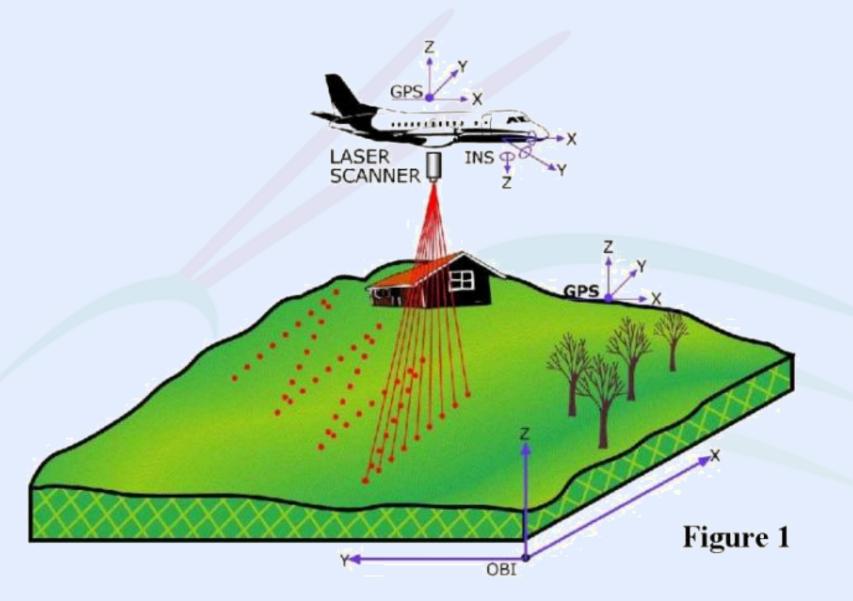
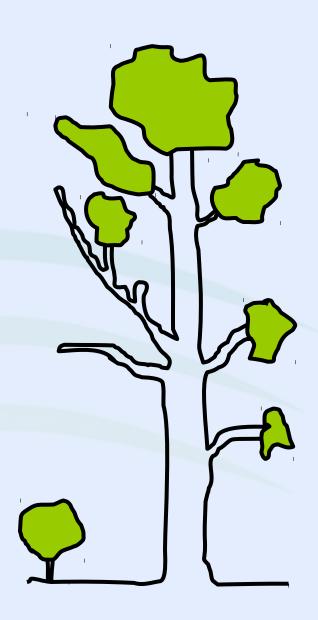

Making LAS an Open Standard (with compression)

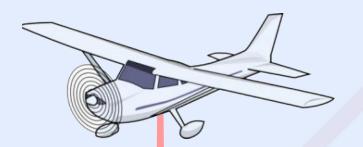
Martin Isenburg, rapidlasso GmbH

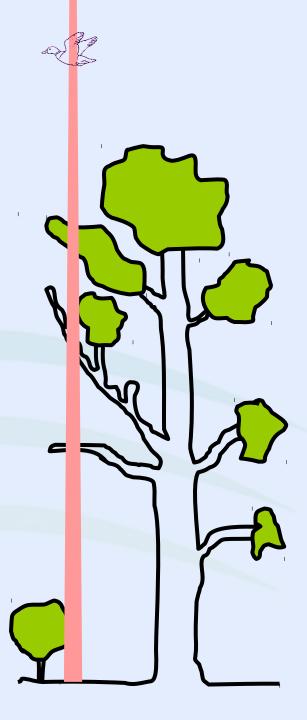

No "universal" Point Standard

SITUATION: THERE ARE 14 COMPETING STANDARDS.

SOON: SITUATION: THERE ARE 15 COMPETING STANDARDS.


airborne (and mobile) LiDAR


LiDAR Details

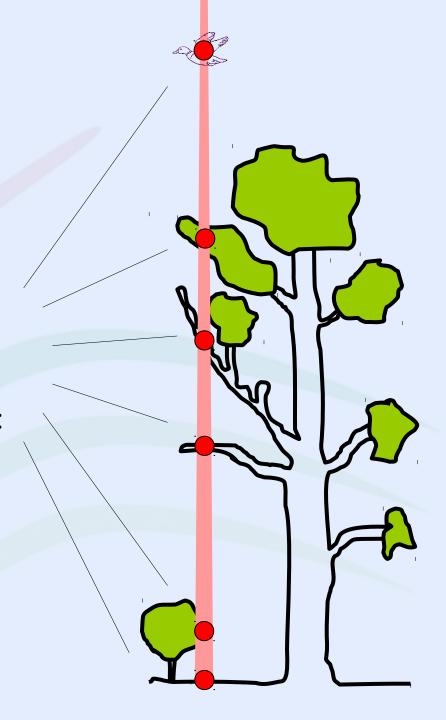


LiDAR Details

LiDAR Details

one laser shot can produce multiple discrete returns:

 $x_1 y_1 z_1 (1^{st} \text{ of } 6)$


 $x_2 y_2 z_2 (2^{nd} \text{ of } 6)$

 $x_3 y_3 z_3 (3^{rd} \text{ of } 6)$

 $x_4 y_4 z_4 (4^{th} \text{ of } 6)$

 $x_5 y_5 z_5 (5^{th} \text{ of } 6)$

 $x_6 y_6 z_6 (6^{th} \text{ of } 6)$

The LAS format

Item	Format	Size	Required
File Signature ("LASF")	char[4]	4 bytes	*
(1.1) File Source ID	unsigned short	2 bytes	*
(1.1) Reserved	unsigned short	2 bytes	
(1.1) Project ID - GUID data 1	unsigned long	4 bytes	
(1.1) Project ID - GUID data 2	unsigned short	2 byte	
(1.1) Project ID - GUID data 3	unsigned short	2 byte	
(1.1) Project ID - GUID data 4	unsigned char[8]	8 bytes	
Version Major	unsigned char	1 byte	*
Version Minor	unsigned char	1 byte	*
(1.1) System Identifier	char[32]	32 bytes	*
Generating Software	char[32]	32 bytes	*
(1.1) File Creation Day of Year	unsigned short	2 bytes	
(1.1) File Creation Year	unsigned short	2 bytes	
Header Size	unsigned short	2 bytes	*
Offset to point data	unsigned long	4 bytes	*
Number of variable length records	unsigned long	4 bytes	*
Point Data Format ID (0-99 for spec)	unsigned char	1 byte	*
Point Data Record Length	unsigned short	2 bytes	*
Number of point records	unsigned long	4 bytes	*
Number of points by return	unsigned long[5]	20 bytes	*
X scale factor	double	8 bytes	*
Y scale factor	double	8 bytes	*
Z scale factor	double	8 bytes	*
X offset	double	8 bytes	*
Y offset	double	8 bytes	*
Z offset	double	8 bytes	*
Max X	double	8 bytes	*
Min X	double	8 bytes	*
Max Y	double	8 bytes	*
Min Y	double	8 bytes	*
Max Z	double	8 bytes	*
Min Z	double	8 bytes	*

http://lasformat.org

small header . . . followed by many million point records

POINT DATA RECORD FORMAT 0:

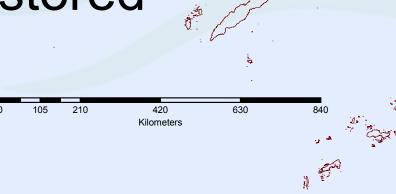
Item	Format	Size	Required
X	long	4 bytes	*
Υ	long	4 bytes	*
Z	long	4 bytes	*
Intensity	unsigned short	2 bytes	
Return Number	3 bits (bits 0, 1, 2)	3 bits	*
Number of Returns (given pulse	3 hits (bits 3, 1, 5)	2 bits	*
Scan Direction Flag	1 b (lit)	1 bit	*
Edge of Flight Line	1 b. (bl/)	1 it	*
(1.1) Classification	unsigne char	1 byte	*
(1.1) Scan Angle Rank (-90 to +90) - Left	char	1 byte	*
side			
(1.1) User Data	unsigned char	1 byte	
(1.1) Point Source ID	unsigned short	2 bytes	*

POINT DATA RECORD FORMAT 1:

Item	Format	Size	Required
X	long	4 bytes	*
Υ	long	4 bytes	*
Z	long	4 bytes	*
Intensity	unsigned short	2 bytes	
Return Number	3 bits	3 bits	*
Number of Returns (given pulse		3 its	*
Scan Direction Flag	1 b	1 it	*
Edge of Flight Line		±∌it	*
(1.1) Classification	unsigned char	1 byte	*
Scan Angle Rank (-90 to +90) – Left side	unsigned char	1 byte	*
(1.1) User Data	unsigned char	1 byte	
(1.1) Point Source ID	unsigned short	2 bytes	*
GPS Time	double	8 bytes	*

POINT DATA RECORD FORMAT 3:

Item	Format	Size	Required
X	long	4 bytes	*
Υ	long	4 bytes	*
Z	long	4 bytes	*
Intensity	unsigned short	2 bytes	
Return Number	3 bits	3 bits	*
Number of Returns (given pulse)	3 bits	3 bits	*
Scan Direction Flag	1-bit	1 bit	*
Edge of Flight Line	1 b	1 bit	*
(1.1) Classification	ung gne Vcha	1 yte	*
Scan Angle Rank (-90 to +90) – Left side	unsigne char	1 byte	*
(1.1) User Data	unsigned char	1 byte	
(1.1) Point Source ID	unsigned short	2 bytes	*
GPS Time	double	8 bytes	*
Red	unsigned short	2 bytes	*
Green	unsigned short	2 bytes	*
Blue	unsigned short	2 bytes	*


Dutch National LiDAR (AHN2)

- land area: 41,526 km²
- density: 8 to 10 shots / m²
- total: ~ 400,000,000,000 points
 - * 28 bytes/point = 11.2 TB

Philippine National LiDAR

- land area: 298,170 km²
- 2 4 shots per m²
- approx. 1.2 trillion points
 - ~ 33.6 TB
- often multiple copies
 need to be stored

LASZID (or LAZ)

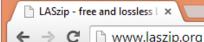
LASzip

http://laszip.org

- LAZ = lossless compressed LAS
- fastest encoding / decoding
- highest compression
- used across TB of data
- integrates with LAX spatial indexing
- winner of innovation award 2012
- open source
- LGPL-licensed

FREE!!!

LASzip

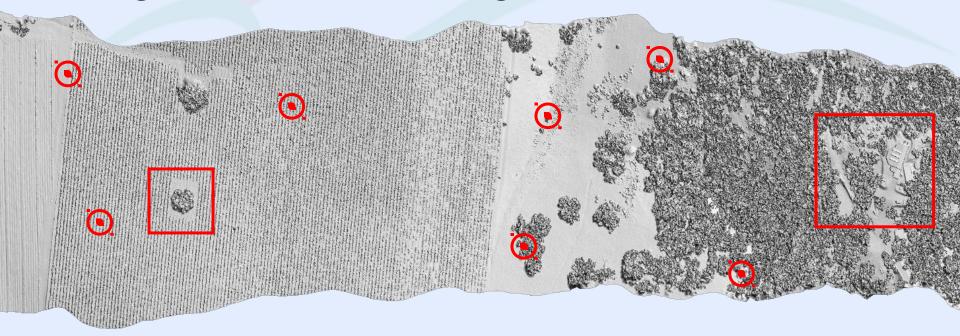

http://laszip.org

- LAZ = lossless compressed LAS
- fastest encoding / decoding

- search for "LASzip" on
- http://youtube.com

- open sourceLGPL-licensed

_ 🗆 X


Download LAZ data 🖠 👃

- Sonoma County LiDAR from <u>SonomaVegMap Project</u>
- WMS served LiDAR by Government of La Rioja in Spain
- Puget Sound LiDAR Consortium
 - 2007: <u>sumpter</u>
 - 2009: <u>douglasco</u>, <u>snohoriver</u>, <u>umpqua</u>, <u>wenas</u>, <u>wenatchee</u>
 - 2011: <u>kittitas</u>, <u>quinault</u>, <u>rattlesnake</u>
 - 2012: <u>chehalis</u>, <u>hoh</u>, <u>jefferson clallam</u>, <u>quinault</u>, <u>upper naches</u>
- open LiDAR data strategy of the <u>National Land Survey of Finland</u>
- nationwide open LiDAR data of <u>the Netherlands</u>
- <u>Digital Coast LiDAR</u> by NOAA (+ <u>how to download</u>)
- Batch Download Folders: 12, 13, 15, 16, 17, 18, 19, 20, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 62, 63, 64, 65, 66, 67, 68, 69, 71, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 111, 112, 114, 115, 116, 117, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 581, 582, 583, 584, 586, 587, 588, 1061, 1063, 1064, 1065, 1066, 1069, 1070, 1071, 1072, 1073, 1076, 1077, 1078, 1079, 1080, 1117, 1118, 1119, 1120, 1121, 1122, 1123, 1124, 1125, 1132, 1133, 1158, 1159, 1170, 1171, 1172, 1174, 1175, 1176, 1178, 1179, 1198, 1199, 1381, 1382, 1389, 1390, 1391, 1392, 1393, 1397, 1398, 1399, 1403, 1404, 1406, 1407, 1408
- GRAFCAN LiDAR of the Canary Islands

LASindex (or LAX)

Spatial Indexing

- efficient access to subset of points
 - query area-of-interest
 - sample elevation at some position
 - get data from neighbor tiles

Simple Extension: LAX files

- access LiDAR in original place and format (e.g. LAS, LAZ, SHP, BIN ...)
 - create tiny LAX files with the same file name that end in *.lax
 - size around 0.1 0.01 % of LiDAR
 - presence accelerates read queries
- assumptions / opportunities
 - data should be spatially coherent
 - resort points into z-order if needed

Simple Extension: LAX files

 access LiDAR in original place and format (e.a. LAS, LAZ, SHP, BIN ...)

search for "LASindex" on

http://youtube.com

- data should be spatially coherent
- resort points into z-order if needed

Optimized LAS (or zLAS)

Mash-up of LAZ + LAX + sort

- also lossless compressed LAS
- also fast encoding / decoding
- also high compression
- also spatial indexing
 - but stored in one file
 - also optional sorting ("z-order")
- additional statistics and histograms
- maybe selective decoding ...? ...?

Unique Opportunity: LAS1.4

New Point Types 6 - 10

- represent "natural break"
- opportunity: improve & add features
 - selective decompression
 - rewritable classifications & flags
 - add point attributes without rewrite
 - <your idea>
- prevent format fragmentation
 - add whatever else "folks" need

5 Step Plan

Step 1: Make LAS a Standard

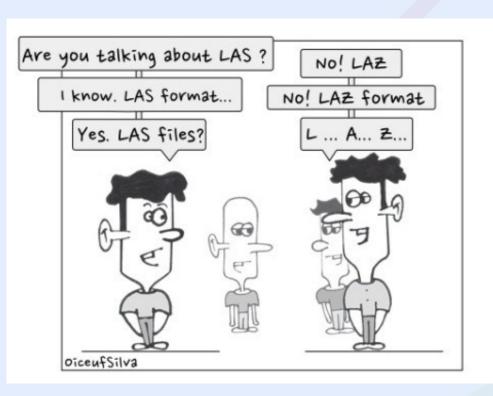
- current: LAS is "de-facto" standard
 - successful open format
 - ASPRS holds specification's copyright
 - overseen by LAS Working Group
 - no transparent processes
 - no protocols or "going-on-record"
- future: LAS becomes real standard
 - reorganization of (active) LWG team

Step 2: Make LAZ a Standard

- current: LAZ is "de-facto" standard
 - successful open format
 - Martin maintains open source code
 - guided by community via "LAS room"
 - sort of a "voluntary consensus"
 - google groups and github records
- future: LAZ becomes real standard
 - documenting LAZ (for point types 0 5)

Step 3: LAS 1.4 Compressor

- current: no rush, let us get this right
 - NOAA-sponsored compatibility-mode
 - open "call for input" since 2014
 - anticipated features
 - selective decompression
 - partial rewrite (flags & classifications)
- future: joint format with all "folks"
 - exploit existing "LAS room" process


Step 4: Make zLAZ a Standard

- current: not much LAS 1.4 content
 - both LAZ and zLAS can handle it
 - compatibility-mode "buys us time"
- future: work together, test, donate
 - seize opportunity of "natural break"
 - avoid quick solution and "format war"
 - exploit "LAS room" process to finalize
 - let community test just like in the past
 - follow steps (1) & (2) to standardize

Step 5: Pick an Organization

- current: LAS Working Group
 - guided industry to one open format
 - big "Thank You!" for achievement
 - success has out-grown capacity
- future: same folks but re-organized
 - OGC but very open to public (github?)
 - maybe ASTM like E57
 - maybe ISPRS ... ? maybe ... ?

Let us avoid two near-identical flavors of "optimized LAZ" ... (-:

Thank You.