shall

assume 0%.

Unit: percentage

Default: 0

Compatibility: CDB 3.0, DIGEST 2.1

5.7.1.3.23 End Junction ID (EJID)

Description: A Junction Identification Number that is used to virtually connect

the end point of a lineal to another point, lineal or areal feature.

Lineal features stored in the same shape file having the same SJID or

EJID are connected. Lineal features stored in different shape files

having the same SJID or EJID as the JID listed in the corresponding

tile 2D relationship file are connected.

Identifier: EJID

Code: 0022

Data Type: text numerals

Length: 20 characters

Format: unsigned integer64 as character string

Range: 0 to (2
64

 – 1)

Usage Note: Mandatory for all features belonging to Topological Network

Datasets. Attribute is stored as a character string representing an

unsigned 64-bit number, and requires conversion back into

numerical representation by client reader. This is due to the 32-bit

limitation on integer values within dBASE files.

Unit: N/A

Default: None

Compatibility: CDB 3.0

5.7.1.3.24 Feature Attribute Classification Code (FACC)

Description: This code used to distinguish and categorize features within a

dataset. The enumerated codes are listed in

/CDB/Metadata/Feature_Data_Dictionary.xml.

Identifier: FACC

Code: 0023

Data Type: text

Length: 5 characters

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-109

© 2016 Presagis. All Rights Reserved.

Format: two alpha characters following by three digits

Range: N/A

Usage Note: Mandatory

Unit: N/A

Default: None

Compatibility: CDB 3.0, DIGEST 2.1

5.7.1.3.25 FACC Sub Code (FSC)

Description: This code, in conjunction with the FACC is used to distinguish and

categorize features within a dataset. The enumerated codes are in

accordance to Appendix N.

Identifier: FSC

Code: 0024

Data Type: numeric

Length: 3 characters

Format: integer. Enumerated per Appendix N

Range: 0 to 999

Usage Note: Mandatory

Unit: N/A

Default: None

Compatibility: CDB 3.0

5.7.1.3.26 Gate ID (GAID)

Description: A unique alphanumeric identifier (for the airport in question) that is

consistent with the IDENT attribute name within the NavData Gate

dataset. This ID is the value of the Gate Identifier of the Gate

dataset and can be used to extract additional information such as the

gate position and bearing.

Identifier: GAID

Code: 0025

Data Type: alphanumeric

Length: 6 characters

Format: N/A

Range: N/A

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-110

© 2016 Presagis. All Rights Reserved.

Usage Note: Recommended and Optional usages are per Table 5-27: Allocation

of CDB Attributes to Vector Datasets. Typically used (but not

limited to) for models such as docking systems, marshallers and

other models that are logically associated with a Terminal gate and

that require some level of control by the simulation application.

Unit: N/A

Default: None

Compatibility: CDB 3.1

5.7.1.3.27 Geomatics Extended Attribute Index (GEAI)

Description: An index that points to a row entry of a Geomatics Extended

Attribution file for the current dataset. This entry permits users to

store an index to a link list set of Geomatics-specific attributes.

CDB-compliant devices are not mandated to read and interpret this

field. Usage of this attribution is not portable to other simulators

because it falls outside of the documented CDB attribution scheme.

The Geomatics Extended Attribution file should be located in the

same directory as the instance-level attribution file. An empty GEAI

attribute is allowed. Note that the first entry in the Geomatics

Extended Attribution file has an index of 1.

Identifier: GEAI

Code: 0026

Data Type: numeric

Length: 6 characters

Format: integer

Range: 1 to 999,999

Usage Note: Optional. Use when Geomatics extended attribution is required. A

“blank” or a value of 0 indicates that there are no Geomatics

Extended attributes.

Unit: N/A

Default: None

Compatibility: CDB 3.0.

5.7.1.3.28 Height above Surface Level (HGT)

Description: The height of a feature. If the feature has no modeled representation,

its height is measured as the distance from the surface level (ground

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-111

© 2016 Presagis. All Rights Reserved.

or water) to the tallest point of the feature above the surface
66

. If the

feature has an associated 3D model, the height is measured as the

distance from the XY plane of the model to the highest point of the

model above that plane. HGT values are positive numbers.

Identifier: HGT

Code: 0027

Data Type: numeric

Length: 7 characters

Format: floating-point (recommended precision 4.2)

Range: 0.00 to 9999.99

Usage Note: In the case of ground features, HGT refers to the portion of the

feature (or its modeled representation) that is meant to be above

ground. In the case of network lineal and areal features such as

roads, railroads, powerlines, or forest, HGT refers to the elevation of

the feature relative to the terrain in its immediate vicinity.

Unit: meters

Default: 0.00

Compatibility: CDB 3.0

5.7.1.3.29 Junction ID (JID)

Description: A Junction Identification Number that is used to virtually connect a

point or an areal feature to another point, lineal or areal feature.

Features stored in the same shape file having the same JID are

connected. Features stored in different shape files having the same

JID as the JID listed in the corresponding tile 2D relationship file are

connected. When JID is associated to an areal feature, it necessarily

connects to the first point of the areal feature.

Identifier: JID

Code: 0028

Data Type: text numerals

Length: 20 characters

Format: unsigned integer64 as character string

Range: 0 to (2
64

 – 1)

66 Surface here refers to the terrain in the immediate vicinity of the feature.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-112

© 2016 Presagis. All Rights Reserved.

Usage Note: Mandatory for all features belonging to Topological Network

Datasets. Attribute is used in 2D relationship file. Attribute is

stored as a character string representing an unsigned 64-bit number,

and requires conversion back into numerical representation by client

reader. This is due to the 32-bit limitation on integer values within

dBASE files.

Unit: N/A

Default: None

Compatibility: CDB 3.0

5.7.1.3.30 Location Accuracy (LACC)

Description: A precision value used to quantify the relative precision of the

Location point representing the specific GeoPolitical Location.

Identifier: LACC

Code: 0029

Data Type: numeric

Length: 3 characters

Format: integer

Range: 0 to 999

Usage Note: Optional. See Table 5-20: Location Accuracy Enumeration Values

for a list of accepted values.

Unit: meters.

Default: 0

Compatibility: CDB 3.0

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-113

© 2016 Presagis. All Rights Reserved.

Table 5-20: Location Accuracy Enumeration Values

LACC Code Description

0 Unknown

1 Better or equal to 10 m.

2 Better or equal to 100 m.

3 Better or equal to 250 m.

4 Better or equal to 500 m.

5 Better or equal to 1200 m.

6 Greater than 1200 m.

997 Unpopulated

998 Not Applicable

999 Other

5.7.1.3.31 Length of Lineal (LENL)

Description: The length of a lineal. If the feature has been clipped to a tile

boundary, the length still gives the initial full length of the object

prior to the clipping operation, and if it belonged to a topological

network, LENL will represent the distance between the two closest

junction points encompassing this lineal segment. Note the Length

attribute is not used to define a bounding sphere associated to an

object, but rather to provide a weight to the relative length of the

lineal as compared to others.

Identifier: LENL

Code: 0030

Data Type: numeric

Length: 6 characters

Format: integer

Range: 0 to 999,999

Usage Note: Mandatory for all networked lineal features. Length computation

should account for the earth’s curvature.

Unit: meters

Default: None

Compatibility: CDB 3.0, SEDRIS (EA = 562)

5.7.1.3.32 Light Material Index (LMIX) – Deprecated

Description: Index into the Composite Material Table that is used to determine

the Light Material composition of the associated city illumination.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-114

© 2016 Presagis. All Rights Reserved.

Represent the predominant material characterizing the major light

attributes of a populated area.

Identifier: LMIX

Code: 0031

Data Type: numeric

Length: 6 characters

Format: integer

Range: 0 to 999,999

Usage Note: Optional. Applicable to Geopolitical Dataset areal features that

delineate inhabited areas.

Unit: N/A

Default: None

Compatibility: CDB 3.0

5.7.1.3.33 Feature (or Location) Name (LNAM)

Description: A toponym – a general term for any place or geographical entity.

The attribute is used to give a proper noun (a human readable name)

to any feature from any vector dataset.

Identifier: LNAM

Code: 0032

Data Type: text

Length: 32 characters

Format: lexical

Range: N/A

Usage Note: The use of LNAM goes from the name of a City to the name of a

Road, to the name of a Building, etc. Multiple names are possible

when using LNAM as an extended attribute. When more than one

name is provided, they must appear in order from the shortest name

to the longest one.

Unit: N/A

Default: Blank

Compatibility: CDB 3.0

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-115

© 2016 Presagis. All Rights Reserved.

5.7.1.3.34 Location Type (LOTY)

Description: A value that uniquely attributes a location feature according to the

enumerators found here.

Identifier: LOTY

Code: 0033

Data Type: Enumeration per Table 5-21: Location Type Enumeration Values

Length: 3 characters

Format: integer

Range: 0 to 999

Usage Note: Optional. Applicable to Geopolitical Dataset areal features. See

table below for a list of accepted values. Can be used only with

Location Point, Lineal or Areal Feature Datasets (which are part of

the Geopolitical Datasets)

Unit: In cases where the location represents a bounded area, the

approximate geometric center is assumed.

Default: 0

Compatibility: CDB 3.0.

Table 5-21: Location Type Enumeration Values

LOTY Code Description

0 Unknown

1 Continent

2 Country

3 State

4 Capital

5 Province

6 City

7 Municipality

997 Unpopulated

998 Not Applicable

999 Other

5.7.1.3.35 Light Phase (LPH)

Description: Used for all light types that are periodic in nature (rotating, blink,

flashing, etc). The value of LPH controls the phase of the light

relative to all other lights that share the same LTYP. All other light

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-116

© 2016 Presagis. All Rights Reserved.

characteristics, including frequency and duration are implicitly

determined by the LTYP.

Identifier: LPH

Code: 0034

Data Type: numeric

Length: 3 characters

Format: integer

Range: 0 to 999

Usage Note: Optional. In absence of a value, LPH defaults to a value of 0.

Unit: thousands of a cycle

Default: 000

Compatibility: CDB 3.0

5.7.1.3.36 Layer Priority Number (LPN)

Description: A priority number that establishes the relative priority of overlapping

features. LPN establishes the order (starting from 0 for lowest

priority) by which overlapping features are processed by client-

devices.

Identifier: LPN

Code: 0035

Data Type: numeric

Length: 5 characters

Format: integer

Range: 0 to 32767

Usage Note: Mandatory for terrain constraint features that overlap one another.

For all other features, it is optional. LPN is derived from priority

information stored and maintained by the authoring tools.

Unit: N/A

Default: None

Compatibility: CDB 3.0

5.7.1.3.37 Lane/Track Number (LTN)

Description: The number of lanes on a road, tracks on railroad, or conductors on

powerlines, including both directions.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-117

© 2016 Presagis. All Rights Reserved.

Identifier: LTN

Code: 0036

Data Type: numeric

Length: 2 characters

Format: integer

Range: 0 to 99 (Note: differs from DIGEST range of -32767 to 32768)

Usage Note: Recommended for Road, RailRoad, and PowerLine Network

features. Optional for Hydrography Network features.

Unit: N/A

Default: 02 – for RoadNetwork lineal features

 01 – for RailRoadNetwork lineal features

 02 – for PowerLineNetwork lineal features

Compatibility: CDB 3.0, DIGEST 2.1

5.7.1.3.38 Light Type (LTYP)

Description: A unique code corresponding to a Light Type; Appendix E of this

Specification provides the supported light types. The light types

follow a hierarchical organization provided by the light type naming

conventions described in Section 2.3, Light Naming. The Lights.xml

file establishes the correspondence between the LTYP code and the

Light Type name.

Identifier: LTYP

Code: 0037

Data Type: numeric

Length: 4 characters

Format: integer

Range: 0 to 9999

Usage Note: Mandatory for all Airport Light Point features, Environmental Light

Point features.

Unit: N/A

Default: 0

Compatibility: CDB 3.0

5.7.1.3.39 Model Level Of Detail (MLOD)

Description: The level of detail of the 3D model associated with the point feature.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-118

© 2016 Presagis. All Rights Reserved.

Identifier: MLOD

Code: 0038

Data Type: numeric

Length: 3 characters

Format: integer

Range: -10 to 23

Usage Note: When used in conjunction with MODL, the MLOD attribute

indicates the LOD where the corresponding MODL is found. In this

case, the value of MLOD can never be larger than the LOD of the

Vector Tile-LOD that contains it. When used in the context of

Airport and Environmental Light Point features, the value of MLOD,

if present, indicates that this lightpoint also exist in a 3D model

found at the specified LOD. In such case, the value of MLOD is not

constrained and can indicate any LOD.

Unit: N/A

Default: None

Compatibility: CDB 3.0

5.7.1.3.40 Moving Model DIS Code (MMDC)

Description: A character string composed of the 7 fields of the DIS Entity Type.

Identifier: MMDC

Code: 0039

Data Type: text

Length: maximum of 29 characters

Format: All seven fields of the DIS Entity Type separated by an underscore

character (“_”): 1_2_3_4_5_6_7

Range: N/A

Usage Note: Mandatory for Moving Model Location features

Unit: N/A

Default: None

Compatibility: CDB 3.0

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-119

© 2016 Presagis. All Rights Reserved.

5.7.1.3.41 Model Name (MODL)

Description: A string reference, the model name, which stands for the modeled

geometry of a feature; in the case of buildings, this includes both its

external shell and modeled interior.

Identifier: MODL

Code: 0040

Data Type: text

Length: 32 characters

Format: per conventions described in Chapter 3, CDB Structure.

Range: N/A

Usage Note: Needed for Point features, Road Figure Point features, Railroad

Figure Point features, Powerline Figure Point features and

Hydrography Figure Point features that are modeled as OpenFlight

or as RCS (Shape). MODL can also be used with Road Lineal

features, Railroad Lineal features, Powerline Lineal features and

Hydrography Lineal and Areal features. Note that it is not permitted

to specify a value for MODL simultaneously with a value for

MMDC.

Unit: N/A

Default: None

Compatibility: CDB 3.0

5.7.1.3.42 Model Type (MODT)

Description: Indicates whether a feature is represented using a geotypical or

geospecific model. Together, the MODT, FACC, FSC, and MODL

attributes identify a unique model into the CDB.

Identifier: MODT

Code: 0041

Data Type: text

Length: 1 character

Format: “T” for geotypical, “S” for geospecific

Range: N/A

Usage Note: Needed for features that are modeled as OpenFlight or as RCS

(Shape).

Unit: N/A

Default: ”S”

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-120

© 2016 Presagis. All Rights Reserved.

Compatibility: CDB 3.0

5.7.1.3.43 Network Component Selector 1 (NCS1)

Description: Code that is used to identify the component selector 1 file which

contain the point, lineal, or areal feature that is virtually connected.

Identifier: NCS1

Code: 0042

Data Type: numeric

Length: 4 characters

Format: unsigned integer

Range: 0 to 9999

Usage Note: Mandatory for Network datasets. Attribute is used in 2D relationship

file.

Unit: N/A

Default: None

Compatibility: CDB 3.0

5.7.1.3.44 Network Component Selector 2 (NCS2)

Description: Code that is used to identify the component selector 2 file which

contain the point, lineal, or areal feature that is virtually connected.

Identifier: NCS2

Code: 0043

Data Type: numeric

Length: 4 characters

Format: unsigned integer

Range: 0 to 9999

Usage Note: Mandatory for Network datasets. Attribute is used in 2D relationship

file.

Unit: N/A

Default: None

Compatibility: CDB 3.0

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-121

© 2016 Presagis. All Rights Reserved.

5.7.1.3.45 Network Dataset Code (NDSC)

Description: Code that is used to identify the dataset code file which contain the

point, lineal, or areal feature that is virtually connected.

Identifier: NDSC

Code: 0044

Data Type: numeric

Length: 4 characters

Format: unsigned integer

Range: 0 to 9999

Usage Note: Mandatory for Network datasets. Attribute is used in 2D

relationship file.

Unit: N/A

Default: None

Compatibility: CDB 3.0

5.7.1.3.46 Number of Instances (NIS) – Deprecated

Description: Number of instances found in the corresponding 3D model

associated with the cultural point feature.

Identifier: NIS

Code: 0045

Data Type: numeric

Length: 6 characters

Format: integer

Range: 0 to 999,999

Usage Note: Mandatory for features that are modeled as OpenFlight.

Unit: N/A

Default: None

Compatibility: CDB 3.0

5.7.1.3.47 Number of Indices (NIX) – Deprecated

Description: Number of Indices – Number of indices found in the corresponding

3D model associated with the cultural point feature.

Identifier: NIX

Code: 0046

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-122

© 2016 Presagis. All Rights Reserved.

Data Type: numeric

Length: 6 characters

Format: integer

Range: 0 to 999,999

Usage Note: Mandatory for features that are modeled as OpenFlight.

Unit: N/A

Default: None

Compatibility: CDB 3.0

5.7.1.3.48 Number of Normals (NNL) – Deprecated

Description: Number of normal vectors found in the corresponding 3D model

associated with the cultural point feature.

Identifier: NNL

Code: 0047

Data Type: numeric

Length: 6 characters

Format: integer

Range: 0 to 999,999

Usage Note: Mandatory for features that are modeled as OpenFlight.

Unit: N/A

Default: None

Compatibility: CDB 3.0

5.7.1.3.49 Number of Texture Coordinates (NTC) – Deprecated

Description: Number of Texture Coordinates – Number of texture coordinates

found in the corresponding 3D model associated with the cultural

point feature.

Identifier: NTC

Code: 0048

Data Type: numeric

Length: 6 characters

Format: integer

Range: 0 to 999,999

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-123

© 2016 Presagis. All Rights Reserved.

Usage Note: Mandatory for features that are modeled as OpenFlight.

Unit: N/A

Default: None

Compatibility: CDB 3.0

5.7.1.3.50 Number of Texel (NTX) – Deprecated

Description: Number of texels found in the corresponding 3D model associated

with the cultural point feature.

Identifier: NTX

Code: 0049

Data Type: numeric

Length: 9 characters

Format: integer

Range: 0 to 999,999,999

Usage Note: Mandatory for features that are modeled as OpenFlight.

Unit: N/A

Default: None

Compatibility: CDB 3.0

5.7.1.3.51 Number of Vertices (NVT)

Description: Number of Vertices – Number of vertices of the corresponding 3D

model associated with the cultural point feature.

Identifier: NVT

Code: 0050

Data Type: numeric

Length: 6 characters

Format: integer

Range: 0 to 999,999

Usage Note: This attribute.depends on the presence of a model (MODL); a good

approximation is the number of vertices in the vertex pool of the

model.

Unit: N/A

Default: None

Compatibility: CDB 3.0

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-124

© 2016 Presagis. All Rights Reserved.

5.7.1.3.52 Population Density (POPD)

Description: The number of inhabitants per square kilometer.

Identifier: POPD

Code: 0051

Data Type: numeric

Length: 5 characters

Format: integer

Range: 0 to 99999

Usage Note: Applicable to Geopolitical features representing inhabited areas.

Unit: Inhabitants per square kilometer

Default: 0

Compatibility: CDB 3.0

5.7.1.3.53 Populated Place Type (POPT)

Description: A value that uniquely represents the Populated Place Attribution

Type. This attribute should be used in conjunction with the BOTY

attribute when BOTY has an (enumerator) value of 13 which

corresponds to “Populated Place”

Identifier: POPT

Code: 0052

Data Type: Enumeration per Table 5-22: Populated Place Type Enumeration

Values

Length: 3 characters

Format: integer

Range: 0 to 999

Usage Note: Optional. Applies to Geopolitical Dataset areal features that

delineate inhabited areas. See table below for a list of accepted

values.

Unit: N/A

Default: 0

Compatibility: CDB 3.0

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-125

© 2016 Presagis. All Rights Reserved.

Table 5-22: Populated Place Type Enumeration Values

POPT Code Description

0 Unknown

1 Native Settlement

2 Shanty Town

3 Tent Dwellings

4 Inland Village

5 Small City (less than 20,000 inhabitants)

6 Medium City (between 20,000 and 500,000 inhabitants)

7 Large City (more than 500,000 inhabitants)

997 Unpopulated

998 Not Applicable

999 Other

5.7.1.3.54 Relative TActical Importance (RTAI)

Description: Provides the Relative TActical Importance of cultural features

relative to other features for the purpose of client-device scene/load

management
67

. A value of 100% corresponds to the highest

importance; a value of 0% corresponds to the lowest importance.

When confronted with otherwise identical objects that differ only wrt

to their Relative TActical Importance, client-devices should always

discard features with lower importance before those of higher

importance in the course of performing their scene / load

management function. As a result, a value of zero gives complete

freedom to client-devices to discard the feature as soon as the load of

the client-device is exceeded. The effectiveness of scene / load

management functions can be severely hampered if large quantities

of features are assigned the same Relative TActical Importance by

the modeler. In effect, if all features are assigned the same value, the

client-devices have no means to distinguish tactically important

objects from each other. Assigning a value of 1% to all objects is

equivalent to assigning them all a value of 99%. Ideally, the

assignment of tactical importance to features should be in

accordance to a histogram similar to the one shown here. The shape

of the curve is not critical, however the proportion of features tagged

with a high importance compared to those with low importance is

critical in achieving effective scene/load management schemes. It is

illustrated here to show that few features should have an importance

67 Note that the importance of the model can be further modified at run-time at the simulator console through the scenario

importance value assigned to the model.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-126

© 2016 Presagis. All Rights Reserved.

of 100 with progressively more features with lower importance. The

assignment of the RTAI to each feature lends itself to database tools

automation. For instance, RTAI could be based on a look-up

function which factors the feature’s type (FACC or MMDC).

)__(MMDCorFACCfRTAI

The value of Relative TActical Importance should be accounted for

by client-devices (in combination with other information) to

determine the appropriate distance at which the feature (and its

modeled representation, if available) should be rendered or

processed. Relative TActical Importance is mandatory. It has no

default value.

Figure 5-31: RTAI Typical Usage Histogram

Identifier: RTAI

Code: 0053

Data Type: numeric

Length: 3 characters

Format: integer

Range: 0 to 100

Usage Note: Mandatory. All features should be tagged with an appropriate value

for the reasons stated above.

Unit: Percentage

Default: None

Compatibility: CDB 3.0

5.7.1.3.55 Runway ID (RWID)

Description: An alphanumeric identifier that uniquely identifies a runway for a

given airport; this ID must match the value of the field Ident of the

Runway or Helipad dataset.

Identifier: RWID

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-127

© 2016 Presagis. All Rights Reserved.

Code: 0054

Data Type: Alphanumeric

Length: 6 characters

Format: N/A

Range: N/A

Usage Note: Recommended for all Airport Light Points features. Failure to

appropriately tag airport culture with RWID attribute will result in

reduced control of runway-related (or helipad) culture by simulator.

Optional for Point/Lineal/Areal features, Location Points Features,

Environmental Light Point features, and Moving Model Location

features that are associated with a runway and for which control of

the feature is desirable. The combination of RWID and APID points

to a unique record of the NavData Runway or Helipad dataset

components. Note that all of the lights and other features located in

vector datasets that are associated with the operation of a runway or

helipad are required to reference a runway or helipad in the NavData

dataset; the RWID attribute is not required for features unrelated to a

runway or helipad.

Unit: N/A

Default: None

Compatibility: CDB 3.0

5.7.1.3.56 Scaling (SCALx)

5.7.1.3.57 Scaling (SCALy)

5.7.1.3.58 Scaling (SCALz)

Description: A set of scaling factors, one of the model axis, to be applied to the

rendering of model geometry by the client-device. A value of 1.0

instructs the client-devices to use the model as-is. The physical

dimension of models processed by client-device should approach

zero, as SCALing tends to zero. The value of SCALing should also

be accounted for by client-devices (in combination with other

information) to determine the appropriate distance at which the

model should be paged-in, rendered or processed. All three

SCALing factors are optional. Values of zero and negative values

are not permitted.

Identifiers: SCLAx, SCALy, SCALz

Codes: 0055, 0056, 0057

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-128

© 2016 Presagis. All Rights Reserved.

Data Type: numeric

Length: 9 characters

Format: floating-point (recommended precision 3.5)

Range: 000.00001 to 999.99999

Usage Note: Optional. CDB readers should default to a value of 1.0 if SCALx,

SCALy, or SCALz is missing.

Unit: N/A

Default: 1.0

Compatibility: CDB 3.0

5.7.1.3.59 Start Junction ID (SJID)

Description: A Junction Identification Number that is used to virtually connect

the start point of a lineal to another point, lineal or areal feature.

Lineal features stored in the same shape file having the same SJID or

EJID are connected. Lineal features stored in different shape files

having the same SJID or EJID as the JID listed in the corresponding

tile 2D relationship file are connected.

Identifier: SJID

Code: 0058

Data Type: text numerals

Length: 20 characters

Format: unsigned integer64 as character string

Range: 0 to (2
64

 – 1)

Usage Note: Mandatory for all features belonging to Topological Network

Datasets. Attribute is stored as a character string representing an

unsigned 64-bit number, and requires conversion back into

numerical representation by client reader. This is due to the 32-bit

limitation on integer values within dBASE files.

Unit: N/A

Default: None

Compatibility: CDB 3.0

5.7.1.3.60 Surface Roughness Description (SRD)

Description: Describes the condition of the surface materials that may be used for

mobility prediction, construction material, and landing sites.

Identifier: SRD

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-129

© 2016 Presagis. All Rights Reserved.

Code: 0059

Data Type: Enumeration per Table 5-23: Surface Roughness Enumeration

Values

Length: 3 characters

Format: integer

Range: 0 to 999

Usage Note: Recommended for Areal features.

Unit: N/A

Default: 0

Compatibility: CDB 3.0, DIGEST 2.1

Table 5-23: Surface Roughness Enumeration Values

SRD Code Description

0 Unknown

1 No surface roughness effect

2 Area of high landslide potential

3 Uncohesive surface material/flat

4 Rough

5 Angular

6 Rounded

11 Surface of numerous cobbles and boulders

12 Areas of stony terrain

13 Stony soil with surface rock

14 Stony soil with scattered boulders

15 Stony soil with numerous boulders

16 Numerous boulders

17 Numerous rock outcrops

18 Area of scattered boulders

19 Talus slope

20 Boulder Field

31 Highly fractured rock surface

32 Weathered lava flows

33 Unweathered lava flows

34 Stony soil with numerous rock outcrops

35 Irregular surface with deep fractures of foliation

36 Rugged terrain with numerous rock outcrops

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-130

© 2016 Presagis. All Rights Reserved.

SRD Code Description

37 Rugged bedrock surface

38 Sand dunes

39 Sand dunes/low

40 Sand dunes/high

41 Active sand dunes

42 Stabilized sand dunes

43 Highly distorted area, sharp rocky ridges

51 Stony soil cut by numerous gullies

52 Moderately dissected terrain

53 Moderately dissected terrain with scattered rock outcrops

54 Dissected floodplain

55 Highly dissected terrain

56 Area with deep erosional gullies

57 Steep, rugged, dissected terrain with narrow gullies

58 Karst areas of numerous sinkholes and solution valleys

59 Karst area of numerous sinkholes

60 Karst/hummocky terrain covered with large conical hills

61 Karst/hummocky terrain covered with low, broad-based mounds

62 Arroyo/wadi/wash

63 Playa/dry lake

64 Area of numerous meander scars and/or oxbow lakes

65 Solifluction lobes and frost scars

66 Hummocky ground, areas of frost heaving

67 Area of frost polygons

68 Area containing sabkhas

69 Area of numerous small lakes and ponds

70 Area of numerous crevasses

81 Area of numerous terraces

82 Quarries

83 Strip mines

84 Quarry/gravel pit

85 Quarry/sand pit

86 Mine tailings/waste piles

87 Salt evaporators

88 Area of numerous dikes

89 Area of numerous diked fields

90 Area of numerous fences

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-131

© 2016 Presagis. All Rights Reserved.

SRD Code Description

91 Area of numerous stone walls

92 Area of numerous man-made canals/drains/ditches

93 Area of numerous terraced fields

94 Parallel earthen mounds row crops

95 Area of numerous hedgerows

997 Unpopulated

998 Not Applicable

999 Other

5.7.1.3.61 Structure Shape Category (SSC)

Description: Describes the Geometric form, appearance, or configuration of the

feature.

Identifier: SSC

Code: 0060

Data Type: Enumeration per Table 5-24: Structure Shape Category Enumeration

Values

Length: 3 characters

Format: integer

Range: 0 to 999

Usage Note: Recommended for Point features, and all Network Lineal/Areal

Figure Points features.

Unit: N/A

Default: 0

Compatibility: CDB 3.0, DIGEST 2.1

Table 5-24: Structure Shape Category Enumeration Values

SSC Code Description

0 Unknown

1 Barrel, Ton

2 Blimp

3 Boat Hull (Float)

4 Bullet

5 Reserved

6 Conical/Peaked/NUN

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-132

© 2016 Presagis. All Rights Reserved.

SSC Code Description

7 Cylindrical (Upright)/CAN

9 Reserved

10 Pillar/Spindle

11 Reserved

12 Pyramid

13 Reserved

14 Reserved

15 Solid/filled

16 Spar

17 Spherical (Hemispherical)

18 Truss

19 With Radome

20 Reserved

21 Artificial Mountain

22 Crescent

23 Ferris Wheel

24 Enclosed

25 Roller Coaster

26 Lateral

27 Mounds

28 Ripple

29 Star

30 Transverse

31 Reserved

32 Reserved

33 Reserved

34 Reserved

36 Windmotor

38 Reserved

40 Reserved

46 Open

52 'A' Frame

53 'H' Frame

54 'I' Frame

56 'Y' Frame

57 Reserved

58 Reserved

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-133

© 2016 Presagis. All Rights Reserved.

SSC Code Description

59 Telescoping Gasholder (Gasometer)

60 Mast

61 Tripod

62 Reserved

63 Reserved

65 Cylindrical with flat top

66 Cylindrical with domed top

71 Cylindrical/Peaked

73 Superbuoy

74 'T' Frame

75 Tetrahedron

76 Funnel

77 Arch

78 Multi-Arch

79 Round

80 Rectangular

81 Dragons Teeth

82 I-Beam

83 Square

84 Irregular

85 Diamond Shaped Buoy

86 Oval

87 Dome

88 Spherical with Column Support

89 Cylindrical or Peaked with tower support

90 High-Rise Building

91 Cylindrical

92 Cubic

93 Pole

94 Board

95 Column (Pillar)

96 Plaque

97 Statue

98 Cross

107 Tower

108 Scanner

109 Obelisk

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-134

© 2016 Presagis. All Rights Reserved.

SSC Code Description

110 Radome, Tower Mounted

997 Unpopulated

998 Not Applicable

999 Other

5.7.1.3.62 Structure Shape of Roof (SSR)

Description: Describes the roof shape.

Identifier: SSR

Code: 0061

Data Type: Enumeration per Table 5-25: Structure Shape of Roof Enumeration

Values

Length: 3 characters

Format: integer

Range: 0 to 999

Usage Note: Recommended for Point features, and all Network Lineal/Areal

Point Figures.

Unit: N/A

Default: 0

Compatibility: CDB 3.0, DIGEST 2.1

Table 5-25: Structure Shape of Roof Enumeration Values

SSR Code Description

0 Unknown

6 Conical/Peaked/NUN

38 Curved/Round (Quonset)

40 Dome

41 Flat

42 Gable (Pitched)

43 Reserved

44 Reserved

45 Reserved

46 Reserved

47 Sawtooth

48 Reserved

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-135

© 2016 Presagis. All Rights Reserved.

SSR Code Description

49 Reserved

50 With Monitor

51 With Steeple

55 Flat with Monitor

58 Reserved

65 Gable with Monitor

65 Reserved

66 Reserved

71 Reserved

72 Reserved

77 With Cupola

78 With Turret

79 With Tower

80 With Minaret

997 Unpopulated

998 Not Applicable

999 Other

5.7.1.3.63 Traffic Flow (TRF)

Description: Encodes the general destination of traffic.

Identifier: TRF

Code: 0062

Data Type: numeric

Length: 3 characters

Format: Integer. Enumerated per DIGEST 2.1. A few examples:

 3: One-way

4: Two-way

Range: 0 to 999

Usage Note: Recommended on all Network Lineal (except PowerLines) features.

Unit: N/A

Default: 003 – for RailRoadNetwork lineal features

 004 – for other network lineal features

Compatibility: CDB 3.0, DIGEST 2.1

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-136

© 2016 Presagis. All Rights Reserved.

5.7.1.3.64 Taxiway ID (TXID)

Description: A unique alphanumeric identifier (for the airport in question).

Identifier: TXID

Code: 0063

Data Type: alphanumeric

Length: 6 characters

Format: N/A

Range: N/A

Usage Note: Recommended usage and Optional usages are per table Table 5-27:

Allocation of CDB Attributes to Vector Datasets. Failure to

appropriately tag airport culture with TXID attribute will result in

reduced control of taxiway-related culture by a simulation device.

Unit: N/A

Default: None

Compatibility: CDB 3.1

5.7.1.3.65 Urban Street Pattern (USP)

Description: Describes the predominant geometric configuration of streets found

within the delineated area of the feature.

Identifier: USP

Code: 0064

Data Type: Enumeration per Table 5-26: Urban Street Pattern Enumeration

Values

Length: 3 characters

Format: integer

Range: 0 to 999

Usage Note: Recommended for Areal features.

Unit: N/A

Default: 0

Compatibility: CDB 3.0, DIGEST 2.1

Table 5-26: Urban Street Pattern Enumeration Values

USP Code Description

0 Unknown

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-137

© 2016 Presagis. All Rights Reserved.

USP Code Description

2 Rectangular/Grid-Regular

3 Rectangular/Grid-Irregular

4 Curvilinear (cluster)

6 Concentric / Radial-Regular

7 Concentric / Radial-Irregular

9 Mixed-Curvilinear (cluster) and Rectangular (grid)

10 Mixed-Concentric / Radial and Rectangular (grid)

11 Mixed-Curvilinear (cluster) and Concentric / Radial

12 Reserved

13 Linear Strip

997 Unpopulated

998 Not Applicable

999 Other

5.7.1.3.66 Vendor Extended Attribute Index (VEAI)

Description: An index that points to a row entry of a VendorExtended Attribution

file for the current dataset. This entry permits users to store an index

to a link list set of Vendor-specific attributes. CDB-compliant

devices are not mandated to read and interpret this field. Usage of

this attribution is not portable to other simulators because it falls

outside of the documented CDB attribution scheme. The Vendor

Extended Attribution file should be located in the same directory as

the instance-level attribution file. An empty VEAI attribute is

allowed. Note that the first entry in the Vendor Extended Attribution

file has an index of 1.

Identifier: VEAI

Code: 0065

Data Type: numeric

Length: 6 characters

Format: integer

Range: 1 to 999,999

Usage Note: Optional. Use when Vendor extended attribution is required. A

“blank” or a value of 0 indicates that there are no Vendor Extended

attributes.

Unit: N/A

Default: None

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-138

© 2016 Presagis. All Rights Reserved.

Compatibility: CDB 3.0.

5.7.1.3.67 Width with Greater Than 1 meter Precision (WGP)

Description: For lineal features (such as roads, railways, runways, taxiways),

WGP is a measurement of the shorter of two linear axes. For a

bridge, the width is the measurement perpendicular to the axis

between the abutments. For powerlines, the width is the distance

between the outermost wires.

Identifier: WGP

Code: 0066

Data Type: numeric

Length: 9 characters

Format: floating-point (recommended precision 5.3)

Range: 0.000 to 99,999.999

Usage Note: Recommended on all Network Lineal features.

Unit: meters

Default: None

Compatibility: CDB 3.0, DIGEST 2.1

5.7.1.4 Explicitly Modeled Representations

5.7.1.4.1 Referenced by Point Features

A point feature (whose position and attributes are stored in a Shapefile) can also refer

to an explicitly modeled representation.

A feature can point to an explicitly modeled representation of that feature that is

stored in either the GTModel library, the MModel library or alternately embedded

inside a CDB tile. In order to specify the modeled representation, the modeler must

properly attribute the feature via the MODL, MLOD, MMDC and MODT attributes

in the vector dataset that contains the feature. For Point features, the CDB supports

two types of explicitly modeled representations:

• OpenFlight models

• RCS Shapefile models

Natural vector features (such as trees, bushes) are usually represented by geotypical

OpenFlight models. The majority of man-made features can also be geotypical in

nature. For instance, power pylons, telephone poles, or residential houses can all be

represented with generic models that are typical in appearance to the real-world

objects they represent. The modeler need only resort to a geospecific model if the

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-139

© 2016 Presagis. All Rights Reserved.

application requires a model with the unique shape, appearance and/or properties of

the real-world object.

5.7.1.5 Implicitly Modeled Representations

An implicitly modeled representation is one that is defined completely by the

supplied attribution of the Dataset in which it is contained. Examples of implicitly

modeled features are light-points.

5.7.1.6 Handling of Topological Networks

The CDB provides several interconnected topological network datasets consisting of

multiple datasets. Each network dataset can be made of separate point features and or

a series of points connected together using lineal and areal features. Each lineal

feature has a start and end nodes, which correspond to intersections when connected

to two or more other lineal features, or connections when connected to an areal; the

other intermediate points are used to accommodate deviation from a straight line.

Typically, network datasets (such as roads, railroads) conform to the ground;

consequently, when the optional AHGT attribute is present, its value is set to false.

Each network dataset is stored as a distinct Shapefile.

Figure 5-32: Example of a Topological Network

The CDB Topological networks are useful when one needs to determine the shortest

path between two arbitrary nodes in the entire network; alternately, algorithms can

use the network topology in combination with a “cost” parameter based on length (in

the case of shortest path), traffic speed (in the case of fastest path), or some other

criteria that can be derived from the attribution information associated with the

network datasets.

The CDB Topological networks are used for the following purposes:

 To determine a route for features such as roads, rivers, railroads.

 To follow a route made of roads, rivers, railroads.

 To avoid an obstacle; for example a tank may not be able to cross a river or be

able to go over or under a pipeline.

1

1

2

3

1

6

1

5

1

4

1

7

1

8

1

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-140

© 2016 Presagis. All Rights Reserved.

 To efficiently process a “feature” for devices (such as radar) that do not

require a high definition of the geometrical representation or do not need to

represent more than one dimension.

 To represent features in a map view, where features have implicit classes and

priority.

The CDB Topological networks are optimized to facilitate road/river/railroad

following tasks. They support the notion of directionality such as one-way roads or

both ways for two-way roads, rivers. The vertex positions are physically positioned

along the center of the feature’s longitudinal axis; for example, a road such as a dual-

lane undivided highway, the vertex data lies along the stripes dividing the two lanes.

Features within the same or different network datasets are connected together using

the junction identifier attributes SJID, EJID or JID. Two or more features having the

same identifier values are considered virtually connected. This junction identifier

allows, for instance, a primary road to connect to a secondary road, or a river to

connect a lake (in same network datasets), or to connect a road and a river (in

different network dataset). SJID, EJID or JID are mandatory attributes for all

topological network datasets. When not specified (i.e., blank), the feature is not

connected to any other features. Appendix A provides guidelines on how to generate

the junction identifiers.

Since the junction identifier is associated with a shape type feature, the following

combinations are supported:

 Any point feature can be connected to any start or end point of a lineal feature

(point to lineal connection), or to any start point of an areal feature (point to

areal connection), using its JID attribute.

 Any start point of a lineal feature can be connected to any point feature (point

to lineal connection), or to any start or end point of a lineal feature (lineal to

lineal connection), or to any start point of an areal feature (lineal to areal

connection), using its SJID attribute.

 Any end point of a lineal feature can be connected to any point feature (point

to lineal connection), or to any start or end point of a lineal feature (lineal to

lineal connection), or to any start point of an areal feature (lineal to areal

connection), using its EJID attribute.

 Any start point of an areal feature can be connected to any point feature (point

to areal connection), or to any start or end point of a lineal feature (lineal to

areal connection), using its JID attribute.

Connection information between two features located in two separate Shapefiles is

explicitly listed in 2D relationship files. This Specification currently supports two

types of 2D relationship files; the 2D relationship tile connection file which specifies

connections of the same dataset feature between two adjacent tiles, and the 2D

relationship dataset connection file which specifies connection of 2 or more features

from different dataset components within the same tile.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-141

© 2016 Presagis. All Rights Reserved.

5.7.1.6.1 2D Relationship Tile Connection File

The CDB Topological network is broken into tiles and therefore must be clipped

against tile boundaries. To ensure the connectivity between tile boundaries of a lineal

feature, the resulting clipping point must share the same junction identifier (JID) in

both tiles. This clipping point potentially exists in several Tile-LODs having a

common boundary; in which case, all points representing the same clipping point

share the same JID. Doing so ensures that connectivity between geocells and tiles is

preserved. A clipping point can be identified by the application by checking the 2D

relationship tile connection file. There is a 2D relationship tile connection file per

network dataset tile. When the file is missing, it indicates there is no clipping point

for the lineals belonging to the tile. The 2D relationship file is a dBASE file that

contains a list of records made of 2 attributes; the Junction ID (JID) that identifies the

start or end point of the clipped lineal and the Network Component Selector 1 (NCS1)

that identifies the network dataset lineal file. The dataset code file is implicit to the

network dataset tile directory and the Network Component Selector 2 always

represents a lineal feature Shapefile (code 003) thus do not require to be included in

the record. The coordinate of the tile adjacent to a clipping point can be determined

using the latitude and longitude of that point.

If a connection between two lineal features happens to be located exactly at a tile

boundary, the lineal is obviously not clipped but a junction ID is allocated and

included in the 2D relationship tile connection file.

In a 2D relationship tile connection file, no two records are identical; however JIDs

may appear more than once with different NCS1, indicating a connection between

network dataset components.

5.7.1.6.2 2D Relationship Dataset Connection File

The CDB Topological network is made of several network datasets that in turn are

made of several Shapefiles. By specifying a junction identifier per feature, any

features in any of these several Shapefiles can in theory be connected to any other

features located in a separate Shapefile. A connection within a tile, which includes

the tile boundaries, can be identified by the application by checking the 2D

relationship dataset connection file. There is a 2D relationship dataset connection file

per network dataset tile. This file contains all the connections between the

components of the corresponding network dataset with other network datasets. When

the file is missing, it indicates there are no connections within the tile. The 2D

relationship file is a dBASE file that contains a list of records made of 4 attributes;

the Junction ID (JID) that identifies the connected point, lineal or areal features, the

Network Dataset Code (NDSC) that identifies the network dataset the feature belongs

to, and the Network Component Selectors (NCS1 and NCS2) that identify the

network dataset component and the shape type. The tile coordinate and tile LOD is

implicit to the Network Dataset tile directory.

All the records in the 2D relationship file are sorted per ascending JID. This has two

advantages; it speeds up the search process when looking for a specific JID and it

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-142

© 2016 Presagis. All Rights Reserved.

groups all the features that are connected together. In effect, there is always a

minimum of two consecutive records with the same JID; the record belonging to the

corresponding file dataset (or component) and the record identifying the feature it

connects to. Note that when a 2D relationship file specifies a connection to a feature

belonging to different network dataset, the corresponding LOD file of this dataset

may or may not exist. If the corresponding LOD file of the target dataset is missing,

the application must look for the feature in the coarser LOD file of the target dataset.

If the corresponding LOD file of the target dataset exists, the feature may be missing

because it has been removed by the off-line tool decimation process; when this is the

case, the application must look for the feature in the finer LOD file of the target

dataset.

5.7.1.6.3 Junction Identifier (SJID, EJID, and JID) Range

This version of the Specification imposes that SJID, EJID and JID have unique values

for all network datasets within the same geocell. With a 64-bit range, it is practically

impossible to run out of ID number. In the process of creating the unique identifier,

special care must be taken by the off line tool in order to avoid duplicating the

identifier at the geocell boundary for the clipping points when the modified or added

features overlap two or more geocells.

Table 3-27, CDB LOD versus Feature Density, specifies the maximum number of

elements in a tile for vector datasets. This maximum number is not affected by the

number of added clipping point in a lineal feature. Although, this appears to lead to

an unbounded number of points in a file, it is clamped to the geocell size. In practice,

for a relative constant density, the number of clipping points diminishes as the LOD

number increases.

5.7.1.6.4 Network Vector Priority

When generating CDB Tile-LODs for lineal networks, there is also the concept of

vector priority. This concept is to accommodate efficient path planning and

following, as well as map drawing and other non-visual usages of networked lineals.

The assurances implied by this vector priority concept are the following:

 The finest Tile-LOD for a lineal network contains all the features and

geometry of that dataset.

 Coarser Tile-LODs contain both simplified lineal features as well as fewer

features, such that:

o There is a minimum priority class that exists within the Tile-LOD.

Not all the features with this priority class may exist in this Tile-LOD.

o All features in priority classes greater than the minimum must exist,

but may be simplified from their full resolution version in the finest

Tile-LOD. All topological connections between higher priority classes

also exist in this Tile-LOD.

o All features in priority classes less than the minimum do not exist in

this Tile-LOD, and can be found in finer Tile-LODs.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-143

© 2016 Presagis. All Rights Reserved.

o The maximum number of points for each Tile-LOD conforms to Table

3-27.

The default vector priority values can be found in the Feature Data Dictionary that

accompanies the CDB Specification. They cover the Road, Railroad, Powerline, and

Hydrography Network datasets. If there are two or more coincident lineal features,

use the higher of the Vector Priority value on each feature. For example, if a bridge

and a road lineal feature are coincident, use the higher vector priority value when

creating the Tile-LODs so that either both exist at the same time or neither exists in

the Tile-LOD. Appendix A contains the recommended way to create the Tile-LODs

for lineal network datasets.

Areal network datasets are not covered by vector priority. They should be simplified

into Tile-LODs using each feature’s significant size and applying spatial significance

criteria to each vertex.

5.7.1.7 Handling of Light Points

All of the information that is needed to instantiate the light point features is organized

in accordance to the CDB terrain tile structure. Each instance of a light point feature

refers to a light type defined by the CDB Specification via its shape attribution

(LTYP). As a result, the entire definition of the light (i.e., its location, orientation and

attributions) is self-contained within the shape files.

The CDB Specification defines a collection of CDB Light Types that includes

airport/runway lighting systems, cultural lights, aircraft refueling systems, etc. The

light types currently supported by the CDB Specification are listed in Appendix E of

this Specification; they are also listed in Lights.xml as specified in Section 2.3, Light

Naming. While the CDB Specification provides a rigorous definition for each type of

light, its representation is entirely determined by the fidelity and the capabilities of

client-devices.

5.7.1.8 Allocation of CDB Attributes To Vector Datasets

The CDB Specification limits the applicability of each of the CDB attributes to

certain vector datasets. This approach helps to reduce the number of columns (hence

to reduce the size) of the dBASE instance and class-level attribution files.

The allocation of CDB attributes to each of the Vector datasets is prescribed by Table

5-27 below.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-144

© 2016 Presagis. All Rights Reserved.

Table 5-27: Allocation of CDB Attributes to Vector Datasets

(Cont’d on next page)

A
H

G
T

A
O

1

A
P

ID

B
B

H

B
B

L

B
B

W

B
O

T
Y

B
S

R

C
E

A
I

C
M

IX

C
N

A
M

D
A

M
A

D
E

P

D
IR

D
M

L

D
M

R

D
M

S

D
M

T

E
J
ID

F
A

C
C

F
S

C

G
A

ID

G
E

A
I

H
G

T

J
ID

L
A

C
C

L
E

N
L

L
N

A
M

L
O

T
Y

L
P

H

L
P

N

L
T

N

L
T

Y
P

M
L

O
D

M
M

D
C

M
O

D
L

M
O

D
T

N
C

S
1

N
C

S
2

N
D

S
C

N
V

T

P
O

P
D

P
O

P
T

R
T

A
I

R
W

ID

S
C

A
L

x

S
C

A
L

y

S
C

A
L

z

S
J
ID

S
R

D

S
S

C

S
S

R

T
X

ID

T
R

F

U
S

P

V
E

A
I

W
G

P

Feature Instance-level P P P P P P P P P P Y P

Feature Class-level Y

Feature Extended-level Y

GSFeature Dataset

Man Made Point O R O O O O D O M M O O M M O O D O D O D M O O O O R R O O

Man Made Lineal O O O M M O O R M M O O R O M M O O O R

Man Made Areal O O O M M O O R R M M O O R O M M O O O R O

Natural Point O R O O O O D O M M O O M M O D O D O D M O O O O

Natural Lineal O O O M M O O R M M O R O M M O R

Natural Areal O O O M M O O R M M O R O M M R O

Tree Point O R O O O O D O M M O O M M O D O D O D M O O O O

Airport Light Point O R R O M M O M M R O O O O M O M R R O

Airport Lineal O R O M M O O R M M O O R O M M O O O R

Airport Areal O R O M M O O R R M M O O R O M M O O O R O

Environmental Light Point O R O O M M O M M O O O O O M O M O O O

GTFeature Dataset

Man Made Point O R O O O O D O M M O O M M O O D O D O D M O O O O R R O O

Man Made Lineal O O O M M O O R M M O O R O M M O O O R

Man Made Areal O O O M M O O R R M M O O R O M M O O O R O

Tree Point O R O O O O D O M M O O M M O D O D O D M O O O O

Tree Lineal O O O M M O O R M M O R O M M O R

Tree Areal O O O M M O O R M M O R O M M R O

Moving Model Location O M O O O O M O M M O O O O M O M M M O O O

GeoPolitical Dataset

Location Point O O O O O R M O M M O O O O O O O M O O O

Location Lineal O O O R M O M M O O O O O O M O O O R

Location Areal O O O R M O O R R R M M O O O O O O O O M O R O R O

Boundary Point O O O O O R M O M M O O O O O O O M O O O

Boundary Lineal O O O R M O M M O O O O O O M O O O R

Boundary Areal O O O R M O O R R R M M O O O O O O O O M O R O R O

Constraint Point O O M M O O O O M O

Constraint Lineal O O M M O O O O O M O M

Constraint Areal O O M M O O O O M O

M Mandatory R Recommended D Deprecated Attribution Schema P Preferred Attribution Schema Not permitted

O Optional D Dependent on other attribute Y Allow ed Attribution Schema Not used

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-145

© 2016 Presagis. All Rights Reserved.

Table 5-27: Allocation of CDB Attributes to Vector Datasets (Cont’d)

A
H

G
T

A
O

1

A
P

ID

B
B

H

B
B

L

B
B

W

B
O

T
Y

B
S

R

C
E

A
I

C
M

IX

C
N

A
M

D
A

M
A

D
E

P

D
IR

D
M

L

D
M

R

D
M

S

D
M

T

E
J
ID

F
A

C
C

F
S

C

G
A

ID

G
E

A
I

H
G

T

J
ID

L
A

C
C

L
E

N
L

L
N

A
M

L
O

T
Y

L
P

H

L
P

N

L
T

N

L
T

Y
P

M
L

O
D

M
M

D
C

M
O

D
L

M
O

D
T

N
C

S
1

N
C

S
2

N
D

S
C

N
V

T

P
O

P
D

P
O

P
T

R
T

A
I

R
W

ID

S
C

A
L

x

S
C

A
L

y

S
C

A
L

z

S
J
ID

S
R

D

S
S

C

S
S

R

T
X

ID

T
R

F

U
S

P

V
E

A
I

W
G

P

Feature Instance-level P P P P P P P P P P Y P

Feature Class-level Y

Feature Extended-level Y

RoadNetwork Dataset

RoadNetwork Lineal O R O M M O O R M M M R O R M O R D O D D M R O O O M R R R O R

RoadNetwork Lineal Figure Pt O R R O O O D O M M O O M M R O D M O D O D D M R O O O R R O

AirportNetwork Lineal O R O M M O O R M M M R O R M O R D O D D M R O O O M R R R O R

AirportNetwork Areal O R O M M O O M M M R O O O D D M R O O O M R R O

Road/Airport Tile Connection O M O M M R O

Road/Airport Dataset Connection O M O M M M M R O

RailRoadNetwork Dataset

RailRoadNetwork Lineal O R O M M O O R M M M R O R M O R D O D D M R O O O M R R R O R

RailRoadNetwork Lineal Figure Pt O R R O O O D O M M O O M M R O D M O D O D D M R O O O R R O

RailRoad Tile Connection O M O M M O

RailRoad Dataset Connection O M O M M M M O

PowerLineNetwork Dataset

PowerLineNetwork Lineal O R O M M O O R M M M R O R M O R D O D D M R O O O M R R R O R

PowerLineNetwork Lineal Figure Pt O R R O O O D O M M O O M M R O D M O D O D D M R O O O R R O

PowerLine Tile Connection O M O M M O

PowerLine Dataset Connection O M O M M M M O

HydrographyNetwork Dataset

HydrographyNetwork Lineal O R O M M O O R M M M R O R M O R D O D D M R O O O M R R R O R

HydrographyNetwork Areal O R O M M O O M M M R O O O D D M R O O O M R R O

HydrographyNetwork Lineal Figure Pt O R R O O O D O M M O O M M R O D M O D O D D M R O O O R R O

HydrographyNetwork Areal Figure Pt O R R O O O D O M M O O M M R O D M O D O D D M R O O O R R O

Hydrography Tile Connection O M O M M O

Hydrography Dataset Connection O M O M M M M O

M Mandatory R Recommended D Deprecated Attribution Schema P Preferred Attribution Schema Not permitted

O Optional D Dependent on other attribute Y Allow ed Attribution Schema Not used

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-147

© 2016 Presagis. All Rights Reserved.

5.7.1.9 Vector Significant Size and Spatial Significance Criteria

All vector features have an implicit or explicit significant size, which must be used

when creating coarser Tile-LODs. In addition, as Tile-LODs are created, individual

vertices within the vector also have a spatial significance within the feature itself.

5.7.1.9.1 Vector Significant Size

The significant size for point features is defined by the significant size of the feature

or model it represents, as specified in Section 6.8.3. Lineal feature significant size is

equivalent to the width of the lineal feature as defined by its WGP attribute.

Areal feature significant size is proportional to the diagonal of the feature’s bounding

box. If the feature is a box of equal length and width, its significant size is exactly the

bounding box diagonal. As the shape of the feature’s bounding box becomes more

rectangular, and as the amount of negative space within the bounding box increases,

the feature’s significant size should be proportionally decreased relative to the

departure from an equal length sided bounding box. This definition is similar to the

one of a 3D model as specified in Section 6.8.3.2.

5.7.1.9.2 Levels of Detail and Spatial Significance Criteria

As coarser Tile-LODs of the lineal and areal datasets are created, the individual

vertices of lineal and areal features must conform to the vector spatial significance

criteria. Vertices must be moved or removed during coarser Tile-LOD creation such

that, no part of the feature can be defined or changed by more than ½ of a raster cell

size, as indicated by column 4 (Approximate Grid Spacing) of Table 2-4. For

example, when creating the Tile-LOD 1 of a network dataset, all parts of each feature

must be within 27 meters of the original feature (54.355 meters per Tile-LOD1 grid /

2 = 27.1775 meters). The spatial significance criterion is relaxed for the finest Tile-

LOD, which is only limited by the feature vertex count.

5.7.2 Tiled Navigation Dataset

As described in section 5.2, the global navigation dataset is complemented by a tiled-

based dataset of basic navigation information that refers to the corresponding geocell.

Those are found in the \401_Navigation dataset which is subdivided into several

components as listed in the next table.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-148

© 2016 Presagis. All Rights Reserved.

Table 5-28: Tiled Navigation Dataset

CS1 CS2
File

Extension

Component

Name

Component

Description

Dataset 401, Navigation

001-046 001 *.shp

*.shx

*.dbf

*.dbt

Tiled

Navigation

Dataset

Contains the basic Navigation records

Refer to Table 5-3: List of Navigation Components, for a complete description of the

possible values of CS1.

5.7.2.1 Default Read Value

Simulator client-devices should assume an empty tile when data is not available.

5.7.2.2 Default Write Value

The files associated with this dataset for the area covered by the geocell need not be

created if the source data is not available.

5.7.3 Tiled GSFeature Dataset

A GSFeature is a geospecific (point, lineal, or areal) feature whose optional modeled

representation is also geospecific.

The GSFeature Dataset provides the position, size, orientation (points), shape (lineal

and areals), type and attribution of point, lineal, and areal features. It is subdivided

into the following components:

 CS1 = 001: Man-made features

 CS1 = 002: Natural features

 CS1 = 003: Trees features

 CS1 = 004: Airport features

 CS1 = 005: Environmental lights

Table 5-29: Component Selectors for GSFeature Dataset lists all of the components of

the dataset. The allocation of CDB attributes to each of the components is prescribed

by Table 5-27: Allocation of CDB Attributes to Vector Datasets.

It is customary in many simulation applications to represent street lighting as points

of lights; as a result, Airport and Environmental light points can be entirely described

by their feature position and attribution information and thus, do not have additional

“modeled” data.

The modeling of geospecific trees is permitted when required to represent a specific

geographic area; however, it is understood that the majority of the times, geotypical

trees will be sufficient.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-149

© 2016 Presagis. All Rights Reserved.

Table 5-29: Component Selectors for GSFeature Dataset

CS1 CS2 Component Name

001 001 Man-made point features

002 Man-made point features class-level attributes

016 Man-made point features extended-level attributes

003 Man-made lineal features

004 Man-made lineal features class-level attributes

017 Man-made lineal features extended-level attributes

005 Man-made areal features

006 Man-made areal features class-level attributes

018 Man-made areal features extended-level attributes

002 001 Natural point features

002 Natural point features class-level attributes

016 Natural point features extended-level attributes

003 Natural lineal features

004 Natural lineal features class-level attributes

017 Natural lineal features extended-level attributes

005 Natural areal features

006 Natural areal features class-level attributes

018 Natural areal features extended-level attributes

003 001 Trees point features

002 Trees point features class-level attributes

016 Trees point features extended-level attributes

004 001 Airport light point features

002 Airport light point features class-level attributes

016 Airport light point features extended-level attributes

003 Airport lineal features

004 Airport lineal features class-level attributes

017 Airport lineal features extended-level attributes

005 Airport areal features

006 Airport areal features class-level attributes

018 Airport areal features extended-level attributes

005 001 Environmental light point features

002 Environmental light point features class-level attributes

016 Environmental light point extended-level attributes

5.7.3.1 Default Read Value

Simulator client-devices should assume an empty tile when data is not available.

5.7.3.2 Default Write Value

The files associated with this dataset for area covered by tile at a given LOD need not

be created if the source data is not available.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-150

© 2016 Presagis. All Rights Reserved.

5.7.4 Tiled GTFeature Dataset

A GTFeature is a geotypical (point, lineal, or areal) feature whose optional modeled

representation is also geotypical.

The GTFeature Dataset provides the position, size, orientation (points), shape (lineal

and areals), type and attribution of point, lineal, and areal features. It is subdivided

into the following components:

 CS1 = 001: Man-made features

 CS1 = 002: Trees features

 CS1 = 003: Moving model location features

Table 5-30: Component Selectors for GTFeature Dataset lists all of the components

of the dataset. The allocation of CDB attributes to each of the components is

prescribed by Table 5-27: Allocation of CDB Attributes to Vector Datasets.

The Moving model location features component is used to permanently position

moving models (e.g., position a row of parked tanks or aircrafts on a runway). When

referenced and positioned in this manner, these models cannot be moved and

articulated during the simulation.

 Table 5-30: Component Selectors for GTFeature Dataset

CS1 CS2 Component Name

001 001 Man-made point features

002 Man-made point features class-level attributes

016 Man-made point features extended-level attributes

003 Man-made lineal features

004 Man-made lineal features class-level attributes

017 Man-made lineal features extended-level attributes

005 Man-made areal features

006 Man-made areal features class-level attributes

018 Man-made areal features extended-level attributes

002 001 Tree point features

002 Tree point features class-level attributes

016 Tree point features extended-level attributes

003 Tree lineal features

004 Tree lineal features class-level attributes

017 Tree lineal features extended-level attributes

005 Tree areal features

006 Tree areal features class-level attributes

018 Tree areal features extended-level attributes

003 001 Moving Model location features

002 Moving Model location features class-level attributes

016 Moving Model location features extended-level attributes

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-151

© 2016 Presagis. All Rights Reserved.

5.7.4.1 Default Read Value

Simulator client-devices should assume an empty tile when data is not available.

5.7.4.2 Default Write Value

The files associated with this dataset for area covered by tile at a given LOD need not

be created if the source data is not available.

5.7.5 Tiled GeoPolitical Feature Dataset

The GeoPolitical Feature dataset is used to provide information on the location, size

and shape of abstract locations, lines and areas with respect to the surface of the earth.

Generally speaking, the objects found in this dataset have no real-world physical

representation (e.g., no physical characteristics such as mass) and correspond to

abstract concepts (such as airspace, country boundary, danger zone).

The GeoPolitical Feature dataset is subdivided into the following components.

Table 5-31: Component Selectors for GeoPolitical Feature Dataset

CS1 CS2 Component Name

001 001 Boundary point features

002 Boundary point features class-level attribute

016 Boundary point features extended-level attribute

003 Boundary lineal features

004 Boundary lineal features class-level attribute

017 Boundary lineal features extended-level attribute

005 Boundary areal features

006 Boundary areal features class-level attribute

018 Boundary areal features extended-level attribute

002 001 Location point features

002 Location point features class-level attribute

016 Location point features extended-level attribute

003 Location lineal features

004 Location lineal features class-level attribute

017 Location lineal features extended-level attribute

005 Location areal features

006 Location areal features class-level attribute

018 Location areal features extended-level attribute

003 001 Constraint point features

002 Constraint point features class-level attribute

016 Constraint point features extended-level attribute

003 Constraint lineal features

004 Constraint lineal features class-level attribute

017 Constraint lineal features extended-level attribute

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-152

© 2016 Presagis. All Rights Reserved.

CS1 CS2 Component Name

005 Constraint areal features

006 Constraint areal features class-level attribute

018 Constraint areal features extended-level attribute

5.7.5.1 Boundary and Location Features

GeoPolitical Areal features are essentially used for closed surface related attributions

whereas GeoPolitical Lineal features are used to model open areas as boundary

delineations. When coarse specific locations are stored such as countries or cities,

GeoPolitical Point features are used to locate the approximate geometric center of the

related feature.

Some less-commonly used features could be 1) GeoPolitical Boundaries stored as

Point features, or 2) GeoPolitical Locations stored as Lineals or Areals. The first case

could be used to represent a simple boundary consisting of a single radius as given by

the Point feature. The second case could be used to represent a city location with

detailed Areal or Lineal vertices.

Figure 5-33: Example of International Boundaries, Figure 5-34: Example of City

Locations, and Figure 5-35: Example of State Capital Locations and Time Zone

Boundaries, all depict some sample cases where the GeoPolitical Feature dataset

components can be used for.

Figure 5-33: Example of International Boundaries

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-153

© 2016 Presagis. All Rights Reserved.

Figure 5-34: Example of City Locations

Figure 5-35: Example of State Capital Locations and Time Zone Boundaries

5.7.5.2 Elevation Constraint Features

There are many instances where modelers may wish to take advantage of the

availability of position and altitude of cultural features in order to locally control the

terrain elevation data at a point, along a specified contour line or within a given area.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-154

© 2016 Presagis. All Rights Reserved.

This operation is usually performed off-line by the modeler and requires that the

Elevation dataset be edited and re-generated offline.

In addition to this approach, the CDB Specification provides a Constraint Features

component to the GeoPolitical Feature dataset, whose vector data is designed to

instruct client-devices to runtime-constrain the Elevation dataset to a set of

prescribed elevation values (thereby obviating the need to offline re-generate the

Elevation dataset). At runtime, client-devices are required to apply the elevation

constraints to the selected Terrain Elevation component of the Elevation dataset. The

Constraint Features component provides modelers the ability to accurately control

terrain elevation profiles even if the Elevation dataset consists in a uniform grid of

modest resolution. Each of these features is associated with vertices which define

elevation at the supplied geographic coordinates. This approach approximates

Terrain Irregular Networks (TINs). The Constraint Features have the following

Feature Attribute Codes (FACCs):

 Elevation Constraint Point (CA099-000): In the case of PointZ and MultiPointZ

features, the points are used by the client-device to control the terrain elevation.

The Feature’s AHGT attribute must be set to TRUE. Shapefile features

implemented as Point, PointM, MultiPoint, and MultiPointM are ignored.

 Elevation Constraint Line (CA099-001): In the case of PolyLineZ features, the

lines are used by the client-device to control the terrain elevation. The Feature’s

AHGT attribute must be set to TRUE. Shapefile features implemented as

PolyLine and PolyLineM are ignored.

 Elevation Constraint Area (CA099-002): In the case of PolygonZ and

MultiPatch features, the areas are used by the client-device to control the terrain

elevation. The Feature’s AHGT attribute must be set to TRUE. Shapefile

features implemented as Polygon and PolygonM are ignored.

The Data Dictionary of CDB Specification also makes provision for the

representation of many hypsography features within the Geopolitical Dataset (e.g.,

contour lines, ridge lines, valley lines, spot elevation). By virtue of their semantics,

these features have no associated modeled representation. The modeler can use these

hypsography features to control the generation of the Terrain Elevation grid during

the off-line CDB compilation process. This terrain constraining operation can be

performed as the CDB is “assembled and compiled” by the SE tools. Note that

runtime client-devices are not required to constrain the Terrain Elevation Dataset to

hypsography features. When performed off-line, hypsography features must have

AHGT set to True, thereby instructing the SE Tools to constrain the terrain elevation

using the supplied (latitude, longitude, and elevation) coordinates. The Shapefile

feature must be of type PointZ, MultiPointZ, PolyLineZ, PolygonZ, or MultiPatch.

While hypsography features can be used by the off-line tools to control the terrain

skinning process, these features can be instead converted into Constraint Features,

thereby deferring the terrain constraining process to runtime client-devices. This

provides modelers the ability to accurately control terrain elevation profiles even if

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-155

© 2016 Presagis. All Rights Reserved.

the Elevation dataset consists in a uniform grid of modest resolution. In effect, the

Constraint Features provides a storage-efficient means of capturing terrain contours

without having to revert to high resolution terrain grids.

The application of constraint features to uniform and non-uniform gridded terrain

elevation dataset is discussed in Appendix A.

5.7.5.3 Default Read Value

Simulator client-devices should assume an empty tile when data is not available.

5.7.5.4 Default Write Value

The files associated with this dataset for area covered by tile at a given LOD need not

be created if the source data is not available.

5.7.6 Tiled RoadNetwork Dataset

The RoadNetwork Dataset is used to specify all of the road
40

 networks. The points

that make up the RoadNetwork lineals are primarily used to establish the road

network topology. However, additional points can be used to more accurately define

the actual path of the RoadNetwork lineals between each of the junction points of the

network; alternately, points can be used to precisely specify the position of features

along the RoadNetwork lineal. The altitude of each point is optional and specifies the

ground level when present.

It is possible to associate an explicitly modeled representation (via the MODL and

MODT attributes) to each RoadNetwork lineal. When provided, client-devices

should instantiate the modeled representation for each point along the RoadNetwork

lineal. Alternately, it is possible to specify a distinct modeled representation for each

point along the RoadNetwork lineal feature by assigning a distinct RoadNetwork

Figure Point to each point of the RoadNetwork lineal feature.

Table 5-32: Component Selectors for RoadNetwork Dataset lists all of the

RoadNetwork Dataset components. The allocation of CDB attributes to each of the

RoadNetwork dataset components is prescribed by Table 5-27: Allocation of CDB

Attributes to Vector Datasets.

Table 5-32: Component Selectors for RoadNetwork Dataset

CS1 CS2 Component Name

001 011 Road/Airport Network Tile Connection 2D relationship

015 Road/Airport Network Dataset Connection 2D relationship

40 Within the context of the CDB, the term road encompasses a broad gamut of networks implemented as long, narrow

stretch of smoothed or paved surfaces, made for traveling by foot, motor vehicle, carriage, etc., between two or more points.

Examples of road networks are highways, interstates, roads, boulevards, streets, etc. It excludes railways.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-156

© 2016 Presagis. All Rights Reserved.

CS1 CS2 Component Name

002 003 Road Network lineal features

004 Road Network lineal features class-level attributes

017 Road Network lineal features extended-level attributes

007 Road Network lineal figure point features

008 Road Network lineal figure point class-level attributes

019 Road Network lineal figure point extended-level attributes

003 003 Airport Network lineal features

004 Airport Network lineal features class-level attributes

017 Airport Network lineal features extended-level attributes

005 Airport Network areal features

006 Airport Network areal features class-level attributes

018 Airport Network areal features extended-level attributes

5.7.6.1 Default Read Value

Simulator client-devices should assume an empty tile when data is not available.

5.7.6.2 Default Write Value

The files associated with this dataset for area covered by tile at a given LOD need not

be created if the source data is not available.

5.7.7 Tiled RailRoadNetwork Dataset

The RailRoadNetwork Dataset is used to specify all of the railroad
41

 networks. The

points that make up the RailRoadNetwork lineals are primarily used to establish the

railroad network topology. However, additional points can be used to more

accurately define the actual path of the RailRoadNetwork lineals between each of the

junction points of the network; alternately, points can be used to precisely specify the

position of features along the RailRoadNetwork lineal. The altitude of each point is

optional and specifies the ground level when present.

It is possible to associate an explicitly modeled representation (via the MODL and

MODT attributes) to each RailRoadNetwork lineal. When provided, client-devices

should instance the modeled representation for each point along the

RailRoadNetwork lineal. Alternately, it is possible to specify a distinct modeled

representation for each point along the RailRoadNetwork lineal feature by assigning a

distinct a RailRoadNetwork Figure Point to each point of the RailRoadNetwork lineal

feature.

Table 5-33: Component Selectors for RailRoadNetwork Dataset lists

RailRoadNetwork Dataset components. The allocation of CDB attributes to each of

41 Within the context of the CDB, the term railroads encompasses a broad gamut of networks implemented as roads that are

composed of parallel steel rails supported by ties and providing a track for locomotive-drawn trains or other wheeled

vehicles.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-157

© 2016 Presagis. All Rights Reserved.

the RailRoadNetwork dataset components is prescribed by Table 5-27: Allocation of

CDB Attributes to Vector Datasets.

Table 5-33: Component Selectors for RailRoadNetwork Dataset

CS1 CS2 Component Name

001 011 RailRoad Network Tile Connection 2D relationship point

015 RailRoad Network Dataset Connection 2D relationship point

002 003 RailRoad Network lineal features

004 RailRoad Network lineal features class-level attribute

017 RailRoad Network lineal features extended-level attribute

007 RailRoad Network lineal figure point features

008 RailRoad Network lineal figure point class-level attribute

019 RailRoad Network lineal figure point extended-level attribute

5.7.7.1 Default Read Value

Simulator client-devices should assume an empty tile when data is not available.

5.7.7.2 Default Write Value

The files associated with this dataset for area covered by tile at a given LOD need not

be created if the source data is not available.

5.7.8 Tiled PowerLineNetwork Dataset

The PowerLineNetwork Dataset is used to specify powerline
42

 networks. The points

that make up the PowerLineNetwork lineals are primarily used to establish the

network topology. However, additional points can be used to more accurately define

the actual path of the PowerLineNetwork lineals between each of the junction points

of the network; alternately, points can be used to precisely specify the position of the

poles, pylons, etc. of the PowerLineNetwork lineal. The altitude of each point is

optional and specifies the ground level when present.

It is possible to associate an explicitly modeled representation (via the MODL and

MODT attribute) to each PowerLineNetwork lineal. When provided, client-devices

should instance the modeled representation for each point along the

PowerLineNetwork lineal. Alternately, it is possible to specify a distinct modeled

representation for each point along the PowerLineNetwork lineal feature by assigning

a distinct a PowerLineNetwork Figure Point to each point of the PowerLineNetwork

lineal feature. Allowed model representations are as per Section 5.7.1.4, Explicitly

Modeled Representations. In that case of wired- or cabled-networks, the model must

42 Within the context of the CDB, the term powerline encompasses a broad gamut of networks implemented through the use

of wires, cables and/or pipes.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-158

© 2016 Presagis. All Rights Reserved.

include the wire Attach Points
43

. Note also that client-devices are also required to

automatically orient each instance of the modeled representation along the path of the

PowerLineNetwork lineal. In the case where the entrance and exit angles are not

identical, the orientation should be the average of both.

Table 5-34: Component Selectors for PowerLineNetwork Dataset, lists all of the

PowerLineNetwork Dataset components. The allocation of CDB attributes to each of

the PowerLineNetwork dataset components is prescribed by Table 5-27: Allocation of

CDB Attributes to Vector Datasets.

Table 5-34: Component Selectors for PowerLineNetwork Dataset

CS1 CS2 Component Name

001 011 PowerLineNetwork tile connection 2D relationship point

015 PowerLineNetwork dataset connection 2D relationship point

002 003 PowerLineNetwork lineal features

004 PowerLineNetwork lineal features class-level attribute

017 PowerLineNetwork lineal features extended-level attribute

007 PowerLineNetwork lineal figure point features

008 PowerLineNetwork lineal figure point class-level attribute

019 PowerLineNetwork lineal figure point extended-level attribute

5.7.8.1 Default Read Value

Simulator client-devices should assume an empty tile when data is not available.

5.7.8.2 Default Write Value

The files associated with this dataset for area covered by tile at a given LOD need not

be created if the source data is not available.

5.7.9 Tiled HydrographyNetwork Dataset

The HydrographyNetwork Dataset is used to specify hydrography
44

 networks. The

points that make up the HydrographyNetwork lineals are primarily used to establish

the network topology. However, additional points can be used to more accurately

define the actual path of the HydrographyNetwork lineals between each of the

junction points of the network; alternately, points can be used to precisely specify the

43 Note that wires are not explicitly modeled in the CDB. As a result, client-devices are required to automatically model

them when rendering PowerLineNetwork lineal features. Such modeling can be achieved using a principle known as the

catenary, which is the shape of a perfectly flexible chain suspended by its ends and which is characterized solely by the

gravity action.

44 Within the context of the CDB, the term hydrography encompasses a broad gamut of natural and man-made bodies of

water such as oceans, lakes, rivers, canals, etc.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-159

© 2016 Presagis. All Rights Reserved.

position of models of the HydrographyNetwork lineal. The altitude of each point is

optional and specifies the ground level when present.

It is possible to associate an explicitly modeled representation (via the MODL and

MODT attributes) to each HydrographyNetwork lineal. When provided, client-

devices should instance the modeled representation for each point along the

HydrographyNetwork lineal. Alternately, it is possible to specify a distinct modeled

representation for each point along the HydrographyNetwork lineal feature by

assigning a distinct a HydrographyNetwork Figure Point to each point of the

HydrographyNetwork lineal feature. Allowed model representations are as per

Section 5.3.1.4, Explicitly Modeled Representations.

Table 5-35: Component Selectors for HydrographyNetwork Dataset lists all of the

components of the HydrographyNetwork dastaset. The allocation of CDB attributes

to each of the HydrographyNetwork dataset components is prescribed by Table 5-27:

Allocation of CDB Attributes to Vector Datasets.

Table 5-35: Component Selectors for HydrographyNetwork Dataset

CS1 CS2 Component Name

001 011 HydrographyNetwork tile connection 2D relationship point

015 HydrographyNetwork dataset connection 2D relationship point

002 003 HydrographyNetwork lineal features

004 HydrographyNetwork lineal features class-level attribute

017 HydrographyNetwork lineal features extended-level attribute

005 HydrographyNetwork areal features

006 HydrographyNetwork areal features class-level attribute

018 HydrographyNetwork areal features extended-level attribute

007 HydrographyNetwork lineal figure point features

008 HydrographyNetwork lineal figure point class-level attribute

019 HydrographyNetwork lineal figure point extended-level attribute

009 HydrographyNetwork areal figure point features

010 HydrographyNetwork areal figure point class-level attribute

020 HydrographyNetwork areal figure point extended-level attribute

5.7.9.1 Default Read Value

Simulator client-devices should assume an empty tile when data is not available.

5.7.9.2 Default Write Value

The files associated with this dataset for area covered by tile at a given LOD need not

be created if the source data is not available.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-160

© 2016 Presagis. All Rights Reserved.

5.7.10 Tiled Vector Composite Material Table (VCMT)

The Vector Composite Material Table (VCMT) provides a list of the Composite

Materials shared by all vector datasets. There is one VCMT for each CDB Geocell.

Table 5-36: Vector Composite Material Table Component

CS1 CS2

File

Extensio

n

Dataset Component

Name
Dataset Component Description

Dataset 200, VectorMaterial

001 001 *.xml Vector Composite

Material Table

(VCMT)

The VCMT can be referenced by the CMIX

attribute of the following datasets:

 100_GSFeature

 101_GTFeature

 102_GeoPolitical

 201_RoadNetwork

 202_RailRoadNetwork

 203_PowerLineNetwork

 204_HydrographyNetwork

5.7.10.1 Data Type

The Vector Composite Material Table follows the XML syntax described in Section

2.5.2.2, Composite Material Tables (CMT).

5.7.10.2 Default Read Value

The default values for the Vector Composite Material Table

(Default_Material_Layer) can be found in \CDB\Metadata\Defaults.xml and can be

provided to the client-devices on demand. If the default information cannot be found

within the \CDB\Metadata\Defaults.xml file, the CDB Specification recommends

defaulting to single substrate composite material whose base material is

Default_Base_Material (BM_LAND-MOOR).

5.7.10.3 Default Write Value

The files associated with the Vector Composite Material Table for the area covered

by a tile at a given LOD need not be created if the source data is not available. Tiles

partially populated with data are not permitted.

5.8 Tiled Model Datasets

5.8.1 Tiled GSModel Datasets

Table 5-37 provides the component selectors for the GSModel datasets.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-161

© 2016 Presagis. All Rights Reserved.

Table 5-37: Component Selectors for GSModel Datasets

CS1 CS2
File

Extension

Component

Name
Component Description

Dataset 300, GSModelGeometry

Dateset 305, GSModelInteriorGeometry

001 001..999 *.flt Individual

Geometry

One OpenFlight file containing the geometry of the

shell or multiple files to represent the interior of a

GSModel as described in Chapter 6.

001 001 *.zip Geometry

Archive

One archive regrouping individual model geometry

OpenFlight files of a Tile-LOD.

Dataset 303, GSModelDescriptor

Dataset 307, GSModelInteriorDescriptor

001 001 .xml Individual

Descriptor

Provides the metadata associated with individual

GSModels. See section 6.14, Metadata, for a

description of the content.

NOTE: A model descriptor includes a Composite

Material Table for the exclusive use by its

corresponding model geometry datasets above.

001 001 .zip Descriptor

Archive

An archive of all model descriptors of a Tile-LOD.

Dataset 301, GSModelTexture

Dataset 306, GSModelInteriorTexture

- - *.rgb Individual

Texture

Individual base and subordinate textures applied on

individual or tiled models of a Tile-LOD, see the

complete list in section 5.3, CDB Model Textures.

001 001 *.zip Texture

Archive

An archive of all base and subordinate textures of a

Tile-LOD.

Dataset 304, GSModelMaterial

Dataset 308, GSModelInteriorMaterial

001 001..255 *.tif Composite

Material

Index

Each texel is an index into its corresponding

GSModelCMT or GSModelInteriorCMT.

Component selector 2 is the layer number.

002 001..254 *.tif Composite

Material

Mixture

Each texel indicates the proportion (between 0.0

and 1.0) of the composite material found in the

corresponding material layer. Component Selector

2 is the layer number. When the texels are of

integral types, they are scaled to the range 0.0 to

1.0.

001 001 *.zip Composite

Material

Archive

An archive of all layers of indices and mixtures of a

Tile-LOD.

Dataset 309, GSModelCMT

Dataset 311, GSModelInteriorCMT

001 001 *.xml Composite

Material

Table

Contains the definition of the composite materials

referenced by the model material datasets above.

Its format is as specified in section 2.5.2.2,

Composite Material Tables (CMT)

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

5-162

© 2016 Presagis. All Rights Reserved.

CS1 CS2
File

Extension

Component

Name
Component Description

001 001 *.zip CMT

Archive

An archive of all CMTs of a Tile-LOD.

5.8.1.1 GSModel Archive Size Limit

The size of any GSModel archive is limited to 32 MB to permit reading, processing

and writing the file at runtime.

5.8.2 Tiled T2DModel Datasets

Table 5-38 provides the component selectors for the T2DModel datasets.

Table 5-38: Component Selectors for T2DModel Datasets

CS1 CS2
File

Extension

Component

Name
Component Description

Dataset 310, T2DModelGeometry

001 001 *.flt Model

Geometry

One OpenFlight file containing the geometry of the

T2DModel of a Tile-LOD. The content of the file

is explained in Chapter 6.

Dataset 312, T2DModelCMT

001 001 *.xml Composite

Material

Table

Contains the definition of the composite materials

referenced by the model geometry dataset above.

Its format is as specified in section 2.5.2.2,

Composite Material Tables (CMT)

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-1

© 2016 Presagis. All Rights Reserved.

Chapter 6

6 CDB OpenFlight Models

This portion of the CDB Specification defines a set of conventions to represent 2D

and 3D models based on version 16.0 of the OpenFlight Scene Description Database

Specification as annotated in Appendix C.

The conventions presented here address the needs of several types of simulation

clients including OTW, FLIR, NVG, CGF, radar, and laser, acoustic, magnetic, visual

and thermal sensors.

6.1 OpenFlight File Header

The OpenFlight Header Record contains descriptive metadata about the manner

vertices are encoded, and how these vertices are applied to an earth model and a

projection type. On the other hand, the CDB Specification itself mandates a

prescribed set of conventions in this regard; as a result; the following OpenFlight

Header records must be set as follows:

 Projection Type:

o Flat Earth, value 0: This is the type of projection used by most CDB Models,

GTModel, GSModel, and MModel.

o Geodetic, value 5: This is the type of projection used by T2DModels.

 Earth Ellipsoid Model:
o WGS-84, value 0: This is the Earth model to use with T2DModels. The field

is ignored with other CDB Models.

6.2 OpenFlight Model Tree Structure

The internal structure of OpenFlight models is a tree structure that consists of nodes

having child nodes as well as sibling nodes
45

. This type of tree structure is called a

directed acyclic graph, or DAG. The general tree structure of a Model resembles that

of Figure 6-1: General OpenFlight Tree Structure.

45 In Appendix C, the section called Database Hierarchy explains in details how OpenFlight organizes its graph.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-2

© 2016 Presagis. All Rights Reserved.

Figure 6-1: General OpenFlight Tree Structure

The CDB Specification uses Group Nodes to arrange Models in a hierarchical

manner. This way of organizing models helps identify components of interest.

The CDB Specification refers to a number of OpenFlight nodes to store meaningful

data for simulation client-devices. For a complete list of nodes supported by the CDB

Specification, see Appendix C. The nodes listed here are the ones referred to by one

or more CDB conventions.

An example of an ancillary record is the OpenFlight comment record. A comment

record may appear once, anywhere after a node’s primary record. The CDB

Specification relies on comment records to extend the definition of OpenFlight nodes.

Instead of using the Extension Record to create new primary and ancillary records,

the CDB Specification uses comments to store the extra attributes required by the

specialization of existing OpenFlight nodes
46

. Comment records were chosen over

OpenFlight extensions in order to minimize any changes to the Creator tool or the

46 CDB-compliant readers must ignore all OpenFlight extension records.

Group

node 1

LOD

node 1

LOD

node 2

Header

node

DOF

node 1

Object

node 1

DOF

node 2

Object

node 3

Object

node 4

Object

node 2

Switch

node

Light

Point

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-3

© 2016 Presagis. All Rights Reserved.

need to develop a plug-in to Creator. Using this approach, anybody can create CDB-

compliant models using a plain version of Creator. Nevertheless, the development of

Creator CDB plug-ins would improve modeler’s efficiency. Such plug-ins could, for

instance, offer a menu-based GUI to allow modelers to enter and edit CDB

comments, while ensuring that syntax and conventions are fully adhered to.

The text contained in the comment record is formatted using the XML notation.

6.2.1 CDB Model Tree Structure

Based on Figure 6-1 above, the internal structure of CDB Models resemble this one:

Global

Zone

Other

nodes

db

...

Figure 6-2: Internal Structure of CDB Models

All CDB Models have a global zone as their root node. This node identifies the

model. Global zones are defined in section 6.5.2 below.

6.2.2 T2DModel Tree Structure

A T2DModel being a collection of 2DModels, each individual 2DModel occupies its

own subtree of the graph. The general structure of a T2DModel is as follow:

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-4

© 2016 Presagis. All Rights Reserved.

LOD

Global

Zone

... Zone
2DModel #n

Object
#1

Face
(Conformal)

...

Zone
2DModel #1

Mesh
#n

Mesh
#1

Group
Layer #1

...Group
Layer #0

db

Group
Layer #n

LOD

Object
#n

...

...

...

Figure 6-3: Internal Structure of T2DModels

Each 2DModel is implemented as a Model Zone (section 6.5) with its own subgraph.

2DModels are disjoint and non-overlapping. A 2DModel is comprised of multiple

layers; the layer number is expressed by the group’s relative priority (section 6.3.4).

Each layer has an optional LOD node followed by a fixed hierarchy of regular

OpenFlight Object, Face, and Mesh nodes.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-5

© 2016 Presagis. All Rights Reserved.

6.2.2.1 Restrictions

T2DModels being an alternate representation of the terrain and its imagery and

materials, a number of restrictions are necessary to ensure client devices can consume

the dataset efficiently.

1. A 2DModel has at least two layers, layer 0 and layer 1.

2. Layer 0 is always empty because it represents the terrain on top of which

subsequent layers are applied.

3. Each layer is composed of zero, one, or more OpenFlight Object nodes.

4. All Face and Mesh nodes share exactly the same set of graphic attributes

(color, textures, material, and other flags). Stated differently, the Face and

Mesh nodes provide the shape of the layer while the Object node controls its

appearance.

5. Subfaces are not permitted because coplanar geometry is implemented

through layers.

6.2.2.2 Node Attributes

For T2DModels, node attributes (section 6.12) are permitted only at the zone levels;

that is, at the global zone or at the individual 2DModel zones. Node attributes are not

permitted at the Group, LOD, Object, Face, and Mesh node levels.

6.2.3 The Use of Node Names

Although the CDB Specification defines naming conventions for objects stored in an

OpenFlight file, the Specification does not constrain the OpenFlight node names

themselves. Instead, the CDB Specification defines names that are assigned via XML

tags stored in the comment record.

The following question arises, “Why not establish a set of CDB conventions around

node names?” The answer lies primarily around constraints imposed by tools used to

edit/create OpenFlight files. Tools such as Creator require unique node names

throughout the OpenFlight file. The OpenFlight format Specification itself does not

state that node names must be unique; however, a tool such as Creator prevents the

modeler from entering the same node name twice.

To circumvent this limitation, the CDB Specification provides naming conventions

through XML tags inserted in the comment record following a node’s primary record.

This way of doing things leaves modelers with the needed freedom in naming nodes.

The CDB Specification defines how to organize a model; all extra object attributes

that do not fit in the current OpenFlight records are stored in the comment record,

including object names.

Here is an example of XML tags stored in the comment record for a Group Node.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-6

© 2016 Presagis. All Rights Reserved.

Table 6-1: Sample XML Tag Used in a Comment Record

<CDB:Zone

 name = "zone name"

/>

All XML tags defined by the CDB Specification belong to a single XML namespace

that is appropriately named CDB
47

.

6.2.4 Model Master File

A Model Master file is an OpenFlight file that contains only external references to

other OpenFlight files. The purpose of the master file is to ensure a Model is seen as

a single “object” even though its constituents are stored in separate files. The use of a

model master file provides a convenient means for modelers to reference all of the

constituent files that make up the model. There is no other purpose associated to the

master file.

As of version 3.1 of the Specification, the concept of a Model Master file is used in a

single case, to regroup all representations (all LODs) of a geotypical model into a

single OpenFlight file. However, the concept applies to all types of CDB Models.

The concept can also be used to regroup a model’s shell with its interior. For this

reason, expect new usage of the Model master file in future version of the

Specification.

The master file is useful in two circumstances: when modelers create or edit Models,

and when client devices want to discover at once all constituents of Models.

For modelers, it is useful (if not required) to edit a model using a single source file to

present a coherent view of the model as a whole. For this reason, a master file with a

set of LOD-XRef nodes is perfect to assemble and present a unified view of the

model to edit.

Figure 6-4: Typical Structure of a Model Master File presents the general structure of

a master file.

47 The syntax to specify a XML namespace is <ns:element> where ns is the namespace and element is the XML element

name (or simply tag).

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-7

© 2016 Presagis. All Rights Reserved.

Group

LOD
(coarsest)

db

XRef

LOD
(finest)

XRef

...

Figure 6-4: Typical Structure of a Model Master File

The value found in the Significant Size field of the above LOD nodes matches the

values found in Table 3-1: CDB LOD vs Model Resolution. The next section

provides details on XRef nodes themselves.

6.2.5 Referencing Other OpenFlight Files

An OpenFlight external reference (XRef) node is used to refer to another OpenFlight

file. The reference is made by specifying the filename and its path (absolute or

relative). The CDB Specification requires that all references be made using a relative

path. The XRef node (and its External Reference record) supports a number of

options: Override flags, View-As-Bounding-Box flag, and Target Node Name. The

CDB Specification supports none of these options.

Here are two cases to illustrate the use of XRef nodes.

6.2.5.1 Models Straddling Multiple Files

In the case of GTModels, GSModels, and MModels, the OpenFlight geometry can

straddle multiple files. It could be seen in a moving model (e.g., a helicopter) whose

pilot could be stored in a separate file. In that case, the file containing the pilot

resides in the same directory as the file containing the helicopter itself. The

helicopter would be stored in file 1:

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-8

© 2016 Presagis. All Rights Reserved.

\CDB\MModel\600_MModelGeometry\1_Platform\2_Air

\225_United_States\21_Utility_Helo\1_2_225_21_x_x_x\

D600_S001_T001_1_2_225_21_x_x_x.flt

The pilot would be stored in file 2:

\CDB\MModel\600_MModelGeometry\1_Platform\2_Air

\225_United_States\21_Utility_Helo\1_2_225_21_x_x_x\

D600_S001_T002_1_2_225_21_x_x_x.flt

The XRef node in file 1 would contain the following string:

.\D600_S001_T002_1_2_225_21_x_x_x.flt

where 1_2_225_21_x_x_x is the complete DIS code of the helicopter.

6.2.5.2 Models with Multiple Model-LODs

This is the case of the master file of a geotypical model. The master file (known as

the GTModelGeometry Entry File) refers to all levels of details of the geometry files

that reside in different sub-directories. Assuming a geotypical model representing a

gothic church, the master file itself would reside in a directory such as this one:

\CDB\GTModel\500_GTModelGeometry\A_Culture\L_Misc_Feature

\015_Building\

D500_S001_T001_AL015_050_Church-Gothic.flt

The targets of the XRef nodes would all reside in directories such as these:

\CDB\GTModel\500_GTModelGeometry\A_Culture\L_Misc_Feature

\015_Building\Lnn\

D510_S001_T001_Lnn_AL015_050_Church-Gothic.flt

The resulting strings to use in the XRef nodes in the master file would resemble this:

.\Lnn\D510_S001_T001_Lnn_AL015_050_Church-Gothic.flt

where Lnn corresponds to the LOD the XRef file resides in.

6.3 Modeling Conventions

6.3.1 Model Coordinate Systems

CDB Models use the same coordinate system convention as OpenFlight
48

. The X-

axis traverses the model from left to right, the Y-axis goes from the back to the front

and the Z-axis extends from the bottom to the top of the model. Figure 6-5: Model

48 The DIS standard defines a different orientation for the axes of its coordinate system. DIS defines the X-axis as pointing

to the front of the entity; the Y-axis pointing to its right and the Z-axis pointing down. Adoption of the DIS convention by

the CDB Specification has been rejected due to the fact that the majority of models in existence have been created using

tools such as Creator. The CDB Specification follows the same convention as the one used by these commercial tools. Note

that if the CDB Specification were to follow the DIS convention, modelers would be required to create and edit their models

upside down with respect to the reference plane provided by their tool.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-9

© 2016 Presagis. All Rights Reserved.

Coordinate System is a screenshot
49

 of Creator showing a CAD view of a semi-

transparent cube.

Figure 6-5: Model Coordinate System

6.3.1.1 Origin

The location of the model origin is defined in the following manner:

• In the XY plane, the origin must be located at the center of the bounding

rectangle.

• Along the Z axis, the origin is selected to allow the model to be correctly

positioned on ground for ground-related models, or on a water plan for surface

and subsurface platforms.

The following examples will illustrate the above two rules.

1. Fixed wing aircraft – A KC-130 Hercules is illustrated below with its

landing gears fully extended.

49 Most figures in this chapter are actual screenshots from Creator.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-10

© 2016 Presagis. All Rights Reserved.

Figure 6-6: Coordinate System – Aircraft

2. Helicopter – An AH-1W Super Cobra is shown below. Note that no

equipment is mounted on its winglets.

Figure 6-7: Coordinate System – Helicopter

3. Surface ship – Shown below is the Arleigh Burke DDG-51 guided missile

destroyer. Note how the XY plane defines the waterline.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-11

© 2016 Presagis. All Rights Reserved.

Figure 6-8: Coordinate System – Ship

4. Land Platform – The M1A2 Abrams is a main battle tank shown here with

its desert skin.

Figure 6-9: Coordinate System – Ground-based Model

5. Lifeform – A human lifeform (a soldier) is presented here.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-12

© 2016 Presagis. All Rights Reserved.

Figure 6-10: Coordinate System – Lifeform

6. Cultural Feature – When a Model represents a cultural feature, the origin

is the point of insertion of the model into the ground. In general, the XY

plane (at Z = 0) delimits the basement from the first floor.

Figure 6-11: Coordinate System – Cultural Feature

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-13

© 2016 Presagis. All Rights Reserved.

7. Power Pylon – In the case of an electricity pylon, the front (and back) of

the model is aligned with the general direction of the attached wires.

Figure 6-12: Coordinate System – Power Pylon

6.3.1.2 Local Coordinate Systems

Most OpenFlight nodes can have a local transformation used to create a local

coordinate system. The origin and orientation of this coordinate system are expressed

by a single transformation matrix.

When a transformation is specified for a node’s primary record, only the matrix

record (opcode 49) is considered by CDB client-devices. All other transformation

records (opcode 76, 78, 79, 80, 81, 82 and 94) are discarded
50

.

6.3.1.3 Units

6.3.1.3.1 GSModels and GTModels

The MODL attribute of the GSFeature and GTFeature datasets are used to reference

GSModels and GTModels. In turn, the position of GSModels and GTModels are

obtained from the coordinates of each point of the Shapefile; these coordinates are

interpreted as the latitude (y), longitude (x), and elevation (z) coordinates that

position the model within the CDB
51

.

50 Typically, these transformations are used by modeling editing tools only.

51 The local origin of the model is translated to the (lat, long) coordinates of the point feature. The elevation component is

either obtained from the point feature (AHGT=True) or obtained from the elevation of the terrain at (lat, long) coordinates of

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-14

© 2016 Presagis. All Rights Reserved.

GSModels and GTModels are drawn to real-world dimensions using meters as their

unit of measurement.

6.3.1.3.2 MModels

MModels are usually internally activated and positioned by the client-devices in

response to a running simulation.

In the case of Moving Model location features, the MMDC attribute of the GTFeature

dataset is used to reference a MModel. Otherwise, the MModel behaves exactly as a

GTModel as described in section 6.3.1.3.1 above.

MModels are drawn to real-world dimensions using meters as their unit of

measurement.

6.3.1.3.3 T2DModels

Vertex latitude (y) and longitude (x) coordinates are expressed in decimal degrees.

The values are relative to the file’s (implicit) origin which is the south-west corner of

the tile. Note however, that the file’s origin and size are implicitly defined by the tile

position and the tile level-of-detail. The absolute position of each vertex is obtained

by adding the vertex relative value to the tile origin.

T2DModels are used to model features that have no significant height with respect to

the neighboring terrain; they are generally conformed to the terrain using the “Surface

Conformal Mode” as explained in section 6.7, Model Conforming. Note that the

vertices of T2DModels need not have Z-coordinate values that are always zero. For

example, it is permissible to model a road lineal that is modestly elevated with respect

to the neighboring terrain. Client-devices must be capable of handling T2DModels

that are either perfectly surface-conformed to the terrain (all vertices have Z=0) or

modestly elevated (vertices with Z>0) with respect to the terrain. Note that surface-

conformed models with vertices with Z-coordinate values less than zero are, by

definition, below the terrain.

6.3.1.4 Roll, Pitch, Yaw

Pitch, Roll and Yaw angles refer to rotations around the X, Y, and Z axes,

respectively. Angles are measured in degrees. The Roll and Yaw angles vary from

±180 degrees while the Pitch angle is limited to the range ±90 degrees.

6.3.2 Geometry

The CDB Specification assumes modelers adhere to the following set of constraints,

rules and guidelines when creating the geometry of Models.

the point-feature (AHGT=False). The model’s XY plane is rotated in accordance to the feature’s AO1 attribute. The

model’s Z-axis is adjusted so that it is perpendicular to the WGS-84 earth model.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-15

© 2016 Presagis. All Rights Reserved.

1. Create convex polygons. All lines joining any two points in the interior of the

polygon also lie in the interior.

2. Create coplanar vertices. All of the vertices defining a polygon should lie in the

same plane (required by virtually all rendering engines).

3. A polygon’s front face is defined by a counter-clockwise ordering of its vertices.

4. Avoid T vertices. T-vertices occur when two or more adjacent polygons share an

edge, and the polygons do not share a common vertex on that edge.

5. Avoid coplanar faces. A coplanar face is a polygon that lies directly on top of

another polygon. Z-buffer fighting can occur when a Z-buffer system cannot

resolve which polygon to display on top. The CDB Specification strongly

recommends changing one of the coplanar faces to be a subface of the other in the

hierarchy so that the client device such as an Image Generator can draw the faces

in the correct order. An alternative is to use the Relative Priority field to

implement layering (see section 6.3.4 below).

6. Favor mesh over individual polygons. The OpenFlight Mesh record allows the

creation of triangle fans, triangle strips, quadrilateral strips, and indexed face sets.

This construct is by far preferable to individual polygons built using the

OpenFlight Face record.

7. Make use of instancing. Avoid repeating identical pieces of geometry. Create

one object and repeat it by having multiple instances in different locations.

Users of the Presagis Creator modeling software should carefully read the document

entitled Creating Models for Simulation, provided as part of the standard installation

of the product. This document provides guidelines to build models geared toward

real-time application.

6.3.3 Roof Tagging

OpenFlight has a provision for tagging polygons that are part of a roof. The Roofline

flag can be found in both the Face and Mesh records. This flag is useful to apply a

geospecific texture to the roof. When the flag is set, the client-device can discard the

texture referenced by the polygon and use instead the geospecific texture that appears

on the terrain.

More generally, the Roofline flag is used to tag any polygon whose texture can be

replaced with a geospecific texture.

6.3.4 Relative Priority

The Relative Priority field appears in four OpenFlight primary records:

 Face Record

 Mesh Record

 Object Record

 Group Record

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-16

© 2016 Presagis. All Rights Reserved.

The field is required to implement layering, a method to handle coplanar geometry.

By using the Relative Priority field, the modeler can construct more complex

coplanar geometry than what is possible with subfaces.

Here is the definition of the field according to OpenFlight 16.0:

Relative priority specifies a fixed ordering of the node relative to its sibling nodes.

Ordering is from left (lesser values) to right (higher values). Nodes of equal

priority may be arbitrarily ordered. All nodes have an implicit (default) relative

priority value of zero.

The CDB Specification further restricts the use of the Relative Priority field for

complex coplanar geometry as follows. Using relative priorities, the modeler defines

'n' layers of coplanar geometry. Layers are numbered from 0 to 'n-1'. Layer 0, the

base layer, must contain geometry that completely encompasses the geometry of

subsequent layers. Other layers are processed in order, one after the other. A layer is

made of one or more nodes; all nodes of a given layer have the same relative priority.

6.4 Model Identifiers

6.4.1 GSModel and GTModel Identifier

Although the name of the global zone of a GS or GT model is arbitrary, it is strongly

suggested to use the value of their MODL attribute to name the global zone.

For instance, a GTModel stored in a file called

D500_S001_T001_AL015_004_Castle.flt

Would have its global zone identified like this:

<CDB:Zone

 name="Castle"

/>

6.4.2 MModel Identifier

The MModel identifier is the common name of the moving model or the name of its

part. The actual name is not covered by the Specification. An example of a MModel

identifier is “M1A2” for the M1 Abrams tank whose DIS Entity Type is

1_1_225_1_1_3_0.

For instance, a moving model stored in a file called

D600_S001_T001_1_1_225_1_1_3_0.flt

Would have its global zone identified like this:

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-17

© 2016 Presagis. All Rights Reserved.

<CDB:Zone

 name="M1A2"

/>

6.4.3 2DModel Identifier

A T2DModel itself does not need to be identified per se. However, it is required to

identify individual 2DModels inside a T2DModel. This is done by assigning a unique

zone name to each 2DModel. In addition, a 2DModel must have the same zone name

across LODs and across tiles. Note that when a 2DModel is clipped by tile

boundaries, each of the clipped model fragments will appear in distinct OpenFlight

files of the T2DModel Dataset. When clipped, the 2DModel Identifier must appear

once, in each of the T2DModel Tile-LODs. This is necessary to identify the parts of

a 2DModel that straddle multiple Tile-LODs.

6.5 Model Zones

The concept of a model zone is of the utmost importance when creating models,

particularly those used in military simulation applications.

A model zone represents a component
52

 of interest on the Model. A model zone (as

well as the component it represents) occupies a certain volume and is delimited by a

bounding box. At least one simulator subsystem must be interested in a specific

component to justify the creation of a corresponding zone. Examples of zones are a

turret on a tank, or an engine on a platform, or an entrance door on a building, etc.

Since the model itself is of interest to the simulation, it will have at least one zone, the

global zone. That will be the case for most Models used as cultural features; they will

have a single zone. However, Models used as moving models will typically be

subdivided into several zones.

To implement the concept of model zones, the CDB Specification uses the

OpenFlight Group Node. Firstly, a Group Node can have child nodes to represent its

own geometry as well as other zones. Secondly, a Group Node can have a bounding

volume encompassing its child nodes and that can be used to represent the volume

corresponding to the zone.

6.5.1 Definition

A Model Zone is an OpenFlight Group Node with a mandatory Bounding Box and

the following XML tags in the comment field.

52 A dictionary of CDB Component Names is provided in Appendix F.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-18

© 2016 Presagis. All Rights Reserved.

Table 6-2: XML Tags for Zones

<CDB:Zone name="name" volume="closed|open">

 ... zone attributes

</CDB:Zone>

The zone name is mandatory. Remember that if the zone exists, it is because it has its

importance for at least one client device. In general, all client devices interested in a

zone will use its name to identify and control it.

The volume attribute is optional and specifies whether the zone represents a closed or

open volume. By default, a zone represents a closed volume.

The following table lists the OpenFlight records required to represent a zone.

Table 6-3: OpenFlight Records for a Zone

GROUP

MATRIX (optional)

BOUNDING BOX (mandatory)

COMMENT (mandatory)

Note the use of the MATRIX record. It is necessary when the zone has a different

position or orientation than its parent node. A zone can be thought of as a separate

Model in itself. A zone has a natural orientation and its local coordinate system must

indicate where their front, right, and back sides are. A zone is subject to the same

convention as the model itself regarding the orientation of its coordinate system.

6.5.2 Global Zones

A CDB-compliant Model has at least one zone that encompasses the whole model

and that is called the model global zone. The global zone is mandatory. Figure 6-13

illustrates the location of the global zone in the graph hierarchy.

Figure 6-13: Model Global Zone

The global zone contains the name of the Model contained in the OpenFlight file.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-19

© 2016 Presagis. All Rights Reserved.

6.5.3 Zone Attributes

A Model Zone can have any number of attributes using the general mechanism

descrived later in section 6.12, Model Attributes. However, two specific attributes

are described here because of their particular relevance to the concept of Model Zone.

6.5.3.1 Material

The Material attribute provides an indication of the principal material the zone is

made of. Since the majority of man-made models are made of one principal material

as well as several less important materials, it is strongly suggested to use the Material

attribute in the model global zone to specify what that principal material is.

The Material attribute is an index into the Composite Material Table located within

the Model Descriptor file described in section 6.14. The value of the Material

attribute is a strictly positive integer. The syntax of the XML tag is:

<CDB:Zone>

 <Material> index </Material>

</CDB:Zone>

The Material attribute can also be assigned to OpenFlight Group and Object nodes.

The syntax is the following:

<CDB:Group>

 <Material> index </Material>

</CDB:Group>

<CDB:Object>

 <Material> index </Material>

</CDB:Object>

For compatibility with version 3.1 and 3.0 of the Specification, a simplified (but

deprecated) syntax is still supported for Object, Face, and Mesh nodes when the

Material is the only attribute.

<CDB:Material>

 index

</CDB:Material>

6.5.3.2 Temperature

When the zone has a heat source, such as an engine, it is known as a Hot Spot. The

maximum temperature the zone can reach is specified using the Temperature attribute

as shown here:

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-20

© 2016 Presagis. All Rights Reserved.

Table 6-4: XML Tags for Hot Spots

<CDB:Zone>

 <Temperature> maximum temperature </Temperature>

</CDB:Zone>

The temperature is expressed in Celsius degrees. Only integer values are permitted.

Appendix F supplies a comprehensive list of zones that are candidates for hot spots.

Typical hot spot names are Engine and Chimney to name only these two. Other

zones that are of interest for hot spots simulation are wings leading edge and other

surfaces subjected to friction.

6.5.4 Implementation Guidelines

This section provides a set of guidelines to implement the concept of model zones.

The guidelines provided here are also applicable to Model Points described in section

6.6.

A zone is made of at least one Group Node.

Figure 6-14: Simple Zone

A zone may have an optional articulation by adding a DOF node.

Figure 6-15: Articulated Zone

To simplify the following diagrams, we will use a single circle to represent a zone,

whether the zone is a single Group Node, or a pair of group and DOF nodes.

In general, a zone has a graphical representation as well as other child zones.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-21

© 2016 Presagis. All Rights Reserved.

Figure 6-16: Zone Hierachy

The graphical representation of a zone is itself subject to several possible

implementations using various OpenFlight nodes.

The simplest way to associate a graphical representation to a zone is to use an Object

node with a combination of graphic primitives available in OpenFlight: polygons,

triangles, quads, and meshes.

Figure 6-17: Simple Zone Graphical Representation

The modeler is also free to use a combination of LOD and Switch nodes to control the

graphical representation of a zone.

For instance, an LOD node inserted before the object node is useful to inform the

client device on how significant the graphical representation is.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-22

© 2016 Presagis. All Rights Reserved.

Figure 6-18: Additive LOD to Control the Graphical Representation

If the modeler wants to provide two (or more) graphical representations for a zone, he

should use two (or more) LOD nodes.

Figure 6-19: Exchange LODs to Select the Graphical Representation

Levels of details are discussed in length in Section 6.8, Model Levels-of-Detail.

If the modeler has several distinct graphical representations for the zone, he is also

free to use a switch node to select between these representations.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-23

© 2016 Presagis. All Rights Reserved.

Figure 6-20: Switch Node to Select the Graphical Representation

CDB Switches are discussed in depth in Section 6.9, Model Switch Nodes.

6.5.5 Model Zone Naming

A Model Zone Node is uniquely and unambiguously identified by concatenating with

backslashes (‘\’) the names of all Model Zones traversed to reach it. When sibling

CDB nodes have identical names, their name is appended with a sequence number in

square brackets. Nodes are numbered starting with 1. Siblings are sorted in

ascending order according to their X, Y, and Z coordinates. The leftmost sibling has

the smallest XYZ coordinate while the rightmost sibling node has the largest XYZ

coordinate. As a result, identical sibling CDB nodes are sorted from left to right (X-

axis), then back to front (Y-axis), then bottom to top (Z-axis).

The following example provides a sample of Model Zone and Model Point names

that would be used for a tactical fighter aircraft; the fighter has two pylons per wing,

each pylon having 3 attach points. The resulting paths to each Model Zones and

Model Points are as follow:

 \Fighter

 \Fighter\Wing[1]

 \Fighter\Wing[1]\Pylon[1]

 \Fighter\Wing[1]\Pylon[1]\Attach_Point[1]

 \Fighter\Wing[1]\Pylon[1]\Attach_Point[2]

 \Fighter\Wing[1]\Pylon[1]\Attach_Point[3]

 \Fighter\Wing[1]\Pylon[2]

 \Fighter\Wing[1]\Pylon[2]\Attach_Point[1]

 \Fighter\Wing[1]\Pylon[2]\Attach_Point[2]

 \Fighter\Wing[1]\Pylon[2]\Attach_Point[3]

 \Fighter\Fuselage

 \Fighter\Fuselage\Attach_Point

 \Fighter\Wing[2]

 \Fighter\Wing[2]\Pylon[1]

 \Fighter\Wing[2]\Pylon[1]\Attach_Point[1]

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-24

© 2016 Presagis. All Rights Reserved.

 \Fighter\Wing[2]\Pylon[1]\Attach_Point[2]

 \Fighter\Wing[2]\Pylon[1]\Attach_Point[3]

 \Fighter\Wing[2]\Pylon[2]

 \Fighter\Wing[2]\Pylon[2]\Attach_Point[1]

 \Fighter\Wing[2]\Pylon[2]\Attach_Point[2]

 \Fighter\Wing[2]\Pylon[2]\Attach_Point[3]

Here is how to interpret some of these paths:

 The global zone is identified as \Fighter

 The left wing is \Fighter\Wing[1]

 The leftmost attach point is \Fighter\Wing[1]\Pylon[1]\Attach_Point[1]

 The rightmost attach point is \Fighter\Wing[2]\Pylon[2]\Attach_Point[3]

 There is a single attach point on the fuselage, \Fighter\Fuselage\Attach_Point

 The inner pylon on the left wing is \Fighter\Wing[1]\Pylon[2]

 The inner pylon on the right wing is \Fighter\Wing[2]\Pylon[1]

6.5.6 Usages

6.5.6.1 Model Landing Zones

Landing zones are used primarily by the Computed Generated Forces (CGF) sub-

system of the simulator. The landing zone information can be used during the set-up

of mission scenarios since it provides CGF the location of known landing zones.

Typically, landing zones are used to specify the location and dimension of helipads,

aircraft carrier decks, etc. Appendix F lists several CDB Components that can act as

landing zones.

Landing zones must have a bounding box that tightly fits the landing area. If required

by the geometry of the landing zone, the modeler should create a local coordinate

system that is axially oriented with the landing zone. Inserting a MATRIX record

after the GROUP record does this.

The width and the length of the landing zone can be extracted by the client-device

from the bounding box associated with the Group Node representing the zone. The

landing zone geometry must be located under the Group Node to obtain meaningful

dimensions.

6.5.6.2 Model Footprint Zones

A Model Footprint
53

 conceptually represents the footprint (i.e., the terrain surface

outline) of a model on the ground. The Model Footprint is modeled as a set of

OpenFlight Face or Mesh records.

53 The OpenFlight Face and Mesh records both have a flag called Terrain Culture Cutout. This flag is commonly

designated as the Cultural Footprint flag within the simulation industry.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-25

© 2016 Presagis. All Rights Reserved.

Client-devices are required to assume that the geometry that is associated with a

Model Footprint Zone is hidden, regardless of the value of the OpenFlight Hidden

flag of associated geometry. However, CDB content creation tools are nonetheless

required to set the Hidden flag of the associated geometry
54

. The footprint geometry

should be terrain conformed using the “Surface Conformal Mode” as explained in

section 6.7, Model Conforming. This instructs client-devices to conform this

footprint to the underlying terrain altimetry, regardless of its level-of-detail.

The Model Footprint is the set of polygons or meshes that result from the intersection

of the model geometry with its XY plane
55

.

A polygon that is tagged as Model Footprint can be used by client-devices to identify

the portion of the terrain that is covered by a model. The Cultural Footprint can be

used by client-devices such as:

 Map generators that may not be interested in the full 3D geometry of a Model.

 Procedural SE generation software that may use model footprints to

automatically extrude such footprints into 3D models.

 Simulation of ground-based SAF entities that would use model footprints to

avoid collisions with features such as buildings and trees.

The CDB Specification requires that the Model Footprint be placed under a CDB

Footprint Zone node. This CDB node facilitates the identification and discovering of

footprints by client-devices. The subgraph representing the Footprint is presented

here.

54 This increases compatibility with OpenFlight readers that are not CDB-compliant.

55 The Model Footprint polygon is not an absolute Z-positioned 3D polygon generated by the intersection of the model with

the specific terrain it sits on - that would make the footprint of the model specific to that terrain. Furthermore, a different 3D

polygon would be required for each possible terrain LOD.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-26

© 2016 Presagis. All Rights Reserved.

Footprint
(zone)

Object

Face Mesh

Figure 6-21: Footprint Zone Structure

The Footprint zone is followed by an OpenFlight Object node with the necessary

OpenFlight Face or Mesh nodes containing the footprint itself. All Face/Mesh nodes

must have their Terrain Culture Cutout flag set. A Footprint zone is defined by the

following XML tags.

Table 6-5: Footprint Zone XML Tags

<CDB:Zone name = "Footprint"/>

6.5.6.3 Model Cutout Zones

A Model Cutout Zone conceptually represents clipping geometry that is used to cut

out the terrain from a 2DModel or a 3DModel. Cutouts are typically used in

conjunction with model interiors and tunnels. The Model Cutout geometry defines a

simple 3D convex volume (open or closed). A typical implementation of a Model

Cutout Zone for a modeled building would consist of a simple cube. Similarly, the

Model Cutout Zone for a tunnel entrance would consist of a simple cylinder or a

partially-open cube (see Figure 5-9: Modeling of Wells, Overhanging Cliffs and

Tunnels).

The Model Cutout is modeled as a set of OpenFlight Face or Mesh records. Client-

devices are required to assume that the geometry that is associated with a Model Cut-

Out Zone is hidden and cut-out. Client-devices should ignore the value of the

OpenFlight Hidden and Terrain Culture Cutout flags of associated geometry.

However, CDB content creation tools are required to set the Hidden and Terrain

Culture CutOut flags of the associated geometry
56

.

56 This increases compatibility with OpenFlight readers that are not CDB-compliant.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-27

© 2016 Presagis. All Rights Reserved.

The Model Cutout geometry should be terrain conformed using the “Surface

Conformal Mode” as explained in the 6.7, Model Conforming. This instructs the

client-device to conform the Model Cutout to the underlying terrain altimetry,

regardless of its level-of-detail.

It is specified using the following XML syntax:

Table 6-6: XML Tags for Landing Zones

<CDB:Zone name="Cutout">

Polygons or meshes that are tagged as Model Cutout can be used by client-devices to

identify the portion of the terrain that needs to be removed in order to reveal the

interior of the model (say a building interior or a tunnel interior). The Model Cutout

is necessary for models straddling the terrain surface and whose interior is modeled

and viewed from within. The reason for this is that when the model is altitude-

conformed onto the terrain, a hole must be cut into the terrain-LOD, so that the terrain

itself does not visually interfere with the modeled building or tunnel interior.

The CDB Specification requires that the Cutout geometry be placed under a CDB

Model Cutout Zone node. This CDB node facilitates the identification and discovery

of model cutouts by client-devices. The subgraph representing the cutout is presented

here.

Cutout
(zone)

Object

Face Mesh

Figure 6-22: Cutout Zone Structure

6.5.6.4 Model Interior Zones

This section focuses on how to represent the interior of Models for an intelligent use

by client-devices.

A Model is composed of 2 parts: a shell, and an optional interior. The shell contains

both the exterior and the pseudo-interior. Client-devices need only access the shell if

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-28

© 2016 Presagis. All Rights Reserved.

they do not need to penetrate and interact with the interior of the models; otherwise,

they require both the shell and the interior. The shell of a Model is stored in five (5)

datasets:

 ModelGeometry

 ModelTexture

 ModelSignature

 ModelDescriptor

 ModelMaterial

The optional model interior is stored in four (4) datasets:

 ModelInteriorGeometry

 ModelInteriorTexture

 ModelInteriorDescriptor

 ModelInteriorMaterial

Refer to appendix A.5 for guidelines on Handling of Model Interiors.

6.5.6.4.1 Model Pseudo-Interior Zone

The pseudo-interior is the portion of the shell that contains geometry also represented

in the interior dataset. This geometry represents what is visible from the outside and

is necessary to ensure the integrity and completeness of the shell. Since the pseudo-

interior is a placeholder for the real interior, it must be placed under its own subgraph

and identified by a CDB zone whose name is “Interior”.

Shell
(global zone)

Exterior
(zone)

Interior
(zone)

db

Footprint
(zone)

Figure 6-23: Model Shell Structure

The name “Interior” is a reserved component name allowing a client-device to

identify the node that is to be replaced by an entire dataset, namely the

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-29

© 2016 Presagis. All Rights Reserved.

ModelInteriorGeometry dataset. The pseudo interior is mutually exclusive with the

real interior defined in section 6.5.6.4.2, Model Interior Zone, below.

Figure 6-23 also illustrates how to structure the shell of a Model that has a real

interior. The model is divided in three components: the footprint of its exterior, the

geometry of its exterior, and the geometry of its pseudo-interior. Therefore the names

of these three components are “Footprint”, “Exterior”, and “Interior” as illustrated by

the following XML tags.

Table 6-7: Shell Zones XML Tags

<CDB:Zone name = "Footprint"/>

<CDB:Zone name = "Exterior"/>

<CDB:Zone name = "Interior"/>

Footprints were discussed earlier in section 6.5.6.2, Model Footprint Zones.

6.5.6.4.2 Model Interior Zone

The Model interior itself must have a global zone whose name is “Interior”.

Accordingly, the graph of the interior of the model will present the following

structure. Note that real interior must not include the modeled representation of the

shell.

db

Interior
(global zone)

Figure 6-24: Model Interior Structure

The Interior zone contains one or more floors as well as the partitions separating these

floors. An Interior zone is defined by the following XML tags.

Table 6-8: Interior Zone XML Tags

<CDB:Zone name = "Interior">

 <Ground_Floor> index </Ground_Floor>

</CDB:Zone>

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-30

© 2016 Presagis. All Rights Reserved.

The <Ground_Floor> is optional. It contains the index of the Floor that represents the

ground floor of the model interior. By default, the ground floor is floor number 1.

The subgraph representing the Interior zone has the following structure.

Interior

Floor Partition

Figure 6-25: Interior Zone Structure

The Interior zone has two (2) kinds of child nodes: Floor and Partition. The Interior

has at least one Floor. When the Interior has several Floors, the separating Partitions

appear as siblings of the Floor nodes. These Partitions contain external Apertures that

connect two Rooms on different Floors. These external Apertures are later referenced

by Rooms.

6.5.6.4.2.1 Model Interior Topology

To navigate through the interior of Models, simulator client-devices need to know the

connections between the elements composing the interior, such as floors, rooms,

doors, or fixtures. In addition, these elements must be identified and attributed for

use by computer generated forces (CGF) client-devices. For this reason, the CDB

Specification has opted for reuse and adoption of version 2 of the UHRB

specification
57

.

The CDB Specification maps the UHRB Object Model to the OpenFlight Scene

Graph using the concept of CDB nodes.

The UHRB object model proposes twelve (12) classes. Of these, four (4) are abstract

base classes and one (1) is a provision for future expansion of the UHRB

specification. The remaining seven (7) concrete classes are mapped to CDB Zone

nodes. The UHRB Class Names and their corresponding CDB Zone Names are:

57 See references [35] and [36] in section 10, Reference Documents.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-31

© 2016 Presagis. All Rights Reserved.

Table 6-9: UHRB Class Names and corresponding CDB Zone Names

UHRB Class Name CDB Zone Name

UHRB_TEMPLATE Interior

UHRB_FLOOR_LEVEL_COMPONENT Floor

UHRB_SURFACE_COMPONENT Surface

UHRB_ROOM_COMPONENT Room

UHRB_FIXTURE_COMPONENT Fixture

UHRB_APERTURE_COMPONENT Aperture

UHRB_FIXED_PARTITION_COMPONENT Partition

The above CDB nodes are treated the same way as any other CDB nodes. In

particular, Floor, Room, Partition, Aperture, Fixture, and Surface nodes are numbered

following the conventions established in section 6.5.5, Model Zone Naming; they also

have zone attributes such as the Material Index.

6.5.6.4.2.2 Model Interior Topology Attributes

This section describes the CDB mechanism that expresses the possible connections

between compartments and apertures. The definition of a CDB Zone is extended with

the addition of one XML tag indicating which other components are connected to this

one.

The following table presents the revised syntax of the XML tags defining a CDB

Zone. The addition is highlighted in yellow.

Table 6-10: XML Tags for Zone Connections

<CDB:Zone name="name" volume="closed|open">

 <Material> index </Material>

 <Temperature> value </Temperature>

 <ConnectTo> path </ConnectTo>

 ...

</CDB:Zone>

The <ConnectTo> tag may appear zero or more times, allowing for the definition

of any number of connections to other components. The other tags (Material and

Temperature) retain their current definition. In particular, the use of the <Material>

tag is encouraged to define the material the components are made of.

The presence of the <ConnectTo> tag is restricted to a set of three (3) components:

global zone, compartments and apertures. A connection is unidirectional; it goes

from the zone that contains the <ConnectTo> tag to the zone referenced by the

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-32

© 2016 Presagis. All Rights Reserved.

path. The path is either relative or absolute. When a relative path is used, it identifies

a sibling of the current zone. Here are some path examples.

Table 6-11: Examples of Absolute and Relative Paths

Example 1:

 <CDB:Zone name="Interior">

 <ConnectTo> \Interior\Section[1]\Level[1]\Aperture[5] </ConnectTo>

 </CDB:Zone>

Example 2:

 <CDB:Zone name="Aperture[5]">

 <ConnectTo> \Interior\Section[1]\Level[2]\Compartment[3] </ConnectTo>

 </CDB:Zone>

Example 3:

 <CDB:Zone name="Compartment[3]">

 <ConnectTo> Aperture[1] </ConnectTo>

 <ConnectTo> \Interior\Section[1]\Level[1]\Aperture[5] </ConnectTo>

 </CDB:Zone>

Example 1 is an absolute path, expressed as a directory name, starting with the

topmost zone, the global zone. It tells us that there is one entrance into the model

interior through the fifth aperture (Aperture[5]) on the first level (Level[1]) of the first

section (Section[1]) of the model interior (\Interior).

Example 2 is also an absolute path. It tells us that the fifth aperture (Aperture[5]) has

a single connection to the third compartment (Compartment[3]) of the second level

(Level[2]) of the first section (Section[1]) of the model interior (\Interior).

Example 3 illustrates how to use a relative path. It tells us that the third compartment

(Compartment[3]) has two exits. The first exit is through the first aperture

(Aperture[1]) of the current level. The second exit is through the fifth aperture

(Aperture[5]) on the first level (Level[1]) of the first section (Section[1]) of the model

interior (\Interior).

Example 1 tells us to use Aperture 5 to enter into the model interior. Example 2

further informs us that Aperture 5 brings us into Compartment 3. Example 3 says that

we can exit Compartment 3 through either Aperture 1 or 5.

The global zone (the top level node) node provides the list of apertures representing

entrances into the model. If the global zone does not provide at least one aperture to

enter the model, then the model interior is unreachable. To exit a compartment, it

must connect to at least one aperture; if not, you may be able to enter the

compartment, but you will not be able to exit. Finally, an aperture allows entrance

into compartments. An aperture without connection is an exit point; in that case, a

compartment must connect to the aperture.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-33

© 2016 Presagis. All Rights Reserved.

Appendix J presents the XML schema governing the construction of a valid CDB

Zone. The schema includes provision for the <ConnectTo> tag.

6.5.6.4.3 Floor Zone

A Floor zone contains one or more Rooms, and all Partitions shared by these Rooms.

A Floor is defined by the following XML tags.

Table 6-12: Floor Zone XML Tags

<CDB:Zone name = "Floor">

 <Label> floor name </Label>

</CDB:Zone>

The <Label> is optional. It can be used to give the Floor a meaningful name such as

“Ground Floor”, “Basement”, “Mezzanine”, or “Penthouse”.

The subgraph representing a Floor has the following structure.

Floor

RoomFootprint Partition

Figure 6-26: Floor Zone Structure

The Footprint of a Floor is the minimum enclosing polygon containing all of the

footprints of all of the Rooms on the Floor as well as the footprints of all of the

Partitions associated with those Rooms. The Footprint is defined as per section

6.5.6.2, Model Footprint Zones. The Partitions contain the Apertures that connect two

Rooms together. These Apertures are later referenced by Rooms.

6.5.6.4.4 Room Zone

A Room zone owns all its Surfaces and may contain Fixtures. A Room is defined by

the following XML tags.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-34

© 2016 Presagis. All Rights Reserved.

Table 6-13: Room Zone XML Tags

<CDB:Zone name = "Room">

 <Label> room name </Label>

 <Aperture> path to aperture 1 </Aperture>

 ... other apertures as needed

 <Partition> path to partition 1 </Partition>

 ... other partitions as needed

</CDB:Zone>

The <Label> is optional. It can be used to better identify the Room by its usual name.

Examples are cubicle, toilet, conference room, atrium, office, electrical room, janitor

room, etc.

The <Aperture> is optional but is likely to appear at least once, unless the Room is

permanently closed and cannot be accessed. It points to one Aperture that connects

this Room with another Room on this Floor or on another Floor. Two Rooms on the

same Floor are connected through an Aperture in a Partition on the current Floor.

Two Rooms on two different Floors are connected through an external Aperture in a

Partition from the Interior zone. The path to an Aperture is built as specified in

section 6.5.5, Model Zone Naming.

The <Partition> is also optional, but again, is likely to appear several times since a

typical Room has a floor, a set of walls, and a ceiling.

The subgraph representing a Room has the following structure.

Room

FixtureFootprint Surfaces
(group)

Side
(group)

Bottom
(group)

Top
(group)

Surface Surface Surface

Figure 6-27: Room Zone Structure

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-35

© 2016 Presagis. All Rights Reserved.

The footprint is the smallest polygon containing all of the bottom surfaces when

projected onto the XY plane
58

. There can be zero or more Fixtures in a Room. The

Surfaces making up the volume of the Room are separated in three (3) groups

(Bottom, Side, and Top) as defined by the UHRB specification.

6.5.6.4.5 Fixture Zone

A Fixture zone is defined in the same manner as a Room; it is made of a number of

Surfaces defining a closed volume. The Fixture is defined by the following XML

tags.

Table 6-14: Fixture Zone XML Tags

<CDB:Zone name = "Fixture">

 <Label> fixture name </Label>

 <Moveable> true/false </Moveable>

</CDB:Zone>

The <Label> is optional. It allows the modeler to describe what this fixture

represents.

The <Moveable> flag is optional. It indicates whether or not the Fixture can move or

if it is fixed. By default, the fixture does not move; if it does, the flag is set to true. A

piece of furnitures is an example of moveable fixture while a column is an example of

a fixed one.

The subgraph representing a Fixture is similar to that of a Room, except for the need

to differentiate between the kinds of Surfaces. Its structure is presented here.

Fixture

Footprint Surface

Figure 6-28: Fixture Zone Structure

The Footprint is the smallest polygon containing all of the Surfaces when projected

onto the XY plane. The Surfaces form a closed volume, meaning there is no hole in

the Fixture.

58 This definition of a room footprint comes from the UHRB Specification.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-36

© 2016 Presagis. All Rights Reserved.

Alternately, to permit reuse of common fixtures stored in the GTModel Library, the

Fixture may reference an existing model through the use of an XRef node. In that

case, the following subgraph is to be used.

Fixture

XRef

Figure 6-29: Fixture Zone Structure

6.5.6.4.6 Partition Zone

A Partition zone has Apertures, makes reference to all Surfaces composing it, and

refers to its adjacent Rooms. The Partition is defined by the following XML tags.

Table 6-15: Partition Zone XML Tags

<CDB:Zone name = "Partition">

 <Label> partition name </Label>

 <Room> path to adjacent room 1 </Room>

 <Room> path to adjacent room 2 </Room>

 <Surface> path to surface 1 </Surface>

 ... other surfaces as needed

</CDB:Zone>

The <Label> is optional. It allows the modeler to better identify the type of Partition:

wall, floor, ceiling, etc.

The <Room> tag is mandatory and is used to identify the two Rooms adjacent to the

Partition
59

. For this reason, there must be exactly two <Room> tags. The path to an

adjacent Room is as specified in section 6.5.5, Model Zone Naming. Note that

UHRB defines the concept of an “outside” room when the partition defines a building

outside wall. In CDB, the path of this outside room is \Shell\Exterior as illustrated in

6.5.6.4.1, Model Pseudo-Interior.

The <Surface> tag appears as many times as necessary to refer to all Surfaces making

up this Partition. A path similar to the one used to refer to a Room is used to refer to

a Surface. Note that a Partition does not refer to the Surfaces that belong to its

Aperture; that will be taken care of by the Apertures themselves.

59 Note that the CDB specification follows established UHRB conventions as it relates to partitions, namely that all

partitions must be clipped so that there are no more than two neighbouring rooms.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-37

© 2016 Presagis. All Rights Reserved.

The subgraph representing a Partition has the following structure.

Partition

ApertureFootprint

Figure 6-30: Partition Zone Structure

The Footprint is the smallest polygon containing all of the referenced Surfaces when

projected onto the XY plane. A Partition can have zero or more Apertures in it.

6.5.6.4.7 Aperture Zone

An Aperture zone provides a mean by which one can enter or exit a Room. The

Aperture zone is defined by the following XML tags.

Table 6-16: Aperture Zone XML Tags

<CDB:Zone name = "Aperture">

 <Label> aperture name </Label>

 <Is_Open> true/false </Is_Open>

 <Is_Fixed> true/false </Is_Fixed>

 <Damage_Level> percentage of damage </Damage_Level>

 <Room> path to room 1 </Room>

 <Room> path to room 2 </Room>

 <Surface> path to surface 1 </Surface>

 ... other surfaces as needed

</CDB:Zone>

The <Label> is optional. It allows the modeler to better identify the type of Aperture:

door, window, trap, etc.

The <Is_Open> and <Is_Fixed> flags are both optional; they are considered false

when not provided.

The <Damage_Level> tag is also optional and provides a mean to indicate the level

of damage of the Aperture. The value is expressed as a percentage using an integer in

the range 0 (no damage) to 100 (destroyed).

The <Room> tag appears exactly two times and points to the two Rooms connected

by this Aperture. Sometimes one of these two rooms may be an “outside” room - a

concept defined in UHRB. In CDB, the path of this outside room is \Shell\Exterior as

illustrated in 6.5.6.4.1, Model Pseudo-Interior.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-38

© 2016 Presagis. All Rights Reserved.

The <Surface> tag appears as many times as necessary to refer to all Surfaces making

up this Aperture.

The subgraph representing an Aperture has the following structure.

Aperture

Footprint

Figure 6-31: Aperture Structure

The Footprint is the smallest polygon containing all of the referenced surfaces when

projected onto the XY plane.

6.5.6.4.8 Surface Zone

A Surface zone contains useful geometry. That’s all it does. The Surface zone is a

plain CDB zone. Its subgraph is presented here.

Surface

Object

Face Mesh

Figure 6-32: Surface Zone Structure

A Surface is composed of one or more OpenFlight Object nodes holding the

geometry defining the surface: face or mesh records.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-39

© 2016 Presagis. All Rights Reserved.

6.6 Model Points

A model point is similar to a model zone; it identifies a location on the model that is

of interest to at least one simulation client device. A point defines a local coordinate

system on the model. Hence, a point has a position and an orientation.

In some respect, a point and a zone are similar and can be used interchangeably. A

zone is used when the component of interest is physically modeled and has a

graphical representation. When the zone is not modeled but still represents a

component of interest, a point is used to indicate its presence.

Again, the OpenFlight Group Node mechanism provides a convenient means of

implementing the concept of a point because a transformation can be added to the

node.

6.6.1 Definition

The table below presents the syntax of the XML tags stored in the node’s comment

record.

Table 6-17: XML Tags for Points

<CDB:Point name = "name">

 ... point attributes

</CDB:Point>

The point name is mandatory while the point attributes are optional. In general, a

point can have the same name as a zone. The following table lists the OpenFlight

records required to represent a point.

Table 6-18: OpenFlight Records for a Point

GROUP

MATRIX (mandatory)

COMMENT (mandatory)

A model point is used in several occasions such as defining the attach point where

another Model can anchor itself.

6.6.2 Usages

6.6.2.1 Model DIS Origin

A Model that is intended as a DIS entity requires a point that defines the origin of the

entity’s coordinate system. This point is the center of the entity’s bounding volume

excluding its articulated and attached parts
60

. On a DIS network, the location of an

entity is expressed relative to this point. There must be a single definition of this

point for all damage states and all levels of details for a given model.

The following XML tag identifies the point.

60 This definition can be found on page 3 of reference [4].

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-40

© 2016 Presagis. All Rights Reserved.

Table 6-19: XML Tags for the DIS Origin

<CDB:Point

 name = "DIS_Origin"

/>

If the DIS origin is not defined, it defaults to the model origin.

The CDB Point representing the DIS Origin must be positioned and oriented

according the definition provided by the DIS Standard. This definition says that the

DIS Origin is at the center of the bounding box of the entity, without articulated and

attached parts. The standard also says what the orientation must be. The X-axis

points forward, the Y-axis points to the right, and the Z-axis points down. All axes

are aligned with the bounding box defined above.

The intent of the DIS Standard is to have its axis system aligned with the body of the

entity. When it comes to air platform, the body is associated with the fuselage of the

entity. To illustrate the difference in orientation between the DIS entity’s bounding

box and the CDB Model’s bounding box, consider the Chinook helicopter shown

below.

Figure 6-33: Orientation of the Chinook Helicopter

The fuselage of this helicopter has a pitch angle of approximately 1.6 degrees when

resting on its wheels. Below is a snapshot of its fuselage, without rotors and landing

wheels.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-41

© 2016 Presagis. All Rights Reserved.

Figure 6-34: The Body of the Chinook Helicopter

From the snapshots above, it is clear that the orientation of the DIS origin must be

such that its XY plane makes an angle of 1.6 degrees with respect to the XY plane of

the CDB axis system.

Here is a recommended way of defining the DIS Origin:

1. Create the Group Node and tag it as a CDB Point whose name is

DIS_Origin.

2. Make the CDB Point a child of the zone that best represents the entity’s

bounding volume without any articulated and attached parts.

3. Ensure the zone is properly oriented with respect to the CDB axis system.

4. Add a translation to position the origin at the center of the above bounding

volume.

5. Add a rotation to align the X-axis to the front of this bounding volume.

6. Add another rotation to align the Z-axis with the bottom of the bounding

volume.

7. By doing so, the Y-axis should already point correctly to the right side of

the box.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-42

© 2016 Presagis. All Rights Reserved.

6.6.2.1.1 Example

The snapshot below shows the proper location and orientation of the DIS origin on

the Chinook. The DIS origin is represented by a set of 3 orthogonal Blue-Red-Green

arrows. The blue arrow indicates the X axis; the green arrow points down and

represents the Z axis.

Figure 6-35: The DIS Origin of the Chinook Helicopter

If you watch carefully, you will notice that the DIS axis system is aligned with the

fuselage and makes an angle with the CDB XY plane.

6.6.2.2 Model Viewpoint

To generate the correct view of the outside world from a model’s viewpoint, a client

device needs an indication of where is the viewpoint located with respect to the

model’s origin. The viewpoint corresponds to the pilot’s seat in an aircraft, the

driver’s seat in a ground vehicle, the navigation post on a ship bridge, the periscope

on a submarine, or the eyes of a soldier. The viewpoint’s local coordinate system is

oriented such that the Y-axis indicates the viewing direction and the Z-axis points up.

The viewpoint has optional attributes to define the field of view available from this

position. The field of view is defined by a frustum aligned along the local Y-axis.

The horizontal field of view lies in the local XY plane while the vertical field of view

is in the YZ plane.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-43

© 2016 Presagis. All Rights Reserved.

Table 6-20: XML Tags for a Viewpoint

<CDB:Point name="Viewpoint">

 <FOV>

 <Horizontal>min max</Horizontal>

 <Vertical>min max</Vertical>

 </FOV>

</CDB:Point>

All values are expressed in degrees using decimal numbers. The default values are

±30.0° in both directions for a total of 60.0° of horizontal and vertical fields of view.

6.6.2.3 Model Attach Point

A Model can be attached to another Model by mean of an attach point.

An attach point defines the position to which other (subordinate) models can attach

themselves. For instance, a fighter has a number of attach points defined to receive

missiles or external fuel tanks.

Table 6-21: XML Tags for Attach Point

<CDB:Point

 name = "Attach_Point"

/>

The orientation of the attach point is used to indicate how the two models connect

together. A connection occurs by superimposing the coordinate system of the

subordinate model with the coordinate of the attach point.

6.6.2.4 Model Anchor Point

The anchor point defines the location where a subordinate Model attaches to a parent

Model. The anchor point is the counterpart to the attach point. Both can be seen as

the male/female part of a connector and its receptacle.

Table 6-22: XML Tags for Anchor Point

<CDB:Point

 name = "Anchor_Point"

/>

The orientation of the anchor point is used to indicate how the subordinate model

connects to the parent model. A connection occurs by superimposing the anchor

point (of the subordinate model) with the attach point (of the parent model).

The default anchor point of a subordinate model is its origin.

6.6.2.5 Model Center of Mass

The Center of Mass (CM) of a Model is a specific point where, for many purposes,

the Model behaves as if its mass was concentrated there.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-44

© 2016 Presagis. All Rights Reserved.

Table 6-23: XML Tags for Center of Mass

<CDB:Point

 name = "Center_Of_Mass"

/>

6.7 Model Conforming

Historically, the integration of models onto the terrain has been performed during the

database compilation process. These offline approaches varied considerably from

vendor to vendor because there were no standardized approaches related to terrain

meshing structures, varying visual priority and hidden-surface removal mechanisms,

runtime LOD mechanisms, number of LODs, etc.

This section describes a series of model conformal modes that instruct client-devices

on how they should conform models to the underlying terrain.

All of the conformal modes rely on the conforming of the model origin and/or model

vertices onto the terrain mesh directly beneath the model. Note that the Z-component

of the model’s vertices is with respect to model’s XY plane (as shown in Figure

6-36).

Figure 6-36: Conforming Vertices to Terrain

Terrain profile

Conform vertices to terrain

V
2

Elev
v2

V
1

V
n

Elev
v1

 Elev
vn

z 1

z 2

z n

z 1

z 2

z n

z 3

V
3

z 3

Elev
v3

z

y

x

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-45

© 2016 Presagis. All Rights Reserved.

Note that by definition, all portions of the model below its XY plane represent some

form of under ground basement. The conforming of models on steep or rough terrain

may yield unusual results because portions of the basement may be visible. This may

require the modelers to level the terrain in the immediate vicinity or adjust the model.

A modeler can specify a model’s conformal mode by adding the following XML tags

to the zone representing the model.

<CDB:Zone>

 <Conformal mode="..."/>

</CDB:Zone>

The conformal modes are listed in Table 6-24 below.

Table 6-24: Conformal Modes

Conformal Mode

Absolute

Point

Vertex

Line

Plane

Surface

6.7.1 Non Conformal (Absolute) Mode

When attributed as a Non Conformal model, none of the model vertices are

conformed to the underlying terrain. Instead the model’s Z-values are used as-is, as

elevation values. As a result the model is absolutely positioned and behaves

independently of the terrain. The shape and orientation of the model is preserved.

This conformal mode is typically used for the modeled representation of point-

features. Typical use-cases include buildings, trees, and poles.

6.7.2 Point Conformal Mode

The Point Conformal mode conforms a single point of the model (its origin) onto the

underlying terrain. All of the other model vertices are translated along the Z-axis; as

a result, the shape of the model is preserved by this conformal operation. In effect,

the Point Conformal mode dynamically positions a model on the underlying terrain so

as to preserve the model’s relative altitude over the terrain. Point-conforming is the

default conformal mode for the modeled representation of point-features. Typical

use-cases include buildings, trees, and poles.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-46

© 2016 Presagis. All Rights Reserved.

Figure 6-37: Origin Conformal Mode

6.7.3 Vertex Conformal Mode

The Vertex Conformal mode conforms each of the vertices of a model on the

underlying terrain. The shape of the model is not preserved by this conformal

operation. The model’s XY plane defines a reference plane used by client-devices to

adjust the elevation of each of the model’s vertices. This conformal mode is used for

3D models that represent typically long 3D lineal features or large 3D areal features

that need to follow the terrain profile. Typical uses include fences, walls, trenches,

and forest canopies.

Terrain profile

Model origin

H
v

O
model

E
t
 x

y

z

z

y

x

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-47

© 2016 Presagis. All Rights Reserved.

Figure 6-38: Vertex Conformal Mode Example

6.7.4 Line Conformal Mode

The Line Conformal mode conforms each of the two reference vertices of the “linear”

model on the underlying terrain. All of the other model vertices are sheared along

this axis; as a result, the shape of the model is not preserved by this conformal

operation. The model’s XY plane defines a reference plane used by client-devices to

adjust the elevation of the two reference vertices. This conformal mode is used for

models that represent lineal features such as powerlines and monorails.

 Terrain profile

Conform vertices to terrain

H
v

E
t

E
v

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-48

© 2016 Presagis. All Rights Reserved.

Figure 6-39: Line Conformal Mode

The line that is used to specify the conforming is defined by a Face node with the

following XML tags:

<CDB:Face>

 <Conformal_Line/>

</CDB:Face>

This Face node defines a single line with two vertices, the first one, Vs, being the start

and the second, Ve, the end of the line.

6.7.5 Plane Conformal Mode

The Plane Conformal mode conforms each of the three reference vertices of the

“planar” model on the underlying terrain. The resulting three vertices define a model

transformation matrix that can then be applied to the vertices of the model. As a

result, the shape of the model is preserved by this conformal operation, but the model

Terrain profile

Elevvs

Elevve

x

y

zInto Terrain
coordinates

z

y

x

Vs Ve

z

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-49

© 2016 Presagis. All Rights Reserved.

undergoes a change in pitch and roll angles. Given this property, there are relatively

few cases where this conformal mode can be used
61

. However, as shown in Figure

6-41, this conformal mode is required when conforming the curved segments of 3D

(raised profiled) modeled road features.

Figure 6-40: Plane Conformal Mode

61 Man-made structures and tree vegetation do not tilt regardless of the terrain they are on.

Terrain
profile

z

y

x

z

y

x

Elevation
Rotate

and
Translate

Into Terrain
coordinate

s

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-50

© 2016 Presagis. All Rights Reserved.

Figure 6-41: Application of Line and Plane Conformal Modes on 3D Roads

The plane that is used to specify the conforming is defined by a Face node with the

following XML tags:

<CDB:Face>

 <Conformal_Face/>

</CDB:Face>

The Face node has exactly 3 vertices defining the plane used for the conforming. The

only restriction on these 3 vertices is that they must not be collinear.

6.7.6 Surface Conformal Mode

This conformal mode is used for models whose points, edges and surfaces must all

conform exactly to the underlying terrain. The Surface Conformal mode requires that

the model’s edges and surfaces be clipped to the underlying terrain. The original

vertices and the added vertices resulting from the clipping operation are conformed to

the underlying terrain. As a result, the shape of the model is not preserved by this

Line Conformal
T2DModels

Plane Conformal
T2DModels

V
p1

V

p2
= V

s

V
s
 V

e
=

V

p2

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-51

© 2016 Presagis. All Rights Reserved.

conformal operation. This conformal mode is primarily used for the modeled

representation of 2D surface-feature such as paint markings and other terrain

overlays. In addition, it can be used for 3D models that represent typically long or

large 3D lineal and 3D areal features that need to perfectly follow the terrain profile.

Note that in most cases, the vertex conformal mode provides an adequate solution for

3D models and is more economical to use than the surface conformal mode.

Figure 6-42: Surface Confomal Mode

6.8 Model Levels-of-Detail

A levels-of-detail model structure is essential when the intent is to use a model in a

real-time application such as flight simulation. The level-of-detail mechanism

provides client-devices with the essential structure for deterministic operation.

Deterministic operation can be achieved only if a client-device can:

 control the paging bandwidth from the CDB main storage device

 control client-device processing load

 control client-device memory footprint

 control run-time publishing processing load and

 control run-time publishing memory footprint

For this reason, it is recommended to create LODs, especially for complex Models,

and for models that are used extensively, in great density in the CDB. This is most

critical for geospecific cultural models (especially in densely modeled geospecific

areas of the synthetic environment) since they can consume a significant portion of

 Terrain profile

Clip and conform triangles to terrain

Clipped vertices
z 3

z 4

z 3

z 4

Elev
v

Elev
v

Elev
v

Elev

v

Elev

c

Elev
c

V

1

V

2

V

3

V

4

C

1

C

1

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-52

© 2016 Presagis. All Rights Reserved.

the paging bandwidth and memory footprint of the client-devices. As a corollary,

simple Models should not be made more complex by adding unnecessary level of

details. The CDB Specification provides rules for determining model complexity,

and selecting the appropriate LOD, as defined in this section.

OpenFlight LOD nodes now support two methods of specifying the criteria to

determine if a level of detail is active, that is if the user application should traverse

the node and its children. The first method, the classic one, is to specify the switch in

and switch out distances in real world units. Using this method, a level of detail is

active when the distance from the viewpoint to the center of the LOD is within the

switch-in and switch-out distances. The second method uses the Significant Size

associated with the LOD node to determine when to activate the node. The CDB

Specification requires using the second method as it makes the subject (i.e., the

model) independent from its observers (i.e., the client-devices).

There are several problems associated with the classic, range-based method. In a

visual system for instance, the switching distance should be based on both range and

the system resolution of the entire visual system; a database designed to rely solely on

a range-based switching criteria is not truly portable, especially if the intent is to use

it on systems with wildly different visual resolution. Furthermore, the blending or

morphing of models solely based on range criteria can lead to undesirable effects.

When the viewpoint moves quickly, the distance over which the model is LOD-

transitioning should be large enough to avoid the “popping-in” of the higher LOD

version. On the other hand, if the viewpoint is moving very slowly, the distance over

which the model is LOD-transitioning should be reduced to avoid the “LOD-

ghosting” of the higher LOD version. These two constraints make implicit

assumptions on the model’s speed. In applications where the aircraft’s flight regime

varies considerably (V22 for example), it is impossible to find a single set of LOD

start and end points that simultaneously cater to all flight modes (hover versus cruise).

Here again, a database design that directly encodes the start and end points of a

model’s LOD transition is not truly portable, because it makes implicit assumptions

on the speed it will be used for. Thus, in a tactical fighter application, the start and

end points of a model’s LOD transition need to be widely spaced apart to prevent a

popping effect at the onset of the LOD transition. Conversely, in a tank application,

the start and end points of a model’s LOD transition need to be much more closely

spaced to prevent a ghosting effect as the higher LOD model is blended-in. If the

client device wants to implement some form of transition between LODs, the criteria

should be based on a user-defined duration. Transitions between LODs can involve

fading in the next LOD while fading out the current one. That fading operation

should not last forever. It should be accomplished in a relative short period of time.

The second method to transition from one LOD to the next is to use morphing. In the

case of morphing, the transition period is less critical because the client-device

(typically an Image Generator) does not blend-in two models together.

The consequences of such implicit assumptions result in a database that is highly

client-device, and application-specific.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-53

© 2016 Presagis. All Rights Reserved.

For all these reasons, the CDB Specification has selected the second method to

control the LOD mechanism.

6.8.1 LOD Node Types

Two methods exist to implement LODs, addition or exchange. The two methods can

be used simultaneously and are not mutually exclusive.

In the first method, details are progressively added to the model, as the viewpoint gets

closer. With the second method, different representations of the same model are

substituted for one another. Figure 6-43: Exchange and Additive LOD Nodes,

illustrates the general organization of Models with both types of LOD nodes.

Figure 6-43: Exchange and Additive LOD Nodes

The LOD nodes 1, 4, and 5 represent Exchange LODs and are mutually exclusive.

LOD nodes 2 and 3 are considered Additive LODs because they do not have other

immediate sibling nodes of type LOD.

6.8.1.1 Note on Additive LODs

An Additive LOD is just a special case of the more general Exchange LOD paradigm.

When a LOD node has no sibling LOD, it becomes an Additive LOD node. That

does not change the fact that at most one LOD node gets selected based on its

Significant Size.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-54

© 2016 Presagis. All Rights Reserved.

6.8.2 LOD Node Ordering

The OpenFlight Specification does not impose any constraint on the ordering of

sibling LOD nodes. For this reason, all nodes would have to be tested because the

runtime system is searching for the LOD node with the smallest Significant Size that

still contributes to the resulting image.

Consequently, the CDB Specification requires that LOD nodes be ordered. This

ordering improves client device performance without being specific to any client-

device (since it can be costly to test all nodes to select just one).

To illustrate the need for ordering LOD nodes, consider the case where a modeler

needs to create a realistic representation of a small town with several hundred

buildings. The level of details of the town must accommodate low altitude flight with

a helicopter. After a few tests, the modeler decides to model each building with three

levels of details as shown in Figure 6-44: Exchange LOD Nodes.

Figure 6-44: Exchange LOD Nodes

Now, consider the case where the simulated ownship has an entire city visible

(thousands of Models) within the field of view of the visual system. This situation

forces the IG client device to test all of the LOD nodes of all Models if these nodes

are not sorted. However, if the nodes are sorted, it is possible to test only a subset of

all nodes to find out which ones to display. Which order is best? Ascending or

descending order?

If all buildings are visible, the majority will be located far from the viewpoint while

only a few will be near the viewpoint. In general, only few models fit near the

viewpoint, and that number increases with the distance.

If LOD nodes are sorted in ascending order of their Significant Size, the client device

quickly selects the finest LOD of Models located near the viewpoint. Indeed, only

one test is necessary to select the correct LOD node in these models. However, for

Models located farther, the client device has to perform two or three tests to select the

correct nodes. If LOD nodes are sorted in ascending order, a single test is done on a

small number of LOD nodes while two or three tests are performed on the majority.

On the other hand, if nodes are sorted in decreasing order of their Significant Size, the

client device performs three tests to select the finest LOD only on a limited number of

models near the viewpoint. For a larger number of models, two tests are required.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-55

© 2016 Presagis. All Rights Reserved.

Moreover, for an even larger number of models, the ones located far away from the

viewpoint, a single test is enough to select the coarsest LOD, if it gets selected at all.

The second approach allows for a smaller number of tests to select the correct LODs,

and is the method selected by the CDB Specification. As a result, LOD nodes must

be sorted in decreasing order of their Significant Size attribute. As a corollary,

the CDB Specification also requires that sibling LOD nodes be mutually

exclusive.

6.8.3 LOD Significant Size

The concept of a Significant Size is a recent improvement of the OpenFlight

Specification. When a finer model LOD is created, the modeler typically adds

additional geometric detail, additional features (such as markings), or refines the

shape of curved surfaces (such as engines, wheels), etc. When assigning a Significant

Size to a model LOD, the modeler needs to answer the following question: When I

created a new model LOD, I did so to create additional detail in my model. What is

the largest dimensional change in geometry for this new model LOD? In other

words, what is the largest dimensional difference between this LOD and its previous

and coarser LOD? In effect, the value of Significant Size corresponds to the

“modeling difference” between the LOD and its previous coarser LOD. At runtime, a

client-device converts this modeling difference value from its real-world dimensional

value into a viewing error value (typically measured in pixels or degrees). The client-

device can then select the appropriate model LOD because it knows that the

modeler’s intent in creating the LOD was to show features, eliminate all modeling

discrepancies whose dimension equaled that of the Significant Size dimension

associated with that model’s LOD. This contribution of the LOD to the scene is

based on the LOD’s Significant Size as well as other parameters (such as system

resolution) relevant to the simulation model used by the client device.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-56

© 2016 Presagis. All Rights Reserved.

Version 16.0 of the OpenFlight Specification introduces the concept of Visual Significance that
is different from the concept of Significant Size. The concept of Visual Significance
translates in two fields called Significance and they are found in the Group Record
and Object Records. Here is the definition of this field as found in reference [11]:

“Significance can be used to assist real-time culling and load balancing mechanisms,
by defining the visual significance of this group with respect to other groups in the
database. Normally the value of this attribute is zero”.

The CDB Specification mandates a value of zero for Visual Significance; the value zero

indicates the object or the group has no particular significance and is not more or
less important than any other objects or groups. Any other values, whether negative
or positive, are reserved for future use by this Specification.

6.8.3.1 Definition of Significant Size

The Significant Size is defined as the “size” of the model, expressed in meters. By

extension, it applies equally well to a submodel represented by an Additive LOD. In

the case of an Exchange LOD, the Significant Size is the difference between two

representations of the model or submodel.

6.8.3.2 Estimating the Size of the Model

Many models have shapes that resemble a cube (with roughly equal length, width,

and height), and thus their significant size can be simply estimated by the length of

the diagonal of their bounding box. As the shape of a model departs from that of a

simple cube, either with respect to aspect ratio, or with respect to the amount of

negative space within its bounding box, the model’s significant size should be

decreased proportional to the amount of departure.

6.8.3.3 How to use the Significant Size

The Significant Size is used to distribute models into appropriate CDB LODs. Once

a value is assigned to the coarsest LOD of a model, subsequent LODs of the same

model can be distributed to subsequent CDB LODs. Use Table 3-1 and the model

Significant Size to identify the CDB LOD it belongs to.

For instance, if the size of a building is estimated to 75 meters, then its coarsest LOD

will be stored in CDB LOD 0, according to Table 3-1. On the other hand, a 2-meter

park bench will appear in CDB LOD 5.

6.8.4 LOD Limits

The number of vertices per LOD is limited to ensure a smooth progression between

all representations of the same model. Table 6-25 below gives the maximum number

of vertices allowed for each Model-LOD.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-57

© 2016 Presagis. All Rights Reserved.

Table 6-25: Maximum Number of Vertices per Model-LOD

Model-LOD Maximum Number of Vertices CDB LOD

0 128 CDB LODc + 0

1 512 CDB LODc + 1

2 2048 CDB LODc + 2

3 8192 CDB LODc + 3

4 32768 CDB LODc + 4

5 131072 CDB LODc + 5

6 524288 CDB LODc + 6

7 2097152 CDB LODc + 7

The table above shows that a model is allowed up to 8 levels of details, numbered

from 0 to 7. Model-LOD 0 is the coarsest level of detail of the model and may count

up to 128 vertices. As the complexity of subsequent Model-LODs augments, a higher

vertex count is permitted. The CDB LOD that is associated with a Model-LOD is

expressed relative to the CDB LOD assigned to its coarsest representation, designated

by CDB LODc.

6.8.4.1 How to Assign CDB LODs

To illustrate the use of Table 6-25, take a 3D model representing a building with three

representations:

 Coarsest LOD:

o 28 vertices

o Significant Size estimated to 25 meters

 Medium LOD:

o 2244 vertices

o Significant Size estimated to 4 meters

 Finest LOD:

o 10320 vertices

o Significant Size estimated to 10 cm

The CDB LODs are first established by looking up the Significant Sizes of the three

representations in Table 3-1:

 Coarsest LOD:

o 25 m is CDB LOD 2

o This is CDB LODc

 Medium LOD:

o 4 m is CDB LOD 4

 Finest LOD:

o 10 cm is CDB LOD 10

We then use the vertex count to identify the Model-LOD in Table 6-25:

 Coarsest LOD:

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-58

© 2016 Presagis. All Rights Reserved.

o 28 vertices is Model-LOD 0

 Medium LOD:

o 2244 vertices is Model LOD 3

o Should be assigned to CDB LODc (2) + 3 = 5

 Finest LOD:

o 10320 vertices is Model LOD 4

o Should be assigned to CDB LODc (2) + 4 = 6

Since all representations of the model must meet both the constraints associated with

the Significan Size and the Vertex Count, the final CDB LODs are the maximum

ones identified above.

 Coarsest LOD:

o CDB LOD 2

 Medium LOD:

o CDB LOD 5

 Finest LOD:

o CDB LOD 10

6.8.5 LOD Generation Guidelines

The following guidelines should help modelers produce efficient CDB models for use

in real-time environments. There are two way of proceeding; one way is to create the

finest representation of the model and then simplify it until the coarsest representation

is obtained. The other way consists in creating the coarsest representation first and

then refining it until the desired representation is obtained.

In general:

 The coarsest Model-LOD is the simplest possible geometric representation of

the model using at most 128 vertices.

 A coarser Model-LOD is created by removing details from a finer Model-

LOD.

 Alternately, a finer Model-LOD is created by adding details to a coarser

Model-LOD.

 In both cases, the size of the details that are removed or added to a Model-

LOD should be consistent with its Significant Size.

 Model-LOD 0 is mandatory; the others are optional and exist only if Model-

LOD 0 isn’t sufficient to represent the model with a proper level of detail.

 Multiple Model-LODs do not need to be consecutive.

6.9 Model Switch Nodes

A Switch Node allows the selection of zero or more children by invoking a selector

mask. Any combination of children can be selected per masks and the number of

definable masks is unlimited. The CDB Specification makes use of OpenFlight

Switch Nodes to control the state of Model Components (zones and points).

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-59

© 2016 Presagis. All Rights Reserved.

6.9.1 Definition

XML tags in the comment record are added to the switch’s primary record to identity

it as a CDB Switch.

Table 6-26: XML Tags to Create a CDB Switch

<CDB:Switch name = "switch name">

 ... switch attributes

</CDB:Switch>

The switch must contain one mask per state. As an example, if the switch has 3

children, each representing a separate state of the parent zone, then the switch needs 3

masks, each selecting one child.

In addition to defining a mask for each switch state, the CDB Specification demands

that each mask be named. The name of the mask must be representative of the state

selected by that mask. The actual name is at the discretion of the modeler.

The corresponding OpenFlight records are as follow:

Table 6-27: OpenFlight Records to Create a CDB Switch

SWITCH

COMMENT (mandatory)

INDEXED STRING

Note that the first mask, mask index 0, is the default mask. This means that the value

of the Current Mask field in the Switch record must be 0.

6.9.2 Usage

6.9.2.1 Articulations with Discreet Positions

Switch nodes provide an alternative to DOF nodes when an articulated part is

implemented for only a few positions. An example of this use of switches is the

control of undercarriage or control surfaces on aircraft. Suppose the modeler wants to

represent the flaps in two distinct positions: flaps up and flaps down. A switch is the

simplest way to implement these two flaps positions. In this example, the switch

name could be “Flap Control” and the two mask names could be “Flap Up” and “Flap

Down”.

Suppose the modeler wants to provide two positions for the door on a hangar: open

and close. In addition, when the door is open, the modeler provides a representation

for the interior of the hangar, which is not the case when the door is closed. Again,

the use of a switch is appropriate to provide the control over the door position. A

proper name for the switch would be “Door Position” and the appropriate names for

the two masks would be “Door Closed” and “Door Open”.

6.9.2.2 Damage States

Switch nodes can be used to select one of many modeled representations of damages.

A zone has at least a normal (usually undamaged) state. When other states exist, an

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-60

© 2016 Presagis. All Rights Reserved.

OpenFlight switch node is used to select which state is active. A single damage state

can be active at any time. Figure 6-45: General Damage State Tree Structure shows

the general organization of a zone with several states.

Figure 6-45: General Damage State Tree Structure

Each damage state represents the zone with a certain level of damage. This level of

damage is expressed as a percentage from 0 to 100%. A level of damage of 0 %

means the zone is not damaged at all. At the opposite end, a percentage of damage of

100 % indicates the zone is completely destroyed.

To identify a damage state switch, use the following XML tags in the switch

comment record.

Table 6-28: XML Tags for Damage State Switch

<CDB:Switch name = "Damage_State">

 <Damage_Level>...</Damage_Level>

</CDB:Switch>

The XML element <Damage_Level> is a list of percentages representing the

transitions between child nodes of the switch. The list counts ‘n-1’ entries where ‘n’

is the number of states.

The percentages representing the transitions are limited to the range [0, 99]. The

value 100 is not allowed because the level of damage must exceed the transition value

in order to select the correct state.

To illustrate the concept of level of damage, assume a damage state switch has 3 child

nodes representing the zone in normal, damaged, and destroyed states. Also, assume

that the modeler’s intent is to switch to the damaged state when the level of damage

exceeds 25 %, and to switch to the destroyed state when the level of damage exceeds

75 %. Here, the XML tag associated with the switch should look like this.

Table 6-29: Example of a Damage State Switch with Two Transitions

<CDB:Switch name = "Damage_State">

 <Damage_Level>25 75</Damage_Level>

</CDB:Switch>

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-61

© 2016 Presagis. All Rights Reserved.

The ordering of damage states must be from left (normal state) to right (destroyed

state). All intermediate states must represent increasingly damaged states from a

slightly damaged state to an almost destroyed state. The number of states is left to the

discretion of the modeler.

Figure 6-46: Damage States Ordering

While the number of damage states is left to the discretion of the modeler, some

choices are better than others. Since a Model is meant to be used in a simulator and

since many simulators are DIS-compliant, it is suggested to create the same number

of CDB damage states as there are DIS damage states for the corresponding entity.

For instance, if the Model represents a DIS land platform such as the M1A2 tank, the

modeler could create four damage states to match the four corresponding DIS damage

states labeled No Damage, Slight Damage, Moderate Damage and Destroyed.

The DIS and the HLA standards are relatively vague regarding the definition of

damage states. In the case of the DIS standard, the damage state is a field that

belongs to a structure called the Entity Appearance. The field has only 2 bits and,

accordingly, accommodates four different values. For HLA, version 2 of the RPR-

FOM defines the damaged appearance as a 32-bit enumeration for which only 4

values have been defined so far – the same values as the one defined by DIS, that is

No Damage, Slight Damage, Moderate Damage and Destroyed.

For both DIS and HLA, it is obvious that the damage state is meant to be a visual

damage state.

The question to answer is the following: “What should the universally accepted visual

appearance be for a slightly (or moderately) damaged state?”

In the DIS world, a platform is often qualified in terms of Mobility and Fire Power
62

.

Using these two criteria, it is possible to define the following guidelines.

62 Note that, on top of the Damage State field, the DIS Entity Appearance structure has two flags to describe the Mobility

and Fire Power of the entity. This is also true for HLA and version 2 of the RPR-FOM which provides for two flags to

describe the fire power and mobility of a physical entity on top of the field used to describe the damage state.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-62

© 2016 Presagis. All Rights Reserved.

 A slightly damaged model should represent a platform with limited mobility.

However, its firepower is intact and it should be apparent that the entity is still

capable of firing its weapons.

 A moderately damaged model should represent a platform for which both

mobility and firepower are reduced without being completely out of service.

As a corollary, here are the definitions of normal and destroyed states.

 An undamaged model should represent a platform for which both mobility

and fire power are completely operational.

 A destroyed model should represent a platform for which both mobility and

firepower are completely out of service.

6.9.2.3 Temporal Anti-aliasing

Temporal anti-aliasing may be achieved with the use of special textures. These

textures are often required to aid IG client-devices to eliminate strobing effects on

model rotating objects such as helicopter rotors, aircraft propellers, or vehicle wheels.

Figure 6-47: Example of a Texture Representing a Rotor, is an example of a semi-

transparent texture used to simulate a rotating helicopter rotor.

Figure 6-47: Example of a Texture Representing a Rotor

Motion blur textures are general base textures with a Texture Kind of S001. The

Texture Index (Tnn) is used to sequentially number several motion blur textures

representing the same object.

The use of motion blur textures can be combined with DOF and Switch nodes to

produce efficient switching between several versions of a single rotating part.

The following subtree illustrates how four versions of the above rotor could be

modeled using one solid version and three blurred versions.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-63

© 2016 Presagis. All Rights Reserved.

Figure 6-48: Multiple Versions of Rotating Parts

In this example, three textures are used to represent an increasingly blurred rotor.

In order to detect the presence of the above construct, the following XML comment

must be added to the switch node.

Table 6-30: XML Tags for Motion Blur Switch

<CDB:Switch name = "Motion_Blur">

 <Blurriness>...</Blurriness>

</CDB:Switch>

The children of the switch node could be any OpenFlight nodes. Most likely, the

nodes that contain the geometry will be OpenFlight Object nodes.

When modeling solid and blurred objects in this manner, the CDB Specification

requires that the leftmost child node contains the solid version of the object while the

sibling nodes to the right contain increasingly blurred version of the same object.

The XML element <Blurriness> is a list of percentages representing the transitions

between child nodes of the switch. The list counts ‘n-1’ entries where ‘n’ is the

number of child nodes.

The percentages representing the transitions are limited to the range [0, 99]. The

value 100 is not allowed because the level of blurriness must exceed the transition

value in order to select the correct child node.

To illustrate the concept of level of blurriness, assume a motion blur switch has two

child nodes. Also, assume that the modeler’s intent is to switch to the second node

when the level of blurriness exceeds 10 %. Here, the XML tag associated with the

switch should look like this.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-64

© 2016 Presagis. All Rights Reserved.

Table 6-31: Example of a Motion Blur Switch with One Transition

<CDB:Switch name = "Motion_Blur">

 <Blurriness>10</Blurriness>

</CDB:Switch>

6.10 Model Articulations

6.10.1 Definition

An OpenFlight DOF node is used to implement the concept of a CDB Articulation.

The node gives the modeler controls over all 9 degrees of freedom, translation,

rotation and scaling on all 3 axes. Generally, only one degree of freedom is allowed

at a time and most often, that single degree of freedom is a rotation about a single

axis. However, the modeler is free to allow any translation, rotation and, even

scaling; even though stretching an articulation does not usually produce a realistic

effect.

Since only one articulation is allowed per zone, the zone name is sufficient to identify

and control the DOF node.

A CDB Articulation node is an OpenFlight DOF node with attributes in the form of

XML tags. The table below presents the syntax of the XML tags stored in the DOF

node’s comment record.

Table 6-32: XML Tags for DOF

<CDB:Articulation name="name" id="id">

 <Translation>

 <X rate="value" />

 <Y rate="value" />

 <Z rate="value" />

 </Translation>

 <Rotation>

 <X rate="value" />

 <Y rate="value" />

 <Z rate="value" />

 </Rotation>

 <Scaling>

 <X rate="value" />

 <Y rate="value" />

 <Z rate="value" />

 </Scaling>

</CDB:Articulation>

The above XML tag is necessary in two circumstances:

1. The articulation represents a DIS Articulated Part.

2. The articulation is to be animated automatically.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-65

© 2016 Presagis. All Rights Reserved.

A CDB Articulation node has an optional name that is used to self-document the

articulation. The optional identifier provides the corresponding DIS Articulated Part.

It is suggested to use a name inspired from the DIS Articulated Part ID, when the

identifier is supplied. For instance, DIS identifies as Primary Gun 1 the articulated

part whose ID is 4416. That example would generate the following XML tags:

<CDB:Articulation name="Primary Gun 1" id="4416" />

Section 4.7.3 in reference [4] provides a list of DIS Articulated Part IDs.

It is possible to specify an optional Rate-of-Change for each Degree of Freedom

along their X, Y, and Z axes for Translation, Rotation, and Scaling. The translation

rate is expressed in meters per second. The rotation rate is expressed in degrees per

second. Finally, the scaling rate is in units per second. When not specified, a default

rate of zero is assumed.

For instance, a primary radar antenna that rotates at a rate of 10 degrees per second

about its Z-axis would require the following XML tags:

<CDB:Articulation name="Primary Radar 1" id="5376">

 <Rotation>

 <Z rate="10"/>

 </Rotation>

</CDB:Articulation>

Another example, to illustrate how to attribute a rotating wind mill; assuming the mill

rotates about the Y-axis at a rate of 5 degrees per second:

<CDB:Articulation>

 <Rotation>

 <Y rate="5"/>

 </Rotation>

</CDB:Articulation>

Gimbal limits are mandatory on DOF nodes and the appropriate flags must be set to

specify which degrees of freedom are controlled by a particular articulation. The

Flags field is located at offset 376 in the OpenFlight DOF record and its value cannot

be zero because the articulation must control at least one degree of freedom.

6.10.2 Usage

6.10.2.1 Rotating Parts

A common problem in simulation is to correlate the linear speed of a model with the

angular speed of its wheels. More generally, the client device simulation models

often require the dimension of rotating parts. This information can be obtained from

the zone extent; the bounding box surrounding a zone provides the dimension of

rotating parts.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-66

© 2016 Presagis. All Rights Reserved.

6.11 Model Light Points

The CDB Specification does not make a distinction between light points and light

sources. Both represent real lights that emit light and that can illuminate neighboring

objects. In most current visual systems, a light point is a simple representation of a

point source of light when viewed from a distance; it has no observable lighting effect

on its immediate surroundings. In real-life however, as an observer moves closer to

the light, its lighting or illuminating effect on the surrounding objects becomes

increasingly observable; furthermore, the actual shape of the light also becomes more

distinct.

In a typical simulator, client-devices may choose to limit the representation of the

light to a single point and neglect the illuminating effect of the light on neighboring

objects and terrain. For this reason, it is up to the client (and its RTP) to determine

whether a light can illuminate its surroundings or not; the decision is based on the

type of light and the inherent capabilities/capacity of the client.

Another point to consider is the fact that a light may have a very different

representation depending on the client device. For instance, consider the visual

representation of a light by an IG compared with the representation required by a

radar system, NVG device or a FLIR device.

For all of these considerations, the CDB Specification has adopted the following

approach in defining lights. The OpenFlight file defines only the position, direction

and the name of the light type; no other attributes are specified. The CDB

Specification provides a very elaborate light type naming convention. This

convention permits clients to internally derive all of the properties and parameters

needed to render the light. The approach is entirely device-independent. Modelers

need not concern themselves with hundreds of parameters, many of which are often

specific to underlying algorithms within the client. The naming convention ensures

that the client has all of the information needed to capture the modeler’s intent.

Because the approach is device-independent, the rendering is limited only by the

client’s capabilities, not by the database itself.

As a result, lights in OpenFlight are defined by inserting an Indexed Light Point

record into the OpenFlight scene graph. A vertex and a normal are stored in a Vertex

List record that defines the position and direction of the light. The name of the light

type is stored in the Light Point Appearance Palette record.

The light type’s name fully defines the appearance, animation and other characteristic

relevant to the field of simulation. It is the responsibility of the client to supply the

internal parameters that correspond to each of the light types supported by the CDB

Specification.

Light type naming conventions are defined in Section 2.3, Light Naming, and the list

of names is presented in Appendix E.

A Vertex List record must follow the OpenFlight Indexed Light Point record. The list

of vertices contains one vertex if a single light point is defined. The list contains

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-67

© 2016 Presagis. All Rights Reserved.

several vertices when multiple independent light points are defined. An optional

matrix and replication count permits the definition of a light string.

Table 6-33: OpenFlight Records for a Light Point

INDEXED LIGHT POINT

MATRIX (optional)

REPLICATE (optional)

PUSH LEVEL

VERTEX LIST

POP LEVEL

6.12 Model Attributes

This section defines a general attribution mechanism to add CDB and Vendor-

specific attributes to any OpenFlight nodes. These attributes follows the rules of

inheritance; they are automatically propagated from higher levels through lower

levels of the OpenFlight graph. A child node inherits the attribution of its parent

node.

6.12.1 Definition

Model attributes are added to OpenFlight nodes through a Comment record

containing XML tags. The general format is as follow:

<CDB:node name="...">

 <ns:Attribute name="..." value="..."/>

 ... other attributes

</CDB:node>

<CDB:node> identifies the node to which the attributes are added. The node token

can take the following values:

 Zone

 Point

 Group

 Object

 Switch

 Face

 Mesh

 Articulation

 Light

 XRef

 LOD

The XML namespace (ns) of the attribute is optional; when present it identifies the

owner of the attribute. When not specified, the default namespace is CDB.

Any CDB Attributes that are listed in section 5.7.1.3 can be used as node attributes.

The name of the attribute is the key to search for the matching symbol into the

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-68

© 2016 Presagis. All Rights Reserved.

metadata file named CDB_Attributes.xml; this file is described in section 5.1.7 and

provides the means to interpret the value of the attribute.

6.12.2 Vendor Attributes

A vendor attribute is identified by its XML namespace. The Specification uses the

CDB namespace; a vendor may use any other string to identify itself. The definition

of vendor attributes must be stored in Vendor_Attributes.xml.

It is understood that vendor attributes are not interpreted by any other client-devices

other than those supported by the vendor. Reliance by a vendor on Vendor Attributes

can reduce the interoperability of the CDB with other vendors.

6.12.3 Examples

To add the LPH attribute to a CDB Light node, use the following comment:

<CDB:Light>

 <Attribute name="LPH" value="300"/>

</CDB:Light>

Assume a T2DModel contains the Los Angeles International Airport as one of its

2DModels; the zone associated with the airport could use the APID attribute in the

following manner:

<CDB:Zone name="Los Angeles International Airport">

 <Attribute name="APID" value="KLAX"/>

</CDB:Zone>

A company named “Acme Inc.” uses the string “Acme” as the namespace qualifying

its vendor-specific attributes. If the company wants to add the MyAttr attribute to a

CDB Articulation, it could do so by using the following XML tags:

<CDB:Articulation name="Primary Gun 1" id="4416">

 <Acme:Attribute name="MyAttr" value="-1.23"/>

</CDB:Articulation>

To interpret the attribute, a client application searches the file Vendor_Attributes.xml

for an attribute whose symbol is MyAttr. When found, the application knows how to

parse and interpret the attribute’s value. Furthermore, if the client application

recognizes the identification of the vendor (Acme:), it knows what to do with MyAttr.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-69

© 2016 Presagis. All Rights Reserved.

6.13 Model Textures

To achieve a certain degree of realism, models require the use of textures.

Furthermore, textures add details to a model without increasing its polygon count.

This is excellent to reduce the complexity of the geometry but at the same time, it

creates a load management issue for client devices that are interested in these

textures. In the case of GTModels and MModels, textures are separate files that must

be loaded after the model geometry files are read and loaded by client devices; in the

case of GSModels and T2DModels, the textures can be loaded concurrently with the

model geometry files. A client device discovers the existence of textures while

loading the model.

One of the goals of the CDB Specification is to allow client devices to implement

efficient load management mechanisms. For this reason, the Specification decouples

as much as possible the texture aspect of a model from its geometry aspect. This is

done by storing all textures related to Models in separate directories.

Recall that the texture filenames itself are constructed from the dataset number, the

texture type (selectors 1 and 2), and the texture LOD and these are then concatenated

to a modeler-specific texture name. Section 6.13, Model Textures, provides a

description and usage of all of the CDB texture types for Models. The values of

component selectors 1 and 2 convey a semantic meaning to the texture (time-of-year,

paint scheme, night map, light map, normal map, etc) and determine whether the

texture is to be used as base texture or as a subordinate texture and whether the

texture is switchable (described in the next section).

6.13.1 Handling of Multi-textures

In OpenFlight, several types of textures can be applied in various combinations.

Textures fall in two broad categories: Base and Subordinate.

6.13.1.1 Base Texture Layer

Base textures
63

 are set of mutually exclusive model textures that provide texture

color/intensity modulation for the model. While a model can have many base

textures, only one base texture can be referenced and applied to model geometry at a

time.

The CDB Specification supports the following type of Base Textures:

(1) Year-Round Texture: A year-round texture used with GTModels, MModels,

GSModels, T2DModels . In the case of MModels, base-textures are often

replaced with an appropriate Paint Scheme texture (Uniform, Camouflage or

Airline).

(2) Quarterly Textures: A set of 4 textures, each representative of a quarter within

the calendar year used with GTModels, GSModels, T2DModels . The textures

63 The CDB Specification uses the term “base texture” the same way as OpenFlight and Creator do.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-70

© 2016 Presagis. All Rights Reserved.

must be provided as a complete set, i.e., it is assumed that all 4 textures of the

same kind (i.e., all four textures have their component selector 1 set to 003) and

are all present in the model’s texture directory. The presence of a quarterly texture

reference in model geometry tells the client-device that a quarterly texture set is

available. This allows the client-device to select any one of the available 4

textures at rendering time. Only one of the textures need be referenced by the

OpenFlight scenegraph geometry, preferably the third quarter texture. It is also

assumed that all 4 textures share the same UV mapping.

(3) Monthly Textures: A set of 12 textures, each representative of a month within

the calendar year used with GTModels, GSModels, T2DModels . The textures

must be provided as a complete set, i.e., it is assumed that all the 12 textures are

of the same kind (i.e., all twelve textures have their component selector CS1 =

002) and are all present in the model’s texture directory. The presence of a

monthly texture reference in model geometry tells the client-device that a montly

texture set is available. This allows the client-device to select any one of the

available 12 textures at rendering time. Only one of the textures need be

referenced by the OpenFlight scenegraph geometry, preferably the June texture. It

is also assumed that all 12 textures share the same UVmapping.

(4) Uniform Paint Scheme Textures: Used on MModels with relatively uniform

paint schemes should make use of this texture kind. Colors are listed in Appendix

O. It is also assumed that all textures share the same UVmapping.

(5) Camouflage Paint Scheme Textures: Used on MModels with camouflage paint

schemes should make use of this texture kind. Camouflages are listed in

Appendix O. It is also assumed that all textures share the same UVmapping.

(6) Airline Paint Scheme Textures: Used on MModels that represent commercial

aviation airliners should make use of this texture kind to implement the airlines

paint scheme and logos. This base texture addresses the need for multiple skins

painted on identical aircraft type. For instance, the B767-300ER is operated by

more than 60 airlines throughout the world. Appendix O provides a complete list

of Airliners. It is also assumed that all textures share the same UVmapping.

(7) Shadow Map Textures: Used on MModels as pre-computed orthographic

projections of the MModel. These textures are base textures used to accelerate

the rendering of MModel shadows. Shadow map usage conventions are described

in section 6.13.5.1, Model Shadow Textures.

(8) Motion Blur: Used on MModels as pre-computed motion blurred textures of

rotating parts (e.g., rotor disks). These textures are base textures used to aid

client-devices in eliminating temporal aliasing artifacts. Motion blur textures

conventions are described in section 6.9.2.3, Temporal Anti-aliasing.

6.13.1.2 Subordinate Texture Layer

Base textures can be supplemented with one or more
64

subordinate textures.

Subordinate textures form a set of model textures that can be used to provide

64 OpenFlight natively permits up to seven subordinate textures for a total of eight textures including the base texture.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-71

© 2016 Presagis. All Rights Reserved.

additional color/intensity modulation or illumination modulation detail to the Base

texture.

The CDB Specification supports the following types of subordinate textures:

(1) Night Map: This subordinate texture is used to represent changes to models in

their night configuration, typically as a result of lighting effects emanating from

inside the model through windows. Night map textures conventions are

described in greater detail in section 6.13.5.3, Model Night Maps.

(2) Detail Texture (Micro/Macro): This subordinate texture is used to add details

to a base texture that lacks the necessary resolution to provide the correct depth

perception. Detail textures conventions are described in greater detail in section

6.13.5.6, Model Detail Texture Maps.

(3) Contaminants: These textures are used to simulate thin layers of matter that

accumulate on surface top. Contaminant textures conventions are described in

greater detail in section 6.13.5.7, Model Contaminant and Skid Mark Textures.

(4) Normal Map: Normal mapping is a technique used for faking the lighting of

bumps and dents; when used in conjunction with a render’s light sources, it can

add surface detail without using more polygons. This subordinate texture is a 3-

component texture that encodes the normals at each texel. Tangent-space

normal maps conventions are described in greater detail in section 6.13.5.5,

Model Tangent-space Normal Maps.

(5) Reflection Map: Conventions are described in detail in section 6.13.5.8, Model

Cubic Reflection Maps.

(6) Light Map: This subordinate texture is used to represent the effect of external

light sources onto a model. Light map textures conventions are described in

greater detail in section 6.13.5.4, Model Light Maps.

(7) Gloss Map: A texture that describes whether a surface is matte or gloss;

described in section 6.13.5.9, Model Gloss Maps.

(8) Material Texture: To specify the composite materials at the level of a single

texel; described in section 6.13.5.10, Model Material Textures.

Client-devices are required to use the modeler supplied layer number to determine the

order in which the subordinate textures are to be rendered. The base layer is always

rendered first, followed by subordinate layer 1, 2, 3, etc. Gaps within the layer

sequence are permitted.

Note that layer numbers are not assigned nor reserved to specific subordinate

textures.

6.13.1.3 Texture Mapping Conventions

The following table provides the texture mapping for use with each kind of textures.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-72

© 2016 Presagis. All Rights Reserved.

Base

Texture

 Subordinate

Texture

Kind Mapping Kind Mapping

001 Modulate 051 Decal

002 Modulate 052 N/A

004 Modulate 053 Modulate

005 Modulate 054 Modulate

006 Modulate 055 Modulate

007 Modulate 056 Add

008 Modulate 057 N/A

009 Modulate 058 N/A

6.13.2 Default Gamma Corrections

The default gamma corrections of 3D model texture datasets are defined by the

following set of parameters found in the Defaults.xml metadata file.

 Default_GSModelTexture_Gamma

 Default_GSModelInteriorTexture_Gamma

 Default_GTModelTexture_Gamma

 Default_GTModelInteriorTexture_Gamma

 Default_MModelTexture_Gamma

If a parameter is not found in Defaults.xml, or if Defaults.xml is not found in the

metadata directory, assume a default gamma correction of 1.0.

See Appendix S for the complete list of default parameters.

6.13.3 Texture Dimension

It is generally accepted by the modeling community to limit texture dimensions to a

power of 2. The CDB Specification goes a step further and enforces this practice.

To preserve the original texture resolution as much as possible, it is suggested to

resize the source texture to the nearest
65

 power of 2. For instance, if a source texture

measures 72 pixels wide by 13 pixels high, it is recommended to resize it to 64 by 16

pixels.

𝑇𝑒𝑥𝑡𝑢𝑟𝑒 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 = 2𝑛 × 2𝑚

Where n and m are positive integers (n, m ≥ 1).

6.13.3.1 Texture Mipmap

The CDB Specification demands that mipmaps associated with a given texture be

present in the texture directory. Furthermore, the Specification requires that mipmaps

be stored in individual files.

65 Note here that we do not recommend resizing to the next power of 2; instead, resize to the nearest power of 2.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-73

© 2016 Presagis. All Rights Reserved.

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑖𝑝𝑚𝑎𝑝𝑠 = max(𝑛, 𝑚) + 1

For instance, a texture whose dimension is 2
3
 × 2

4
 has a total of 5 mipmaps.

6.13.3.2 Texture Size

The naming conventions of all model textures are described in Chapter 3. For texture

file whose name uses the W field, the value of the field is a power of 2 representing

the largest dimension of a (possibly rectangular) texture.

𝑇𝑒𝑥𝑡𝑢𝑟𝑒 𝑆𝑖𝑧𝑒 = 2𝑊

Where W is a non-negative integer (W ≥ 0).

6.13.3.3 Texel Size

For texture file whose name uses the L field, the value of the field is related to the

size of the texels in accordance to Table 3-1: CDB LOD vs Model Resolution.

6.13.4 Texture Palette

The OpenFlight Texture Palette record stores the names of all textures that are

possibly referenced by the model; that includes all base and subordinate textures (i.e.,

all skins and all interchangeable textures). Each palette entry contains the path and

filename of one texture. The CDB Specification demands that the path be relative to

the OpenFlight file.

Below are examples of entries in the texture palette.

6.13.4.1 MModel Example

In the case of a moving model, the OpenFlight file resides in the MModelGeometry

directory; for instance, the M1A2 resides in

\CDB\MModel\600_MModelGeometry\1_Platform\1_Land

\225_United_States\1_Tank\1_1_225_1_1_3_0\

Its main texture is called M1A2 and resides in

\CDB\MModel\601_MModelTexture\M\1\M1A2\

The corresponding palette entry would be

..\..\..\..\..\..\601_MModelTexture\M\1\M1A2\

D601_S005_T001_W11_M1A2.rgb

6.13.4.2 GTModel Example

In the case of a geotypical power pylon model, the OpenFlight file resides in the

GTModel directory

\CDB\GTModel\510_GTModelGeometry\A_Culture\T_Comm

\040_Power_Pylon\Lxx\

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-74

© 2016 Presagis. All Rights Reserved.

Assuming its texture is called Pylon, it resides in

\CDB\GTModel\501_GTModelTexture\P\Y\Pylon\

The corresponding palette entry would be

..\..\..\..\..\..\501_GTModelTexture\P\Y\Pylon\

D511_Sxxx_Txxx_Lxx_Pylon.rgb

6.13.4.3 GSModel Example

In the case of a geospecific model, its OpenFlight file resides in the

GSModelGeometry directory. An example is

\CDB\Tiles\lat\lon\300_GSModelGeometry\Lxx\Ux\

If the model refers to a geospecific texture, it resides in

\CDB\Tiles\lat\lon\301_GSModelTexture\Lxx\Ux\

The corresponding palette entry would be

..\..\..\..\301_GSModelTexture\Lxx\Ux\

latlon_D301_Sxxx_Txxx_Lxx_Ux_Rx_TNAM.rgb

If the model refers to a geotypical texture, it resides in

\CDB\GTModel\501_GTModelTexture\T\N\TNAM

And the corresponding palette entry would be

..\..\..\..\..\..\..\GTModel\501_GTModelTexture\T\N\TNAM\

D511_Sxxx_Txxx_Lxx_TNAM.rgb

6.13.4.4 T2DModel Example

In the case of a tiled 2D model, its OpenFlight file resides in the T2DModelGeometry

directory. An example is

\CDB\Tiles\lat\lon\310_T2DModelGeometry\Lxx\Ux\

If the model refers to a geospecific texture, it resides in

\CDB\Tiles\lat\lon\301_GSModelTexture\Lxx\Ux\

The corresponding palette entry would be

..\..\..\..\301_GSModelTexture\Lxx\Ux\

latlon_D301_Sxxx_Txxx_Lxx_Ux_Rx_TNAM.rgb

If the model refers to a geotypical texture, it resides in

\CDB\GTModel\501_GTModelTexture\T\N\TNAM

And the corresponding palette entry would be

..\..\..\..\..\..\..\GTModel\501_GTModelTexture\T\N\TNAM\

D511_Sxxx_Txxx_Lxx_TNAM.rgb

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-75

© 2016 Presagis. All Rights Reserved.

6.13.5 Usages

6.13.5.1 Model Shadow Textures

Ideally, Model shadows should be generated at runtime by the client-device from the

model’s actual geometry. However, depending on the technique used by the client

device, special textures called projected shadow maps may be used to cast shadows

from Models.

When the projected shadow map technique is used, special object nodes are used to

store the shadow polygons.

6.13.5.1.1 Shadow Geometry

When geometry exists for the purpose of casting shadows, it must be located under an

object node whose Shadow flag is set.

Figure 6-49: Using Shadow Polygons

Several object nodes can be used to store several polygons all textured with projected

shadow maps. It may be desirable to also create separate shadow maps for major

articulated parts and locate these shadow objects just under their corresponding DOF

nodes.

6.13.5.1.2 Shadow Maps

Projected shadow maps are created by applying one, two or three orthographic

projections on the model (or optionally on major articulated parts of the model).

Figure 6-50: Example of a Shadow Map in the XY Plane shows one example of a

shadow map of an aircraft in the XY plane. Similar maps can also be produced for

the YZ and ZX planes.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-76

© 2016 Presagis. All Rights Reserved.

Figure 6-50: Example of a Shadow Map in the XY Plane

A projected shadow map is a monochrome (single-component) texture without

transparency. It represents the mask to cut out the contour of the model. In theory, a

black and white texture would be enough; however, shades of gray are permitted to

represent semi-transparent surfaces that could be present on the model. In any case, a

value of 0 (black) means the model does not block the passage of lights. The

opposite value, 1 (white), indicates the model completely obstruct the light.

Because the shape of the model may change with damage states, each model state

should have its own set of projected shadow maps. Section 6.9.2.2 describes damage

states.

Shadow maps are general base textures. Their Texture Kind is 007 and their Texture

Index is a sequence number when several shadow maps exist for the same Model.

To illustrate the naming convention, assume the shadow map from Figure 6-50:

Example of a Shadow Map in the XY Plane, is called “aircraft”. According to

Section 3.5.2.1, MModelTexture Naming Convention, and Section 5.5, MModel

Library Datasets, the resulting file name would be:

D601_S007_T001_Wnn_aircraft.rgb

The value Wnn represents the texture size, 2
nn

, and is explained in Section 6.13.3.2,

Texture Size.

Note that if a client-device generates shadows on its own, without the support of pre-

computed projected shadow maps, it can ignore all OpenFlight object nodes whose

Shadow flags are set as well as all textures associated with these nodes.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-77

© 2016 Presagis. All Rights Reserved.

6.13.5.2 Model Skin Textures

Models skins are base textures that correspond to one or more moving models paint

schemes or one or more time-of-year representations of the cultural feature.

For instance, the same tank can be painted with several different colors to match

various areas of operation. Below are two examples of the same tank, the M1A2

Abrams, painted for operation in a desert area (Figure 6-51) or in a forest area (Figure

6-52).

Figure 6-51: The M1A2 Abrams with a Desert Camouflage

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-78

© 2016 Presagis. All Rights Reserved.

Figure 6-52: The M1A2 Abrams with a Forest Camouflage

The two different textures for this tank qualify for use as skins since they have been

designed in such a way that they can be exchanged for one another without affecting

their mapping on the affected polygons. The mapping of both textures must be

identical since only the texture is changed, not the UV mapping.

OpenFlight itself does not provide an explicit mechanism to change the base texture

assigned to faces. In fact, OpenFlight supports a single base texture per face record.

The other textures that can be added to a face are called layers and none of them is a

replacement for the base texture.

In order to have several skins for a single model, the CDB Specification provides the

mechanism defined in 6.14.5.2, Texture Switch. The enumeration values for each

skin can be found in Appendix O.

The M1A2 used in the above examples has two skins. Each skin is made of a single

texture that happens to be a mosaic of all the individual textures used by the model.

Figure 6-53: M1A2 Desert Skin Mosaic below shows one of the M1A2 skins.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-79

© 2016 Presagis. All Rights Reserved.

Figure 6-53: M1A2 Desert Skin Mosaic

The following texture kinds implement the concept of model skins:

 Kind 002 – Monthly Representation

 Kind 009 – Quarterly Representation

 Kind 004 – Uniform Paint Scheme

 Kind 005 – Camouflage Paint Scheme

 Kind 006 – Airline Paint Scheme

Paint schemes apply to moving models only. Appendix O lists available paint

schemes.

Time-Of-Year representations are appropriate for cultural features. A good example

is the case of leafy trees. Depending on the hemisphere and the latitude, several

textures represent leafy trees at different stages during the year.

All texture kinds listed above are mutually exclusive; also, all instances of textures of

a kind are mutually exclusive. Since all texture kinds above are base textures, and

because only one base texture can be active at any one time on a face of a model, it

follows that only one skin can be active at a time.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-80

© 2016 Presagis. All Rights Reserved.

6.13.5.3 Model Night Maps

Night maps fall under the category of subordinate textures. Night and light maps (see

next section) are both used at night to represent how interior and exterior light sources

change the appearance of a Model. It is possible for a Model to have both a night and

a light map, or just a light map. However, it is not possible to have a night map

alone.

Simulator client-devices invoke a night map when the (simulated) light sources

located inside the model need to change its appearance at night. This is the case

when the interior light sources shine through openings like windows and portholes.

To simulate the effect of lights emitted through these openings, a night map is

created; it adds these bright window details normally missing from the base day

texture.

The creation of a night map for models is left to the discretion of the modeler.

Creating additional geometry for the windows and changing the material associated

with the polygons to incorporate an emissive component can also produce a lighting

effect similar to night maps. However, this approach requires additional

(unnecessary) model geometry that adds additional computational load in the client-

devices. For this reason, the use of night maps is recommended.

Light maps differ from night maps in that they combine the effect of exterior lighting

with interior lights. A light map acts as a (colored) filter to mask portions of the

model that are no longer visible at night when no ambient light exists.

A Model may have a relatively different aspect at night. This difference comes from

two changes in the environment. The ambient illumination provided by sunlight is

totally absent at night; only the moon and man-made light sources affect the

appearance of objects. When present, the moon provides only a modest level of

illumination when compared to the sun. In addition, the model itself might have

internal lights turned on that are not modeled in day version of the texture but that do

affect its appearance at night.

To illustrate these differences, imagine a building as seen during the day. No light

seems to come out of its windows because the average daytime sunlight overwhelms

any man-made lighting (internal to the building and coming out of the windows). At

night, the outside walls of the building have not changed but light is now emanating

from the windows. This is an important change that requires a modification to the

texture used to represent the walls.

Another example of the use of a night map is the case of an aircraft flying at night.

During daytime, the aircraft windows look dark while at night, light comes from the

inside and the windows appear white.

Night maps are used to add details to base textures; details that are not visible during

the day and that become visible at night. Therefore, a night map is not a replacement

for the base texture. It is used in conjunction with the base texture.

The next figures illustrate the purpose of night maps.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-81

© 2016 Presagis. All Rights Reserved.

Figure 6-54: Base Texture is the base texture used in modeling a commercial aircraft,

the Airbus 330, during the day. Notice that portholes are represented by dark rounded

rectangles because the lights in the cabin are off. The same is true for the cockpit

windows located in the bottom right of the texture.

Figure 6-54: Base Texture

Figure 6-55: Night Map, is the model’s corresponding night map and shows the same

portholes but this time brighter to reflect the fact that cabin lights are on. This time,

notice the appearance of the cockpit windows as well as the presence of colors in

them. Remember that this texture is used to add details that may be missing from the

base texture.

Figure 6-55: Night Map

There are constraints imposed on night maps:

 A night map must have the same size as its base texture.

 A night map uses the same UV mapping as its base texture.

 A night map has a similar format as its base texture (RGB or Intensity) plus an

alpha channel.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-82

© 2016 Presagis. All Rights Reserved.

6.13.5.3.1 Night Map Generation

A night map is mapped on top of its base texture using a Decal texture environment.

Since a night map is a subordinate texture, it is mapped on polygons using an

OpenFlight multitexture record. The Effect field of this multitexture record must

contain the value 0 indicating to use the Texture Environment mapping defined in the

Texture Attribute file. The Environment Type field found in the Texture Attribute

file must contain the value 2 indicating a Decal environment mapping.

The night map alpha channel is in fact a mask identifying which portions of the base

texture are replaced by the night map. Accordingly, the alpha channel contains a

value of 0 when the corresponding texel of the base texture is left intact. However,

the alpha channel will contain the value 1 when the corresponding texel of the base

texture is replaced by the equivalent night map texel. Overall, the Decal environment

mapping applies the following transformation to the base texture.

where…

is the color component (or intensity) of the base texture

is the color component (or intensity) of the night map

is the alpha component of the night map

Since the values found in the night map alpha channel are limited to 0 and 1, the

resulting color will either be the one found in the base texture when is 0 or the one

found in the night map when is 1.

6.13.5.4 Model Light Maps

Light maps also fall under the category of subordinate textures. Night maps and light

maps are both used at night to represent how interior and exterior light sources

change the appearance of a Model. It is possible for a Model to have both a night

map and a light map, or just a light map. However, it is not possible to have a night

map alone.

Light maps differ from night maps in that they combine the effect of exterior lighting

with interior lights. A light map acts as a (colored) filter to mask portions of the

model that are no longer visible at night when no ambient light exists.

A light map is used when active light sources are located on the outside of the model.

This technique is used to simulate the appearance of a model when lit by local

spotlights. For instance, spotlights may be used to illuminate a building at night. The

light map provides the illumination pattern that represents the spotlight illumination

on the building. The technique provides a convenient mean to produce interesting

and entirely predictable lighting effects without resorting to computationally intensive

local light sources. Their effects are already incorporated into special textures called

light maps.

nnnb
ACACC)1(

b
C

n
C

n
A

n
A

n
A

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-83

© 2016 Presagis. All Rights Reserved.

A light map also contains a mask related to the night map when present. Remember

that a light map is a filter (a mask) to retain the detail associated with the base texture

and its optional night map.

As opposed to a night map, a light map does not have constraints. More specifically:

 A light map does not need to be of the same size as its base texture.

 A light map has its own UV mapping.

 A light map can be an intensity map or an RGB image.

Note that when light sources are modeled with light maps, they only affect the model

onto which they are applied.

The next set of figures illustrates how light maps contribute to the lighting of a model.

Note that a light map is not applied directly to the model base texture. The light map

is first modified to take into account the ambient lighting, and then the resulting

lighting is applied to the model.

Figure 6-56: Light Map, is the light map matching the base texture in Figure 6-54:

Base Texture. Notice that it combines light lobes representing external light spots

with the mask associated with internal light sources from the night map. This mask is

used to key in details that stay visible at night.

Figure 6-56: Light Map

Figure 6-57: Combined Effect of Base Textures and Light Maps, shows on the actual

aircraft the result of applying the light map from Figure 6-56: Light Map to the base

texture from Figure 6-54: Base Texture. Notice that portholes and cockpit windows

are still dark since the base texture has not been modified by the night map yet.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-84

© 2016 Presagis. All Rights Reserved.

Figure 6-57: Combined Effect of Base Textures and Light Maps

Figure 6-58: Combined Effect of Night and Light Maps, shows the result of adding

the night map to the base texture and then applying the light map. This time, we can

clearly see the lights coming through portholes and cockpit windows.

Figure 6-58: Combined Effect of Night and Light Maps

6.13.5.4.1 How and When to Use Night Maps and Light Maps

The CDB Specification recommends the use of night maps to represent lights that are

internal to the model; this permits the client device to control the appearance of the

model with internal lights on or off. This condition is usually true at night, hence the

name of the texture.

Similarly, the CDB Specification recommends the use of light maps to represent the

effect of lights that are external to the model; this permits the client-device to control

the appearance of the model with external spotlights on or off.

Note that night and light maps can be applied to any of the skins since skins are base

textures.

6.13.5.4.2 How and When Not to Use Light Maps

A client device may discard light maps if the effect of external lights is internally

generated by its GPU. It can be envisioned that future development of specialized

hardware – such as graphics processor unit – will allow more of the lighting effects to

be generated in real-time. When this time comes, artificial textures generated off-line

such as light maps will become obsolete.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-85

© 2016 Presagis. All Rights Reserved.

6.13.5.5 Model Tangent-space Normal Maps

A normal map is an RGB texture (without an alpha channel) where the normal to the

surface is encoded in the Red, Green, and Blue channels. The normal (i, j, k) values

are encoded in the following manner into the 8-bit value of each channel:

 R [0, 255] = i [-1.0, +1.0]

 G [0, 255] = j [-1.0, +1.0]

 B [0, 255] = k [-1.0, +1.0]

The mapping is identical on all channels; the range of all possible 8-bit values (0,

255) is mapped linearly to the range of floating point values -1.0 to +1.0. This

mapping provides a resolution of 2/255 or 0.0078.

In addition, the reader should note that the floating-point value 0.0 has no exact

integer equivalent
66

. Here, the closest value to 0.0 is approximately ±0.0039 and is

obtained when the channel contains 127 or 128.

Besides this particular encoding of the normal into the RGB channels, a normal map

has all the other attributes of a standard RGB texture whose format is defined in

Appendix P, SGI Image File Format.

In the industry, there are at least two types of Normal Map: object-space normal map,

and tangent-space normal map. Both types have their pros and cons. The CDB

Specification opts for tangent-space normal map. A sample is shown here.

Figure 6-59: Normal Map Sample

66 The conventional OpenGL mapping specifies that -1 and 1 can be represented exactly, but 0 can not.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-86

© 2016 Presagis. All Rights Reserved.

Typically, the normal points away from the surface, and not toward the underlying

surface. For this reason, the value of the k-component of the normal is positive, most

of the time, resulting in a bluish tint of the map. A negative k-component could

indicate the presence of a cliff with an overhang, for instance.

6.13.5.6 Model Detail Texture Maps

A detail texture map is 1- or 3-component (aka channel) texture where each texel is

represented as an 8-bit unsigned integer. A detail texture exhibits two important

properties; it has a neutral luminance (intensity) and chrominance (color). This is

achieved by applying the following constraints:

 The 8-bit unsigned value of each texel is scaled to a floating point value in the

range -1.0 to 1.0

 The average value of an individual component is always 0.0

 The Detail texture is mapped on the underlying surface through a simple

addition operation

The net effect of applying a Detail Texture Map is to highlight (> 0) or darken (< 0)

fragment details on the underlying surface. When using a single component detail

texture map, only the intensity of the resulting image is affected; when using a 3-

component detail texture map, the color is also varied.

Figure 6-60: Detail Texture Map Sample

Recall that a detail texture map is a mean of adding high-frequency (spatial) details to

a rather low-frequency image.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-87

© 2016 Presagis. All Rights Reserved.

6.13.5.7 Model Contaminant and Skid Mark Textures

Historically, Image Generators of civil aviation simulators provided the means for

flight instructors to control the appearance of airport runways, taxiways, and roads

with various surface contaminants. To this end, the CDB provides a set of

standardized Model Contaminant and Skid Mark Textures that are commonly used in

flight simulators and listed in Appendix O. These textures are typically four-

component (R, G, B, alpha) textures that act as an overlay to airport surfaces.

6.13.5.8 Model Cubic Reflection Maps

Reflection mapping (aka environment mapping) is an efficient image-based lighting

technique for approximating the appearance of a reflective surface by means of a

precomputed texture image. The texture is used to store the image of the distant

environment surrounding the rendered object.

Figure 6-61: Environment Used to Produce Reflection Map

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-88

© 2016 Presagis. All Rights Reserved.

Figure 6-62: Resulting Reflection Map

Figure 6-63: Rendered Reflection Map onto Reflecting Cube

The CDB Specification assumes that the surrounding environment is stored using a

cubic mapping approach. In this technique, the environment is projected onto the six

faces of a cube and stored as six square textures or unfolded into six square regions of

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-89

© 2016 Presagis. All Rights Reserved.

a single texture. The reflection mapping approach is more efficient than the classical

ray tracing approach of computing the exact reflection by tracing a ray and following

its optical path. The reflection color used in the shading computation at a pixel is

determined by calculating the reflection vector at the point on the object and mapping

it to the texel in the environment map. This technique often produces results that are

superficially similar to those generated by raytracing, but is less computationally

expensive since the radiance value of the reflection comes from calculating the angles

of incidence and reflection, followed by a texture lookup, rather than followed by

tracing a ray against the scene geometry and computing the radiance of the ray,

simplifying the GPU workload.

Note however that in most circumstances, a mapped reflection is only an

approximation of the real reflection. Environment mapping relies on four

assumptions:

 All radiance incident upon the statically-positioned object being shaded

comes from an infinite distance. When this is not the case, then a) the

reflection of nearby geometry appears in the wrong place on the reflected

object, and b) no parallax is seen in the reflection.

 The object being shaded is convex, such that it contains no self-

interreflections. When this is not the case the object does not appear in the

reflection; only the environment does.

 The environment map is valid for the location for which it was generated.

 The environment is static.

6.13.5.9 Model Gloss Maps

A gloss map is a texture that describes whether a surface is matte or gloss. The

texture is used to modulate specular highlights in the same way the material shininess

does. A gloss map is stored as an 8-bit single channel texture (a grey-scale image)

where texels are mapped to the range 0.0 (matte) to 1.0 (glossy). The values in the

gloss map play the same role as the single shininess value found in the OpenFlight

material assigned to a polygon. In this way, the gloss map can effectively modulate

the specularity on a per-pixel basis. Note that if the material applied to the surface

has no specular component, then the gloss map has no effect.

6.13.5.10 Model Material Textures

Material textures fall under the category of subordinate textures. They are mapped to

Models the same way as any other textures. As such, the surfaces these textures are

mapped to possess their own set of UV mapping.

A material texture tells the interested client devices (e.g., FLIR, CGF) what the

underlying surface is made of. For this reason, a material texture is not at all related

to a base texture. The two are completely independent and exist separately. A

material texture does not require that a base texture be applied to the model. In fact,

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-90

© 2016 Presagis. All Rights Reserved.

it is perfectly possible to create a Model that does not use texture except for a single

material texture describing its various materials.

The <Material> tag presented in section 6.5.3 is a high level mean of providing

material information about the geometry of a model. With the use of a material

texture, the modeler can provide highly detailed material information about the same

model.

In short, the <Material> tag supports a polygon-based approach of sensor client

devices such as FLIR, NVG, and RADAR. A Material texture is a texel-based

approach supporting an implementation of such client devices with a much higher

resolution.

In the case of the Raster Material dataset (dataset code 005) applied onto the terrain, it

is conceivable that multiple layers and mixtures of materials are required to represent

the rich variety of materials found on the earth surface. However, for Models, a

single material layer is probably adequate for the vast majority of man-made objects.

6.14 Model Descriptor (Metadata) Datasets

Each type of 3D Models has its set of ModelDescriptor datasets; they are:

1. GSModelDescriptor

2. GSModelInteriorDescriptor

3. GTModelDescriptor

4. GTModelInteriorDescriptor

5. MModelDescriptor

Each file is needed to summarize and regroup the information concerning one portion

of a model, its shell or its interior. The information are collected and stored in an

XML file to help client devices implement efficient load management mechanism.

The format of the model descriptor file is as follows:

<Model_Metadata>

 <Name>...</Name>

 <Identification>...</Identification>

 <Mass>...</Mass>

 <Parts>...</Parts>

 <Textures>...</Textures>

 <Configurations>...</Configurations>

 <Composite_Material_Table>...</Composite_Material_Table>

</Model_Metadata>

6.14.1 Model Name

The <Name> is an arbitrary string from the character set presented in section 2.2.

This name is the human readable version of the model identification code that

follows.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-91

© 2016 Presagis. All Rights Reserved.

6.14.2 Model Identification

Models are either modeled representation of cultural features or moving models. In

both cases, the CDB Specification has a unique way to identify them. For moving

models, the identification scheme corresponds to their DIS entity type. For cultural

features, their FACC code is used.

6.14.2.1 Moving Model Identification

The DIS entity type is a list of up to seven integers and can be specified in two

different manners. All fields have a default value of zero.

First, you can use a list of one to seven integers as illustrated here:

<Identification>

 <DIS_Entity_Type>

 <List>...</List>

 </DIS_Entity_Type>

</Identification>

Or you can use this more verbose syntax to specify the value of individual fields:

<Identification>

 <DIS_Entity_Type>

 <Kind>...</Kind>

 <Domain>...</Domain>

 <Country>...</Country>

 <Category>...</Category>

 <Subcategory>...</Subcategory>

 <Specific>...</Specific>

 <Extra>...</Extra>

 </DIS_Entity_Type>

</Identification>

All fields are limited to the range [0, 255] except the country code that can go up to

65535.

6.14.2.2 Cultural Feature Identification

For cultural features, their FACC code is specified in the following manner:

<Identfication>

 <Feature_Attribute_Catalog_Code>

 <Code>...</Code>

 <Subcode>...</Subcode>

 </Feature_Attribute_Catalog_Code>

</Identification>

The FACC code has a fixed format of two letters followed by three digits; it is the

same as the FACC attribute described in section 5.7.1.3.24. The subcode is an

optional integer in the range [0, 999].

6.14.3 Model Mass

The model mass is optional. It makes sense only when the Model represents a

moving model.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-92

© 2016 Presagis. All Rights Reserved.

<Mass>

 <Total>...</Total>

 <Metal>...</Metal>

</Mass>

The total mass of the model is expressed in kilograms. The portion of the model that

is made of a metallic alloy is expressed as a percentage of the total mass. The value

of <Metal> lies in the range [0.0, 1.0].

When the model mass is specified, the total mass is mandatory while the metallic

portion is optional. The total mass must be larger than zero. The metallic portion

defaults to zero.

6.14.4 Model Parts

A Model may be separated into several parts. If the complexity of a part justifies it,

each part may be split into multiple files.

The whole section is optional. It is required only if more than one part exists or if a

part has more than one file.

If present, the section is a list of at least one part formatted like this.

<Parts>

 <Part no="no" numFiles="numFiles" name="partName" />

 ...

</Parts>

The part number is mandatory. It starts at 1 and increases by 1 for each subsequent

part. The first part is also referred to as the body of the model.

The number of files is optional and defaults to 1.

The part name
67

 is optional and is used only to improve the readability of the file.

6.14.5 Model Textures

This section lists all textures that could be possibly used by the model. In the event

the model does not use texture, the whole section is omitted. The section contains a

list of textures and optional texture switches.

67 As a guideline, it is suggested to set the part name the same as the global zone name of that part. For instance, if the part

represents an external fuel tank, a good name for both the part and its global zone would be “External Fuel Tank”.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-93

© 2016 Presagis. All Rights Reserved.

<Textures>

 <Texture .../>

 <Texture .../>

 ...

 <Switch .../>

 <Switch .../>

 ...

</Textures>

6.14.5.1 Texture Metadata

For each texture, the section provides the client device with the necessary information

to decide when and which texture mipmap should be loaded.

The section is formatted like this.

<Texture no="number" name="name">

 <Dataset>...</Dataset>

 <Kind>...</Kind>

 <Index>...</Index>

 <Mipmap>min max</Mipmap>

 <Resolution>...</Resolution>

 <Coverage>

 <U>min max</U>

 <V>min max</V>

 </Coverage>

</Texture>

The texture number is a strictly positive integer to uniquely identify the texture. The

texture name corresponds to the TNAM field in the texture filename as defined in

Section 3.5.2.1, MModelTexture Naming Convention.

The <Dataset>, <Kind>, and <Index> fields correspond respectively to the dataset

number and component selectors 1 and 2; they match the D, S and T fields in the

texture filename.

The mipmap field defines the smallest and largest mipmap available for this texture.

The value of this field is used to compose the W field in the texture filename of

moving models (see examples in section 3.5.2.4).

The texture resolution is expressed in texels per meter
68

. It is the same for both the U

and V axes even though it is recognized that it can differ between the two dimensions.

The intent is to provide an indication of how precise the texture is when mapped to

the model geometry. It helps client device decide which mipmap is more appropriate

to use.

The texture coverage is optional and defines the minimum and maximum values for

the U and V texture coordinates. This information indicates if the texture is repeated

along one or both axes. If the coverage is in the interval [0, 1], the texture is

clamped; otherwise, it is repeated.

68 This unit of measurement (texels per meter) is akin to DPI (dot per inch) used to quantify the resolution of printers and

displays.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-94

© 2016 Presagis. All Rights Reserved.

6.14.5.2 Texture Switch

A Texture Switch is defined when switchable textures appear in the list of textures.

Switchable textures are textures that can be exchanged for one another because they

share the same UV mapping, as explained in section 6.13.5.2, Model Skin Textures.

The section is formatted like this.

<Switch no="number" name="name">

 <State no="number" name="name" textures="list"/>

 ...

</Switch>

The switch number is a unique positive integer identifying the switch. The switch

name is a unique string limited to 32 characters; all switches are uniquely identified

by a number and a name.

A switch has two or more states; each state selecting a list of one or more textures.

State numbers are consecutive and start at 1. The state name is a unique string also

limited to 32 characters. The list of textures associated with a state contains the

texture numbers of the selected textures. Note that a state (e.g., a skin) may require

more than one texture, hence the need to specify a list of textures associated with a

state.

6.14.5.2.1 Example

Assume that the following two textures are stored in the M1A2 texture folder:

\CDB\MModel\601_MModelTexture\M\1\M1A2\

D601_S004_T005_Wxx_M1A2.rgb

D601_S005_T001_Wxx_M1A2.rgb

Here is an excerpt of the model metadata presenting the two textures, the switch, and

the two corresponding states.

<Textures>

 <Texture no="3" name="M1A2">

 <Dataset>601</Dataset>

 <Kind>4</Kind>

 <Index>5</Index>

 ...

 </Texture>

 <Texture no="10" name="M1A2">

 <Dataset>601</Dataset>

 <Kind>5</Kind>

 <Index>1</Index>

 ...

 </Texture>

 ...

 <Switch no="1" name="Paint Scheme">

 <State no="1" name="Uniform Beige Paint" textures="3"/>

 <State no="2" name="Desert Camouflage" textures="10"/>

 </Switch>

</Textures>

The texture switch is named “Paint Scheme” because it controls the selection of the

paint scheme to apply to the M1A2. The first state selects texture 3 which

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-95

© 2016 Presagis. All Rights Reserved.

corresponds to a beige uniform paint; the second state selects texture 10

corresponding to a desert camouflage.

Note that the texture switch mechanism is not limited to base textures; it can be used

to switch light maps for example.

6.14.6 Model Configurations

Often, a single Model – especially a moving model – comes with a variety of possible

equipment and/or ordnance. This can be as diversified as fuel tanks, missiles, radio

emitters, etc. To configure a model with its ordnance, the CBD Specification defines

the concept of model configuration. A configuration defines the set of equipment and

ordnance attached to the various stations found on the model.

The configuration section is optional. It is a list of one or more configurations

defined like this.

<Configurations>

 <Configuration>...</Configuration>

 ...

</Configurations>

6.14.6.1 Defining Stations in a Configuration

A configuration is a sequence of one or more stations, each defining one piece of

equipment in one location.

<Configuration name="ConfigName">

 <Station name="StationName">

 <Location>...</Location>

 <Equipment>...</Equipment>

 </Station>

 ... other stations as needed

</Configuration>

The configuration and station names are both optional and are used for documentation

purposes only.

The location of a station is defined by its fully qualified name as specified in section

6.5.5, Model Zone Naming.

6.14.6.2 Defining Equipment in a Station

The equipment is defined by either its DIS identification or a reference to an external

part, and an optional anchor point.

<Equipment name="EquipmentName">

 <Identification>...</Identification>

 <External_Part>...</External_Part>

 <Anchor>...</Anchor>

</Equipment>

The equipment name is optional and is used for documentation purposes only.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-96

© 2016 Presagis. All Rights Reserved.

The anchor point is specified in the same manner as the location of a station, by

providing its path (on the subordinate model) as specified in section 6.5.5, Model

Zone Naming.

6.14.6.3 Defining Equipment Names

Either a DIS emitter name or a DIS entity type identifies the equipment. When the

equipment is an emitter, the syntax is as follow.

<Identification>

 <DIS_Emitter_Name>...</DIS_Emitter_Name>

</Identification>

Emitter names are defined by the DIS standard. For DIS, refer to Section 8.1.1 of

reference [4] for a list of DIS Emitter Names. For the HLA standard, the RPR-FOM

lists all emitter names. To avoid confusion, both DIS and HLA refer to emitter names

using numbers. For instance, the NATO emitter AS 15 KENT altimeter is referred to

as emitter 8735.

When the equipment is another entity (e.g., a missile), its DIS entity type is supplied

in the following manner.

<Identification>

 <DIS_Entity_Type>...</DIS_Entity_Type>

</Identification>

Recall that the DIS entity type is a list of up to 7 numbers as defined by reference [4].

For example, the AGM-114K-SAL Hellfire missile would be referred to as:

<DIS_Entity_Type>

 <List>2 2 225 1 3 5 1</List>

</DIS_Entity_Type>

or

<DIS_Entity_Type>

 <Kind>2</Kind>

 <Domain>2</Domain>

 <Country>225</Country>

 <Category>1</Category>

 <Subcategory>3</Subcategory>

 <Specific>5</Specific>

 <Extra>1</Extra>

</DIS_Entity_Type>

Equipment can also be defined by a reference to an external part if need be. A good

example of such equipment is a fuel tank.

<External_Part>

 <Part_Number>...</Part_Number>

 <Configuration>...<Configuration>

</External_Part>

The external part is identified by its part number as defined previously in the <Parts>

section.

The external part may also require it own configuration. Take the example of a

Hellfire missile rack attached to an attack helicopter like the Apache. The rack can

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

6-97

© 2016 Presagis. All Rights Reserved.

hold up to 4 missiles. Each missile attaches to one of four separate weapon stations

located on the rack. For this more complex example, assume the rack has only two

missiles out of four. This configuration can be specified with the following piece of

XML.

<External_Part>

 <Part_Number>1</Part_Number>

 <Configuration>

 <Station name="Missile 1">

 <Location>\Missile_Rack\Attach_Point[1]</Location>

 <Equipment>

 <Identification>

 <DIS_Entity_Type>

 <List>2 2 225 3 5 1</List>

 </DIS_Entity_Type>

 </Identification>

 </Equipment>

 </Station>

 <Station name="Missile 2">

 <Location>\Missile_Rack\Attach_Point[2]</Location>

 <Equipment>

 <Identification>

 <DIS_Entity_Type>

 <List>2 2 225 3 5 1</List>

 </DIS_Entity_Type>

 </Identification>

 </Equipment>

 </Station>

 <Configuration>

</External_Part>

With the help of model configurations, it is possible to create several variants of a

single Model, each variant defined by its own configuration.

This way, one Apache can have two configurations, one when equipped with Hellfire

missiles and one when equipped with rocket launchers.

6.14.7 Model Composite Materials

The composite material table is the last component of the Model Metadata and is

defined in section 2.5.2.2, Composite Material Tables (CMT).

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-1

© 2016 Presagis. All Rights Reserved.

Chapter 7

7 CDB Radar Cross Section (RCS) Models

7.1 Introduction

For devices such as Radars, a geometric representation of a model may often provide

a level of fidelity which is insufficient or inappropriate for use in simulation or

alternately, it may not be feasible to compute a radar cross-section of the model in

real-time. Alternately, a user may wish to incorporate real-world RCS data into the

simulator client-devices in order to further improve simulation fidelity. To this end,

the CDB Specification defines a RCS (Radar Cross-Section) model representation for

use by Sensor Simulation client-devices such as Radar and/or Sonar. It provides a

signature model representing the overall relative reflectivity levels of a given Model

Representation when viewed at discrete azimuth and elevation angles. The RCS data

is then used in range and aspect calculations for the detection and classification of

simulated targets (either ground or moving).

This chapter provides all of the information required to store RCS data within a CDB.

Section A.7 of Appendix A provides a primer on radar, basic principles of operation

and radar cross sections (RCS).

7.2 RCS Data Model

This section concerns itself with the internal RCS model representation and its sub-

structures, which forms a complete dataset layer.

7.2.1 RCS Model Structure

The CDB RCS data is organized so that client-devices can easily retrieve the

following information from the RCS model (Figure 7-1: Graphical Representation of

the 3D Model RCS Shape Data) below:

• The modeling (physical) parameters that were used to generate the RCS polar

data.

• The RCS polar representation corresponding to one or more levels of

resolution of the RCS polar data.

• The RCS polar representation corresponding to distinct radar mode of

operation.

• The RCS polar representation corresponding to a distinct radar model type.

RCS resolution refers to the angular pitch used in gathering RCS data for the model

in question. At a given RCS resolution, it is possible to have two or more RCS polar

representations due to the fact that the RCS data is computed based on a number of

physical modeling properties such as the characteristics of the electromagnetic beam,

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-2

© 2016 Presagis. All Rights Reserved.

its frequency, polarization, amplitude and phase. A simulated sensor operating in a

given mode of operation, over a given range of frequencies, will require the RCS data

closest to this mode. It will therefore need to use the closest matching Polar Diagram

from the RCS model data.

7.3 RCS Polar Diagram Data Representation using Shapefile

This section provides a detailed description of the content and format of RCS data for

the CDB.

7.3.1 Shapefile Internal Data Structure

Within a CDB, the RCS model is stored as a series of ShapeFiles in accordance with

the ESRI Shapefile Specification. This section describes the Shapefile internal data

structure for the representation of RCS model data. This format provides the required

flexibility to create and visualize the RCS data:

• Easy modification of data attributes

• Simple visualization of RCS data in polar form

• Allow irregular steps in azimuth/elevation (X/Y)

• Allow some possibly missing values

RCS data is inherently two-dimensional in nature and is naturally organized as a two-

dimensional array of RCS polar values computed at various azimuth and elevation

angles from the target. Each element of this array represents the RCS data value over

each uniformly distributed azimuth angle and distinct elevation angle.

Therefore, each of such array element can be represented as a “Point” shape, with the

azimuth angle value (X) at a given elevation angle (Y), while at the same time storing

the associated attributes such as the RCS, Amplitude or Phase data in the instance

attribute database (dbf file) associated to the Shapefile. Typical azimuth angles

would range between -180° and +180°, where as the elevation angles would cover

from -90° to +90°. However, the RCS data set could potentially only cover just a

partial range of those angles if data is incomplete for example. This can be visualized

in the next diagram, showing RCS values at various azimuth angles corresponding to

an elevation angle of 20° with respect to the model (cube). Note that the axis

conventions follow those described in Section 6.3, Coordinate Systems.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-3

© 2016 Presagis. All Rights Reserved.

Figure 7-1: Graphical Representation of the 3D Model RCS Shape Data

Partial RCS data is permitted, i.e., it is permitted to cover a sub-region of the RCS

polar diagram with only points corresponding to known values.

For example, consider an RCS model consisting of data values in 5
o
 elevation

increments and 2
o
 azimuth increments covering the entire aspect angle range of the

target. The CDB representation would consist of (180°/5°)+1 = 37 sets of

(360°/2°)+1 = 181 points (vertices) for a full target aspect coverage; yielding 6697

point shapes with their attribute data. For each of those Shapefile point vertices, the

X component represents the azimuth angle (equivalent to longitude) and the Y

component represents the elevation angle (equivalent to latitude); the RCS value (and

other attributes) being stored in the instance attributes within the DBF file.

The CDB specification defines eight prescribed values for azimuth and elevation

increments. They are referred to herein as ModelSignature Significant Angle. The

table below shows the correspondence between the ModelSignature LOD level

number and the ModelSignature Significant Angle.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-4

© 2016 Presagis. All Rights Reserved.

Table 7-1: ModelSignature Significant Angle per LOD

ModelSignature LOD

level
Significant Angle Number of values

0 90° ≤ Significant angle Less than 8

1 45° ≤ Significant angle < 90° between 8 and 32

2 22.5° ≤ Significant angle < 45° between 32 and 128

3 11.25° ≤ Significant angle < 22.5° between 128 and 512

4 5.625° ≤ Significant angle < 11.25° between 512 and 2048

5 2.80° ≤ Significant angle < 5.625° between 8192 and 32768

6 1.40° ≤ Significant angle < 2.80° between 32768 and 131072

7 0.70° ≤ Significant angle < 1.40° between 131072 and 524288

Such a data representation would typically produce the following diagram when

viewed in 2D (Figure 7-2: Polar Diagram of RCS Data in Planar Representation) and

3D (Figure 7-3: Polar Diagram of RCS Data in Spherical Representation) polar forms

(color representing the RCS Intensity attribute):

Figure 7-2: Polar Diagram of RCS Data in Planar Representation

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-5

© 2016 Presagis. All Rights Reserved.

Figure 7-3: Polar Diagram of RCS Data in Spherical Representation

In addition, specific attributes within the Shapefile are required to specify other

characteristics of the RCS data, like EM polarization mode and frequency that were

used when characterizing the target’s RCS signature. Those are the class-level

attributes and are described below.

The data for each distinct RCS representation model requires two different types of

attributes; RCS model class attributes and RCS instance attributes.

1. RCS Model Class-level attribution: These are attributes that can be shared by

all of the RCS model instances of the RCS representation. The attributes and

their values are logically re-grouped under a classname that stands for the

entire attributes specific to the RCS model. All of the classnames are re-

grouped into a model.dbf file referred to as the RCS Class Attribute file for

the RCS model. (See Section 7.4.1, Directory Structure) Each row of the

model.dbf file corresponds to a different classname. The first column of the

file is the classname attribute and acts as the primary key to access subsequent

table entries; all other columns correspond to the attributes represented by the

classname.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-6

© 2016 Presagis. All Rights Reserved.

2. RCS Instance-level attribution: This is the data that represents a particular

instance of the RCS model for a RCS representation. The data is contained in

the attribution columns of the model.dbf file that accompanies the RCS’s

*.shp file. This *.dbf file is referred to as the RCS Instance Attribute file of

the RCS model. (See Section 7.4.1, Directory Structure) The first column of

each row is always the classname attribute. The other columns in a RCS

Instance Attribute file are used to describe further the associated shape.

In summary, for a single RCS model in the CDB, the data files consist of:

• One *.shp main file that provides the geometric aspect (Points) for each data

instance of a RCS model.

• Two *.dbf files (one instance-level on a per RCS Shape basis, and one class-

level at the RCS model level) that collectively provide the attribution for all of

the possible RCS models of a given RCS Model.

• One *.shx index file that stores the file offsets and content lengths for each of

the records of the main *.shp file. The only purpose of this file is to provide a

simple means for clients to step through the individual records of the *.shp file

(i.e., it contains no CDB modeled data).

7.3.1.1 RCS Model Class-Level Attributes:

Many attributes within the Shapefile are required to specify the physical modeling

parameters corresponding to those used to produce the RCS data; this includes, for

instance, the electro-magnetic (EM) polarization mode and the frequency that were

used when characterizing the target’s RCS signature.

The CDB RCS model representation offers a comprehensive set of class attributes

that are described below. It is important to note that these attributes are an elaborate

set of fields to indicate in which physical environment the RCS data was computed,

and does not necessarily reflect a precise operating mode of a particular radar.

A description of the attribute information follows below. (The reader should keep in

mind that the 10-character limitation of attribute names is imposed by the dBASE

III+ file format used by the Shapefile .DBF data format)

Table 7-2: XML Tags for Hot Spots

Attribute Format Description Values Units

CLASSNAME STRING Unique string identifying

the RCS model class

attribute characteristics

Uniquely identifiable character

string for the class name

String of 32

characters

VERSION STRING String representing the

version level of the RCS

Data

XX.YY.ZZ String of 8

characters

PROD_DAY INT Number representation of

the computation day

DD N/A

PROD_MTH INT Number representation of

the computation month

MM N/A

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-7

© 2016 Presagis. All Rights Reserved.

Attribute Format Description Values Units

PROD_YEA INT Number representation of

the computation year

YYYY N/A

CLASS_TYP INT Level of Classification 0 – 999

0 : UNKNOWN

1 : UNCLASSIFIED

2 : SECRET

3 : TOP SECRET

4 : DECLASSIFIED

999: OTHER

Enumerated

DAT_SRC_T INT Data from which RCS was

derived

 0 - 999

0 : UNKNOWN

100 : OPENFLIGHT

200 : EMPIRICAL

300 : THIRD-PARTY TOOL

400 : US Air Force

401 : US Army

402 : US Navy

999 : OTHER

Enumerated

RCS_VARI STRING Radar Model Variant

(e.g., “AN/APG-65”)

7.3.2, Multi-Variant RCS Model

Applicability

String of 10

characters

3RD_PARTY INT 3rd party tool used for RCS

Production

 0 - 999

0 : UNKNOWN

100 : RADBASE

200 : XPATCH

300 : MATHLAB/SIMULINK

999 : OTHER

Enumerated

POL_TYPE INT Polarization Mode of RF

emission

used to characterize RCS

 0- 999

0 : UNKNOWN

1 : LINEAR

2 : CIRCULAR

3 : ELLIPTICAL

4 : SINGLE HH

5 : SINGLE HV

6 : SINGLE VV

7 : SINGLE VH

8 : DUAL HH-HV

9 : DUAL VV-VH

10 : DUAL HH-VV

11 : ALTERNATING HH-HV

12 : ALTERNATING VV-VH

13 : POLARIMETRIC HH

14 : POLARIMETRIC VV

15 : POLARIMETRIC HV

16 : POLARIMETRIC VH

999: OTHER

Enumerated

EX_AMPL DOUBLE Transmitted Ex-component

amplitude level

 INTENS_TY

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-8

© 2016 Presagis. All Rights Reserved.

Attribute Format Description Values Units

EY_AMPL DOUBLE Transmitted Ey-component

amplitude level

 INTENS_TY

EX_PHASE DOUBLE Transmitted Ex-component

phase

 ANGL_TYP

EY_PHASE DOUBLE Transmitted Ey-component

phase

 ANGL_TYP

EX_FREQ DOUBLE Transmitted Ex-component

frequency

 FREQU_TY

EY_FREQ DOUBLE Transmitted Ey-component

frequency

 FREQU_TY

INTENS_TY INT RCS Value units 0 – 999

0 : UNKNOWN

1 : DB

2 : DBSM

3 : VOLTS

4 : SURFACE

5 : M2

999: OTHER

N/A

ANGL_TYP INT RCS Angular Value units 0 : UNKNOWN

1 : DEGREES

2 : RADIANS

3 : GRADIANS

4 : STERADIANS

N/A

FREQU_TY INT RCS Frequency Value units 0 : UNKNOWN

1 : HERTZ

2 : KILOHERTZ

3 : MEGAHERTZ

4 : GIGAHERTZ

5 : TERAHERTZ

6 : PETAHERTZ

N/A

TGT_TY INT Target Mode Value units 0 : UNKNOWN

1 : NORMAL

2 : SLIGHTLY DAMAGED

3 : DAMAGED

4 : DESTROYED

Enumerated

TIME_TY INT Time Value units 0 : UNKNOWN

1 : SECONDS

2 : MILLI-SECONDS

3 : MICRO-SECONDS

Enumerated

RF_TY INT RF Emission Mode Type 0 : UNKNOWN

1 : CONTINUOUS WAVE

2 : PULSED

Enumerated

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-9

© 2016 Presagis. All Rights Reserved.

Attribute Format Description Values Units

LENGTH_TY INT Length Value units 0 – 999

0 : UNKNOWN

1 : NANOMETER

2 : MICRON

3 : MILLIMETER

4 : CENTIMETER

5 : METER

6 : KILOMETER

999: OTHER

N/A

RF_FREQ DOUBLE Frequency of RF emission

used to characterize RCS

 FREQU_TY

TGT_SS DOUBLE Significant size of input

Source Model Data

 LENGTH_TY

MLOBEGAIN DOUBLE Antenna Main Lobe Gain INTENS_TY

MLOBEBW DOUBLE Antenna Main Lobe

Bandwidth

 ANGL_TYP

SLOBE3DB DOUBLE Antenna Side Lobe 3dB

Point

 ANGL_TYP

RF_PWIDTH DOUBLE RF Pulse Width TIME_TY

RF_PRF DOUBLE RF Pulse Repetition

Frequency

 FREQU_TY

RCS_AVG_I DOUBLE RCS Intensity Average (or

mean) Value. This

represents the arithmetic

mean of the RCS table.

 INTENS_TY

RCS_AVG_A DOUBLE RCS Amplitude Average (or

mean) Value. This

represents the arithmetic

mean of the RCS table.

 INTENS_TY

RCS_AVG_P DOUBLE RCS Phase Shift Average

(or mean) Value. This

represents the arithmetic

mean of the RCS table.

 ANGL_TYP

RCS_NML_I DOUBLE Approximated RCS

Intensity Value for ‘Normal’

state

 INTENS_TY

RCS_NML_A DOUBLE Approximated RCS

Amplitude Value for

‘Normal’ state

 INTENS_TY

RCS_NML_P DOUBLE Approximated RCS Phase

Shift Value for ‘Normal’

state

 ANGL_TY

RCS_SD_I DOUBLE Approximated RCS

Intensity Value for ‘Slightly

Damaged’ state

 INTENS_TY

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-10

© 2016 Presagis. All Rights Reserved.

Attribute Format Description Values Units

RCS_SD_A DOUBLE Approximated RCS

Amplitude Value for

‘Slightly Damaged’ state

 INTENS_TY

RCS_SD_P DOUBLE Approximated RCS Phase

Shift Value for ‘Slightly

Damaged’ state

 ANGL_TY

RCS_DMG_I DOUBLE Approximated RCS

Intensity Value for

‘Damaged’ state

 INTENS_TY

RCS_DMG_A DOUBLE Approximated RCS

Amplitude Value for

‘Damaged’ state

 INTENS_TY

RCS_DMG_P DOUBLE Approximated RCS Phase

Shift Value for ‘Damaged’

state

 ANGL_TY

RCS_DST_I DOUBLE Approximated RCS

Intensity Value for

‘Destroyed’ state

 INTENS_TY

RCS_DST_A DOUBLE Approximated RCS

Amplitude Value for

‘Destroyed’ state

 INTENS_TY

RCS_DST_P DOUBLE Approximated RCS Phase

Shift Value for ‘Destroyed’

state

 ANGL_TY

RCS_FLU_I DOUBLE RCS Intensity Fluctuation

(or Variance); the mean of

all squared deviations from

the mean for all RCS values.

 N/A

RCS_FLU_A DOUBLE RCS Amplitude Fluctuation

(or Variance); the mean of

all squared deviations from

the mean for all RCS values.

 N/A

RCS_FLU_P DOUBLE RCS Phase Fluctuation (or

Variance); the mean of all

squared deviations from the

mean for all RCS values.

 N/A

RCS_SCINT DOUBLE This value specifies a level

of scintillation to be added

to the simulated radar

signature when model parts

are being articulated.

7.3.3, Model’s Articulations

Effect on RCS Data

INTENS_TY

RCS_FLASH DOUBLE RCS Intensity of Target

when viewed directly at 0˚

(face) or 180˚ (back)

degrees azimuth. This

“face” value is sometimes

necessary when viewpoint

turns around target and gets

a “flash” at those specific

angles.

 INTENS_TY

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-11

© 2016 Presagis. All Rights Reserved.

Attribute Format Description Values Units

EQ_SPH_RD DOUBLE Radius of an approximated

equivalent metallic sphere

substituting the model

 LENGTH_TY

MAX_VAL_I DOUBLE RCS Table Max Intensity

Value

 INTENS_TY

MAX_VAL_A DOUBLE RCS Table Max Amplitude

Value

 INTENS_TY

MAX_VAL_P DOUBLE RCS Table Max Phase Shift

Value

 ANGL_TY

MIN_VAL_I DOUBLE RCS Table Min Intensity

Value

 INTENS_TY

MIN_VAL_A DOUBLE RCS Table Min Amplitude

Value

 INTENS_TY

MIN_VAL_P DOUBLE RCS Table Min Phase Shift

Value

 ANGL_TY

AZ_SSANGL DOUBLE Azimuth smallest significant

delta angle

Smallest azimuth angle

increment found in data

ANGL_TYP

EL_SSANGL DOUBLE Elevation smallest delta

significant angle

Smallest elevation angle

increment found in data

ANGL_TYP

AZ_LSANGL DOUBLE Azimuth largest significant

delta angle

Smallest azimuth angle

increment found in data

ANGL_TYP

EL_LSANGL DOUBLE Elevation largest significant

delta angle

Smallest elevation angle

increment found in data

ANGL_TYP

7.3.1.2 RCS Instance-Level Attribute Data

The data for an entire RCS model itself is stored as a series of Point Shapes, each

representing the RCS data values with respect to the model’s center for the

corresponding azimuth and elevation angles as represented by the point X and Y

coordinates. The *.dbf portion of the Shapefile provides the instance attribute

information for each of the RCS Point. A description of the attribute information

follows below:

ShapeType = POINT

Values:

 X coordinate is the Azimuth angle of the RCS sample

 Y coordinate is the Elevation angle of the RCS sample

NOTE: The RCS of the model when viewed at +90° elevation (top view) is

significantly different than the one at -90° elevation (bottom view), so

there should be (180/EL_STEP)+1 point values to cover all elevations.

The azimuth, which has the same RCS value for +180° and -180° will

cover (360/AZ_STEP) point values.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-12

© 2016 Presagis. All Rights Reserved.

Table 7-3: RCS Instance Attribute Fields

ATTRIBUTE TYPE DESCRIPTION VALUES UNITS

CLASSNAME STRING Unique string referring to

the RCS model class

attribute name

String of 32 characters

RCS_INTE DOUBLE RCS Intensity Level INTEN_TY

RCS_AMPL DOUBLE RCS Amplitude Level INTEN_TY

 RCS_PHAS DOUBLE RCS Phase ANGL_TYP

Figure 7-4: UML Representation of the 3D Model RCS Shapefile Structure

For a given RCS curve in a Shapefile, an attribute “CLASSNAME” indicates which

type of sensor application the curve data is derived for, and under which resolution

the data was produced. Therefore, the single Shapefile of the Model can regroup all

sensor data pertaining to various RCS signature types and resolutions for a given RCS

Model. Consider the next example. The Shapefile format therefore does not preclude

the capability to support multiple RCS curves simultaneously for a given model.

Shapefile

(RCS)

Point Shape Attributes Point Shape Geometry RCS Model Class Attributes

.Dbf

.Shx

.Shp

.Dbf

RCS Instance

Attributes

RCS Instance

Values

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-13

© 2016 Presagis. All Rights Reserved.

Figure 7-5: Example of RCS Shapefile

7.3.2 Multi-Variant RCS Model Applicability

Each variant of the RCS model in the Shapefile has a 10-character string attribute

called “RCS_VARI”. The string may contain the specific Radar model number (and

possibly its frequency band L-Band, S-Band, X-Band, Ku-Band) for which this RCS

variant applies to. The suggested string convention for this field is as described in

reference [22]:

For example: The “AN/APG-65” Radar model name represents a Pulse Doppler X-

Band Multi-Mode Radar manufactured by Raytheon (Hughes) and used in F/A-18,

AV-8B+ aircraft.

Table 7-4: Radar Model Numbers

AN/APA - Airborne Radar Auxiliary Assemblies

Model Number Description

AN/APA-1 Indicator Unit (Remote Repeater Scope) used with US Navy ASB radar

AN/APA-2 Radar Antenna Equipment

AN/APA-3 Radar Antenna Equipment

...

F16 Model RCS Shapefile

Classname: "CW "

POL_TYPE=1

RF_FREQ=10000

RCS_AVG=...

RF_TY=1

AZ_SSANGL=10°

EL_SSANGL=10°

Points:

(180/5)+1=37 *

(360/5)+1=73 Points per part

==> 2701 points

F16 RCS Model Class Attributes

Instance Attributes:

Classname: "CW"

RCS_INTE=...

RCS_AMPL=...

RCS_PHAS=...

Classname: "PULSED "

POL_TYPE=1

RF_FREQ=10000

RCS_AVG=...

RF_TY=0

AZ_SSANGL=5°

EL_SSANGL=5°

Classname: "TEST "

POL_TYPE=1

RF_FREQ=10000

RCS_AVG=...

AZ_SSANGL=2°

EL_SSANGL=2°

Points:

(180/5)+1=37 *

(360/5)+1=73 Points per part

==> 2701 points

Instance Attributes:

Classname: "PULSED"

RCS_INTE=...

RCS_AMPL=...

RCS_PHAS=...

POLARIZATION: LINEAR (1) FREQUENCY: 10GHz (10000 MHz)

F16 Model RCS Dataset

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-14

© 2016 Presagis. All Rights Reserved.

Model Number Description

AN/APA-4 Radar Alarm Unit

AN/APA-5 Auxiliary Electronic Bombsight Equipment; used in P-2

AN/APA-6 Panoramic Radio Receiving Set; used with AN/APR-9 and AN/APR-14

AN/APA-7 Movie-Camera Photo Set

AN/APA-8 Video Amplifier; used with AN/APS-2

AN/APA-9 ECM Equipment; used in P2V-5

AN/APA-10 Panoramic Radio Receiving Set; used with AN/SPR-2

AN/APA-11 Panoramic Radio Receiving Set (Pulse Analyzer); used in B-52 EW pod, RC-121C,

P2V-5, PBM-5S used with AN/APR-9 and AN/APR-14;

AN/APA-12 Sector Scan Antenna Adapter; used with AN/APS-2

AN/APA-13 Component of AN/APS-15

AN/APA-14 Component of AN/APS-15

AN/APA-15 Elevation Stabilizer; used with AN/APS-15

AN/APA-16 Auxiliary Electronic Bombsight Equipment used in PBY-6A

AN/APA-17 250-1000 MHz Broadband Direction Finding Radar (used with search receivers);

manufactured by Hoffman Radio Corp., Aviola

AN/APA-19 Bombing Aid

AN/APA-21 Radar Bombing Compensating Unit

AN/APA-23 Automatic Tape Recorder; manufactured by Gamewell; used with AN/APR-1/2/4/5/6

AN/APA-24 50-280 MHz Direction Finding Radar (used with search receivers); manufactured by

Heyer Products used in P4M-1Q

AN/APA-25 Radar Direction Finding Antenna Unit

AN/APA-26 S-Band Attenuator

AN/APA-27 Automatic Search & Jam Tuning Adapter

AN/APA-28 Multiple Indicator Equipment (6 displays); used with AN/APQ-13

AN/APA-29 Bombing Altitude Control Unit

AN/APA-33 Multiple Indicator Equipment (4 displays); used with AN/APQ-7

AN/APA-35 Radar Signal Recording Camera Unit

AN/APA-36 Remote Repeater Scope (modified AN/APA-1); used with AN/APQ-13

AN/APA-38 Panoramic Radio Receiving Set; used in PBM-5S

AN/APA-39 Radar Identification Unit

AN/APA-40 Bombing/Navigation System used with AN/APS-15; used in B-17

AN/APA-42 Bombing/Navigation System; used with AN/APS-23; used in XB-48 (see AN/APA-

59)

AN/APA-43 Airborne Searchlight Control

AN/APA-44 Ground Position Indicator System; manufactured by Bell Telephone Lab; used with

AN/ASB-3 and AN/APS-23/27/31 used in B-45 (together with AN/APS-23 to form

AN/APQ-24), RB-66

AN/APA-45 Radar Antenna Tilt Stabilizer Unit

AN/APA-48 Radar Homing Equipment, 140-300 MHz; manufactured by RRL

AN/APA-49 Radar Bombing Ground Position Indicator

AN/APA-50 Low Altitude Rocket Bombing Unit

AN/APA-51 Radar Indicator Unit

AN/APA-52 X-Band TACAN Doppler Navaid; used in F-8, SB-29

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-15

© 2016 Presagis. All Rights Reserved.

Model Number Description

AN/APA-54 Radar Recorder Group (SHORAN); used in B-57

AN/APA-55 Radar Adapter Unit

AN/APA-56 Radar Display Console; used with AN/APS-45/95; used in EC-121

AN/APA-57 Ground Position Indicator Group; used in AF-2W, P-2, S-2; replaced by AN/ASA-13

AN/APA-58 Ground Position Computer

AN/APA-59 Bombing/Navigation Computer "SRC-1"; manufactured by Sperry; used in B-36,

XB-48

AN/APA-60 Autopilot

AN/APA-61 Radar Bombing Navigational Computer

AN/APA-62 Panoramic Receiver

AN/APA-63 Autopilot

AN/APA-64 Radar Signal Analyzer used in P2V-4

AN/APA-66 Radar Monitor

AN/APA-69 Direction Finding Radar Set; used in RB-57D, A-1, C-47, P-2, P-5, S-2, RC-121C,

Z-1, ZPK

AN/APA-70 Direction Finder Group; used with AN/APR-9; used in AF-2W, P-2, S-2, TBM-3S

AN/APA-72 Signal Analyzer; used in E-2

AN/APA-74 Pulse Analyzer Group; manufactured by Loral; used in EB-66, A-3, EC-47, P-2, P-5,

Z-1, ZPK; replaced AN/APA-11

AN/APA-80 Control & Guidance Monitoring Group; used in AUM-N-2, HSL-1, P-2, P-5, S-2

AN/APA-81 Ground Position Indicator Group; used with AN/APS-20; used in AF-2W, EC-121

AN/APA-82 Direction Finder Group; used in B-52, C-130, C-133, C-135

AN/APA-84 Radar Intercept Targeting Computer; used with APG-37; used in F-86D/K

AN/APA-85 Control-Indicator Group; used with AN/APS-42 used in R6D-1

AN/APA-89 Coder Group; used in A-3, UH-1E

AN/APA-90 Indicator Group; used with AN/APW-11; used in B-57, B-66

AN/APA-91 used with AN/APS-33

AN/APA-92 ECM Set

AN/APA-94 Signal Analyzer

AN/APA-95 Doppler Navigation Computer

AN/APA-106 Bomb Damage Evaluation Group; used with AN/APQ-24; used in B-50D

AN/APA-109 Radar Control; manufactured by Westinghouse

AN/APA-113 used with AN/APS-62

AN/APA-122 Radar Set

AN/APA-125 Radar Display; used with AN/APS-80/82, AN/ASA-47; used in P-2H, P-3A, P-5, E-

1

AN/APA-126 Doppler Equipment; used in A-7

AN/APA-127 Sparrow Missile Fire Control System; manufactured by Raytheon; used in F-3, F-

4B/C

AN/APA-128 Sparrow Missile Radar Set Group; manufactured by Raytheon; used with AN/AWG-

7; used in XF8U-3, F-4

AN/APA-138 Radar Display; used with AN/AWG-7; used in XF8U-3

AN/APA-141 Radar Set; used in B-52G/H

AN/APA-143 Rotodome Antenna Group; manufactured by Dalmo Victor; used with AN/APS-96;

used in E-2A/B

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-16

© 2016 Presagis. All Rights Reserved.

Model Number Description

AN/APA-144 Signal Analyzer Group; used in EA-1F, EC-121M, P-3A

AN/APA-150 Station Keeping System; used in SH-34J

AN/APA-153 Cable Breakout Adapter Set; manufactured by AC Spark Plug; used with AN/APS-

104

AN/APA-157 Continuous Wave Illuminator (for AIM-7 targeting); manufactured by Raytheon;

used in F-4B/C

AN/APA-159 Radar Set Group; manufactured by Hazeltine; used in EC-121D/H

AN/APA-160 Test Adapter; manufactured by Sperry; used with AN/APN-42

AN/APA-161 Station Keeping System used in ASW helicopters

AN/APA-162 Map Matcher

AN/APA-164 Rotodome; used with AN/APS-111; used in E-2A/B

AN/APA-165 Intercept Computer (for AIM-9 firing); manufactured by Raytheon; used with

AN/APQ-109 used in F-4D

AN/APA-167 used with AN/APG-53

AN/APA-170 Radar Set

AN/APA-171 Rotodome Antenna Group; used with AN/APS-120, AN/APX-76; used in E-2C

AN/APA-172 Control Indicator Group; used with AN/APS-120, AN/APX-76; used in E-2C

AN/APA-173 Test Bench

AN/APB - Airborne Bombing Radars

Model Number Description

AN/APB-1 Radar Beacon

AN/APB-2 Bombing Radar; used in B-58

AN/APD - Airborne Direction Finding and Surveillance Radars

Model Number Description

AN/APD-1 Homing Radar; used in TBF/TBM

AN/APD-2 Radar Direction Finding Set; used with AN/APR-1 and AN/APA-48

AN/APD-4 D/E/F-Bamd Radar Direction Finding System; manufactured by ITT; used in RB-

47H, B-52, EB-66C

AN/APD-5 Reconnaissance Radar

AN/APD-7 Radar Surveillance System; manufactured by Westinghouse; used in OV-1D, RA-5C

AN/APD-8 Side-Looking Reconnaissance Radar; manufactured by Westinghouse; proposed for

RF-111A

AN/APD-9 Radar Set

AN/APD-10 Side-Looking Reconnaissance and Mapping Radar; used in F-4, RF-4B/C, CP-140;

special tests in NC-141, C-130

AN/APD-11 Side-Looking Radar Reconnaissance Set; part of AN/UPD-6; used in RF-4E

AN/APD-12 I/J-band Side-Looking Reconnaissance System; manufactured by Lockheed Martin;

part of AN/UPD-8 and AN/UPD-9; used in Israeli RF-4B

AN/APD-13 QUICK LOOK Electronic Intelligence Subsystem; manufactured by Systems &

Electronics; used in "Guardrail" RC-12

AN/APD-14 SAROS (SAR for Open Skies) Radar System; manufactured by Sandia; part of

AN/UPD-8; used in OC-135

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-17

© 2016 Presagis. All Rights Reserved.

Model Number Description

AN/APD-501 Maritime Patrol Radar; used in Lancaster (Canada)

AN/APG - Airborne Fire Control Radars

Model Number Description

AN/APG-1 S-Band Intercept Radar used in P-61B

AN/APG-2 S-Band Intercept & Gun Laying Radar used in P-61

AN/APG-3 Tail Gun Laying Radar; manufactured by General Electric used in B-29 and B-36B

AN/APG-4 L-Band Low Altitude Torpedo Release Radar "Sniffer" used in TBM

AN/APG-5 S-Band Gun Laying/Range-Finding Radar used in B-17, B-24 and F-86A (AN/APG-

5C)

AN/APG-6 L-Band Low Altitude Bomb Release Radar "Super Sniffer" (improved AN/APG-4)

AN/APG-7 Glide Bomb Control Radar "SRB" (Seeking Radar Bomb)

AN/APG-8 S-Band Turret Fire Control Radar used in B-29B

AN/APG-9 L-Band Low Altitude Bomb Release Radar (improved AN/APG-6)

AN/APG-10 Weapons System Radar

AN/APG-11 L-Band Toss Bombing Radar

AN/APG-12 L-Band Low Altitude Bomb Release Radar (improved AN/APG-9)

AN/APG-13 S-Band Nose Gun Laying Radar "Falcon"; manufactured by General Electric used

with 75mm nose gun of B-25H

AN/APG-14 S-Band Gun Sight Radar used in B-29

AN/APG-15 S-Band Tail Gun Radar used in B-29B, PB4Y

AN/APG-16 X-Band Gun Laying Radar (modification of AN/APG-2) used in B-32, XB-48

AN/APG-17 S-Band Low Altitude Bomb Release Radar (improved AN/APG-4)

AN/APG-18 X-Band Turret Control Radar (improved AN/APG-5); manufactured by Martin used

with "S-4" gunfight

AN/APG-19 X-Band Fire Control Radar; manufactured by Martin (improved AN/APG-8 and -18)

AN/APG-20 S-Band Low Altitude Bomb Release Radar (improved AN/APG-6)

AN/APG-21 Ground-Ranging Radar

AN/APG-22 X-Band Gun Sight Radar; manufactured by Raytheon used with Mk.18/23 Lead-

Computing Gun Sights

AN/APG-23 Weapons System Radar used in B-36A

AN/APG-24 Weapons System Radar used in B-36B

AN/APG-25 X-Band Gun Tracking Radar used in F-100

AN/APG-26 Weapons System Tracking Radar; manufactured by Westinghouse used in F3D

AN/APG-27 Tail Gun Radar used in XB-46 and XB-48

AN/APG-28 Intercept Radar (modified AN/APG-1) used in F-82F

AN/APG-29 Night/All-Weather Fighter Fire-Control Radar (for Type D-1 Fire-Control System)

AN/APG-30 X-Band Fire Control Radar; manufactured by Sperry used in B-45, B-57, F-4E, F-

8A, F-84E, F-86A (final blocks only), F-86E/F, F-100, FJ-2, F2H-2

AN/APG-31 Gun Laying Radar; manufactured by Raytheon used in B-57

AN/APG-32 X-Band Tail Turret Autotrack Radar; manufactured by General Electric used in B-

36D/F, B-47E

AN/APG-33 X-Band Fire Control Radar; manufactured by Hughes used in TB-25K, F-94A/B, F-

89A

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-18

© 2016 Presagis. All Rights Reserved.

Model Number Description

AN/APG-34 Computing Radar Gunfight used in F-104C

AN/APG-35 Radar used in F3D

AN/APG-36 Search Radar used in F2H-2N, F-86D (replaced by AN/APG-37)

AN/APG-37 Search Radar; manufactured by Hughes used in F-86D/K/L, F2H-4

AN/APG-39 Gun Laying Radar used in B-47E

AN/APG-40 Fire Control Radar; manufactured by Hughes used in TB-25M, F-94C, F-89D, CF-

100 (Canada)

AN/APG-41 Tail Gun Radar (twin radomes); manufactured by General Electric used in B-36H

AN/APG-43 Continuous Wave Interception Radar; manufactured by Raytheon

AN/APG-45 Fire-Control Radar (miniaturized AN/APG-30); manufactured by General Electric;

intended for patrol aircraft gun turrets

AN/APG-46 Fire-Control Radar; tested in A-6A

AN/APG-48 Airborne Fire-Control System Mk.22

AN/APG-50 Intercept Radar used in F-4

AN/APG-51 Intercept Radar; manufactured by Hughes used in F3H-2, F3D

AN/APG-53 Weapons System Radar; manufactured by Stewart-Warner used in A-4

AN/APG-55 Pulse Doppler Intercept Radar; manufactured by Westinghouse

AN/APG-56 Fire Control Radar (similar to AN/APG-30) used in F-86 (only Australian models

with A-4 gun sight)

AN/APG-57 Fire-Control Radar; manufactured by Gould

AN/APG-59 Pulse-Doppler Gunnery Radar; manufactured by Westinghouse; part of AN/AWG-10

used in F-4J

AN/APG-60 Doppler Radar; part of AN/AWG-11 used in F-4K

AN/APG-61 Fire-Control Radar; part of AN/AWG-12 used in F-4M

AN/APG-63 Pulse Doppler X-Band Fire Control Radar (AN/APG-63(V)2 is an AESA variant);

manufactured by Raytheon (Hughes) used in F-15A/B/C/D/H/K

AN/APG-64 Fire-Control Radar (development of AN/APG-63); not produced

AN/APG-65 Pulse Doppler X-Band Multi-Mode Radar; manufactured by Raytheon (Hughes)

used in F/A-18A/B, F-4 ICE/Peace Ikarus 2000, AV-8B+ (upgraded)

AN/APG-66 Pulse Doppler X-Band Multi-Mode Radar; manufactured by Northrop Grumman

(Westinghouse) used in F-16A/B, F-4EJ (Japan), Hawk 200 (UK)

AN/APG-67 Pulse Doppler X-Band Multi-Mode Radar; manufactured by Lockheed Martin

(General Electric) (Model G-200) used in F-20, A-50 (Korea), F-5-2000 (Taiwan),

Ching Kuo (Taiwan)

AN/APG-68 Pulse Doppler X-Band Multi-Mode Radar (improved AN/APG-66); manufactured by

Northrop Grumman (Westinghouse) used in F-16C/D-30/40/50

AN/APG-69 Radar Set; manufactured by Emerson used in F-5E, AV-8?

AN/APG-70 Pulse Doppler X-Band Multi-Mode Radar (upgrade of AN/APG-63); manufactured

by Raytheon (Hughes) used in F-15C/D/E

AN/APG-71 Pulse Doppler X-Band Multi-Mode Radar; manufactured by Raytheon (Hughes)

used in F-14D

AN/APG-73 Pulse Doppler X-Band Multi-Mode Radar (upgrade of AN/APG-65); manufactured

by Raytheon (Hughes) used in F/A-18C/D/E/F

AN/APG-74 Pod-mounted Radar System; manufactured by Northrop Grumman (Norden)

AN/APG-76 Pulse Doppler Ku-Band Multi-Mode Radar; manufactured by Northrop Grumman

(Norden) used in F-4E (Israel); tested in pod with F-16, S-3B

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-19

© 2016 Presagis. All Rights Reserved.

Model Number Description

AN/APG-77 Pulse Doppler X-Band AESA (Active Electronically Scanned Array) Multi-Mode

Radar; manufactured by Northrop Grumman/Raytheon used in F/A-22A

AN/APG-78 Fire Control Radar "Longbow"; manufactured by Northrop Grumman & Lockheed

Martin used on mast in AH-64D, RAH-66, underwing on AH-1W/Z

AN/APG-79 AESA (Active Electronically Scanned Array) Multi-Mode Radar (based on

AN/APG-73); manufactured by Raytheon used in F/A-18E/F/G as replacement for

AN/APG-73

AN/APG-80 "Agile Beam Radar" AESA (Active Electronically Scanned Array) Multi-Mode

Radar (based on AN/APG-68); manufactured by Northrop Grumman; intended for F-

16E/F

AN/APG-81 AESA (Active Electronically Scanned Array) Radar planned for F-35

AN/APG-501 X-Band Ranging Radar used in F-86

AN/APG-T1 Radar Training Set for AN/APG-1

AN/APN - Airborne Navigation Radars

Model Number Description

AN/APN-1 Radio Altimeter (improved AN/ARN-1) used in P-61, C-119, B-32, C-121, H-19, P-

5, AF-2W, AD-5, F2H-2/2N/2P, F3D, F6F-5N, F9F, XF10F-1, P2V-4, PB4Y-2,

PBM-5S, PBY-6A, R5C-1, R5D-2, R6D-1, SB2C-5, TBM-3S

AN/APN-2 "Rebecca" Radio Beacon used with AN/PPN-1, AN/TPN-2

AN/APN-3 SHORAN used with AN/CPN-2 used in B-45A

AN/APN-4 LORAN; manufactured by Philco used in B-29, B-32, C-47, C-54, C-117, C-121,

P2V-4, PBM-5S, PBY-6A, PB4Y-2, R4Q-1, R6D-1

AN/APN-5 Radar Beacon Navigation Aid used in F-86

AN/APN-6 S-Band Beacon used with AN/PPN-10, AN/PPN-11

AN/APN-7 LORAN S-Band Beacon used with AN/APS-2

AN/APN-8 Radar Beacon

AN/APN-9 LORAN; manufactured by RCA used in B-29, B-32, RC-121, C-97 replaced

AN/APN-4

AN/APN-10 "Rebecca" Interrogation Set

AN/APN-11 X-Band Beacon used with AN/APS-3/4/6/10/15/31/33 used in B-47, KC-97, XS-1

AN/APN-12 Rendezvous Radar (or 160-230 MHz "Rebecca" Interrogator) used in B-47, C-97

AN/APN-13 S-Band Beacon (improved AN/APN-7)

AN/APN-14 Navigation Aid

AN/APN-15 Low Level Altimeter Set; manufactured by Sperry used in B-52, CH-3C

AN/APN-16 Radar Beacon

AN/APN-18 Radar Beacon

AN/APN-19 "Rosebud" S-Band Beacon used in F-82D

AN/APN-20 Radar Beacon

AN/APN-21 Radar Beacon

AN/APN-22 Radar Altimeter; manufactured by Electronic Assistance Corp used in A-3, B-66, C-

119, RC-121, C-130, RF-101C, OV-1, AD-5, P2V-5, R6D-1

AN/APN-23 Active Seeker used in KAY-1(XSAM-N-4)

AN/APN-24 Navigation Set

AN/APN-25 Doppler Navigator; manufactured by GPI

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-20

© 2016 Presagis. All Rights Reserved.

Model Number Description

AN/APN-26 SG-Band (VHF) Beacon

AN/APN-29 SG-Band (VHF) Beacon

AN/APN-30 Radar Beacon

AN/APN-33 S-Band Beacon; replaced AN/APN-7 used in XSSM-N-8

AN/APN-34 Distance Measuring Radar used in C-97C, R6D-1

AN/APN-35 Radar Beacon

AN/APN-36 Radar Beacon

AN/APN-37 Radar Beacon

AN/APN-38 Radar Beacon

AN/APN-39 Radar Beacon

AN/APN-40 Radar Beacon

AN/APN-41 Missile Beacon for LTV-N-2 replaced AN/APN-33

AN/APN-42 Radar Altimeter used in WC-130, WB-47E, B-52

AN/APN-45 Tracking Radar Beacon used in DC-130A

AN/APN-46 Radar Beacon

AN/APN-47 Radar Beacon

AN/APN-48 Radar Beacon

AN/APN-49 Radar Beacon

AN/APN-50 Navigation Radar; manufactured by Sperry

AN/APN-52 Radar Set

AN/APN-54 Radar Beacon

AN/APN-55 Radar Beacon (for missiles)

AN/APN-56 Navigation Radar; manufactured by Gould

AN/APN-57 Ground Position Indicator

AN/APN-58 Navigation Radar; manufactured by Sperry

AN/APN-59 Search & Weather Radar; manufactured by Sperry used in C-130, C-135, B-57, C-

133, C-141, KC-97

AN/APN-60 S-Band Beacon used in B-52

AN/APN-61 Radar Beacon used in XF-85

AN/APN-63 S-Band (Receive)/L-Band (Transmit) Beacon; manufactured by Melpar

AN/APN-66 Doppler Navigation Radar used in SM-62, B-47

AN/APN-67 Doppler Set used in P6M-1, NC-121 "Project Magnet", USN helicopters; tested in P-

2

AN/APN-68 IFF Beacon used with AN/APX-6

AN/APN-69 X-Band Rendezvous Beacon used in B-47, B-52, C-97, RB-57D, KC-135 used with

AN/APN-59

AN/APN-70 LORAN; manufactured by Dayton Aviation Radio & Equip Corp used in B-50, C-

54, C-119, C-121, RC-121D, C-130, C-135, P-2, P-3A, T-29C/D, Z-1, R6D-1

AN/APN-71 Flare-Out Unit

AN/APN-75 Rendezvous Radar used in B-47

AN/APN-76 Rendezvous Radar; manufactured by Olympic used in KC-97, B-47B/E

AN/APN-77 Doppler Set used in SZ-1B, USN helicopters

AN/APN-78 Doppler Set used in helicopters

AN/APN-79 Doppler Set manufactured by Teledyne Ryan used in helicopters

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-21

© 2016 Presagis. All Rights Reserved.

Model Number Description

AN/APN-81 Doppler Set used in RB/WB-66, WB-50, C-130, KC-135

AN/APN-82 Doppler Navigation Radar (combination of AN/APN-81 and AN/ASN-6) used in

EB/RB/WB-66, KC-135

AN/APN-84 SHORAN Set; manufactured by Hazeltine used in RC-130A

AN/APN-85 Navigation Radar; manufactured by Hazeltine

AN/APN-89 Doppler Set; part of AN/ASQ-38 used in B-52E/G/H

AN/APN-90 Doppler Set

AN/APN-91 Tracking Beacon used in BQM-34C

AN/APN-92 Navigation Radar

AN/APN-96 Doppler Set

AN/APN-97 Doppler Set; manufactured by Ryan used in UH-2A, SH-3, SH-34J

AN/APN-99 Doppler Navigation Set (combination of AN/APN-81 and AN/ASN-7) used in B-52,

AC-130A, KC-135

AN/APN-100 Radar Altimeter; manufactured by Litton used in CH-47A

AN/APN-101 Airborne Radar used in RF-4C, F-4E (possible confusion with AN/ARN-101)

AN/APN-102 Doppler Set; manufactured by GPI used in RB-47, WB-47E, RB-57F, WB-57F, F-

100C/F, RF-101

AN/APN-103 Navigational Computer System

AN/APN-105 All-Weather Doppler Navigation System; manufactured by LFE used in F-105B/D,

T-39B

AN/APN-107 Navigation Radar used in RB-57D

AN/APN-108 Doppler Set (derivative of AN/APN-89 with gyro components from AN/APN-81)

used in B-52E

AN/APN-109 Altimeter; manufactured by Honeywell

AN/APN-110 Doppler Navigation Set used in B-58, F-100D/F, RF-101

AN/APN-113 Doppler Radar; part of AN/ASQ-42 used in B-58

AN/APN-114 Automatic Landing System used with AN/GSN-5; tested in TF-102

AN/APN-115 Navigation Radar; manufactured by General Electric

AN/APN-116 Doppler Set

AN/APN-117 Low-Level Radar Altimeter (in combination with AN/APN-22); manufactured by

Electronic Assistance Corp used in A-6A, P-2, S-2, SH-3A, H-13H, CH-47A, HH-

52, CH-53A

AN/APN-118 Doppler Navigation Set

AN/APN-119 Doppler Set

AN/APN-120 Radar Altimeter; planned for A-5, A-6A, but not produced

AN/APN-122 Doppler Navigation Set used in S-2, A-2, A-3, A-4, A-6, RA-5C, C-47, C-54, EC-

121, E-2, TF-8, P-2, P-3, P-5

AN/APN-126 Doppler Set

AN/APN-127 Collision Warning System

AN/APN-128 Navigation Radar; manufactured by Teledyne used in C-130

AN/APN-129 Doppler Navigation System; manufactured by Teledyne used in OV-1A/B

AN/APN-130 Doppler Radar; manufactured by Teledyne Ryan used in UH-2, SH-3, SH-34J, CH-

53D, Z-1

AN/APN-131 Doppler Navigation Radar used in F-105, T-39B, TF-8A

AN/APN-132 X-Band Beacon; manufactured by Motorola used in BQM-34A, QF-9G

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-22

© 2016 Presagis. All Rights Reserved.

Model Number Description

AN/APN-133 High-Altitude Radar Altimeter (upgraded SCR-728) used in C-130, C-135

AN/APN-134 Ku-Band Beacon; manufactured by Bendix used in KC-135

AN/APN-135 X-Band Beacon (for in-flight refueling); manufactured by Bendix used in B-58

AN/APN-136 Ku-Band Beacon (for in-flight refueling); manufactured by Bendix used in B-58

AN/APN-140 Radar Altimeter

AN/APN-141 Low Altitude Radar Altimeter; manufactured by Bendix used in A/TA-4, A-6, A-7,

C-2, C-130, C-141, E-2C, F-4, F-8, F-104, F-105, P-3, S-2, T-39, SH-3

AN/APN-142 Navigation Radar used in F-4C

AN/APN-144 Doppler Navigation Radar used in EC-121, VC-137

AN/APN-145 LORAN C Set used in RC-135D

AN/APN-146 Radar Altimeter

AN/APN-147 Doppler Navigation System; manufactured by Canadian Marconi used in AC-119, C-

124C, C-130, WC-130B/E, RC-135A, WC-135B, C-135F, C-141

AN/APN-148 Doppler Navigation Radar used in F-105D/F

AN/APN-149 Terrain Avoidance Radar used in TF-8

AN/APN-150 Radar Altimeter used in CH-3C, B-52, C-130, EC-130E, C-135

AN/APN-151 LORAN C Receiver; manufactured by ITT used in RC-135B, C-141A, H-3

AN/APN-152 LORAN C Receiver

AN/APN-153 Doppler Navigation Radar used in A-6, A-4, EA-6A/B, A-7, C-130G, E-2, P-3A, S-

2E

AN/APN-154 X-Band Beacon Augmenter (Tracking Beacon); manufactured by Motorola used with

AN/TPB-1, AN/TPQ-10 used in A-4, A-7, F-14, A-6, AH-1T, H-46, CH-53

AN/APN-155 Low Altitude Radar Altimeter; manufactured by Stewart-Warner used in F-4

AN/APN-157 LORAN C Receiver; manufactured by ITT used in C-130, RC-135B, C-141, P-3C,

EP-3E

AN/APN-158 Weather Radar; manufactured by Collins used in HC-123B, U-8F, U-21A, CV-2

AN/APN-159 Radar Altimeter; manufactured by Stewart-Warner used in RF-4

AN/APN-161 High-Resolution Mapping Radar; manufactured by Sperry used in C-130

AN/APN-162 manufactured by Canadian Marconi

AN/APN-163 Doppler Navigation System

AN/APN-165 Terrain-Following/Ground-Mapping Radar; manufactured by Texas Instruments used

in OV-1

AN/APN-167 Radar Altimeter; manufactured by Honeywell used in F/FB-111A

AN/APN-168 Doppler Radar; manufactured by Canadian Marconi used with AN/AYA-3 used in

CH-53A, OV-1

AN/APN-169 Station-Keeping Radar; manufactured by Sierra Research used in C-130, C-141

AN/APN-170 Terrain Following Radar; manufactured by General Dynamics; tested in A-4C, B-52,

B-58

AN/APN-171 Radar Altimeter; manufactured by Honeywell used in C-130, E-2C, SH-2F, SH-3H,

OH-6A, CH-46, CH-53

AN/APN-172 Doppler Set; manufactured by Marconi used with AN/ASN-73 used in HH-53C, CH-

53G

AN/APN-174 Station-Keeping Subsystem; manufactured by Teledyne used in CH-46, CH-53

AN/APN-175 Doppler Radar used in C-130, CH-3B, HH-3E, MH-53

AN/APN-176 Radar Altimeter; manufactured by Texas Instruments used in FB-111A

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-23

© 2016 Presagis. All Rights Reserved.

Model Number Description

AN/APN-177 Doppler Altimeter

AN/APN-178 Navigation Radar; manufactured by Sierra used in C-130

AN/APN-179 Doppler Navigation Radar; manufactured by Bendix used in EC-47

AN/APN-180 LORAN A Automatic Tracking Receiver used with AN/AYN-1 used in HH-3F

AN/APN-181 LORAN C/D Receiver

AN/APN-182 Doppler Radar Navigation System; manufactured by Ryan used with AN/AYK-2

used in SH-3H, CH-46, HH-46A/D, SH-2D, UH-2C, RH-53

AN/APN-184 Radar Altimeter; manufactured by Bendix used in C-130, Hawker P-1127 (UK)

AN/APN-185 Doppler Navigation Radar; manufactured by Singer-Kearfott used in FB-111A, A-

7D, B-1A

AN/APN-186 Doppler System; tested in A-6 ILAAS (AN/ASQ-116)

AN/APN-187 Doppler Navigation Radar; manufactured by Singer-Kearfott used in P-3

AN/APN-189 Doppler Navigation Radar; manufactured by Marconi used in F-111D

AN/APN-190 Doppler Radar; manufactured by Singer-Kearfott used in A-7, AC-130E, F-111

AN/APN-191 Radar Altimeter used in A-7D

AN/APN-192 Short-Pulse Radar Altimeter; manufactured by Teledyne used in CH-47

AN/APN-193 Doppler Velocity Sensor; manufactured by Ryan

AN/APN-194 Radar Altimeter; manufactured by Honeywell used in F-14, A-6E, AH-1W, HH-60H,

EA-6B, AV-8B, C-2A, P-3C, EP-3E, F/A-18, SH-60B/F, T-45A, TA-4J, TC-130G,

S-3, A-4, A-7, A-10, B-1, TC-4C, QF-4, BQM-8D/F, MQM-8G, BQM-34S, AQM-

34U, RGM/UGM-109B

AN/APN-195 Nose-Mounted Radar; manufactured by Collins used in SH-3D, HH-3E

AN/APN-196 Doppler Radar used in F-105

AN/APN-197 STATE Airborne Station; manufactured by Honeywell used with AN/TPN-21,

AN/UPN-33; tested in C-123, C-131, T-39, CH-3

AN/APN-198 Radar Altimeter; manufactured by Honeywell used in F-104G, AV-8, Sea King

(UK), Lynx (UK)

AN/APN-199 LORAN Receiver; manufactured by Collins used in C-5A

AN/APN-200 Doppler Velocity Sensor; manufactured by Teledyne used in B-1, E-3, S-3

AN/APN-201 Radar Altimeter; manufactured by Hoffman Electronics used in S-3

AN/APN-202 Radar Beacon; manufactured by Motorola used with AN/SPN-46 ACLS (Automatic

Carrier Landing System) used in AV-8B, F/A-18, S-3, C-2, P-3C

AN/APN-203 Radar Altimeter; manufactured by Stewart-Warner used in T-43A

AN/APN-205 Doppler Radar; manufactured by Teledyne used in SH-2, SH-60B

AN/APN-206 Doppler Set used in B-1A

AN/APN-208 Doppler Navigation Radar; manufactured by Marconi used in HH-53H, Bell 412

AN/APN-209 Radar Altimeter; manufactured by Honeywell/Stewart-Warner used in AH-1F, UH-

1V, CH-47D, OH-58C/D, H-60, T-43A

AN/APN-210 Doppler Set; manufactured by Singer used in CH-53G

AN/APN-211 Navigation Radar; manufactured by Teledyne-Ryan used in helicopters

AN/APN-213 Doppler Velocity Sensor; manufactured by Litton (Teledyne-Ryan) used in E-3;

tested in KC-135

AN/APN-214 Radar Altimeter

AN/APN-215 Weather & Search Radar; manufactured by Bendix/King used in RU-38A, U-21, C-

130

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-24

© 2016 Presagis. All Rights Reserved.

Model Number Description

AN/APN-217 Doppler Radar Navigation Sensor; manufactured by Litton (Teledyne-Ryan) used in

AH-1W, UH-1N, SH-2G, SH-3D, HH-3F, CH-46, CH-53E, MH-53E, RH-53D, HH-

60H/J, SH-60B/F/J, V-22

AN/APN-218 Doppler Radar Navigation System; manufactured by Litton (Teledyne-Ryan) used in

B-1B, B-52G/H, KC-135, C-130, F-111G

AN/APN-220 Doppler Radar; manufactured by Teledyne-Ryan

AN/APN-221 Doppler Radar (derived from AN/APN-208); manufactured by Marconi used in C-

141, HH-53H, MH-53J

AN/APN-222 Radar Altimeter; manufactured by Honeywell used in C-130, E-6A

AN/APN-224 Radar Altimeter; manufactured by Honeywell used in B-52G/H, B-1B

AN/APN-227 Doppler Radar used in P-3C

AN/APN-230 Doppler Navigation Radar (improved AN/APN-218) used in B-1B

AN/APN-231 Radar Navigation System; manufactured by Teledyne-Ryan used in EA-6A

AN/APN-232 CARA (Combined Altitude Radar Altimeter); manufactured by Gould used in C-5,

C-17, C-130, OC-135, C-141, F-16

AN/APN-233 Doppler Navigation Radar (developed from AN/APN-220); manufactured by

Teledyne-Ryan used in C-2, OV-10D, CH-47, S-2, Alpha Jet (Germany), DHC-5

AN/APN-234 Weather and SAR Radar (Model RDR-1400C; improved AN/APN-215);

manufactured by Telephonics (originally by Bendix/King) used in P-3, C-2

AN/APN-235 Doppler Navigation Set (development of AN/APN-221) used in HH-60A

AN/APN-236 Doppler Radar System; manufactured by Teledyne

AN/APN-237 Ku-Band Terrain-Following Radar; manufactured by Texas-Instruments; part of

AN/AAQ-13

AN/APN-238

AN/APN-239 Weather and SAR Radar (Model RDR-1400C, similar to AN/APN-234);

manufactured by Telephonics (originally by Bendix/King) used in HH-60G, MH-

60G

AN/APN-240 Station-Keeping System; manufactured by Sierra Research; replaced AN/APN-169

AN/APN-241 Weather & Navigation Radar; manufactured by Northrop Grumman (Westinghouse)

used in C-130H/J, C-27J, HS-748 (Australia)

AN/APN-242 Weather & Navigation Radar; manufactured by Sperry; replacement for AN/APN-59

AN/APN-243 Station-Keeping Equipment; manufactured by Sierra Technologies used in C-17, C-

130J

AN/APN-244 E-TCAS (Enhanced Traffic Alert Collision Avoidance System); manufactured by

Honeywell (AlliedSignal) used in C-130E/H/J

AN/APN-245 Radar Beacon used with ACLS (Automatic Carrier Landing System) AN/SPN-46

used in F/A-18

AN/APN-501 Doppler Radar used in C-141(?)

AN/APN-503 Doppler Radar used in CP-121 (Canada)

AN/APN-509 Radar Altimeter

AN/APN-510 Doppler Navigation System used in CP-140 (Canada)

AN/APN-511 Radar Altimeter

AN/APN-512 Radar Altimeter used in CC-130E/H (Canada)

AN/APN-513 Doppler Radar Navigation Set used in CH-124A (Canada)

AN/APN-T6 Radar Interpretation Trainer

AN/APN-T8 Doppler System Trainer used with C-5

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-25

© 2016 Presagis. All Rights Reserved.

Model Number Description

AN/APN-T10 Radar Trainer used with C-5

AN/APQ - Airborne Multipurpose/Special Radars

Model Number Description

AN/APQ-1 Radar Jammer RT-26

AN/APQ-2 450-750 MHz High Power Barrage Jamming Transmitter "Rug"; manufactured by

General Motors (Delco Div.) used in PB4Y-2

AN/APQ-3 S-Band Radar Receiver; later redesignated AN/APR-5

AN/APQ-4 Panoramic Radar Receiver; later redesignated AN/APR-6

AN/APQ-5 Low Level Radar Bombsight; manufactured by Western Electric used with AN/APS-

2/3/15 used in B-24, B-25, B-32, PBJ, PBM

AN/APQ-7 X-BAND Search & Bombing Radar "Eagle Mk.1"; manufactured by Western

Electric used in B-17, B-24, B-25J, B-29, B-32

AN/APQ-8 Deception Radar "Spoofer"

AN/APQ-9 475-585 MHz High Power Barrage Jamming Transmitter "Carpet III"; manufactured

by General Motors (Delco Div.)

AN/APQ-10 X-Band High Altitude Bombing Radar "Eagle Mk.2"; manufactured by Western

Electric used in B-29

AN/APQ-11 Torpedo Launching Radar (formerly SCR-626)

AN/APQ-12 Torpedo & Bombing Radar (formerly SCR-631)

AN/APQ-13 X-Band Bombing Radar "Mickey" (British equivalent is H2X); manufactured by

Western Electric used in B-29, B-32

AN/APQ-14 Radar "Moth-1"

AN/APQ-15 88-162 MHz Radar Spoofing Transmitter "Moonshine"; manufactured by RRL

AN/APQ-16 Radar Bombing Aid

AN/APQ-17 Radar Jammer

AN/APQ-19 S-Band Search & Bombing Radar

AN/APQ-20 S-Band Radar Jammer; manufactured by RRL, Delmont Radio; uses AN/APA-41,

AN/APR-10, AN/APT-10

AN/APQ-21 Countermeasures Set; similar to AN/SPT-7

AN/APQ-22 Radar System

AN/APQ-23 X-Band High Altitude Bombing Radar used in B-29

AN/APQ-24 K-1 Radar Navigation & Bombing System used in B-36B, B-45A, B-50, B-66B

AN/APQ-27 Radar Jamming System; uses AN/APT-16 (2x), AN/APR-9

AN/APQ-29 Radar Relay Set

AN/APQ-31 Bombing & Navigation Radar

AN/APQ-32 RT-119 Radar Jammer

AN/APQ-33 Countermeasures Set used in AC-119K

AN/APQ-34 K-Band Bombing Radar; manufactured by Western Electric

AN/APQ-35 X-Band Search, Fire Control & Tail-Warning Radar (components are AN/APS-21,

AN/APS-28, AN/APG-26); manufactured by Westinghouse used in F3D, F2H, F3H

AN/APQ-36 Search & Acquisition Radar; manufactured by Westinghouse used in F3D-2M, F7U-

3M

AN/APQ-39 Weather Radar(?) used in B-52D

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-26

© 2016 Presagis. All Rights Reserved.

Model Number Description

AN/APQ-41 X-Band Search & Intercept Radar (improved AN/APQ-35); manufactured by

Westinghouse used in F3D-2, F2H-3

AN/APQ-43 Multipurpose Radar; designated AI22 in UK used in Javelin FAW.2/6 (UK)

AN/APQ-46 Radar Set; proposed for F3D-3

AN/APQ-50 X-Band Fighter Interceptor Radar; manufactured by Westinghouse used in F-4, F3H,

F4D; planned for F12F

AN/APQ-51 X-Band Missile Radar; manufactured by Sperry used in F3H, F7U

AN/APQ-54 Chronograph Set (projectile velocity measuring equipment)

AN/APQ-55 K-Band Side-Looking Radar used in RF-4C

AN/APQ-56 Side-Looking, Real-Aperture Radar; manufactured by Westinghouse used in RB-

57D, RB-47

AN/APQ-57 Millimeter-Wavelength Navigation Radar

AN/APQ-58 Millimeter-Wavelength Navigation Radar

AN/APQ-59 Side-Looking Airborne Radar; manufactured by Westinghouse

AN/APQ-60 Missile Illumination Radar; manufactured by Raytheon

AN/APQ-62 Side-Looking Radar

AN/APQ-63 Radar

AN/APQ-64 Radar used in F5D with AAM-N-3/AIM-7B Sparrow II missile

AN/APQ-65 Interception Radar used in Aquilon 203 (French-built D.H. Vampire)

AN/APQ-67 Interception Radar; manufactured by Raytheon

AN/APQ-68 HIRAN used in RC-130A

AN/APQ-69 Experimental SLAR Pod for B-58; manufactured by Hughes

AN/APQ-70 Millimeter-Wavelength Navigation Radar

AN/APQ-72 X-Band Intercept Radar; manufactured by Westinghouse used in F-4 (replaced

AN/APQ-50); tested in F3D

AN/APQ-73 Side-Looking Radar; planned for RS-70

AN/APQ-74 X-Band Missile Control Radar used with AN/APA-138, AN/APX-20, AN/APN-22

AN/APQ-81 Doppler Navigation Radar; manufactured by Northrop used in SM-62; planned for

F6D and tested in A-3

AN/APQ-83 Fire-Control Radar; manufactured by Magnavox used in F-8D

AN/APQ-84 Radar used in F-8

AN/APQ-86 K-Band Side-Looking Surveillance & Mapping Radar; manufactured by Texas

Instruments used in RL-23D, RU-8D

AN/APQ-88 Tracking Radar; manufactured by Naval Avionics used in A-6 (replaced by

AN/APQ-112)

AN/APQ-89 Terrain Following Radar; tested in T-2

AN/APQ-92 Ku-Band Search Radar; manufactured by Norden used in A-6, EA-6B, AP-2H

AN/APQ-93 Synthetic-Aperture Ground-Mapping Radar

AN/APQ-94 Radar Set; manufactured by Magnavox used in F-8D/E, T-39D

AN/APQ-95 Collision Avoidance Radar used in helicopters

AN/APQ-96 Radar Set used in OV-10A

AN/APQ-97 K-Band Side-Looking Imaging Radar; manufactured by Westinghouse; tested in OV-

1A, YEA-3, DC-6

AN/APQ-99 J-Band Forward-Looking Multipurpose Radar; manufactured by Texas Instruments

used in A-7A, RF-4B/C, RF-101

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-27

© 2016 Presagis. All Rights Reserved.

Model Number Description

AN/APQ-100 Search & Mapping Radar; manufactured by Westinghouse used in F-4C, RF-101

AN/APQ-101 Terrain Following Radar; manufactured by Texas Instruments

AN/APQ-102 Side-Looking Mapping Radar; manufactured by Goodyear used in RB-57, RF-4B/C

AN/APQ-103 Search Radar; manufactured by Norden used in EA-6A, A-6B

AN/APQ-104 Radar Set; manufactured by Magnavox (similar to AN/APQ-94 used in F-8E(FN)

AN/APQ-105 Distance Integrating Set used in RC-135

AN/APQ-107 Radar Altimeter Warning System used with AN/APN-117 used in CH-47A, P-3A/C,

EP-3E, S-2, SH-3H

AN/APQ-108 Mapping Radar (SAR?); developed by Conductron used in SR-71

AN/APQ-109 Fire Control & Search Radar; manufactured by Westinghouse used in F-4C/D/E

AN/APQ-110 Ku-Band Terrain Following Radar; manufactured by Texas Instruments used in RF-

4C, F/FB-111

AN/APQ-111 X-Band Altimeter-Recorder used with AN/ASQ-92 in KC-135

AN/APQ-112 Tracking Radar; manufactured by Norden used in A-6

AN/APQ-113 Ku-Band Search & Attack Radar; manufactured by General Electric used in F-111,

F-5E

AN/APQ-114 Ku-Band Attack Radar; manufactured by General Electric used in F/FB-111A, F-4,

F-5E

AN/APQ-115 Terrain Following Radar; manufactured by Texas Instruments used in "Combat

Talon" C-130E, A-7A, F-111, RF-4C

AN/APQ-116 Terrain Following Radar; manufactured by Texas Instruments used in A-7A/B/C, C-

130

AN/APQ-117 Terrain-Following & Attack Radar (development of AN/APQ-109) used in F-4D/E

AN/APQ-118 Terrain Following Radar; manufactured by Norden used in MH-53H, AH-56A

AN/APQ-119 Ground Mapping & Interception Radar (modified AN/APQ-113); manufactured by

General Electric used in F-111A/D

AN/APQ-120 X-Band Fire Control Radar; manufactured by Westinghouse used in F-4D/E/F/G

AN/APQ-122 X-Band Multimode (Terrain Mapping/Target Locating/Navigation/Weather) Radar;

manufactured by Raytheon (Texas Instruments) used in MC-130E/H, KC-135A, RC-

135A/C, T-43A, C-130, E-4B

AN/APQ-123 used in F-111

AN/APQ-124 Navigation & Fire-Control Radar; manufactured by Magnavox used in F-8J

AN/APQ-125 Doppler Ranging Radar; manufactured by Magnavox used in F-8J

AN/APQ-126 J-Band Terrain Following Radar; manufactured by Raytheon (Texas Instruments)

used in A-7D/E, T-39D, AC-130E, CH-53

AN/APQ-127 Forward Looking Radar; manufactured by Sperry-Rand used with AN/ASQ-116;

tested in A-6

AN/APQ-128 J-Band Terrain Following Radar; manufactured by Sperry used in A-7D/E, F-

111C/D

AN/APQ-129 Search Radar used in EA-6B

AN/APQ-130 Attack Radar; manufactured by Rockwell Autonetics used in F-111D

AN/APQ-131 Target Acquisition Radar; manufactured by Texas Instruments used in OP-2E

AN/APQ-133 X-Band Side Looking Tracking Radar; manufactured by Motorola used in AC-119K,

C-130, AC-130

AN/APQ-134 Ku-Band Terrain Following Radar; manufactured by Texas Instruments used in

F/FB-111A

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-28

© 2016 Presagis. All Rights Reserved.

Model Number Description

AN/APQ-135 Sink-Rate Radar System used in A-4, F-4, F-8, C-130, CH-47

AN/APQ-136 Search Radar; manufactured by Texas Instruments used in AC-119K, AC-130A

AN/APQ-137 Moving Target Indicator Radar; manufactured by Emerson used in AH-1G

AN/APQ-138 Radar Set

AN/APQ-139 Ku-Band Multi-Mode Radar; manufactured by Texas Instruments used in B-57G

AN/APQ-140 J-Band Multi-Mode Scan Radar; manufactured by Raytheon (E-Systems); planned

for B-1A; tested in KC-135

AN/APQ-141 Terrain Following Radar; manufactured by Norden used in AH-56, HH-53 Pave Low

AN/APQ-142 Surveillance Radar "Quick Look I" used in RV-1C

AN/APQ-144 Ku-Band Attack Radar (improved AN/APQ-113); manufactured by General Electric

used in F-111F, FB-111A

AN/APQ-145 Mapping & Ranging Radar; manufactured by Stewart-Warner used in A-

4E/F/N/S/SU

AN/APQ-146 Ku-Band Terrain Following Radar; manufactured by Texas Instruments used in F-

111F

AN/APQ-148 J-Band Navigation & Attack Radar; manufactured by Norden used in A-6E, TC-4C

AN/APQ-149 Navigation & Fire Control Radar used in F-8

AN/APQ-150 Beacon Tracking Radar used in AC-130E/H

AN/APQ-152 Topographical Mapping Radar; manufactured by Goodyear used in RC-130

AN/APQ-153 I-Band Fire Control Radar; manufactured by System & Electronics Inc. (Emerson

Electric) used in F-5E/F

AN/APQ-154 Terrain-Following Radar; manufactured by Texas Instruments used in HH-53C

AN/APQ-155 Strategic Radar; manufactured by Northrop Grumman (Norden) used with AN/ASQ-

176 used in B-52H

AN/APQ-156 J-Band Navigation & Attack Radar (improved AN/APQ-148); manufactured by

Northrop Grumman (Norden) used in A-6E, TC-4C

AN/APQ-157 I-Band Fire Control Radar (modified AN/APQ-153); manufactured by System &

Electronics Inc. (Emerson Electric) used in F-5E/F

AN/APQ-158 Terrain Following Radar (improved AN/APQ-126); manufactured by Raytheon used

in MH-53J

AN/APQ-159 I/J-Band Multipurpose Radar (improved AN/APQ-153); manufactured by System &

Electronics Inc. (Emerson Electric) used in F-5E/F

AN/APQ-160 Attack Radar used in EF-111A

AN/APQ-161 Attack Radar; manufactured by General Electric used in F-111F

AN/APQ-162 Forward Looking Radar (development of AN/APQ-99?) used in RF-4C

AN/APQ-163 Forward Looking Radar; manufactured by General Electric used in B-1

AN/APQ-164 Pulse Doppler I-Band Multimode Radar; manufactured by Northrop Grumman

(Westinghouse) used in B-1B

AN/APQ-165 Attack Radar; manufactured by Texas Instruments used in F-111C

AN/APQ-166 Strategic Radar used in B-52G/H

AN/APQ-167 Radar Set (development of AN/APQ-159); developed by ESCO used in T-47

AN/APQ-168 Multi-Mode Radar; manufactured by Raytheon (Texas Instruments) used in HH-60D,

MH-60K; proposed for V-22

AN/APQ-169 J-Band Attack Radar (upgraded AN/APQ-165); manufactured by Lockheed Martin

(General Electric) used in F-111C

AN/APQ-170 Terrain Following Radar; manufactured by System & Electronics used in MC-130H

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-29

© 2016 Presagis. All Rights Reserved.

Model Number Description

AN/APQ-171 Attack & Terrain Following Radar (improved AN/APQ-128/146); manufactured by

Raytheon (Texas Instruments) used in F-111C/F

AN/APQ-172 J-Band Terrain Following Radar (upgraded AN/APQ-99); manufactured by

Raytheon (Texas Instruments) used in RF-4C

AN/APQ-173 Radar Set; manufactured by Norden; proposed for A-6F

AN/APQ-174 Multi-Mode Radar; manufactured by Raytheon used in MV-22, MH-60K, MH-47E;

MH-53

AN/APQ-175 X/Ku-Band Multi-Mode Radar; manufactured by Systems & Electronics Inc. used in

C-130E

AN/APQ-178 used in E-2C (developmental item only?)

AN/APQ-179 Control Indicator Set (Display System) used in E-2C

AN/APQ-180 Pulse Doppler Attack Radar (modification of AN/APG-70); manufactured by

Raytheon (Hughes) used in AC-130U

AN/APQ-181 Synthetic Aperture J-Band Multi-Mode Radar; manufactured by Raytheon (Hughes)

used in B-2A

AN/APQ-183 Multi-Mode Radar; manufactured by Northrop Grumman (Westinghouse); was

planned for cancelled A-12A, a derivative was used in RQ-3A

AN/APQ-186 Multi-Mode Radar (improved AN/APQ-174); manufactured by Raytheon used in

CV-22

AN/APQ-501 Radar Altitude Warning System used in CP-140?; replaced AN/APQ-107

AN/APQ-T1 Trainer for Aircraft Gun Laying Radar

AN/APQ-T10 Bombing/Navigation Simulator used with B-52D

AN/APQ-T11 Bombing/Navigation Radar Trainer used with B-47, B-52, B-58

AN/APQ-T12 Bombing/Navigation Radar Trainer used with B-47, B-52, KC-97, KC-135

AN/APS - Airborne Search & Detection Radars

Model Number Description

AN/APS-1 X-Band Radar (conflicting references to purpose: either Mapping/Bombing or Tail-

Warning)

AN/APS-2 S-Band Search Radar & Beacon used with AN/APQ-5 used in PBJ-1 (if w/o

AN/APS-3), PBM-5S, PB4Y-2

AN/APS-3 X-Band Search & Bombing Radar used in PBJ-1, OA-10, PBY-6A, TBM-1D/3E, P-

82F

AN/APS-4 X-Band Intercept Radar; manufactured by Western Electric used in C-47, C-117, P-

38J, P-82D/F/H, AD, XBT2C-1, F4U-4E, F6F-3E/5E, SB2C-5, SBF-4E, TBF-3,

TBM-3S; tested in JRB; British designation is AI Mk XV

AN/APS-5 Intercept Radar (development of AN/APS-4); manufactured by Western Electric used

in F4U-4N

AN/APS-6 Intercept Radar (development of US Navy AIA radar); manufactured by Sperry used

in P-38M, F2H-2N, F-82D, F6F-3N/5N, F7F-4N, F8F-1N/2N, F4U-4N/5N; tested in

SNB-1

AN/APS-7 Search Radar (or Tail-Warning Radar?); manufactured by Westinghouse

AN/APS-8 Conflicting data! I have references for: ASW Search Radar used in P-2E wingtip

pod; and Tracking Radar for KDB-1(MQM-39 used in AJ-2P

AN/APS-9 Search Radar used in FR-1N

AN/APS-10 X-Band Search Radar

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-30

© 2016 Presagis. All Rights Reserved.

Model Number Description

AN/APS-11 Tail Warning Radar

AN/APS-12 Fire Control Radar

AN/APS-13 Tail Warning Radar used in P-38L, P-47D, P-51, P-61, P-63, P-82D, PBJ

AN/APS-14 Gun Laying Radar used in B-17, B-24

AN/APS-15 X-Band Bombing & Navigation Radar "Mickey" (equivalent to British "H2S");

manufactured by Philco used in B-29, PBM-3C/5/5E, B-17, B-24, PB4Y-2, PV-2,

PBM-5S

AN/APS-16 L-Band Bomber Tail Warning Radar

AN/APS-17 S-Band Bomber Tail Warning Radar

AN/APS-18 Early Warning Radar (another source has this as Drone Radar used with AN/ARR-9)

AN/APS-19 X-Band Search & Intercept Radar; manufactured by Sperry used in AD-4N/5/6,

F2H-2N, F4U-5N, F7F-4N, F8F-1N

AN/APS-20 S-Band Search & Early-Warning Radar; manufactured by Hazeltine/General Electric

used with AN/ARW-35 and AN/ART-28 used in TBM-3W, WV-2, PB-1W, ZPG-

2W(EZ-1), AF-2W, HR2S-1W, P-2, WB-29, RC-121C, Gannet (UK), Shackleton

(UK)

AN/APS-21 Search Radar; manufactured by Westinghouse; part of AN/APQ-35 used in F3D,

Meteor NF (UK)

AN/APS-23 Search Radar; manufactured by Western Electric; part of AN/ASB-3 used in B-36,

B-45C, B-47E, XB-48, B-50, B-52, C-130, C-135

AN/APS-24 Radar Set used with System 416L

AN/APS-25 Search Radar used in XF10F-1

AN/APS-27 Search Radar used in B-52, RB-66, C-130, C-135

AN/APS-28 Search Radar used in F3D

AN/APS-29 Search Radar

AN/APS-30 Search Radar used in AF-2S

AN/APS-31 Search Radar; manufactured by Westinghouse used in P5M, PBM-3, A-1, P-2, U-16,

AF-2S

AN/APS-32 Search Radar used in TBM-3

AN/APS-33 X-Band Search Radar used in S-2F, P4M, P2V-6, ZPG-1W, ZPK

AN/APS-34 Search Radar (similar to AN/APS-33)

AN/APS-35 Search & IFF Radar; manufactured by Philco?

AN/APS-37 Search Radar

AN/APS-38 Search Radar used in S-2

AN/APS-42 Weather Radar; manufactured by Bendix used in C-54, C-97, C-118, C-119, C-121,

C-124, C-130, C-131

AN/APS-44 Search Radar used in PB4Y-2, P-5

AN/APS-45 Height-Finding Radar; manufactured by Texas Instruments used in WV-2(EC-121)

AN/APS-46 Interception Radar used in F2H-2N

AN/APS-48 Unattended Radar

AN/APS-49 Rapid Scan Search Radar; manufactured by Hazeltine used for ASW

AN/APS-50 Search Radar; planned for F11F-1, but not used

AN/APS-54 Tail-Warning Radar System; manufactured by ITT used in B-47B/E, B-52, B-57,

EB-66B, F-101A/C, F-105D, "EF-101B" (Canada)

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-31

© 2016 Presagis. All Rights Reserved.

Model Number Description

AN/APS-57 X-Band Search & Intercept Radar; manufactured by Western Electric used in Venom

NF.3 (UK; designated AI Mk 21)

AN/APS-59 Search Radar used in CP-109 (Canada)

AN/APS-60 High-Altitude Mapping Radar used in NRB-57A

AN/APS-61 Monopulse Radar

AN/APS-62 Height-Finding Radar used in ZPG-2W/3W

AN/APS-63 Radar Set used in B-66, T-29, F-4C (tests?)

AN/APS-64 Search Radar used in WB-47E, B-52, RB-66B/C

AN/APS-67 Search Radar Set; manufactured by Magnavox used in F-8B, S-2

AN/APS-69 Height-Finding Radar used in ZPG-2W, P-2

AN/APS-70 Early-Warning Radar; manufactured by General Electric used in P2V-6, EC-121,

EZ-1C

AN/APS-73 X-Band Synthetic Aperture Radar; manufactured by Goodyear used in experimental

pod for B-58; tested in C-97, C-135, RF-4C; ground-component in AN/GSQ-28

AN/APS-75 "SABRE" High-Resolution X-Band Side-Looking Radar; manufactured by General

Electric; under consideration for B-70

AN/APS-76 Search Radar used in EC-121

AN/APS-80 Maritime Surveillance Radar; manufactured by Texas Instruments used in E-1B, P-

3A/B, NP-3D, P5M-2

AN/APS-81 Search Radar used in B-52

AN/APS-82 Early Warning/Aircraft Direction Radar; manufactured by Hazeltine used in EC-

121L, E-1B, E-2; tested in SH-3G

AN/APS-84 Tracking Radar used with QB-47

AN/APS-85 Side-Looking Surveillance Radar; manufactured by Motorola used with RL-23D,

RU-8D

AN/APS-87 Early Warning Radar (development of AN/APS-82)

AN/APS-88 Search Radar; manufactured by Texas Instruments used in HU-16B, S-2

AN/APS-91 Early Warning Radar used in E-2

AN/APS-92 Radar Warning Receiver used in F-105D

AN/APS-94 Side-Looking Airborne Surveillance & Mapping Radar; manufactured by Motorola

used in OV-1B/D, P-2, P-3, EA-6A, UH-1 ALARM, B-26

AN/APS-95 Search & Warning Radar; manufactured by Hazeltine used in EC/RC-121

AN/APS-96 Air Surveillance Radar; manufactured by General Electric used in E-2A/B

AN/APS-103 Height Finding Radar used in EC/RC-121

AN/APS-104 Bombing/Navigation Radar System; part of AN/ASQ-48 used in B-52C/D

AN/APS-105 Radar Homing & Warning System; manufactured by Dalmo-Victor used in B-52

AN/APS-107 Radar Homing & Warning System; manufactured by Bendix used for targeting

AGM-78 used in A-7D, F-105G, F-111A, F-4D; improved version tested in F-4E

AN/APS-108 Search Radar; manufactured by Motorola/Raytheon used in B-52D

AN/APS-109 Radar Homing & Warning System; manufactured by Dalmo-Victor used in F-

111A/D/E/F, FB-111A

AN/APS-111 UHF Air Surveillance Radar (modified AN/APS-96); manufactured by Lockheed

Martin (General Electric) used in E-2A

AN/APS-112 Early Warning Radar AWACS (development of AN/APS-59)

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-32

© 2016 Presagis. All Rights Reserved.

Model Number Description

AN/APS-113 Weather Radar; manufactured by Bendix; manufactured by Bendix used in EC-47,

UH-1

AN/APS-115 X-Band Sea Surveillance/ASW Radar; manufactured by Raytheon (Texas

Instruments) used in P-3C, SH-2D

AN/APS-116 X-Band Sea Surveillance/ASW Radar; manufactured by Raytheon (Texas

Instruments) used in EP-3E, S-3A, SH-3, CP-140 (Canada; Canadian version called

AN/APS-506), P-3C (Australia); proposed for cancelled U-2EPX

AN/APS-117 TIAS (Target Identification & Acquisition System) for AGM-45 used in some A-4

AN/APS-118 TIAS (Target Identification & Acquisition System) for AGM-78; manufactured by

IBM used in A-6B (Mod 1)

AN/APS-119 Weather Avoidance Search Radar used in HC-130B

AN/APS-120 Air Surveillance Radar; manufactured by General Electric used in E-2C

AN/APS-121 Radar Set

AN/APS-122 Search Radar used in YSH-2E

AN/APS-123 Search Radar used in S-2D

AN/APS-124 Sea Surveillance/ASW Radar; manufactured by Raytheon used in SH-60B, YSH-2E;

tested in SH-3

AN/APS-125 Pulse Doppler UHF Air Surveillance Radar; manufactured by Lockheed Martin

(General Electric) used in E-2C, EC-130V; replaced AN/APS-120

AN/APS-126 Surface Search Radar used in P-3

AN/APS-127 Raytheon Sea Surveillance Radar; manufactured by Raytheon used in HU-25A/B,

Gulfstream III (Denmark)

AN/APS-128 Sea Surveillance Radar; manufactured by Telephonics used in E-9A, P-95 (Brazil),

D.3B (Spain)

AN/APS-130 Multimode Search Radar (derivative of AN/APG-156); manufactured by Northrop

Grumman (Norden) used in EA-6B

AN/APS-131 Sideways Looking Sea Surveillance Radar; manufactured by Motorola used in HU-

25B, C-130

AN/APS-133 X-Band Multifunction Radar; manufactured by Allied Signal (Model RDR-1F) used

in EA-6A, C-5, KC-10, C-17, EC-24A, VC-25, C-130, C-141, E-3, E-4, E-6, E-8

AN/APS-134 Multimode Search Radar; manufactured by Raytheon (Texas Instruments) used in P-

3B, EP-3E, HC-130H, CP-140A (Canada; Canadian version called AN/APS-507),

Atlantique (Germany/France), P-3K (New Zealand), Fokker 50 Mk 2 (Singapore),

CN-235MPA (Brunei), P-3C (South Korea)

AN/APS-135 Side-Looking Airborne Surveillance Radar; manufactured by Motorola used in HC-

130H

AN/APS-136 I-Band MTI Radar; planned for EH-60C

AN/APS-137 Pulse Doppler X-Band Sea Surveillance/ASW Radar; manufactured by Raytheon

used in:

- AN/APS-137(V)1: A-6E, S-3B

- AN/APS-137(V)2: PHM2 Hydrofoil

- AN/APS-137(V)3: P-3C

- AN/APS-137(V)4: HC-130H

- AN/APS-137(V)5: P-3C

- AN/APS-137(V)6: ES-3A

- AN/APS-137(V)?: EP-3E

AN/APS-138 Pulse Doppler UHF Air Surveillance Radar (upgraded AN/APS-125); manufactured

by Lockheed Martin (General Electric) used in E-2C; planned for P-3AEW

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-33

© 2016 Presagis. All Rights Reserved.

Model Number Description

AN/APS-139 Pulse Doppler UHF Air Surveillance Radar (upgraded AN/APS-138); manufactured

by Lockheed Martin used in E-2C(Grp.I)

AN/APS-140 I/J-Band Multimode Surveillance Radar (US version of AN/APS-504); manufactured

by Litton Canada

AN/APS-141 I/J-Band Multimode Surveillance Radar (US version of AN/APS-504(V)3);

manufactured by Litton Canada

AN/APS-143 X-Band Sea Surveillance Radar "Ocean Eye"; manufactured by Telephonics used in

E-9A, S-2E, HU-25, SH-60, SH-2G (Australia, New Zealand), and in aerostats

AN/APS-144 Pulse Doppler Ku-Band Land Surveillance Radar; manufactured by AIL used in EO-

5, RQ-5A(BQM-155A); tested in C-27, UH-60A

AN/APS-145 Pulse Doppler UHF Air Surveillance Radar (upgraded AN/APS-139); manufactured

by Lockheed Martin used in E-2C(Grp.II), EC-130V

AN/APS-146 manufactured by Northrop Grumman; intended for EA-6B

AN/APS-147 Multi-Mode Surveillance Radar; manufactured by Telephonics used in MH-60R

AN/APS-148 "SeaVue" Lightweight Multi-Platform Sea/Land Surveillance Radar; manufactured

by Raytheon

AN/APS-149 Pod-Mounted Surveillance Radar used on P-3C (to provide targeting coordinates of

mobile targets for the AGM-84H)

AN/APS-150 Sea Surveillance Radar; modified AN/APS-115 (or AN/APS-137?) for use with C-

130; probably used on HC-130H

AN/APS-503 I-Band Multimode Surveillance Radar; manufactured by Litton Canada used in CH-

124

AN/APS-504 I/J-Band Multimode Surveillance Radar (improved AN/APS-503); manufactured by

Litton Canada used in EC/RC-26D (AN/APS-504(V)5), CP-121

AN/APS-505 Beacon-Equipped Multimode Radar

AN/APS-506 Maritime Surveillance Radar (Canadian version of AN/APS-116); manufactured by

Raytheon (Texas Instruments) used in CP-140

AN/APS-507 Maritime Surveillance Radar (Canadian version of AN/APS-134); manufactured by

Raytheon (Texas Instruments) used in CP-140A

AN/APS-509 Search Radar used in S-2T

AN/APS-T1 Air-to-Surface Vessel Radar Trainer

AN/APS-T2 Air-to-Surface Vessel Radar Trainer

AN/APY - Airborne Surveillance Radars

Model Number Description

AN/APY-1 Pulse Doppler S-Band Air & Sea Surveillance Radar (AWACS); manufactured by

Northrop Grumman used in E-3

AN/APY-2 Pulse Doppler S-Band Air & Sea Surveillance Radar (AWACS); manufactured by

Northrop Grumman used in E-3

AN/APY-3 Sideways Looking Air-to-Ground Surveillance Radar (JSTARS); manufactured by

Northrop Grumman used in E-8

AN/APY-6 Multi-Mode High Resolution Surveillance Radar; manufactured by Northrop

Grumman; tested in NP-3C

AN/APY-7 Sideways Looking Air-to-Ground Surveillance Radar (improved AN/APY-3) used in

E-8

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

7-34

© 2016 Presagis. All Rights Reserved.

Model Number Description

AN/APY-8 "Lynx" SAR/GMTI (Synthetic Aperture Radar/Ground Moving Target Indicator);

manufactured by General Atomics; tested in C-12, U-21 and others; planned for use

in MQ-9A

AN/APY-9 UHF Air Surveillance Radar; manufactured by Lockheed Martin used in E-2D

AN/APY-10 Maritime Surveillance Radar; manufactured by Raytheon used in P-8A

AN/APY-12 "Phoenix" SAR (Synthetic Aperture Radar)

AN/APY-T1 RMTS (Radar Maintenance Training Set); part of E-3 AWACS MTS (Maintenance

Training System)

AN/APY-T2 ARMTS (Advanced Radar Maintenance Training Set); part of E-3 AWACS MTS

(Maintenance Training System)

7.3.3 Model’s Articulations Effect on RCS Data

Most man-made models (aircraft, tanks, trucks, etc.) have parts that can be articulated

(flaps, turrets, rotating antennae, landing gears, etc). It is impractical to pre-compute

and store within the CDB an RCS model for every possible position of those

articulated parts taken individually. Instead, a CDB RCS model attribute provides the

means to store an overall RCS variation effect, or otherwise called “scintillation

effect”. The scintillation effect value is added to the RCS at run-time during

movement of any of such articulated parts of the model. It is a parameter in the

Shapefile called “RCS_SCINT” and this attribute can be used by the radar client-

devices at runtime to provide a correlated (but approximated) variation level of the

model RCS while any of its parts are articulated.

For example, for a tank in the process of rotating its turret, the radar simulation client

would take its overall RCS (based on aspect angles) and add the scintillation factor on

the end-result RCS value to slightly alter the RCS to introduce the turning turret

effect while the part is moving. While this adds an approximation factor on the RCS,

it provides a coherent and correlated variation level to all clients using the RCS data

set layer. The “RCS_SCINT” is therefore the value that represents a scaling factor of

RCS noise that would be superimposed while the part is being articulated.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

8-1

© 2016 Presagis. All Rights Reserved.

Chapter 8

8 Glossary

 Description

A

Aliasing Spatial and/or temporal image defects or artifacts in a raster image.

They are due to interaction between the discrete sampling of the raster

format and the spatial and temporal frequencies inherent in the

computed image of edges, surfaces and point features. Manifestation

of spatial aliasing includes edge stair-stepping and crawling,

scintillation of narrow surfaces, break-up of long, narrow surfaces and

positional or angular motion of scene edges in discrete steps.

Temporal aliasing includes double image and loss of dynamic image

integrity due to the human eye’s ability to dynamically track individual

fields at certain angular rates of motion.

Ambient Illumination See Illumination, Ambient.

Anti-aliasing Active image processing techniques that reduce the perception of the

aliasing phenomena.

Area, Background An area of unlimited size (up to whole earth) modeled in accordance to

the following criteria:

(a) Elevation grid post spacing, 30 m.

(b) Terrain imagery resolution, 1 m.

(c) Contains all objects of height greater than, 33 m (100 ft).

Area, Corridor A 10 nm wide corridor joining two target areas modeled in accordance

to the following criteria:

(a) Elevation grid post spacing, 30 m.

(b) Terrain imagery resolution, 1 m.

(c) Contains all objects of height greater than, 33 m (100 ft).

Area, HLZ A 0.1 nm x 0.1 nm area inside the target (see “Target” glossary entry)

modeled in accordance to the following criteria:

(a) Elevation grid post spacing, 1 m.

(b) Terrain imagery resolution, 0.1 m.

(c) Contains all objects of height greater than, 0.15 m (0.5 ft).

Areal Feature See Feature, Areal

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

8-2

© 2016 Presagis. All Rights Reserved.

 Description

Area, Target

Perimeter

A 30 nm x 30 nm area surrounding the target area modeled in

accordance to the following criteria:

(a) Elevation grid post spacing, 10 m.

(b) Terrain imagery resolution, 0.5 m.

(c) Contains all objects of height greater than, 15 m (50 ft).

Area, Target A 6 nm x 6 nm area surrounding the target (see “Target” glossary

entry) modeled in accordance to the following criteria:

(a) Elevation grid post spacing, 10 m.

(b) Terrain imagery resolution, 0.5 m.

(c) Contains all objects of height greater than, 3.3 m (10 ft).

Articulated Part A child part of a model (usually a moving model) that is allowed some

degree of motion with respect to the parent body of the model.

Examples of articulated parts include tank turrets, refueling drogues,

and helicopter rotor blades.

B

Background Area See Area, Background.

Base Material See Material, Base.

Base Material Table

(BMT)

A data structure that contains a description of the Base Materials

available to the CDB. There is only one BMT per CDB. Each entry in

the BMT corresponds to a Base Material; the entry associates a name

to the Base Material.

C

CDB-compliant device A device that can directly input synthetic environment data that

conforms to the format, structure and conventions of this Specification.

A device need not input and process all of the CDB datasets and

attributes to be CDB-compliant.

CDB-compliant

simulator

A simulator whose client-devices can input synthetic environment data

that conforms to the format, structure and conventions of this

Specification. Any subsystem or client-device that does not natively

conform to this Specification requires that CDB data be formatted and

structured to the device’s native format and structure through the use

of a runtime publisher. A simulator need not input and process all of

the CDB datasets and attributes to be CDB-compliant.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

8-3

© 2016 Presagis. All Rights Reserved.

 Description

CDB Translator An off-line software process that translates an environmental database

from its toolset-native format(s) to the CDB format.

NOTE: The CDB data formats are based on industry standard tool

formats; as a result a translation to the formats prescribed by this

Specification may not be required.

CDB Server Gateway platform to CDB mass storage and applicable infrastructure.

The CDB servers access, filter and distribute CDB data in response to

requests from the Database Generation Facility (DBGF) and the client-

devices (or their runtime publishers).

CDB Geocell Earth area, aligned to lines of latitude and longitude in accordance with

Table 2-2: Size of CDB Geocell per Zone.

Channel A field of view segment within a visual system’s total viewing field for

which a corresponding unique scene segment is calculated and

presented.

Client application A software application that requires a complete or partial synthetic

representation of the world. CDB applications may require a CDB

runtime publisher to convert the CDB DB into a form it can directly

input. Used interchangeably with “Client-device” in this specification.

Client-device Simulation sub-systems (Image Generators (IGs), Radar, Weather

Server, Computer Generated Forces (CGF) Terrain Server, etc.) that

require a complete or partial synthetic representation of the world. A

CDB client-device may require a CDB runtime publisher to convert

the CDB data into a form it can ingest.

Coordinate System A system of notation, usually Three-Dimensional (3D), by which the

position of any point can be defined. Can be spherical, geodetic,

ellipsoid or Cartesian. Must have a point of origin (where all axes

have a magnitude of zero), an orientation, and a convention for

translation along the axes.

Composite Material See Material, Composite.

Composite Material

Table

A data structure that contains a description of the Composite Materials

available in a CDB tile or on a model. There is only one CMT per

CDB tile or model. Each entry in the CMT corresponds to a

Composite Material.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

8-4

© 2016 Presagis. All Rights Reserved.

 Description

Coordinate System,

Geocentric

Coordinates used to define points in a Geocentric Spatial Frame (see

Spatial Frame, Geocentric).

Coordinate System,

Geographic

The Geographical coordinate system is the most commonly used

coordinate system to represent earth surfaces. The coordinates are

longitude, latitude and altitude above mean sea level. The reference

data is based on the WGS-84 ellipsoid, i.e., geographical latitude j and

longitude l are the angles of the normal on the WGS-84 reference

ellipsoid along the point to the equator and zero meridian. The angles

are given as degrees, minutes and seconds. Altitude above mean sea

level is the distance above and normal to the ellipsoid in meters. The

WGS-84 ellipsoidal earth models provides for accurate calculations

over long distances on the earth’s surface. The WGS-84 earth model

represents a good approximation of the shape of the earth over the

smoothed mean sea level (geoid gravitational equipotential) to within

about one hundred meters.

Correlation,

Algorithmic

The degree of informational consistency between the outputs of two or

more devices with equivalent Arithmetic Logic Units, each submitted

to the same input data. (e.g., consider two devices meshing terrain

from a regular grid of elevation points, one using a regular mesh of

right-handed triangles using the elevation points as vertices, and the

other with a DeLauney triangulated mesh derived from the grid of

elevation points).

Correlation,

Numerical

The degree of informational consistency between the outputs of two or

more devices, each submitted to the same input data, (e.g., two

devices computing the sine of an angle, one with a series of 10 terms,

and another with an interpolation of a look-up table with 100 entries,

or one device using 32-bit signed integers for its internal computations

and the other using single-precision floats). The CDB Specification

addresses Runtime Source Database numerical accuracy correlation

errors because a single representation is used for each data set.

Correlation,

Parametric

The degree of informational consistency between the outputs of two or

more devices, each submitted to the same input data but to different

control parameters (e.g., consider two devices generating regular

meshes of right-handed triangles based on a regular grids of elevation

points organized by Level-of-Detail (LOD), one using an LOD

meshing tolerance parameter of 1m and the other 2m).

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

8-5

© 2016 Presagis. All Rights Reserved.

 Description

Correlation, Raw

Source DB

The degree of informational consistency between two or more sets of

raw data
124

 (i.e., inputs to a modeling station) representing aspects of

the same environment (for instance, the correlation errors arising from

Digital Terrain Elevation Data (DTED) elevation data that does not

perfectly match the satellite raster imagery due to oblique view

distortions induced by the satellite). Correlation errors are intrinsic to

the process of gathering data because there is no means to gather all of

the required data from a single device, at a single instant in time.

Instead, datasets (e.g., elevation, raster imagery, geometry) are each

gathered from various devices of various types, at different times, etc.

As a result, this process inherently introduces (raw source) correlation

errors.

Correlation, Runtime

DB

The degree of informational consistency between two or more runtime

databases representing the same synthetic environment. The CDB

Specification eliminates database correlation errors since only one

database is used to represent the same synthetic environment. A

runtime database is a device-loadable database format that can be

processed by a target device. The CDB Specification defines a format

that can be entered in runtime by client-devices that conform to the

Specification. By definition, the CDB Specification addresses all

runtime database-level correlation error.

Correlation, Source

DB

The degree of informational consistency between the internal datasets

of a source database produced by a DB generation toolset. To a large

extent, the effort expended by a modeler at their DB workstation

consists in eliminating (or at least reducing) correlation errors arising

from miss-correlated raw source data.

Corridor Area See Area, Corridor.

Culture See Feature, Cultural.

Culture, 2D Short for 2D Cultural Feature. The 2D representation of a man-made

or natural object (such as a road, a runway, a forest canopy),

conformed to the terrain.

124 In this context, raw source denotes any input to the modeling workstation that is used to assemble the synthetic

environment; consequently, the data may have undergone some level of post-processing (such as image color-balancing,

image ortho-rectification, etc.) or may be in a specific source interchange format (such as SIF, SEDRIS, etc.)

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

8-6

© 2016 Presagis. All Rights Reserved.

 Description

Culture, 3D Short for 3D Cultural Feature. The 3D representation of erect man-

made or natural object (such as buildings, trees, towers) positioned on

top of and usually conformed to the terrain.

D

Data Dictionary In database management systems, a file that defines the basic

organization of a database. Data dictionaries explicitly define data

content and how to access this content within a binary file (for

example, a data dictionary may contain a list of all files in the

database, the number of records in each file, and the names and types

of each field). Most database management systems keep the data

dictionary hidden from users to prevent them from accidentally

destroying its contents. Data dictionaries do not contain any actual

data from the database, only book keeping information for managing

it. Since there are no widely accepted standards for data dictionaries,

most of the CDB data content and structure are explicitly defined by

this CDB Specification rather than by the metadata held within a Data

Dictionary file.

Data Duplication Data logically representing the same information, copied one or more

times within a complex data structure. The CDB Specification

eliminates all duplication of data, i.e., the data appears once and only

once within the CDB structure.

Data Normalization Data that has been manipulated to eliminate informational redundancy

and/or data duplication and anomalies. The normalization process

ensures internal consistency, minimizes informational redundancy, and

maximizes stability (associates attributes with entities based on the

inherent properties of the data rather than on the application

requirements).

Data Redundancy Information in the form of data that can readily be derived (within the

limits of technological/cost reasonability) and re-formatted, or re-

derived from other data.

Dataset Organized group of related environmental data that cannot be broken

down into a smaller set used to describe a synthetic environment

element of the world.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

8-7

© 2016 Presagis. All Rights Reserved.

 Description

Database Fidelity Reflects the amount and type of synthetic environmental data needed

by client-devices to simulate real-world environmental data with

greater fidelity. Consider for instance a simulator client-device

capable of supporting a single-surface earth skin representation versus

one capable of representing a multi-surface earth skin that represent

tunnels, bathymetric data, location-dependent tide heights, etc.

Database Assembly In many database tools, the generation of the terrain plays a pivotal

role in the database assembly process because all of the cultural

features are conformed and constrained to the terrain representation

and structure. Most client-devices in existence today have

interdependent terrain geometry, raster imagery and culture; as a result

of this, most tools in use today resolve these inter-dependencies during

this critical and computationally expensive database assembly step.

Database Generation

Facility (DBGF)

A geo-graphically co-located group of workstation(s), computer

platforms, input devices (digitizing tablets, etc.), output devices (stereo

viewers, etc.), modeling software, visualization software, CDB Server,

CDB off-line publishing software and any other associated software

and hardware used for the development/modification of the CDB. The

DBGF is used for the purpose of CDB creation and CDB updates.

Each workstation is equipped with one or more specialized tools. The

tool suite provides the means to generate and manipulate the synthetic

environment.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

8-8

© 2016 Presagis. All Rights Reserved.

 Description

Database Generation

Timeline

Elapsed time from availability of Environmental DB requirements

(geographic extent, fidelity, resolution, etc.) to availability of a

compliant runtime Environmental DB, ready for use on all client-

devices of a simulator.

Database Publishing A process (either off-line
125

 or on-line) where all of differences

between the tool-native representation and the client-device internal

representation of the synthetic environment database are resolved.

During this step, the publisher transforms the assembled database so

that it satisfies the client-device’s:

 internal formats

 internal data structure and organization

 internal naming conventions

 internal precision and number representation

 data fidelity requirements (typically parameters that match the

client-device algorithms)

 performance limitations

 level-of-detail representation and conventions

Database Publishing,

Offline

The process of performing the steps listed above in Database

Publishing, and then storing the result in a distinct SE database for

each client-device. (Note that the stored databases are different for

each client-device type and each vendor type). In many cases, the

published databases are proprietary.

Database Publishing,

Online
The process of performing the steps listed above in Database

Publishing, on-the-fly, based on paging requests of a client-device.

Since the publishing is performed on-demand, it exists only

momentarily in memory; it is not stored on disk.

Database Resolution Informational density (for instance, the number of elevation values per

km
2
, pixels per km

2
, polygons per km

2
) of a modeled dataset.

Data Precision Corresponds to the numerical precision (i.e., number of bits allocated)

used to represent a unit.

Directional

Illumination

See Illumination, Directional.

E

125 When applied as an off-line process, the term “compilation” is often used instead.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

8-9

© 2016 Presagis. All Rights Reserved.

 Description

Environmental Data

Coding Specification

An Environmental Data Coding Specification provides a mechanism to

specify the environmental "things" that a particular data model is

intended to represent. That is, a feature such as building could be

represented alternatively as a Man-made Point Feature, a Shapefile

Radar RCS polar diagram or as an OpenFlight model, or some

combination of these. The representation of these is chosen by the data

modeler and is orthogonal to the semantic of the "thing" that is

represented (and its location). The provision of such a "thing" results

in a shared understanding of "what the thing is and what it potentially

means" to all participating applications.

Environmental Data

Representation Model

A data representation model (EDRM) is a description used to provide

identification of all environmental data elements within a system,

including their attributes and the logical relationships between data

elements.

Environmental DB,

Runtime

A device-loadable database format that can be processed by a target

device. The CDB Specification defines a format that can be entered in

runtime by simulator client-devices that conform to the Specification.

Eyepoint A single point (monocular) location of the observer’s eye relative to a

scene representation. Usually a point within the cockpit of the

simulated aircraft or vehicle.

Eyepoint, Pilot The normal eyepoint position when the pilot’s seat is adjusted properly

for flying the aircraft. Defined by the aircraft manufacturer for each

pilot seating position. The eyepoint(s) for which the display design is

normally optimized and typically used for display testing purposes.

F

Feature Set Describes a set of logically related datasets. Example: a Terrain

Feature set is comprised of the Elevation, Imagery, MinElevation,

MaxElevation, etc. datasets.

Feature, Areal A representation of closed area-oriented features conformed relative to

the terrain such as forested areas, fields. The information includes

areal feature type identification, location, orientation, 2D geometry,

connectivity, attribution and other surface characteristics relevant to

simulation.

Feature, Cultural A generalization of point, lineal and areal features.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

8-10

© 2016 Presagis. All Rights Reserved.

 Description

Feature, Linear The representation of predominantly man-made multi-segmented line-

oriented features conformed relative to the terrain (such as runways,

roads, transmission lines, fences). The information includes linear

feature type identification, location, orientation, lineal geometry,

connectivity, attribution and other surface characteristics relevant to

simulation.

Feature, Point The representation of a single location in space or on the earth’s

surface. It consists of a single <latitude, longitude> coordinate with or

without an elevation. When a point feature does not have an elevation,

it is deemed to be on the surface of the earth. It is often associated

with a 3D model. The information includes point-feature type

identification, location, orientation, connectivity, attribution and other

characteristics relevant to simulation.

Flat Earth Jargon used in simulation community to signify the projection of the

earth ellipsoid onto a flat surface. The flat Earth approximation retains

terrain relief but eliminates the effects of Earth surface curvature. If

you stay in the vicinity of a given fixed point, it may be a good enough

approximation to consider the earth as "flat", and use a North, East,

Down rectangular coordinate system with origin at the fixed point.

FOV, Field of View The horizontal and vertical subtended angles from a designated

eyepoint to the boundaries of a visual system channel (channel FOV)

or all channels (system FOV).

G

Geocell Short form for geographic cell. A 1
o
 of latitude by 1

 o
of longitude area

on the surface of the earth. At the equator, this corresponds to an area

of approximately of 111,319m × 111,319m. (See also CDB Geocell).

Geocentric Spatial

Frame

See Spatial Frame, Geocentric.

Geographic Extent An earth surface area that has been modeled.

Geographic Projection Geographic projections are a way of showing the curved surface of the

Earth on a flat surface like a piece of paper.

Geospecific Model A model is said to be geospecific if it is instanced once and only once

within a CDB. Geospecific models usually correspond to unique (in

either shape, size, texture, materials or attribution), man-made, real-

world 3D cultural features.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

8-11

© 2016 Presagis. All Rights Reserved.

 Description

Geotypical Model A model is said to be geotypical if it instanced multiple times within a

CDB. Geotypical models correspond to representative (in shape, size,

texture, materials and attribution) models of real-world man-made or

natural 3D cultural features.

H

HLZ Area See Area, HLZ.

I

Illumination One or more sources of illumination for the objects in the scene, such

as daylight, twilight, landing lights.

Illumination, ambient The non-directional component of illumination for the scene.

Daylight, twilight and moonlight have ambient components over the

entire scene. Landing lights typically provide ambient-type

illumination over a limited area of the scene.

Illumination,

Directional

Scene illumination provided by an illumination source at a particular

position or direction in the environmental database spatial frame. The

effect on object luminance depends on the angle between the

illumination source and object surface normal.

J

K

L

Latency The time interval from a request to a prescribed response from the

targeted device.

Level-of-Detail (LOD) Representations of the same thing that differ only in the amount of

fidelity. An LOD is said to be coarse if it contains little detail or fine if

it contains considerable detail.

Light Point A database element used to model a point source of light (e.g., a

taxiway lights, street lights, collision lights).

Light String A group of lights, usually a series of light points sharing common

spacing characteristics and are of a common type.

Lineal Feature See Feature, Lineal.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

8-12

© 2016 Presagis. All Rights Reserved.

 Description

Local Vertical Spatial

Frame

See Spatial Frame, Local Vertical.

M

Material Shorthand for either Base Material or Composite Material.

Material, Base Symbolic representation of a basic material in the CDB. Basic

materials are inputs to production or manufacturing processes. They

are often raw, that is unprocessed, but are sometimes processed before

being used in more advanced production processes. Basic materials

represent the substances out of which a thing is or can be made.

Examples are materials such as steel, aluminum, copper, sand, soil,

stone, glass, concrete, wood, water, rubber. Base materials are chosen

for their relevance to simulation.

Material, Composite A symbolic representation that corresponds to a composite material

that is made up of a primary substrate and one or more secondary

substrates. Each substrate is composed of one or more base materials

entries. The substrates can each be assigned a thickness.

Metadata Data about data. Metadata describes how and when and by whom a

particular set of data was collected, and how the data is formatted.

Mission Functions A set of low-level simulator query functions performed on the

synthetic environment; includes such functions as Height Above

Terrain (HAT), Height Above Culture (HAC), Collision Detection

(CD), Line-Of-Sight (LOS), Laser Range Finder (LRF), etc.

Model A term which stands for the 2D or 3D representation of features

(exclusive of the terrain and/or bathymetry itself) within the synthetic

environment database. Models can be statically positioned on the

terrain (i.e., a cultural feature), or they are freely moving (i.e., a

moving model). Models are often a 3D representation of a man-made

or a natural object positioned and conformed relative to the terrain.

The information includes its geometry, articulations, raster imagery

(texture, normal map, light map, etc.), lighting systems, and other

characteristics relevant to simulation.

Model, 2D Refers to the modeled representations of 2D features; i.e., lineal or

areal features that have no significant height with respect to the

underlying terrain; 2DModels generally conform to the terrain profile.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

8-13

© 2016 Presagis. All Rights Reserved.

 Description

Model, 3D Refers to the modeled representation of 3D features that can be readily

distinguished from the underlying terrain. In the case where they are

unique, they are referred to as GSModels. In the case where they are

instanced, they are referred to as GTModels. 3DModels capable of

movement are called MModels. In the case where MModels are

positioned by the modeler, they are called statically-positioned

MModels.

Model, Cultural A model that is statically positioned on the terrain or bathymetry skin.

Cultural models are often a 3D representation of a man-made or a

natural object positioned and conformed relative to the terrain. The

information includes its geometry, articulations, raster imagery

(texture, normal map, light map, etc.), lighting systems, and other

characteristics relevant to simulation.

Model, GS The geospecific representation of a cultural feature that is unique

within the CDB.

Model, GT The geotypical representation of a cultural feature that can be reused

several times throughout the CDB.

Model, Moving A model that is not fixed at one location in the synthetic environment

database. The simulation host can update the position and orientation

of a moving model at every simulation iteration cycle. A moving

model is a 3D representation of man-made and natural objects free to

move within the CDB. The information includes feature type

identification, (vehicle class, type, model, etc.), geometry,

articulations, raster imagery (texture, normal map, light map, etc.),

lighting systems, connectivity to special effects, attribution and other

characteristics relevant to simulation.

Model-LOD Refers to a specific level of detail of the modeled representation of a

feature; a general term encompassing both 2D and 3D Model-LOD

Model-LOD, 2D Refers to a specific level of detail of a 2D model.

Model-LOD, 3D Refers to a specific level of detail of a 3D model.

Modeler The person who creates and assembles a synthetic environment

database.

N

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

8-14

© 2016 Presagis. All Rights Reserved.

 Description

Navigational Data Is a representation of ARINC-424 and DAFIF data in the form of

NAVAIDs (VHF, ILS/MLS, NDB, Markers), Communications

Stations, Airport/Heliport (including SIDs, STARs, Terminal

Procedure/Approaches, Gates), Runway/Helipad, Waypoints, Routes,

Holding Patterns, Airways and Airspace.

Normal Vector A vector of unit length perpendicular to a surface.

Numerical Correlation See Correlation, Numerical.

O

Ownship The vehicle (aircraft, ship, tank, etc.) being simulated.

P

Parametric

Correlation

See Correlation, Parametric.

Pilot Eyepoint See Eyepoint, Pilot.

Point Feature See Feature, Point.

Q

R

Raw Source A term generally used to describe the data imported into the database

generation workstation for the purpose of off-line assembling and

building the synthetic environment. The level of pre-processing

applied to the source may vary considerably (from raw data directly

from sensors such as unprocessed satellite raster imagery or photos to

data directly usable by simulator client-devices). Source data need not

be in digital form (e.g., photos).

Raw Source DB

Correlation

See Correlation, Raw Source DB.

Runtime Publisher A real-time software process (either shared or dedicated to a computer

platform) that a simulation application client-device uses to transform

or translate CDB data into a format that can be directly input by the

client-device it serves.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

8-15

© 2016 Presagis. All Rights Reserved.

 Description

Runtime DB

Correlation

See Correlation, Runtime DB.

S

Sensor Environmental

Model (SEM)

A simulation of the synthetic environment over a portion of the

electromagnetic spectrum that is relevant to a client-device. A SEM is

usually based on mathematical model of the environment for the

portion of the electromagnetic spectrum of interest.

Sensor Simulation

Model (SSM)

A simulation of a real-world sensor over a portion of the

electromagnetic spectrum that is relevant to the sensor being

simulated. A SSM is usually based on mathematical model of the real-

world sensor for the portion of the electromagnetic spectrum of

interest.

Simulator CDB

Repository

The simulator CDB repository consists of a mass storage system

(typically a storage array) and its associated network infrastructure. It

is connected to the UMC (primarily for update purposes) and the CDB

Servers (for simulator client-device runtime access).

Source DB

Correlation

See Correlation, Source DB.

Spatial Coordinate

System

A spatial coordinate system is a means of associating a unique

coordinate with a point in object-space.

Spatial Frame (SF) A spatial reference frame is a spatial coordinate system for a region of

object-space.

Spatial Frame,

Geocentric

An earth-centered spatial frame that defines 3D Euclidian space with

respect to the geometric centre of the reference ellipsoid, the centre of

the earth
126

. The reference datum of the earth-centered SF is based on

the WGS-84 ellipsoid reference model. In this SF, the z-axis is

pointing at the North Pole, the x-axis is pointing at the intersection of

the equator and the Greenwich meridian, the prime meridian, and the

y-axis is pointing at the intersection of the equator and 90 degrees east

longitude.

126 In this coordinate system, the z-axis is defined by the earth’s axis of rotation. Furthermore, the equatorial plane is

defined by a plane normal to the z-axis, halfway from the North and South Pole (using gravitational equipotential).

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

8-16

© 2016 Presagis. All Rights Reserved.

 Description

Spatial Frame, Local

Vertical

The Local Vertical Coordinate System (LVCS) SF defines a 3D

Euclidian space. It is SF similar to the Geocentric SF except that the

origin of the SF is translated and rotated to a point on the surface of the

WGS-84 ellipsoid. At that point, the x-y plane is tangent to the surface

of the earth and the z-axis is normal to the ellipsoid.

T

Target A 1 nm x 1 nm area modeled in accordance to the following criteria:

(a) Elevation grid post spacing, 3 m.

(b) Terrain imagery resolution, 0.25 m.

(c) Contains all objects of height greater than, 1 m (3 ft).

Target Area See Area, Target.

Target Perimeter Area See Area, Target Perimeter.

Terrain A representation of earth surface shape/elevation, raster imagery,

surface attribution and other earth surface characteristics relevant to

simulation. Also includes bodies of water such as oceans, lakes.

Terrain Profile See Terrain.

Terrain Skin See Terrain.

U

V

Viewpoint The viewpoint is the position from which the synthetic environment

database is being observed.

W

X

Y

Z

0-9

2D Feature See Culture, 2D.

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

8-17

© 2016 Presagis. All Rights Reserved.

 Description

2D Model See Model, 2D

2D Model-LOD See Model-LOD, 2D

3D Feature See Culture, 3D.

3D Model See Model, 3D

3D Model-LOD See Model-LOD, 3D

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

9-1

© 2016 Presagis. All Rights Reserved.

Chapter 9

9 Acronyms and Abbreviations

 Definition

A

ADF Automatic Direction Finder

ATS Air Traffic Simulation

B

BMT Base Material Table

BW Black and White

C

CD Collision Detection

CDT Complex Data Type

CDB Common Database (for Real-time Simulation)

CGF Computer Generated Forces

COMMS Communication Systems

COTS Commercial-off-the-shelf

CMT Composite Material Table

CPU Central Processing Unit

D

DAFIF Digital Aeronautical Flight Information File

DB Database

DBGF DataBase Generation Facility

DFAD Digital Feature Analysis Data

DGIWG Digital Geographic Information Working Group

DIGEST Digital Geographic Exchange Standard

DRM Data Representation Model

DTED Digital Terrain Elevation Data

DNS Doppler Navigation System

E

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

9-2

© 2016 Presagis. All Rights Reserved.

 Definition

EDCS Environmental Data Coding Specification

EDRM Environment Data Representation Model

EW Electronic Warfare

ERM Earth Reference Model

F

FACC Features and Attributes Catalog Codes

FC Fiber Channel

FDD Feature Data Dictionary

FFS Full Flight Simulator

FLIR Forward Looking InfraRed

FMS Full Mission Simulator

FSC FACC Sub Code

FsE Fast Ethernet

ft Feet

G

GPS Global Positioning System

GB GigaByte

GbE Gigabit Ethernet

H

HAC Height Above Culture

HAO Height Above Ocean

HAT Height Above Terrain

HLA High Level Architecture

HLZ Helicopter Landing Zone

HOC Height Of Culture

HOO Height Of Ocean

HOT Height Of Terrain

Hz Hertz

I

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

9-3

© 2016 Presagis. All Rights Reserved.

 Definition

ICAO International Civil Aviation Organization

ICD Interface Control Document

ID Identification

IEEE Institute of Electrical and Electronics Engineers

IG Image Generator

ILS Instrument Landing System

INU Inertial Navigation Unit

IO Input Output

IP Internet Protocol

IP Intellectual Property

IR InfraRed

J

JPEG Joint Photographic Expert Group

K

Km kilometers

L

LOD Level of Detail

LOS Line of Sight

LRF Laser Ranging Function

LVCS Local Vertical Coordinate System

LZW Lempel-Ziv-Welch (compression algorithm)

M

m meter(s)

MB MegaByte

MIF Mission Functions

MIP Multium In Parvo (“many in a small place”)

MLS Microwave Landing System

MR Mission Rehearsal

N

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

9-4

© 2016 Presagis. All Rights Reserved.

 Definition

NAV Navigation System

NAVSTAR Navigation System Using Timing and Ranging

NDB Non-Directional Beacons

NIMA National Imagery and Mapping Agency

nm nanometer

NVG Night Vision Goggle

O

OneSAF One Semi-Automated Forces

OS Operating System

OTW Out The Window

P

PB PetaByte

PLS Personnel Locating System

Q

R

RCS Radar Cross Section

RGB Red Green Blue

RF Radio Frequency

ROI Region of Interest

RTP Run Time Publisher

S

SAF Semi-Automated Forces

SE Synthetic Environment

SEDRIS Synthetic Environment Data Representation & Interchange

Specification

SEM Sensor Environment Model

SID Standard Instrument Departure

SIF Standard Interchange Format

SF Spatial Frame

SM Spatial Model

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

9-5

© 2016 Presagis. All Rights Reserved.

 Definition

SSM Sensor Simulation Model

STAR Standard Terminal Arrival Route

T

TACAN Tactical Air Navigation

TB TeraByte

U

UHRB Ultra High Resolution Buildings (OneSAF)

UM Update Manager

UMS Update Manager Server (software)

UMC Update Manager Client (software)

UML Unified Modeling Language

UTM Universal Transverse Mercator

V

VHF Very High Frequency

VOR VHF Omni Range

VSTI Visible Spectrum Terrain Imagery

VSTLM Visible Spectrum Terrain Light Map

W

WGS World Geodetic System

WX Weather or Weather Simulation

X

XML Extensible Mark-up Language

Y

Z

0-9

1D Unidimensional

2D Bidimensional

3D Three-Dimensional

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

10-1

© 2016 Presagis. All Rights Reserved.

Chapter 10

10 Reference Documents

This table lists the documentation referenced throughout this document.

Ref Title Description

1 ARINC Standard 424-16 Navigation System Data Base, Aeronautical Radio Inc., August 30, 2002.

2 ASTARS-04 CDB Systems Requirements

3 Digital Geographic Information

Exchange Standard (DIGEST),

Standard V2.1

The document can be obtained at the following address:

http://www.digest.org/

4 Enumeration and Bit Encoded

Values for use with Protocols for

Distributed Interactive Simulation

Applications.

This is document SISO-REF-010. It accompanies IEEE Std 1278.1-1995

and can be obtained from the Simulation Interoperability Standards

Organization at http://www.sisostds.org/

5 Extensible Markup Language

(XML) 1.0 (Third Edition)

Bray, Tim, et al.

http://www.w3.org/TR/2004/REC-xml-20040204/

W3C Recommendation, February 04, 2004.

6 Guide - PD6777, BSI's Guide to

the practical implementation of

JPEG 2000

The document can be found at:

http://www.jpeg.org/

Other useful sites include:

http://en.wikipedia.org/wiki/SRGB_color_space

The document is targeted at managers; application software developers

and end-users who want to know more about JPEG 2000.

7 IEEE Standard for Distributed

Interactive Simulation -

Application Protocols

IEEE Std 1278.1-1995

8 JPEG 2000: Image Compression

Fundamentals, Standards and

Practice

Kluwer International Series in Engineering and Computer Science, Secs

642, by David S. Taubman and Michael W. Marcellin

http://www.digest.org/
http://www.sisostds.org/
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.jpeg.org/
http://en.wikipedia.org/wiki/SRGB_color_space

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

10-2

© 2016 Presagis. All Rights Reserved.

Ref Title Description

9 MIL-STD-2411 Raster Product

Format Specification

The Raster Product Format (RPF) is a standard data structure for

geospatial databases composed of rectangular arrays of pixel values (e.g.,

in digitized maps or images) in compressed or uncompressed form. RPF

defines a common format for the interchange of raster-formatted digital

geospatial data among DoD Components.

Department of Defense Information Technology Standards Registry

Baseline Release 04-2.0.

http://earth-info.nga.mil/publications/specs/printed/2411/2411_RPF.pdf

10 MIL-C-89041 Controlled Image

Base Specification

Controlled Image Base (CIB). This Specification provides requirements

for the preparation and use of the RPF CIB data. CIB is a dataset of

orthophotos, made from rectified grayscale aerial images.

http://www.fas.org/irp/program/core/mil-c-89041-cib.htm

11 OpenFlight Scene Description

Database Standard, Version 16.0,

Revision A, November 2004,

Presagis Inc

The original document has been annotated by CAE to create the CDB-

annotated OpenFlight Standard.

12 Product Standard for the Digital

Aeronautical Flight Information

File (DAFIF), Eight Edition, Doc.

PS/1FD/086

National Imagery and Mapping Agency (NIMA), April 2003.

13 SEDRIS™ - Synthetic

Environment Data Representation

Interchange Specification

The Source for Synthetic environment Representation and Interchange.

http://www.sedris.org

14 Shapefile Technical Description -

an ESRI White Paper—July 1998

The original document has been annotated by CAE Inc to create the CDB-

annotated Shapefile Technical Description.

15 The SGI Image File Format,

Version 1.00, Paul Haeberli,

Silicon Graphics Computer

Systems

This specification can be found at:

http://paulbourke.net/dataformats/sgirgb/sgiversion.html

16 TIFF rev 6.0 Adobe Developers

Association, Adobe Systems

Incorporated, 1585 Charleston

Road and P.O. Box 7900Mountain

View, CA 94039-7900

A copy of this original standard can be found at:

http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf

and at:

ftp://ftp.adobe.com/pub/adobe/

DeveloperSupport/TechNotes/PDFfiles

The original document has been annotated by CAE Inc to create the CDB-

annotated TIFF Standard.

http://earth-info.nga.mil/publications/specs/printed/2411/2411_RPF.pdf
http://www.fas.org/irp/program/core/mil-c-89041-cib.htm
http://www.sedris.org/
http://paulbourke.net/dataformats/sgirgb/sgiversion.html
http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf
ftp://ftp.adobe.com/pub/adobe/

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

10-3

© 2016 Presagis. All Rights Reserved.

Ref Title Description

17 XML Schema Part 0: Primer

Second Edition

Fallside, David, Priscilla Walmsley.

http://www.w3.org/TR/xmlschema-0/

W3C Recommendation, October 28, 2004.

18 XML Schema Part 1: Structures

Second Edition

Thompson, Henry S., et al.

http://www.w3.org/TR/xmlschema-1/

W3C Recommendation, October 28, 2004.

19 XML Schema Part 2: Datatypes

Second Edition

Biron, Paul V., Ashok Malhotra.

http://www.w3.org/TR/xmlschema-2/

W3C Recommendation, October 28, 2004.

20 ICAO Airline Designator List of ICAO Airline Codes,

http://en.wikipedia.org/wiki/Airline_codes

21 Radar Signatures and Relations to

Radar Cross-Section. Mr. P E R

Galloway, Roke Manor Research

Ltd, Romsey, Hampshire, United

Kingdom.

This document can be obtained at the following Internet address:

http://aircraftdesign.nuaa.edu.cn/lo/Ref/General%20Topics/radar_signa

tures_and_relations_to_rcs.pdf

22 AN/APA to AN/APD -

Equipment Listing.

This document can be obtained at the following Internet address:

http://www.designation-systems.net/usmilav/jetds/an-

apa2apd.html#_APA

23 Radar Polarimetry - Fundamentals

of Remote Sensing.

National Resources Canada.

This document can be obtained at the following Internet address:

https://www.nrcan.gc.ca/earth-sciences/geomatics/satellite-imagery-air-

photos/satellite-imagery-products/educational-resources/9275

24 RCS in Radar Range Calculations

for Maritime Targets, by Ingo

Harre. Bremen,

Germany. (V2.0-20040206).

This document can be obtained at the following Internet address:

http://www.mar-it.de/Radar/RCS/RCS_xx.pdf

25 Decibels relative to a square meter

– dBsm. By Zhao Shengyun.

This document can be obtained at the following Internet address:

http://radarproblems.com/chapters/ch06.dir/ch06pr.dir/c06p11.dir/c06p1

1.htm

26 MIL-C-89041 Controlled Image Base (CIB)

27 MIL-STD-2411 Defense Mapping Agency, Military Standard, Raster Product Format

(RPF)

28 MIL-STD-2411-1 Defense Mapping Agency, Registered Data Values for Raster Product

Format

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://en.wikipedia.org/wiki/Airline_codes
http://aircraftdesign.nuaa.edu.cn/lo/Ref/General%20Topics/radar_signatures_and_relations_to_rcs.pdf
http://aircraftdesign.nuaa.edu.cn/lo/Ref/General%20Topics/radar_signatures_and_relations_to_rcs.pdf
http://www.designation-systems.net/usmilav/jetds/an-apa2apd.html#_APA
http://www.designation-systems.net/usmilav/jetds/an-apa2apd.html#_APA
https://www.nrcan.gc.ca/earth-sciences/geomatics/satellite-imagery-air-photos/satellite-imagery-products/educational-resources/9275
https://www.nrcan.gc.ca/earth-sciences/geomatics/satellite-imagery-air-photos/satellite-imagery-products/educational-resources/9275
http://www.mar-it.de/Radar/RCS/RCS_xx.pdf
http://radarproblems.com/chapters/ch06.dir/ch06pr.dir/c06p11.dir/c06p11.htm
http://radarproblems.com/chapters/ch06.dir/ch06pr.dir/c06p11.dir/c06p11.htm

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

10-4

© 2016 Presagis. All Rights Reserved.

Ref Title Description

29 MIL-STD-2411-2 Defense Mapping Agency, Incorporation of Raster Product Format (RPF)

Data in National Imagery Transmission Format (NITF).

30 IEEE Std 1516-2000 IEEE Standard for Modeling and Simulation (M&S) High Level

Architecture (HLA)

31 RPR-FOM Version 2 Draft 17 Real-time Platform Reference (RPR) Federation Object Model (FOM)

This RPR-FOM maps the DIS standard to the HLA standard.

The document can be obtained from the Simulation Interoperability

Standards Organization at the following address:

http://www.sisostds.org/

32 MIL-PRF-89039 Amendment 2 Performance Specification Vector Smart Map (VMAP Level 0), 28

September 1999

http://en.wikipedia.org/wiki/Vector_Map

http://earth-info.nga.mil/publications/specs/printed/VMAP0/vmap0.html

33 MIL-PRF-89033 Amendment 1 Performance Specification Vector Smart Map (VMAP Level 1), 27 May

1998

34 MIL-PRF-89035A Urban Vector Map (UVMap), 1st August, 2002

35 OneSAF Ultra High Resolution

Building (UHRB) Object Model
OneSAF UHRB Object Model (Version 2.2, Document Revision E, March

7th, 2008, Contract #: N61339-00-D-0710, Task Order: 28.)

http://www.onesaf.net/community/systemdocuments/v.3.0/Maintenance

Manual/erc/UHRB_2_Object_Model.pdf

36 OneSAF Ultra High Resolution

Building (UHRB) On-Disk

Format

OneSAF UHRB On-Disk Format Model (Version 2.2, Document Revision

E, March 7th, 2008, Contract #: N61339-00-D-0710, Task Order: 28.)

http://www.onesaf.net/community/systemdocuments/v.3.0/Maintenance

Manual/erc/UHRB_2_On_Disk_Format.pdf

37 U.S. Department of

Transportation - Federal Aviation

Administration – Advisory

Circular 150/5340-1J

Standards for Airport Markings, AC- 150/5340-1J, dated 4/29/2005

38 Federal Aviation Administration –

Aeronautical Information Manual
Official Guide to Basic Flight Information and ATC Procedures, dated

14th February, 2008

http://www.sisostds.org/
http://en.wikipedia.org/wiki/Vector_Map
http://earth-info.nga.mil/publications/specs/printed/VMAP0/vmap0.html
http://www.onesaf.net/community/systemdocuments/v.3.0/MaintenanceManual/erc/UHRB_2_Object_Model.pdf
http://www.onesaf.net/community/systemdocuments/v.3.0/MaintenanceManual/erc/UHRB_2_Object_Model.pdf
http://www.onesaf.net/community/systemdocuments/v.3.0/MaintenanceManual/erc/UHRB_2_On_Disk_Format.pdf
http://www.onesaf.net/community/systemdocuments/v.3.0/MaintenanceManual/erc/UHRB_2_On_Disk_Format.pdf

CDB Specification – Volume 1

Version 3.2 – Update 1

22 February 2016

11-1

© 2016 Presagis. All Rights Reserved.

Chapter 11

11 List of Contributors

The CDB Specification has been developed from active collaboration between many

individuals from different organization levels. They are listed below in alphabetical

order.

CDB Authors

Bernard Lalonde , CAE

Bernard Leclerc, CAE

Michel Lagacé, CAE

Pierre Samson , CAE

CDB Contributors and Reviewers

Andrew Fernie, CAE

Arnaud Banel, CAE

Brian Ford, FSI

David Nadeau , Presagis

Frédérick St-Laurent, Presagis

Hermann Brassard, Presagis

Jay Freeman, CAE

John Hortenstine, FSI

John Oliver, Presagis

Nick Giannias, Presagis

Patrick Lavoie, Presagis

Richard Pitre, Presagis

Roland Humphries, XPI Simulation

Ryan Franz, FSI

CDB Project Instigators

Earl Miller, U.S. Government

Jill Ashby, U.S. Government

Joe Preston, U.S. Government

Kevin Mobley, U.S. Government

Larry Grice, U.S. Government

Rita Simons, U.S. Government

Victor Colon, U.S. Government

	Revision History
	Abstract
	Distribution Package
	Table of Contents
	List of Figures
	List of Tables
	Preface
	1 Introduction
	1.1 Purpose
	1.2 Document Structure
	1.3 Scope
	1.3.1 What is the CDB Specification
	1.3.1.1 Use of CDB as an Off-line Database Repository
	1.3.1.2 Use of CDB as a Combined Off-line and Run-time Database Repository

	1.3.2 What the CDB Specification Is Not
	1.3.3 What is a CDB

	1.4 Key Features and Characteristics of the CDB Specification
	1.4.1 Synthetic environment Database for Simulation Applications
	1.4.2 Logical Addressability
	1.4.3 High Spatial Resolution and Scalability
	1.4.4 Earth Geodetic Spatial Representation Model
	1.4.5 Tile/Layer/Level-of-Detail Structure
	1.4.5.1 Tiles
	1.4.5.2 Layers
	1.4.5.3 Levels-of-Detail

	1.4.6 Platform Independence
	1.4.6.1 System Software Independence
	1.4.6.1.1 File System
	1.4.6.1.2 Operating System
	1.4.6.1.3 Transport Protocols

	1.4.6.2 System Hardware Independence
	1.4.6.2.1 Processor/Memory
	1.4.6.2.2 Storage Subsystem
	1.4.6.2.3 IO Subsystem
	1.4.6.2.4 Client-Device Independence

	1.4.7 Synthetic Environment Scalability & Adaptability
	1.4.8 Platform Scalability
	1.4.9 Simulator Wide Unique Data Representation, Data Normalization
	1.4.10 Compression of Storage Intensive Imagery Datasets
	1.4.11 Compression of other Raster Datasets

	1.5 Key Benefits of the CDB Specification
	1.5.1 Improved Synthetic environment DB Generation Timeline
	1.5.2 Interoperable Simulation-Ready Synthetic environment DB
	1.5.3 Improved Client-device Robustness/Determinism
	1.5.4 Runtime-Adjustable Synthetic Environment DB Correlation and Fidelity
	1.5.5 Increased Synthetic Environment DB Longevity
	1.5.6 Reduced Synthetic Environment DB Storage Infrastructure Cost

	1.6 CDB Primer
	1.6.1 CDB Specification Data Representation and Organization
	1.6.2 CDB Specification Logical Structure
	1.6.3 CDB Structure, Organization on Media and Conventions
	1.6.4 Typical Implementation on a Simulator
	1.6.4.1 Database Generation Facility
	1.6.4.2 Database Generation Flow
	1.6.4.3 Update Manager
	1.6.4.4 CDB Servers
	1.6.4.4.1 Runtime Publishers
	1.6.4.4.2 Simulator Client-devices
	1.6.4.4.2.1 Visual Subsystems
	1.6.4.4.2.2 Out-The-Window Image Generator (OTW IG)
	1.6.4.4.2.3 Infrared IG
	1.6.4.4.2.4 Night Vision Goggles Image Generation
	1.6.4.4.2.5 Ownship-Centric Mission Functions
	1.6.4.4.2.6 Computer Generated Forces (CGF)
	1.6.4.4.2.7 Weather Simulation
	1.6.4.4.2.8 Radar
	1.6.4.4.2.9 Navigation System

	1.6.4.5 Other Applications of the CDB Specification

	1.6.5 Use of CDB in Applications Requiring Dynamic Synthetic Environments
	1.6.6 Synthetic Environment Database Correlation

	2 CDB Concepts
	2.1 Partitioning the Earth into Tiles
	2.1.1 Description
	2.1.2 Tile Levels-of-Detail (Tile-LODs)
	2.1.2.1 Tile-LOD Area Coverage Rules
	2.1.2.2 Tile-LOD Hierarchy Rules
	2.1.2.3 Tile-LOD Replacement Rules

	2.1.3 Handling of the North and South Pole

	2.2 File System Requirements
	2.2.1 Character Set
	2.2.2 A word about case-sensitiveness

	2.3 Light Naming
	2.3.1 Adding Names to the CDB Light Name Hierarchy

	2.4 Model Component Naming
	2.4.1 Adding New Model Components

	2.5 Materials
	2.5.1 Base Materials
	2.5.1.1 Base Material Table (BMT)

	2.5.2 Composite Materials
	2.5.2.1 Composite Material Substrates
	2.5.2.2 Composite Material Tables (CMT)
	2.5.2.3 Example 1
	2.5.2.4 Example 2

	2.5.3 Bringing it all Together
	2.5.4 Determination of Material Properties by SEM
	2.5.4.1 Example

	2.5.5 Generation of Materials for Inclusion in CDB Datasets

	3 CDB Structure
	3.1 Top-Level CDB Structure Description
	3.1.1 Metadata Directory
	3.1.2 Metadata File Examples

	3.2 CDB Configuration Management
	3.2.1 CDB Version
	3.2.1.1 CDB Extensions

	3.2.2 CDB Version Directory Structure
	3.2.3 CDB File Replacement Mechanism
	3.2.3.1 How to Handle Archives
	3.2.3.2 How to Handle the Metadata Directory

	3.2.4 CDB Configuration
	3.2.5 Management of CDB Configurations and Versions

	3.3 CDB Model Types
	3.3.1 GTModel (Geotypical 3D Model)
	3.3.2 GSModel (Geospecific 3D Model)
	3.3.3 T2DModel (Tiled 2D Model)
	3.3.4 MModel (Moving 3D Model)
	3.3.5 Use of GSModels and GTModels
	3.3.6 Organizing Models into Levels of Details
	3.3.7 Organizing Models into Datasets
	3.3.8 Terms and Expressions
	3.3.8.1 Feature Classification
	3.3.8.2 Model Name
	3.3.8.3 DIS Entity Type
	3.3.8.4 Texture Name
	3.3.8.5 Level of Detail

	3.4 GTModel Library Datasets
	3.4.1 GTModel Directory Structure 1: Geometry and Descriptor
	3.4.1.1 GTModelGeometry Entry File Naming Convention
	3.4.1.2 GTModelGeometry Level of Detail Naming Convention
	3.4.1.3 GTModelDescriptor Naming Convention
	3.4.1.4 Examples

	3.4.2 GTModel Directory Structure 2: Texture, Material, and CMT
	3.4.2.1 GTModelTexture Naming Convention
	3.4.2.2 GTModelMaterial Naming Convention
	3.4.2.3 GTModelCMT Naming Convention
	3.4.2.4 Examples

	3.4.3 GTModel Directory Structure 3: Interior Geometry and Descriptor
	3.4.3.1 GTModelInteriorGeometry Naming Convention
	3.4.3.2 GTModelInteriorDescriptor Naming Convention
	3.4.3.3 Examples

	3.4.4 GTModel Directory Structure 4: Interior Texture, Material, and CMT
	3.4.4.1 GTModelInteriorTexture Naming Convention
	3.4.4.2 GTModelInteriorMaterial Naming Convention
	3.4.4.3 Example 1
	3.4.4.4 Example 2

	3.4.5 GTModel Directory Structure 5: Signature
	3.4.5.1 Naming Convention
	3.4.5.2 Examples

	3.4.6 GTModel Complete Examples

	3.5 MModel Library Datasets
	3.5.1 MModel Directory Structure 1: Geometry and Descriptor
	3.5.1.1 MModelGeometry Naming Convention
	3.5.1.2 MModelDescriptor Naming Convention
	3.5.1.3 Examples

	3.5.2 MModel Directory Structure 2: Texture, Material, and CMT
	3.5.2.1 MModelTexture Naming Convention
	3.5.2.2 MModelMaterial Naming Convention
	3.5.2.3 MModelCMT Naming Convention
	3.5.2.4 Examples

	3.5.3 MModel Directory Structure 3: Signature
	3.5.3.1 Naming Convention
	3.5.3.2 Examples

	3.5.4 MModel Complete Examples

	3.6 CDB Tiled Datasets
	3.6.1 Tiled Dataset Types
	3.6.1.1 Raster Datasets
	3.6.1.2 Vector Datasets
	3.6.1.3 Model Datasets

	3.6.2 Tiled Dataset Directory Structure
	3.6.2.1 Directory Level 1 (Latitude Directory)
	3.6.2.1.1 Examples

	3.6.2.2 Directory Level 2 (Longitude Directory)
	3.6.2.2.1 Examples

	3.6.2.3 Directory Level 3 (Dataset Directory)
	3.6.2.3.1 Examples

	3.6.2.4 Directory Level 4 (LOD Directory)
	3.6.2.4.1 Examples

	3.6.2.5 Directory Level 5 (UREF Directory)
	3.6.2.5.1 Examples

	3.6.3 Tiled Dataset File Naming Conventions
	3.6.3.1 File Naming Convention for Files in Leaf Directories (UREF Directory)
	3.6.3.1.1 Examples

	3.6.3.2 File Naming Convention for Files in ZIP Archives
	3.6.3.2.1 GSModel Geometry File Naming Conventions
	3.6.3.2.2 GSModel Texture File Naming Conventions
	3.6.3.2.3 GSModel Material File Naming Conventions
	3.6.3.2.4 GSModel Descriptor File Naming Conventions
	3.6.3.2.5 GSModel CMT File Naming Conventions
	3.6.3.2.6 Examples

	3.7 Navigation Library Dataset
	3.7.1 NavData Structure
	3.7.2 Naming Convention
	3.7.2.1 Examples

	4 CDB File Formats
	5 CDB Datasets
	5.1 Metadata Datasets
	5.1.1 Light Name Hierarchy Metadata
	5.1.1.1 Client Specific Lights Definition Metadata

	5.1.2 Model Components Definition Metadata
	5.1.3 Base Material Table
	5.1.4 Default Values Definition Metadata
	5.1.5 Specification Version Metadata – Deprecated
	5.1.6 Version Metadata
	5.1.7 CDB Attributes Metadata
	5.1.7.1 Definition of the <Attribute> Element
	5.1.7.2 Definition of the <Unit> Element
	5.1.7.3 Definition of the <Scaler> Element
	5.1.7.4 Example of CDB_Attributes.xml

	5.1.8 Geomatics Attributes Metadata
	5.1.9 Vendor Attributes Metadata
	5.1.10 Configuration Metadata
	5.1.10.1 A Note about Folder Path
	5.1.10.2 Example

	5.2 Navigation Library Datasets
	5.2.1 Schema Files
	5.2.1.1 Example

	5.2.2 Key Datasets
	5.2.2.1 Example

	5.3 CDB Model Textures
	5.4 GTModel Library Datasets
	5.5 MModel Library Datasets
	5.6 Tiled Raster Datasets
	5.6.1 Tiled Elevation Dataset
	5.6.1.1 Terrain Mesh Types
	5.6.1.1.1 Data Type
	5.6.1.1.2 Default Value

	5.6.1.2 List of all Elevation Dataset Components
	5.6.1.3 Primary Terrain Elevation Component
	5.6.1.3.1 Data Type
	5.6.1.3.2 Default Read Value
	5.6.1.3.3 Default Write Value

	5.6.1.4 Primary Alternate Terrain Elevation Component
	5.6.1.4.1 Data Type
	5.6.1.4.2 Default Read Value
	5.6.1.4.3 Default Write Value

	5.6.1.5 Terrain Constraints
	5.6.1.6 MinElevation and MaxElevation Components
	5.6.1.6.1 Level of Details
	5.6.1.6.2 Data Type
	5.6.1.6.3 Default Read Value
	5.6.1.6.4 Default Write Value

	5.6.1.7 MaxCulture Component
	5.6.1.7.1 Level of Details
	5.6.1.7.2 Data Type
	5.6.1.7.3 Default Read Value
	5.6.1.7.4 Default Write Value

	5.6.1.8 Subordinate Bathymetry Component
	5.6.1.8.1 Data Type
	5.6.1.8.2 Default Read Value
	5.6.1.8.3 Default Write Value

	5.6.1.9 Subordinate Alternate Bathymetry Component
	5.6.1.9.1 Data Type
	5.6.1.9.2 Default Read Value
	5.6.1.9.3 Default Write Value

	5.6.1.10 Subordinate Tide Component
	5.6.1.10.1 Data Type
	5.6.1.10.2 Default Read Value
	5.6.1.10.3 Default Write Value

	5.6.2 Tiled Imagery Dataset
	5.6.2.1 Raster-Based Imagery File Storage Extension Naming
	5.6.2.1.1 JPEG 2000 Metadata
	5.6.2.1.1.1 Origin of data
	5.6.2.1.1.2 Security
	5.6.2.1.1.3 JPEG 2000 XML Example

	5.6.2.2 List of all Imagery Dataset Components
	5.6.2.3 Visible Spectrum Terrain Imagery (VSTI) Components
	5.6.2.3.1 Data Type
	5.6.2.3.2 Default Read Value
	5.6.2.3.3 Default Gamma Correction
	5.6.2.3.4 Default Write Value

	5.6.2.4 Visible Spectrum Terrain Light Map (VSTLM) Component
	5.6.2.4.1 Data Type
	5.6.2.4.2 Default Read Value
	5.6.2.4.3 Default Gamma Correction
	5.6.2.4.4 Default Write Value

	5.6.3 Tiled Raster Material Dataset
	5.6.3.1 List of all Raster Material Dataset Components
	5.6.3.2 Composite Material Index Component
	5.6.3.2.1 Data Type
	5.6.3.2.2 Default Read Value
	5.6.3.2.3 Default Write Value

	5.6.3.3 Composite Material Mixture Component
	5.6.3.3.1 Data Type
	5.6.3.3.2 Default Read Value
	5.6.3.3.3 Default Write Value

	5.6.3.4 Composite Material Table Component
	5.6.3.4.1 Data Type
	5.6.3.4.2 Default Read Value
	5.6.3.4.3 Default Write Value

	5.7 Tiled Vector Datasets
	5.7.1 Introduction to Vector Datasets
	5.7.1.1 Shapefile Type Usage and Conventions
	5.7.1.1.1 Notes about Shapefile Polygon Shapes

	5.7.1.2 CDB Attribution
	5.7.1.2.1 Attribute Code
	5.7.1.2.2 Attribute Identifier
	5.7.1.2.3 Attribute Semantics
	5.7.1.2.4 Attributes Values
	5.7.1.2.5 Attribute Usage
	5.7.1.2.6 Attribution Data Compatibility
	5.7.1.2.6.1 CDB Attributes
	5.7.1.2.6.2 Geomatics Attributes
	5.7.1.2.6.3 Vendor Attributes

	5.7.1.2.7 Attribution Schemas
	5.7.1.2.7.1 Instance-level Schema
	5.7.1.2.7.2 Class-level Schema
	5.7.1.2.7.3 Extended-level Schema
	5.7.1.2.7.4 Structure of Extended-level dbf Files
	5.7.1.2.7.5 Example

	5.7.1.3 CDB Attributes
	5.7.1.3.1 ATARS Extended Attribute Code (AEAC) – Deprecated
	5.7.1.3.2 Absolute Height Flag (AHGT)
	5.7.1.3.3 Angle of Orientation (AO1)
	5.7.1.3.4 Airport Feature Name (APFN) – Deprecated
	5.7.1.3.5 Airport ID (APID)
	5.7.1.3.6 Bounding Box Height (BBH)
	5.7.1.3.7 Bounding Box Width (BBW)
	5.7.1.3.8 Bounding Box Length (BBL)
	5.7.1.3.9 Boundary Type (BOTY)
	5.7.1.3.10 Bounding Sphere Radius (BSR)
	5.7.1.3.11 CDB Extended Attribute Index (CEAI)
	5.7.1.3.12 CDB Extended Attribute Code (CEAC) – Deprecated
	5.7.1.3.13 Composite Material Index (CMIX)
	5.7.1.3.14 Class Name (CNAM)
	5.7.1.3.15 Damage Level (DAMA)
	5.7.1.3.16 DIGEST Extended Attribute Code (DEAC) – Deprecated
	5.7.1.3.17 Depth below Surface Level (DEP)
	5.7.1.3.18 Directivity (DIR)
	5.7.1.3.19 Density Measure (DML)
	5.7.1.3.20 Density Measure (% roof cover) (DMR)
	5.7.1.3.21 Density Measure (structure count) (DMS)
	5.7.1.3.22 Density Measure (% tree/canopy cover) (DMT)
	5.7.1.3.23 End Junction ID (EJID)
	5.7.1.3.24 Feature Attribute Classification Code (FACC)
	5.7.1.3.25 FACC Sub Code (FSC)
	5.7.1.3.26 Gate ID (GAID)
	5.7.1.3.27 Geomatics Extended Attribute Index (GEAI)
	5.7.1.3.28 Height above Surface Level (HGT)
	5.7.1.3.29 Junction ID (JID)
	5.7.1.3.30 Location Accuracy (LACC)
	5.7.1.3.31 Length of Lineal (LENL)
	5.7.1.3.32 Light Material Index (LMIX) – Deprecated
	5.7.1.3.33 Feature (or Location) Name (LNAM)
	5.7.1.3.34 Location Type (LOTY)
	5.7.1.3.35 Light Phase (LPH)
	5.7.1.3.36 Layer Priority Number (LPN)
	5.7.1.3.37 Lane/Track Number (LTN)
	5.7.1.3.38 Light Type (LTYP)
	5.7.1.3.39 Model Level Of Detail (MLOD)
	5.7.1.3.40 Moving Model DIS Code (MMDC)
	5.7.1.3.41 Model Name (MODL)
	5.7.1.3.42 Model Type (MODT)
	5.7.1.3.43 Network Component Selector 1 (NCS1)
	5.7.1.3.44 Network Component Selector 2 (NCS2)
	5.7.1.3.45 Network Dataset Code (NDSC)
	5.7.1.3.46 Number of Instances (NIS) – Deprecated
	5.7.1.3.47 Number of Indices (NIX) – Deprecated
	5.7.1.3.48 Number of Normals (NNL) – Deprecated
	5.7.1.3.49 Number of Texture Coordinates (NTC) – Deprecated
	5.7.1.3.50 Number of Texel (NTX) – Deprecated
	5.7.1.3.51 Number of Vertices (NVT)
	5.7.1.3.52 Population Density (POPD)
	5.7.1.3.53 Populated Place Type (POPT)
	5.7.1.3.54 Relative TActical Importance (RTAI)
	5.7.1.3.55 Runway ID (RWID)
	5.7.1.3.56 Scaling (SCALx)
	5.7.1.3.57 Scaling (SCALy)
	5.7.1.3.58 Scaling (SCALz)
	5.7.1.3.59 Start Junction ID (SJID)
	5.7.1.3.60 Surface Roughness Description (SRD)
	5.7.1.3.61 Structure Shape Category (SSC)
	5.7.1.3.62 Structure Shape of Roof (SSR)
	5.7.1.3.63 Traffic Flow (TRF)
	5.7.1.3.64 Taxiway ID (TXID)
	5.7.1.3.65 Urban Street Pattern (USP)
	5.7.1.3.66 Vendor Extended Attribute Index (VEAI)
	5.7.1.3.67 Width with Greater Than 1 meter Precision (WGP)

	5.7.1.4 Explicitly Modeled Representations
	5.7.1.4.1 Referenced by Point Features

	5.7.1.5 Implicitly Modeled Representations
	5.7.1.6 Handling of Topological Networks
	5.7.1.6.1 2D Relationship Tile Connection File
	5.7.1.6.2 2D Relationship Dataset Connection File
	5.7.1.6.3 Junction Identifier (SJID, EJID, and JID) Range
	5.7.1.6.4 Network Vector Priority

	5.7.1.7 Handling of Light Points
	5.7.1.8 Allocation of CDB Attributes To Vector Datasets
	5.7.1.9 Vector Significant Size and Spatial Significance Criteria
	5.7.1.9.1 Vector Significant Size
	5.7.1.9.2 Levels of Detail and Spatial Significance Criteria

	5.7.2 Tiled Navigation Dataset
	5.7.2.1 Default Read Value
	5.7.2.2 Default Write Value

	5.7.3 Tiled GSFeature Dataset
	5.7.3.1 Default Read Value
	5.7.3.2 Default Write Value

	5.7.4 Tiled GTFeature Dataset
	5.7.4.1 Default Read Value
	5.7.4.2 Default Write Value

	5.7.5 Tiled GeoPolitical Feature Dataset
	5.7.5.1 Boundary and Location Features
	5.7.5.2 Elevation Constraint Features
	5.7.5.3 Default Read Value
	5.7.5.4 Default Write Value

	5.7.6 Tiled RoadNetwork Dataset
	5.7.6.1 Default Read Value
	5.7.6.2 Default Write Value

	5.7.7 Tiled RailRoadNetwork Dataset
	5.7.7.1 Default Read Value
	5.7.7.2 Default Write Value

	5.7.8 Tiled PowerLineNetwork Dataset
	5.7.8.1 Default Read Value
	5.7.8.2 Default Write Value

	5.7.9 Tiled HydrographyNetwork Dataset
	5.7.9.1 Default Read Value
	5.7.9.2 Default Write Value

	5.7.10 Tiled Vector Composite Material Table (VCMT)
	5.7.10.1 Data Type
	5.7.10.2 Default Read Value
	5.7.10.3 Default Write Value

	5.8 Tiled Model Datasets
	5.8.1 Tiled GSModel Datasets
	5.8.1.1 GSModel Archive Size Limit

	5.8.2 Tiled T2DModel Datasets

	6 CDB OpenFlight Models
	6.1 OpenFlight File Header
	6.2 OpenFlight Model Tree Structure
	6.2.1 CDB Model Tree Structure
	6.2.2 T2DModel Tree Structure
	6.2.2.1 Restrictions
	6.2.2.2 Node Attributes

	6.2.3 The Use of Node Names
	6.2.4 Model Master File
	6.2.5 Referencing Other OpenFlight Files
	6.2.5.1 Models Straddling Multiple Files
	6.2.5.2 Models with Multiple Model-LODs

	6.3 Modeling Conventions
	6.3.1 Model Coordinate Systems
	6.3.1.1 Origin
	6.3.1.2 Local Coordinate Systems
	6.3.1.3 Units
	6.3.1.3.1 GSModels and GTModels
	6.3.1.3.2 MModels
	6.3.1.3.3 T2DModels

	6.3.1.4 Roll, Pitch, Yaw

	6.3.2 Geometry
	6.3.3 Roof Tagging
	6.3.4 Relative Priority

	6.4 Model Identifiers
	6.4.1 GSModel and GTModel Identifier
	6.4.2 MModel Identifier
	6.4.3 2DModel Identifier

	6.5 Model Zones
	6.5.1 Definition
	6.5.2 Global Zones
	6.5.3 Zone Attributes
	6.5.3.1 Material
	6.5.3.2 Temperature

	6.5.4 Implementation Guidelines
	6.5.5 Model Zone Naming
	6.5.6 Usages
	6.5.6.1 Model Landing Zones
	6.5.6.2 Model Footprint Zones
	6.5.6.3 Model Cutout Zones
	6.5.6.4 Model Interior Zones
	6.5.6.4.1 Model Pseudo-Interior Zone
	6.5.6.4.2 Model Interior Zone
	6.5.6.4.2.1 Model Interior Topology
	6.5.6.4.2.2 Model Interior Topology Attributes

	6.5.6.4.3 Floor Zone
	6.5.6.4.4 Room Zone
	6.5.6.4.5 Fixture Zone
	6.5.6.4.6 Partition Zone
	6.5.6.4.7 Aperture Zone
	6.5.6.4.8 Surface Zone

	6.6 Model Points
	6.6.1 Definition
	6.6.2 Usages
	6.6.2.1 Model DIS Origin
	6.6.2.1.1 Example

	6.6.2.2 Model Viewpoint
	6.6.2.3 Model Attach Point
	6.6.2.4 Model Anchor Point
	6.6.2.5 Model Center of Mass

	6.7 Model Conforming
	6.7.1 Non Conformal (Absolute) Mode
	6.7.2 Point Conformal Mode
	6.7.3 Vertex Conformal Mode
	6.7.4 Line Conformal Mode
	6.7.5 Plane Conformal Mode
	6.7.6 Surface Conformal Mode

	6.8 Model Levels-of-Detail
	6.8.1 LOD Node Types
	6.8.1.1 Note on Additive LODs

	6.8.2 LOD Node Ordering
	6.8.3 LOD Significant Size
	6.8.3.1 Definition of Significant Size
	6.8.3.2 Estimating the Size of the Model
	6.8.3.3 How to use the Significant Size

	6.8.4 LOD Limits
	6.8.4.1 How to Assign CDB LODs

	6.8.5 LOD Generation Guidelines

	6.9 Model Switch Nodes
	6.9.1 Definition
	6.9.2 Usage
	6.9.2.1 Articulations with Discreet Positions
	6.9.2.2 Damage States
	6.9.2.3 Temporal Anti-aliasing

	6.10 Model Articulations
	6.10.1 Definition
	6.10.2 Usage
	6.10.2.1 Rotating Parts

	6.11 Model Light Points
	6.12 Model Attributes
	6.12.1 Definition
	6.12.2 Vendor Attributes
	6.12.3 Examples

	6.13 Model Textures
	6.13.1 Handling of Multi-textures
	6.13.1.1 Base Texture Layer
	6.13.1.2 Subordinate Texture Layer
	6.13.1.3 Texture Mapping Conventions

	6.13.2 Default Gamma Corrections
	6.13.3 Texture Dimension
	6.13.3.1 Texture Mipmap
	6.13.3.2 Texture Size
	6.13.3.3 Texel Size

	6.13.4 Texture Palette
	6.13.4.1 MModel Example
	6.13.4.2 GTModel Example
	6.13.4.3 GSModel Example
	6.13.4.4 T2DModel Example

	6.13.5 Usages
	6.13.5.1 Model Shadow Textures
	6.13.5.1.1 Shadow Geometry
	6.13.5.1.2 Shadow Maps

	6.13.5.2 Model Skin Textures
	6.13.5.3 Model Night Maps
	6.13.5.3.1 Night Map Generation

	6.13.5.4 Model Light Maps
	6.13.5.4.1 How and When to Use Night Maps and Light Maps
	6.13.5.4.2 How and When Not to Use Light Maps

	6.13.5.5 Model Tangent-space Normal Maps
	6.13.5.6 Model Detail Texture Maps
	6.13.5.7 Model Contaminant and Skid Mark Textures
	6.13.5.8 Model Cubic Reflection Maps
	6.13.5.9 Model Gloss Maps
	6.13.5.10 Model Material Textures

	6.14 Model Descriptor (Metadata) Datasets
	6.14.1 Model Name
	6.14.2 Model Identification
	6.14.2.1 Moving Model Identification
	6.14.2.2 Cultural Feature Identification

	6.14.3 Model Mass
	6.14.4 Model Parts
	6.14.5 Model Textures
	6.14.5.1 Texture Metadata
	6.14.5.2 Texture Switch
	6.14.5.2.1 Example

	6.14.6 Model Configurations
	6.14.6.1 Defining Stations in a Configuration
	6.14.6.2 Defining Equipment in a Station
	6.14.6.3 Defining Equipment Names

	6.14.7 Model Composite Materials

	7 CDB Radar Cross Section (RCS) Models
	7.1 Introduction
	7.2 RCS Data Model
	7.2.1 RCS Model Structure

	7.3 RCS Polar Diagram Data Representation using Shapefile
	7.3.1 Shapefile Internal Data Structure
	7.3.1.1 RCS Model Class-Level Attributes:
	7.3.1.2 RCS Instance-Level Attribute Data

	7.3.2 Multi-Variant RCS Model Applicability
	7.3.3 Model’s Articulations Effect on RCS Data

	8 Glossary
	9 Acronyms and Abbreviations
	10 Reference Documents
	11 List of Contributors

