

Open Geospatial Consortium

Publication Date: 2016-01-28

Approval Date: 2015-10-26

Posted Date: 2015-09-08

Reference number of this document: OGC 15-010r4

Reference URL for this document: http://www.opengis.net/doc/PER/tb-11-WFST_IEA

Category: Public Engineering Report

Editor: Panagiotis (Peter) A. Vretanos

OGC® Testbed-11 WFS-T Information Exchange Architecture

Copyright © 2016 Open Geospatial Consortium.
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. This document presents a discussion of
technology issues considered in an initiative of the OGC Interoperability Program.
This document does not represent an official position of the OGC. It is subject to
change without notice and may not be referred to as an OGC Standard. However,
the discussions in this document could very well lead to the definition of an OGC
Standard. Recipients of this document are invited to submit, with their comments,
notification of any relevant patent rights of which they are aware and to provide
supporting documentation.

Document type: Public Engineering Report
Document subtype: NA
Document stage: Approved for public release
Document language: English

OGC 15-010r4

ii Copyright © 2016 Open Geospatial Consortium.

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below,
to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property
without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish,
distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to
do so, provided that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above
copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS
THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF
INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY
DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH
THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all
copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as
provided in the following sentence, no such termination of this license shall require the termination of any third party end-user
sublicense to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual
Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent,
copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license
without any compensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or
cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual
Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without
prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may
authorize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any
LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United
Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In the event any provision of this
Agreement shall be deemed unenforceable, void or invalid, such provision shall be modified so as to make it valid and enforceable,
and as so modified the entire Agreement shall remain in full force and effect. No decision, action or inaction by LICENSOR shall be
construed to be a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise exported or reexported in
violation of U.S. export laws and regulations. In addition, you are responsible for complying with any local laws in your jurisdiction
which may impact your right to import, export or use the Intellectual Property, and you represent that you have complied with any
regulations or registration procedures required by applicable law to make this license enforceable

OGC 15-010r4

Copyright © 2016 Open Geospatial Consortium. iii

Contents Page

1	 Introduction ... 1	
1.1	 Scope ... 1	
1.2	 Document contributor contact points .. 1	
1.3	 Forward ... 2	
1.4	 Future work ... 2	

2	 References ... 2	
3	 Terms and definitions ... 3	

4	 Conventions .. 9	
4.1	 Abbreviated terms ... 9	

5	 WFS servers .. 11	
5.1	 Introduction ... 11	
5.2	 Assessment criteria ... 11	
5.3	 Survey of WFS servers ... 12	

5.3.1	 List of servers .. 12	
5.3.2	 Server capabilities ... 13	
5.3.3	 Sanity checks .. 16	

5.4	 Implementation guidance .. 18	
5.4.1	 Introduction ... 18	
5.4.2	 Recommendations ... 18	

5.4.2.1	 Pass the OGC Compliance test suite .. 18	
5.4.2.2	 Read the capabilities document ... 19	
5.4.2.3	 Truth in advertising .. 19	
5.4.2.4	 Rich metadata ... 20	
5.4.2.5	 Canonical GML versions ... 20	
5.4.2.6	 Valid XML ... 21	
5.4.2.7	 Correct CRS ... 21	
5.4.2.8	 GML simple features profie ... 21	
5.4.2.9	 Implement only what you need .. 22	

5.4.3	 WFS and GML .. 22	
5.4.4	 WFS and not GML .. 23	
5.4.5	 WFS interoperability at the schema level ... 24	

5.4.5.1	 Introduction .. 24	
5.4.5.2	 Community schemas .. 24	
5.4.5.3	 Simple feature profile .. 24	
5.4.5.4	 Rich client .. 24	
5.4.5.5	 Schema translation agent ... 24	
6	 WFS clients ... 25	

6.1	 Introduction ... 25	
6.2	 Available WFS clients .. 25	

OGC 15-010r4

iv Copyright © 2016 Open Geospatial Consortium.

6.3	 Light testing .. 26	
7	 Complimentary services or capabilities .. 27	

7.1	 Introduction ... 27	
7.2	 Crowdsourcing (GeoSynchronization service) ... 27	

7.2.1	 Introduction ... 27	
7.2.2	 Characteristics of a GSS ... 28	
7.2.3	 GSS components ... 29	

7.2.3.1	 Introduction .. 29	
7.2.3.2	 The feeds .. 29	
7.2.3.3	 Core class ... 31	
7.2.3.4	 Topics class .. 31	
7.2.3.5	 Review class ... 32	
7.2.3.6	 Active Notification class .. 32	
7.2.3.7	 Active Synchronization class ... 32	

7.2.4	 Crowdsourcing workflow ... 33	
7.3	 Schema translation .. 34	

7.3.1	 Introduction ... 34	
7.3.2	 Schema translation work flow .. 34	
7.3.3	 Schema registry ... 35	

7.4	 Data and access security ... 38	
7.4.1	 Introduction ... 38	
7.4.2	 Requirments .. 38	

8	 Q & A from the UCR thread of Testbed-11 ... 40	
8.1	 Introduction ... 40	
8.2	 How to handle replication/synchronization between enterprise DBs? 40	
8.3	 WFS-T REST: what is the difference to traditional request/response? 40	
8.4	 Who needs a service using the REST architecture and what are the

implications of using it? ... 41	
8.5	 What about URL patterns ... 42	
8.6	 REST principles such as "all you need is a mime-type" are not sufficient in

geo domain. How to handle this? .. 44	
8.7	 How to use HTTP headers? .. 44	
8.8	 What are the implications of moving from XML to JSON/GoeJSON? 44	
8.9	 How to use JSON with WFS 2.5? ... 44	
8.10	 How can JSON be used with the GSS? .. 44	

Annex A REST binding for WFS ... 46	

Openlayers WFS-T Client example .. 47	

Figures Page
Figure 1 – Components of a GSS ... 30	

OGC 15-010r4

Copyright © 2016 Open Geospatial Consortium. v

Figure 2 – GSS workflow ... 33	

Figure 3 – Schema translation work flow ... 35	

Figure 4 -- Model extensions for schema management .. 37	

Figure 5 -- Schema mapping resources in the registry ... 37	

Figure 6 – Capabilities document fragment ... 43	

Figure 7 – GetFeature response showing hypermedia controls .. 43	

Tables Page

Table 1 - List of WFS server participating in the UCR thread ... 12	
Table 2 – List of server endpoints for Testbed-11 .. 13	

Table 3 – Capabilities review of UCR servers .. 13	
Table 3a – Results of Sanity Checks 1 through 4 ... 17	

Table 4 – Canonical GML versions .. 21	
Table 5 – COTS WFS Clients ... 25	

Table 6 – Open Source WFS Clients .. 25	
Table 7 – Open Source Web Frameworks that include WFS support 26	

Table 8 – Light client testing results ... 27	
Table 9 – GSS Operations ... 30	

OGC 15-010r4

vi Copyright © 2016 Open Geospatial Consortium.

Abstract

This document presents an assessment of the conformance level, with respect to the WFS
standard (OGC 09-025r2), of the web feature servers used in the OGC Testbed-11. Each
server is accessed to determine if it conforms to the minimum requirements of the WFS
standard. Each server is further accessed to determine whether the server offers
additional, upcoming and complimentary capabilities just as support for the WFS REST
API and GeoJSON.

This document offers recommendations to aid implementers of the WFS standard (OGC
09-025r2).

This document presents options available to WFS implementers for achieving
interoperability between WFS clients and server at the schemas level.

This document includes a survey of available WFS clients and an assessment of their
capabilities.

This document reviews tools and standards, such as the GeoSynchronization Service
(OGC 10-069r3), that are complimentary components that may be used with a WFS to
address requirements such as verification and notification, data and access security,
exception handling and system hardening.

Finally, this document includes a FAQ composed of questions raised during the OGC
Testbed-11.

Business Value

For parties interested in implementing and/or deploying web feature servers, this
document offers a survey of available web feature servers and client, implementation
recommendations for achieving interoperability at the schemas level and a description of
complimentary components that may be used with a web feature service to address
additional requirements that are beyond the scope of the WFS standard (OGC 09-025r2).

Keywords

ogcdocs, testbed-11, WFS, WFS-T, transactions, REST, GSS, synchronization,
geosynchronization, access control, schema, translation,

OGC® Engineering Report OGC 15-010r4

Copyright © 2016 Open Geospatial Consortium. 1

Testbed-11 WFS-T Information Exchange Architecture

1 Introduction

1.1 Scope

This purpose of this document is to analyze the current market situation with regard to
available Web Feature Service (WFS) implementations from vendors and open source
implementations that are participating in the OGC Testbed-11. The report covers the
following aspects.

 The report identifies the differences and limitations of support and
implementation of service standards (particularly WFS-T, REST, GML, and
GeoJSON) between vendors;

 Provides a review of available WFS-T clients (or the lack thereof).

 This report offers recommendations to aid GIS vendors implementing support for
these standards. The recommendations include detailed advice to avoid
discrepancies between implementations of these standards.

 Review the capabilities of tools and standards such as GeoSynchronization
Service (GSS) and others to provide additional engineering and workflow aspects
needed to be addressed such as, verification and notification, data and access
security, exception handling and system hardening before being robustly
implementable.

 Provides a Q&A section of questions raised during the Testbed about the other
topics discussed in this document.

1.2 Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

Name Organization
Panagiotis (Peter) A. Vretanos CubeWerx Inc.

OGC 15-010r4

2

Copyright © 2016 Open Geospatial Consortium.

1.3 Forward

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. The Open Geospatial Consortium shall not be held
responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of
any relevant patent claims or other intellectual property rights of which they may be
aware that might be infringed by any implementation of the standard set forth in this
document, and to provide supporting documentation.

1.4 Future work

 Clause 7.3.2 discusses schema translation between GML application schemas
using XSLT. XSLT can also be used to support a transaction from GML to
GeoJSON but not the other way around. A comparison should be made between
this XSLT approach and the one in OWS10 using OWL which seems to offer a
more general solution providing both schema translation and format translation.

 There is a need to investigate exception handling and system hardening for
systems of WFSs.

2 References

The following documents are referenced in this document. For dated references,
subsequent amendments to, or revisions of, any of these publications do not apply. For
undated references, the latest edition of the normative document referred to applies.

OGC 02-069, Geography Markup Language

OGC 02-058, Web Feature Service

OGC 02-059, Filter Encoding

OGC 03-003r3, Basic XML Feature Schema

OGC 03-038, OGC Distributed Access Control System

OGC 03-105r1, OpenGIS Geography Markup Language (GML) Encoding Standard

OGC 04-094, OpenGIS Web Feature Service (WFS) Implementation Specification

OGC 04-095, OGC Filter Encoding Implementation Specification

OGC 06-121r3, OGC Web Services Common Standard

OGC 06-042, OpenGIS Web Map Service (WMS) Implementation Specification

OGC 15-010r4

Copyright © 2016 Open Geospatial Consortium. 3

OGC 07-036, OpenGIS Geography Markup Language (GML) Encoding Standard

OGC 09-025r2, OGC Web Feature Service 2.0 Interface Standard – With Corrigendum

OGC 09-026r2, OGC Filter Encoding 2.0 Encoding Standard – With Corrgendum

OGC 10-069r3, OWS-7 Engineering Report – Geosynchronization Service

OGC 10-100r3, Geography Markup Language (GML) simple features profile 2.0

OGC 11-080r1, A REST binding for WFS 2.0 (Change request)

OGC 11-117, Add service id field to service identification section

OGC 13-100, Geospatial Extensible Access Control Markup Language (GeoXACML)

OGC 14-102, OGC Web Feature Service 2.5 Interface Standard (pending)

OGC 14-103, OGC Filter Encoding 2.5 Encoding Standard (pending)

OGC 15-011, OGC Testbed-11 Multiple WFS-T Interoperability ER

OGC 15-022, Testbed 11 - Implementing Common Security Across the OGC Suite of
Service Standards ER

OGC 15-052, OGC Testbed-11 REST Engineering Report

OGC 15-053, OGC Testbed-11 JSON/GeoJSON in OGC Stds ER

OGC 15-066, Testbed-11 Use of Semantic Linked Data with RDF for National Map
NHD and Gazetteer Data Engineering Report

OGC 15-068r2, Testbed-11 GeoPackaging Engineering Report

3 Terms and definitions

For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard [OGC 06-121r3] shall apply. In addition, the following terms
and definitions apply.

3.1
attribute <XML>
name-value pair contained in an element (4.6)

[ISO 19136:2007, definition 4.1.3]

NOTE In this document an attribute is an XML attribute unless otherwise specified.

OGC 15-010r4

4

Copyright © 2016 Open Geospatial Consortium.

3.2
client
software component that can invoke an operation (4.17) from a server (4.28)

[ISO 19128:2005, definition 4.1]

3.3
coordinate
one of a sequence of n numbers designating the position of a point in n-dimensional
space

[ISO 19111:2007, definition 4.5]

3.4
coordinate reference system
coordinate system (4.5) that is related to an object by a datum

[ISO 19111:2007, definition 4.8]

3.5
coordinate system
set of mathematical rules for specifying how coordinates (4.3) are to be assigned to
points

[ISO 19111:2007, definition 4.10]

3.6
element <XML>
basic information item of an XML document containing child elements, attributes (4.1)
and character data

[ISO 19136:2007, definition 4.1.23]

3.7
feature
abstraction of real world phenomena

[ISO 19101:2002, definition 4.11]

NOTE A feature can occur as a type or an instance. The term "feature type" or "feature instance"
should be used when only one is meant.

3.8
feature identifier
identifier that uniquely designates a feature (4.7) instance

OGC 15-010r4

Copyright © 2016 Open Geospatial Consortium. 5

3.9
filter expression
predicate expression encoded using XML

[OGC 09-026r2, definition 4.11]

3.10
interface
named set of operations (4.17) that characterize the behavior of an entity

[ISO 19119:2005, definition 4.2]

3.11
join predicate
filter expression (4.9) that includes one or more clauses that constrain properties from
two different entity types

[OGC 09-026r2, definition 4.16]

NOTE In this International Standard, the entity types will be feature (4.7) types.

3.12
Multipurpose Internet Mail Extensions (MIME) type
media type and subtype of data in the body of a message that designates the native
representation (canonical form) of such data

[IETF RFC 2045:1996]

3.13
namespace <XML>
collection of names, identified by a URI reference which are used in XML documents as
element (4.6) names and attribute (4.1) names

[W3C XML Namespaces:1999]

3.14
operation
specification of a transformation or query that an object may be called to execute

[ISO 19119:2005, definition 4.3]

3.15
property
facet or attribute of an object, referenced by a name

[OGC 09-026r2, definition 4.21]

OGC 15-010r4

6

Copyright © 2016 Open Geospatial Consortium.

3.16
resource
asset or means that fulfils a requirement

[OGC 09-026r2, definition 4.23]

NOTE In this International Standard, the resource is a feature (4.7), or any identifiable component of
a feature (e.g. a property of a feature)

3.17
request
invocation of an operation (4.17) by a client (4.2)

[ISO 19128:2005, definition 4.10]

3.18
response
result of an operation (4.17) returned from a server (4.28) to a client (4.2)

[ISO 19128:2005, definition 4.11]

3.19
schema
formal description of a model

[ISO 19101:2002, definition 4.25]

NOTE In general, a schema is an abstract representation of an object's characteristics and relations to
other objects. An XML schema represents the relationship between the attributes (4.1) and elements (4.6)
of an XML object (for example, a document or a portion of a document).

3.20
schema <XML Schema>
collection of schema (4.26) components within the same target namespace (4.16)

[ISO 19136:2007, definition 4.1.54]

EXAMPLE Schema components of W3C XML Schema are types, elements (4.16), attributes (4.1), groups, etc.

3.21
server
particular instance of a service (4.29)

[ISO 19128:2005, definition 4.12]

3.22
service
distinct part of the functionality that is provided by an entity through interfaces (4.10)

OGC 15-010r4

Copyright © 2016 Open Geospatial Consortium. 7

[ISO 19119:2005, definition 4.1]

3.23
service metadata
metadata describing the operations (4.17) and geographic information available at a
server (4.28)

[ISO 19128:2005, definition 4.14]

3.24
Uniform Resource Identifier
unique identifier for a resource, structured in conformance with IETF RFC 2396

[ISO 19136:2007, definition 4.1.65]

NOTE The general syntax is <scheme>::<scheme-specified-part>. The hierarchical syntax with a
namespace (4.16) is <scheme>://<authority><path>?<query>

3.25
filter capabilities XML
metadata, encoded in XML, that describes which predicates defined in this International
Standard a system implements

3.26
function
rule that associates each element from a domain (source, or domain of the function) to a
unique element in another domain (target, co-domain, or range)

[ISO 19107:2003, definition 4.41]

3.27
predicate
set of computational operations applied to a data instance which evaluate to true or false

3.28
predicate expression
formal syntax for describing a predicate

3.29
base URL
HTTP GET URL for a server's OGC capabilities document without the GetCapabilities
request parameters attached

NOTE: this base URL must match the HTTP GET base URL reported in the Capabilities document of the
service

NOTE: the base URL is used to identify the server in lieu of a service id which is not currently define in
OWS common but has been posted a change request to OGC (see OGC 11-117)

OGC 15-010r4

8

Copyright © 2016 Open Geospatial Consortium.

3.30
category document
documents that describe the categories allowed in Collection

3.31
change feed
collection of ATOM entries that describe changes to a data store expressed using the
WFS Transaction syntax (see OGC 04-094)

3.32
collection
resource that contains a set of member resources

NOTE In this candidate standard, collection are implemented as ATOM feeds (see IETF 4287)

3.33
collector
a person or entity that proposes changes to data

3.34
entry resource
members of a collection that are represented as ATOM entry documents (see IETF RFC
4287)

3.35
event
any detectable or discernable occurrence that has significance for the management of an
SDI

3.36
follower
person or process that accesses or subscribes to the replication feed of a GSS for the
purpose of data synchronization

3.37
integrator
person or process that reviews proposed data changes and then makes a determination
(based on established criteria) if the proposed change is acceptable or not

3.38
member resource
resource whose IRI is listed in a Collection with a atom:link element with a relation of
"edit" or "edit-media"

3.39
publisher
synonym for collector (see X.X)

OGC 15-010r4

Copyright © 2016 Open Geospatial Consortium. 9

3.40
replication feed
collection of ATOM entries containing a log of changes that have been applied to a data
store that can be used for the purpose of replicating or synchronizing with that data store

3.41
representation
entity included with a request or response (see IETF RFC 2616)

3.42
resolution feed
collection of ATOM entries describing the disposition of proposed changes listed in a
change feed

3.43
reviewer
synonym for integrator (see 4.15)

3.44
service document
XML document that describes the location and capabilities of one or more Collections
grouped into Workspaces

3.45
topic
collection of ATOM entries that satisfy some query predicates

NOTE: this is also referred to as a filtered feed because a topic is generated by querying a base feed and
applying some predicate; for example a topic could consist of all the entries that lie within some defined
boundary

3.46
workspace
named group of collections

4 Conventions

4.1 Abbreviated terms

Some more frequently used abbreviated terms:

API Application Program Interface

AtomPub ATOM Publishing Protocol

CGDI Canadian Geospatial Data Infrastructure

CGI Common Gateway Interface

OGC 15-010r4

10 Copyright © 2016 Open Geospatial Consortium.

COTS Commercial Off The Shelf

CRS Coordinate reference system

DCE Distributed Computing Environment

DCOM Distributed Component Object Model

DCP Distributed Computing Platform

EPSG European Petroleum Survey Group

FES Filter Encoding Specification

GML Geography Markup Language

GSS GeoSynchronization Service

HTTP Hypertext Transfer Protocol

HTTPS Secure Hypertext Transfer Protocol

IDL Interface Definition Language

IETF Internet Engineering Task Force

KVP Keyword-value pairs

MIME Multipurpose Internet Mail Extensions

OGC Open Geospatial Consortium

OWS OGC Web Service

REST Representational State Transfer

SDI Spatial Data Infrastructure

SOAP Simple Object Access Protocol

SQL Structured Query Language

UCR Urban Climate Resilience thread

UML Unified Modelling Language

URI Uniform Resource Identifier

OGC 15-010r4

Copyright © 2016 Open Geospatial Consortium. 11

URL Uniform Resource Locator

URN Uniform Resource Name

VSP Vendor Specific Parameter

WFS Web Feature Service

WNS Web Notification Service

WSDL Web Services Description Language

XML Extensible Markup Language

5 WFS servers

5.1 Introduction

This clause presents a survey of WFS implementations used in the OGC Testbed-11.
Both commercially off the shelf servers as well as open source servers are surveyed.

In addition to surveying support to the minimum requirements of the WFS standard this
clause also looks at support for additional, upcoming and complimentary capabilities.
For example, this clause describes if the server support transactions; if the server supports
the Simple Feature Profile of GML; if the server offers GeoJSON (or any JSON format)
as one of its output formats; if the server offers a RESTful API (even though that API has
not as yet been standardized in the OGC).

5.2 Assessment criteria

The following set of capabilities was reviewed for each server:

 Versions of the WFS standard supported

 Operations supported

o For servers supporting version 2.0 and below, the specific list of
operations is presented.

o For servers supporting version 2.5 and the REST binding, the supported
HTTP methods are listed.

 Available output formats

o Support for JSON and GeoJSON output formats are specifically noted

 Filtering capabilities

OGC 15-010r4

12 Copyright © 2016 Open Geospatial Consortium.

o Spatial operators supported

o Temporal operators supported

o Scalar operators supported

o Logical operators supported

o Additional functions supported

 Number of spatial reference system supported (i.e. can handle a variety of CRS’)

 Schema support

o Support for GML Simple Feature Profile (see OGC 10-100r3) is
specifically noted

 Additional capabilities

o WFS REST binding support

o ATOM support

o XSLT support / Schema translations capability

o Binary data handling / multimedia support

5.3 Survey of WFS servers

5.3.1 List of servers

This clause presents a list of commercially and open source WFS implementations that
participated in the UCR thread of the OGC Testbed-11 and analyses the capabilities of
these servers using the criteria outlined in clause 5.2.

The following tables list the WFS implementations that participated in the UCR thread of
the OGC Testbed-11 and their endpoints.

Table 1 - List of WFS server participating in the UCR thread

Vendor Product Supported WFS Versions

CubeWerx CubeWerx Suite 8.1.1 2.5, 2.0, 1.1.0, 1.0.0

Geomatys Constelation 2.0,

IBM Cloudant RESTful JSON WFS 2.5

OGC 15-010r4

Copyright © 2016 Open Geospatial Consortium. 13

Luciad LuciadFusion 2.0,1.1.0,1.0.0

OSGeo Geoserver 2.7.1.1 2.0, 1.1.0, 1.0.0

Table 2 – List of server endpoints for Testbed-11

Vendor Endpoint

CubeWerx http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0/ows11

Geomatys http://ows11.geomatys.com/constellation/WS/wfs/ows11/2.0.0

IBM/Cloudant http://ogcwfs.mybluemix.net/wfs/2.5

Luciad http://demo.luciad.com:8080/LuciadFusion/wfs?REQUEST=GetCapabil
ities&SERVICE=WFS

GIS-FCU/
OSGeo

internal server

5.3.2 Server capabilities

The following table lists the capabilities of each WFS server that participated in the OGC
Testbed-11 UCR thread. This list was derived from the components page of the UCR
Thread on the project wiki at:

https://portal.opengeospatial.org/wiki/Testbed11/UcrSoftwareComponents

Table 3 – Capabilities review of UCR servers
 CubeWerx Geomatys IBM

Cloudant
Luciad GIS-FCU/

Geoserver

Versions 2.5
2.0
1.1.0
1.0.02

2.0
1.1.0

2.5 2.0
1.1.02

1.0.02

2.0
1.1.0
1.0.0

Operations GetCapabilities
DescribeFeature
Type
GetFeature
ListStoredQueri
es
DescribeStored

GetCapabilities
DescribeFeature
Type
GetFeature
ListStoredQueri
es
DescribeStored

GET
POST
PUT
DELETE

GetCapabilities
DescribeFeature
Type
GetFeature

GetCapabilities
DescribeFeature
Type
GetFeature
ListStoredQueri
es
DescribeStored

OGC 15-010r4

14 Copyright © 2016 Open Geospatial Consortium.

Queries
GetPropertyVal
ue
Transaction
Sync (new of
Testbned-11)

GET
PUT
POST
DELETE

Queries
GetPropertyVal
ue
Transaction
CreateStoredQu
ery
DropStoredQuer
y

GET
POST
PUT
DELETE

Queries
GetPropertyVal
ue
Transaction
CreateStoredQu
ery
DropStoredQuer
y
LockFeature
GetFeatureWith
Lock

GET5
PUT5
POST5
DELETE5

Output
Formats

GML v3.2
GML v3.1.1
GML v2.1.2
GeoJSON
KML
SHAPE
ATOM
RSS
HTML

GML v3.2
GML v3.1.1
GeoJSON

GeoJSON GML v3.2
GML v3.1.1
GML v2.1.2
JSON

GML v3.2
GML v3.1.1
GML v2.1.2
GeoJSON
KML
SHAPE
CSV

Spatial
operators

Disjoint
Equals
Intersects
Touches
Crosses
Contains
Overlaps
BBOX
Within

Disjoint
Equals
DWithin
Beyond
Intersects
Touches
Crosses
Contains
Overlaps
BBOX

BBOX BBOX Disjoint
Equals
DWithin
Beyond
Intersects
Touches
Crosses
Contains
Overlaps
BBOX
Within

Spatial
operands

gml:Envelope
gml:Point
gml:LineString
gml:Polygon
gml:CircleByCe
nterPoint

gml:Envelope
gml:Point
gml:LineString
gml:Polygon"

 gml:Envelope
gml:Point
gml:LineString
gml:Polygon"

gml:Envelope
gml:Point
gml:LineString
gml:Polygon
gml:MultiPoint
gml:MultiLineS
tring
gml:MultiPolyg
on
gml:MultiGeom
etry

OGC 15-010r4

Copyright © 2016 Open Geospatial Consortium. 15

Temporal
Operators

 After
Before
Begins
BegunBy
TContains
During
TEquals
TOverlaps
Meets
OverlappedBy
MetBy
EndedBy

Temporal
Operands

 gml:TimeInstant
gml:TimePeriod

Scalar
operators

PropertyIsBetw
een
PropertyIsEqual
To
PropertyIsGreat
erThan
PropertyIsGreat
erThanOrEqual
To
PropertyIsLessT
han
PropertyIsLessT
hanOrEqualTo
PropertyIsLike
PropertyIsNotE
qualTo
PropertyIsNull

PropertyIsBetw
een
PropertyIsEqual
To
PropertyIsGreat
erThan
PropertyIsGreat
erThanOrEqual
To
PropertyIsLessT
han
PropertyIsLessT
hanOrEqualTo
PropertyIsLike
PropertyIsNotE
qualTo
PropertyIsNull

 LessThan3
GreaterThan
LessThanEqual
To
GreaterThanEqu
alTo
EqualTo
NotEqualTo
Like
Between
NullCheck

PropertyIsBetw
een
PropertyIsEqual
To
PropertyIsGreat
erThan
PropertyIsGreat
erThanOrEqual
To
PropertyIsLessT
han
PropertyIsLessT
hanOrEqualTo
PropertyIsLike
PropertyIsNotE
qualTo
PropertyIsNull
PropertyIsNil

Logical And, Or, Not And, Or, Not And, Or, Not And, Or, Not

Available
Stored
Queries

GetFeatureById
NearestNeighbo
urs

GetFeatureById
GetFeatureByT
ype

 GetFeatureById

Number of
CRSs

>10 <10 <10 <10 <10

Support for
GML SF

Yes No No Yes No

REST API Yes Yes Yes No Yes5

GeoJSON Yes Yes Yes Perhaps4 Yes

ATOM Yes No No No No

OGC 15-010r4

16 Copyright © 2016 Open Geospatial Consortium.

XSLT
vendor
extension1

Yes No No No No

Note 1: This extension was included since it was anticipated that in the schema translation
component of the Transactions Scenario in the UCR thread, XSLT would be used to
transform the standard GML output in one schema from one server to conform to the
schema of another server.

Note 2: These versions of the service have passed the OGC compliance test suite and a
certificate of compliance has been issued by OGC.

Note 3: Although the server is claiming to be a WFS 2.0, these operator names are from
WFS 1.1.0. The capabilities document actually validates with Xerces but that is because
the schemaLocation attribute is referencing the WFS 1.1.0 schemas rather than the 2.0
schemas.

Note 4: Despite best efforts, the editor was unable to coax JSON out of the server and
received only a blank response document. The other XML-based output formats seemed
to work fine.

Note 5: Geoserver support a REST API but is it not base on the REST binding of WFS
2.5

5.3.3 Sanity checks

In order to access the status of each server participating in the UCR Thread, the following
series of sanity checks were performed on each service:

1. Retrieve the server’s capabilities document;
2. Retrieve the server’s application schema;
3. Retrieve 1 feature from a feature type offered by the server without any filter
4. Retrieve 1 feature from the feature type used in (3) but include a bbox filter that

contains the feature;
5. Create a feature of one of the feature types offered by the server;
6. Do a GetfeatureById to retrieve the feature created in (5) and verify that the

feature was created correctly;
7. Update the feature created in 5 and change the value of one of its properties;
8. Do a GetfeatureById to retrieve the feature updated in (6) and verify that the

properties’ value was updated correctly;
9. Delete the feature created in step 5; and
10. Do a GetFeatureById on the feature created in step 5.

Tests 1 thru 4 were executed on all the servers and the results are presented in Table 3a.

OGC 15-010r4

Copyright © 2016 Open Geospatial Consortium. 17

Table 3a – Results of Sanity Checks 1 through 4

Vendor TEST URL

CubeWerx 1 http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.
0/ows11

2 http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.
0/ows11/schema

3 http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.
0/ows11/wwAccess?count=1

4 http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.
0/ows11/wwAccess?count=1&bbox=-44,-43,172,173

Geomatys 1 http://ows11.geomatys.com/constellation/WS/wfs/ows11/2.0.
0

2 http://ows11.geomatys.com/constellation/WS/wfs/ows11/2.0.
0/schema

3 http://ows11.geomatys.com/constellation/WS/wfs/ows11/2.0.
0/GMLJP2ReferenceableGridCoverage?count=1

4 http://ows11.geomatys.com/constellation/WS/wfs/ows11/2.0.
0/GMLJP2ReferenceableGridCoverage?count=1&bbox=40,4
1,-4,-3

IBM
Cloudant

1 http://ogcwfs.mybluemix.net/wfs/2.5

2 http://ogcwfs.mybluemix.net/wfs/2.5/schema

3 http://ogcwfs.mybluemix.net/wfs/2.5/highway?count=1

4 http://ogcwfs.mybluemix.net/wfs/2.5/highway?count=1&BB
OX=-123,-122,37,38

Luciad 1 http://demo.luciad.com:8080/LuciadFusion/wfs?REQUEST=
GetCapabilities&SERVICE=WFS

2 http://demo.luciad.com:8080/LuciadFusion/wfs?REQUEST=
DescribeFeatureType&SERVICE=WFS&version=2.0.0

3 http://demo.luciad.com:8080/LuciadFusion/wfs?service=WFS
&version=2.0.0&request=GetFeature&&typeNames=buoya13
16240__nav__buoybcnpType&count=1

OGC 15-010r4

18 Copyright © 2016 Open Geospatial Consortium.

4 http://demo.luciad.com:8080/LuciadFusion/wfs?service=WFS
&version=2.0.0&request=GetFeature&&typeNames=buoya13
16240__nav__buoybcnpType&count=100&bbox=-121.0,-
120.0,36.0,37.0

NOTES on fails (red) or partial success (yellow)

Geomatys-3 Appending the feature name from the capabilities document fails but
appending the feature title from the capabilities document works.

IBM-2 Does not recognize the /schema path

IBM-4 Using the keyword “bbox” fails. Using the keyword “BBOX” works.

Luciad-3 The request actually produced good results. However, the server
advertises that it supports version 2.0, the request is requesting version
2.0 but the response is a 1.1.0 response.

Luciad-4 The request failed with a Tomcat stack trace.

Editor’s Note:

Only the CubeWerx server and the IBM server were tested for Transactions. The
CubeWerx server was tested with transactions to create features that included a
multimedia property such as a photo using a mobile client. The IBM server was tested
during the enterprise sync experiment since it was ingesting changes from the CubeWerx
server and syncing its own WFS with those changes. The details of both experiments can
be found in document OGC 15-011, Multiple WFS-T interoperability.

5.4 Implementation guidance

5.4.1 Introduction

This clause offers recommendations to aid implementers of WFS servers. The
recommendations include detailed advice to avoid discrepancies between
implementations of these standards.

5.4.2 Recommendations

5.4.2.1 Pass the OGC Compliance test suite

All servers should attempt to pass the OGC Compliance test suite for WFS – even if they
do not intend to pay the fee to obtain a compliance certificate. Passing the conformance

OGC 15-010r4

Copyright © 2016 Open Geospatial Consortium. 19

test suite will ensure that a certain level of interoperability has been achieved and will
also catch a number of the other discrepancies described in this clause. Further details
about OGC compliance can be found here: http://www.opengeospatial.org/compliance.

5.4.2.2 Read the capabilities document

A very common impediment to WFS interoperability is assuming something about the
server without actually reading its capabilities document. Common assumptions include:
which CRS’s are supported; what filters are available; what output formats are supported;
etc. Clients should always commence their interaction with a WFS by reading and
parsing the capabilities document to understand the capabilities of the server. The job of
matching client and server capabilities is aided in the WFS 2.0 standard (see OGC 09-
025r1) with the inclusion, in the capabilities document, of explicit statements that declare
which conformance classes from the WFS standard a server implements.

5.4.2.3 Truth in advertising

The first step that a client must take in commencing an interaction with a WFS is to read
its capabilities document in order to determine the server’s capabilities. For this reason,
it is critical that a server’s capabilities document accurately reflects the actual capabilities
of the server. Implementers should not simply copy the examples in the specification or
from some other server but should carefully tailor the capabilities document to their
server implementation.

Specifically, implementers should be mindful of the following when generating the
server’s capabilities document

 Accurately list the supported versions of the WFS standard in the service
identification section.

 Ensure that the end point for each operation is accurately specified in the
operations metadata section; otherwise clients will be using the wrong address to
access your server.

 Pay particular attention that the conformance declarations in the operations
metadata section are correctly listed. This is critically important because clients
making requests to your server will generate their requests in large part based on
the information provided here. For example, if the capabilities document of a
server advertises that it supports spatial joins then the client will assume that
queries to that server may include spatial join predicates.

 If any capacity constraints, such as CountDefault, are included in the operations
metadata section ensure that accurate values are specified. It is not nice for your
server to advertise a count default of 10 but then return all the features is result set
– especially if the result set contains thousands of features.

 Ensure that the DefaultCRS and OtherCRS values listed for each feature type in
the feature type list accurately reflect the actual storage CRS of your data and also
accurately list the CRS’ into which your server can project geographic data. A
common error is for servers to list an inaccurate default CRS and a large number
of other CRS’ and yet only return geometric values in EPSG 4326 – regardless of

OGC 15-010r4

20 Copyright © 2016 Open Geospatial Consortium.

what the client requests specifies based on the information in your server’s
capabilities document.

 If at all possible, include WGS84BoundingBox values that closely bound the data
of each feature type that your server offers. The multiplicity of the
ows:WGS84BoundingBox element is unbounded so multiple bounding boxes
may be used to accurately locate your feature data. Specifying a single bounding
box that covers the entire surface of the Earth it typically useless information. If
all that data of a particular feature type is concentrated in New Zealand, for
example, then a tighter bounding box around that country would be much more
useful not only for WFS clients but also for discovery via catalogues harvesting
your server.

 It is critical that the filter capabilities section accurately lists the filter
conformance classes, operators and operands that your server actually
implements. This seems obvious and yet many servers specify that they support
conformance classes and operators that they do not in fact support. Inaccurately
advertising supported filter functions is a particularly common occurrence. For
example, many WFS server are built on top of an RDBM such as Oracle. Such
server typically list support for functions such as min(), max(), etc. in the filter
capabilities section because the underlying database supports those function.
However, we a WFS request that uses those function is sent to the server it often
fails because the service is incorrectly translating the WFS request to a SQL
request to the underlying RDBMS.

5.4.2.4 Rich metadata

Server implementations should endeavor to provide as much metadata about the service
as possible in the capabilities document. The ServiceIdentification section should list all
supported version; not just the one being requested. The ServiceProvider section should
be as complete as possible. Liberal use should be made of the ows:Parameter and
ows:Constraint elements in the ows:OperationsMetadata section to convey domain
information such as the list of supported output formats. The more metadata the server
can provide the better the interaction with the client will be.

Rich metadata in the capabilities document also makes the service more discoverable
when harvested by a catalogue. Rich metadata in the capabilities document equates to
more ways to find the service.

For good examples of what not to do, review the capabilities documents of the servers
that participated in the Testbed (see Table 2).

5.4.2.5 Canonical GML versions

Ensure that the correct version of GML is implemented for the advertised WFS version.
If the server supports multiple versions of the standard, then it will have to support
multiple versions of GML since each version of the standard defines a canonical version

OGC 15-010r4

Copyright © 2016 Open Geospatial Consortium. 21

of GML. The following table lists the canonical GML version based on the version of
the WFS standard:

Table 4 – Canonical GML versions

WFS Standard Version Canonical GML Standard Version

1.0.0 2.1.2

1.1.0 3.1.1

2.0 3.2

2.5 3.2

5.4.2.6 Valid XML

GML is an XML vocabulary and as such is subject to all the rules of XML. It is critical
that a server implementation generate correct and valid XML response documents in
every instance where it generates XML. More specifically, the response to a GetFeature
request must validate against the application schema the server offers; this is obtained
from the server using the DescribeFeatureType operation.

An example of a common interoperability problem results from the fact that in XML
element and attribute names are case sensitive. If the WFS’s underlying data source
supports case insensitive names but the schema it advertises uses case sensitive names
then the server must do the necessary work to map the case insensitive names from the
source data to case sensitive names in the response document.

5.4.2.7 Correct CRS

Servers must ensure that geometries in response documents are labelled with the correct
CRS. Interoperability is severely hampered when response data is incorrectly labeled; it
does not help a client when a server generates geometries in UTM-5 and labels the output
as WFS84.

If no CRS labels are used, then geometries should be generated in the default CRS
advertised in the server’s capabilities document for the feature type being queried.

5.4.2.8 GML simple features profie

Although not a requirement of the WFS standard, server implementers should consider
supporting the GML simple features profile (see OGC 10-100r3) as one of the output
formats for a DescribeFeatureType request. See Clause 5.4.3 for further discussion on
this topic.

OGC 15-010r4

22 Copyright © 2016 Open Geospatial Consortium.

The GML simple features profile defines three conformance levels, each of increasing
complexity: level 0, level 1, and level 2. A best interoperability practice is to provide, if
possible, multiple schema representations of the feature types that a server offers starting
with GML simple feature profile, level 0. This can be accomplished by either offering
multiple representations of the same feature types with different names from a single
WFS end point (e.g. INWATERA_1M_LEVEL0, INWATERA_1M_LEVEL1 and
INWATERA_1M using full, unrestricted, GML) or by providing different end points
offering the same information but encoded using schemas of different complexities. To
illustrate the point, consider the following sample end points:

 http://www.acme.com/gmlsf/level0/wfs
 http://www.acme.com/gmlsf/level1/wfs
 http://www.acme.com/wfs

In each case these servers offer the same list of feature types. The “…gmlsf/level0/…”
server offers these feature types encoded using a schema that is compliant with GMLSF
level 0. The “…gmlsf/level1/…” server offers these feature types encoded using a
schema that is compliant with GMLSF level 1. Finally, the “…/wfs” server offer the
features type encoded using an unrestricted GML application schema. Thus clients of
various capabilities can usefully access your feature types. NOTE: It should be noted that
the mapping feature types using restricted schema profiles such as GMLSF L0, L1 or L2
may result in a lossy mapping when compared to feature type encoded using an
unrestricted GML application schema.

5.4.2.9 Implement only what you need

Be mindful of the fact that servers are not obliged to implement the entire WFS standard
so a careful analysis of the requirements or goals of the server implementation will save a
lot of un-necessary work.

5.4.3 WFS and GML

This section discussed the relationship between WFS and GML and provides some
implementation guidance concerning supported output formats.

Although the WFS standard mandates the use GML, it does not restrict the availability of
other output formats. As can be seen in Table 1, server implementations typically offer
more than just GML as an output format.

The reason for mandating GML is to foster interoperability by providing some minimal
level of capability. However, GML is a large and complex specification and may not be
the best choice as a baseline for supporting interoperability – although at the time WFS
was being developed it was the only feature encoding format available.

Over the years several attempts have been made to simplify the canonical output format
that WFSs must support. The most notable of these efforts include:

OGC 15-010r4

Copyright © 2016 Open Geospatial Consortium. 23

a. Basic XML Feature Schema (BXFS) (see OGC 03-003r3) and
b. GML simple features profile (see OGC 10-100r3).

In the end, the GML simple feature profile (GMLSF) (see OGC 10-100r3) was adopted
as an OGC Standard. It defines a very restricted subset of GML and goes so far as to
proscribe exactly how application schemas should be encoded in GML (i.e., in a
template-like fashion). The result is application schemas that can be readily parsed by
clients thus making the interpretation of the output generated by a WFS that much easier.
An additional benefit of GMLSF is the two independent vendors, implementing the same
database as a GMLSF application schema should end up with similar if not semantically
and syntactically identical schemas documents.

Although GMLSF does not offer the full range of GML capabilities it does define several
levels of conformance that cover a wide range of requirements.

Thus, it is strongly recommended that server implementations support the GML simple
features profile. This satisfies the WFS Standard’s requirement for supporting GML but
restricts the vocabulary to a manageable subset.

5.4.4 WFS and not GML

Although GML is the mandated canonical feature representation, the OGC Testbed-11
has shown that the WFS API can function quite successfully without any GML at all –
this being especially true for the REST binding which is not strongly coupled to the
specific feature representation. In the UCR thread, JSON and specifically GeoJSON,
were used as the feature encoding format for the enterprise-to-enterprise synchronization
scenario (see OGC 15-011) which involved two WFSs acting as clients for each other.

The implication for implementers is that they can implement their server to support an
outputFormat suitable to their requirement without have to also incur the burden of
implementing GML support. Of course, this will result in a non-compliant, but still
usable WFS. The IBM-Cloudant WFS is just such an example; that server implements
the WFS REST API and uses GeoJSON as its only feature encoding.

The use of GeoJSON in the enterprise-to-enterprise use case also signals that future
versions of the WFS standard may decouple GML from the specification. So, while
GML is currently required, future versions of the WFS specification may allow clients
and servers to negotiate a mutually agreeable output format - in much the same manner as
described in the WMS Standard (see OGC 06-042) – and that output format will not need
to be GML. NOTE: A change request was posted to the OGC portal against the WFS
standard requesting such a change but the request was tabled because it was posted late in
the process and also involved a large number of complex changes in addition to the large
number of complex changes already implemented in the standard to reach version 2.5.

OGC 15-010r4

24 Copyright © 2016 Open Geospatial Consortium.

5.4.5 WFS interoperability at the schema level

5.4.5.1 Introduction

This clause discusses the various options available for achieving interoperability at the
schema level between clients and WFS servers. Schema interoperability in this context
means that a client is able to read a server’s schema and is able to syntactically interpret
that schema sufficiently well to be able to formulate queries and perhaps transactions
against that server.

No particular approach is advocated here, rather the various options are presented for
achieving schema interoperability.

5.4.5.2 Community schemas

The technically simplest way to achieve WFS interoperability at the schema level is to
have participating servers implement the identical application schema. While this might
be feasible in specialized communities of interest such as hydrography or AIXM, in the
real world this is general not the case. In such an environment clients are typically
custom built to understand

5.4.5.3 Simple feature profile

The next level of WFS interoperability at the schemas level is to ensure that participating
servers implement the GML simple features profile. The GMLSF specification is a
restricted profile of GML that proscribes how spatial and non-spatial properties of
features are encoded in application schemas offered by a WFS.

Using a GMLSF compliant schema allows for the possibility of implementing a dynamic
client that can parse and syntactically interpret a previously unknown schema. Injecting
semantic information into such an environment may also allow the client to perform
semantic mapping between dissimilar schemas.

5.4.5.4 Rich client

Achieving schema interoperability with a rich client is similar to the approach taken in
5.4.5.3 except that the schema is an unrestricted GML application schema and the client
has the ability to parse and interpret the full breadth of GML. Such a client would be
exceedingly difficult to implement.

Editor’s Note: I am not aware of any client that can generically and robustly handle a
GML schema that includes elements from the full scope of GML. I only include this
clause here for completeness.

5.4.5.5 Schema translation agent

The final level of WFS interoperability at the schema level is achieved by having some
intermediate client or agent act as a schema translation server (see 7.3) that can take the

OGC 15-010r4

Copyright © 2016 Open Geospatial Consortium. 25

output from one WFS and map it to the schema of another WFS. Such an agent could be
a general processing module that incorporates both syntactic and semantic elements in its
translation. Another benefit of this approach is that the WFS clients and servers
participating in an interaction would not need to be modified; any impedance mismatch
would be resolved by the schema translation agent.

6 WFS clients

6.1 Introduction

This clause looks at available WFS clients with particular emphasis on WFS-T clients.
The list of clients surveyed includes standalone commercial clients, open source clients
and web-based frameworks that can be used to build browser-based WFS-T clients.

The intent was to survey each client for their specific capabilities however this was not
possible due to limited time and resources. As such, the information provided in this
clause can be considered a starting point for further investigation.

Coding examples are provided for some of the framework clients in order to try and
convey the effort required to build web-based WFS clients (see Annex B).

6.2 Available WFS clients

Table 5 – COTS WFS Clients

Vendor Produce WFS-T Web site

ESRI ArcGIS N http://resources.arcgis.com/en/help/main/10.2/in
dex.html#//00370000000p000000

Bentley Bentley Map N http://www.bentley.com/en-
US/Products/Bentley+Map/

Carbon Gaia Y http://www.thecarbonproject.com/Products

Mapinfo Mapinfo Pro Y http://www.mapinfo.com/product/mapinfo-
professional/

Safe
Software

FME Y http://www.safe.com

Table 6 – Open Source WFS Clients

Product WFS_T Web site

QGIS Y http://qgis.org/en/site/

OGC 15-010r4

26 Copyright © 2016 Open Geospatial Consortium.

uDig Y http://udig.refractions.net/

gvSig Y http://gvSig.org

Table 7 – Open Source Web Frameworks that include WFS support

Product WFS-T Web site Tutorial

GeoExt Y http://geoext.org/index.html http://workshops.boundles
sgeo.com/geoext/wfs/wfst.
html

Geotools Y http://www.geotools.org/ http://blogs.law.harvard.e
du/jreyes/2007/08/03/geot
ools-wfs-t-update-request/

Leaflet Y http://leafletjs.com http://blog.georepublic.inf
o/2012/leaflet-example-
with-wfs-t/

Openlayers Y http://openlayers.org http://dev.openlayers.org/r
eleases/OpenLayers-
2.8/examples/wfs-t.html

6.3 Light testing

Some light tests we performed on the some of the components listed in Tables 5, 6, and 7.
All the tests were performed using the CubeWerx server and the manhole cover feature
type wwAccess.

 The testing consisted of:

a. Connecting to the target WFS and seeing if the list of feature types offered by the
client appeared in the component’s catalogue;

b. Select a layer and render a small number of features;
c. Attempt to add a new feature;
d. Modify that feature; and
e. Delete the added feature to return the server to its original state.

The following table summarizes the results of those tests:

OGC 15-010r4

Copyright © 2016 Open Geospatial Consortium. 27

Table 8 – Light client testing results

 Test (a) Test (b) Test (c) Test (d) Test (e)

Gaia Pass Pass Pass Pass Pass

QGIS Pass Pass Pass Pass Pass

uDIG Pass Pass Fail Fail Fail

7 Complimentary services or capabilities

7.1 Introduction

The clause reviews the capabilities of tools and standards such as GeoSynchronization
Service (GSS) and others that provide additional engineering and workflow aspects
needed to be addressed such as: verification and notification, data and access security,
exception handling, and system hardening before being robustly implementable

7.2 Crowdsourcing (GeoSynchronization service)

7.2.1 Introduction

During the OGC Testbed-11 the following synchronization uses cases were defined and
tested.

1. Geopackage-to-geopackage synchronization between two mobile clients that
encounter each other in the field. (see OGC 15-068r2) .

2. Geopackage-to-WFS synchronization whereby a mobile client arrives at a control
node and synchronizes its contents with an enterprise WFS (see OGC 15-068r2).

3. WFS-to-WFS at the enterprise level where a source WFS synchronizes with a
target WFS (see OGC 15-011).

This clause describes how OGC’s Geosynchronization service (GSS) can be used to
mediate the synchronization workflows in use cases 2 and 3.

The GeoSynchronization Service standard (see OGC 10-069r3) (GSS) was developed
within the OGC over several test beds previous to Testbed-11.

The purpose of the GSS is to support crowdsourced collection of data for OGC data
services including WFS. The GSS is somewhat analogous to Open Street Maps but built
using OGC technologies. A GSS sits between the crowd and a WFS mediating changes
to that data in that server; in other words, members of the crowd do not have direct
transactional access to the WFS and their changes must flow through the GSS for
validation before being applied to the data.

OGC 15-010r4

28 Copyright © 2016 Open Geospatial Consortium.

7.2.2 Characteristics of a GSS

The main features of a GSS are:

 The standard assumes that some identity management and a roll based access
control system is implemented by the GSS.

o This means that members of the crowd must be registered as users of the
GSS.

o The GSS assumes that the following roles are defined.

§ Data Publisher: a member of the crowd that can log into the GSS
and propose changes to be made to a source WFS.

§ Reviewer: a system user that has the authority to review proposed
changes and decide on their disposition.

 Supports crowdsourcing with verification.

o This means that the crowd can propose changes to a source WFS but those
changes are not applied to the server until they have been validated.

o The validation process can be a manual or automated process.

§ In either case the entity performing the validation must be assigned
the role of “Reviewer.”

o The validation process can also be NULL meaning that all changes are
applied directly to the server.

o The validation process is subject to identity and access control rules
meaning, for example, that some uses may be privileged and their changes
are accepted unverified while others members of the crowd go through the
formal validation process.

 Supports push and pull notification of events via a subscription sub-system.

o Events include the creations of a proposed change, the disposition of a
proposed change (accepted or rejected), and application of an accepted
change to the source WFS.

o Subscriptions can be created on any of the base feeds (CHANGE,
RESOLUTION, REPLICATION) and any topic created on those feeds.

o When a subscription is created a handler is specified to indicate how the
notification is to be delivered (e.g. email, SMS, etc.).

OGC 15-010r4

Copyright © 2016 Open Geospatial Consortium. 29

 Supports synchronization of a source WFS with one or more target WFSs.

o The subscription sub-system includes a special event notification handler
named “sync” which triggers synchronization between a source and target
WFSs.

 Provides a mechanism whereby schema translation can be applied between the
source WFS and the target WFSs during synchronization.

7.2.3 GSS components

7.2.3.1 Introduction

Figure 1 illustrates the components of a Geosynchronization service. A GSS is composed
of a set of ATOM feeds, which are used to maintain the information the service uses to
manage change workflows, and a service API that defines the operations of the service.

7.2.3.2 The feeds

The ATOM feeds are labeled the CHANGE feed, the RESOLUTION feed and the
REPLICATION feed.

The CHANGE feed is where proposed changes are tracked. When a proposed change is
created, it is stored in the change feed.

The RESOLUTION feed is where the disposition of proposed changes (i.e. accepted or
rejected) is stored.

The REPLICATION feed is used to track accepted changes. Each change that is
accepted and applied to the source WFS that the GSS is managing is stored in the
REPLICATION feed.

OGC 15-010r4

30 Copyright © 2016 Open Geospatial Consortium.

Figure 1 – Components of a GSS

The service interface is defined in Table 9. It lists the conformance classes and
operations that the GSS standard defines.

Table 9 – GSS Operations

Conformance Class API Operation

Core Discovery GetCapabilities1

Transaction Insert, Update, Delete

Query GetEntries

Topic Management ListTopics

Extensions: Topics Topic Management CreateTopic

RemoveTopic

Extension: Review Change Management AcceptChange

OGC 15-010r4

Copyright © 2016 Open Geospatial Consortium. 31

RejectChange

ReviewChanges

Extension: Active
Notification

ActiveNotification Subscribe

ListSubscription

PauseSubscription

ResumeSubscription

CancelSubscription

Extension: Active
Synchronization

Synchronization2 Subscribe

NOTE 1: This class includes the GetCapabilities operation that generates an OGC
capabilities document, the AtomPub service document accessible via a published URL
and the OpenSearch description document also accessible via a published URL.

NOTE 2: The active synchronization class is an implementation of the Subscribe
operation, from the Active Notification class, with support for the "sync" delivery
method.

7.2.3.3 Core class

The Core class defines the basic operations that every GSS must implement. These
operations provide service metadata about the GSS as well as define the basic operations
required to query, input, update and delete entries from the various feeds.

The GSS API supports a full predicate language allowing the feeds to be queried using
complex predicates including spatial and temporal operators. Topics are predefined
stored queries on a feed and within the system, topics behave just like read-only feeds.
The purpose of topics is the have persistent predefined views of a feed for the purpose of
notification. Since topics are considered feeds, an interested party can subscribe to a
topic and be notified whenever a new event satisfies the predicates used to define the
topic. For example, consider an interested party that lives in the province of Quebec in
Canada. Such a party could, using the boundary of the province of Quebec, define a
topic with the title “Quebec Change Requests.”

7.2.3.4 Topics class

The Core conformance class supports the ability to read predefined system topics via the
GetEntires operation. The operations in the Topics extension class add the ability to
create and remove topics from the system subject the access control rules.

OGC 15-010r4

32 Copyright © 2016 Open Geospatial Consortium.

7.2.3.5 Review class

The Review class defines the operations that a reviewer needs in order to determine
which new changes have been added to the system – so that they can be validated -- and
then accept or reject those changes.

7.2.3.6 Active Notification class

Because the GSS uses ATOM feeds as its basic data structure, passive notification is
supported right out of the box. Any user with a feed reader can subscribe to any of the
feeds or topics the GSS offers and receive notifications whenever changes in the feeds or
topics occur. The Active Notification class, however, defines an active subscription and
notification subsystem within the GSS that pushes notifications out to subscribers using
some delivery protocol (e.g. mailto) whenever events of interest occur. Using the Quebec
example from clause 7.2.3.3, the user could subscribe to that topic and receive email
notification whenever a change occurs within the boundary of the province of Quebec.

7.2.3.7 Active Synchronization class

Finally, the Active Synchronization class supports the synchronization of a source WFS
with one or more subscribed target WFSs. As described in the previous paragraph,
interested parties can subscribe to feeds or topics and request active notification delivery
via some deliver method such as email. Other delivery methods might include SMS,
Twitter, etc. Active Synchronization is simply another delivery method but it is special
because the delivery mechanism used is the wfs:Transaction operation.

Active Synchronization is triggered when an interested party subscribes to the
REPLICATION feed using the “sync” delivery method (as opposed, for example, to the
mailto protocol). When the GSS is ready to notify a user who has subscribed with the
“sync” delivery protocol, the GSS behaves like a WFS client and posts the
wfs:Transaction contained in the event to the target WFS specified when the subscription
was initially created. In this way, the GSS can synchronize one or more target WFSs
with a source WFS.

User case 3 from the OGC Testbed-11, described in clause 7.2.1 can be implemented
using the GSS’s active synchronization capabilities.

Editor’s Note: Although the GSS could have been used to support enterprise-to-
enterprise synchronization a different approach was implemented in tested in Testbed-11
based on the replication protocol defined at http://replication.io. The details of this test
can be found in the document, OGC 15-011 Reference Case Study of Multiple WFS-T
Interoperability ER.

OGC 15-010r4

Copyright © 2016 Open Geospatial Consortium. 33

7.2.4 Crowdsourcing workflow

Figure 2 illustrates the entire change management and synchronization workflow of a
GSS.

Figure 2 – GSS workflow

The flow of information through the GSS proceeds as follows.

1. The “crowd”, on the left side of the figure, proposes changes to the data in the
Source WFS-T which are posted to the CHANGEFEED.

2. A user with the role of the “reviewer” would be notified of the new change
proposal in the CHANGEFEED and using a GSS client would review and
validate the proposed change.
In this discussion it is assumed that a manual validation process occurs but this
could just also well be an automated process.
Once the proposed change has been reviewed and validate a decision is made
concerning its disposition.

OGC 15-010r4

34 Copyright © 2016 Open Geospatial Consortium.

3. Whatever that decision is: accept or reject, an entry is posted into the
RESOLUTIONFEED. This allows the member of the crowd who posted the
change to determine what happened with it. If it was rejected, the entry in the
RESOLUTIONFEED can include a description of why it was rejected.

4. Assuming that in Step 2 the proposed change was accepted, the GSS would,
acting as a WFS-T client, apply the change to the source WFS-T via the
wfs:Transaction operation.

5. After the change has been applied to the source WFS-T, the transaction used to
apply the change is posted to the REPLICATIONFEED. This allows interested
parties to see that the change was applied and either actively or passively fetch the
change and apply it to some target WFS-T thus keeping the two systems
synchronized.

6. Assuming that one or more target WFS-T system have been subscribed to the
GSS for active synchronization, the GSS would – once again acting as a WFS-T
client – post the proposed change (already applied to the source WFS-T) to one or
more subscribed target WFS-T systems. Figure 2 shows an XML Style Sheet at
this point to illustrate that, if necessary, the transaction being posted to the target
WFS-T servers can be modified to accommodate schema differences between the
source and the target WFSs. In this case, the GSS is acting as a schema
translation agent as described in clause 7.3.

7.3 Schema translation

7.3.1 Introduction

As discussed in 5.4.5, one approach to achieving WFS interoperability at the schema
level is by means of an intermediate agent that can translate instance documents from the
schema of a source WFS into a WFS transactions that can be executed on a target WFS
with a different target schema. Figure 3 below illustrates this situation.

It is anticipated that the provisioning of the agent is flexible. The agent can be a stand-
along component, part of a smart WFS client or even built into a WFS client.

7.3.2 Schema translation work flow

Figure 3 illustrates a schema translation work flow. Schema translation commences
when a request to be executed on a source WFS, WFS 1, is passed to the schema
translation agent with the intention of synchronizing the results with a second target
WFS, WFS 2, that has a different schema. The workflow proceeds as follows.

1. The schema translation agent fetches the source schema from WFS 1 and notes its
namespace.

2. The schema translation agent fetches the target schema from WFS 2 and notes its
namespace.

OGC 15-010r4

Copyright © 2016 Open Geospatial Consortium. 35

3. The schema translation agent then accesses the schema registry to see if a
translation script (e.g. XSLT) has been registered for the source and target
schemas.

4. The schema translation agent then executes the WFS request on the source WFS,
WFS1, and fetches the results. The features in the response are translated into the
target schema using the script obtained from the registry.

5. A wfs:Transaction is created using the translated features and executed on the
target server, WFS2.

Figure 3 – Schema translation work flow

This description of the workflow assumes a non-REST WFS using GML as the feature
encoding. However, the same flow would be possible with GeoJSON and REST –
although without an XSLT equivalent more programming would be required in the
schema translation agent to actually transform the source features into target features.

7.3.3 Schema registry

In the UCR thread a schema registry service was deployed based on the CSW-ebRIM
1.0.1 profile, at this endpoint: http://demo1.wrs.galdosinc.com/ows11/. The endpoint
implemented the following capabilities:

 Schema registry

OGC 15-010r4

36 Copyright © 2016 Open Geospatial Consortium.

 Schema publishing
 Notifications of schema updates

Several extensions to the core information model were required to provide this
functionality. A Schema object was defined as a new type of ExtrinsicObject
(Fig. 4). The actual schema resource—that conforms to some specified schema
language—is associated with the Schema object as a repository item. A Schema object
belongs to a SchemaPackage that contains all schemas that reside in the same target
namespace.

As an additional, support for registering schema mapping resources that may be used to
transform instances of the source schema to instances of the target schema using a script
(Fig. 5). A SchemaMapping is a type of Association (link) that relates the source and
target schemas.

A mapping may be implemented by any number of Script resources (a type of
ExtrinsicObject) that are written in some scripting language. The “scriptLanguage” slot
identifies the scripting language. For example, XSLT is often used to transform XML
documents; in this case the scripting language is denoted by the URI
“http://www.w3.org/1999/XSL/Transform.”

Predefined (stored) queries may be used to provide a simple means of querying and
accessing registry content. We defined and implemented several of these as described in
Table 5.

A pre-release version of a browser-based registry client application currently under
development was also deployed for OGC Testbed-11. The client presents a graphical
interface for the convenience of human users who wish to browse the registry; it is
implemented using HTML5 and JavaScript, and should work in most current browsers.

OGC 15-010r4

Copyright © 2016 Open Geospatial Consortium. 37

Figure 4 -- Model extensions for schema management

Figure 5 -- Schema mapping resources in the registry

OGC 15-010r4

38 Copyright © 2016 Open Geospatial Consortium.

Table 5 – Predefined registry queries

Stored query name Description Parameters

Find Source Schemas Returns a list of Schema objects which are
sourceObjects in a SchemaMapping
Association

None

Find Target Schemas Returns a list of Schema objects which are
targetObjects in a SchemaMapping Association

None

Find Schema Mappings Returns list of SchemaMapping Association
objects

None

Find Schema Mappings by
Script Type

Returns list of SchemaMapping Association
objects for the specified Script type

 scriptLanguage
(required)

7.4 Data and access security

7.4.1 Introduction

The work done on security and access control in the OGC Testbed-11 are describe in
document OGC 15-022, “Testbed 11 - Implementing Common Security Across the OGC
Suite of Service Standards ER”

This clause shall describe some of the editor’s thoughts concerning security and access
control in relation to the WFS. It is anticipated that aspects of such as access control
framework would be layered on top of a WFS allowing fine-grained operation and data
security and incorporate rules based on spatial, temporal and non-spatial predicates.

7.4.2 Requirments

The framework should support the following requirements:

 Services can be configured to allow fine-grained access to operations and/or
content to users based on the following types of credentials:

o IP address

o HTTP Basic Authentication

o Vendor-specific authentication mechanism

 The security model should be based on an authentication server that has the
following properties.

OGC 15-010r4

Copyright © 2016 Open Geospatial Consortium. 39

o It is secure. Credentials cannot be spoofed or manipulated. To accomplish
this, a PGP public-key encryption mechanism may be employed.
Credentials can only be authenticated and served by the Authentication
Server, and all servers involved can verify the authenticity of a set of
credentials by successfully decrypting them with the public key of a
known (and trusted) Authentication Server. Furthermore, as long as all
connection endpoints are HTTPS, malicious third parties cannot gain
access to credentials in transit.

o It is flexible. It is compatible with the various standard distributed-
application architectures, including "thin" browser-based clients, hybrid
server-side web applications, and "thick" desktop application. It does this
by communicating the credentials via an HTTP cookie and documenting
how servers and desktop applications should intercept, interpret and
propagate this cookie. It is also adaptable to various backend
authentication mechanisms.

o It is role-based. In addition to indicating a username (i.e., a specific
individual), a set of credentials can also indicate one or more project-
defined roles. The access-control rules for a set of services can then be
formulated based on these roles, providing a much more natural and
flexible mechanism for access control.

o It is cascadable. In a service-chaining scenario (where, for example, a Web
Map Server gets its data from a Web Feature Server), credentials can be
passed down from service to service (as long as they all have the same
second-level domain name) so that all entities along the chain are aware of
the user's credentials and can control access at each level accordingly.

o It is single sign-on. A user that has logged on to (i.e., received
authenticated credentials from) an Authentication Server within a
particular domain can then access any server within that domain without
having to log in again.

o It is simple. By employing the standard HTTP cookie mechanism and
standard public-key encryption technology, the credentials mechanism is
easy to understand, implement and configure.

o It is efficient. In most situations, once the user has logged in, the various
entities never need to contact the authentication server. Validation of
credentials is achieved solely by successfully decrypting the credentials
cookie with the authentication server's public key (which has been
configured beforehand).

 The authentication server should implement a flexible vocabulary for defining
rules that support:

OGC 15-010r4

40 Copyright © 2016 Open Geospatial Consortium.

o Access control at the operation level;

o Access control at the feature type level;

o Access control based on geographic extent (exclusion and inclusion
zones); and

o Access control based on temporal extent (exclusion and inclusion).

8 Q & A from the UCR thread of Testbed-11

8.1 Introduction

This clause is a FAQ for answering some of the questions posed in the UCR thread in
relation to WFS, GSS, REST, etc.

8.2 How to handle replication/synchronization between enterprise DBs?

This question is answered in clause 7.2 of this document. The short answer is that
whenever changes occur in a source WFS, the GSS acts as a WFS client and propagates
those changes – possibly applying schema translation – to a target WFS.

8.3 WFS-T REST: what is the difference to traditional request/response?

Traditional OGC web services employ a request-response model based on an XML
encoding of messages that are passed to a web service using the HTTP POST method
(this includes SOAP) or a KVP encoding of messages that are passed to a web service
using the HTTP GET method. The response is specific to the service but in the case of
WFS, the canonical response is GML (see OGC 07-036) which is an XML vocabulary.
Other responses are also possible but are not defined in the WFS standards.

From the response perspective, there is not much difference between a traditional OGC
web service and a REST based web service. A RESTful web feature service still
generates an XML container (wfs:FeatureCollection) full of features and a RESTful
coverage service still responds with a coverage. This is currently done intentionally in
the OGC in order to maintain backward compatibility with existing OGC services.
However, with the advent of JSON, linked data and other modern web technologies, the
response side will inevitably change. Several engineering reports in the OGC Testbed-11
are concerned with just these topics (see OGC 15-053, OGC 15-066).

Considering the request side, some of the disadvantages of the current approach include
the following.

 Clients need to be intimately aware of the interface in order to interact with the
service.

o Unlike REST services where very simple clients such as a web browser
can be used to navigate the service and obtain useful results.

OGC 15-010r4

Copyright © 2016 Open Geospatial Consortium. 41

 The interface from service to service is different requiring specialized clients be
written from each service and significantly reducing the possibility of code reuse.

 The encoding of the resource is, in many cases, bound to the encoding of the request
itself. For example, in order to insert, update or delete a feature using a non-REST
WFS, an XML document containing a wfs:Transaction needs to be created and
embedded within that are encoded the features to be manipulated. In other words, the
interface and the resource are tightly coupled.

o In contract, the REST architectural pattern has a common and consistent
interface for all services, namely the HTTP methods GET, PUT, POST
and DELETE. The interface and the resource are decoupled, allowing the
same interface to service many different types of resources.

o To illustrate the point, consider two objects: a feature and a coverage.
Using the REST architectural style, creating a new feature or adding a new
coverage to a repository is performed in a consistent, uniform way; the
resource in question, feature or coverage, is sent to the client as the body
of a POST message. A header in the message (i.e. Content-Type) is used
identify the specific resource by its MIME type.

A more detailed discussion concerning REST service in OGC can found in the
document OGC 15-052, Testbed-11 REST Engineering Report. Clause 7.4 of that
document describes in more detail a REST binding for WFS.

8.4 Who needs a service using the REST architecture and what are the implications of
using it?

The short answer is that all OGC services should be migrated to, or at least make
available, a REST binding. A simple web search will uncover many justifications for
using REST and the implications of doing so but Fielding summarizes the salient points
here:

REST demands the use of hypertext, which scales very well since the client and server are
very loosely coupled. With REST, the server is free to change the exposed resources at
will. There is no fixed API above and beyond what REST itself defines. The client needs
only know the initial URI, and subsequently chooses from server-supplied choices to
navigate or perform actions. A server may download code to the client which aids in
navigation and state representation.

All of this is in stark contrast with the various remote procedure call (RPC) schemes in
which the client and server must agree upon a detailed protocol that typically needs to be
compiled into both ends (e.g. URIs of a particular form accessed in a particular order at
one extreme, SOAP/WSDL/WS* at the other). This approach is brittle, because any
changes need to implemented on both the server and client sides at the same time. It
rapidly becomes untenable as the number of servers and/or clients grows. Servers in
particular suffer because evolution of the published API becomes progressively more
difficult as popularity increases.

OGC 15-010r4

42 Copyright © 2016 Open Geospatial Consortium.

In light of these factors, REST is always the better choice when possible. It allows for
rapid evolution of servers and allows an astronomical number of applications to interact
freely on an ad hoc basis (e.g. the whole Internet).

But what about the "when possible" part? REST works best when there is a human in the
loop. After all, a human has a good chance of being able to make a rational choice when
presented with a previously unknown set of options. Machines aren't there yet. Web RPC
protocols were born precisely to handcuff both sides to a fixed protocol. This makes it
easier for automated processes to communicate when the human is removed from the
picture. An RPC is a valid design choice when purely automated operation is more
important than evolution and scalability (in Internet time and on an Internet scale).

Scale and Coupling?

"Scale" here is meant in a broad sense. It includes numbers of users and sessions, yes,
but also application size and development process. Tight coupling presents a severe
impediment to application size. It is hard to imagine the existence of the largest known
application, the World-Wide Web, without the extremely loose coupling afforded by the
REST architecture. Millions of developers around the globe have collaborated to build
this application that supports billions of users. Yet the developers do this while remaining
blissfully unaware of each other (or at least they would be unaware of each other if it
weren't for StackOverflow ;).

The primary enabling principle of REST is hypertext. The other elements of the
architecture exist to support that principle in very large scale (in every sense). Is REST
the only conceivable way that the Web could have been built? No. But it happens to be
the wildly successful de facto standard. It should be the default choice for any new entry
into the ecosystem, discarded only after careful and explicit design consideration.

8.5 What about URL patterns

One of the “really neat” features of a REST architecture is that, as Fielding points out
above, a client needs only know the initial URI, and subsequently chooses from server-
supplied choices to navigate or perform actions. The use of URL patterns diminishes this
benefit.

The following sequences of URIs -- with explanations -- illustrate the advantages of
hypermedia controls and HATEOAS:

1. The initial URI is the WFS’ server root:
http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0/ows11

2. Figure 6 shows a fragment of the capabilities document from (1). Each feature
listed in the FeatureTypeList includes an ATOM link with rel=”collection.”

OGC 15-010r4

Copyright © 2016 Open Geospatial Consortium. 43

3. Resolving this link takes the client to the collection of features of this type and
executes a default query:
http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0/ows11/wwAccess

4. Figure 7 shows that each feature in the response contains a set of ATOM links.
The link with rel=”service” links back to the service that offers this features. The
link with rel=”collection” links back to the collection (i.e. feature type) of which
this feature is a member. There are also a number of links with rel=”alternate”
that link to alternative representations of this feature. In this case, GeoJSON:
http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0/ows11/wwAccess
/CWFID.WWACCESS.0.0.BA89DF77E5626F761F20020000?outputFormat=app
lication%2Fvnd.geo%2Bjson

Figure 6 – Capabilities document fragment

Figure 7 – GetFeature response showing hypermedia controls

OGC 15-010r4

44 Copyright © 2016 Open Geospatial Consortium.

8.6 REST principles such as "all you need is a mime-type" are not sufficient in geo
domain. How to handle this?

This may be true for other OGC services but does not appear to be the case for web
feature services.

8.7 How to use HTTP headers?

In general HTTP headers should be used as described in RFC 2616. The use of the
common headers, Content-Type, Language, Accept, etc. is only now becoming well
understood in the context of OGC service. Further experimentation and investigation,
which was not part of the UCR thread, would be required to understand what the other
headers might mean.

8.8 What are the implications of moving from XML to JSON/GoeJSON?

This topic is covered in document OGC 15-053, JSON/GeoJSON in OGC Standards ER.

8.9 How to use JSON with WFS 2.5?

In the WFS REST binding, a JSON/GeoJSON encoding is simply another representation
of a feature that can be used to interact with the service. As long as the server advertises
in its capabilities document that JSON/GeoJSON is an acceptable format/representation
for features creating or modifying features using JSON/GeoJSON is simply a matter of
POSTing or PUTing a JSON/GeoJSON-encoded feature to the appropriate feature URI.
Retrieving a JSON/GeoJSON-encoded feature is simply a matter of appropriately setting
the Accept header when GETing the feature via it URI.

Further details can be found in the document OGC 15-052, OGC Testbed-11 REST
Engineering Report.

8.10 How can JSON be used with the GSS?

There is fundamentally no theoretical impediment to using JSON with GSS. However,
there several issues that would need to be considered. These issues include the following.

 The use of JSON/GeoJSON to encode proposed changes within the context of the
existing standard.

 The use of JSON/GeoJSON, rather than XML, to encode the feeds.
 The lack of validation tools for JSON.

Although not currently covered in the draft GSS specification, encoding changes as
JSON/GeoJSON is easily supported in the GSS since the JSON/GeoJSON text can either
be included in the ATOM entry as an escaped text string or as a CDATA section. Using
JSON-encoded features would, among other things, require some careful capability
coordination to ensure that any synchronized target WFSs support the REST and the
JSON feature encoding.

OGC 15-010r4

Copyright © 2016 Open Geospatial Consortium. 45

GSS is based on ATOM and XML so all the GSS components that use ATOM and XML
(i.e. change feed, resolution feed, replication feed, request encodings for the operations,
etc.) would need to be mapped or translated to JSON. This is not a trivial task and would
require and entirely new profile of GSS to be written that describes how just feed would
be managed by the service. It should be noted that work being done in the CCI thread
concerning XML to JSON translation may help should in such an endeavor.

OGC 15-010r4

46 Copyright © 2016 Open Geospatial Consortium.

Annex A
REST binding for WFS

The content of this annex can be found at this URL:
https://portal.opengeospatial.org/wiki/pub/Testbed11/CciSysArchRest/11-080r1.pdf

OGC 15-010r4

Copyright © 2016 Open Geospatial Consortium. 47

Openlayers WFS-T Client example

The following code fragment illustrates how to code a simple WFS-T client using the
Openlayers framework.

This code fragment was copied from http://demo.boundlessgeo.com.

var map, wfs;
OpenLayers.ProxyHost = "proxy.cgi?url=";

var DeleteFeature = OpenLayers.Class(OpenLayers.Control, {
 initialize: function(layer, options) {
 OpenLayers.Control.prototype.initialize.apply(this, [options]);
 this.layer = layer;
 this.handler = new OpenLayers.Handler.Feature(
 this, layer, {click: this.clickFeature}
);
 },
 clickFeature: function(feature) {
 // if feature doesn't have a fid, destroy it
 if(feature.fid == undefined) {
 this.layer.destroyFeatures([feature]);
 } else {
 feature.state = OpenLayers.State.DELETE;
 this.layer.events.triggerEvent("afterfeaturemodified",
 {feature: feature});
 feature.renderIntent = "select";
 this.layer.drawFeature(feature);
 }
 },
 setMap: function(map) {
 this.handler.setMap(map);
 OpenLayers.Control.prototype.setMap.apply(this, arguments);
 },
 CLASS_NAME: "OpenLayers.Control.DeleteFeature"
});

function init() {
 var extent = new OpenLayers.Bounds(
 -11593508, 5509847, -11505759, 5557774
);

 map = new OpenLayers.Map('map', {
 projection: new OpenLayers.Projection("EPSG:900913"),
 displayProjection: new OpenLayers.Projection("EPSG:4326"),
 restrictedExtent: extent,
 controls: [
 new OpenLayers.Control.PanZoom(),
 new OpenLayers.Control.Navigation()
]
 });

OGC 15-010r4

48 Copyright © 2016 Open Geospatial Consortium.

 var gphy = new OpenLayers.Layer.Google(
 "Google Physical",
 {type: google.maps.MapTypeId.PHYSICAL, sphericalMercator: true}
);

 var saveStrategy = new OpenLayers.Strategy.Save();

 wfs = new OpenLayers.Layer.Vector("Editable Features", {
 strategies: [new OpenLayers.Strategy.BBOX(), saveStrategy],
 projection: new OpenLayers.Projection("EPSG:4326"),
 protocol: new OpenLayers.Protocol.WFS({
 version: "1.1.0",
 srsName: "EPSG:4326",
 url: "http://demo.boundlessgeo.com/geoserver/wfs",
 featureNS : "http://opengeo.org",
 featureType: "restricted",
 geometryName: "the_geom",
 schema:
"http://demo.boundlessgeo.com/geoserver/wfs/DescribeFeatureType?version
=1.1.0&typename=og:restricted"
 })
 });

 map.addLayers([gphy, wfs]);

 var panel = new OpenLayers.Control.Panel({
 displayClass: 'customEditingToolbar',
 allowDepress: true
 });

 var draw = new OpenLayers.Control.DrawFeature(
 wfs, OpenLayers.Handler.Polygon,
 {
 title: "Draw Feature",
 displayClass: "olControlDrawFeaturePolygon",
 multi: true
 }
);

 var edit = new OpenLayers.Control.ModifyFeature(wfs, {
 title: "Modify Feature",
 displayClass: "olControlModifyFeature"
 });

 var del = new DeleteFeature(wfs, {title: "Delete Feature"});

 var save = new OpenLayers.Control.Button({
 title: "Save Changes",
 trigger: function() {
 if(edit.feature) {
 edit.selectControl.unselectAll();
 }
 saveStrategy.save();
 },
 displayClass: "olControlSaveFeatures"

OGC 15-010r4

Copyright © 2016 Open Geospatial Consortium. 49

 });

 panel.addControls([save, del, edit, draw]);
 map.addControl(panel);
 map.zoomToExtent(extent, true);
}

