

ISO/TC 211 N 4037

2015-05-28

Number of pages: 51

ISO/TC 211
Geographic information/Geomatics

Secretariat: SN (Norway)

Document type: Other committee document

Title: Draft new work item proposal, The Map Code standard

Status: For information and consideration by the PMG and at the 40th ISO/TC
211 plenary meeting in Southampton 2015-06-11/12.

Source: NMB of the Netherlands

Expected action: Info

Email to secretary: bjs@standard.no

Committee URL: http://isotc.iso.org/livelink/livelink/open/tc211 and
http://www.isotc211.org

mailto:bjs@standard.no
http://isotc.iso.org/livelink/livelink/open/tc211
http://www.isotc211.org/

 NEW WORK ITEM PROPOSAL

 Closing date for voting

Reference number
(to be given by the Secretariat)

 Date of circulation
 ISO/TC / SC N 4037

 Proposal for new PC Secretariat

A proposal for a new work item within the scope of an existing committee shall be submitted to the secretariat of that committee with a copy to
the Central Secretariat and, in the case of a subcommittee, a copy to the secretariat of the parent technical committee. Proposals not within the
scope of an existing committee shall be submitted to the secretariat of the ISO Technical Management Board.
The proposer of a new work item may be a member body of ISO, the secretariat itself, another technical committee or subcommittee, or
organization in liaison, the Technical Management Board or one of the advisory groups, or the Secretary-General.
The proposal will be circulated to the P-members of the technical committee or subcommittee for voting, and to the O-members for information.

IMPORTANT NOTE: Proposals without adequate justification risk rejection or referral to originator.
Guidelines for proposing and justifying a new work item are contained in Annex C of the ISO/IEC Directives, Part 1.

 The proposer has considered the guidance given in the Annex C during the preparation of the NWIP.

Proposal (to be completed by the proposer)

Title of the proposed deliverable.
(in the case of an amendment, revision or a new part of an existing document, show the reference number and current title)

English title the Mapcode Standard

French title
(if available)

Scope of the proposed deliverable.

The Mapcode system defines a set of grids on the surface of the earth, a unique code for each grid cell, and algorithms to
convert the code of a grid cell into the lattitude and longitude of the center point of that grid cell; determine, for any lattitude
and longitude, the code of the grid cell(s) that contain the coordinate. The system was designed tot provide a very short,
unique, easy to remember, easy to communicate code for any location on earth, in essence matching the capabilities of the
lattitude/longitude system, with the provision that it intended to be accurate only on the "human scale".

FORM 4 (ISO) v. 2013 Page 1 of 3

http://isotc.iso.org/livelink/livelink/fetch/2000/2122/3146825/4229629/4230450/4230455/ISO_IEC_Directives%2C_Part_1_%28Procedures_for_the_technical_work%29_%282012%2C_9th_ed.%29_%28PDF_format%29.pdf?nodeid=10563026&vernum=-2%23page=44
http://isotc.iso.org/livelink/livelink/fetch/2000/2122/3146825/4229629/4230450/4230455/ISO_IEC_Directives%2C_Part_1_%28Procedures_for_the_technical_work%29_%282012%2C_9th_ed.%29_%28PDF_format%29.pdf?nodeid=10563026&vernum=-2%23page=44

New work item proposal

Purpose and justification of the proposal*

Acces to Global Positioning Systems has become ubiquitous, built into practically every mobile phone, every car, and more
and more devices. As a result, more and more entities in the world ar now easily identifiable and reachable by their physical
location (their lattitude and longitude), rather than their location DESCRIPTION (such as address).

However, a short CODE is preferable to a long, technical- and complicated -looking lattitude/longitude coordinate in many
situations in daily life (e.g. on business cards, or as part of an address on an envelope, or to exchange in an email, or to
communicate by voice, or to remember). A code that is convertible into a lattitude/longitude would be best, having the
advantages of both systems (the power of lattitude/longitude and the simplicity of a code).

*The reason for requiring justification statements with approval or disapproval votes is primarily to collect input on market or stakeholder
needs, and on market relevance of the proposal, to benefit the development of the proposed ISO standard(s). Any NSB vote in relation to a
proposal for new work may result in significant commitments of resources by all parties (NSBs, committee leaders and delegates/experts) or
may have significant implications for ISO's relevance in the global community. It is especially important that NSBs consider and express
why they vote the way they do. In addition, it is felt that it would be useful for ISO and its committees to have documentation as to why the
NSBs feel a proposal has market need and market relevance. Therefore, please ensure that your justifying statements with your approval or
disapproval vote convey the reason(s) why your national consensus does or does not support the market need and/or global relevance of
the proposal.

If a draft is attached to this proposal,:

Please select from one of the following options (note that if no option is selected, the default will be the first
option):

 Draft document will be registered as new project in the committee's work programme (stage 20.00)
 Draft document can be registered as a Working Draft (WD – stage 20.20)
 Draft document can be registered as a Committee Draft (CD – stage 30.00)
 Draft document can be registered as a Draft International Standard (DIS – stage 40.00)

Is this a Management Systems Standard (MSS)?

 Yes No

NOTE: if Yes, the NWIP along with the Justification study (see Annex SL of the Consolidated ISO Supplement) must be sent
to the MSS Task Force secretariat (tmb@iso.org) for approval before the NWIP ballot can be launched.

Indication(s) of the preferred type or types of deliverable(s) to be produced under the proposal.

 International Standard Technical Specification Publicly Available Specification Technical Report

Proposed development track 1 (24 months) 2 (36 months - default) 3 (48 months)

Known patented items (see ISO/IEC Directives, Part 1 for important guidance)

 Yes No If "Yes", provide full information as annex

A statement from the proposer as to how the proposed work may relate to or impact on existing work, especially
existing ISO and IEC deliverables. The proposer should explain how the work differs from apparently similar work,
or explain how duplication and conflict will be minimized.

See the very extended version 1.0 of the Mapcode Standard

A listing of relevant existing documents at the international, regional and national levels.

ISO 3166 - Codes for representation of countries and their subdivisions - Part 1: Country Codes

PRC GB/T 2260 - standard for territory abbreviations in China

WGS84 - standard for representing Earth surface locations by lattitude/longitude

A simple and concise statement identifying and describing relevant affected stakeholder categories (including small
and medium sized enterprises) and how they will each benefit from or be impacted by the proposed deliverable(s)

This MapCode is already used in different GPS-systems and devices by big international companies - TomTom, NOKIA

FORM 4 (ISO) v. 2013 Page 2 of 3

mailto:tmb@iso.org

New work item proposal

Liaisons:
A listing of relevant external international organizations
or internal parties (other ISO and/or IEC committees) to
be engaged as liaisons in the development of the
deliverable(s).

Joint/parallel work:
Possible joint/parallel work with:

 IEC (please specify committee ID)

 CEN (please specify committee ID)
 Other (please specify) UPU

A listing of relevant countries which are not already P-members of the committee.

Kenia, xxx

Preparatory work (at a minimum an outline should be included with the proposal)
 A draft is attached An outline is attached An existing document to serve as initial basis

The proposer or the proposer's organization is prepared to undertake the preparatory work required Yes No

Proposed Project Leader (name and e-mail address)

Kewal Shienmar; kewal.shienmar@mapcode.com
Name of the Proposer
(include contact information)

NEN - Wiene Fokkinga, consultant Construction &
Instalation; wiene.fokkinga@nen.nl
00 31 - 15 - 2690 322; 00 31 - 6 - 3333 0347

Supplementary information relating to the proposal
 This proposal relates to a new ISO document;
 This proposal relates to the adoption as an active project of an item currently registered as a Preliminary Work Item;
 This proposal relates to the re-establishment of a cancelled project as an active project.

Other:

Annex(es) are included with this proposal (give details)

 Annex A- Handling non-latin alphabets and works; Annex B - Encoding and Decoding Mapodes; Annex C - Territory
Codes

FORM 4 (ISO) v. 2013 Page 3 of 3

The Mapcode Standard
Version 1.0

By P. A. Geelen, 19 May 2015

The Mapcode Standard ... 3
i. Justification ... 3

Why such codes are needed .. 3
What makes a good code .. 3

ii. Scope .. 4
iii. Normative references .. 5
iv. Symbols and abbreviations ... 5

1. The Format of mapcodes ... 6
1.1. Mapcode components ... 6
1.2. Displaying mapcodes ... 6
1.3. Handling mapcode input .. 6
1.4 Format of a territory code. ... 7

1.4.1. Disambiguation of partial or missing territory codes ... 8
1.5. Format of the high precision extension ... 8
1.6. Format of a proper mapcode .. 9

1.6.1. Summary: possible formats .. 9

Appendix A. Handling non-latin alphabets and vowels ..12
A 1. Non-Latin alphabets ... 12

A 1.1. Alphabets with less than 24 symbols .. 12
A 2. Vowels versus all-digit mapcodes .. 12

A 2.1. removing vowels .. 13
A 2.2. adding vowels to prevent all-digit mapcodes ... 13
A 2.3. adding vowels for the Greek alphabet .. 14

Appendix B Encoding and Decoding Mapcodes ...14
B 1. Basic routines .. 14

B 1.1. Basic routines for territories .. 14
B 1.2. Basic data tables ... 15
B 1.3. Required low-level routines .. 15
B 1.4. Basic routines to see if a coordinate is inside a territory rectangle 15
B 1.5. Basic arrays to encode and decode Latin characters ... 16

B 2. Decoding a mapcode .. 17
B 2.1. The decode algorithm .. 17

Step 1: disambiguation of the territory (if necessary) ..17
Step 2: conversion into Latin alphabet (if necessary) ...17
Step 3: pre-processing vowels ..17
Step 4: decoding ..17

B 2.1. the decode_grid algorithm ... 19
B 2.2. the decode_nameless algorithm .. 21
B 2.3. the decode_starpipe algorithm .. 23

B 3. Encoding a coordinate ... 24
B 3.1. the principle behind encoding ... 24

B 3.1.1. one coordinate, multiple mapcodes in a territory ..24
B 3.1.2. one coordinate, mapcodes in multiple territories ..25

B 3.1.3. the encode algorithm .. 26
Step 1: disambiguation of the territory (if necessary) ..26
Step 2: production of a Latin-alphabet mapcode ...26
Step 3: conversion into a foreign alphabet (if necessary) ...26

B 3.2. the encode_grid algorithm ... 27
B 3.3. the encode_nameless algorithm .. 29
B 3.4. the encode_starpipe algorithm .. 31

The Mapcode Standard – Page 1

Appendix C. Territory codes ...32
C 1. Main territories ... 32
C 2. Subdivisions of territories .. 36

C 2.1. Brazil .. 37
C 2.2. Canada ... 37
C 2.3. The United States of America .. 38
C 2.4. India ... 39
C 2.5. China .. 40
C 2.6. Australia ... 41
C 2.7. Mexico ... 42
C 2.8. Russia ... 43
C 2.9. Subdivisions of other countries ... 45

C 3. Special cases ... 46
C 3.1. The “international” territory ... 46
C 3.2. Two-letter country codes ... 46
C 3.3. Legacy or reserved 3-letter codes ... 46

The Mapcode Standard – Page 2

The Mapcode Standard
Version 1.0

By P. A. Geelen, 19 May 2015

i. Justification

The Mapcode system defines a set of grids on the surface of the earth, a unique code for
each grid cell, and algorithms to

• convert the code of a grid cell into the latitude and longitude of the center point
of that grid cell;

• determine, for any latitude and longitude, the code of the grid cell(s) that contain
the coordinate

The system was designed to provide a very short, unique, easy to remember, easy to
communicate code for any location on earth, in essence matching the capabilities of the
latitude/longitude system, with the proviso that it intended to be accurate only on the
“human scale”.

Why such codes are needed

Access to Global Positioning Systems has become ubiquitous, built into practically every
mobile phone, every car, and more and more devices. As a result, more and more
entities in the world are now easily identifiable and reachable by their physical location
(their latitude and longitude), rather than their location DESCRIPTION (such as their
address).

However, a short CODE is preferable to a long, technical- and complicated-looking
latitude/longitude coordinate in many situations in daily life (e.g. on business cards, or
as part of an address on an envelope, or to exchange in an email, or to communicate by
voice, or to remember). A code that is convertible into a latitude/longitude would be
best, having the advantages of both systems (the power of latitude/longitude and the
simplicity of a code).

What makes a good code

When deciding between the many different ways in which a conversion between codes
and coordinates could be defined, the following criteria are especially important:

- is the system applicable everywhere on earth, in all countries, in all languages
and in all alphabets (without sacrificing the advantages of a code system
dedicated to a particular country)

- is the code easy to pronounce, to communicate
- is the code easy to write (not requiring complicated symbols, preferring few-

stroke characters above multi-stroke characters)
- is the code easy to type (or are SHIFT and ALT keys needed)
- is the code short (shorter codes are easier to use, to remember, to speak, to

write or type)

The Mapcode Standard – Page 3

- is the code recognizable for what it is (e.g. when written as part of an address,
can it not be confused easily with the addressee, a street name, a house number;
when typed in a Google search box, can it not easily be confused with a word or a
number; for example, abcdefg@xyz.de is easily recognized as an email address,
simply because of its structure)

The mapcode system was designed to satisfy the above criteria in as optimal a way as
possible. The mapcode system was furthermore designed to lower the barriers to world-
wide adoption as much as possible, by making it a free standard allowing unconditional
and unrestricted use.

ii. Scope

The mapcode system defines a set of grids on the surface of the earth, a unique code for
each grid cell, and algorithms to

• convert the code of a grid cell into the latitude and longitude of the center point
of that grid cell;

• determine, for any latitude and longitude, the code of the grid cell(s) that contain
the coordinate

The mapcode system provides a “human face” for latitude/longitude coordinates: a way
to represent a location on Earth by a short, easy to recognize, easy to remember code,
sufficiently precise to specify a location on the human scale (e.g. as the destination for a
trip, or as identification of a landmark).

Note that a mapcode (like a coordinate) specifies where a location is, while an address at
best only names a certain location, which can only be found with knowledge of the
arbitrary names given to cities and streets within a territory. Furthermore, for many
locations no house number, street name (or even city name) is available, requiring even
more indirect descriptions, usually relative to other named locations, to help find a
location. Finally, even when street name and house number are available, the address
may give no indication where the entrance, or the parking garage, of the building is
located.

The mapcode system was explicitly designed to be

• included as part of addresses, e.g. on business cards, similar to how zipcodes and
post codes are included, and thereby

o help locate the address
o disambiguate an ambiguous address (this includes ambiguous or faulty

spelling of address components)
o enhance the precision of an address

• offer a simple way to identify locations that HAVE no (complete, known) formal
address

• make automatic sorting and processing of addresses easier; be used AS post
codes in countries that do not have a sufficiently sophisticated system as yet;

• be supported by navigation systems, GIS systems and map systems, as a way
(one of many) to enter a destination or identify a location

The system is explicitly NOT designed:

The Mapcode Standard – Page 4

mailto:abcdefg@xyz.de

• for high precision (although the mapcode system is capable of arbitrary
precision in its representation of coordinates, it is designed to be optimal for use
when an accuracy of a few meters is sufficient);

• for 3-dimensional use (mapcodes represent locations on the Earth’s surface, just
like the latitude/longitude which form their basis);

• to replace addresses (on the one hand, an address may specify floor, apartment,
recipient, company, and other details that can not be represented by a mapcode;
on the other hand, mapcodes can specify any location, not just those that have or
can have a building).

iii. Normative references

to be written…
ISO 3166 standard for territory abbreviations
PRC GB/T 2260 standard for territory abbreviations in China
WGS84 standard for representing Earth surface locations by latitude/longitude
…

iv. Symbols and abbreviations

to be written…
Coordinate A WGS84 latitude and longitude
GIS abbreviation for Geographic Information System
GPS Global Positioning System
IEC ? International European Committee ?
SAC Standardization Administration of China
ISO International Standard Organisation
Prefix the characters before the dot of a proper mapcode
Postfix the characters after the dot of a proper mapcode
Proper mapcode the part of a mapcode that excludes the territory code or any high-

precision extensions.
WGS84 name of a standard latitude/longitude coordinate system that can

be used to specify a particular location on the surface of the earth
…

The Mapcode Standard – Page 5

1. The Format of mapcodes

1.1. Mapcode components

A full mapcode consists of an optional “territory code” and a “proper mapcode”,
optionally followed by a hyphen and a “high precision extension”.

 FullMapcode ::== [TerritoryCode space] ProperMapcode [hyphen Extension]

The proper mapcode consists of two groups of letters and digits separated by a dot,
called the “prefix” and the “postfix”.

 ProperMapcode ::== Prefix dot Postfix

The prefix is between 2 and 5 characters, the postfix between 2 and 4 characters, and
the extension between 0 and 2 characters.

The territory code identifies the particular set of grids on the Earth’s surface that can be
used to decode the proper mapcode back into a coordinate.

When the proper mapcode is “international” (i.e. consists of a 5-character prefix and a 4-
character postfix), the territory code should be left out. However, systems will also often
have to cope with non-international mapcodes for which the territory is abbreviated or
left out because it is assumed to be “obvious”. See Chapter 1.4.1 on how to cope with the
resulting ambiguities.

1.2. Displaying mapcodes

When displaying a mapcode, it is recommended to use only uppercase characters for all
its components (territory code, prefix, postfix and extension), and to use a single space
to separate the territory code from the proper mapcode.

By default, a mapcode has no extension. A high precision extension should only be
generated when explicitly requested.

If the proper mapcode is in international format (i.e. consists of a 5-character prefix and
a 4-character postfix), you should not display the territory code.

See Appendix A on how to display mapcodes in alphabets other than the Latin alphabet.

See Appendix B (and specifically Appendix B 3) for details about how to generate a
(Latin-alphabet) mapcode based on a WGS84 coordinate.

1.3. Handling mapcode input

If characters from another alphabet than the Latin alphabet are encountered in an input
that is supposed to represent a mapcode, first convert the input to the Latin alphabet
(see Appendix A for details).

The Mapcode Standard – Page 6

Once in the latin alphabet, interpret lowercase input characters as their uppercase
equivalents. Leading and trailing whitespace should be removed. Whitespace around
hyphens should be removed. After this, at most one whitespace sequence should remain
(to separate territory code from proper mapcode), and can be replaced by a space.
Otherwise, the input can not represent a mapcode.

See Appendix B (and specifically Appendix B 2) for details about how to decode a
mapcode into a WGS84 coordinate.

1.4 Format of a territory code.

Appendix C lists all valid territory codes. In terms of format, a valid territory code is
either 3 letters (following the ISO 3166-1 alpha 3 standard), or two letters followed by a
hyphen followed by 2 or 3 letters or digits (following the ISO 3166-2:XX standards).
Territory codes should be displayed in uppercase, although lowercase input should be
accepted as valid.

It is recommended to also accept territory codes that have been changed in one of the
following ways:

3-letter country codes for subdivisions

People may enter a territory code like “US-TX” as “USA-TX” – an easy to make
mistake given that USA is the proper three-letter territory code for the country.
It is recommended to accept such territory codes as valid, since there is never
any ambiguity.

2-letter country codes

People may also abbreviate the territory code “USA” to “US”, again an easy
mistike to make since “US” is the proper code when used in combination with a
subdivision (an american state like California, “US-CA”).

There are eight countries that have subdivisions in the mapcode system. In four
cases (US, AU, RU, CN) there is no danger of ambiguity, so it is recommended to
accept at least these four abbreviations as valid alternatives for entering USA,
AUS, RUS or CHN.

In the other four cases, there is an ambiguity:
- CA as an abbreviation for CAN (Canada) may be confused with CA as an

abbreviation for US-CA (California)
- BR as an abbreviation for BRA (Brazil) may be confused with BR as an

abbreviation for IN-BR (Bihar)
- IN as an abbreviation for IND (India) may be confused with IN as an

abbreviation for US-IN (Indiana)
- MX as an abbreviation for MEX (Mexico) may be confused with MX as an

abbreviation for MX-MEX (Mexico Federal District)

Such ambiguity can still be solved in the same way disambiguation is done when
NO territory code is specified, see Chapter 1.4.1)

The Mapcode Standard – Page 7

1.4.1. Disambiguation of partial or missing territory codes

Systems will often have to cope with incomplete or abbreviated (and therefore
ambiguous) input, because people will often consider their country context obvious, and
will leave out the territory code when they communicate a mapcode.

For the same reason, they will often abbreviate a subdivision territory code to just the
part after the hyphen (i.e. leaving out the country code, e.g. abbreviate “US-TX” to just
“TX”). In some cases, this does not cause ambiguity, in the sense that there is only one
valid territory code with those same letters after the hyphen. “TX” can only be the
abbreviation of “US-TX”, for example, and it is certainly recommended to accept
abbreviations in all cases where there is no ambiguity. Bit there are also ambiguous
abbreviations. For example, AR could be the abbreviation for US-AR (Arkansas, USA) or
for IN-AR (Arunachal Pradesh, India).

Systems will therefore often have to cope with incomplete or abbreviated (and therefore
ambiguous) input. There are four possible approaches:

- refuse the input (preferably explaining the ambiguity)
- make an assumption, but let the user verify the assumption
- determine all possible interpretations, and let the user choose between them

(not recommended when more than 3 interpretations are possible)
- make an assumption and proceed as if it is correct (and assume the user will

notice and can easily correct if the assumption leads to problems)

Only the fourth approach allows misinterpretation, but it will still be the right approach
for many situations, e.g. for a search box on a map website.

The right approach depends on the situation, weighing the importance of interpreting a
mapcode input exactly right, the chance of an assumption being wrong, and the extra
effort required of the user.
Some examples of how to make an assumption:

- Assume the territory intended is the same territory that the user entered the
previous time

- Choose between possible territories based on the location, language, and/or
other information known about the user

- Choose between possible territories based on the location, language, and/or
intended audience of the system

- Assume the territory intended based on the current context (e.g. if a screen
is showing a map of France and a search box, assume France as the intended
territory when a context-less mapcode is entered into the search box).

1.5. Format of the high precision extension

A high-precision extension is an optional part of the mapcode. It consists of a hyphen
followed by one or two characters, and is appended at the end of the proper mapcode.
The two characters can be digits or letters, but never one of the letters A,E,I,O,U or Z. (If
the letters I or O are encountered, however, it is recommended they are interpreted as
the digits 1 and 0; the alternative is to mark the input as invalid).

An extended mapcode represents locations more accurately. Each additional letter
reduces the area covered by the mapcode by a factor of 30.

The Mapcode Standard – Page 8

An average mapcode without extension covers an area of roughly 10 by 10 meters, and
thus could be off by as much as 5 meters both in longitude and in latitude (or 7,1 meters
combined). With a 2-letter extension, an average mapcode covers roughly a square foot
(0,11 m2), and will never be off by more than 24 centimeters.

Note: in future, the mapcode format might be extended to allow more than 2 characters
after the hyphen (e.g. to specify coordinates even more accurately).

1.6. Format of a proper mapcode

A proper mapcode consists of two groups of letters and digits, separated by a dot. The
part before the dot is called the prefix, the part after the dot is called the postfix. The
vowels I and O can never occur in a mapcode. When encountered, it is recommended to
assume they were intended as the digits 1 and 0, and to interpret them as such (the
alternative is to not recognize the input as a valid mapcode).

The vowels A, E and U can appear only in the last two characters of the postfix, and only
if all the preceding characters (of both prefix and postfix) are digits.
In some alphabets (Greek) the letter A (alpha) may also occur in the first position. Since
the alpha is indistinguishable from the Latin letter A, you should allow the first letter of
a proper mapcode to be an A as well.

The prefix can be 2, 3, 4 or 5 characters. The postfix can be 2, 3 or 4 characters.
If the prefix is 5 characters, the postfix must be 4 characters, and the mapcode is
international.

1.6.1. Summary: possible formats

Type Format Description
International
mapcode

#####.####-##

(note: a territory code
is allowed!)

An international mapcode consists of exactly 5
characters before the dot and 4 characters after
the dot (plus a possible extension). No territory
code is required, and it is recommended to
never display it.

Note 1: the territory code AAA identifies the
world-wide grids used to decode an internatonal
mapcode.

Note 2: Whether a territory code is provided or
not, and whatever territory code is provided, an
international mapcode must always be decoded
using the AAA grids.

Note 3: if a territory code is provided for an
international mapcode, and the resulting
coordinate is outside of the territory’s
“encompassing rectangle”, it is recommended to
refuse the mapcode as invalid.

The Mapcode Standard – Page 9

National
mapcode

CCC ###.###-##

A “national mapcode” consists of a 3-letter
territory code CCC (see Appendix C 1 and C 3.3),
a prefix of 2-4 characters, a postfix of 2-4
characters, and an optional extension.

Note 1: CCC is one of the territory codes listed in
appendix C 1 or Appendix C 3.3, which are the
ISO 3166 alpha 3 country codes, extended with a
few extra codes

Note 2: Sometimes, you may see a 2-letter
territory code like US instead of USA, an easy
mistake to make since the US is used for local
mapcodes (see below). It is recommended to at
least accept US, AU, RU and CN as valid
abbreviations since they are unambiguous even
if not officially valid. See @@@ for more
information.

Local
Mapcode

CC-SS ###.###-##
CC-SSS ###.###-##

A “local mapcode” consists of a 2-letter territory
code CC, a 2- or 3-letter subdivision code SS, a
prefix of 2-4 characters, a postfix of 2-4
characters, and an optional extension.

CC is one of US, CA, MX, BR, IN, AU, RU, or CN, i.e.
the ISO 3166-1 alpha 2 code for the USA, Canada,
Mexico, Brazil, India, Australia, Russia, or China.

Note 1: it is recommended to also accept, in this
context, the THREE-letter ISO 3166-1 alpha 3
codes for the USA, Canada, Mexico, Brazil, India,
Australia, Russia, or China. For example, to
accept USA-TX as US-TX. See @@@ for more
information.

Note 2: CC-SS is one of the codes listed in
Appendix C 2, and matches ISO 3166-2:CC
codes, but also some alternatives for the sake of
legacy or clarity. For example, PRC GB/T 2260
codes are available as alternatives for the ISO
3166-2:CN codes.

Abbreviated
local mapcode

SS ###.###-##
SSS ###.###-##

A local mapcode where the territory code CC-SS
(or CC-SSS) is abbreviated to SS (or SSS).

Note 1. Ambiguity can derive from the fact that
there are several countries in which SS or SSS is
a state. For example, AL can abbreviate US-AL
(Alabama), BR-AL (Alagoas) or RU-AL (Altai
Republic). See Chapter 1.4.1 on how to cope with
ambiguity.

The Mapcode Standard – Page 10

Note 2. Ambiguity can also derive from a 3-letter
SSS being itself a valid territory code. For
example, abbreviating Belgorod (RU-BEL) to BEL
would be ambiguous with Belgium. Unless you
are in a purely local setting, it is highly
recommended to always interpret it as a
national mapcode in that case and not as an
abbreviation (otherwise it will be impossible to
indicate mapcodes in Belgium).

Implied
mapcode

###.###-## If the prefix is less than 5 characters and no
territory is spedicied, the territory is implied
(e.g. considered obvious). You should refrain
from ever generating or displaying implied
mapcode. However, people will often leave out
the territory code when memorizing or
communicating. Implied mapcodes are always
ambiguous. See Chapter 1.4.1 on how to cope
with ambiguity.

The Mapcode Standard – Page 11

Appendix A. Handling non-latin alphabets and vowels

A 1. Non-Latin alphabets

In order to support mapcodes in other alphabets, the mapcode standard includes a
simple substitution table that specifies which foreign character is equivalent to which
Latin character.

Encoding yields proper mapcodes using 24 letters of the Latin alphabet (forbidding the
use of the O and I) and the 10 digits.
The characters of a proper mapcode and of an extension can be replaced (letter by letter
and digit by digit) by “equivalent” letters from other alphabets.

To decode a proper mapcode or extension written in a foreign alphabet, simply substitue
the Latin equivalents for each individual letter or digit.

The substitution tables that specify the equivalences between the 24 letters and 10
digits of the Latin alphabet and characters from a foreign alphabet were designed based
on the following ambitions:

- if possible, do not pick any vowels; if vowels must be picked, make them the
equivalent of the latin vowels A, E, U, Y (and in that order).

- if many choices exist, prefer foreign letters that
o can be pronounced easily
o are easy to write (e.g. have few strokes, have no accents, are similar

in size to the other choices, have the same baseline…)
o can be typed easily (e.g. without using key combinations on a

ketboard)
o are easy to recognize (e.g. are as different as possible from all other

choices)
- if a letters is has (almost) the same shape as a latin letter, make it the

equivalent of that letter (a good example is the latin H, the greek eta H and
the Cyrillic en, H)

A 1.1. Alphabets with less than 24 symbols

As yet, the only alphabet for which we have failed to define a simple substitution is the
Greek alphabet, which does not have sufficient characters to provide a substitute for all
24 Latin characters. There were enough to define 22 characters, however, which is why
Latin mapcodes with the vowels E or U are pre-processed (see @@@ A 2) before
converting into the Greek alphabet, and mapcodes that (after conversion into all-Latin
characters) start with the vowel A are pre-processed are pre-processed before decoding.

A 2. Vowels versus all-digit mapcodes

To prevent all-digit mapcodes, the results of the encoding process (see Appendix B 3)
are post-processed when they are all-digit, by replacing the last 2 digits of an all-digit
proper mapcode with an A, E or U, followed by another character (which may also be an
A, E or U). This also means that any mapcode that has an A, E or U in the one-but-last
position needs to be pre-processed (see Appendix A 2.1) before it is further decoded (as
described in Appendix B 2).

The Mapcode Standard – Page 12

An alternative technique was added later to support the Greek alphabet (which only has
22 characters when I and O are excluded). Using this technique, the first character of the
mapcode is replaced by the letter A, and the last two characters are replaced by a
combination of two letters (both if which may also be an A, but never E or U).

A 2.1. removing vowels

The algorithm to post-process a proper mapcode mc that is in uppercase Latin alphabet
and potentially has vowels (before further decoding into a coordinate) is as follows:

function removeVowels(mc)
{
 character array encodes[] = “0123456789BCDFGHJKLMNPQRSTVWXYZAEU”
 character c1 = mc[len-2]
 character c2 = mc[len-1]
 // handle mapcodes with a leading A
 if (mc[0]==’A’)
 {
 integer len = mc.length
 integer v = encodes.IndexOf(c1) + (32 * encodes.IndexOf(c2))

 mc[0] = encodes[v div 100]
 mc[len-2] = encodes[(v div 10) mod 10]
 mc[len-1] = encodes[v mod 10]
 }
 // handle mapcodes with a vowel in the one-but-last position
 else if (c1==’A’ || c1==’E’ || c1==’U’)
 {
 integer v = (34*(encodes.IndexOf(c1)-31)) + encodes.IndexOf(c2)
 mc[len-2] = encodes[v div 10]
 mc[len-1] = encodes[v mod 10]
 }
 Return mc
}

Note that this pre-processing is necessary no matter where the mapcode came from. For
example, the greek mapcode A0.23 looks like a Latin mapcode, and may be entered in
your system as if it is a Latin mapcode, since is is virtually impossible to distinguish the
greek capital alpha (A) from the Latin capital a (A).

A 2.2. adding vowels to prevent all-digit mapcodes

The algorithm to post-process an all-digit proper mapcode mc is as follows:

function string packAlldigitCode(mc, useGreekSystem)
{
 character array encodes[] = “0123456789BCDFGHJKLMNPQRSTVWXYZAEU”
 integer len = mc.length
 integer v = (10 * encodes.IndexOf(mc[len-2])) + encodes.IndexOf(mc[len-1])

 if (useGreekSystem)
 {
 v = v + (100 * encodes.IndexOf(mc[0]))
 mc[0] = ‘A’
 mc[len-2] = encodes[v div 32]
 mc[len-1] = encodes[v mod 32]
 }
 else
 {
 mc[len-2] = encodes[31 + (v div 34)]
 mc[len-1] = encodes[v mod 34]
 }
 return mc;
}

Note that this algorithm should be used with useGreekSystem set to false.

The Mapcode Standard – Page 13

A 2.3. adding vowels for the Greek alphabet

The algorithm in the previous section should normally be used with useGreekSystem
set to false. Only when mc contains an E or U, and only just before conversion of mc into
Greek (or another alphabet that has no substitute letter defined for the character E), is
this parameter ever set to true, as in:

// repack latin mapcode mc just before conversion into Greek alphabet:
if (mc.indexOf(‘E’)>=0 || mc.indexOf(‘U’)>0)
{
 packAlldigitCode(removeVowels(mc), true)
}

Appendix B Encoding and Decoding Mapcodes

B 1. Basic routines

B 1.1. Basic routines for territories

The mapcode system defines a database for over 500 territories. Each territory is
identified by its territory code (see appendix C). For example, the Netherlands has
territory code “NLD”. A territory can be a subdivision of another territory (which is
called the “parent” territory). For example, California (“US-CA”) is a subdivision of the
United States of America (“USA”). The following routines are used to navigate this
simple structure:

isSubdivision(tc) returns true if tc is a subdivision (e.g. a state)
ParentTerritoryOf(tc) returns the parent territory of a subdivision tc

The algorithms to encode and decode mapcodes depend heavily on a large data table,
specifying population-density-based grids that cover the territories. For every territory,
one or more territory rectangles are available. The last of these rectangles is called the
encompassing rectangle. The mapcode algorithm has access to these rectangles
through

firstRectangle(tc) returns the first territory rectangle of tc
lastRectangle(tc) returns the last territory rectangle of tc (also called the encompassing rectangle)

To access information about any territory rectangle i, the following routines are
available:

 minx(i) returns the minimum longitude (inclusive) in millionths of degrees
 maxx(i) returns the maximum longitude (exclusive) in millionths of degrees
 miny(i) returns the minimum latitude (inclusive) in millionths of degrees
 maxy(i) returns the maximum latitude (exclusive) in millionths of degrees

 prefixLength(i) returns the prefix length defined for this territory rectangle
 postfixLength(i) returns the postfix length defined for this territory rectangle
 coDex(i) returns prefixLength(i) * 10 + postfixLength(i)
 coDexLen(i) returns prefixLength(i) + postfixLength(i)

 recType(i) returns the rectangle type (0,1,2 or 3)
 recLetter(i) returns a mapcode character (only if recType(i)==1)
 smartDiv(i) returns the “divider value” for the territory rectangle i

 isNameless(i) returns true if the “nameless” algorithm is required
 isNonEncoding(i) returns true if the validity depends on other territory rectangles @@@
 isSpecialShape(i) returns true if the territory rectangle has a “special shape” @@@

The Mapcode Standard – Page 14

B 1.2. Basic data tables

There are several small arrays of integers required by the algorithms:

integer array nc = [1, 31, 961, 29791, 923521, 28629151, 887503681]

integer array xside = [0, 5, 31, 168, 961, 5208]

integer array yside = [0, 6, 31, 176, 961, 5456]

integer array xdivider19 = [
 360, 360, 360, 360, 360, 360, 361, 361, 361, 361,
 362, 362, 362, 363, 363, 363, 364, 364, 365, 366,
 366, 367, 367, 368, 369, 370, 370, 371, 372, 373,
 374, 375, 376, 377, 378, 379, 380, 382, 383, 384,
 386, 387, 388, 390, 391, 393, 394, 396, 398, 399,
 401, 403, 405, 407, 409, 411, 413, 415, 417, 420,
 422, 424, 427, 429, 432, 435, 437, 440, 443, 446,
 449, 452, 455, 459, 462, 465, 469, 473, 476, 480,
 484, 488, 492, 496, 501, 505, 510, 515, 520, 525,
 530, 535, 540, 546, 552, 558, 564, 570, 577, 583,
 590, 598, 605, 612, 620, 628, 637, 645, 654, 664,
 673, 683, 693, 704, 715, 726, 738, 751, 763, 777,
 791, 805, 820, 836, 852, 869, 887, 906, 925, 946,
 968, 990, 1014, 1039, 1066, 1094, 1123, 1154, 1187, 1223,
 1260, 1300, 1343, 1389, 1438, 1490, 1547, 1609, 1676, 1749,
 1828, 1916, 2012, 2118, 2237, 2370, 2521, 2691, 2887, 3114,
 3380, 3696, 4077, 4547, 5139, 5910, 6952, 8443,10747,14784,
 23681,59485]

In fact, the algorithms only make use of xdivider19 through the following access routine:

// Get divider for a latitude range
// (where miny and maxy specified in millionths of degrees)
// note: (d>>19) is equal to (d div 524288)
function xDivider(integer miny, integer maxy)
{
 if (miny>=0)
 return xdivider19[miny>>19]
 if (maxy>=0)
 return xdivider19[0]
 return xdivider19[(-maxy)>>19]
}

B 1.3. Required low-level routines

The algorithms below are described in pseudo-code. We will assume simple string
manipulations:

 s.length returns length of string s
 s[x] returns x-th character of string s (as a one-letter string)
 s.charCodeAt(x) returns the ascii code of the x-th character of string s (as an integer)
 s.indexOf(c) return index in s of character c (or negative)
 s.substr(x,n) returns n characters of string s starting as of the x-th character
 s.substr(x) returns all characters of string s starting as of the x-th character

We also assume the usual arithmetic operators, including div and mod operators:

 A div B returning the integer result (or mathematical “floor”) of dividing integer A by integer B
 A mod B returning the integer remainder of a division of integer A by integer B

B 1.4. Basic routines to see if a coordinate is inside a territory rectangle

To check if a coordinate (of which the x and y are expressed as integers in millionths of
degrees) is inside territory rectangle i:

The Mapcode Standard – Page 15

function fitsInside(coordinate, i)
{
 if (isInRangeY(coordinate.y, miny(i), maxy(i)))
 return(isInRangeX(coordinate.x, minx(i), maxx(i)))
 return false
}

However, for several checks performed in the algorithms, we need to use the following:

function fitsWithRoom(coordinate, i)
{
 if (isInRangeY(coordinate.y, miny(i)-45, maxy(i)+45))
 {
 degrees xdiv8 = xDivider(miny(i),maxy(i))/4
 return(isInRangeX(coordinate.x, minx(i)-xdiv8, maxx(i)+xdiv8))
 }
 return false
}

where

function isInRangeY(y, miny, maxy)
{
 return (miny<=y && y<maxy)
}

and

function isInRangeX(x, minx, maxx)
{
 if (minx<=x && x<maxx)
 return true
 if (x<minx)
 x+=360000000
 else
 x-=360000000
 return (minx<=x && x<maxx)
}

B 1.5. Basic arrays to encode and decode Latin characters

// decode_chars[c] is negative when ASCII character c can not be decoded
integer decode_chars = [
 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1,
 -1, -2, 10, 11, 12, -3, 13, 14, 15, 1, 16, 17, 18, 19, 20, 0,
 21, 22, 23, 24, 25, -4, 26, 27, 28, 29, 30, -1, -1, -1, -1, -1,
 -1, -2, 10, 11, 12, -3, 13, 14, 15, 1, 16, 17, 18, 19, 20, 0,
 21, 22, 23, 24, 25, -4, 26, 27, 28, 29, 30, -1, -1, -1, -1, -1,
 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]

// encode_chars[x] returns a normal mapcode character for 0<=x<=30
// encode_chars[x] returns a mapcode vowel for 31<=x<=33
integer encode_chars = [
 '0','1','2','3','4','5','6','7','8','9',
 'B','C','D','F','G','H','J','K','L','M',
 'N','P','Q','R','S','T','V','W','X','Y','Z',
 'A','E','U']

The Mapcode Standard – Page 16

B 2. Decoding a mapcode

B 2.1. The decode algorithm

Decoding a mapcode into a WGS84 coordinate is done in several steps. One needs to
separate it into a territory code, a proper mapcode, and the optional high-precision
extension. After that, the following steps must be taken:

Step 1: disambiguation of the territory (if necessary)

First, check and if necessary disambiguate the territory code (see Chapter 1.4.1 on how
to handle ambiguity, or assume a territory if none is given).

Step 2: conversion into Latin alphabet (if necessary)

The proper mapcode and the optional extension may be using letters from non-Latin
alphabets, in which case the foreign characters need first be replaced by their Latin
equivalents. See A 1 on details @@@.

Step 3: pre-processing vowels

When it was encoded, a mapcode may have been post-processed to prevent it from
consisting only of digits. In that case (and only in that case) the proper mapcode may
contain vowels. To be precise: either the first letter of the proper mapcode is an A, or the
one-but-last letter is an A, E or U.

The removeVowels algorithm, for pre-processing such vowels away and allowing
normal decoding in the fourth and final step, is described in A 2@@@.

Step 4: decoding

The principle behind the decoding algorithm is as follows:

• The mapcode system defines a database for over 500 territories. Each territory
is covered by a set of one or more territory rectangles. The territory code
identifies such a set.

• The length of the mapcode prefix and the length of the mapcode postfix together
identify a particular territory rectangle.

• The characters in the prefix, postfix, and high-precision extension together
identify a particular rectangular sub-area within that territory rectangle (a
particular “cell” in the “grid” defined by that territory rectangle).

• The coordinate in the centre of that sub-area is returned as the result (i.e. it
represents the coordinate “equivalent” of the mapcode).

The following algorithm decodes a proper mapcode string mapcode which has already
been pre-processed (i.e. all characters are in Latin alphabet, the vowels were pre-
processed away, the extension (of 0, 1 or 2 letters) is in a separate string extension, and
a valid (possibly disambiguated) territory code is in territory. The algorithm returns a
coordinate in result.

Note that the algorithms are based on integer arithmetic, so that x and y are returned as
integers representing millionths of degrees.

// determine length of prefix and postfix

The Mapcode Standard – Page 17

 integer prelen = mapcode.indexOf(".")
 integer postlen = mapcode.length - 1 - prelen

// refuse mapcodes of invalid length
if (prelen<2 || prelen>5 || postlen<2 || postlen>4)
 return ERROR

// international mapcodes must be interpreted in territory AAA
if (prelen+postlen==9)
 territory="AAA"

// long mapcodes must be interpreted in the parent of a subdivision
if (prelen+postlen==7 && ParentTerritoryOf(territory)=="IND")
 territory = "IND"
if (prelen+postlen==7 && ParentTerritoryOf(territory)=="MEX")
 territory = "MEX"
else if (prelen+postlen==8 && isSubdivision(territory))
 territory = ParentTerritoryOf(territory)

// to decode, try all territory rectangles
for (i = firstRectangle(territory); i <= lastRectangle(territory); i++)
{
 if (recType(i)==0 && isNameless(i)==false
 && prefixLength(i)==prelen && postfixLength(i)==postlen)
 {
 result = decode_grid(mapcode, i, extension)

 if (isNonEncoding(i))
 {
 // results MUST be inside some rectangle that is marked “Encoding”
 boolean fitsSomewhere=false
 for (j=lastRectangle(territory)-1; j>=firstRectangle(territory); j--)
 {
 if (isNonEncoding(j)==false && fitsWithRoom(result, j))
 {
 fitsSomewhere =true
 break
 }
 }
 if (fitsSomewhere ==false)
 return ERROR
 }
 break
 }
 else if (recType(i)==1 && prefixLength(i)+1==prelen
 && postfixLength(i)==postlen && recLetter(i)==mapcode[0])
 {
 result=decode_grid(mapcode.substr(0,1), i, extension)
 break
 }
 else if (isNameless(i) &&
 ((prefixLength(i)==2 && postfixLength(i)==1 && prelen==2 && postlen==2)
 || (prefixLength(i)==2 && postfixLength(i)==2 && prelen==3 && postlen==2)
 || (prefixLength(i)==1 && postfixLength(i)==3 && prelen==2 && postlen==3)))
 {
 result = decode_nameless(mapcode, i, extension)
 break
 }
 else if (recType(i)>=2 && postlen==3
 && prefixLength(i)+postfixLength(i)==prelen+2)
 {
 result = decode_starpipe(mapcode, i, extension)
 break
 }
}

// normalise and check if really in territory
if (result==ERROR)
 return ERROR

// normalise the result
if (result.x>180000000)
 result.x-=360000000
else if (result.x<-180000000)
 result.x+=360000000

// make sure result fits the country

The Mapcode Standard – Page 18

if (territory != "AAA")
 if (fitsWithRoom(result, lastRectangle(territory))==false)
 return ERROR

This routine uses one of three subroutines to decode a mapcode: decode_grid,
decode_nameless, and decode_starpipe. The algorithms for these are as follows:

B 2.1. the decode_grid algorithm

The following routine takes a proper mapcode mc and extension extension and
decodes it (if possible) for the territory rectangle m.

function decode_grid(mc, m, extension)
{
 // copy information about territory rectangle m
 integer minx = minx(m)
 integer miny = miny(m)
 integer maxx = maxx(m)
 integer maxy = maxy(m)
 integer divy = smartDiv(m)

 // determine the length of the mapcode prefix and postfix
 integer prelen = mc.indexOf(".")
 integer postlen = mc.length - 1 - prelen

 // rewrite an 1.3 mapcode into a 2.2 mapcode
 if (prelen==1 && postlen==3)
 {
 prelen++
 postlen--
 mc = mc[0] + mc[2] + mc[1] + mc[3] + mc[4]
 }

 // determine the way the rectangle will be divided horizontally and vertically
 if (divy==1)
 {
 divx = xside[prelen]
 divy = yside[prelen]
 }
 else
 {
 divx = (nc[prelen] div divy)
 }

 // for 961x961 grids, swap the 2nd and 3d prefix letters
 if (prelen==4 && divx==961 && divy==961)
 {
 mc = mc[0] + mc[2) + mc[1] + mc.substr(3)
 }

 // decode the prefix into an integer
 integer v = fast_decode(mc)

 coordinate rel
 if (divx!=divy && prelen>=3)
 {
 // large non-square grids use “type 6” grid cell naming
 rel = decode6(v,divx,divy)
 }
 else
 {
 rel.x= (v div divy)
 rel.y=divy-1-(v mod divy)
 }

 integer ygridsize = ((maxy-miny+divy-1) div divy)
 integer xgridsize = ((maxx-minx+divx-1) div divx)

 rel.y = miny + (rel.y*ygridsize)
 rel.x = minx + (rel.x*xgridsize)

 integer dividery = (ygridsize + yside[postlen] - 1) div yside[postlen]

The Mapcode Standard – Page 19

 integer dividerx = (xgridsize + xside[postlen] - 1) div xside[postlen]

 // get the postfix
 var rest = mc.substr(prelen+1)

 // decode postfix versus rel
 coordinate dif
 if (postlen==3)
 {
 // decode 3-letter postfix
 dif = decode_triple(rest)
 }
 else
 {
 // swap 2nd and 3d characxter of 4-letter postfix
 if (postlen==4)
 rest = rest[0] + rest[2] + rest[1] + rest[3]

 // decode 2- or 4-letter postfix
 integer v = fast_decode(rest)
 dif.x = (v div yside[postlen])
 dif.y = (v mod yside[postlen])
 }

 dif.y = yside[postlen]-1-dif.y

 // return result including extension
 coord corner
 corner.y = rel.y + (dif.y * dividery)
 corner.x = rel.x + (dif.x * dividerx)
 return decode_extension(corner, 4*dividerx, dividery, 1, extension)
}

// lowest level encode/decode routines
function fast_decode(code)
{
 integer value = 0
 for (i=0; i<code.length; i++)
 {
 integer c = code.charCodeAt(i)
 if (c==46) // dot?
 break
 if (decode_chars[c]<0)
 return ERROR
 value = value*31 + decode_chars[c]
 }
 return value
}

// adjust point with extension
function decode_extension(point,dividerx4,dividery,dy,extension)
{
 if (extension.length==0)
 {
 point.x += (dividerx4 div 8)
 point.y += ((dividery div 2)*ydirection)
 return point
 }

 integer c1 = decode_chars[extension.charCodeAt(0)]
 if (c1<0) c1=0 else if (c1>29) c1=29
 integer y1 = (c1 div 5)
 integer x1 = (c1 mod 5)
 integer c2 = 15
 if (extension.length>1)
 {
 c2 = decode_chars[extension.charCodeAt(1)]
 if (c2<0) c2=0 else if (c2>29) c2=29
 }
 point.x += ((((x1*12 + 2*(c2 mod 6) + 1)*dividerx4 + 120) div 240))
 point.y += ((((y1*10 + 2*(c2 div 6) + 1)*dividery + 30) div 60) * dy)
 return point
}

function decode_triple(str)
{
 integer x = fast_decode(str.substr(1))

The Mapcode Standard – Page 20

 integer c = decode_chars[str.charCodeAt(0)]
 coordinate triple
 if (c<24)
 {
 triple.x = (c mod 6) * 28 + (x div 34)
 triple.y = (c div 6) * 34 + (x mod 34)
 }
 else
 {
 triple.y = (x mod 40) + 136
 triple.x = (x div 40) + 24*(c-24)
 }
 return triple
}

function decode6(v,width,height)
{
 integer D=6
 integer col = (v div (height*6))
 integer maxcol = ((width-4) div 6)
 if (col>=maxcol)
 {
 col=maxcol
 D = width-maxcol*6
 }
 integer w = v - (col * height * 6)

 coordinate r
 r.x = col*6 + (w mod D)
 r.y = height-1 - (w div D)
 return r
}

B 2.2. the decode_nameless algorithm

The following routine takes a proper mapcode mapcode and extension extension
decodes it (if possible) for the territory rectangle firstrec.

function decode_nameless(mapcode, firstrec, extension)
{
 // remove the dot
 integer prelen = mc.indexOf(".")
 string mc = mapcode.substr(0,prelen) + mapcode.substr(prelen+1)

 // determine nr of nameless records available
 integer codex = coDex(firstrec)
 integer A = count_city_coordinates_for_country(firstrec,firstrec)

 integer p = (31 div A)
 integer r = (31 mod A)
 boolean swapletters=false
 integer v

 integer X
 if (codex!=21 && A<=31)
 {
 integer offset = decode_chars[mc.charCodeAt(0)]

 if (offset < r*(p+1))
 {
 X = (offset div (p+1))
 }
 else
 {
 if (codex==22 && p==1)
 swapletters = true
 X = r + ((offset-(r*(p+1))) div p)
 }
 }
 else if (codex!=21 && A<62)
 {
 X = decode_chars[mc.charCodeAt(0)]
 if (X < (62-A))
 {

The Mapcode Standard – Page 21

 if (codex==22)
 swapletters = true
 }
 else
 {
 X = X+(X-(62-A))
 }
 }
 else // codex==21 || A>=62
 {
 integer BASEPOWERA = (((codex==21) ? 961*961 : 961*961*31) div A)
 if (A==62)
 BASEPOWERA++
 else
 BASEPOWERA = 961*(BASEPOWERA div 961)

 // decode and determine X
 v = fast_decode(mc)
 X = (v div BASEPOWERA)
 v = (v mod BASEPOWERA)
 }

 if (swapletters && isSpecialShape(firstrec+X)==false)
 {
 mc = mc[0] + mc[1] + mc[3] + mc[2] + mc[4]
 }

 if (codex!=21 && A<=31)
 {
 v = fast_decode(mc)
 if (X>0)
 {
 v -= ((X*p + (X<r ? X : r)) * (961*961))
 }
 }
 else if (codex!=21 && A<62)
 {
 v = fast_decode(mc.substr(1))
 if (X >= (62-A))
 if (v >= (16*961*31))
 {
 v -= (16*961*31)
 X++
 }
 }

 if (X>A)
 return ERROR

 integer m = firstrec+X
 integer minx = minx(m)
 integer miny = miny(m)
 integer maxx = maxx(m)
 integer maxy = maxy(m)
 boolean specialShape = isSpecialShape(m)
 integer SIDE = smartDiv(m)

 integer xSIDE=SIDE
 if (specialShape)
 {
 xSIDE *= SIDE
 SIDE = 1 + ((maxy-miny) div 90)
 xSIDE = (xSIDE div SIDE)
 }

 coordinate d
 if (specialShape)
 {
 d = decode6(v,xSIDE,SIDE)
 d.y = SIDE-1-d.y
 }
 else
 {
 d.y = (v mod SIDE)
 d.x = (v div SIDE)
 }

The Mapcode Standard – Page 22

 if (d.x >= xSIDE) // out of range
 return ERROR

 integer dividerx4 = xDivider(miny,maxy)
 integer dividery = 90

 coordinate corner
 corner.x = minx + ((d.x*dividerx4) div 4)
 corner.y = maxy - (d.y*dividery)
 return decode_extension(corner,dividerx4,dividery,-1,extension)
}

function firstNamelessRecordForCountry(index,firstrec)
{
 integer i=index
 while (i>=firstrec && coDex(i)==coDex(index) && isNameless(i)) i--
 return (i+1)
}

function countCityCoordinatesForCountry(index,firstrec)
{
 integer e = index
 while (coDex(e)==coDex(index)) e++
 return (e-1) - firstNamelessRecordForCountry(index,firstrec)
}

B 2.3. the decode_starpipe algorithm

The following routine takes a proper mapcode mc and extension extension decodes it (if
possible) for the territory rectangle firstindex.

function decode_starpipe(mc,firstindex,extension)
{
 // decode prefix
 integer value = fast_decode(mc)*31*31*31

 // decode postfix (always 3 characters!)
 integer triple = decode_triple(mc.substr(mc.length - 3))

 integer STORAGE_START=0
 for(i=firstindex; CoDexLen(i)==CoDexLen(firstindex); i++)
 {
 // copy information about territory rectangle i
 integer minx = minx(i)
 integer miny = miny(i)
 integer maxx = maxx(i)
 integer maxy = maxy(i)
 integer rt = recType(i)

 integer H = ((maxy-miny+89) div 90)
 integer xdiv = xDivider(miny,maxy)
 integer W = (((maxx-minx)*4 + (xdiv-1)) div xdiv)

 H = 176*((H+176-1) div 176)
 W = 168*((W+168-1) div 168)

 integer product = (W div 168) * (H div 176) *31*31*31

 if (rt==2)
 {
 integer GOODROUNDER = codex>=23 ? (31*31*31*31*31) : (31*31*31*31)
 product = (((STORAGE_START+product+GOODROUNDER-1)
 div GOODROUNDER) * GOODROUNDER) - STORAGE_START
 }

 if (value >= STORAGE_START && value < STORAGE_START + product)
 {
 // code belongs in THIS territory rectangle!
 integer dividerx = ((maxx-minx+W-1) div W)
 integer dividery = ((maxy-miny+H-1) div H)

 value = ((value-STORAGE_START) div (31*31*31))

 integer vx = (value div (H div 176)) * 168 + triple.x

The Mapcode Standard – Page 23

 integer vy = (value mod (H div 176)) * 176 + triple.y

 coordinate corner
 corner.y = maxy - vy * dividery
 corner.x = minx + vx * dividerx

 corner = decode_extension(corner,dividerx*4,dividery,-1,extension)
 if (corner.x<minx || corner.x>=maxx || corner.y<miny || corner.y>maxy)
 return ERROR
 return corner
 }

 // try the next territory rectangle...
 STORAGE_START += product
 }
 Return ERROR
}

B 3. Encoding a coordinate

Given a coordinate, and optionally the territory code to encode it in, one can generate
one or more mapcodes, each “representing” the coordinate.

B 3.1. the principle behind encoding

The principle behind the encoding algorithm is as follows:
• The mapcode system defines a database for over 500 territories. Each territory

is identified by a unique territory code (see appendix C).
• Each territory has a set of one or more territory rectangles. The last of those

rectangles is called the encompassing rectangle. Only some of the territory
rectangles are marked as “encoding”.

• If a coordinate lies within the encompassing rectangle of a territory T and also
within the boundaries of an “encoding” territory rectangle R, then the coordinate
can be “encoded in rectangle R”: the algorithm below will yield a proper
mapcode and optionally a 1- or 2-character extension, which combined with
the territory code of territory T yields a full mapcode.

• Basically, each territory rectangle is divided into a grid of small rectangular,
numbered sub-areas. The number of the cell in which the coordinate is located is
returned. The number doesn’t just use digits, but a combination of digits and
letters.

• The cells are usually 10 by 10 meters, which means a mapcode represents the
coordinate imprecisely: the coordinate known to be somewhere within the cell.
When decoding a mapcode, the center of the cell will be returned as coordinate,
which can thus be up to 5 meters distant from the original both in latitude and in
longitude (or 7,1 meters, worst-case, diagonally).

B 3.1.1. one coordinate, multiple mapcodes in a territory

The territory rectangles within a single territory T may overlap, so that a single location
(i.e. a single coordinate) may have more than one mapcode.

Since any single mapcode is sufficient to represent the location, it is recommended to
only offer the first code generated in that territory (i.e. for the first territory rectangle
that can encode the coordinate). This will also always yield the shortest possible
mapcode in territory T).

The Mapcode Standard – Page 24

An alternative is to offer all options and leave the choice to the user. Picking a single
mapcode that is not the shortest code is never recommended.

Note: given that recommendation to always offer the shortest mapcode in a territory,
one may ask why the mapcode system is not simply designed to only produce the
shortest code within a particular territory. The reason was twofold. First of all, it was
deemed useful to allow a user a choice in case the default was somehow not to his or her
liking (e.g. because the number 13 occurs in it). Secondly, we could imagine
circumstances in which it would be beneficial to standardize on a particular length. For
example, every dwelling in The Netherlands has a 6-character mapcode with a 3-
character prefix. Although we expect people in the capital to prefer their 4-character
alternatives, and we thus do not recommend ever defaulting to anything but the shortest
mapcode, some systematic or bureaucratic benefit might ensue from using only the 6-
character codes. The mapcode system as such therefore considers all possible mapcodes
equally valid.

B 3.1.2. one coordinate, mapcodes in multiple territories

The encompassing rectangles of different territories may overlap, so that the encoding
algorithm may yield mapcodes in more than one territory.

In fact, any on-land coordinates is virtually certain to have mapcodes in more than one
territory since the “international” territory encompasses the whole world and overlaps
every other territory.

All mapcodes are of course “valid” in the sense that they will correctly decode back to
(approximately) the original coordinate. But not all of them may be valid “politically”,
since territories are divided and encompassed by simple mapcode rectangles whereas
the real world is not. It may be possible to develop a system (outside of the mapcode
system) which can automatically decide which mapcodes are politically valid – but such
a system would itself be political, given the many disagreements about precise
boundaries that exist in the world today.

In general, it is recommended to stimulate the requestor of a mapcode as much as
possible to provide the mapcode territory to encode a coordinate in beforehand. The
user of a mapcode will usually have little problem in deciding the proper context (e.g. in
what territory he lives). If no territory is defined beforehand, we recommend one of the
following ways to choose between the mapcodes of different territories:

(1) the choice is left to the user (recommended). In that case, we further
recommend to help the user with a “default” choice based on reasonable
assumptions (e.g. if the previous request from a user had territory code FRA,
assume FRA; on a Dutch website, always assume NLD, etc.);

(2) the choice is based on a separate system, capable of determining the political
territory in which the coordinate lies (in which case it could just as well have
been passed as part of the encoding request!)

(3) given a choice between more than one national territory, always choose the
international mapcode (in other words, err on the safe side, since the
international code is always politically and physically correct. The disadvantage
is that the international alternative is, unfortunately, always the longest possible
code, most awkward to remember and use)

These possibilities can be combined at will, of course, e.g. using (2) in politically
uncontroversial locations and (3) when territorial borders are physically or politically
unclear. Or using (3) as the default for (1).

The Mapcode Standard – Page 25

B 3.1.3. the encode algorithm

This section describes how to convert (“encode”) a WGS84 coordinate into one or more
mapcodes.

Step 1: disambiguation of the territory (if necessary)

The encoding process needs both a coordinate and a valid territory code (see Appendix
A) of the territory to encode it in. If you only have a coordinate, you need to either try to
encode it in every territory (which may succeed in more than one territory) or
determine the “right” one to encode it in beforehand. See the previous section
(Appendix B 3.1.2) for a further discussion about possible approaches

Step 2: production of a Latin-alphabet mapcode

Given a valid mapcode territory t and a coordinate coord (with integers coord.y and
coord.x specifying a latitude and longitude in millionths of degrees), the algorithm
encode(coord,t,results,d) below specified below appends (zero or more) mapcodes in
territory t to the array results (which should be emptied before the call). Each mapcode
will be generated with a high-precision extension of extraDigits characters (note that
extraDigits=0 is always the recommended default).

Step 3: conversion into a foreign alphabet (if necessary)

The encode algorithm below generates results in the Latin alphabet. Results can be
postprocessed into other alphabets using a simple character-substitution system
described in @@@ A 1.

However, note that the encode algorithm uses packAlldigitCode(r,false) to prevent
all-digit mapcodes. This may introduce the vowels E and U into some results. When
converting a mapcode that contains an E or a U into a non-Latin alphabet, you may need
to re-pack it first as described in @@@ A 2.3 to cope with alphabets that have no
substitute for these vowels.

function encode(coord,territory,results_array,extraDigits)
{
 // make sure it belongs to the territory
 integer from = firstRectangle(territory)
 integer upto = lastRectangle(territory)
 if (territory!= "AAA")
 if (fitsInside(coord, upto)==false)
 return results_array

 integer initial_length = results_array.length

 for (i=from; i<=upto; i++)
 {
 if (coDex(i)<54)
 {
 if (fitsInside(coord, i))
 {
 String r = ERROR
 if (i==upto && isNonEncoding(i) && isSubdivision(territory))
 {
 // last record of a subdivision is nonEncoding:
 // recursively add parent mapcodes
 return master_encode(coord, ParentTerritoryOf(territory),
 results_array)
 }
 else if (recType(i)==0 && isNameless(i)==0)
 {

The Mapcode Standard – Page 26

 if (isNonEncoding(i) && results_array.length==initial_length)
 {
 // ignore: nothing was yet found in this territory
 }
 else
 {
 r = encode_grid(coord,i,"",territory,extraDigits)
 }
 }
 else if (recType(i)==1)
 {
 r = encode_grid(coord,i,recLetter(i),territory,extraDigits)
 }
 else if (isNameless(i))
 {
 r = encode_nameless(coord,i,from,extraDigits)
 }
 else // recType(i)>1
 {
 r = encode_starpipe(coord,i,territory,extraDigits)
 }

 // add the result to the array
 if (r!=ERROR)
 {
 r = packAlldigitCode(r,false)
 results_array.appendToArray(r)
 }
 }
 }
 }

 return results_array
}

B 3.2. the encode_grid algorithm

function string fast_encode(value,nrchars)
{
 string str = ""
 while (nrchars-- > 0)
 {
 str = encode_chars[value mod 31] + str
 value = (value div 31)
 }
 return str
}

function string encode_triple(coord)
{
 if (coord.y < 4*34)
 return encode_chars[((coord.x div 28) + 6*(coord.y div 34))] +
fast_encode((coord.x mod 28)*34 + (coord.y mod 34), 2)
 else
 return encode_chars[(coord.x div 24) + 24] +
fast_encode((coord.x mod 24)*40 + (coord.y - 136), 2)
}

function integer encode6(x,y,width,height)
{
 integer col = (x div 6)
 integer maxcol = ((width-4) div 6)
 integer d=6
 if (col>=maxcol)
 {
 col=maxcol
 d = width-maxcol*6
 }
 return (height*col*6) + (height - 1 - y)*d + (x - col*6)
}

function string encode_extension(extrax4,extray,dividerx4,dividery,extraDigits)
{

The Mapcode Standard – Page 27

 if (extraDigits<=0)
 return ""

 integer gx = ((30*extrax4) div dividerx4)
 integer gy = ((30*extray) div dividery)
 integer x1=(gx div 6)
 integer x2=(gx mod 6)
 integer y1=(gy div 5)
 integer y2=(gy mod 5)

 string extension=encode_chars[y1*5+x1]
 if (extraDigits==2)
 extension = extension + encode_chars[y2*6+x2]
 return extension
}

function encode_grid(coord,m,firstletter,territory,extraDigits)
{
 // copy information about territory rectangle m
 integer minx = minx(m)
 integer miny = miny(m)
 integer maxx = maxx(m)
 integer maxy = maxy(m)
 integer prelen = prefixLength(m)
 integer postlen = postfixLength(i)
 integer orglen = prelen
 if (prelen==1)
 {
 prelen++
 postlen--
 }

 // determine way to subdivide rectangle
 divy = smartDiv(m)
 if (divy==1)
 {
 divx = xside[prelen]
 divy = yside[prelen]
 }
 else
 {
 divx = (nc[prelen] div divy)
 }

 integer ygridsize = ((maxy-miny+divy-1) div divy)
 integer rel.y = coord.y - miny
 rel.y = (rel.y div ygridsize)
 integer xgridsize = ((maxx-minx+divx-1) div divx)

 integer rel.x = coord.x - minx
 if (rel.x<0)
 {
 coord.x += 360000000
 rel.x += 360000000
 }
 else if (rel.x>=360000000)
 {
 coord.x -= 360000000
 rel.x -= 360000000
 }
 if (rel.x<0)
 return ERROR
 rel.x = (rel.x div xgridsize)
 if (rel.x >= divx)
 return ERROR

 integer v
 if (divx!=divy && prelen>=3)
 {
 v = encode6(rel.x,rel.y,divx,divy)
 }
 else
 {
 v = rel.x * divy + (divy - 1 - rel.y)
 }

The Mapcode Standard – Page 28

 string result = fast_encode(v, prelen)

 // swap 2nd and 3d letters of mapcodes for 961x961 grids
 if (prelen==4 && divx==961 && divy==961)
 result = result[0] + result[2] + result[1] + result[3]

 rel.y = miny + (rel.y * ygridsize)
 rel.x = minx + (rel.x * xgridsize)

 integer dividery = ((((ygridsize))+yside[postlen]-1) div yside[postlen])
 integer dividerx = ((((xgridsize))+xside[postlen]-1) div xside[postlen])

 // encode relative to rel
 integer dif.x = coord.x - rel.x
 integer dif.y = coord.y - rel.y
 integer extrax = dif.x mod dividerx
 integer extray = dif.y mod dividery
 dif.x = (dif.x div dividerx)
 dif.y = (dif.y div dividery)
 dif.y = yside[postlen] - 1 - dif.y

 if (postlen==3)
 {
 result = result + "." + encode_triple(dif)
 }
 else
 {
 string postfix = fast_encode(dif.x * yside[postlen] + dif.y, postlen)
 if (postlen==4)
 {
 postfix = postfix[0] + postfix[2] + postfix[1] + postfix[3]
 }
 result = result + "." + postfix
 }

 if (orglen==1)
 {
 result = result[0] + "." + result[1] + result.substring(3)
 }

 return firstletter + result +
encode_extension(extrax*4,extray,dividerx*4,dividery,extraDigits)
}

B 3.3. the encode_nameless algorithm

function encode_nameless(coord,m,firstrec,extraDigits)
{
 // copy information about territory rectangle m
 integer minx = minx(m)
 integer miny = miny(m)
 integer maxx = maxx(m)
 integer maxy = maxy(m)
 integer SIDE = smartDiv(m)
 boolean specialshape = isSpecialShape(m)
 integer codex = coDex(m)
 integer codexlen = coDexLen(m)

 // determine index of rectangle and number of rectangles
 integer A = countCityCoordinatesForCountry(m,firstrec)
 integer X = m - firstNamelessRecordForCountry(m,firstrec)
 if (A<2)
 return ERROR

 integer p = (31 div A)
 integer r = (31 mod A)

 // determine storage_offset
 integer storage_offset=0
 if (codex!=21 && A<=31)
 {
 storage_offset = (X*p + (X<r ? X : r)) * (31*31*31*31)
 }

The Mapcode Standard – Page 29

 else if (codex!=21 && A<62)
 {
 if (X < (62-A))
 {
 storage_offset = X*(31*31*31*31)
 }
 else
 {
 storage_offset = (62-A + ((X-62+A) div 2))*(31*31*31*31)
 if ((X+A) & 1)
 {
 // X+A is odd
 storage_offset += (16*31*31*31)
 }
 }
 }
 else
 {
 integer basepower = (((codex==21) ? 31*31*31*31 : 31*31*31*31*31) div A)
 if (A==62)
 basepower++
 else
 basepower = 961 * (basepower div 961)

 storage_offset = X * basepower
 }

 // determine core value v
 integer orgSIDE=SIDE
 integer xSIDE=SIDE
 if (specialshape)
 {
 xSIDE *= SIDE
 SIDE = 1+((maxy-miny) div 90)
 xSIDE = (xSIDE div SIDE)
 }

 integer dividerx4 = xDivider(miny,maxy)
 integer dx = ((4*(coord.x-minx)) div dividerx4)
 integer extrax4 = (coord.x-minx)*4 - dx*dividerx4

 integer dividery = 90
 integer dy = (maxy-coord.y) div dividery
 integer extray = (maxy-coord.y) mod dividery

 integer v = storage_offset
 if (specialshape)
 v += encode6(dx,SIDE-1-dy,xSIDE,SIDE)
 else
 v+= (dx*SIDE + dy)

 // turn core value into mapcode and insert dot
 string result = fast_encode(v, codexlen+1)
 if (codexlen==3)
 {
 result = result.substr(0,2) + "." + result.substr(2)
 }
 else if (codexlen==4)
 {
 if (codex==22 && A<62 && orgSIDE==961 && specialshape==false)
 result = result[0] + result[1] + result[3] + result[2] + result[4]

 if (codex==13)
 result = result.substr(0,2) + "." + result.substr(2)
 else
 result = result.substr(0,3) + "." + result.substr(3)
 }

 // return result with optional extra digits
 return result +
encode_extension(extrax4,extray,dividerx4,dividery,extraDigits)
}

The Mapcode Standard – Page 30

B 3.4. the encode_starpipe algorithm

function encode_starpipe(coord,m,territory,extraDigits)
{
 integer STORAGE_START=0

 // search back to first record
 integer firstindex = m
 integer codexlen = CoDexLen(m)
 while (recType(firstindex-1)>=2 && CoDexLen(firstindex-1)==codexlen)
 firstindex--

 for(i=firstindex; CoDexLen(i)==codexlen; i++)
 {
 // copy information about territory rectangle i
 integer minx = minx(i)
 integer miny = miny(i)
 integer maxx = maxx(i)
 integer maxy = maxy(i)

 integer H = ((maxy-miny+89) div 90)
 integer xdiv = xDivider(miny,maxy)
 integer W = (((maxx-minx)*4 + (xdiv-1)) div xdiv)

 H = 176*((H+176-1) div 176)
 W = 168*((W+168-1) div 168)

 integer product = (W div 168) * (H div 176) * 31*31*31

 if (recType()==2)
 {
 // recType 2 rounds upward to a multiple of 4 or 5 characters
 integer GOODROUNDER = codex>=23 ? (31*31*31*31*31) : (31*31*31*31)
 product = ((STORAGE_START+product+GOODROUNDER-1) div GOODROUNDER) *
 GOODROUNDER - STORAGE_START
 }

 if (i==m && fitsInside(coord,i))
 {
 integer dividerx = ((maxx-minx+W-1) div W)
 integer vx = ((coord.x - minx) div dividerx)
 integer extrax = ((coord.x - minx) mod dividerx)

 integer dividery = ((maxy-miny+H-1) div H)
 integer vy = ((maxy - coord.y) div dividery)
 integer extray = ((maxy - coord.y) mod dividery)

 coordinate sp;
 sp.x = vx mod 168
 sp.y = vy mod 176

 vx = (vx div 168)
 vy = (vy div 176)

 integer value = (STORAGE_START div (31*31*31)) + (vx*(H div 176) + vy

 return fast_encode(value, codexlen-2)
 + "."
 + encode_triple(sp)
 + encode_extension(extrax*4,extray,dividerx*4,dividery,extraDigits)

 }
 STORAGE_START += product
 }
 return ERROR
}

The Mapcode Standard – Page 31

Appendix C. Territory codes

This appendix lists all the unabbreviated territory codes supported by the mapcode
system. See Chapter 1.4.1. about how to copy with abbreviated or missing territory
codes.

C 1. Main territories

All 249 codes in the ISO 3166-1 alpha 3 set are valid as a mapcode territory code:

Territory ISO 3166-1
Aaland Islands ALA
Afghanistan AFG
Albania ALB
Algeria DZA
American Samoa ASM
Andorra AND
Angola AGO
Anguilla AIA
Antarctica ATA
Antigua and Barbuda ATG
Argentina ARG
Armenia ARM
Aruba ABW
Australia AUS
Austria AUT
Azerbaijan AZE
Bahamas BHS
Bahrain BHR
Bangladesh BGD
Barbados BRB
Belarus BLR
Belgium BEL
Belize BLZ
Benin BEN
Bermuda BMU
Bhutan BTN
Bolivia BOL
Bonaire, St Eustasuis and Saba BES
Bosnia and Herzegovina BIH
Botswana BWA
Bouvet Island BVT
Brazil BRA
British Indian Ocean Territory IOT
British Virgin Islands VGB
Brunei BRN
Bulgaria BGR
Burkina Faso BFA
Burundi BDI
Cambodia KHM
Cameroon CMR

The Mapcode Standard – Page 32

Canada CAN
Cape Verde CPV
Cayman islands CYM
Central African Republic CAF
Chad TCD
Chile CHL
China CHN
Christmas Island CXR
Cocos Islands CCK
Colombia COL
Comoros COM
Congo-Brazzaville COG
Congo-Kinshasa COD
Cook islands COK
Costa Rica CRI
Croatia HRV
Cuba CUB
Curacao CUW
Cyprus CYP
Czech Republic CZE
Denmark DNK
Djibouti DJI
Dominica DMA
Dominican Republic DOM
East Timor TLS
Ecuador ECU
Egypt EGY
El Salvador SLV
Equatorial Guinea GNQ
Eritrea ERI
Estonia EST
Ethiopia ETH
Falkland Islands FLK
Faroe Islands FRO
Fiji Islands FJI
Finland FIN
France FRA
French Guiana GUF
French Polynesia PYF
French Southern and Antarctic Lands ATF
Gabon GAB
Gambia GMB
Georgia GEO
Germany DEU
Ghana GHA
Gibraltar GIB
Greece GRC
Greenland GRL
Grenada GRD
Guadeloupe GLP
Guam GUM
Guatemala GTM
Guernsey GGY
Guinea GIN

The Mapcode Standard – Page 33

Guinea-Bissau GNB
Guyana GUY
Haiti HTI
Heard Island and McDonald Islands HMD
Honduras HND
Hong Kong HKG
Hungary HUN
Iceland ISL
India IND
Indonesia IDN
Iran IRN
Iraq IRQ
Ireland IRL
Isle of Man IMN
Israel ISR
Italy ITA
Ivory Coast CIV
Jamaica JAM
Japan JPN
Jersey JEY
Jordan JOR
Kazakhstan KAZ
Kenya KEN
Kiribati KIR
Kuwait KWT
Kyrgyzstan KGZ
Laos LAO
Latvia LVA
Lebanon LBN
Lesotho LSO
Liberia LBR
Libya LBY
Liechtenstein LIE
Lithuania LTU
Luxembourg LUX
Macau MAC
Macedonia MKD
Madagascar MDG
Malawi MWI
Malaysia MYS
Maldives MDV
Mali MLI
Malta MLT
Marshall Islands MHL
Martinique MTQ
Mauritania MRT
Mauritius MUS
Mayotte MYT
Mexico MEX
Micronesia FSM
Moldova MDA
Monaco MCO
Mongolia MNG
Montenegro MNE

The Mapcode Standard – Page 34

Montserrat MSR
Morocco MAR
Mozambique MOZ
Myanmar MMR
Namibia NAM
Nauru NRU
Nepal NPL
Netherlands NLD
New Caledonia NCL
New Zealand NZL
Nicaragua NIC
Niger NER
Nigeria NGA
Niue NIU
Norfolk and Philip Island NFK
North Korea PRK
Northern Mariana Islands MNP
Norway NOR
Oman OMN
Pakistan PAK
Palau PLW
Palestinian territory PSE
Panama PAN
Papua New Guinea PNG
Paraguay PRY
Peru PER
Philippines PHL
Pitcairn Islands PCN
Poland POL
Portugal PRT
Puerto Rico PRI
Qatar QAT
Reunion REU
Romania ROU
Russia RUS
Rwanda RWA
Saint Helena, Ascension and Tristan da Cunha SHN
Saint Kitts and Nevis KNA
Saint Lucia LCA
Saint Pierre and Miquelon SPM
Saint Vincent and the Grenadines VCT
Saint-Barthelemy BLM
Saint-Martin MAF
Samoa WSM
San Marino SMR
Sao Tome and Principe STP
Saudi Arabia SAU
Senegal SEN
Serbia SRB
Seychelles SYC
Sierra Leone SLE
Singapore SGP
Sint Maarten SXM
Slovakia SVK

The Mapcode Standard – Page 35

Slovenia SVN
Solomon Islands SLB
Somalia SOM
South Africa ZAF
South Georgia and the South Sandwich Islands SGS
South Korea KOR
South Sudan SSD
Spain ESP
Sri Lanka LKA
Sudan SDN
Suriname SUR
Svalbard (Spitsbergen) and Jan Mayen SJM
Swaziland SWZ
Sweden SWE
Switzerland CHE
Syria SYR
Taiwan TWN
Tajikistan TJK
Tanzania TZA
Thailand THA
Togo TGO
Tokelau TKL
Tonga TON
Trinidad and Tobago TTO
Tunisia TUN
Turkey TUR
Turkmenistan TKM
Turks and Caicos Islands TCA
Tuvalu TUV
Uganda UGA
Ukraine UKR
United Arab Emirates ARE
United Kingdom GBR
United States Minor Outlying Islands UMI
Uruguay URY
US Virgin Islands VIR
USA USA
Uzbekistan UZB
Vanuatu VUT
Vatican City VAT
Venezuela VEN
Vietnam VNM
Wallis and Futuna WLF
Western Sahara ESH
Yemen YEM
Zambia ZMB
Zimbabwe ZWE

C 2. Subdivisions of territories

In some very large countries, an address has little meaning without knowing the state,
province or oblast (just like elsewhere, an address has little meaning without knowing

The Mapcode Standard – Page 36

the country). For example, there are 27 cities called Washington in the USA. If you want
to refer to a location in the capital city, you would always refer to "Washington DC".

For eight countries (The USA, Canada, Mexico, Brazil, India, Australia, Russia, and China),
mapcode supports territory codes for specific subdivisions. Where possible, ISO 3166-
2:XX codes are supported as territory codes, which consist of a two-letter country code,
a hyphen, and a two- or three-letter state code. For example, the state of Florida in the
United States has territory code US-FL.

C 2.1. Brazil

For this country, mapcode territory codes for its subdivisions (its states) are based on
ISO 3166-2:BR

Territory ISO 3166-2:BR
Acre BR-AC
Alagoas BR-AL
Amapá BR-AP
Amazonas BR-AM
Bahia BR-BA
Ceará BR-CE
Espírito Santo BR-ES
Federal District BR-DF
Goiás BR-GO
Maranhão BR-MA
Mato Grosso BR-MT
Mato Grosso do Sul BR-MS
Minas Gerais BR-MG
Pará BR-PA
Paraíba BR-PB
Paraná BR-PR
Pernambuco BR-PE
Piauí BR-PI
Rio de Janeiro BR-RJ
Rio Grande do Norte BR-RN
Rio Grande do Sul BR-RS
Rondônia BR-RO
Roraima BR-RR
Santa Catarina BR-SC
São Paulo BR-SP
Sergipe BR-SE
Tocantins BR-TO

C 2.2. Canada

For this country, mapcode territory codes for its subdivisions (provinces and
territories) are based on ISO 3166-2:CA

Territory ISO 3166-2:CA
Alberta CA-AB
British Columbia CA-BC

The Mapcode Standard – Page 37

Manitoba CA-MB
New Brunswick CA-NB
Newfoundland and Labrador CA-NL
Nova Scotia CA-NS
Ontario CA-ON
Prince Edward Island CA-PE
Quebec CA-QC
Saskatchewan CA-SK
Northwest Territories CA-NT
Nunavut CA-NU
Yukon CA-YT

C 2.3. The United States of America

For this country, mapcode territory codes for its subdivisions (its states, and the Federal
District of Columbia) are based on ISO 3166-2:US

Territory ISO 3166-2:US
Alaska US-AK
Alabama US-AL
Arkansas US-AR
Arizona US-AZ
Californië US-CA
Colorado US-CO
Connecticut US-CT
Washington D.C. US-DC
Delaware US-DE
Florida US-FL
Georgia US-GA
Hawaï US-HI
Iowa US-IA
Idaho US-ID
Illinois US-IL
Indiana US-IN
Kansas US-KS
Kentucky US-KY
Louisiana US-LA
Massachusetts US-MA
Maryland US-MD
Maine US-ME
Michigan US-MI
Minnesota US-MN
Missouri US-MO
Mississippi US-MS
Montana US-MT
North Carolina US-NC
North Dakota US-ND
Nebraska US-NE
New Hampshire US-NH
New Jersey US-NJ

The Mapcode Standard – Page 38

New Mexico US-NM
Nevada US-NV
New York US-NY
Ohio US-OH
Oklahoma US-OK
Oregon US-OR
Pennsylvania US-PA
Rhode Island US-RI
South Carolina US-SC
South Dakota US-SD
Tennessee US-TN
Texas US-TX
Utah US-UT
Virginia US-VA
Vermont US-VT
Washington US-WA
Wisconsin US-WI
West Virginia US-WV
Wyoming US-WY

The mapcode system also accepts the following ISO 3166-2:US codes as valid territory
codes for US oversees territories – although mapcodes are generated using their ISO
3166-1 alpha-3 code:

Territory ISO 3166-2:US

Accepted but
never generated

Normal
Code

(From
ISO 3166-1)

American Samoa US-AS ASM
Guam US-GU GUM
Northern Mariana Islands US-MP MNP
Puerto Rico US-PR PRI
United States Minor Outlying Islands US-UM UMI
US Virgin Islands US-VI VIR

C 2.4. India

For this country, mapcode territory codes for its subdivisions (its states and unions) are
based on ISO 3166-2:IN

Territory ISO 3166-2:IN Mapcode

Alternative
Accepted but

never generated
Andaman and Nicobar Islands IN-AN
Andhra Pradesh IN-AP
Arunachal Pradesh IN-AR
Assam IN-AS
Bihar IN-BR
Chandigarh IN-CH
Chhattisgarh IN-CT IN-CG

The Mapcode Standard – Page 39

Dadra and Nagar Haveli IN-DN
Daman and Diu IN-DD
Delhi IN-DL
Goa IN-GA
Gujarat IN-GJ
Haryana IN-HR
Himachal Pradesh IN-HP
Jammu and Kashmir IN-JK
Jharkhand IN-JH
Karnataka IN-KA
Kerala IN-KL
Lakshadweep IN-LD
Madhya Pradesh IN-MP
Maharashtra IN-MH
Manipur IN-MN
Meghalaya IN-ML
Mizoram IN-MZ
Nagaland IN-NL
Odisha (formerly known as Orissa) IN-OR IN-OD
Puducherry (Pondicherry) IN-PY
Punjab IN-PB
Rajasthan IN-RJ
Sikkim IN-SK
Tamil Nadu IN-TN
Telangana IN-TG
Tripura IN-TR
Uttarakhand IN-UT IN-UK
Uttar Pradesh IN-UP
West Bengal IN-WB

Three non-standard mapcode alternatives are accepted to cope with widely-used
abbreviations (e.g. for vehicle registration).

C 2.5. China

For this country, mapcode territory codes for its subdivisions (provinces, municipalities,
autonomous regions and special administrative regions) are based on
ISO 3166-2:CN. For three of those (Taiwan, Hong Kong and Macao), an ISO 3166 3-
letter territory code is also available. Since the ISO 3166-2:CN codes are numerical, the
mapcode system also supports the PRC GB/T 2260 2-letter codes as alternative
territory codes. This is a Chinese national standard, issued by the Standardization
Administration of China (SAC), the Chinese National Committee of the ISO and IEC.

Territory

ISO
3166-2:CN

Accepted but
never generated

PRC GB/T
2260

ISO 3166-1
equivalent

Beijing CN-11 CN-BJ
Tianjin CN-12 CN-TJ
Hebei CN-13 CN-HE
Shanxi CN-14 CN-SX
Nei Mongol (mn) CN-15 CN-NM

The Mapcode Standard – Page 40

Liaoning CN-21 CN-LN
Jilin CN-22 CN-JL
Heilongjiang CN-23 CN-HL
Shanghai CN-31 CN-SH
Jiangsu CN-32 CN-JS
Zhejiang CN-33 CN-ZJ
Anhui CN-34 CN-AH
Fujian CN-35 CN-FJ
Jiangxi CN-36 CN-JX
Shandong CN-37 CN-SD
Henan CN-41 CN-HA
Hubei CN-42 CN-HB
Hunan CN-43 CN-HN
Guangdong CN-44 CN-GD
Guangxi CN-45 CN-GX
Hainan CN-46 CN-HI
Chongqing CN-50 CN-CQ
Sichuan CN-51 CN-SC
Guizhou CN-52 CN-GZ
Yunnan CN-53 CN-YN
Xizang CN-54 CN-XZ
Shaanxi CN-61 CN-SN
Gansu CN-62 CN-GS
Qinghai CN-63 CN-QH
Ningxia CN-64 CN-NX
Xinjiang CN-65 CN-XJ
Taiwan CN-71 CN-TW TWN
Hong Kong (Xianggang) CN-91 CN-HK HKG
Macao (Aomen) CN-92 CN-MC MAC

C 2.6. Australia

For this country, mapcode territory codes for its subdivisions (states and union
territories) are based on ISO 3166-2:AU

Territory

ISO 3166-2:AU

New South Wales AU-NSW
Queensland AU-QLD
South Australia AU-SA
Tasmania AU-TAS
Victoria AU-VIC
Western Australia AU-WA
Australian Capital Territory AU-ACT
Northern Territory AU-NT

There is no ISO 3166 code for the Jarvis Bay Territory, but mapcode defines its own
code, AU-JBT:

Territory

ISO 3166-2:AU

Mapcode
Alternative

The Mapcode Standard – Page 41

Jervis Bay Territory none AU-JBT

The following external territories of Australia already have their own 3-letter (ISO
3166-1 alpha 3) “country” code (see “The main territories of the world”). Since they do
not have a ISO 3166-2:AU code, but do have two-letter ISO 3166 country codes, mapcode
accepts those as valid subdivision codes.

Territory

Normal
code
 (from

ISO 3166-1)

Mapcode
Alternative
Accepted but

never generated
Christmas Island CXR AU-CX
Cocos (Keening) Island CCK AU-CC
Heard Island and McDonalds Islands HMD AU-HM
Norfolk Island NFK AU-NF

Note:

• Ashmore Reef and Cartier Island are included in AU-WA , Western Australia
• Coral Sea Islands is included in AU-QLD, Queensland, Australia
• Macquarie Island is included in AUS, i.e. Australia as whole

C 2.7. Mexico

For this country, mapcode territory codes for its subdivisions (states and federal
district) are based on ISO 3166-2:MX. Mapcode also accepts self-defined 2-letter
alternative codes for the subdivisions as well.

Territory

ISO
3166-2:MX

Mapcode
alternative

Aguascalientes MX-AGU MX-AG
Baja California MX-BCN MX-BC
Baja California Sur MX-BCS MX-BS
Chiapas MX-CHP MX-CH
Chihuahua MX-CHH MX-CS
Campeche MX-CAM MX-CM
Coahuila MX-COA MX-CO
Colima MX-COL MX-OL
Distrito Federal MX-DIF MX-DF
Durango MX-DUR MX-DG
Guanajuato MX-GUA MX-GR
Guerrero MX-GRO MX-GT
Hidalgo MX-HID MX-HG
Jalisco MX-JAL MX-JA
Mexico (Federal District)

MX-MEX

MX-MX
MX-ME

Michoacán MX-MIC MX-MI
Morelos MX-MOR MX-MO
Nayarit MX-NAY MX-NA
Nuevo León MX-NLE MX-NL
Oaxaca MX-OAX MX-OA
Puebla MX-PUE MX-PB

The Mapcode Standard – Page 42

Querétaro MX-QUE MX-QE
Quintana Roo MX-ROO MX-QR
San Luis Potosí MX-SLP MX-SI
Sinaloa MX-SIN MX-SL
Sonora MX-SON MX-SO
Tabasco MX-TAB MX-TB
Tamaulipas MX-TAM MX-TM
Tlaxcala MX-TLA MX-TL
Veracruz MX-VER MX-VE
Yucatán MX-YUC MX-YU
Zacatecas MX-ZAC MX-ZA

Note: the 3-letter subdivision code MEX conflicts with the country code for Mexico as a whole.
The subdivision code COL conflicts with 3-letter country codes for Columbia. See “Duplicate
codes” for more about such conflicts.

C 2.8. Russia

For this country, mapcode territory codes for its subdivisions (identifies republics,
territories, regions, districts and autonomous cities) are based on ISO 3166-2:RU.
The republics have 2-letter codes, the rest has 3-letter codes. Mapcode defines a few 2-
letter alternatives for those codes that precisely match 3-letter country codes, such as
BEL (Belgium). See “Duplicate codes” for more about this.

Territory

ISO
3166-2:RU

Mapcode
alternative

Adygeya, Respublika RU-AD
Altay, Respublika RU-AL
Bashkortostan, Respublika RU-BA
Buryatiya, Respublika RU-BU
Chechenskaya Respublika RU-CE
Chuvashskaya Respublika RU-CU
Dagestan, Respublika RU-DA
Ingushetiya, Respublika RU-IN
Kabardino-Balkarskaya Respublika RU-KB
Kalmykiya, Respublika RU-KL
Karachayevo-Cherkesskaya Respubl. RU-KC
Kareliya, Respublika RU-KR
Khakasiya, Respublika RU-KK
Komi, Respublika RU-KO
Mariy El, Respublika RU-ME
Mordoviya, Respublika RU-MO
Sakha, Respublika RU-SA
Severnaya Osetiya-Alaniya, Respubl. RU-SE
Tatarstan, Respublika RU-TA
Tyva, Respublika RU-TY
Udmurtskaya Respublika RU-UD

Altayskiy kray RU-ALT
Kamchatskiy kray RU-KAM
Khabarovskiy kray RU-KHA
Krasnodarskiy kray RU-KDA

The Mapcode Standard – Page 43

Krasnoyarskiy kray RU-KYA
Permskiy kray RU-PER RU-PM
Primorskiy kray RU-PRI RU-PO
Stavropol'skiy kray RU-STA
Zabaykal'skiy kray RU-ZAB
 Amurskaya oblast' RU-AMU
Arkhangel'skaya oblast' RU-ARK
Astrakhanskaya oblast' RU-AST
Belgorodskaya oblast' RU-BEL RU-BE
Bryanskaya oblast' RU-BRY
Chelyabinskaya oblast' RU-CHE RU-CH
Irkutskaya oblast' RU-IRK
Ivanovskaya oblast' RU-IVA
Kaliningradskaya oblast' RU-KGD
Kaluzhskaya oblast' RU-KLU
Kemerovskaya oblast' RU-KEM
Kirovskaya oblast' RU-KIR RU-KI
Kostromskaya oblast' RU-KOS
Kurganskaya oblast' RU-KGN
Kurskaya oblast' RU-KRS
Leningradskaya oblast' RU-LEN
Lipetskaya oblast' RU-LIP
Magadanskaya oblast' RU-MAG
Moskovskaya oblast' RU-MOS
Murmanskaya oblast' RU-MUR
Nizhegorodskaya oblast' RU-NIZ
Novgorodskaya oblast' RU-NGR
Novosibirskaya oblast' RU-NVS
Omskaya oblast' RU-OMS
Orenburgskaya oblast' RU-ORE
Orlovskaya oblast' RU-ORL
Penzenskaya oblast' RU-PNZ
Pskovskaya oblast' RU-PSK
Rostovskaya oblast' RU-ROS
Ryazanskaya oblast' RU-RYA
Sakhalinskaya oblast' RU-SAK
Samarskaya oblast' RU-SAM
Saratovskaya oblast' RU-SAR
Smolenskaya oblast' RU-SMO
Sverdlovskaya oblast' RU-SVE
Tambovskaya oblast' RU-TAM RU-TT
Tomskaya oblast' RU-TOM
Tul'skaya oblast' RU-TUL
Tverskaya oblast' RU-TVE
Tyumenskaya oblast' RU-TYU
Ul'yanovskaya oblast' RU-ULY
Vladimirskaya oblast' RU-VLA
Volgogradskaya oblast' RU-VGG
Vologodskaya oblast' RU-VLG
Voronezhskaya oblast' RU-VOR
Yaroslavskaya oblast' RU-YAR
Moskva (autonomous city) RU-MOW

The Mapcode Standard – Page 44

Sankt-Peterburg (autonomous city) RU-SPE
Yevreyskaya avtonomnaya oblast' RU-YEV
Chukotskiy avtonomnyy okrug RU-CHU
Khanty-Mansiyskiy avtonomnyy okrug-
Yugra RU-KHM RY-KM
Nenetskiy avtonomnyy okrug RU-NEN
Yamalo-Nenetskiy avtonomnyy okrug RU-YAN

C 2.9. Subdivisions of other countries

It should be noted that many countries, not just the eight mentioned above, have ISO
3166-2:XX codes. Even a small country like Belgium has ISO 3166-2:BE codes for 10
provinces. However, only the eight countries listed above were deemed to merit from
their subdivision into states, provinces, regions etc. as far as their mapcodes are
concerned (delivering shorter proper mapcodes at the cost of explicitly mentioning their
territory code).

What deserves special mention is that six countries have “dependent overseas
territories” that have their own country code. For China and the USA, the dependent
territories also have subdivision codes, just like the states and provinces. For example,
American Samoa has the US subdivision code US-AS as well as its own country code
ASM. But the dependent territories of the other four countries (Finland, The
Netherlands, France and Norway) can only be identified through their 3-letter country
codes. For completeness’ sake, they are listed here:

Subdivision codes included in ISO 3166-1
alpha-2, but NOT valid as mapcode
territory code

ISO 3166-1 alpha 3
equivalent

(valid in mapcodes)
FI-01 Åland ALA
FR-BL Saint Barthélemy NLM
FR-GF French Guiana GUF
FR-GP Guadeloupe GLP
FR-MF Saint Martin MAF
FR-MQ Martinique MTQ
FR-NC New Caledonia NCL
FR-PF French Polynesia PYF
FR-PM Saint Pierre and Miquelon SPM
FR-RE Réunion REU
FR-TF French Southern Territories ATF
FR-WF Wallis and Futuna WLF
FR-YT Mayotte MYT
NL-AW Aruba ABW
NL-BQ1 Bonaire BES
NL-BQ2 Saba BES
NL-BQ3 Sint Eustatius BES
NL-CW Curaçao CUW
NL-SX Sint Maarten SXM

The Mapcode Standard – Page 45

NO-21 Svalbard SJM
NO-22 Jan Mayen SJM

Also see “Legacy or reserved 3-letter codes” about similar issues.

C 3. Special cases

C 3.1. The “international” territory

To cover the world as a whole, the special territory code AAA was introduced:

 Territory ISO 3166-1
 World AAA

Mapcodes never need to include this territory code explicitly, since there is no other
territory context it can ever be confused with. World mapcodes are always 9 characters,
and no other mapcode is ever 9 characters.

C 3.2. Two-letter country codes

All countries have a three-letter territory code (see Appendix C 1), but eight countries
have territory codes for subdivisions that use a two-letter country codes in combination
with a subdivision code. To make the use of mapcode easier for people, systems should
be implemented such that

1. 3-letter country codes are allowed instead of 2-letter codes when specifying a
state; for example, USA-FL is a valid alternative for US-FL.

2. In four cases, the two-letter country code is unambiguous in the context of the
mapcode system, and should be allowed as a valid alternative for the official 3-
letter code:

Official code Mapcode alternative
USA US
AUS AU
RUS RU
CHN CN

This is not possible for the other four countries that have state codes:

MEX MX would conflict with MX-MX
CAN CA would conflict with US-CA
BRA BR would conflict with IN-BR
IND IN would conflict with US-IN

although it may still be possible to disambiguate based on the situation (see
Chapter 1.4.1 for more information

C 3.3. Legacy or reserved 3-letter codes

The following 3-letter “legacy” or “reserved” ISO 3166 codes are accepted by mapcode
(as aliases, i.e. TAA and ASC are interpreted as SHN):

The Mapcode Standard – Page 46

Territory

ISO 3166
exceptional
reservation
Accepted but

never generated

ISO 3166
Legacy

Accepted but

never generated

Normal
code
 (from

ISO 3166-1)

Tristan da Cunha (part of SHN) TAA SHN
Ascension (part of SHN) ASC SHN
Diego Garcia (part of IOT) DGA IOT
Wake Island (part of MHL) WAK MHL
Johnston Atoll (part of UMI) JTN UMI
Midway (part of Hawaii US-HI) MID US-HI

Clipperton Island also has a 3-letter reserved ISO 3166 code (“CPT”) available, but unlike
the above territories it has no existing country code. Mapcode therefore defines CPT
(making it the only way to refer to Clipperton Island):
Territory ISO 3166 exceptional reservation
Clipperton Island (part of France) CPT

The Mapcode Standard – Page 47

	ISO-TC211_N4037_Draft_NWIP_MapCode
	version 1 -MapCode - NWIP - 2015
	version 1.0 - the Mapcode Standard 27-5-2015
	The Mapcode Standard
	i. Justification
	Why such codes are needed
	What makes a good code

	ii. Scope
	iii. Normative references
	iv. Symbols and abbreviations

	1. The Format of mapcodes
	1.1. Mapcode components
	1.2. Displaying mapcodes
	1.3. Handling mapcode input
	1.4 Format of a territory code.
	1.4.1. Disambiguation of partial or missing territory codes

	1.5. Format of the high precision extension
	1.6. Format of a proper mapcode
	1.6.1. Summary: possible formats

	Appendix A. Handling non-latin alphabets and vowels
	A 1. Non-Latin alphabets
	A 1.1. Alphabets with less than 24 symbols

	A 2. Vowels versus all-digit mapcodes
	A 2.1. removing vowels
	A 2.2. adding vowels to prevent all-digit mapcodes
	A 2.3. adding vowels for the Greek alphabet

	Appendix B Encoding and Decoding Mapcodes
	B 1. Basic routines
	B 1.1. Basic routines for territories
	B 1.2. Basic data tables
	B 1.3. Required low-level routines
	B 1.4. Basic routines to see if a coordinate is inside a territory rectangle
	B 1.5. Basic arrays to encode and decode Latin characters

	B 2. Decoding a mapcode
	B 2.1. The decode algorithm
	Step 1: disambiguation of the territory (if necessary)
	Step 2: conversion into Latin alphabet (if necessary)
	Step 3: pre-processing vowels
	Step 4: decoding

	B 2.1. the decode_grid algorithm
	B 2.2. the decode_nameless algorithm
	B 2.3. the decode_starpipe algorithm

	B 3. Encoding a coordinate
	B 3.1. the principle behind encoding
	B 3.1.1. one coordinate, multiple mapcodes in a territory
	B 3.1.2. one coordinate, mapcodes in multiple territories

	B 3.1.3. the encode algorithm
	Step 1: disambiguation of the territory (if necessary)
	Step 2: production of a Latin-alphabet mapcode
	Step 3: conversion into a foreign alphabet (if necessary)

	B 3.2. the encode_grid algorithm
	B 3.3. the encode_nameless algorithm
	B 3.4. the encode_starpipe algorithm

	Appendix C. Territory codes
	C 1. Main territories
	C 2. Subdivisions of territories
	C 2.1. Brazil
	C 2.2. Canada
	C 2.3. The United States of America
	C 2.4. India
	C 2.5. China
	C 2.6. Australia
	C 2.7. Mexico
	C 2.8. Russia
	C 2.9. Subdivisions of other countries

	C 3. Special cases
	C 3.1. The “international” territory
	C 3.2. Two-letter country codes
	C 3.3. Legacy or reserved 3-letter codes

