

Open Geospatial Consortium

Publication Date: 2016-01-18

Approval Date: 2015-09-17

Posted Date: 2015-08-21

Reference number of this document: OGC 15-052r1

Reference URL for this document: http://www.opengis.net/doc/PER/tb11_rest_er

Category: Public Engineering Report

Editor: Frédéric Houbie

OGC® Testbed 11 REST Interface Engineering Report

Copyright © 2016 Open Geospatial Consortium.
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. This document presents a discussion of
technology issues considered in an initiative of the OGC Interoperability Program.
This document does not represent an official position of the OGC. It is subject to
change without notice and may not be referred to as an OGC Standard. However,
the discussions in this document could very well lead to the definition of an OGC
Standard. Recipients of this document are invited to submit, with their comments,
notification of any relevant patent rights of which they are aware and to provide
supporting documentation.

Document type: Public Engineering Report
Document subtype: NA
Document stage: Approved for public release
Document language: English

OGC 15-052r1r1

ii Copyright © 2016 Open Geospatial Consortium.

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below,
to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property
without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish,
distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to
do so, provided that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above
copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS
THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF
INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY
DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH
THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all
copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as
provided in the following sentence, no such termination of this license shall require the termination of any third party end-user
sublicense to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual
Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent,
copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license
without any compensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or
cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual
Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without
prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may
authorize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any
LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United
Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In the event any provision of this
Agreement shall be deemed unenforceable, void or invalid, such provision shall be modified so as to make it valid and enforceable,
and as so modified the entire Agreement shall remain in full force and effect. No decision, action or inaction by LICENSOR shall be
construed to be a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise exported or reexported in
violation of U.S. export laws and regulations. In addition, you are responsible for complying with any local laws in your jurisdiction
which may impact your right to import, export or use the Intellectual Property, and you represent that you have complied with any
regulations or registration procedures required by applicable law to make this license enforceable

 OGC 15-052r1r1

Copyright © 2016 Open Geospatial Consortium. iii

Contents Page

1	 Introduction ... 2	

1.1	 Scope ... 2	

1.2	 Document contributor contact points .. 2	

1.3	 Future work ... 2	

1.4	 Foreword ... 2	

2	 Terms and definitions ... 3	

3	 Abbreviated terms ... 3	

4	 OGC Testbed 11 REST ER – Overview ... 3	

5	 REST ... 4	

5.1	 What is REST ? .. 4	

5.1.1	 Client-Server ... 4	

5.1.2	 Stateless ... 4	

5.1.3	 Cacheable .. 5	

5.1.4	 Uniform Interface .. 5	

5.1.5	 Resource-Based ... 5	

5.1.6	 Manipulation of Resources through Representations 6	

5.1.7	 Self-descriptive Messages ... 6	

5.1.8	 Hypermedia as the Engine of Application State (HATEOAS) 6	

5.1.9	 Layered System ... 7	

5.1.10	 Code-on-demand ... 7	

5.2	 Contrasting REST with OGC Web Services .. 7	

5.3	 Common REST API Practices to Consider .. 8	

5.3.1	 Use HTTP Verbs as more than a transport protocol ... 8	

OGC 15-052r1r1

iv Copyright © 2016 Open Geospatial Consortium.

5.3.2	 Provide Sensible Resource Names .. 10	

5.3.3	 Use HTTP Response Codes to Indicate Status ... 11	

5.3.4	 Create Fine-Grained Resources .. 13	

5.3.5	 Consider Connectedness ... 13	

5.4	 ROA vs SOA ... 14	

5.4.1	 Service Oriented Architecture (SOA) ... 14	

5.4.2	 Resource Oriented Architecture (ROA) .. 15	

6	 The History of OGC and REST .. 16	

6.1	 Analysis of REST Initiatives within OGC .. 16	

6.1.1	 Geoservices REST – Overview .. 16	

6.1.2	 Why implement the GeoServices REST specification? 17	

6.1.3	 How to implement the GeoServices REST specification. 18	

6.1.4	 Resources and Operations ... 18	

6.1.5	 Response Formats ... 18	

6.1.6	 REST and Pragmatic Considerations .. 19	

6.1.7	 Summary ... 20	

6.1.8	 Further References .. 20	

6.2	 WaterML 2.0 API ... 21	

6.3	 Web Map Tile Service (WMTS) RESTful binding .. 22	

6.3.1	 Criticism of the URL template approach. ... 23	

6.3.2	 Caching and considerations for future parameter extensions. 23	

6.3.3	 WMTS Simple .. 24	

6.4	 REST binding for WFS 2.5 ... 25	

6.4.1	 Introduction ... 25	

6.4.2	 Basic service elements .. 25	

 OGC 15-052r1r1

Copyright © 2016 Open Geospatial Consortium. v

6.4.2.1	 Service root ... 25	

6.4.2.2	 Representation of features ... 26	

6.4.2.3	 Content negotiation ... 26	

6.4.2.4	 Hypermedia controls ... 26	

6.4.2.5	 URI Templates .. 30	

6.5	 Summary of resources ... 31	

6.6	 Feature access ... 32	

6.6.1	 Introduction ... 32	

6.6.2	 Query parameters .. 33	

6.6.3	 Examples ... 34	

6.6.3.1	 Introduction ... 34	

6.6.3.2	 Accessing a services capabilities document ... 35	

6.6.3.3	 Accessing the application schema of the service 35	

6.6.3.4	 Accessing the feature collection ... 35	

6.6.3.5	 Accessing a specific feature in GML .. 37	

6.6.3.6	 Accessing a subset of features .. 37	

6.7	 Transactions .. 39	

7	 Accomplishments .. 39	

8	 Future work ... 40	

OGC 15-052r1r1

vi Copyright © 2016 Open Geospatial Consortium.

Figures Page
Figure 1 – WaterML2.0 part 2 API docs .. 21	
Figure 2 – REST WFS Capabilities document in HTML ... 36	
Figure 3 – REST WFS query response in HTML ... 38	

Tables Page
Table 2 – Cross-reference of OGC standards to REST practices .. 16	
Table 3 – OGC Testbed 11 WFS 2.5 Implementations ... 25	
Table 4 – Mapping Open Search Url attributes to ATOM link attributes 30	
Table 5 – Summary of WFS 2.5 REST resources used in OGC Testbed 11 32	
Table 6 – WFS 2.5 query parameters ... 33	

OGC Engineering Report OGC 15-052r1

Copyright © 2016 Open Geospatial Consortium. 1

Abstract

REST architectural principles are associated with optimal functioning of the Web but
their manifestation in geospatial Web services standards is not straightforward. This OGC
Engineering Report (ER) examines their use both in existing OGC Services standards and
in new or revised service standard proposals, some of which were implemented during
OGC Testbed 11. The ER then defines possible uniform practices for developing
bindings or interaction styles for OGC Web services that appropriately leverage REST
principles.

Business Value

Web service standards that are easier to implement and more compatible with Web
technologies will have a higher rate of implementation and a greater value for vendors,
customers, and the OGC. The REST architectural style has the potential for simplicity,
scalability, and resilience if it can be adapted to the effective exchange of geospatial
information across the Web.

Keywords

ogcdoc, testbed 11, rest, ap, resource, http, web service, engineering report

OGC 15-052r1r1

2

Copyright © 2016 Open Geospatial Consortium.

OGC® Testbed 11 REST Interface Engineering Report

1 Introduction

1.1 Scope

This OGC Engineering Report (ER) is a deliverable of the OGC Testbed 11 activity. The
ER describes the results of study of REST work at OGC. The ER also describes some
guidelines for future definition of REST API within OGC process.

1.2 Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

Name Organization
Frédéric Houbie (editor) Luciad

Satish Sankaran Esri

Joshua Lieberman Tumbling Walls

Peter Vretanos CubeWerx

Joan Masó UAB-CREAF

1.3 Future work

The following items were identified for consideration in future initiatives:

 Uniform REST binding(s) for OGC services

REST API to support linked geospatial data

1.4 Foreword

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. The Open Geospatial Consortium shall not be held
responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of
any relevant patent claims or other intellectual property rights of which they may be
aware that might be infringed by any implementation of the standard set forth in this
document, and to provide supporting documentation.

 OGC 15-052r1r1

Copyright © 2016 Open Geospatial Consortium. 3

2 Terms and definitions

For the purposes of this report, the following terms and definitions apply.

2.1

Application Programming Interface (API)

An interface definition that permits invoking services from application programs without
knowing details of their internal implementation.

3 Abbreviated terms

EPSG European Petroleum Survey Group

GIS Geographic Information System
GML Geography Markup Language

ISO International Organization for Standardization
OGC Open Geospatial Consortium

SQL Structured Query Language
SRS Spatial Reference System

UML Unified Modeling Language
URI Uniform Resource Identifier

XML Extensible Markup Language
XSLT Extensible Stylesheet Language Transformations

4 OGC Testbed 11 REST ER – Overview

One of the topics addressed by the OGC Testbed 11 Cross Community Interoperability
(CCI) thread is the role of REST principles in OGC standards. Numerous discussions and
attempts have been made to identify this role, determine how a RESTful suite of OGC
service standards would work, and characterize the benefits it might bring. Within the
Testbed, a number of participants implemented more RESTful versions of standard OGC
services. This Engineering Report has two goals. One is to evaluate the current suite of
OGC standards and policy statements with regard to REST principles. The other is to
outline prospects for defining RESTful interfaces or bindings for OGC services, based on
trial implementations in Testbed 11 and elsewhere, that maximize the benefits of this

OGC 15-052r1r1

4

Copyright © 2016 Open Geospatial Consortium.

architectural style while retaining the service functionality on which client applications
depend.

The following chapters document the results of the work conducted in OGC Testbed 11
for these tasks.

5 REST

5.1 What is REST ? 1

REST (Representational State Transfer) is a term coined by Roy Fielding2 in his doctoral
dissertation to describe an architectural style for “distributed hypermedia systems” such
as the Worldwide Web that are to have desirable characteristics including separation of
concerns, scalability, resiliency, visibility, and reliability. This style rests on five
constraints on how computing systems are configured and component interactions are
carried out:

5.1.1 Client-Server

The uniform interface separates clients from servers. This separation of concerns means
that, for example, clients are not concerned with data storage, which remains internal to
each server, so that the portability of client code is improved. Servers are not concerned
with the user interface or user state, so that servers can be simpler and more scalable.
Servers and clients may also be replaced and developed independently, as long as the
interface is not altered.

5.1.2 Stateless

REST is an acronym for Representational State Transfer, so why statelessness? Although
both clients and servers necessarily save their own persistent state information, the
interactions that cause each to change state are themselves stateless. No interaction
depends for its success on the content of other interactions. The necessary information to
process a request, for example, is contained within the request itself, whether as part of
the URI, query-string parameters, body, or headers.

Most of us who have been in the industry for a while are accustomed to programming
within a container that provides “session state” across multiple HTTP requests. In REST,
the client must include all information for the server to fulfil the request, resending state
information or references as necessary if it applies to multiple requests. Statelessness
enables greater scalability since the server does not have to maintain, update or

1 Mainly extracted from http://www.restapitutorial.com/, one of the most concise and understandable REST
explanations found during the analysis
2 http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

 OGC 15-052r1r1

Copyright © 2016 Open Geospatial Consortium. 5

communicate that session state. Additionally, load balancers don’t have to worry about
session affinity for stateless systems.

So what’s the difference between state and resource? Resource state is the information or
capability a server uses to create resource representations – the data stored in the
database, for instance. Application or client state is the information that affects
application flow or user interactions in a client and is built up from (among other sources)
resource representations exchanged with servers in stateless interactions.

5.1.3 Cacheable

As on the World Wide Web, clients can cache responses. Server responses implicitly or
explicitly define themselves as cacheable, or not, to prevent clients reusing old or
inappropriate data in response to further requests. Well-managed caching partially or
completely eliminates some client–server interactions, improving scalability and
performance, as long as the requests, e.g. URL’s are defined in such a way as to support
as much reuse as possible. For example, if a client is able to construct many different
requests for the same response, this prevents optimal caching performance.

5.1.4 Uniform Interface

The uniform interface constraint applies to interactions between client and server
components, minimizing the special knowledge that each must have of the other and
allowing maximum variety in the components that are able to interact with one another. It
simplifies and decouples the architecture, which enables each part to evolve
independently. As applied to the Worldwide Web, this uniform interface is generally
taken to be based on proper and consistent use of HTTP, although other uniform
interfaces are certainly possible, particularly for interaction styles not well supported by
HTTP.

REST principles expand on the notion of a uniform protocol such as HTTP and describe
several practices that increase the uniformity of the entire client-server interaction:

5.1.5 Resource-Based

In what is termed “resource oriented architecture (ROA), a server’s capabilities are
defined in terms of conceptual resources that are identified by URI’s and addressable
only by a uniform set of operators such as the HTTP verbs. By contrast, a Service
Oriented Architecture (SOA) approach defines server capability in terms of specific, even
idiosyncratic operations. It is generally true that a client application needs to be coded
specifically for each specific server operation it invokes. Therefore, a small and uniform
number of operators should make client development easier and increase the range of
servers that a client can interact with. This presumes, of course, that how a client
processes the representations of resources that a server returns is also somehow uniform
or at least does not require specific, specialized code.

OGC 15-052r1r1

6

Copyright © 2016 Open Geospatial Consortium.

5.1.6 Manipulation of Resources through Representations

The resources themselves are conceptual (as far as the client is concerned) and any of a
number of representations are what is actually exchanged with clients. For example, a
server does not send its database, but rather, a HTML, XML or JSON document that
encodes requested database records. Such documents may be expressed, for instance, in
French and encoded in UTF-8, depending what the client requests and the server can
provide. When a client holds a representation of a resource, including any metadata
attached, it has enough information to modify or delete the resource on the server,
provided it has permission to do so.

5.1.7 Self-descriptive Messages

Each representation message returned by a server is supposed to include enough
information that a client is able to determine how to process the message without out-of-
band code or information that is specific to that representation. An existing parser may be
invoked, for example, by an Internet media type (previously known as a MIME type).
While this is a valuable constraint for a resilient Web, the general effectiveness of media
types in providing guidance for client processing has been somewhat overwhelmed by the
variety of message types that have developed. Typically, a client application requires
specialized code to deal with specialized media types or the ways in which specific
representations may differ from general media types. This code is either built in based on
out-of-band knowledge or it comes along with the response. Even HTML as a general
media type is frequently supplemented by javascript code for specific application
processing.

A notable form of self-descriptive message is, of course, hypermedia, in which various
information media (text, pictures, videos, …maps) support application navigation by way
of links. Where the processor of the document is a human (or the document is highly
structured) and application flow consists of choosing the link to follow next, this type of
self-descriptive message can be very effective.

Self-description also applies to responses explicitly indicating their cache-ability.

5.1.8 Hypermedia as the Engine of Application State (HATEOAS)

The exact interpretation of this practice has often been debated, but it clearly connects the
choice of links to follow in hypermedia response documents with the flow and state of
client applications. Changes in application state may be solely, primarily, or partly the
result of following a hypermedia link to a new server interaction. The effect of this
practice, however, is to transfer some or all of the logic of an application from client code
to hypermedia representations returned from servers. This constraint further supports the
resilient concept of a generic client that is able to interact with any server providing
recognizable hypermedia responses and present to its user the options determined by the
server. HATEPAS presupposes, however, that virtually all application processing is more
appropriately carried out on a server than on a client

 OGC 15-052r1r1

Copyright © 2016 Open Geospatial Consortium. 7

5.1.9 Layered System

Layers provide information hiding by presenting each server as simple component
whether or not there is physically a population of components doing the actual
processing. A client cannot ordinarily tell whether it is connected directly to the initiating
server of a work pipeline or hierarchy or intermediary along the way. This increases
separation of concerns and therefore resiliency in case opaque server workflow needs to
change. Intermediary servers may also improve system scalability by enabling load-
balancing and by providing shared caches. Layers may also enforce security policies.

5.1.10 Code-on-demand

Fielding’s thesis actually includes a sixth architectural constraint that is considered
optional, but carries to a logical conclusion that the less clients need to be equipped
themselves for a specific application, the more loosely coupled a client server system can
be. Clients in systems constrained this way are responsible for little more than executing
code on documents that are both provided by the servers they interact with. Web
browsers executing downloaded javascript functions may be considered an example of
this constraint.

5.2 Contrasting REST with OGC Web Services

Careful consideration of published REST principles, constraints, and practices show how
they can lead to a Web-like distributed computing system with admirable qualities of
scalability and loose coupling. Two of goals identified with these qualities, however, are
at some odds with both the concept of Web services and existing OGC services
ecosystem. One goal is to abstract the model of server capabilities that a client needs to
interact with, by means of a resource-representation approach and uniform interface. This
leads to a common view that a uniform interface service standard such as HTTP is all that
is required in the way of standards to promote interoperability between clients and
servers. This has led directly to a proliferation of REST API specifications that are
customized as to both server resources and client applications, with a corresponding drop
in reusability as developers concentrate on the interactions needed for each project. It is
generally thought that RESTful API’s are easier to develop clients for. However, this is
“ease” being offset by the need to continually re-develop on the client side as new
improved API’s are devised. This contrasts with the OGC approach of standardizing
reusable service interfaces that can be utilized to access many different resources of
specific types for the benefit of a range of applications.

There is a second REST goal of minimizing specific client knowledge of server
capability, resource type, or representation format. Again, there is a range of
interpretations of the advisability and importance of this goal. Some have even suggested
that any REST API requiring more application capability in a client than parsing a few
hypermedia types and following links (something close to a browser) should not be
termed REST or RESTful. Regardless of terminology, this presents a clear view that an
optimal separation between client and server components places most application logic

OGC 15-052r1r1

8

Copyright © 2016 Open Geospatial Consortium.

on the server and not on the client. This is again a contrast with the distributed
architectures for geospatial information processing targeted by OGC Web services. The
role of these services has been to provide distinct, reusable portions of backend
computing capability such as data access or transformation that are then assembled by
clients into complete applications (whether or not they are directly human-facing).

When those client applications are browser-based, though, they are often (although not
always) supported by an additional service tier of Web-based API’s that implement
portions of processing logic specific to the particular application. This tier sometimes
even comprises the actual client that interacts with OGC services such as Web Feature
Service instances and then passes the results on to the browser-based user interface.
These application services are rarely standardized per se, although there are
communications and/or widget frameworks that provide considerable regularity to client
development tasks and may yet be a standardization target. Creating such application
services would be much more difficult, though, if the components for rendering a map or
searching a feature collection or storing large-scale datasets had to be re-created for each
application.

The conclusion drawn by most Testbed 11 participants appears to be that whatever name
is used (RITHMIC – Resource Interaction Through HTTP Method Invocation – was
proposed as a substitute), there is value specifically in the geospatial domain in
attempting to strike a balance between the value of specific REST principles and
practices, and the demonstrated value of standardized component Web services .

5.3 Common REST API Practices to Consider

Whether their use can be termed RESTful or not (according to the constraints mentioned
previously), a few recommended REST-like suggestions have been collected here. These
six relatively easy to implement software practices often result in better, more usable
services.

5.3.1 Use HTTP Verbs as more than a transport protocol

API consumers are capable of sending GET, POST, PUT, and DELETE verbs, and these
verbs greatly enhance the clarity of what a given request does. Also, GET requests must
not change any underlying resource data. Measurements and tracking may still occur,
which updates data, but not resource data identified by the URI.

Generally, the four primary HTTP verbs are used as follows.

GET: Read a specific resource (by an identifier) or a collection of resources.
The HTTP GET method is used to read (or retrieve) a representation of a resource. In the
“happy” (or non-error) path, GET returns a representation in XML or JSON and an
HTTP response code of 200 (OK). In an error case, it most often returns a 404 (NOT
FOUND) or 400 (BAD REQUEST).

 OGC 15-052r1r1

Copyright © 2016 Open Geospatial Consortium. 9

According to the design of the HTTP specification, GET (along with HEAD) requests are
used only to read data and not change it. Therefore, when used this way, they are
considered safe. That is, they can be called without risk of data modification or
corruption—calling it once has the same effect as calling it 10 times, or none at all.
Additionally, GET (and HEAD) should be idempotent, which means that making
multiple identical requests ends up having the same result as a single request.

Do not expose unsafe operations via GET—it should never modify any resources on the
server.

PUT: Update a specific resource (by an identifier) or a collection of resources. Can
also be used to create a specific resource if the resource identifier is known before-
hand.

PUT is most-often utilized for update capabilities, PUT-ing to a known resource URI
with the request body containing the newly-updated representation of the original
resource.

However, PUT can also be used to create a resource in the case where the resource ID is
chosen by the client instead of by the server. In other words, if the PUT is to a URI that
contains the value of a non-existent resource ID. Again, the request body contains a
resource representation.

Alternatively, use POST to create new resources and provide the client-defined ID in the
body representation—presumably to a URI that doesn’t include the ID of the resource
(see POST below).

On successful update, return 200 (or 204 if not returning any content in the body) from a
PUT. If using PUT for create, return HTTP status 201 on successful creation. A body in
the response is optional—providing one consumes more bandwidth. It is not necessary to
return a link via a Location header in the creation case since the client already set the
resource ID.

PUT is not a safe operation, in that it modifies (or creates) state on the server, but it is
idempotent. In other words, if you create or update a resource using PUT and then make
that same call again, the resource is still there and still has the same state as it did with the
first call.

If, for instance, calling PUT on a resource increments a counter within the resource, the
call is no longer idempotent. Sometimes that happens and it may be enough to document
that the call is not idempotent. However, it’s recommended to keep PUT requests
idempotent. It is strongly recommended to use POST for non-idempotent requests.

DELETE: Remove/delete a specific resource by an identifier.

DELETE is pretty easy to understand. DELETE is used to delete a resource identified by
a URI.

OGC 15-052r1r1

10 Copyright © 2016 Open Geospatial Consortium.

On successful deletion, return HTTP status 200 (OK) along with a response body,
perhaps the representation of the deleted item (often demands too much bandwidth), or a
wrapped response. Either that or return HTTP status 204 (NO CONTENT) with no
response body.

HTTP-spec-wise, DELETE operations are idempotent. If you DELETE a resource, it’s
removed. Repeatedly calling DELETE on that resource ends up the same: the resource is
gone. If calling DELETE say, decrements a counter (within the resource), the DELETE
call is no longer idempotent. As mentioned previously, usage statistics and measurements
may be updated while still considering the service idempotent as long as no resource data
is changed. Using POST for non-idempotent resource requests is recommended.

There is a caveat about DELETE idempotence, however. Calling DELETE on a resource
a second time will often return a 404 (NOT FOUND) since it was already removed and
therefore is no longer findable. This, by some opinions, makes DELETE operations no
longer idempotent, however, the end-state of the resource is the same. Returning a 404 is
acceptable and communicates accurately the status of the call.

POST: Create a new resource. Also a catch-all verb for operations that don’t fit into
the other categories.

The POST verb is most-often utilized to **create** new resources. In particular, it’s used
to create subordinate resources. That is, subordinate to some other (e.g. parent) resource.
In other words, when creating a new resource, POST to the parent and the service takes
care of associating the new resource with the parent, assigning an ID (new resource URI),
etc.

On successful creation, return HTTP status 201, returning a Location header with a link
to the newly-created resource with the 201 HTTP status.

POST is neither safe nor idempotent. It is therefore recommended for non-idempotent
resource requests. Making two identical POST requests will most-likely result in two
resources containing the same information.

5.3.2 Provide Sensible Resource Names

Producing a great API is 80% art and 20% science. Creating a URL hierarchy
representing sensible resources is the artistry. Sensible resource names (which are just
URL paths, such as /customers/12345/orders) improve the clarity of what a given request
does. Appropriate resource names provide context for a service request, increasing
understandability of the API. Resources are viewed hierarchically via their URI names,
offering consumers a friendly, easily-understood hierarchy of resources to leverage in
their applications. The resource structure in itself itself makes each resource easier for a
client to understand and interact with.

Here are some quick-hit rules for URL path (resource name) design.

 OGC 15-052r1r1

Copyright © 2016 Open Geospatial Consortium. 11

 Use identifiers in your URLs instead of in the query-string. Using URL query-
string parameters is fantastic for filtering, but not for resource names.

o Good: /users/12345
o Poor: /api?type=user&id=23

 Leverage the hierarchical nature of the URL to imply structure.
 Design for your clients, not for your data.
 Resource names should be nouns. Avoid verbs as resource names. It makes things

more clear. Use the HTTP methods to specify the verb portion of the request.
 Use plurals in URL segments to keep your API URIs consistent across all HTTP

methods, using the collection metaphor.
o Recommended: /customers/33245/orders/8769/lineitems/1
o Not: /customer/33245/order/8769/lineitem/1

 Avoid using collection verbiage in URLs. For example ‘customer_list’ as a
resource. Use pluralization to indicate the collection metaphor (e.g. customers vs.
customer_list).

 Use lower-case in URL segments, separating words with underscores (‘_’) or
hyphens (‘-‘). Some servers ignore case so it’s best to be clear.

 Keep URLs as short as possible, with as few segments as makes sense.

Look at some widely used APIs to get the hang of this and leverage the intuition to refine
API resource URIs. Some example APIs are:

Twitter: https://dev.twitter.com/rest/public

Facebook: https://developers.facebook.com/docs/graph-api/reference

LinkedIn: https://developer.linkedin.com/docs/rest-api

More in the Geo domain, Google APIs has some good hints for integration of
spatial/temporal characteristics in the URLs :
https://developers.google.com/maps/documentation/webservices/

These examples emphasize identifying each granular resource in the URL path, even for
dimensional parameters such as tile or raster coordinates and reserving query parameters
for other purposes (filtering, sorting, …).

5.3.3 Use HTTP Response Codes to Indicate Status

Response status codes are essential for making the best use of the HTTP specification.
There are quite a number of them to address the most common situations. In the spirit of
having our RESTful services embrace the HTTP specification, our HTTP-based services
should return relevant and meaningful HTTP status codes. For example, when a resource
is successfully created (e.g. from a POST request), the API should return HTTP status
code 201. A list of valid HTTP status codes is available here which lists detailed
descriptions of each.

OGC 15-052r1r1

12 Copyright © 2016 Open Geospatial Consortium.

Suggested usages for the “Top 10” HTTP Response Status Codes are as follows.

200 OK

General success status code. This is the most common code. Used to indicate success.

201 CREATED

Successful creation occurred (via either POST or PUT). Set the Location header to
contain a link to the newly-created resource (on POST). Response body content may or
may not be present.

204 NO CONTENT

Indicates success but nothing is in the response body, often used for DELETE and PUT
operations.

400 BAD REQUEST

General error for when fulfilling the request would cause an invalid state. Domain
validation errors, missing data, etc. are some examples.

401 UNAUTHORIZED

Error code response for missing or invalid authentication token.

403 FORBIDDEN

Error code for when the user is not authorized to perform the operation or the resource is
unavailable for some reason (e.g. time constraints, etc.).

404 NOT FOUND

Used when the requested resource is not found, whether it doesn’t exist or if there was a
401 or 403 that, for security reasons, the service wants to mask.

405 METHOD NOT ALLOWED

Used to indicate that the requested URL exists, but the requested HTTP method is not
applicable. For example, POST /users/12345 where the API doesn’t support creation of
resources this way (with a provided ID). The Allow HTTP header must be set when
returning a 405 to indicate the HTTP methods that are supported. In the previous case,
the header would look like “Allow: GET, PUT, DELETE.”

409 CONFLICT

 OGC 15-052r1r1

Copyright © 2016 Open Geospatial Consortium. 13

Whenever a resource conflict would be caused by fulfilling the request. Duplicate entries,
such as trying to create two customers with the same information, and deleting root
objects when cascade-delete is not supported are a couple of examples.

500 INTERNAL SERVER ERROR

Never return this intentionally. The general catch-all error when the server-side throws an
exception. Use this only for errors that the consumer cannot address from their end.

For a full list of HTTP status codes, see IETF page3.

5.3.4 Create Fine-Grained Resources

When starting out, it’s best to create APIs that mimic the underlying application domain.
However, it’s much easier to create larger resources later from collections of individual
resources than it is to create fine-grained or individual resources from larger aggregates.

5.3.5 Consider Connectedness

One of the principles of REST is connectedness via hypermedia. While services are still
useful without them, APIs become more self-descriptive and discoverable when links are
returned in the response. At the very least, a ‘self’ link reference informs clients how the
data was or can be retrieved. Additionally, utilize the HTTP Location header to contain a
link on resource creation via POST (or PUT). For collections returned in a response that
support pagination, ‘first’, ‘last’, ‘next’ and ‘prev’ links at a minimum are very helpful.

Regarding linking formats, there are many. The HTTP Web Linking Specification
(RFC59884) explains a link as follows:

a link is a typed connection between two resources that are identified by
Internationalized Resource Identifiers (IRIs) [RFC39875], and is comprised of:

 A context IRI,
 a link relation type
 a target IRI, and
 optionally, target attributes.

A link can be viewed as a statement of the form “{context IRI} has a {relation type}
resource at {target IRI}, which has {target attributes}.”

3 http://www.ietf.org/assignments/http-status-codes/http-status-codes.xml
4 http://tools.ietf.org/search/rfc5988
5 http://tools.ietf.org/search/rfc3987

OGC 15-052r1r1

14 Copyright © 2016 Open Geospatial Consortium.

Another often used solution is to place links in the HTTP Link header6 as recommended
in the specification, or embrace a JSON representation of this HTTP link style (such as
Atom-style links, see: RFC42877) in your JSON representations.

Link: <https://www.example.com/api/v1/cars?offset=15&limit=5>;
rel=”next”,<https://www.example.com/api/v1/cars?offset=50&limit=3>;
rel=”last”,<https://www.example.com/api/v1/cars?offset=0&limit=5>;
rel=”first”,<https://www.example.com/api/v1/cars?offset=5&limit=5>; rel=”prev”

HTTP Header can be used to return additional information like the total count of entries,
like X-Total-Count.

5.4 ROA vs SOA

A critical consequence of adopting a uniform service interface approach such as with
HTTP is that design challenges shift from designing new operations to configuring new
resources. This shift in thinking has been described as moving from Service Oriented
Architecture (SOA) to Resource Oriented Architecture (ROA). A ROA design approach
has advantages for resilient distributed computing by hiding many details of remote
processing, but is not a trivial shift in thinking.

5.4.1 Service Oriented Architecture (SOA)

SOA is based on the concept of a service. Depending on the service design approach
taken, each SOA service is designed to perform one or more activities by implementing
one or more service operations. As a result, each service is built as a discrete piece of
code. This makes it possible to reuse the code in different ways throughout the
application by changing only the way an individual service interoperates with other
services that make up the application, versus making code changes to the service itself.
SOA design principles are used during software development and integration.

SOA generally provides a way for consumers of services, such as web-based
applications, to be aware of available SOA-based services. For example, several disparate
departments within a company may develop and deploy SOA services in different
implementation languages; their respective clients will benefit from a well-defined
interface to access them.

SOA defines how to integrate widely disparate applications for a Web-based environment
and uses multiple implementation platforms. Rather than defining an API, SOA defines
the interface in terms of protocols and functionality. An endpoint is the entry point for
such a SOA implementation.

6 http://www.w3.org/wiki/LinkHeader
7 http://tools.ietf.org/search/rfc4287#section-4.2.7

 OGC 15-052r1r1

Copyright © 2016 Open Geospatial Consortium. 15

5.4.2 Resource Oriented Architecture (ROA)

ROA is a specific set of guidelines of an implementation of the REST-style
architecture. According Leonard Richardson and Sam Ruby in their book entitled
‘RESTful Web Services.’

ROAs are based on four concepts.

 Resources (e.g., the article about REST in the Wikipedia). Their names (URIs).

 The URI is the name and – dereferenced to a URL – is the address of a resource.
For example,http://www.wikipedia.org/wiki/Representational_State_Transfer.

 Resource representations. A resource is the concept or template from which
representations are created.

 Links between resources. Ideally a hypermedia representation of a resource
contains links to other resources.

And four properties.

 Addressability. Addressable applications expose a URI for every piece of
information they might conceivably serve.

 Statelessness. Statelessness means that every HTTP request happens in complete
isolation. The server never relies on information from previous requests.

 Connectedness. A Web service is connected to the extent that you can put the
service in different states just by following links and filling out forms.

 A uniform interface. In Web ROAs, HTTP is the uniform interface. GET
method to retrieve a representation of a resource, PUT method to a new URI or
POST method to an existing URI to create a new resource, PUT method to an
existing URI to modify a resource and DELETE method to remove an existing
resource. Probably HTTP methods are not a perfect interface but what is
important is the uniformity. The point is not that GET is the best name for a read
operation, but that GET means “read” across the Web. Given a URI of a resource,
everybody knows that to retrieve the resource s/he has to send a GET request to
that URI.

Since a SOA definition is independent of the technical architecture of the services, it
encompasses all REST/HTTP applications. ROA can be seen as a term to describe that
part of a SOA implemented following the guidelines stated before. That is, ROA is less
general than SOA since it is not independent of the technical architecture of the services.
The term ROA is often used to emphasize that such an architecture in based on HTTP
objects that respond to one or more of the standard HTTP methods. Why? Because SOA

OGC 15-052r1r1

16 Copyright © 2016 Open Geospatial Consortium.

have been traditionally focused on interfaces and when people talk about interfaces they
tend to use terms like “method”, “operation”, etc. which are strongly related to the RPC-
style. Thus, to avoid misunderstandings the term ROA is used to make clear that we are
talking about REST-style architectures.

6 The History of OGC and REST

For years, REST has been a hot topic of deliberations in the OGC community. The need
for embracing REST into the OGC standards model is evident. The table below contains
most of the OGC documents (Presentations, Best Practices, ERs, etc.) dealing with
REST. The first document about REST was written during the OWS Testbed Phase 5 for
the SWE domain. Phase 6 also had some active work on the REST subject. A list of OGC
documents dealing with REST can be found in Annex A.

Although this subject has been discussed for a long time, there are not many OGC
documents explaining how to implement a REST API. Some OGC documents will be
described in the following sections.

A quick analysis of the existing OGC standards shows that there is still some work to be
done to align to the REST tips described above.

Table 1 – Cross-reference of OGC standards to REST practices

	
WMS	 WFS	 WCS	 WPS	 SOS	 SPS	 CSW	 WMTS	

Use	HTTP	methods	explicitly.	 Y	 N	 Y*	 N	 N	 N	 N	 Y	
Be	stateless.	 Y	 Y	 Y	 Y	 Y	 Y	 Y	 Y	
Expose	directory	structure-like	
URIs.	 N	 N	 N	 N	 N	 N	 N	 Y	
Use	HTTP	Error	codes	 N	 N	 N	 N	 N	 N	 N	 N	
Transfer	XML,	JavaScript	Object	
Notation	(JSON),	or	image.	 Image	 XML	 Any	 Any	 XML	 XML	 XML	 Image	

6.1 Analysis of REST Initiatives within OGC

6.1.1 Geoservices REST – Overview

The GeoServices REST Specification provides a standard way for web clients to
communicate with geographic information system (GIS) servers through
Representational State Transfer (REST) technology. Clients issue requests to the server
through structured URLs. The server responds with map images, text-based geographic
information, or other resources that satisfy the request. Although the GeoServices REST
Specification was originally built to communicate with Esri’s ArcGIS® Server product,
the specification has been opened such that developers can expose the GeoServices REST
Specification request structure from other back-end GIS servers or processes. This has

 OGC 15-052r1r1

Copyright © 2016 Open Geospatial Consortium. 17

allowed its implementation by others outside the Esri platform. The specification was
then worked processed as a candidate OGC standard in the GeoServices SWG. The draft
version of the candidate is available. The candidate standard specifies commonly used
resources in an implementation of the GeoServices REST API as well as extensibility
requirements.

The GeoServices REST Specification describes a catalog of web services that are
designed for different GIS functions (map, geocode, and so on). The GeoServices REST
API specification document has been structurally broken down into multiple documents.
An implementer interested in implementing feature services, would only need to
understand the core, the catalog spec and the Feature service spec to fully implement the
GeoServices Feature Service. The Core and the catalog spec provides the overall services
viewpoint, while the feature services doc (part 4) talks specifically to the feature service
related functionality.

Part 1 : Core

Part 2 : Catalog

Part 3 : Map Service

Part 4: Feature Service

Part 5: Geometry Service

Part 6: Image Service

Part 7: Geoprocessing Service

Part 8: Geocoding Service

6.1.2 Why implement the GeoServices REST specification?

The GeoServices REST Specification offers a simple way for applications to request
map, feature, attribute, and image information from a GIS server. Developers who adopt
the GeoServices REST Specification are choosing a proven implementation that has been
widely deployed and exercised in the field and that exposes server-side resources to a
broad range of clients and applications. They are also choosing a JSON-based, RESTful
specification that will make the server instantly usable by thousands of developers
working in popular client-side development environments with the ArcGIS web mapping
APIs for JavaScript™, Flex™, Silverlight®, iOS®, and Android™, all of which are
powered by the GeoServices REST Specification. GeoServices REST technology is
already widely implemented by US and other Government and military agencies and by
many companies and open source users around the world. The API does not need to be
dependent on any particular company’s underlying products or data structures.

OGC 15-052r1r1

18 Copyright © 2016 Open Geospatial Consortium.

6.1.3 How to implement the GeoServices REST specification.

To implement the GeoServices REST Specification, developers architect the back-end
server to respond to specifically structured REST requests in an expected way. For
example, if someone issues a request to the server to export a map image, such as
http://<mapservice-url>/export?bbox=-127.8,15.4,-63.5,60.5, the server should return a
map image with a lower left coordinate of (-127.8, 15.4) and an upper right coordinate of
(-63.5, 60.5). How the server generated the image is not as important as the fact that it
responded in an expected way when issued a URL whose structure followed the
GeoServices REST Specification.

The full GeoServices REST Specification is described in the OGC candidate standard
documents. Developers can choose how much or how little to implement. For example, if
geocoding or geoprocessing operations are not exposed by the GIS server, developers
may not need to implement the Geocode Service or GP Service piece of the candidate
standard.

All resources and operations exposed by the GeoServices REST Specification are
accessible through a hierarchy of endpoints or uniform resource locators (URLs) for each
available GIS service. When using the GeoServices REST Specification, users typically
start from a well-known endpoint, which represents the server catalog. From the catalog,
different types of resources are available as child nodes. These resources comprise
services for mapping, geocoding, and so on.

The GeoServices REST Specification is stateless because REST does not keep track of
transactions from one request to the next. Each request must contain all the information
necessary for successful processing.

6.1.4 Resources and Operations

The GeoServices REST Specification works with a hierarchy of resources. Each service
type recognized by the GeoServices REST Specification (map, geocode, and so on) is a
resource and has a unique URL. Although a REST system always returns only
representations of resources to client, for the sake of simplicity, the resources of the
GeoServices REST Specification are divided into two types: resources and operations
(also called controller resources).

6.1.5 Response Formats

Many resources in the GeoServices REST Specification have a parameter, f, that denotes
the response format. Developers can program resources to respond to REST requests with

 OGC 15-052r1r1

Copyright © 2016 Open Geospatial Consortium. 19

various data formats, including JSON, HTML, and KMZ. Current implementations of the
spec by Esri also support GeoJSON as an additional JSON based format.

At the least, the JSON response format should be implemented, and examples for doing
so are provided in the specification. Other formats are optional, and they can be exposed
through the f parameter; however, formats other than JSON are not detailed in the
specification.

6.1.6 REST and Pragmatic Considerations

The GeoServices REST specification is based on both RESTful principles and pragmatic
considerations. These considerations include – support for various aspects of the HTTP
protocol in commonly used environments like JavaScript, Adobe Flex or Microsoft
Silverlight, in commonly used web browsers, and in proxys. Many of these environments
do not typically offer complete support for all of the HTTP standard. This lead the
initiators of the GeoServices REST specification to make some choices. Here are some of
the pragmatic considerations.

- Certain web browsers lack support for HTTP PUT and DELETE (except using
scripting methods).

- Some rich internet application clients do not fully support PUT and DELETE.
- From a practical implementation standpoint from within the browser for HTML

applications one may want to use HTTP GETs via dynamic script tags whenever this
can be done safely. Dynamic script tags for GET operations are cacheable and do not
force clients on different domains to go through a proxy.

- HTTP POST is needed whenever the size of the URL may be longer than 2048
characters. This isn’t usually a factor for most API designs, but in the context of
geographic information it happens quite frequently (serialized geometries can easily
be larger than 2000 characters).

- Often firewalls and proxies strip out HTTP PUTs and DELETEs. This can be
mitigated by forcing SSL for all requests, but this is not practical. Some RESTful
APIs recommend HTTP method overloading to get around this, which would be a
hack. In this case one would use POST, but in the header (or in the query parameter)
one specifies that one really wants to do a PUT or DELETE.

- Cross domain scripting needs have been mostly solved using proxy servers and
support for JSONP (JSON with padding). These make it impossible to support all the
HTTP error codes. As discussed in Clause 8, most responses with JSON content will
use an HTTP status code 200 and the JSON content will either be a resource
representation, the result of a controller resource operation or an exception.

- MIME types are advertised using query parameters in the URL (e.g., “?f=json”)
rather than using the HTTP headers. This too can be attributed to the fact that many
times proxy servers tend to strip out header information and hence a more
practical/safer approach of using parameters in the URL has been used for this
purpose.

OGC 15-052r1r1

20 Copyright © 2016 Open Geospatial Consortium.

6.1.7 Summary

As part of the GeoServices REST API SWG process, there were many issues that were
seriously considered. A good review of these comments will provide an expanded view
of a) REST as a pattern for geospatial web services, b) Pragmatic considerations that are
necessary for creating “real world” implementations using REST and c) the synergies that
exist between the GeoServices model and the ISO/OGC Baseline.

Some sample URL’s from Esri’s implementation of the open GeoServices REST
specification are provided below. These are rich examples for readers of the ER to review
and play with to better understand the value of the GeoServices REST specification. As
the OGC document is still a draft, the sample implementations below are not “fully
compliant” implementations of the OGC candidate standard.

http://sampleserver1.arcgisonline.com/ArcGIS/rest/services

http://sampleserver2.arcgisonline.com/ArcGIS/rest/services

http://sampleserver3.arcgisonline.com/ArcGIS/rest/services

http://sampleserver4.arcgisonline.com/ArcGIS/rest/services

http://sampleserver5.arcgisonline.com/ArcGIS/rest/services

http://sampleserver6.arcgisonline.com/ArcGIS/rest/services

The OGC SWG group for the GeoServices SWG is currently inactive. In the future the
SWG may decide to restart its activities to take this process to completion; making the
candidate standard a full OGC standard. Until then, the work that went into this effort
holds many answers for the other OGC activities seeking to leverage RESTful patterns.
Web environments today increasingly favor patterns that reflect the natural evolution of
the web over rigid academic design arguments. The candidate standard finely balances
the rigor necessary for standardization with the practical aspects of building a GIS
experience that stays faithful to practical Web 2.0 principles.

6.1.8 Further References

Draft OGC document: GeoServices REST API – Part 1-8 (OGC -12-054r1)

GeoServices REST API – Relationship with the OGC standards baseline (OGC 12-
062r2)

GeoServices REST API – JSON Schemas and Examples (OGC 12-068r2)

GeoServices REST API – RFC Comments (OGC 12-164)

GeoServices REST specification (published by Esri):
http://www.esri.com/industries/landing-pages/geoservices/geoservices

 OGC 15-052r1r1

Copyright © 2016 Open Geospatial Consortium. 21

6.2 WaterML 2.0 API

Very recently, the WaterML SWG presented a REST interface and JSON encoding for
WaterML 2.0 (OGC 15-033 – OGC WaterML2.0 part 2 – RESTful API and JSON
encoding) Best Practice document –. The document specifies a RESTful API and JSON
encoding of WaterML2.0 part 2. This API and encoding was used in the part 2
Interoperability Experiment (IE) to test the information model. The implementation was
found to be useful for the IE participants and thus has been documented as a best
practice.

The RESTful API design was based on the requirements outlined by the IE participants
and through an iterative implementation. The Best Practice scope is based on the
WaterML2.0 information model. There are parts of the implementation that would
require harmonization with any future OGC-wide RESTful and JSON practices.

In the case of the Best Practice document, it is a read-only service, so it only used GET.
With the exception of plurals for resource in path, this API follows the guidelines
described above.

The WaterML2 REST API (http://waterml2.csiro.au/rgs-api/v1/) is very simple as it
defines the resources that can be managed at the root URL and it uses links extensively so
that HATEOAS principle can be applied.

The available documentation is also very easy to understand and interactive. The most
noticeable difference of this API compared to other OGC initiatives is that is starts from
the Resources, which is the logical path for a REST API.

Figure 1 – WaterML2.0 part 2 API docs

OGC 15-052r1r1

22 Copyright © 2016 Open Geospatial Consortium.

6.3 Web Map Tile Service (WMTS) RESTful binding

One of the first OGC standards that adopted REST principles was WMTS. Inspired in the
previous community standard called TMS, WMTS adopted some of the RESTful
principles. To do so, WMTS defines 3 resource types: The ServiceMetadata document,
the tile and the FeatureInfo report. Each resource type has its own MIME type. A WMTS
service only accepts GET operations to retrieve resources. Creation, update or deleting of
resources is not provided by the WMTS REST protocol binding and those operations are
left open to the implementation (e.g. some implementations will provide a GUI interface
based on HTTP while others will provide a command line set of instructions). The
ServiceMetadata document is the single entry point to a service. Then tile resources can
be retrieved (in the form of an image) and eventually, each pixel of each tile becomes a
resource of the FeatureInfo type the representation of it is usually information about the
features depicted in it in the form of a textual format.

 OGC 15-052r1r1

Copyright © 2016 Open Geospatial Consortium. 23

One of the particularities of WMTS is that it uses the URL template standard to specify a
URL pattern that all tile and FeatureInfo URL follows. The URL template standard
extends the URL standard to allow to specify parameter names between ‘{‘and‘}’ that
will be processed by the client and substituted by actual values. This way, with a single
URL template the client is able to create a URL of the needed tile (or a FeatureInfo) and
retrieve a representation using a GET request. Even if this patter is also adopted in
OpenSearch, the use of URL template has raised criticism.

6.3.1 Criticism of the URL template approach.

There are two criticisms of the URL template approach. The first is that URL templates
are not opaque but follow some predefined structure. The second criticism is that this
means of link navigation is not entirely consistent with HATEOAS principles.

In a completely RESTful HATEOAS implementation of a tile service, the service
metadata document would point to a single tile that includes the whole extent provided by
the layer. The tile format would be a text format that includes URL links to the tiles in the
next level and the tile image linked or embedded (an alternative to this is use HTTP
headers as specified in Clause 5. If the client requested a tile from the next zoom level,
the response would provide new URL links to the spatially adjacent neighbors and the
next higher and lower zoom levels. In this approach clients would have all the
information to navigate through resources without previous knowledge of the tile URL
pattern.

In practice, this has proven to result in remarkably awkward map applications. The client
still needs to know crucial information about the individual tiles and tile hierarchy. The
client needs to know something about the geospatial position of each tile. Otherwise, the
client will not be able arrange the tiles adequately in the viewport and to cut out the
unwanted regions of the marginal tiles. Crawling through a set of tiles in order to
compute how to arrange them is just painful. Another factor to take into account is that
sometimes users will require jumping from one zoom level to another that is far from the
current one or will request a completely new location far from the previous view. In this
case the status information that the server can communicate to the client in each tile in the
form of new links becomes impractical. As a general principle, we think that the
geospatial component introduces implicit geospatial relations between tiles that clients
need to know in advance and exploit to provide a good user experience. These geospatial
relations / templates cover the functionality that HATEOAS might provide step-by-step
but with the necessary added efficiency of being able to request only the needed tiles out
of possibly millions of possibilities.

6.3.2 Caching and considerations for future parameter extensions.

The WMTS standard does not make any assumption as to how or when tiles will be
created in the server side. They can be pre-rendered or created on the fly. One way or
another, the URL template is an effort to ensure that each tile is available with only one
URL, making caching more efficient.

OGC 15-052r1r1

24 Copyright © 2016 Open Geospatial Consortium.

Some people argue that the KVP approach commonly used in OGC standards is also
RESTful. This has some merit, but there are drawbacks. KVP is too flexible and allows
for any order in the parameters. In addition, some standards allow for floating point
numbers in KVP values associated to some keys (e.g. the BBOX). When combined this
opens the door to an almost infinite number of URL variants for the same resource and
makes efficient caching almost impossible.

The way WMTS is defined requires specifying all possible values of any new extra
dimension in the service metadata document. The goal is to ensure that the values of
these parameters will be written in the URLs in a single form with no ambiguity (the
same provided by the service metadata document).

Recently, a WMTS time extension has been proposed. The proposers of the extension
argue that listing all time values in the service metadata document is not convenient for
long time series, and want to provide just an interval. This creates ambiguity in the way
time has to be written in the URL depending on the precision used by the client. To
prevent multiple URLs pointing to the same resource a format template is proposed. This
is an extension of the URL template standard that will allow providing a format pattern.
A example of what it has been proposed is: {time:YYYY/MM/DDThh:mm} where
YYYY represents the year, MM represents the month, DD represents the day, hh
represents the hour and mm represents the minutes (as used in some software such as MS
Excel). In our opinion, this can be also used for other future parameter extensions such as
elevation or temperature in the same way: {elevation:###00} or {temperature:##.#}
where # represents a digit.

The need for having a single URL (or at least a small number) pointing to each resource
needs to be taken into account in any WMTS extension.

6.3.3 WMTS Simple

The WMTS simple profile has been tested during the Testbed 11 activity. WMTS simple
makes RESTful binding mandatory and imposes one of the two possible TileMatrixSets
defined in the standard. A client using WMTS simple profile can ignore the Service
Metadata document of a WMTS service conformant to this profile. Service discovery is
made possible by communicating the URL template of a layer in the WMTS service
directly by any communication means such as Facebook, Twitter, or an email. The
following email fragment illustrates how this can be done.

Hey,
I have a WMTS 1.0.0 service up at “http://mycompany.com/wmts”.
It can be accessed with a standard WMTS client application.
It’s also compatible with the WMTS-Simple profile, with the
following URL templates:

“Oceans” layer:

http://mycompany.com/wmts/1.0.0/tiles/oceans/default/smerc/{TileM
atrix}/{TileCol}/{TileRow}.png

 OGC 15-052r1r1

Copyright © 2016 Open Geospatial Consortium. 25

The “Transportation” layer (Rand-McNally style):

http://mycompany.com/wmts/1.0.0/tiles/transportation/RandMcNally/
smerc/{TileMatrix}/{TileCol}/{TileRow}.png

By implementing this profile, clients can more easily combine data coming from different
services including from other WMTS instances and even from some tile implementations
that are not OGC WMTS based, such as some current distributions of Open Street Map
(OSM). In fact, most of these tiling services are implicitly following most of the WMTS
requirements without saying it.

Even if the simple profile makes REST binding mandatory, it is questionable if it is more
RESTFul than the previous version of WMTS. By imposing this profile, the client status
description becomes simpler due to the TileMatrixSet si fixed. Nevertheless, clients do
not exchange the status with services in HATEOAS way either.

6.4 REST binding for WFS 2.5

6.4.1 Introduction

The forthcoming WFS 2.5 specification includes a REST binding that, unlike existing
OGC standards which are service-oriented, is a resource-oriented description of a web
feature server that uses the standard HTTP interface as meaningfully as possible to
manipulate and manage feature resources.

Testbed 11 provided an opportunity to test web feature services implementing the REST
binding as described in the WFS 2.5 implementation standard. This clause summarizes
the salient elements of the RESTful web features services used, primarily in the Urban-
Climate Resilience thread, during the OGC Testbed 11 and described in OGC 11-080r1.

6.4.2 Basic service elements

6.4.2.1 Service root

For interactions with a RESTful WFS to commence a client needs to discover the service
root of the WFS. The format of the service root URL is not specified in the WFS 2.5
standard and as such alleviates the need to define service and version negotiation
protocols as those elements may (or not) be incorporated into the published service root
URL in any manner that is meaningful to the service implementation.

The following table lists the service roots for the RESTful WFSs used in the OGC
Testbed 11.

Table 2 – OGC Testbed 11 WFS 2.5 Implementations

Provider Service root

OGC 15-052r1r1

26 Copyright © 2016 Open Geospatial Consortium.

CubeWerx 6.4.2.1.1.1.1.1 http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5
.0/ows11

Geomatys http://ows11.geomatys.com/constellation/WS/wfs/MOZOSM/2.0.0

IBM http://ogcwfs.mybluemix.net/wfs/2.5

A WFS’s service metadata document (i.e. its capabilities document) (see OGC 06-121r3,
OGC 11-080r1) is accessible at its service root.

6.4.2.2 Representation of features

The canonical representation of features, as defined in the WFS 2.5 standard, is GML 3.2
(see OGC 07-036). However, the standard allows other representation to be used as well
and during Testbed 11 extensive testing was undertaken using a JSON, and specifically
GeoJSON (see http://geojson.org/geojson-spec.html) representation of features.

6.4.2.3 Content negotiation

Content negotiation is the mechanism by which a client or user agent and a server arrive
at a mutually agreeable representation of resources in the server’s response. During
Testbed 11, two approaches to content negotiation were tested.

The primary method of content negotiation used in the OGC Testbed 11 was the HTTP
Accept header (see http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html). In a WFS
request, the client simply sets the value of the Accept header to a list of one or more
MIME types representing the client’s preferred resources encodings. Each listed MIME
type may also include a quality factor letting the server know the relative degree of
preference of each listed MIME type. The following as examples of the Accept header
indicating the client’s preferences for a GeoJSON feature representation but also capable
of accepting a GML representation:

Accept : application/vnd.geo+json, application/gml+xml ; version=3.2

In the absence of quality factors the MIME types are listed in preferred representation
first.

6.4.2.4 Hypermedia controls

One of the main features of the RESTful architectural style is connectedness. That means
that resources should link to each other and their representations and that from any state
of the systems, links should be available to allow a client to navigate to a next valid state.
The WFS 2.5 standard uses the ATOM link element (see OGC 07-147r2) to support the
inclusion of hypermedia controls in the responses of the service.

 OGC 15-052r1r1

Copyright © 2016 Open Geospatial Consortium. 27

The ATOM link element includes a “rel” attribute describing the relationship between the
current document and the linked document. The value of the “rel” attribute can be a
value from the IANA Link Relations registry (see RFC 5988) or a value that has been
registered with the OGC naming authority.

The two primary places where hypermedia controls can appear in a WFS’s response are
in the server’s capabilities document and in a query response.

Hypermedia controls in the server’s capabilities document allow a client to:

(a) Obtain the application schema that the service offers. This schema must be
available as a GML 3.2 (see OGC 07-036) application schema but other schema
representations are allowed.

(b) Navigate to a collection of features of this type.
(c) Obtains the schema of this feature type.
(d) Access (i.e. query) features of this feature type.

The following XML fragments is an example from the capabilities document of one of
the servers using in Testbed 11:

 <FeatureType>
 <atom:link xmlns:atom=”http://www.w3.org/2005/Atom”
rel=”collection”
href=”http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0
/ows11/wwAccess”/>
 <atom:link xmlns:atom=”http://www.w3.org/2005/Atom”
rel=”describedby” type=”application/schema+xml”
href=”http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0
/ows11/wwAccess”/>
 <Name>cw:wwAccess</Name>
 <Title>wwAccess</Title>
 <DefaultCRS>urn:ogc:def:crs:EPSG::4326</DefaultCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::42110</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::3857</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::4267</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::4269</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::32758</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::32759</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::32760</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:OGC::CRS41001</OtherCRS>
 <ows:WGS84BoundingBox>
 <ows:LowerCorner>172.4565 -43.8190</ows:LowerCorner>
 <ows:UpperCorner>172.9755 -43.3975</ows:UpperCorner>
 </ows:WGS84BoundingBox>
 </FeatureType>

The fragment describes one to the features types, wwAccess, offered by the service and
includes two hypermedia controls.

OGC 15-052r1r1

28 Copyright © 2016 Open Geospatial Consortium.

The first control, with rel=”collection”, will access features of this this type by
performing a query on the server using the default values of the query parameters (see
Table 4). In this case, the control is a link to a document that contains 10 features (the
default value for the “count” parameter) of the “wwAccess” type.

The second control, with rel=”describedby”, accesses a document containing the schema
of the feature type wwAccess.

In this way, a client (knowing the service root) can navigate to next, valid, states without
necessarily having to be aware of the details of accessing the service. The only
requirement is that the client recognizes the “rel” value and resolves the accompanying
link.

Hypermedia controls in a query response may allow a client to:

(a) Navigate to the service (i.e. get its capabilities document) that offers the feature.
(b) Navigate to the collection that contains the feature.
(c) Navigate to alternative representations of the current feature

The following XML fragment shows a sample query response with hypermedia controls:

<wfs:member>
 <atom:link rel=”service”
href=”http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0/ows11
”/>
 <atom:link rel=”collection”
href=”http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0/ows11
/wwAccess”/>
 <atom:link rel=”alternate” type=”application/gml+xml; version=2.1”
href=”http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0/ows11
/wwAccess/CWFID.WWACCESS.0.0.BA89DF77E5626F761F20020000?outputFormat=ap
plication%2Fgml%2Bxml%3B%20version%3D2.1”/>
 <atom:link rel=”alternate” type=”application/gml+xml; version=3.1”
href=”http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0/ows11
/wwAccess/CWFID.WWACCESS.0.0.BA89DF77E5626F761F20020000?outputFormat=ap
plication%2Fgml%2Bxml%3B%20version%3D3.1”/>
 <atom:link rel=”alternate” type=”application/gml+xml; version=3.2”
href=”http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0/ows11
/wwAccess/CWFID.WWACCESS.0.0.BA89DF77E5626F761F20020000?outputFormat=ap
plication%2Fgml%2Bxml%3B%20version%3D3.2”/>
 <atom:link rel=”alternate” type=”application/x-bxfs+xml;
version=0.0.3”
href=”http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0/ows11
/wwAccess/CWFID.WWACCESS.0.0.BA89DF77E5626F761F20020000?outputFormat=ap
plication%2Fx-bxfs%2Bxml%3B%20version%3D%220.0.3%22”/>
 <atom:link rel=”alternate” type=”application/rss+xml”
href=”http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0/ows11
/wwAccess/CWFID.WWACCESS.0.0.BA89DF77E5626F761F20020000?outputFormat=ap
plication%2Frss%2Bxml”/>
 <atom:link rel=”alternate” type=”application/vnd.google-
earth.kml+xml”
href=”http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0/ows11

 OGC 15-052r1r1

Copyright © 2016 Open Geospatial Consortium. 29

/wwAccess/CWFID.WWACCESS.0.0.BA89DF77E5626F761F20020000?outputFormat=ap
plication%2Fvnd.google-earth.kml%2Bxml”/>
 <atom:link rel=”alternate” type=”application/atom+xml”
href=”http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0/ows11
/wwAccess/CWFID.WWACCESS.0.0.BA89DF77E5626F761F20020000?outputFormat=ap
plication%2Fatom%2Bxml”/>
 <atom:link rel=”alternate” type=”text/html”
href=”http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0/ows11
/wwAccess/CWFID.WWACCESS.0.0.BA89DF77E5626F761F20020000?outputFormat=te
xt%2Fhtml”/>
 <atom:link rel=”alternate” type=”application/vnd.geo+json”
href=”http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0/ows11
/wwAccess/CWFID.WWACCESS.0.0.BA89DF77E5626F761F20020000?outputFormat=ap
plication%2Fvnd.geo%2Bjson”/>
 <atom:link rel=”alternate” type=”application/vnd.shp+octet-stream”
href=”http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0/ows11
/wwAccess/CWFID.WWACCESS.0.0.BA89DF77E5626F761F20020000?outputFormat=ap
plication%2Fvnd.shp%2Boctet-stream”/>
 <wwAccess
 gml:id=”CWFID.WWACCESS.0.0.BA89DF77E5626F761F20020000”>
 <Geometry>
 <gml:Point gml:id=”GID1”
 srsName=”urn:ogc:def:crs:EPSG::4326”>
 <gml:pos>-43.59451450970821 172.5609996851931</gml:pos>
 </gml:Point>
 </Geometry>
 <uid>WWMH-3044</uid>
 <AccessType>Standard Manhole</AccessType>
 <SourceId>2504S00145</SourceId>
 <LocationCe>Non Verified</LocationCe>
 <NearestPru>1</NearestPru>
 <HansenId>62682</HansenId>
 <n>5734677.7</n>
 <e>2474562.44</e>
 <WwAccessID>3044</WwAccessID>
 <Compkey>9521</Compkey>
 <HeightAbov>22.04</HeightAbov>
 <Constructi>1</Constructi>
 <Depth>1.1</Depth>
 <Maintenanc>City Water and Waste</Maintenanc>
 <ServiceSta>Abandoned</ServiceSta>
 <Decommissi>2013-04-30</Decommissi>
 <YearLaid>1971-01-01</YearLaid>
 <SAPInterna>IE000000000010739686</SAPInterna>
 <LastEditDa>2015-01-26</LastEditDa>
 <LastEditUs>CCITY\TredinnickC</LastEditUs>
 <WwAccessSt>3453</WwAccessSt>
 <Checked>0</Checked>
 </wwAccess>
</wfs:member>

This response fragment includes a hypermedia control that links the feature back to the
service that offers it (i.e. rel=“service“), a hypermedia control that links the feature back
to the collection that contains it (i.e. rel=“collection“) and a set of hyperlinks that provide

OGC 15-052r1r1

30 Copyright © 2016 Open Geospatial Consortium.

alternative representations of this feature including HTML, ATOM and KML
representations.

6.4.2.5 URI Templates

One aspect of connectedness discussed in the Cross Community thread and briefly
investigated during Testbed 11 is the use of URI templates as an alternative to
hypermedia controls. As an example of this, Open Search uses URI templates to describe
an interface by which a client can make requests for resources from the service.

Open Search defines an element named “Url” that has similar attributes to the ATOM
link element. The following tables maps the attributes of the “Url” element to the
attributes of the “atom:link” element.

Table 3 – Mapping Open Search Url attributes to ATOM link attributes

Open Search
attribute name

Description ATOM link
attribute name

rel The role of the resource being
described in relation to the description
document.

Rel

type The MIME type of the resource being
described.

Type

template The URL template that can be used to
form a URL through variable
expansion.

Href

Open search defines its own variables and rules for template expansion that seem to be a
subset of RFC 6570 – URI Template. It is anticipated that if the URI template approach
were to be adopted in OGC, the full RFC-6570 syntax would be used.

In the capabilities fragment example in clause 7.4.2.4, hypermedia controls were used to
point clients to the schema of the feature type as well as point the client the collection of
features of that type. Similar capabilities can be performed using URI templates.
Assuming the existence of a “Url” element in the WFS schema, the example can be recast
as:

 <Url rel=”collection” type=”application/gml+xml; version=3.2”
template=”http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2
.5.0/ows11/{featureType}”/>
 <Url rel=”describedby” type=”application/schema+xml”
template=”http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2
.5.0/ows11/{featureType}”/>

 OGC 15-052r1r1

Copyright © 2016 Open Geospatial Consortium. 31

 .
 .
 .
 <FeatureType>
 <Name>cw:wwAccess</Name>
 <Title>wwAccess</Title>
 <DefaultCRS>urn:ogc:def:crs:EPSG::4326</DefaultCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::42110</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::3857</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::4267</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::4269</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::32758</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::32759</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::32760</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:OGC::CRS41001</OtherCRS>
 <ows:WGS84BoundingBox>
 <ows:LowerCorner>172.4565 -43.8190</ows:LowerCorner>
 <ows:UpperCorner>172.9755 -43.3975</ows:UpperCorner>
 </ows:WGS84BoundingBox>
 </FeatureType>

Because URI templates define a general pattern for forming URLs to access the schema
or collection of features, the templates need to exist outside any specific feature type
description in the capabilities document – which is why the Url elements appears outside
the FeatureType element in the example above.

The two approaches are similar; however, the template approach does not follow the
principles of HATEOAS (see 6.1.1, https://en.wikipedia.org/wiki/HATEOAS) because
the URLs are no longer opaque. Furthermore, the URI template approach places the
extra burden on the client of knowing how to expand a template as per RFC-6570
whereas in the hypermedia approach the fully formed URL is available and the client
simply needs to resolve it. The implications of this difference were graphically illustrated
during Testbed 11 by the fact that in the hypermedia case a standard browser could be
used to act as a very simple WFS client. This was not possible with the template
approach because the browser is unaware of the RFC-6570 expansion rules and the
substitution variables that the WFS would need to define in order to use URI templates.

During Testbed 11 it was further determined that there is no reason why the two
approaches cannot co-exist within the same service metadata or response document. In
this way clients that know how to handle URI templates can use the embedded templates
whereas unaware clients can simply follow the hypermedia controls.

CHANGE REQUEST: post a change request that optionally allows a server to include
URI templates in the capabilities document and query responses of a web feature service.

6.5 Summary of resources

The following table summarizes the WFS resources used and tested during Testbed 11.

OGC 15-052r1r1

32 Copyright © 2016 Open Geospatial Consortium.

Table 4 – Summary of WFS 2.5 REST resources used in OGC Testbed 11

Resource class Description Access path

Capabilities document The complete service metadata
document describing the service and
the feature types it offers.

/

Schema The complete application schema of
the server.

6.5.1.1.1.1.1.1 {schema
URL}2

Feature Type A named collection of features of the
same type.

{ftype URL}3

Feature A member of a feature type’s
collection (i.e. a feature).

6.5.1.1.1.1.1.2 {feat
URL}4

Feature Type Property 6.5.1.1.1.1.1.3 A property from the
schema of a feature
type.

6.5.1.1.1.1.1.4 {ftype
URL}/
{prop}
1

Feature Property 6.5.1.1.1.1.1.5 A property from the
schema of feature.

6.5.1.1.1.1.1.6 {feat
URL}{
prop}1

1. {prop} = The name of a feature property; it is appended to a URL before any
query parameters.

2. {schema URL} = The URL to the application schema the service offers; it is
specified at the first nesting level within the wfs:FeatureTypeList element in the
server’s capabilities document using an atom:link element with
rel=”describedby”.

3. {ftype URL} = The URL to a collection of features of this type; it is specified at
the first nesting level within the wfs:FeatureType element in the capabilities
document using an atom:link element with rel=”collection”.

4. {feat URL} = The URL of a feature.

6.6 Feature access

6.6.1 Introduction

The REST binding of the WFS 2.5 standard defines two classes of feature access or
query: simple queries and complex queries.

Simple queries are those that access features from a single homogenous collection.

 OGC 15-052r1r1

Copyright © 2016 Open Geospatial Consortium. 33

Complex queries are those that access multiple feature types and/or include complex
predicates such as joins (standard, temporal, spatial). Two classes of complex query are
defined, ad hoc queries and stored queries.

Testbed 11 concentrated on simple queries since those are processed in the expected
REST manner using the GET method to access the desired feature/feature type (i.e.
resource) that is identified by its URL.

6.6.2 Query parameters

A resource URL can include query parameters. Query parameters may be used to control
the output format and content of the response; control the resolution of referenced
resources in the response; identify subsets of features base on predicates; sort the
response feature.

The full set of query parameters that may be appended to a resource URL are defined in
the following table. Those rows highlighted in green indicate that the parameter was
actually tested and used in the course of Testbed 11.

Table 5 – WFS 2.5 query parameters

Parameter name Notes

outputFormat See the WFS standard.

6.6.2.1.1.1.1.1 f Alias for outputFormat.

resultType Valid value are:
hits = only return the number of features in the result set
results = return the result set contained within a
wfs:FeatureCollection element
cursor = return the first feature of the result set and include a
link to the next feature in the result set, etc.

count See the WFS standard.

startIndex See the WFS standard.

Resolve See the WFS standard.

resolveDepth See the WFS standard.

resolveTimeout See the WFS standard.

nameSpaces See the WFS standard.

Lock Valid values are: true, false, {lockid}
“true” means that the server attempts to lock all the feature that

OGC 15-052r1r1

34 Copyright © 2016 Open Geospatial Consortium.

the query identifies subject to the value of the lockAction
parameter
“false” means don’t try to lock anything
{lockid} means:
(a) for previously locked feature: refresh the lock expiry
(b) for previously unlocked features: lock them with this
lockId if possible (again, subject to the value of the lockAction
parameter)

lockExpiry In seconds, default is 300

lockAction Valid values are: ALL, SOME

releaseAction Valid values are: ALL, SOME

sortBy See the WFS standard.

propertyName 6.6.2.1.1.1.1.2 See the FES standard.

Filter_language See the FES standard.

Filter See the FES standard.

featureId Retrieves the feature with the specified id within a
wfs:FeatureCollection response container.

6.6.2.1.1.1.1.3 bbox See the FES standard.

6.6.2.1.1.1.1.4 geometry WKT-encoded geometry

6.6.2.1.1.1.1.5 crs CRS for “geometry”

spatialOp One of: Equals, Disjoint, Touches, Within, Overlaps, Crosses,
Intersects, Contains

time ISO8601 time instance or interval

temporalOp One of: After, Before, Begins, During, EndedBy, Ends,
Tequals, Meets, MetBy

6.6.3 Examples

6.6.3.1 Introduction

The following examples were derived from the OGC Testbed 11activity and illustrate
feature access using a standard browser, Firefox in this case, as a simple WFS client.

 OGC 15-052r1r1

Copyright © 2016 Open Geospatial Consortium. 35

While reviewing the examples, it should be kept in mind that the default value for the
Accept header for the Firefox browser is:

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

thus indicating that the preferred output format is HTML. Other browsers may have
other default values for the Accept header and so the behavior may be different than what
is described in the text of this clause.

“This links in this clause are live and access one of the servers used during the OGC
Testbed 11. If problems are encountered please contact pvretano[at]cubewerx.com.
This server shall be maintained for the contractual obligation of 6 months from the end of
June, 2015.”

6.6.3.2 Accessing a services capabilities document

Accessing the service root accesses, the server’s capabilities or metadata document:

http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0/ows11

Because the default value of the Accept header for Firefox requests HTML output, the
response shall be formatted as HTML as shown in Figure 1.

6.6.3.3 Accessing the application schema of the service

Within the capabilities document is a link where rel=”describedby”. Accessing this link
will retrieve the server’s application schema.

http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0/ows11/schema

The default output format is GML 3.2 (i.e. application/gml+xml; version=3.2) and so the
schema is presented as a GML 3.2 application schema.

6.6.3.4 Accessing the feature collection

Each feature that the server offers is described in the server’s capabilities document using
the wfs:FeatureType element. That description includes a link where rel=”collection”.
Accessing that link will execute the default query which returns 10 features of that type.
In this example we access the wwAccess feature type :

http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0/ows11/wwAccess

If you view this link in your browser you will see an HTML representation of the
wwAccess features because the preferred output format of the browser is HTML and the
server is capable of generating HTML. The default output is not styled but including a
style sheet, using a vendor extension “css”,

OGC 15-052r1r1

36 Copyright © 2016 Open Geospatial Consortium.

http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0/ows11/wwAccess?css=ht
tp://www.pvretano.com/cubewerx/css/ows11_table.css

makes the output look a little better.

Figure 2 – REST WFS Capabilities document in HTML

 OGC 15-052r1r1

Copyright © 2016 Open Geospatial Consortium. 37

6.6.3.5 Accessing a specific feature in GML

Accessing a specific feature is simply a matter of resolving the feature’s URL:

http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0/ows11/wwAccess/CWFI
D.WWACCESS.0.0.BA89DF77E5626F761F20020000

Once again, since we are using the browser, the output shall appear as HTML. However,
this behavior can be overridden by using the “outputFormat” or “f” query parameters to
request the response is a specific format. In this case:

http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0/ows11/wwAccess/CWFI
D.WWACCESS.0.0.BA89DF77E5626F761F20020000?f=application/gml%2Bxml;%20
version=3.2

the response will be in XML and in this case:

http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0/ows11/wwAccess/CWFI
D.WWACCESS.0.0.BA89DF77E5626F761F20020000?f=application/vnd.geo%2Bjson

the response will be GeoJSON.

In both cases accessing a feature via its URL generates the bare features in a manner
similar to that of performing a GetFeatureById operation in previous versions of the
WFS. There is not container element; simply the base feature. Using the “featureId”
parameter on the feature type or collection URL will retrieve the feature inside of a
response container:

http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0/ows11/wwAccess?feature
Id=CWFID.WWACCESS.0.0.BA89DF77E5626F761F20020000

Notice now that the response is inside a wfs:FeatureCollection container and also contain
numerous hypermedia controls.

6.6.3.6 Accessing a subset of features

As illustrated in clause 7.3.6.4, accessing a feature type without any query parameters
returns a default set of 10 features. Other subsets may be retrieved by simply includes
query parameters (see Table 4) on the collection’s URL. For example, all the wwAccess
features within a specific bounding box can be retrieved using the “bbox” query
parameter:

http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0/ows11/wwAccess?bbox=
-43.4380,172.6489,-43.3947,172.7108

Figure 3 shows what the output of this request looks like in HTML.

OGC 15-052r1r1

38 Copyright © 2016 Open Geospatial Consortium.

In order to force XML output in the Firefox browser we include the “outputFormat” or
“f” query parameters as well:

http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0/ows11/wwAccess?bbox=
-43.4380,172.6489,-43.3947,172.7108&f=application/gml%2Bxml;%20version=3.2

For the XML output, notice that each feature in the response is accompanied by a number
of hypermedia controls.

Figure 3 – REST WFS query response in HTML

Following any hypermedia control where rel=”service” will retrieve the capabilities
document of the service that offers this feature.

http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0/ows11

Following any hypermedia control where rel=”collection” will access the feature type or
collection that contains this feature and execute a default query.

http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0/ows11/wwAccess

Following any control where rel=”alternate” will retrieve an alternative representation of
the same feature. For example:

http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0/ows11/wwAccess/CWFI
D.WWACCESS.0.34709.BA89DFD04C0B73161F20020000?outputFormat=application/
vnd.geo%2Bjson

will retrieve the feature in GeoJSON while

 OGC 15-052r1r1

Copyright © 2016 Open Geospatial Consortium. 39

http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0/ows11/wwAccess/CWFI
D.WWACCESS.0.34709.BA89DFD04C0B73161F20020000?outputFormat=application/
x-bxfs%2Bxml;%20version=%220.0.3%22

will retrieve the feature in BXFS (see OGC 07-004).

6.7 Transactions

Like feature access (see 7.6) the WFS REST binding segregates feature management or
transactions into simple and complex classes.

Simple feature management is the manipulation of single features using HTTP’s POST,
PUT and DELETE methods as one would expect in a service using the REST
architectural style (see 6.1.1, 6.2).

Complex feature management involves changes that operate on multiple features not
necessarily all of the same type using either batch or transaction semantics. The WFS
offers two approaches for performing complex transactions. The first is to simply use the
methods currently defined – that is posting an XML document containing a
wfs:Transaction element to the server. The second approach uses a transaction factory to
create a transaction resource that can then be manipulated use the standard CRUD
methods.

In the UCR thread of OGC Testbed 11, transactions were used in the enterprise
synchronization scenario to update features on coordinating nodes. Primarily simple
transactions were used. Complex feature management the REST interface was not tested
in the testbed. For details about the enterprise synchronization scenario please see OGC
15-010 Testbed 11 Summary Report of Findings for WFS-T Information Exchange
Architecture ER.

7 Accomplishments

In this Engineering Report, we tried to summarize best practices for the use of REST in
existing and proposed OGC Web services standards. The most significant results from
OGC Testbed 11 involved implementations of WFS 2.5, a valuable OGC standard and
also a possible guide to incorporating REST principles and practices (as well as use of
JSON representations) in other OGC Web services. In the absence of clear guidance and
compelling motivation for standardized RESTful geo-services, it is clear that every
working group will go its own way to develop API’s, depending on their requirements,
availability of development resources or knowledge of the subject. This may preserve
specific characteristics of OGC service types, but will tend to lose the value of uniform
interfaces and much of the ease of implementation that REST can bring. Clearly, the
development of a uniform RESTful API binding for all OGC services will require both a
commitment to standardization and some re-thinking of each OGC service to re-cast
capabilities in a new light. The work should not so much be a conversion of existing
services as a new understanding of how OGC service capabilities can be made available.

OGC 15-052r1r1

40 Copyright © 2016 Open Geospatial Consortium.

8 Future work

The only way to validate such guidelines is to apply them in a sandbox project. The
subject is so vast that a entire interoperability project could be set up for this topic.

Some ingredients of a broadly applicable OGC REST binding, such useful linking,
versioning, or asynchronous behavior still need to be analyzed and refined.

 OGC 15-052r1r1

Copyright © 2016 Open Geospatial Consortium. 41

Annex A: List of OGC documents dealing with REST

Date	 Title	 OGC	#	 Class	 Status	
08-2007	 			RESTful	OGC	Services	 		 Presentation		 		
08-2007	 			REST	Analysis	SC	 		 Presentation		 		
09-2007	 			RESTifying	The	WCS	 		 Presentation		 Draft		
09-2007	 			RESTful	OGC	Services	 		 Presentation		 		
03-2008	 			RESTFul	Workflows	 		 Presentation		 		
12-2008	 			RESTful	WCS	 		 Presentation		 Draft		
12-2008	 			Rest	and	RPC	 		 Presentation		 Draft		
12-2008	 			WMTS.	KVP,	SOAP	and	RESTful.	TC	Valencia	 		 Presentation		 		
12-2008	 			RESTful	geospatial	services	 		 Presentation		 Draft		
12-2008	 			WMTS.	KVP,	SOAP	and	RESTful.	TC	Valencia	 		 Presentation		 		
04-2009	 			WMTS	Practical	and	RESTful	 		 Presentation		 		
04-2009	 			RESTful	WPS	 		 Presentation		 		
04-2009	 			OWS-6	RESTful	Security	ER	 		 Presentation		 		

04-2009	
			OWS-6	DSS	Engineering	Report	–	SOAP/XML	and	REST	in	
WMTS	 09-006		 Eng.	Spec	

Public	
Engineering	
Report		

04-2009	
			09-006	OWS-6	DSS	Engineering	Report	–	SOAP/XML	and	REST	
in	WMTS	 		 Presentation		 		

04-2009	 			RESTful	Security	Demo	Slides	 		 Presentation		 		

04-2009	
			RESTful	Demo	–	Building	at	Louis	Armstrong	Airport	–	New	
Orleans	 		 Presentation		 		

05-2009	
OWS-6_DSS_EngineeringReport-	
SOAP/XML_and_REST_in_WMTS	 		 Presentation		 		

05-2009	 			OWS-6RESTful	Security	Presentation	 		 Presentation		 		
05-2009	 OWS-6			RESTful	Security	Demo	Video	(pdf)	 		 Presentation		 		
05-2009	 OWS-6			RESTful	Security	Demo	Video	(m4v)	 		 Presentation		 		
05-2009	 OWS-6			RESTful	Scenario	Video	(pdf)	 		 Presentation		 		
05-2009	 OWS-6			RESTful	Scenario	Presentation	(pdf)	 		 Presentation		 		
05-2009	 OWS-6			RESTful	Workflows	(m4v)	 		 Presentation		 		
05-2009	 OWS-6			RESTful	Security	Demo	Video	 		 Presentation		 		
05-2009	 OWS-6			RESTful	Security	Requirements	 		 Presentation		 		
05-2009	 OWS-6			RESTful	Security	Presentation	 		 Presentation		 		
05-2009	 OWS-6			RESTful	Scenario	Presentation	 		 Presentation		 		
05-2009	 			OWS-6	RESTful	Workflow	and	Security	(Vightel	inputs	for	Ers)	 		 Presentation		 		
05-2009	 			OWS-6	RESTful	Workflow	Architecture	ER	 		 Presentation		 		
12-2009	 			RESTFul	Workflows,	Next	 		 Presentation		 		
12-2009	 			RESTful	Synoptic	View	 		 Presentation		 		
12-2009	 			OWS-6	RESTful	Workflows	Movie	 		 Presentation		 		
05-2011	 			Geoservices	REST	API	Candidate	Standard	 11-049		 Eng.	Spec	 Pending		

OGC 15-052r1r1

42 Copyright © 2016 Open Geospatial Consortium.

06-2011	 			Geoservices	REST	Specification	 		 Presentation		 		
06-2011	 			Geoservices	REST	API	 		 Presentation		 		
07-2011	 			A	REST	binding	for	WFS	2.0	 11-080		 Change	Request		 Pending		

07-2011	
			Comments	on	the	ESRI	GeoServices	REST	Specification	Version	
1.0	as	the	basis	for	OGC	REST	GeoServices	 		 Presentation		 		

09-2011	
			12-062r2	GeoServices	REST	API	–	relationship	with	OGC	
baseline	 		 Presentation		 		

09-2011	 			Geoservices	REST	SWG	closing	plenary	report	 		 Presentation		 		
09-2011	 			REST	SC	 		 Presentation		 		
09-2011	 			REST	Common	Patterns	 		 Presentation		 		
09-2011	 			REST	SC	Report	to	TC	 		 Presentation		 		
09-2011	 			Proposed	Charter	for	RESTful	Policy	SWG	 		 Presentation		 		
10-2011	 			Geospatial	REST	API	SWG	 		 Presentation		 		

Directory		 		 		 Presentation		 N/A		
11-2011	 			RESTful	Services	Policy	SWG	 		 Legal	Documents		 Approved		
11-2011	 			Geoservices	REST	SWG	agenda	and	slides	 		 Presentation		 		
01-2012	 			Geospatial	REST	API	SWG	 		 Presentation		 		
02-2012	 			RESTful	Policy	SWG	 		 Presentation		 		
03-2012	 			Austin	TC	Meeting	–	RESTful	Policy	SWG	SWG	 		 Presentation		 		
03-2012	 			RESTful	Policy	SWG	 		 Presentation		 		
05-2012	 			Geospatial	REST	API	SWG	 		 Presentation		 		
09-2012	 			RESTful	WFS	Presentation	 		 Presentation		 		
09-2012	 			OGC	standards	in	various	domains	of	interest	 		 Presentation		 Draft		
11-2012	 			Geoservices	REST	API	SWG	 		 Presentation		 		
12-2012	 			WCS	Extension	–	REST	Protocol	Binding	 		 Eng.	Spec	 		
01-2013	 			WCS	Extension	–	REST	Protocol	Binding	 		 Presentation		 		
01-2013	 			GeoServices	REST	SWG	Update	 		 Presentation		 		
01-2013	 			20121221	WCS	Rest	Protocol	Extension	(draft)	 		 Eng.	Spec	 RFC	Proposal		
03-2013	 			GeoServices	REST	API	–	Part	1:	Core	 12-054r2		 Eng.	Spec	 Pending		
03-2013	 			GeoServices	REST	API	–	Part	2:	Catalog	 12-055r2		 Eng.	Spec	 Pending		
03-2013	 			GeoServices	REST	API	–	Part	3:	Map	Service	 12-056r2		 Eng.	Spec	 Pending		
03-2013	 			GeoServices	REST	API	–	Part	4:	Feature	Service	 12-057r2		 Eng.	Spec	 Pending		
03-2013	 			GeoServices	REST	API	–	Part	5:	Geometry	Service	 12-058r2		 Eng.	Spec	 Pending		
03-2013	 			GeoServices	REST	API	–	Part	6:	Image	Service	 12-059r2		 Eng.	Spec	 Pending		
03-2013	 			GeoServices	REST	API	–	Part	7:	Geoprocessing	Service	 12-060r2		 Eng.	Spec	 Pending		
03-2013	 			GeoServices	REST	API	–	Part	8:	Geocoding	Service	 12-061r2		 Eng.	Spec	 Pending		

03-2013	 			GeoServices	REST	API	–	JSON	Schemas	and	Examples	 12-068r2		
Technical	
Information		 Pending		

03-2013	
			GeoServices	REST	API	–	Relationship	with	the	OGC	standards	
baseline	 12-062r2		

Technical	
Information		 Pending		

03-2013	 			GeoServices	REST	API	–	RFC	Comments	 12-164		
Technical	
Information		 Pending		

04-2013	
			GeoServices	REST	API	–	SWG	response	to	justification	
comments	for	No-Votes	 13-031		

Technical	
Information		 Pending		

 OGC 15-052r1r1

Copyright © 2016 Open Geospatial Consortium. 43

05-2013	
			GeoServices	REST	API	–	SWG	response	to	justification	
comments	for	No-Votes	 13-031r1		

Technical	
Information		 Pending		

05-2013	 			12-164	GeoServices	REST	API	–	RFC	Comments	 		
Technical	
Information		 		

09-2013	
			RESTful	Encoding	of	Ordering	Services	&	Download	protocol	
For	EO	Products	 		 Presentation		 		

02-2014	
			RESTful	Encoding	of	Sensor	Planning	Service	for	Earth	
Observation	Satellite	Tasking	 14-012		 Eng.	Spec	 Pending		

03-2014	
			RESTful	Encoding	of	Sensor	Planning	Service	for	Earth	
Observation	Satellite	Tasking	 		 Presentation		 		

03-2014	
			RESTful	Encoding	of	Sensor	Planning	Service	for	Earth	
Observation	Satellite	Tasking	 		 Presentation		 		

04-2014	
			13-042_OGC_RESTful_Encoding_of_Ordering_	
Services_Framework_For_Earth_Observation_Products	as	BP	 		 Eng.	Spec	 Best	Practices		

04-2014	
			OGC	RESTful	Encoding	of	Ordering	Services	Framework	For	
Earth	Observation	Products	 13-042		 Eng.	Spec	 Best	Practices		

07-2014	
			14-012r1	OGC	RESTful	encoding	of	OGC	Sensor	Planning	
Service	for	Earth	Observation	satellite	Tasking	 		 Eng.	Spec	 Best	Practices		

07-2014	
			RESTful	Encoding	of	Sensor	Planning	Service	for	Earth	
Observation	Satellite	Tasking	 14-012r1		 Eng.	Spec	 Best	Practices		

03-2015	 			REST	binding	for	WFS	2.0	 		 Eng.	Spec	 		
05-2015	 			WaterML2.0	part	2	–	RESTful	API	and	JSON	encoding	 15-033		 Eng.	Spec	 Pending		
06-2015	 			TB-11	REST	in	OGC	Services	ER	 		 Presentation		 		

06-2015	
			WaterML2.0	part	2	–	RESTful	API	and	JSON	encoding	Best	
Practice	 		 Presentation		 		

OGC 15-052r1r1

44 Copyright © 2016 Open Geospatial Consortium.

Annex B: revision history

Date Release Editor Primary
clauses
modified

Description

2015-06-10 0.1 Frédéric
Houbie

all first version of complete ER

2015-06-14 0.2 Joan Masó WMTS
subclause

WMTS considerations included

2015-06-30 0.3 Peter
Vretanos

WFS 2.5 Description of WFS 2.5 REST

2015-08-21 0.9 Frédéric
Houbie

all General editing

2015-09-13 1.0 Josh
Lieberman,

Lew
Leinenweber

all General editing and contrast of REST
and OGC service styles

2016-01-06 1.1 Frédéric
Houbie

all Move list of REST documents at OGC
as an annex, General editing

2016-01-06 1.1 Scott
Simmons

All Finalize for publication

 OGC 15-052r1r1

Copyright © 2016 Open Geospatial Consortium. 45

Bibliography

[1] http://www.restapitutorial.com/ under Creative Commons Attribution-ShareAlike
4.0 International License

[2] Principles of good RESTful API Design (source : http://codeplanet.io/principles-
good-restful-api-design/)

[3] Consumer Centric REST API : https://thomashunter.name/consumer-centric-api-
design/Consumer-Centric%20API%20Design%20v0.3.1.pdf

