SensorML

O0GC 12-000

Open Geospatial Consortium

Publication Date: 2014-02-04

Approval Date: 2013-12-10

Submission Date: 2012-11-05

Reference number of this OGC®™ document: OGC 12-000

OGC name of this OGC® project document: http://www.opengis.net/doc/IS/SensorML/2.0
Version: 2.0.0

Category: OGC® Encoding Standard

Editor: Mike Botts
Co-Editor: Alexandre Robin

OGC® SensorML:
Model and XML Encoding Standard

Copyright notice

Copyright © 2014 Open Geospatial Consortium

To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is an OGC Member approved international standard. This document is available on a
royalty free, non-discriminatory basis. Recipients of this document are invited to submit, with their
comments, notification of any relevant patent rights of which they are aware and to provide

supporting documentation.

Document type: OGC® Publicly Available Standard
Document subtype: Encoding
Document stage: Approved

Document language: English

0OGC 12-000 SensorML

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below,
to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property
without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish,
distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to
do so, provided that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above
copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.
THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS
THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF
INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY
DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH
THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all
copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as
provided in the following sentence, no such termination of this license shall require the termination of any third party end-user
sublicense to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual
Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent,
copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license
without any compensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or
cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual
Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without
prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may
authorize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any
LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United
Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In the event any provision of this
Agreement shall be deemed unenforceable, void or invalid, such provision shall be modified so as to make it valid and enforceable,
and as so modified the entire Agreement shall remain in full force and effect. No decision, action or inaction by LICENSOR shall be
construed to be a waiver of any rights or remedies available to it. None of the Intellectual Property or underlying information or
technology may be downloaded or otherwise exported or reexported in violation of U.S. export laws and regulations. In addition, you
are responsible for complying with any local laws in your jurisdiction which may impact your right to import, export or use the
Intellectual Property, and you represent that you have complied with any regulations or registration procedures required by applicable
law to make this license enforceable

il Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

Contents
I ADSIFACE..nneiiiiiiciiecttecttecteccteesneeesssneeisssessssnessssnessssssssssssssssssssssesssssnsssssnssssanssss ix
I, KEYWOIdS..occoieriiinisnriiniisnniicnsssnnnecssssnsncsssssssesssssnsssanss ix
ili. Submitting OrganiZations...........ccecvveeiccissnrecssssnsscsssssssess ix
Submission CoNtaCt POINES.....cccueiiiiieiiisiiiiineiniseeinsnecssnnessencsssencssssscsssescssssscsssasssssnscsne X
IVe FULUIE WOTK auuaeenniiiiiiiiniiiintinineininnicnneecnneecsnicssstesssesssssnsssssesssssssssssscsssssssssssssses X
v. Changes to the OGC® Abstract SPecCification ...c.ueeeeeccsnnrccsssnricssssnnrecssssnssssssnssscsans X
Sensor Model Language (SensorML): An Implementation Standard..........ccccueee... 14
1T SCOPE corrceeriiiinniicnssnnnicsssssssncsssssssesssass 14
2 CONTOIMANCE cuuceeenneercrneecsneeisneessnecssanecsssseesssnessssssssssssssssesssssassssssssssssssssssssssasssssssass 16
2.1 OVEIVIEW ..ttt ettt et b e et e b e et e bt e eabeebeesabeebeesateenbeesaeeens 16
2.2 Specification 1deNtifIer.........ccceeiiiviieiiie et 16
2.3 Conformance ClaSSESceoueeriiriiieniiieiieriie ettt ettt sttt e s ens 16
3 Normative References.....iiiiieeiiseeiissinissnencssnenssnecsssecssnecssssecssssncssssscssssscssanes 18
4 Terms and DefInitionsccoeeeiieeiiiieciseiissencssnncssencssseecsssncssseesssssessssessssssssssssces 19
S5 CONVENTIONS .cuueeeerneicssnnecssneeissneessnncssnecsssneesssnesssssssssssssssssesssssssssssssssssssssssssssssssssssess 23
5.1 AbDbIreviated teIMIS.....ccoueiiiieiiieiieiie ettt 23
5.2 UML NOLALION ..eoutiiiiieiieiiieite ettt ettt ettt sit e e e st e e beesaeeens 23
5.3 Table notation used to €Xpress reqUITEMENtS........cccuveeerveeerveeriveesinreesireeessneeenns 24
6 Requirements Class: Core Concepts (NOrmative COIe)cceecrnneecsssneresssssssecssnnns 26
0.1 INErOAUCTION.iiiiiiiiieiee ettt ettt e st e e ens 26
6.2 Process DefiNItioNnscooueeiiiiiiiiiieiieite et 27
7 UML Conceptual Models (NOrMAtiVe)ceeeercrnrecssssnnrcsssssnrecsssnssessssssssssssssssssssnsss 29
7.1 Package Dependencies.........ccciiruieeriiieeiiieeiieeeieeeeieeesieeesreeesereesereesraeesaeee e 29
7.1.1 Dependency on GML Feature Model and ISO TC 211 Models................... 29
7.1.2 Dependency on SWE Common Data Models.........ccceevvieeriieecieeniieeeiiens 32
7.1.3 Relationship to Observations and Measurements (O&M)...........ccccuveeennenne 34
7.2 Requirements Class: Core AbStract ProCeSsS.......c.cevvveveriieeriieeiiieeieeciee e 36
7.2.1 ObSErvablePrOPEItYcccciiieiiieeiieeeiie ettt et e e s aae e 36
7.2.2DeSCTIDEAODIECEcceiieeiiie ettt et e et e e e e e e e saeeeeaae e e 37
7.2.3 ADSITACtPTOCESS ...t 43
7.2.4SWE Common Data TYPESceevviiieiiiiiiieeeiiiiee et eeeee e e eeeee e 49
7.3 Requirements Class: SIMple ProCcess.......ccccvveeiuiieriiiiiniieeciie e 50
7.3.1 Simple Process Definition..........cc.eeeciieriireeiiieeeiieesiieeeiee e 50

Copyright © 2014 Open Geospatial Consortium 11l

0OGC 12-000 SensorML

7.3.2 Process Method Definition..........cooueiiieiiiiiiiiiiiiiienieeeee e 52
7.4 Requirements Class: Aggregate ProCeSScuevecuvieeiieieiieeiiie e 53
7.4.1 Aggregate Process Definitioncceeecvreeiiieeniieeriie e 53
7.6 Requirement Class: Physical Component.............ccccveeviieeriieeriieeiieecieeeieeenns 56
7.6.1 Abstract Physical Process Definedcccocvveiiieeniiiiiiieeieeeeeeeeee 56
7.6.2 Physical Component Defined...........cccooeviiiiiiiiiiiieiie e 61

7.7 Requirement Class: Physical SyStem.........ccccveeiuiieiiiiiiniieeciie e 62
7.8 Requirements Class: Processes with Advanced Data Typesccccceeveveernennns 65
7.9 Requirements Class: Configurable Processes..........cccceevvireriieerieeeiieesiieeeieeenns 66
T.9. T MOAES ..ttt ettt 67
7.9.2 SEUINES .evveeeeerieeeiieeeetee ettt e estte e e etteeeteeesteeessaeeesssaeensseeesseeessseesnsaeesnsseennsaeenns 68

8 XML Schema Implementation (NOrMALIVE)cceervrnrrccscsnnreccsssassecsssssssessssssscssnnns 71
8.1 Requirements Class: Core Abstract Process Schema..........ccccoccveeveiieiiiiencnenn, 72
8.1.1 General XML PrincCiplesceeeveeeriieeiiieeiieeeiie et 72
8.1.2 General XSD Dependencies and XML Headingcccccccvveevieeeiiiennneenee. 75
8.1.3 DescribedODbject PrOPerties......cuueecveeeiiieeiiieeiieeeiee ettt e 78

8. 1.4 ADSIIACt PrOCESS ...cutieiiieiiieiie ettt et s 96

8.2 Requirements Class: Simple Process Schema...........ccccceeeeiviiiiiencieeeieeee. 115
8.2.1 SIMPIE PrOCESS ...vvieiviieciieeeiie ettt ettt sve e e sae e e tae e e e e sree e 115
8.2.2 Process Methodoouiiiiiiiiiieeie e 116

8.3 Requirements Class: Aggregate Process Schema..........c.cccccvvvvviieeciiencieennnenn. 118
8.3. 1 AGEIegate PrOCESS...ccoiuviiieeiiiiee ettt ettt e e et e e s aaee e e 119
8.3. 2 COMPONENLS ..eeeeiiiieeeiiiiieeeiiteeeeeiteeeesitteeeesateeeseetreeeessaeeeesnnsaeeesenssaeeeannes 125
8.3.3 COMMNECIIONS ...ttt ettt ettt ettt et e it et e st et esaee et ee st e enbeeeeee 127

8.4 Requirements Class: Physical Component Schemaccccceecveeeeiienceeennnenn. 131
8.4.1 Abstract Physical PrOCESScceieiiiiiiiieiiiecieecee et 131
8.4.2 Physical COMPONENLceerviieiiiieeiiiieeiieeeieeeeeeesteeesveeeseaeeeaeeeeseeesseeees 144

8.5 Requirements Class: Physical System Schemacccoeevviviiieniiienieee. 147
8.5.1 PhySiCal SYSIEIM ...cocuviiiiiieiciie et e tae e e saee e 147
Requirements Class: Configurable Process Schema............cccccceeeviiiiiiiencieenieeeee, 152
852 IMOAES ...t ettt e 152
853 SO INES .. vee ettt et e et e et eeeaaeeebreeeraeen 155
A.1 Conformance Test Class: Core CONCEPLSccvveerveeerieeerieeeiireeieeeereeesveeeennes 158
A.1.1 Core concepts are the base of all derived modelsccccvverrirennnnnnne. 158
A.1.2 A process model has inputs, outputs, parameters, and method................ 158
A.1.3 A process model has a unique ID.........cccooeiiiiiiiiciiiieeeceece e, 159

v Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

A.1.4 A process model has metadataccceeeeiieeniiieeciiieciecceeee e 159
A.1.5 Metadata not used in Process EXECULIONeevvreerrreeerveeerereenreeesreeenenes 159
A.2 Conformance Test Class: Core Abstract Processcccceeveeieiiiieineeniieeneenne 160
A.2.1 Dependency 0N COTe........ceccurieeiiieiiieeciieeeieeesteeereeeieeeeeaeeeaeeesseeeenns 160
A.2.2 Fully implement CoreProCessccceeecuieeriieeniieeiee e 160
A.2.3 DescribedObject derived from GML AbstractFeature................cc........... 161
A.2.4 Using GML identifier for uniquelD in CoreProcess..........cccceeevveerneennee. 161
A.2.5 Extensions shall be in a separate NamMesPacecceeevvveeerrveerereeerreeennne 161
A.2.6 Extensions shall not be required for process executioncccuuee.... 162

A.2.7 ObservableProperty and SWE Common Data used for process input,
output, and PATAMELETSccceeeeiireeeiieerieeerieeerieeereeeeeeeeteeeereeesneees 162

A.2.8 Use of SWE Common Data aggregate models for process input,
output, and PATAMELETSccceeeeiireeeiieerieeerieeerieeereeeeeeeeteeeereeesneees 162
A.2.9 Application and requirements of £ypeOf Property......cccceeeeveeecreeercreeenne 163
A.2.10Simple inheritance extends a base class referenced by typeOf................ 163
A.2.11 Supporting configuration in PrOCESSESccvreervreerreeerveeeirreeeirreesreeesnnes 163
A.2.12 Dependency on SWE Common Data simple types.......cccceeveeeeuveerneeenee. 163
A.3 Conformance Test Class: Simple Processccccceeeviiieriieeiiieeieeeiee e 165
A.3.1 Dependency ON COTE......c.uieirurieriiiieiiieeeieeeeieeesteeereeeereeeeaeeeaaeesseeeennes 165
A.3.2 Fully Implement SimpleProcess..........cccuvieriieeriieeieeeieeeieeeee e 165
A.3.3 Simple process definitioncccveeeiuireeiieeriie e 166
A.3.4 Simple process has methodccccvveeiiiieiiiieiieceeeeee e 166
A.4 Conformance Test Class: Aggregate Processccceevuveerieeeciieeiieeeiieeeieeeeee 167
A.4.1 Dependency ON COTE......c..ieivurieeiiieeriieeeiieenieeesteeesreeeereeesseeesneesseeesnnes 167
A.4.2 Fully Implement Aggregate Processccccvveeviieerieeerieeeiee e 167
A.4.3 Definition of Aggregate ProCesScevvveieriieeriieeiee et 168
A.4.4 Aggregate Process requires one or more COmponentscccceeeeveennne. 168
A.5 Conformance Test Class: Physical Component............ccccceeeeveeenieenneieenneeennne. 169
A.5.1 Fully implement Physical Component...........ccccceeevveeerieeenieeniieeseeeeene 169
A.5.2 Dependency ON COTE PIOCESS ...cccvviervrrerirreerrreerrreesreeessreeessreeessneessseeesnnes 169
A.5.3 POSItION DY POINL...eiiiiiieiiieeiieeciie ettt et 170
A.5.4 Position by location and orientation...........cceeeeeeeerieeerieeeniee e 170
A.5.5 POSItION DY traJECTOTY .oeouvvieeiiieeeiiieeiee ettt 170
A.5.6 POSItION DY PIOCESS.....eeeiiieeiiieeiiieeiieeeieeeeieeesteeesaeeeeaeeeeaeeenaeesnseeesnns 171
A.5.7 Physical Component definitionccceeeeiieeriieeiiee e 171
A.6 Conformance Test Class: Physical System..........cccceeevvieiiiiieiiieenieeeiee e, 172
A.6.1 Fully implement Physical System.........c.cccccveeviiiiiiiieeiieeieeciee e 172

Copyright © 2014 Open Geospatial Consortium A%

0OGC 12-000 SensorML

A.6.2 Physical System definition..........cccccveeeiiiieiiieeniie e 172
A.6.3 Physical System dependencyccceeeeviieeiieeiiieeiee e 173
A.7 Conformance Test Class: Process with Advanced Data Types.........c.cccueee.e.. 174
A.7.1 Advanced Process dependencycccccceeevuieeniieeiieeeniee e 174
A.7.2 Fully implement AdvancedProcess.........cccecvveeriieeriieerieeeiee e 174
A.8 Conformance Test Class: Configurable Processesc.ccccoeviieviieecieenneeennne. 175
A.8.1 Dependency on Core ProCess.......ccocvuieriuireriieeniieeniee e eiree e svee e 175
A.8.2 Fully Implement Configurable Process..........ccocveeviieeniiencieeeiee e 175
A.8.3 ModeChoice requires 2 or MOTe MOdescccoueeecueeeecueeeeiieeieeeeereeennes 175
A.8.4 A configured process requires a Settings elementccccceeeeveernnenee. 176
A.8.5 Only parameter values can be set by setValueccoeeveeeeeeennnnnne. 176
A.8.6 Only parameter array values can be set by setdrrayValues 176
A.8.7 Only parameter values can be constrained with setConstraint................ 177
B.1 Conformance Test Class: Core Abstract Process Schema.............ccceeeeneene 178
B.1.1 Compliance with core XML schemas and Schematron patterns.............. 178
B.1.2 XML property values are included inline or by reference 179
B.1.3 Each extension uses a different namespace..........ccoceeeeveeerieeecieeseneeennne. 179
B.1.4 Extensions do not redefine XML elements or typescccccveeeeuveerrreennne. 179
B.1.5 The value of the definition attribute is a resolvable URI 180
B.1.6 Dependence on GML 3.2ooooiiiiiiiieeieecee e 180
B.1.7 Dependence on SWE Common Data 2.0cceeevieeeiieenieeeieeeeeeeee 180
B.1.8 Globally unique ID requiredccceeeeeviieeiieeeiie e 180
B.1.9 External namespace required for security constraints.............ccceeeevveenee. 181
B.1.10 Extension element used for security tagging of individual properties 181
B.1.11 Xlink role or arcrole shall be used to define relationship of contacts...... 181

B.1.12 The typeOf property shall provide the uniquelD and resolvable
location of the description on the referenced object............ccccceeeienee. 182

B.1.13 The feature of interest property shall specify a role, and if available,
the uniquelD of the feature...........ccooiiiiiiiiii 182
B.1.14 The definition attribute required for ObservableProperty 182
B.1.15 Use aggregate data for related data elements............cccceviieniiiiiininicnn. 183
B.1.16 Use Vector for inputs, outputs, and parameters that specify position..... 183
B.1.17 Use of resolvable URL to reference data streams..........c.ccceeeeeieenienncnne 183
B.1.18 Use DataChoice in multiplexed data streamscccceeevveeerieerenneenne. 184
B.2 Conformance Test Class: Simple Process Schema...........ccccoeeveieinieeieieennneen. 185

B.2.1 Compliance with simple process XML schemas and Schematron
115 § 4 LSRR 185

vi Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

B.3 Conformance Test Class: Aggregate Process Schemaccccceeeveiviennnennne. 186
B.3.1 Compliance with simple process XML schemas and Schematron

PATLETIS eeeeiiieee ettt ettt e ettt e e e et e e e et ee e eneaeeeeensaeeeeensaeeeenns 186
B.3.2 Title and resolvable URL required for components provided by

REfRIENCE ... 186

B.4 Conformance Test Class: Physical Component Schema............cccccccvvevnneennee. 189
B.4.1 Compliance with physical component XML schemas and Schematron

PATEEIIS eeeeeiiiiee ettt ettt e ettt e e e st e e e et ee e sntaeeeeennsaeeeesstaeeeenns 189

B.4.2 A physical process can only attach to a physical processcccue...... 189

B.4.3 The attachedTo element shall have xlink:title and xlink:href 190

B.4.4 Position requires a DataRecord with two Vectorsccceccvveveieennnennne. 190

B.4.5 Dynamic state requires a Data Array or Process.........cccceevveeecieenneeennee. 190
B.4.6 Trajectory requires a DataArray with a time field and one or more

VIECHOTS .ttt ettt st 191

B.4.7 Process required for positions or state provided on-demand 191

B.5 Conformance Test Class: Physical System Schema............ccccoeevviviiiennnenne. 192
B.5.1 Compliance with physical system XML schemas and Schematron

PATLEIIIS eeeeeniiiiee ettt ettt e ittt e e et e e e et e e e s ttaee e s neaeeeeensseeeeensneeeennns 192

B.6 Conformance Test Class: Configurable Process Schema...........cccccccveevnnnnnee. 193
B.6.1 Compliance with configuration XML schemas and Schematron

PATLETIS eeeeiiiieee ettt e ettt et e e ettt e e e et e e e e s abeee e s neaeeeeensseaesensneeeennns 193

B.6.2 Modes can change values of parameters..........ccceevveeeeieeenieeecieeeieeeene 193

B.6.3 Modes can only set values of parameters to those allowed by its
COMSTTAINES ...ttt ettt ettt ettt et b e et e bt e et ebee st e ebeesaeeeeeas 194

Copyright © 2014 Open Geospatial Consortium vii

0OGC 12-000 SensorML

Table of Figures

Figure 5.1 — UML NOTAtION ...cc.vviiiiiieciieeciie ettt ettt eaeestee e evaeessaaeeseaeeeenree s 24
Figure 7.1 — Internal Package Dependencies.........c.cecveeerieeeriieeieiieciieeeieeeee e 29
Figure 7.2 — External Package Dependencies — GML.........ccccceeeiiievciiencieecieeeeeeen 30
Figure 7.3 — Models for dependent GML Feature classes.........cccccveeeieeecieencieencrieennnnn. 31
Figure 7.4 — External Package Dependencies — ISO TC 211ccccvvvveiieeciieecieeeiieeee, 31
Figure 7.5 — ISO 19115 Models for dependent classes.ccceeeevieeeieeeiieencieeeiieeeeeenn 32
Figure 7.6 — External Package Dependencies — SWE Common Data............c.ccccueenneen. 33
Figure 7.7 —Models for dependent SWE Common AbstractDataComponent class. 34
Figure 7.8 — DescribedObject with Metadata Properties.........cccceeveeveieeecieencieeeiieeee. 39
Figure 7.9 — Models for Metadata Elements..........c.cccccveeeviieeiiieeiiiecieeeeeeee e 39
Figure 7.10 — Model for hiStory @VENtS.........ccciiieiiieeiieeciie et 43
Figure 7.11 — UML models for DescribedObject and AbstractProcess..........cccccecvveenneen. 44
Figure 7.12 — UML models for process inputs, outputs, and parameters. 45
Figure 7.13 — Model for Simple ProCESSccccveeriieeriieeiiieeiee et 51
Figure 7.14 — Model for ProcessMethodcoocuieeiiieeiiieeiieeee e 52
Figure 7.15 — Model for Aggregate PrOCESSccccvveeiiieeiiieeiieeiee e 55
Figure 7.16 — Model for Physical Process Component............cceeeveeeeieeecveencneeesneeennnnnnn 57
Figure 7.17 — Models for SpatialFrame and PositionUnionccccceevevvercieencieeennnenn. 59
Figure 7.18 — Model for Physical Processing SyStemccccceeevvieecieeecieeniieeeieeeeneenn 63
Figure 7.19 — Model fOr MOAEScceiiieiiiieiieeciee ettt s 68
Figure 7.20 — Model for Configured Process Settings..........cccuveevvieeeiieecieenieeeieeeenenn 69
Figure 7.21 — Model for Settings EIementscccceeuieeviieeriieeiie e 70

viii Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

i. Abstract

The primary focus of the Sensor Model Language (SensorML) is to provide a robust and
semantically-tied means of defining processes and processing components associated
with the measurement and post-measurement transformation of observations. This
includes sensors and actuators as well as computational processes applied pre- and post-
measurement.

The main objective is to enable interoperability, first at the syntactic level and later at the
semantic level (by using ontologies and semantic mediation), so that sensors and
processes can be better understood by machines, utilized automatically in complex
workflows, and easily shared between intelligent sensor web nodes.

This standard is one of several implementation standards produced under OGC’s Sensor
Web Enablement (SWE) activity. This standard is a revision of content that was
previously integrated in the SensorML version 1.0 standard (OGC 07-000).

li. Keywords

ogcdoc, sensor model language, sensorml, swe, sensors, actuators, detectors, transducers,
processes, processing, observations, measurement, data quality, data lineage, data
provenance

lii. Submitting Organizations

The following organizations have contributed and submitted this Encoding Standard to
the Open Geospatial Consortium:

[0 Botts Innovative Research, Inc.

Sensia Software LLC

Spot Image, S.A.

Seicorp, Inc.

US National Geospatial Intelligence Agency (NGA)

TASC

(0 e B

Copyright © 2014 Open Geospatial Consortium X

0OGC 12-000 SensorML

Submission Contact Points
All questions regarding this submission should be directed to the editor or the submitters:

Contact Company Email
Michael E. Botts Botts Innovative Research, Inc mike.botts<at>botts-inc.com
Alexandre Robin Sensia Software LLC alex.robin<at>sensiasoftware.com
Jim Greenwood Seicorp, Inc. jereenwood<at>Seicorp.com
David Wesloh XS National Geospatial Intelligence David.G.Wesloh<at>nga.mil
gency

iv.Future Work

Future work will target the description of specialized processes, sensors, and actuators by
restricting (via profiles) the generic models and schema defined in this standard. Such
profiles will allow interoperability of models and schema both within specific processing
and measurement communities as well as between disparate.

v. Changes to the OGC® Abstract Specification

The OGC® Abstract Specification does not require changes to accommodate this OGC®
Standard.

X Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

Foreword

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. Open Geospatial Consortium shall not be held responsible
for identifying any or all such patent rights. However, to date, no such rights have been
claimed or identified. Recipients of this document are requested to submit, with their
comments, notification of any relevant patent claims or other intellectual property rights
of which they may be aware that might be infringed by any implementation of the
specification set forth in this document, and to provide supporting documentation.

Copyright © 2014 Open Geospatial Consortium X1

0OGC 12-000 SensorML

Introduction

This standard originated from work originally undertaken through the Open Geospatial
Consortium’s Sensor Web Enablement (SWE) activity. SWE is concerned with
establishing interfaces and encodings that will enable a “Sensor Web” through which
applications and services will be able to access sensors of all types, and observations
generated by them, over the Web. SWE has defined, prototyped and tested several
components needed for a Sensor Web, namely:

- Sensor Model Language (SensorML)
Observations & Measurements (O&M)
Sensor Observation Service (SOS)
Sensor Planning Service (SPS)
- SWE Common Data and Services

This standard specifies models and an XML implementation for the SensorML.
This document deprecates and replaces the first version of OGC® Sensor Model
Language (SensorML) Specification version 1.0.0 (OGC 07-000) and the SensorML
Corrigendum version 1.0.1 (OGC 07-122r2).
The main changes from SensorML version 1.0.1 are:
- The separation of SWE Common Data into a separate specification (OGC 07-
094r1)

- Improved derivation and association of SensorML from GML 3.2 and ISO 19115
- More explicit definition of the standard and its requirements

- Separation of SensorML into several conformance classes to allow software to
support only the part of SensorML that is relevant to the application (e.g. non-
physical processes only)

- Improved support for inheritance, configuration, and modes (e.g. for describing a
particular model of a sensor and then an instance of that sensor with particular
configuration)

- Improved explicit support for data streaming (associated with inputs, outputs, and
parameters)

- Addition of Feature of Interest for support of discovery
- Addition of extension points for domain or community-specific schema

- Improved support for defining position of both static and dynamic components and
systems

- Inclusion of Datalnterface and DataStream as a possible input, output, or parameter
value

Additionally, much additional and improved functionality of SensorML has been gained
through additions and improvements of the SWE Common Data Model specification.

Xii Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

Thus, the following additions to SWE Common Data Model are reflected as
improvements in SensorML v2.0:
- A DataChoice component providing support for variable (multiplexed) data types

- The DataStream object improving support for real-time data streams

- The XMLBIlock encoding providing support for simple XML encoded data
- Support for definition of NIL values and associated reasons

- The CategoryRange class to define ranges of ordered categorical quantities
- Extension points for domain or community-specific schema

- Ability to provide security tagging of individual data components through the use
of extension points

Also, some elements of the SWE Common Data Model specification have been removed
and replaced by their soft-typed equivalents defined using RelaxNG and/or Schematron.
These include:

- Position, SquareMatrix

- SimpleDataRecord, ObservableProperty
- ConditionalData, ConditionalValue
- Curve, NormalizedCurve

The derivation from GML has also been improved by making all elements substitutable
for GML AbstractValue (and thus transitively for GML AbstractObject) and
AbstractFeature so that they can be used directly by GML application schemas. The
GML encoding rules as defined in ISO 19136 have also been used to generate XML
schemas from the UML models with only minor modifications.

This release is not fully backwards compatible with version 1.0.1 even though changes
were kept to a minimum.

Copyright © 2014 Open Geospatial Consortium X1ii

Sensor Model Language (SensorML):
An Implementation Standard

1 Scope

This standard defines models and XML Schema encoding for SensorML. The primary
focus of SensorML is to provide a framework for defining processes and processing
components associated with the measurement and post-measurement transformation of
observations. Thus SensorML has more of a focus on the process of measurement and
observation, rather than on sensor hardware, yet still provides a robust means of defining
the physical characteristics and functional capabilities of physical processes such as
sensors and actuators.

The aims of SensorML are to:

'] Provide descriptions of sensors and sensor systems for inventory management

'] Provide sensor and process information in support of asset and observation
discovery

'] Support the processing and analysis of the sensor observations

(|

Support the geolocation of observed values (measured data)

'] Provide performance and quality of measurement characteristics (e.g., accuracy,
threshold, etc.)

'] Provide general descriptions of components (e.g. a particular model or type of a
sensor) as well as the specific configuration of that component when its deployed

'] Provide a machine interpretable description of the interfaces and data streams
flowing in and out of a component

'] Provide an explicit description of the process by which an observation was
obtained (i.e., it’s lineage)

'] Provide an executable aggregate process for deriving new data products on
demand (i.e., derivable products)

1 Archive fundamental properties and assumptions regarding sensor systems and
computational processes

SensorML provides a common framework for any process, but is particularly well-suited
for the description of sensor and systems and the processes surrounding sensor
observations. Within SensorML, sensor and transducer components (detectors,
transmitters, actuators, and filters) are all modeled as physical processes that can be
connected and participate equally within a process network or system, and which utilize
the same model framework as any other process.

Processes are entities that take one or more inputs and through the application of well-
defined methods and configurable parameters, and produce one or more outputs. The
process model defined in SensorML can be used to describe a wide variety of processes,

14 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

including not only sensors, but also actuators, spatial transforms, and data processes, to
name a few. SensorML also supports explicit linking between processes and thus
supports the concept of process chains, networks, or workflows, which are themselves
defined as processes using a composite pattern.

SensorML provides a framework within which the geometric, dynamic, and observational
characteristics of sensors and sensor systems can be defined. There are a great variety of
sensor types, from simple thermometers to complex electron microscopes and earth
observing satellites. These can all be supported through the definition of simple and
aggregate processes.

The models and schema within the core SensorML specification provide a “skeletal”
framework for describing processes, aggregate processes, and sensor systems.
Interoperability within and between various sensor communities, is greatly improved
through the definition of shared community-specific semantics (within online dictionaries
or ontologies) that can be utilized within the framework. In addition, the profiling of
small, general-use, atomic processes that can serve as components within aggregate
processes and systems is envisioned.

Copyright © 2014 Open Geospatial Consortium 15

2 Conformance

2.1 Overview

This standard has been written to be compliant with the OGC Specification Model — A
Standard for Modular Specification (OGC 08-131r3). Extensions of this standard should
themselves be conformant to the OGC Specification Model.

This standard defines conceptual models and an XML implementation of these models
for describing non-physical and physical processes surrounding the act of measurement
and subsequent processing of observations. The conceptual models are described using
UML while the implementation is described using the XML Schema language and
Schematron. It is envisioned that OWL (Web Ontology Language) and RDF (Resource
Description Framework) versions could also be generated from the models if deemed
useful and desired.

2.2 Specification identifier
All requirements-classes and conformance-classes described in this document are owned
by the specification identified as http://www.opengis.net/spec/sensorml/2.0.

2.3 Conformance classes

The conformance rules are based on XML validation using the XML Schema
representation of SensorML, together with processing of constraints expressed using
Schematron assertions and reports.

Conformance with this specification shall be checked using all the relevant tests specified
in Annex A. The framework, concepts, and methodology for testing, and the criteria to be
achieved to claim conformance are specified in ISO 19105: Geographic information —
Conformance and Testing. In order to conform to this OGC™ encoding standard, a
standardization target shall implement the core conformance class, and choose to
implement any one or more of the other conformance classes.

The conformance rules for the XML implementation are based on XML validation using
XML Schema representation of SensorML, together with processing constraints
expressed using Schematron assertions and reports.

16 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000
Table 1 — Conformance classes related SensorML instances
Requirements class Description Clause
Core Concepts
http://www.opengis.net/spec/sensorml/2.0/req/core Core Concepts A.1

Conceptual Models:

http://www.opengis.net/spec/sensorml/2.0/req/model/core-process Abstract Process A.2
http://www.opengis.net/spec/sensorml|/2.0/reg/model/simple-process (Non-Physical) Simple A3
Process
http://www.opengis.net/spec/sensorml/2.0/req/model/aggregate-process (Non-Physical) Aggregate A4
Process
http://www.opengis.net/spec/sensorml/2.0/req/model/physical-component Physical Component A5
http://www.opengis.net/spec/sensorml/2.0/req/model/physical-system Physical System A.6
http://www.opengis.net/spec/sensorml/2.0/req/model/advanced-processes Processes with Advanced A7
Data Types
http://www.opengis.net/spec/sensorml/2.0/req/model/configurable-process Configurable Process A.8
XML Schema:
http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process Core Process A.9
http://www.opengis.net/spec/sensorml/2.0/req/xml/simple-process (Non-Physical) Simple A.10
Process
http://www.opengis.net/spec/sensorml|/2.0/req/xml/aggregate-process (Non-Physical) Aggregate A1
Process
http://www.opengis.net/spec/sensorml/2.0/req/xml/physical-component Physical Component A.12
http://www.opengis.net/spec/sensorml/2.0/req/xml/physical-system Physical System A.13
http://www.opengis.net/spec/sensorml/2.0/req/xml/configurable-process Configurable Process A.14

Copyright © 2014 Open Geospatial Consortium

17

3 Normative References

The following normative documents contain provisions which, through reference in this
text, constitute provisions of document OGC 08-094. For dated references, subsequent
amendments to, or revisions of, any of these publications do not apply. However, parties
to agreements based on this document are encouraged to investigate the possibility of
applying the most recent editions of the normative documents indicated below. For
undated references, the latest edition of the normative document referred to applies.

- OGC 08-131r3 — The Specification Model — A Standard for Modular Specification
- OGC 08-094r1 — SWE Common Data Model Encoding Standard, version 2.0

- ISO/IEC 11404:2007 — General-Purpose Datatypes

- ISO 8601:2004 — Representation of Dates and Times

- ISO 19103:2005 — Conceptual Schema Language

- ISO 19108:2002 — Temporal Schema

- ISO 19111:2007 — Spatial Referencing by Coordinates

- ISO 19115:2006 — All Metadata

- ISO 19136 - GML

- Unified Code for Units of Measure (UCUM) — Version 1.8, July 2009

- Unicode Technical Std #18 — Unicode Regular Expressions, Version 13, Aug. 2009
- The Unicode Standard, Version 5.2, October 2009

- W3C Extensible Markup Language (XML) — Version 1.0 (4™ Edition), Aug. 2006
- W3C XML Schema — Version 1.0 (Second Edition), October 2004

- IEEE 754:2008 — Standard for Binary Floating-Point Arithmetic

- IETF RFC 2045 — Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies, November 1996

- IETF RFC 5234 — Augmented BNF for Syntax Specifications: ABNF

18 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

4 Terms and Definitions
For the purpose of this document, the following terms and definitions apply:

4.1. Actuator
A type of transducer that converts a signal to some real-world action or phenomenon.

4.2. Aggregate Process

Composite process consisting of interconnected sub-processes, which can in turn be Simple
Processes or themselves Aggregate Processes. An aggregate process can include possible data
sources. A decription of an aggregate process should explicitly define connections that link input
and output signals of sub-processes together. Since it is a process itself, an aggregate process also
has its own inputs, outputs and parameters.

4.3. Coordinate Reference System (CRS)

A spatial or temporal framework within which a position and/or time can be defined. According
to ISO 19111, a coordinate system that is related to the real world by a datum.

4.4. Coordinate System (CS)

According to ISO19111, a set of (mathematical) rules for specifying how coordinates are
assigned to points. In this document, a Coordinate System is extended to be defined as a set of
axes with which location and orientation can be defined.

4.5. Data Component

Element of sensor data definition corresponding to an atomic or aggregate data type

Note: A data component is a part of the overall dataset definition. The dataset structure can then
be seen as a hierarchical tree of data components.

4.6. Datum

Undefined in ISO 19111. Defined here as a means of relating a coordinate system to the real
world by specifying the physical location of the coordinate system and the orientation of the axes
relative to the physical object. For a geodetic datum, the definition also includes a reference
ellipsoid that approximates the physical or gravitational surface of the planetary body.

4.7. Detector

Atomic part of a composite Measurement System defining sampling and response characteristic
of a simple detection device. A detector has only one input and one output, both being scalar
quantities. More complex Sensors, such as a frame camera, which are composed of multiple
detectors, can be described as a detector group or array using a System or Sensor model.

4.8. Determinand
A Parameter or a characteristic of a phenomenon subject to observation. Synonym for
observable. [°4

4.9. Feature

Abstraction of real-world phenomena [ISO 19101:2002, definition 4.11]

Note: A feature may occur as a type or an instance. Feature type or feature instance should be
used when only one is meant.

Copyright © 2014 Open Geospatial Consortium 19

4.10. Location

A point or extent in space relative to a coordinate system. For point-based systems, this is typical
expressed as a set of n-dimensional coordinates within the coordinate system. For bodies, this is
typically expressed by relating the translation of the origin of an object’s local coordinate system
with respect to the origin of an external reference coordinate system.

4.11. Location Model
A model that allows one to locate objects in one local reference frame relative to another
reference frame.

4.12. Measurand

Physical parameter or a characteristic of a phenomenon subject to a measurement, whose value

is described using a Measure (ISO 19103). Subset of determinand or observable. [0&M]

4.13. Measure (noun)
Value described using a numeric amount with a scale or using a scalar reference system
19103] . . .

. When used as a noun, measure is a synonym for physical quantity

[ISO/TS

4.14. Measurement (noun)

An observation whose result is a measure 7"/

4.15. Measurement (verb)

An instance of a procedure to estimate the value of a natural phenomenon, typically involving an
instrument or sensor. This is implemented as a dynamic feature type, which has a property
containing the result of the measurement. The measurement feature also has a location, time, and
reference to the method used to determine the value. A measurement feature effectively binds a
value to a location and to a method or instrument.

4.16. Muliplexed Data Stream

A data stream that consists of disparate but well defined data packets within the same
stream.

4.17. Observable, Observable Property (noun)

A parameter or a characteristic of a phenomenon subject to observation. Synonym for
determinand. /%"

A physical property of a phenomenon that can be observed and measured (e.g. temperature,
gravitational force, position, chemical concentration, orientation, number-of-individuals, physical
switch status, etc.), or a characteristic of one or more feature types, the value for which will be
estimated by application of some procedure in an observation. It is thus a physical stimulus that
can be sensed by a detector or created by an actuator.

4.18. Observation
Act of observing a property or phenomenon [ISO/DIS 19156, definition 4.10]
Note: The goal of an observation may be to measure, estimate or otherwise determine the value

of a property.

20 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

4.19. Observation Procedure

Method, algorithm or instrument, or system of these which may be used in making an observation
[ISO/DIS 19156, definition 4.11]

Note: In the context of the sensor web, an observation procedure is often composed of one or
more sensors that transform a real world phenomenon into digital information, plus additional
processing steps.

4.20. Observed Value

A value describing a natural phenomenon, which may use one of a variety of scales including
nominal, ordinal, ratio and interval. The term is used regardless of whether the value is due to an
instrumental observation, a subjective assignment or some other method of estimation or
assignment. 0™

4.21. Orientation

The rotational relationship of an object relative to an external coordinate system. Typically
expressed by relating the rotation of an object’s local coordinate axes relative to those axes of an
external reference coordinate system.

4.22. Phenomenon
A physical state that can be observed and its properties measured.

4.23. Physical System

An aggregate model of a group or array of process components, which can include detectors,
actuators, or sub-systems. A Physical System relates an Aggregate Process to the real world
and therefore provides additional definitions regarding relative positions of its components and
communication interfaces.

4.24. Position

The location and orientation of an object relative to an external coordinate system. For body-
based systems (in lieu of point-based systems) is typically expressed by relating the object’s local
coordinate system to an external reference coordinate system. This definition is in contrast to
some definitions (e.g. ISO 19107) which equate position to location.

4.25. Process
An operation that takes one or more inputs, and based on a set of parameters, and a methodology
generates one or more outputs.

4.26. Process Method

Definition of the algorithm, behaviour, and interface of a Process.

4.27. Property

Facet or attribute of an object referenced by a name

[ISO/DIS 19143:2010]

Example: Abby's car has the color red, where "color" is a property of the car instance,
and “red” is the value of that property.

4.28. Reference Frame

A coordinate system by which the position (location and orientation) of an object can be
referenced.

Copyright © 2014 Open Geospatial Consortium 21

4.29. Result
An estimate of the value of some property generated by a known procedure [o&M]
4.30. Sample

A representative subset of the physical entity on which an observation is made.

4.31. Sensor

An entity capable of observing a phenomenon and returning an observed value. Type of
observation procedure that provides the estimated value of an observed property at its output.
Note: A sensor uses a combination of physical, chemical or biological means in order to estimate
the underlying observed property. At the end of the measuring chain electronic devices often
produce signals to be processed.

4.32. Sensor Model

In line with traditional definitions of the remote sensing community, a sensor model is a type of
Location Model that allows one to georegister or co-register observations from a sensor
(particularly remote sensors).

4.33. Sensor Data

List of digital values produced by a sensor that represents estimated values of one or more
observed properties of one or more features.

Note: Sensor data is usually available in the form of data streams or computer files.

4.34. Sensor-Related Data

List of digital values produced by a sensor that contains ancillary information that is not
directly related to the value of observed properties

Example: sensor status, quality of measure, quality of service, battery life, etc. Such data
can be sent in the same data stream with measured values and when measured is
sometimes indistinguishable from sensor data.

4.35. (Sensor) Platform

An entity to which can be attached sensors or other platforms. A platform has an associated local
coordinate reference frame that can be referenced relative to an external coordinate reference
frame and to which the reference frames of attached sensors and platforms can be referenced.

4.36. Transducer
An entity that receives a signal as input and generates a modified signal as output. Includes
detectors, actuators, and filters.

4.37. Value

A member of the value-space of a datatype. A value may use one of a variety of scales including
nominal, ordinal, ratio and interval, spatial and temporal. Primitive datatypes may be combined to
form aggregate datatypes with aggregate values, including vectors, tensors and images [1S011404]

22 Copyright © 2014 Open Geospatial Consortium

SensorML

O0GC 12-000

5 Conventions

5.1 Abbreviated terms

In this document the following abbreviations and acronyms are used or introduced:

CRS
DN
ECEF
ECI
GPS
ISO
MISB
OGC
SAS
SensorML
SI
SOS
SPS
SWE
TAI
uom
UCUM
UML
UTC
XML
1D
2D
3D

Coordinate Reference System

Digital Number

Earth-Centered Earth-Fixed

Earth Centered Inertial

Global Positioning System

International Organization for Standardization
Motion Imagery Standards Board

Open Geospatial Consortium

Sensor Alert Service

Sensor Model Language

Systeme International (International System of Units)
Sensor Observation Service

Sensor Planning Service

Sensor Web Enablement

Temps Atomique International (International Atomic Time)
Unit(s) of measure

Unified Code for Units of Measure

Unified Modeling Language

Coordinated Universal Time

eXtended Markup Language

One Dimensional

Two Dimensional

Three Dimensional

5.2 UML notation

The diagrams that appear in this standard are presented using the Unified Modeling
Language (UML) static structure diagram. The UML notations used in this standard are
described in the diagram below.

Copyright © 2014 Open Geospatial Consortium 23

Association between classes

Association Nam
Class #1 S e Class #2
role-1 role-2

Association Cardinality

L2

Class Only one Class One or more
. —_—
0.. Class Zero or more Class Specific number
0.1 Class Optional (zero or one)
Aggregation between classes Class Inheritance (subtyping of classes)
Aggregate Superclass
[[I [1 '
Component | | Component Component Subclass #1] | Suhclass #2 | L

Figure 5.1 —- UML Notation

5.3 Table notation used to express requirements

For clarity, each normative statement in this standard is in one and only one place and is
set in a bold font within the tabular format shown below. If the statement of the
requirement is repeated for clarification, the “bold font” home of the statement is
considered the official statement of the normative requirement. Individual requirements
are clearly highlighted and identified throughout the document by using tables and URL
identifiers of the following format:

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/{req-class-name}/{req-name}

Req N. Textual description of requirement.

In this standard, all requirements are associated to tests in the abstract test suite in Annex
A. The reference to the requirement in the test case is done by its URL.

Requirements classes are separated into their own clauses and named, and specified
according to inheritance (direct dependencies). The Conformance test classes in the test
suite are similarly named to establish an explicit and mnemonic link between
requirements classes and conformance test classes. There are formally identified by URL
and described within a tabular format as shown below:

24 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

Requirements Class

http://www.opengis.net/spec/sensorml/2.0/req/{req-class-name}

Target Type | Description of standardization target type

Dependency http://www.opengis.net/spec/sensorml/2.0/req/{req-class-name}

Examples will be indicated using a grey text box and are considered to be informative
rather than normative:

Example
This is an example text box that will include informative notes and examples.

Copyright © 2014 Open Geospatial Consortium 25

6 Requirements Class: Core Concepts (normative core)

Requirements Class

http://www.opengis.net/spec/sensorml/2.0/req/core

Target Type | Derived Model, Encoding, and Software Implementation

6.1 Introduction

In SensorML, all components are modeled as processes. This includes components
normally viewed as hardware, such as detectors, actuators, and physical processors
(which are viewed as physical components) and sensors and platforms (which are viewed
as physical systems). All components are modeled as processes that receive input and
through the application of an algorithm defined by a method and set parameter values,
generate output. All such components can therefore participate in process networks (or
aggregate processes). Aggregate processes are themselves processes with their own
inputs, outputs, and parameters.

Hence, SensorML can be viewed as a specialized process description language with an
emphasis on application to sensor data. Process descriptions in SensorML are agnostic of
the environment in which they might be executed, or the protocol by which data is
exchanged between process execution modules.

In order to support the use of SensorML within specialized applications (e.g. processing
centers or image processing software), the SensorML models and encodings have been
divided into several conformance classes. Thus if one wishes to use SensorML for
computation processes only, the software only needs to conform to the requirements for
non-physical processes. Similarly, by only adhering to the Simple Process conformance
class, a piece of software can describe internal processes using SensorML while
supporting chaining of these processes in a proprietary way.

However, all derived model and encodings based on SensorML shall implement the core
concepts of SensorML, regardless of whether they deal strictly with non-physical
computational processes or sensor systems.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/core/core-concepts-used

Req 1. Any derived model or encoding shall correctly implement the modeling
concepts defined in the core of this specification.

26 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

6.2 Process Definitions

In SensorML, all relevant components are modeled as processes, including both
computation and physical processes (e.g. detectors, actuators, and sensor systems).
Processes in SensorML are conceptually divided into two types: (1) those that are
physical processes, such as detectors, actuators, and sensor systems, where information
regarding their positions may be relevant, and (2) non-physical or “pure” processes which
can be treated as merely mathematical operations or functions.

Fundamentally, a process is a physical or computational operation that may receive input
and based on configurable parameters and a methodology, generate output.

Example

For a process representing the standard linear equation, x would be the input, m and b the parameters, y the output, and
the equation y = mx + b would define the methodology.

For a detector, the input would typically be a physical stimulus (or observable property), the parameters might include
a calibration curve and other factors that affect the measurement, and the output would be a digital number
representing some quantity representation of that observed property.

Inputs and outputs may be digital numbers or physical stimuli (i.e. observable properties
of the environment). Parameters can be variable or constant, but they don’t typically vary
at the same frequency as the input values. In essence, however, parameters can be viewed
as just another input into the process that is either fixed or changes less frequently than
inputs

A process can consist of a single atomic operation, or an explicitly defined network of
operations (e.g. an aggregate process or system).

Any process shall have a definable method of operation. In the case of an aggregate
process or physical system, the explicit description of the process components and the
flow of data between them will itself serve as the process methodology.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/core/processes

Req 2. The core model for a process shall define inputs, outputs, parameters, and
methodology of that process.

Any process description shall provide a unique ID that can be used for discovery of that
process and for retrieving the definition of that process.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/core/unique-id

Req 3. The core model for a process shall include a unique ID for distinguishing that
process from all others.

Copyright © 2014 Open Geospatial Consortium 27

To be useful, the core process model shall include metadata about the process that aid in
identification, discovery, and qualification of the process but do not themselves affect the
execution of the process.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/core/metadata

Req 4. The core model for a process shall include metadata that support
identification, discovery, and qualification of the process.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/core/execution

Req 5. The metadata descriptions for a process shall not be required for successful
execution of that process. All information required for execution of a simple
process shall be contained within the inputs, outputs, parameters, and
methodology descriptions of the process.

Process definitions can support general representations of a process or a specific instance
of a process.

Example

A general process for the linear equation would define the allowable inputs, outputs, and parameters. A specific
instance of the process might define constant values for the parameters.

An example of a general physical process would be the manufacturer’s description of the characteristics and
configurable options for a particular model of a sensor (i.e. one that describes the common characteristics of all
instances of that model of sensor). The description of a specific instance of that model of sensor would include
information that is relevant to that particular instance of the sensor (e.g. serial number, owner’s name, location, etc.).

28 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

7 UML Conceptual Models (normative)

This standard defines normative UML models with which derived encoding models as
well as all future separate extensions should be compliant. The standardization target type
for the UML requirements classes defined in this clause is thus a software
implementation or an encoding model that directly implements the conceptual models

defined in this standard.

7.1 Package Dependencies
The packages defined by the SensorML Model and their dependencies are shown in

figure below:

pkg Dependencies on Leaf Packages /

Name: Dependencies on Leaf Packages

”I“th_cn ?Dm «Application Schemax»
Vession: 3 - N N Sensor Model Language 2.0
Crested: 12/9/2009 12:09:22 AM

Updated: ©6/9/2011 2:29:41 PM

T
«Import»//' | (from OGC) \ S~ slmports
g 1 ~ -
\
yZe | \ RN
«Leafs " \\ aLesfs
PhysicalComponent ' \ Physical System
e — - ———— Hq—— —xlmports - — — = > = ——
I AN
«imports «im‘p'on»
I \ /’
N \
\:Impon» ,I \ «lmports /
N K | \\ I/
X\ v N
«Leafs Eaats
e SimpleProcess AggegateProcess
Core
——————— P
«lmportx «lmport»

Figure 7.1 — Internal Package Dependencies

SensorML also has dependencies on several external packages defined within other
standards, namely GML 3.2, ISO 19103, ISO 19108, ISO 19111, and ISO 19115, as

described below.

7.1.1 Dependency on GML Feature Model and ISO TC 211 Models

A process represents a feature type as defined by the ISO General Feature Model and is
thus modeled as an instance of the <<metaclass>> GF FeatureType (ISO 19109:2006).
These models are further refined within the GML 3.2 standard (ISO 19136) which will
provide the basis for XML encodings in the following section 8 of this specification

Copyright © 2014 Open Geospatial Consortium 29

document. This association of SensorML process with GML primarily brings recognition
of SensorML processes as features and provides important identity properties.

pkg External Dependencies (GML)/
Name: External Dependencies (GML)
Author: botts
Version:
Crested: 12:40:22 PM
Updsted: 6/9/2011 3:41:27 PM
«Leafs «Lesfs
PhysicalComponent Physical System
e — — —
«Ilmport»
/ \ / A
/ \ ! N
/ \‘ I’ \
almeon» \ / «lmports
/, \ / \3
|4 \ i N
«Leafs \ ! «Leafs
SimpleProcess \\ II AggegateProcess
= — — — 4 — —«lmports — —)— — — — — — —
«imports «imports
\ I
\ !
7 \ /
’ N \ / i
7/ N N \ / 4
// N \ ! //
«Imports «imports \ / «imports
/ ~ \ / -
1% N VY o7
«Leafs 1SO 19136 GML
Core JER
| «imports

Figure 7.2 — External Package Dependencies - GML

The base feature classes in GML from which all processes in SensorML derive include
AbstractGML and AbstractFeature, as shown in the figure below:

class GML Components /

AbsziractObject

atypes
gmiBase::AbstractGML

description: CharacterString [0..1]
desciptionReference: URI [0..1]
name: GenericName [0..7]
identifier: ScopedName [0..1]

+* 4+ 4+ +

«FeatureTypes
feature::AbstractFeature

+ boundedBy: GM_Envelope [0..1]

30 Copyright © 2014 Open Geospatial Consortium

SensorML

O0GC 12-000

Figure 7.3 — Models for dependent GML Feature classes

SensorML is dependent on ISO 19108:206 for Temporal Schema. In particular, the
temporal elements, TM Instant and TM Period are used within the core SensorML
model for Abstract Process. Additionally, SensorML depends on ISO 19115 for general
metadata elements.

pkg External Dependencies (ISO TC211) /

Name:
Author:
Version
Created
Updated

External Dependencies (ISO TC211)
botts
1.0

7/8/2011 5:21:47 PM

«Leafs

«lLesfs .
PhysicalComponent

Core

1SO 19109 Application Schema l

1SO 19103:2005 Schema Language |

) -7 ’ \ o
«imports / 3 «imports .I
/,// ,/ \\ S «imports
Vo / \ N \
2 = \
1SO 19115:2006 Metadata (Corrigendum) I «imports \ 1SO 19108:2006 Temporal Schema l
/ \
/ \
/ \
/ \
/ \
/
y; \
V; \
2 N

Figure 7.4 — External Package Dependencies — ISO TC 211

The SensorML standard utilizes the ISO 19115 models for common metadata properties
such as keywords, citations, online resources, responsible party, and constraints. While
Version 1.0 of SensorML defined encoding based on the ISO 19115 models, this version

utilizes these models directly.

Copyright © 2014 Open Geospatial Consortium

31

class 1SO 19115 Components /

«datatypes
Citation and resp ible party infor
ClI_ResponsibleParty

individuaIName: CharacterString [0..1]

«xdatatypes
Citation and responsible party information::
Cl_Contact

. + phone: Cl_Telephone [0..1]
+ organisationName: CharacterString [0..1] + address: Cl_Address [0..1]
* positionName: CharacterString [0..1] + onlineResource: Cl_OnlineResource [0..1]
* contactinfo: Cl_Contact [0..1] + hoursOfService: CharacterString [0..1]
+ role: Cl_RoleCode + contactinstructions: CharacterString [0..1]
«datatypes «datatypes
Citation and responsible party information:: Citation and responsible party information::
Cl_OnlineResource CI_Address
+ linkage: URL + deliveryPoint: CharacterString [0..7]
+ protocol: CharacterString [0..1] + city: CharacterString [0..1]
+ applicationProfile: CharacterString [0..1] + administrativeArea: CharacterString [0..1]
+ name: CharacterString [0..1] + postalCode: CharacterString [0..1]
+ desciption: CharacterString [0..1] + country: CharacterString [0..1]
+ function: Cl_OnLineFunctionCode [0..1] + electronicMailAddress: CharacterString [0..%]

MD_Constraints
Constraint information::MD_LegalConstraints

+ accessConstraints: MD_RestrictionCode [0..7]
+ useConstraints: MD_RestrictionCode [0..%]
+ otherConstraints: CharacterString [0..7]

«datatypes
Citation and responsible party
infor ion::Cl_Teleph

+ voice: CharacterString [0..°]
+ facsimile: CharacterString [0..7]

Figure 7.5 — ISO 19115 Models for dependent classes.

7.1.2 Dependency on SWE Common Data Models

In particular, SensorML is heavily dependent on the SWE Common Data Model standard
for defining inputs, outputs, and parameters, as well as for specifying characteristics,
capabilities, interfaces, and event properties. The SWE Common Data Models, which
were originally defined within the version 1.0 SensorML specification, are in version 2.0
defined as a separate specification and are utilized throughout the SWE family of

encoding and web service specifications.

32

Copyright © 2014 Open Geospatial Consortium

SensorML

O0GC 12-000

pkg External Dependencies (SWE) /

Name:
Author.
Version:
Created

Updsted

Externsl Dependencies (SWE)
botts

1.0

€/9/2011 2:24:40 PM
6/9/2011 2:28:59 PM

«Leafs

PhysicalComponent

«Leafs
Physical System

= — —
«lmports
T A}
/ \ / \
/ \ / \
/ \ / \.
«lm%on» \ / elmports
\ I .

Y A

[/ \ J Q

— \\ I’ «Leafs

SimpleProcess \ , AggegateProcess
™ — — PN «lmports _ _ _ _ _ _ _
!
I
7 < «import» «imports
/ \ \ I ,
/ N \ I ’
M ’
/ \ \ ! P
/ \ \ / ’
«lmport» \ \ ! P
/ s
e \ / .
[; «import» \ / «import»
N 4
«Leafs «import» \\ \\ /I L7
Core \ 4
\ /
\Y
- AN VY £
l T = = s «Application Schemax

SWE Commeon Data Model 2.0

Figure 7.6 — External Package Dependencies - SWE Common Data

The SWE Common specification provides a flexible yet robust means of defining data
types and data values, including support for simple data types such as Quantity, Boolean,
Category, Count, Text, and Time, as well as aggregate data such as DataRecord,
DataArray, Vector, and Matrix. Additionally, SWE Common supports the concept of
DataChoice, which will be utilized by SensorML for providing multiplexed messages in
data streams and configurable options for processes and physical systems.

The data models in SWE Common provide additional properties than are provided by
basic data types, including for example, units of measure (uom), quality indications,
allowable constraints, significant digit counts, and in particular, the meaning and
semantics of a data component. Both simple and aggregate data components in SWE
Common allow for unambiguous definition of that data component through a resolvable
link to an online dictionary or ontology. The definition of the SWE Common Data
Models can be found in OGC 08-094r1.

The main objective of SWE Common Data Models is to achieve interoperability, first at
the syntactic level, and later at the semantic level (by using ontologies and semantic
mediation) so that sensor data can be better understood by machines, processed
automatically in complex workflows, and easily shared between intelligent sensor web
nodes.

Copyright © 2014 Open Geospatial Consortium 33

SensorML depends heavily on the AbstractDataComponent element defined in SWE
Common. This element serves as the base component from which all relevant data types
in SWE Common are derived, including Quantity, Count, Category, Boolean, Text,
DataRecord, DataArray, Vector, Matrix, and DataChoice. AbstractDataComponent thus
serves as a substitution group that any of these data types can satisfy.
AbstractSWEIdentifiable will serve as the basis for the ObservableProperty element
defined in this specification (Section 7.2.1).

The model for the SWE Common AbstractDataComponent is given in the figure below:

class SWE Common Components /

«Type»
Basic Types::AbstractSWE

«property»
+ extension: Any [0..7]

]

«Types
Basic Types::AbstractSWEIldentifiable

«propertys

+ identifier: ScopedName [0..1]

+ label: CharacterString [0..1]

+ desoiption: CharacterString [0..1]

I

«Types
Simple Components::
AbstractDataComponent

«propertys

+ definition: ScopedName [0..1]
+ optional: Boolean [0..1] = false
+ updatable: Boolean [0..1]

Figure 7.7 —Models for dependent SWE Common AbstractDataComponent class.

7.1.3 Relationship to Observations and Measurements (O&M)

Conceptual models for Observations and Measurements are provided by ISO 19156,
which also provides models for sampling feature types. XML Schema encodings of these
models are provided by the OGC Observations and Measurements XML Implementation
Document (OGC 10-025). The model for Observation defines a procedure of type
AbstractFeature which references or describes the origin of the observation (i.e. how the
observation came to be).

SensorML has an association to the O&M models but no direct dependencies on them.
The result of a SensorML process is typically considered to be an observation result if it

34 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

i1s measuring or deriving some value of a physical property or phenomenon. Thus, the
output values described in SensorML and resulting from a sensor or process may be
packaged in an O&M Observation object, or provided as a SWE Common DataStream.
Inversely, the procedure property within an Observation instance may reference a
SensorML description of the measurement process.

Copyright © 2014 Open Geospatial Consortium 35

7.2 Requirements Class: Core Abstract Process

Requirements Class

http://www.opengis.net/spec/sensorml/2.0/req/model/core-process

Target Type | Derived Encodings and Schema

Dependency http://www.opengis.net/spec/sensorml/2.0/req/core

Dependency | OGC 08-094rl (SWE Common Data — uml-block-components)

Dependency ISO 19115:2006 (All Metadata)

Dependency | ISO 19136 (GML)

All major classes in SensorML are based on a process model, as presented in the core
concepts. Processes are features as defined in ISO 19109:2006 and modeled in GML 3.2.
SensorML also supports interoperable discovery, identification, and qualification of these
processes through the definition of a standard collection of metadata.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/core-process/dependency-core

Req 6. A schema or encoding definition passing the “Core Abstract Process” model
conformance class shall first pass the “Core Concepts” conformance test class.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/core-process/package-fully-implemented

Req 7. A schema or encoding definition shall correctly implement all UML classes
defined in this section

7.2.1 ObservableProperty

An ObservableProperty is a physical property of a phenomenon that can be observed and
measured (e.g. temperature, gravitational force, position, chemical concentration,
orientation, number-of-individuals, physical switch status, etc.), or a characteristic of one
or more feature types, the value for which will be estimated by application of some
procedure in an observation. It is thus a physical stimulus that can be sensed by a detector
or created by an actuator.

36 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

Example

The ObservableProperty element allows one to reference a measurable property of a phenomenon or feature for
detector inputs or actuator outputs. For example, the temperature of the atmosphere is an ObservableProperty.
Before measurement, it is simply a property of the atmosphere that can be defined and measured. After
measurement by a detector, the temperature may be represented as a Quantity with units of measure, a value, and
an indication of our degree of confidence in the measurement.

ObservableProperty 1s derived as a concrete instance of the SWE Common
AbstractSWEIdentifiable and adds the definition property to this model. It will be used as
a potential input (e.g. for detectors), output (e.g. for actuators), and for parameters (e.g.
for a sensor whose measurement varies with fluctuations of atmospheric pressure on a
diaphragm).

In ObservableProperty the phenomenon property will be defined by reference using the
definition attribute. The definition attribute value will reference a property defined within
a dictionary or ontology. An ObservableProperty may also include a name and a
description. However, unlike the simple data types in SWE Common, an
ObservableProperty does NOT include the properties uom, quality, or constraints, since
these are typically characteristics of the measuring procedure and not properties of the
observable phenomenon itself.

7.2.2 DescribedObject

As shown in the UML model below, the DescribedObject class provides a specific set of
metadata for all process classes in SensorML. Since DescribedObject is itself derived
from GML AbstractFeature, all processes in SensorML are themselves features, which
conforms to the conceptual models for processes as stated in Section 6.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/core-process/gml-dependency

Req 8. DescribedObject shall derive from the GML base class, AbstractFeature, and is
thus modeled as a feature with well-defined metadata properties. Any model or
encoding derived from DescribedObject shall thus be of type featureType.

The GML AbstractFeature inheritance provides a unique ID, and support for multiple
names and a description. The unique ID in SensorML will be supported by a single
gml:identifier property inherited from GML AbstractFeature.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/core-process/unique-id

Req 9. A single, required gml:identifier property inherited from GML AbstractFeature
shall be used to provide a unique ID for the DescribedObject.

Copyright © 2014 Open Geospatial Consortium 37

Metadata about each process is essential to supporting identification, discovery, and
qualification of the process. Metadata is provided by the base class, DescribedObject,
from which AbstractProcess is derived. While these metadata may provide relevant
information to understand quality of output from the process, the values of properties
within the DescribedObject should not be required for execution of the process. The
model for the DescribedObject is shown in Figure 7.8., while the models for the
individual property values are provided in either Figure 7.9 or in the ISO 19115 models
in Figure 7.5.

The DescribedObject includes several descriptive properties that support rapid discovery
(keywords, identification, and classification), constraints (validTime, securityConstraints,
legalConstraints), qualification (characteristics and capabilities), references (contacts
and documentation), and history. These are each grouped in lists, which provide for easy
seaparation and parsing of these properties.

7.2.2.1 Extension Property

The extension property allows one to add domain or community-specific content to a
DescribedObject instance. This might include, for example, security taggings, vendor or
community-specific metadata, or information encoded in other models or schema.
Extension properties exist in a separate namespace and SensorML-compliant software is
not required to understand or utilize the information contained within the extension
property.

The constraints on the extension property include: (a) the extension model shall be
defined in a separate namespace, (b) the information added by the extension model shall
not be required for execution of the process, and (c) SensorML-compliant parsers may
parse and utilize the information within these extensions but they are not required to do

so in order to be compliant to the SensorML standard.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/core-process/extension-independence

Req 10. Models inside of the extension property shall exist within a namespace other
than SensorML.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/core-process/extension-restrictions

Req 11. Information provided inside of the extension property shall not be required
for execution of the process and shall not alter the execution of the process.

38 Copyright © 2014 Open Geospatial Consortium

SensorML

OGC 12-000

class DescribedObject /

«FestureTypes
DescribedObject

«property»s

extension: Any [0..7]

language: CharacterString [0..1]
keywords: KeywordList [0..%]
identification: IdentifierList [0..7]
classification: ClassifierList [0..7]
validTime: TimelnstantOrPeriod [0..7]
securityConstraints: Any [0..7]
legalConstraints: MD_LegalConstraints [0..%]
characteristics: CharacteristicList [0..7]
capabilities: CapabilityList [0..7]
contacts: ContactList [0..%]
documentation: DocumentList [0..%]
history: EventList [0..%]

* okttt

Figure 7.8 — DescribedObject with Metadata Properties

class Metadata Lists /

“1

AbstractSWE
«xTypex» «Typex»
KeywordList «Types ContactList
|Basic Types::AbstractSWEIldentifiable
«propertys wpropertys
+ codeSpace: Dictionary [0..1] «property» + contact: Cl_ResponsibleParty [1..*]
+ keyword: CharacterString [1..7] + identifier: ScopedName [0..1]
+ |abel: CharacterString [0..1]
+ desciption: CharacterString [0..1]
«Types «Typexs
IdentifierList DocumentList
«property» «propertyx»
+ identifier: Term [1..7] \b + document: Cl_OnlineResource [1.
«Type» A/
AbstractMetadatalist
«Types «Types
A 2 operty.
ClassifierList —-""""D :p‘definit?on‘ ScopedName [0..1] q_\ EventList
«property» A «property»
+ classifier: Term [1..7] + event: Event[1..7]

«Type»
CapabilityList

CharacteristicList

aType»

«propertyx»

+ capability: AbstractDataComponent [1..7]

«propertyx»

«Union»
TimelnstantOrPeriod

«propertyx»
+ byTimelnstant: TM_Instant
+ byTimeRange: TM_Period

+ characteristic. AbstractDataComponent [1..7]

«Typexs «Typex»
FeatureList Term
xproperty» «propertyx»
+ feature: GFI_Feature [1..7] + label: CharacterString

+
o
+

codeSpace: Dictionary [0..1]
definition: ScopedName [0..1]
value: CharacterString

Figure 7.9 — Models for Metadata Elements

Copyright © 2014 Open Geospatial Consortium

39

7.2.2.2 Keywords

Keywords provide a simple means of discovery using short tokens that may be
recognized by the general audience or specific communities. Keywords are unqualified
terms in that they are not necessarily required to be related to a specific codespace or
ontology, as are classifiers and identifiers.

7.2.2.3 Identifiers

The identifier property takes a Term as its value. The Term has a definition attribute that
specifies in this case the type of identifier, while the codeSpace attribute specifies that the
value of the identifier is according to the rules or enumerations of a particular authority.

The identification properties should be considered as information suitable for the

Example

An identifier with a definition of “http://sensors.ws/def/tailNumber” might take “N291PV” as its value based on
the codespace of a US Air Force rules dictionary. Other possible definitions for identifiers might include, for
example, shortName, longName, acronym, missionID, processorID, serialNumber, manufacturerID, or
partNumber.

discovery applications.

7.2.2.4 Classifiers

The classifier property provides a list of possible classifiers that might aid in the rapid
discovery or organization of processes, sensors, or sensor systems. The classifier
properties should be considered as information suitable for the discovery and
categorization applications.

Example
Definitions for a classifier Term might include, for instance, sensorType, observableType, processType,
intendedApplication, or missionType.

7.2.2.5 Security Constraints

The model for specification of security constraints will be based on external security
models. The securityConstraints property takes a value of xs:Any which allows various
communities and countries to utilize their standard XML encoding for security tags. This
security constraint is for the overall document. As will be discussed in the XML
encoding, extension points provided with SWE Common Data elements will allow
security tagging for individual properties or property aggregates.

40 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

Example

One can specify the overall security classification of the entire document using the Intelligence Community
Information Security Banner Marking (IC ISM) standard or using ISO 19115 MD_SecurityConstraints. For
tagging individual sections in the document, the SensorML standard allows for security tagging of properties using
an extension property, as describe in later sections of the standard.

7.2.2.6 Valid Time Constraint

The validTime property indicates the time instance or time range over which this process
description is valid. Time constraints are important for processes in which parameter
values or operation modes may change with time, or instrument deployment times
change.

Example

Several SensorML documents can exist for the same sensor or system description but with different validity
periods. This allows for capturing the configuration of a sensor at different times and, along with the history
section, is the basis for maintaining history of the sensor’s description. Alternately, parameter values can be
provided as a time-tagged series of values accounting for changes.

7.2.2.7 Legal Constraint

The legalConstraints property is based on ISO 19115 and specifies whether such legal
and ethical considerations as privacy acts, intellectual property rights, copyrights, or
scientific publication ethics apply to the content of the process description and its use.

7.2.2.8 Capabilities

The capabilities property is intended for the definition of properties that further qualify
the input or output of the process, component, or system for the purpose of discovery.
These properties are defined using one or more SWE Common DataRecord elements.
Once a user has identified candidate sensors or processes based on the classifiers
described above, the capabilities parameters might prove useful for further filtering of
processes or sensor system during this discovery stage. Thus, the capabilities properties
should be considered as information suitable for the discovery process.

Example

A particular remote sensor on a satellite might measure radiation between a certain spectral range (e.g. 700 to 900
nanometers) at a particular ground resolution (e.g. 5 meter), and with a typical spatial repeat period (e.g. 3.25 — 4.3
days). Alternatively, a particular process might have certain quality constraints. Any process may have certain
limits (e.g., operational and survivable limits), based on physical or mathematical conditions.

These properties do affect the output of the process and should be considered as capabilities.

Copyright © 2014 Open Geospatial Consortium 41

7.2.2.9 Characteristics

A physical or non-physical process may have characteristics that may not directly qualify
the output. These properties are defined using one or more SWE Common DataRecord
elements.

Example

A component may have certain physical measurements such as dimensions and weight, and be constructed of a
particular material. A component may have particular power demands, or anticipated lifetime.These are
characteristics of the component that may not directly affect the output of the component or system.

The characteristics properties may or may not be considered as information suitable for
the discovery process.

7.2.2.10 Contacts

Contact information can provide access to manufacturers, system experts, equipment
owners, or any other persons responsible in some way for design, deployment,
maintenance, or additional information regarding the DescribedObject. The contact
property within the ContactList takes the ISO 19115 classes CI ResponsibleParty as its
values.

7.2.2.11 Documentation

Documentation can be provided which provides further clarification about the
DescribedObject. This might include technical manuals, manufacturer brochures, journal
references, or theoretical-basis documents. The DocumentList document property takes
the ISO 19115 CI OnlineResource as it value.

7.2.2.12 History

Within SensorML, the history of a process can be provided through a collection of Event
objects. These are provided within an EventList that serves as the value of the history
property. Events might for instance, specify calibration or maintenance history of a
sensor, changes to an algorithm or parameter within a computational process, or
deployment and maintenance events.

42 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

class History /

AbstractSWE

«Types
Basic Types::AbstractSWEIdentifiable

«propertys

+ identifier. ScopedName [0..1]

+ label: CharacterString [0..1]

+ desciption: CharacterString [0..1]

i

«Types
Event

«propertys

definition: ScopedName [0..1]
keywords: MD_Keywords [0..%]
identification: I|dentifierList [0..7]
classification: ClassifierList [0..%]
contacts: ContactList [0..7]
documentation: DocumentList [0..%]
time: TimelnstantOrPeriod

property: AbstractDataComponent [0..7]
configuration: AbstractSettings [0..1]

P

Figure 7.10 — Model for history events

7.2.3 AbstractProcess

As discussed in the Core Concepts, the major elements of SensorML are modeled as
physical and non-physical processes. All SensorML process elements will derive from
AbstractProcess, shown in Figure 7.11. The class AbstractProcess itself derives from the
DescribedObject class and thus inherits a wide range of optional metadata supporting
discovery, identification, and qualification and an option for domain and community-
specific extensions. In addition to the metadata provided by DescribedObject, the
AbstractProcess includes the properties of inputs, outputs, and parameters, as required by
the process model defined in the Core Concepts, as well as the properties #ypeOf,
featureOfinterest, configuration, and modes which will be discussed below.

Copyright © 2014 Open Geospatial Consortium 43

class AbstractProcesses /

«FestureTypes
DescribedObject

«propertys

extension: Any [0..7]

language: CharacterString [0..1]
keywords: MD_Keywords [0..%]
identification: IdentifierList [0..7]
classification: ClassifierList [0..7]
validTime: TimelnstantOrPeriod [0..7]
securityConstraints: Any [0..7]
legalConstraints: MD_LegalConstraints [0..%]
characteristics: CharacteristicList [0..%]
capabilities: CapabilityList [0..7]
contacts: ContactList [0.."]
documentation: DocumentList [0..%]
history: EventList [0..%]

L I N I T I AL BN L I I

«FestureTypes
AbstractProcess

«property»

definition: ScopedName [0..1]
typeOf: AbstractProcess [0..1]
configuration: AbstractSettings [0..1]
featuresCfinterest: FeatureList [0..1]
inputs: InputList [0..1]

outputs: OutputList [0..1]
parameters: ParameterList [0..1]
modes: AbstractModes [0..7]

*

Figure 7.11 — UML models for DescribedObject and AbstractProcess

7.2.3.1 Inputs, Outputs, and Parameters

As discussed in the Core Concepts, any process can have inputs, outputs, and parameters.
Processes typically receive input and based on the parameter settings and methodology,
generate output. Some processes, such as detectors, receive physical stimulus as input
and generate digital numbers as output. In such cases, the input would be represented as
an ObservableProperty, and the output as a DataComponent (e.g. a Quantity). If this
output is encoded and accessible directly, then the output can be represented as a
Datalnterface.

44 Copyright © 2014 Open Geospatial Consortium

Example)
© A digital thermometer is stimulated by an observable property of the environment (temperature), which is —
modelled as its input (ObservableProperty), and outputs a digital number (Quantity) that represents a measure of

that property.

Thus, an AbstractProcess model supports the inputs, outputs, and parameters properties
in conformance with the Core Concepts. These properties can accept ObservableProperty
or SWE Common elements AbstractDataComponent or DataStream as their values.
Classes derived from AbstractDataComponent include Quantity, Count, Category,
Boolean, Text, and Time, as well as ranges and aggregates of these simple data types.

class Process 10 Lists /
«Types
Basic Types::AbstractSWE
«property»
+ extension: Any [0..7]
«Types «Typex «Types
InputList OutputList ParameterList
«property» «property» «propertys
+ input: DataComponentOrObservable [1..%] + output: DataComponentOrObservable [1..7] + parameter: DataComponentOrObservable [1..%]

o AbstractSWEIdentifiable
«Unionx»

DataComponentOrObservable «Types
ObservableProperty

+ observable: ObservableProperty
+ dataComponent: AbstractDataComponent
+ interface: Datalnterface

«propertyxs

+ definition: ScopedName

AbstractSWEIdentifiable

«Type»
Datalnterface

«propertyxs
+ data: DataStream
+ interfaceParameters: DataRecord [0..1]

Figure 7.12 — UML models for process inputs, outputs, and parameters.

The core process model will utilize the SWE Common Data Models for defining inputs,
outputs, and parameters, as well as for other metadata properties. SensorML models are
required to support the SWE Common Data Model up to the Block Components
Requirements Class, but many instances of SensorML will find ALL conformance levels
of SWE Common Data to be useful, including binary encodings.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/core-process/swe-common-dependency

Req 12. Any derived model or encoding for process shall utilize ObservableProperty
or SWE Common Data Components as values for inputs, outputs, and parameters,

Copyright © 2014 Open Geospatial Consortium 45

and shall at a minimum conform to the SWE Common Data “Block Components
Package” class (http://www.opengis.net/spec/SWE/2.0/req/uml-block-components).

The input, output, or parameters of many processes include multiple values, possibly of
different data types, that are tightly related to one another. Sometimes referred to as
tuples or records, these data aggregates can consist of values that are perhaps meaningless
without the other associated values (e.g. the coordinates within a spatial reference
system), or provide a more complete understanding because of their association with one
another (e.g. a set of measured values taken by a sensor at a given time). Such data will
be modelled using the aggregate data types defined by the SWE Common Data standard.

Examples
The location of a dynamic object can be specified through the aggregate values of time, latitude, longitude, and

altitude. In such cases, the expression of one of the values separate from the others is meaningless or less complete
than the expression of these values as a set or aggregate. These four values should be encapsulated in a Vector data
type that also identifies the reference frame in which the latitude, longitude and altitude coordinates are expressed

Weather stations often express a set of measurements of the atmosphere as a single record that might include for
instance temperature, pressure, relative humidity, cloudiness, wind speed, and wind direction. These would be
considered a tuple of values that provides a more complete picture of the environment at a particular time. This
tuple should be modeled as a DataRecord with 7 fields (one for each measured parameters listed above + one time
stamp) to indicate that the sampling time applies to all observable values included in the record.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/core-process/aggregate-data

Req 13. Multiple input, output, and parameter values that are tightly related with
one another shall be modeled as a SWE Common Data aggregate data type.

7.2.3.2 Feature of Interest
Most sensors and many non-physical processes have been deployed or implemented with

Example

The features of interest of an installed web camera might include a particular building, a particular street, or a
general area of observation surrounding the camera. Features of interest for other sensors might include the Gulf of
Mexico, a particular drilling well, the atmosphere surrounding a particular weather station, a particular patient, or a
particular automobile. Features of interest for a model or other process might include a particular river basin, a
particular toxic plume release, or a particular metropolitan area.

a focus on one or more features of interest. Within SensorML, the primary purpose of
including a FeatureOfinterest property for AbstractProcess is to support discovery as
well as to further clarify the intended purpose of the physical or non-physical process.

46 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

7.2.3.3 Inheritance, Extension, and Configuration

SensorML supports the concepts of inheritance, extension, and configuration. In other
words, generalized base processes can be described in SensorML and then that
description can be augmented or further constrained by one or more separate
descriptions. Thus, a single, generalized description of a physical or non-physical process
can serve as a basis for one or many more specific process descriptions. This provides
support for more simple and concise process descriptions while also providing the ability
for the user or application to “drill down” to greater and greater detail as desired.

The inheritance model will support two cases:

a) Simple inheritance — the specific process description provides only
additional information to the description of the general process, without
modifying or restricting any property values of the general process.

b) Configuration — the specific process description is able to set or restrict
property values within the allowable range provided by the general process
description, as well as provide additional information.

The key to inheritance, extension, and configuration of a process lies in the typeOf
property, by which a specific process can reference its more general base process. The
typeOf property takes as its value an instance of any process model derived from
AbstractProcess. This will be “by-reference-only”, meaning that the value will be in the
form of a resolvable link to another process instance.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/core-process/type-of

Req 14. A process that is a specific instance of another process shall reference the
more general process through its typeOf property. The value of the typeOf
property shall be a resolvable link to an instance of a process derived from
AbstractProcess.

7.2.3.3.1 Simple Inheritance

In the simple inheritance model, a process (referred to as the “specific process”) inherits
and augments information from another process (referred to as the “general process”).

Copyright © 2014 Open Geospatial Consortium 47

Example

An Original Equipment Manufacturer (OEM) provides a description of a particular model of their sensor that
would define inputs, outputs, and parameters, as well as perhaps capabilities, characteristics, manufacturer contact
information and documentation relevant to that model. Thousands of sensors of this model type may of course be
manufactured and sold by the OEM.

When one purchases and deploys an instance of that model of sensor, the owner can then reference the OEM’s
description of the model and provide additional information that’s specific to his specific instance of the sensor.
Additional information might include, for example, serial number, owner’s contact information, the sensor’s
location, calibration data, and the interface description for accessing the data.

The simple inheritance model is fully supported in the Core Process conformance class
and will be supported solely through the use of the #peOf property within the specific
process. The #ypeOf property within the specific process will reference the general
process through a resolvable reference.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/core-process/simple-inheritance

Req 15. A process instance that references another process through the typeOf
property, but does not include the configuration property, shall inherit properties
of the referenced process through simple inheritance. The complete description of
that process is thus the addition of information from both process descriptions.

7.2.3.3.2 Support for Configurable Processes

A configurable process is one that includes options or choices that can be selected,
restricted, or enabled during deployment, operation, or execution of that process.

Example

An Original Equipment Manufacturer (OEM) can provide a description of a particular model of their sensor that
would define inputs, outputs, and parameters, as well as perhaps capabilities, characteristics, manufacturer contact
information and documentation relevant to that model. In addition, the OEM enables an individual instance of that
model of sensor to be configured by providing options for setting parameter values, setting modes, or choosing a
particular interface. Thousands of sensors of this model type may of course be manufactured and sold by the OEM.
When one purchases and deploys an instance of that model of sensor, the owner can then reference the OEM’s
description of the model and provide additional information that’s specific to that particular instance of the sensor.
In addition, the owner can configure the sensor by setting values, selecting modes, and enabling particular
interfaces. These settings would be provided in the instance description.

The configuration model will utilize both the #ypeOf and configuration properties. The
typeOf property references the more general process as with simple inheritance, while the
configuration property provides a means to further restrict the options and allowed values

48 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

for the specific process. The configuration property in the AbstractProcess takes an
AbstractSettings class as its value.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/core-process/configuration

Req 16. A process instance that references another process through the typeOf
property, and further restricts options or allowed values provided in the
referenced process, shall specify those restrictions through the configuration
property.

A concrete implementation of a Settings class will be provided in a later Conformance
Clause.

7.2.4 SWE Common Data Types

Many properties in the DescribedObject and AbstractProcess classes described above are
of type AbstractDataComponent as defined in the SWE Common Data Model standard.
This data type is used for defining inputs, outputs and parameters, as well as for other
metadata properties.

This requirements class only mandates the support of the “Simple Components” and
“Record Components” as defined in the SWE Common Data Model standard. These
includes the scalar data types Boolean, Text, Count, Quantity, Category, Time and their
range equivalents, as well as DataRecord and Vector.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/core-process/swe-common-dependency

Req 17. Contents of all properties of type AbstractDataComponents shall pass the
SWE Common Data Model “Records Components Package” conformance test
class.

However, many implementations of SensorML will find ALL conformance levels of the
SWE Common Data Model to be useful, including arrays, choices and encodings. An
implementation claiming support for more than the record components can pass the
“Processes with Advanced Data Types” conformance test class of this standard.

Copyright © 2014 Open Geospatial Consortium 49

7.3 Requirements Class: Simple Process

Requirements Class

http://www.opengis.net/spec/sensorml/2.0/req/model/simple-process

Target Type | Derived Encodings and Schema

Dependency | http://www.opengis.net/spec/sensorml/2.0/req/core-process

A simple process is derived from abstract process model, as presented in Clause 7.2.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/simple-process/dependency-core

Req 18. A schema or encoding passing the “Simple Process” model conformance class
shall first pass the “Abstract Process” requirements test class.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/simple-process/package-fully-implemented

Req 19. A schema or encoding definition shall correctly implement all UML classes
defined in the “SimpleProcess” package described in this section.

7.3.1 Simple Process Definition

A simple process is a process that, for whatever reason, is considered indivisible. That is,
there is no intent to further divide the process description into an aggregation of sub-
processes. While the process method may describe several steps within the algorithm, the
actual execution of this process is expected to occur as a single modular unit.

Often simple processes are computational processes that can be executed with an
associated piece of software. Simple processes are often one component of a physical or
non-physical aggregate process.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/simple-process/definition

Req 20. A process shall be modeled a “Simple Process” if it provides a processing
function with well-defined inputs and outputs, if there is no intent to further

50 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

divide the process description into sub-process components, and if knowledge of
its physical location is of no importance.

The SimpleProcess model, as shown in Figure 7.13, is a concrete instantiation of the
AbstractProcess model. The SimpleProcess requires a method description.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/simple-process/method

Req 21. A schema or encoding of the SimpleProcess class shall support the definition
of the method.

class SimpleProcess /

DescribedObject

«FeatureTypes
Core::AbstractProcess

«propertys

definition: ScopedName [0..1]
typeOf: AbstractProcess [0..1]
configuration: AbstractSettings [0..1]
featuresOfinterest: FestureList [0..1]
inputs: InputList [0..1]

outputs: OutputList [0..1]
parameters: Parameterlist [0..1]
modes: AbstractModes [0..7]

L I B B L R

«FeatureTypes
SimpleProcess

wproperty»
+ method: ProcessMethod [0..1]

Example

A process computing a simple mathematical function such as sine, cosine or square root is usually modeled as a
SimpleProcess instance. However, even more complex processes can be modeled this way if there is no intent to
break down the implementation of the process into sub-processes.

Figure 7.13 — Model for Simple Process

Copyright © 2014 Open Geospatial Consortium 51

7.3.2 Process Method Definition

The ProcessMethod provides a description of the methodology used by the process to
execute and generate output based on the input and parameter values. This includes a
textual description, as well as an optional description of the algorithm in an appropriate
format (e.g. mathML) and optional references to particular executable implementations.
The ProcessMethod definition should be sufficient to allow one to understand how input
values are converted to output values, given a particular set of parameter values, and be
able to write software that is capable of executing this process.

A ProcessMethod description may be protected by security or legal constraints, which
would purposely prevent access to the method description as well as restrict knowledge
of the methodology to authorized personnel only. However, regardless of access
restrictions, a ProcessMethod should always be able to be referenced and identified by a
unique identifier.

class ProcessMethod /

AbsziractSWE

«Types
Basic Types::AbstractSWEIldentifiable

«propertyx»

+ identifier: ScopedName [0..1]

+ |label: CharacterString [0..1]

+ desciption: CharacterString [0..1]

«Types
ProcessMethod

«propertys
+ algorithm: AbstractAlgorithm [0..%]

In addition to textual
description, algorithm
can be supported with
various appropriate
languages, such as
MathML, Java, etc.

Figure 7.14 — Model for ProcessMethod

52 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

7.4 Requirements Class: Aggregate Process

Requirements Class

http://www.opengis.net/spec/sensorml/2.0/req/model/aggregate-process

Target Type | Derived Encoding or Software Implementation

Dependency | http://www.opengis.net/spec/sensorml/2.0/conf/model/core-process

An aggregate process is derived from abstract process model, as presented in Clause 7.2.
Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/aggregate-process/dependency-core

Req 22. A schema or encoding definition passing the “Aggregate Process”
conformance test class shall first pass the “Simple Process” conformance test

class.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/aggregate-process/package-fully-implemented

Req 23. A schema or encoding definition for an aggregate process shall correctly
implement all UML classes defined in the “AggregateProcess” package described

in this section.

7.4.1 Aggregate Process Definition

An aggregate process is a collection of autonomous component processes with an explicit
mapping of the data flow between these processes. Components of an aggregate process
can be simple processes (i.e. atomic) or be aggregate process themselves. Aggregate
processes can include both physical and non-physical (i.e. logical) components.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/aggregate-process/definition

Req 24. A process shall be modeled as an aggregate process if it provides a processing
function with well-defined inputs and outputs, if there is intent to further divide
the process description into sub-processes, and if knowledge of its physical

location is of no importance.

Requirement

Copyright © 2014 Open Geospatial Consortium 53

http://www.opengis.net/spec/sensorml/2.0/req/model/aggregate-process/components

Req 25. A schema or encoding implementation of the AggregateProcess class shall
support the inclusion of one or more component processes and a means for
explicitly specifying data flow between these components.

In SensorML, an aggregate process is agnostic to the execution engine that may perform
the actual execution of individual sub-processes and manage the execution sequencing
and the flow of data between the components. Also, while it is possible in SensorML to
more explicitly define the data encoding if desired by using the encoding specifications
defined in the SWE Common Data Specification, SensorML is typically agnostic to the
protocol and format of data flowing between logical processes.

This provides significant flexibility as to where and how a SensorML-defined aggregate
process is executed. While the ProcessMethod explicitly defines the algorithm for
executing an atomic process, the actual execution of that algorithm and the management
of data flow between processes can be handled by any software system able to parse a
SensorML-defined aggregate process and sequence the execution of the processes.

A SensorML-defined process component or aggregate process can be executed through
web services, within the CPU of a laptop, mobile device, or supercomputer, or a mix of
these. Furthermore, a SensorML-defined aggregate process can be executed wherever
desired, be it at a large data or computation center, within a visualization and analysis
client on a laptop, or on-board a sensor or actuator system. Thus, SensorML provides the
choice to either bring the process to the data or bring the data to the process.

The model for AggregateProcess is shown in the figure below. AggregateProcess
extends the AbstractProcess model and adds one or more process components and
explicit linking of data flow between these components. The component property takes
any component derived from AbstractProcess as its value. Component process
descriptions can be provided inline or by reference.

The derivation from AbstractProcess means that an AggregateProcess instance itself has
its own inputs, outputs, and parameters, as well as identification and possible metadata.

54 Copyright © 2014 Open Geospatial Consortium

SensorML

OGC 12-000

class AggregateProcess /

DescribedObject

«FestureTypexs
Core::AbstractProcess

«Types
ComponentList

«propertys

definition: ScopedName [0..1]
typeCf: AbstractProcess [0..1]
configuration: AbstractSettings [0..1]
featuresOfinterest: FeatureList [0..1]
inputs: InputList [0..1]

outputs: OutputList [0..1]
parameters: ParameterList [0..1]
modes: AbstracthModes [0..7]

L B I N I I Y

«propertys
+ component: AbstractProcess [1..%]

«FeatureTypes
AggregateProcess

wpropertys
+ components: ComponentList [0..1]
+ oonnections: ConnectionList [0..1]

«Types
ConnectionList

«property»

+ oconnection: Link[1..%]

«DataTypex
Link

«propertys
+ source: DataComponentRef
+ destination: DataComponentRef

Figure 7.15 — Model for Aggregate Process

Copyright © 2014 Open Geospatial Consortium

55

7.6 Requirement Class: Physical Component

Requirements Class

http://www.opengis.net/spec/sensorml/2.0/req/model/physical-component

Target Type | Derived Encodings and Schema

Dependency | http://www.opengis.net/spec/sensorml/2.0/req/core-process

In the context of SensorML, physical processes represent real processing devices whose
spatio-temporal position is important. Physical processes include detectors, actuators,
sensor systems, and actuator systems. Such processes typically, but not always, involve
interactions beween a real-world domain (or environment) and a digital domain.

Example

A detector or sensor system typically senses an environmental stimulus and provides a digital number representing
the measure of a property of that environment (e.g. temperature). Likewise, an actuator receives a digital number
and based on its values causes an action in the real-world environment.Both devices interact with the real world and
their position is usually of importance to the end-user. These should usually be modelled as physical components

Because physical processes typically interact with the real-world environment, the
position (location and orientation), as well as perhaps the dynamic state (velocity and
acceleration), are usually of importance. We wish to either measure an observable
property at a particular location in the environment or we wish to affect a physical action
at a particular place in the environment. Thus, the position where the physical process
measures or acts becomes important.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/physical-component/package-fully-implemented

Req 26. A schema or encoding definition shall correctly implement all UML classes
defined in the “PhysicalComponent” package described in this section.

7.6.1 Abstract Physical Process Defined

The AbstractPhysicalProcess model is derived from AbstractProcess and thus includes
the metadata and properties of a core process. Additionally, AbstractPhysicalProcess
supports additional properties that allow one to define spatial and temporal coordinates
for the physical process device.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/physical-component/dependency-core

Req 27. A schema or encoding passing the “Physical Component” conformance class
shall first pass the “Core Abstract Process” conformance test class.

56 Copyright © 2014 Open Geospatial Consortium

SensorML

O0GC 12-000

The model for AbstractPhysicalProcess is shown in Figure 7.16 below. The additional
properties of the AbstractPhysicalProcess will be discussed in subsequent clauses.

class PhysicalComponent /

DescribedObject

«FestureTypexs
Core::AbstractProcess

«propertys

definition: ScopedName [0..1]
typeOf: AbstractProcess [0..1]
configuration: AbstractSettings [0..1]
featuresOfinterest: FeatureList [0..1]
inputs: InputList [0..1]

outputs: OutputList [0..1]
parameters: ParameterList [0..1]

+
+
+
+
+
+
+
+ modes: AbstractModes [0..7]

]

«FeatureTypexs
AbstractPhysicalProcess

o

+
+
+
+

«property»

attachedTo: AbstractPhysicalProcess [0..1]
localReferenceFrame: SpatialFrame [0..7]
localTimeFrame: TemporalFrame [0..7]
position: PositionUnion [0..*]
timePaosition: Time [0..7]

«FeatureTypex
PhysicalComponent

«property»
+ method: ProcessMethod [0..1]

Figure 7.16 — Model for Physical Process Component

7.6.1.1 attachedTo Property

A physical process (“child process”) may be attached to another physical process (“parent
process”) such that the movement of the parent process affects the position of the child
process. The attachedTo property provides a reference from the attached process to the

Example:

A video camera is attached to a gimbal that allows rotation of the camera to view a 360° area surrounding the
camera. In such a case, the camera is said to be attached to the gimbal. Both are physical processes (the camera, a
sensor; the gimbal, an actuator). The video camera description should thus use the attachedTo property to reference

the gimbal description.

process to which it is attached.

Copyright © 2014 Open Geospatial Consortium

57

7.6.1.2 Position and Spatial Reference Frames

In this standard, the position or dynamic state of a physical object is defined as a
relationship of the reference frame of the object to some external reference frame.
SensorML allows for the definition of direct orthogonal (i.e. Cartesian) reference frames
that are assumed to be attached to the physical component where they are described.

A reference frame is defined by its origin and its axes, which are described relative to the
physical object itself using natural language and are not relative to any relationship of the
object to some external frame. The relationship of this object’s reference frame to an
external reference frame is defined by the position or dynamic state of the object. The
models for reference frames and spatial position are provided in Figure 7.17.

Example:

The origin of an airplane’s spatial reference frame can be defined as the being at the center of the Inertial
Navigation Unit main gyro. The axes can be defined by the following statements: “X is along the symmetric axis of
the airplane’s fuselage from the gyro to the nose of the airplane (along the platform roll axis of the airplane), Z is
perpendicular to X and toward the belly of the airplane (along the yaw axis of the aircraft), and Y is Z cross X (in
the direction of of the right wing and along the pitch axis of the airplane)”.

The location of this aircraft can then be given as the spatial relationship of the origin of this reference frame to
some external reference frame (e.g. Earth-Centered-Earth-Fixed XYZ or latitude-longitude-altitude). Likewise, the
orientation of the aircraft can be specified as the angular relationship of the axes of its reference frame to the axes
of some external reference frame (e.g. ECEF or North-East-Down).

58 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

class Position /

AbstractSWE

«Types
Basic Types::AbstractSWEIdentifiable

«propertys

+ identifier: ScopedName [0..1]

+ label: CharacterString [0..1]

+ desciption: CharacterString [0..1]

TN

«Typex «Typex
SpatialFrame TemporalFrame
SEEEZLE - «propertys
+ origin: CharacterString + origin: CharacterString
+ axis: CharacterString [1..%]

«Unionx
PositionUnion

«property»

byDescription: Text
byPoint: GM_Point
bylLocation: Vector
byPosition: DataRecord
byTrajectory: DataArmray
byProcess: AbstractProcess

* 4+ 4+

Figure 7.17 — Models for SpatialFrame and PositionUnion

In this standard, “position” is defined as the combination of location and orientation.
Location is the linear displacement (translation) of the origin of the object’s spatial
reference frame relative to the origin of some external reference frame (which will be
designated). The orientation of an object is the angular relationship between the axes of
the object’s reference axes to those of some external reference frame. The dynamic state
of an object can include its time-tagged location, orientation, linear velocity, angular
velocity, and higher-order derivatives when required (e.g. linear and angular acceleration,
jerk, etc.).

An external reference frame can be another object’s reference frame (e.g. the reference
frame of a ship) or a geographic reference frame (e.g. WGS84 latitude-longitude-
altitude).

The PositionUnion class provides various means of specifying the location, position, or
dynamic state of an object. These will be described in more detail in the appropriate
XML encoding section, but the following rules apply to the SensorML models.

Requirement

Copyright © 2014 Open Geospatial Consortium 59

http://www.opengis.net/spec/sensorml/2.0/req/model/physical-component/by-point-or-location

Req 28. Specification of position “byPoint” or “byLocation” shall specify the location
of the origin of the object’s reference frame relative to the origin of a well-defined
and specified external reference frame.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/physical-component/by-position

Req 29. Specification of position “byPosition” shall specify, using two Vectors, the
location and orientation of the object’s reference frame relative to a well-defined
and specified external reference frame.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/physical-component/by-trajectory

Req 30. Specification of position “byTrajectory” shall specify, at a minimum, the time-
tagged location of the object’s reference frame relative to a well-defined and
specified external reference frame, but may also include its orientation and any
number of derivatives of the location and orientation.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/physical-component/by-process

Req 31. Specification of position “byProcess” shall specify SensorML-modeled process
whose output provides, at a minimum, the time-tagged location of the object’s
reference frame relative to a well-defined and specified external reference frame,
but may also include its orientation and any number of derivatives of the location
and orientation.

7.6.1.3 Temporal Reference Frames

Just as spatial position must be related to a spatial reference frame, time must also be
related to a temporal reference frame. Temporal reference frames can include a particular
calendar, a particular time of day reference frame, or a frame attached to an event of
interest.

60 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

Example:

A temporal frame can be attached to an event of interest, such as the start of the mission. When such a reference
frame is defined, time measurements can be expressed in seconds past the mission start time (which is usually itself
referenced to a global time frame such as UTC or TAI).

A temporal reference frame can be defined within a physical process and is particularly
useful if the component is a process that outputs its own measure of time (such as an on-
board clock or high-resolution counter).

7.6.2 Physical Component Defined

Any processing device can be considered a physical component, if it provides a
processing function with well-defined inputs and outputs, if there is no intent to further
divide the device description into component sub-processes, and if knowledge of its
physical location is useful. Such devices could include, but not be limited to, detectors,
actuators, reflectors, electrical components (e.g transformers, capacitors, resistors), or
perhaps even computational units (when knowing their location in a computational
facility is helpful).

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/physical-component/definition

Req 32. A process shall be modeled as a “Physical Component” if it provides a
processing function with well-defined inputs and outputs, if there is no intent to
further divide the device description into sub-process components, and if
knowledge of its physical location is of importance.

As shown in the models of Figure 7.16, the PhysicalComponent class is a concrete
instantiation of an AbstractPhysicalProcess that adds the method property, which takes a
ProcessMethod as its value. ProcessMethod was defined earlier in clause 7.3.2.

Copyright © 2014 Open Geospatial Consortium 61

7.7 Requirement Class: Physical System

Requirements Class

http://www.opengis.net/spec/sensorml/2.0/req/model/physical-system

Target Type | Derived Encodings and Schema

Dependency | http://www.opengis.net/spec/sensorml/2.0/req/physical-component

A physical system is used to model a hardware device as an aggregate process made of
one or more components and whose location in the real world is known and of
importance.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/physical-system/package-fully-implemented

Req 33. A schema or encoding definition supporting physical systems shall correctly
implement all UML classes defined in the “PhysicalSystem” package described in
this section.

Sensor and actuator systems (e.g. machines and robots) are typically physical systems
that perform a particular feat through the coordinated actions of both physical and non-
physical sub-processes. Even though a sensor system’s overall application is to sense
something in the environment, the system itself can consist of sensing components (e.g.
detectors and sensing subsystems), action (e.g. actuators and robotic subsystems), and
computational components.

Example:

A weather station is an example of physical system that is composed of several sensors (thermometer, barometer,
wind sensor, etc.) and other computational process such as an algorithm to compute wind chill. All these
components can be described in SensorML and grouped in a PhysicalComponent description representing the
station as a whole.

A hand-held digital camera can also be modeled as a physical system with an overall task of sensing radiance in a
scene and generating an image. However, the camera is an aggregate of various sub-processes, each of which can
be physical or non-physical, and can be sensing, acting, or computational. For example, a light detector outputs a
measure of brightness, which serves as the input of a computational process which outputs a signal that provides
input into an actuator that controls the opening or closing of the iris. The final iris size is sensed by another detector
which inputs that value into a process that encodes that value into an EXIF format that accompanies the image,
which is generated by a entirely different subsystem of the camera.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/physical-system/definition

62 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

Req 34. A process shall be modeled as a “Physical System” if it provides a processing
function with well-defined inputs and outputs, if the device description is further
divided into subprocess components, and if knowledge of its physical location is of
importance.

The model for PhysicalSystem, as shown in Fig. 7.18, is derived from
AbstractPhysicalProcess, and adds the components and connections properties that have
been described in the non-physical counterpart, AggregateProcess (Clause 7.4).

class PhysicalSystem/

DeszcribedObject

«FeatureTypes
Core::AbstractProcess

«propertyx»

definition: ScopedName [0..1]
typeOf. AbstractProcess [0..1]
configuration: AbstractSettings [0..1]
featuresOfinterest: FeatureList [0..1]
inputs: InputList [0..1]

outputs: OutputList [0..1]
parameters: Parameterlist [0..1]
modes: AbstractModes [0..7]

L B B B I B B

«FeatureTypes
PhysicalComponent::AbstractPhysicalProcess

«property»

+ attachedTo: AbstractPhysicalProcess [0..1]
localReferenceFrame: SpatislFrame [0..7]
localTimeFrame: TemporalFrame [0..7]
position: PositionUnion [0..%]
timePosition: Time [0..7]

L A

«FeatureTypes
Physical System

¢pl'opeﬂy»
+ components: ComponentList [0..1]
+ connections: ConnectionList [0..1]

Figure 7.18 — Model for Physical Processing System

Copyright © 2014 Open Geospatial Consortium 63

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/physical-system/dependency-core

Req 35. A schema or encoding passing the “Physical System” model conformance test
class shall first pass the “Physical Component” conformance test class.

64 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

7.8 Requirements Class: Processes with Advanced Data Types

Requirements Class

http://www.opengis.net/spec/sensorml/2.0/req/model/advanced-process

Target Type | Derived Encodings and Schema

Dependency | http://www.opengis.net/spec/sensorml/2.0/req/core-process

Dependency | OGC 08-094rl (SWE Common Data — uml-block-components)

Dependency | OGC 08-094rl (SWE Common Data — uml-choice-components)

The “Core Abstract Process” requirements class only requires the support of the record
and scalar data types wherever a data type from the SWE Common standard is used.

This class also requires support for more advanced data types defined in the SWE
Common standard : DataArray, Matrix, DataStream and Choice.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/advanced-process/dependency-core

Req 36. A schema or encoding definition passing the “Advanced Data Types” model

conformance class shall first pass the “Abstract Core Process” conformance test
class.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/advanced-process/package-fully-implemented

Req 37. A schema or encoding definition shall correctly implement all UML classes
defined in this section.

Copyright © 2014 Open Geospatial Consortium 65

7.9 Requirements Class: Configurable Processes

Requirements Class

http://www.opengis.net/spec/sensorml/2.0/req/model/configurable-process

Target Type | Derived Encodings and Schema

Dependency | http://www.opengis.net/spec/sensorml/2.0/req/core-process

Many processes, both physical and non-physical, are configurable in that they provide
one with the ability to set parameters values, enable options, or select modes before or
during execution/operation. Thus a general configurable process can be defined and
published specifying allowed values for parameters, modes that can be selected, and
options that can be enabled or disabled.

A specific process that inherits from this general process can then refine the process in
several ways by: (1) specifying values for parameters, (2) further constraining the
allowable values of parameters, (3) selecting an operational mode (which then sets a
group of parameter values), or (4) enabling or disabling particular options such as
particular outputs or components.

In this document, we will refer to the more general process as the “configurable process”,
and the more specific process that inherits from it, as the “configured process”.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/configurable-process/dependency-core

Req 38. A schema or encoding definition passing the “Configurable Process”
conformance test class shall first pass the “Core Abstract Process” conformance
test class.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/configurable-process/package-fully-implemented

Req 39. A schema or encoding definition shall correctly implement all UML classes
defined in the “Configuration” package described in this section.

A process will be considered “configurable” if it provides options, variable parameters, or
modes that can be selected or set before or during deployment or execution.

A process will be considered “configured” if it sets options, parameter values, or modes
that were defined within the configurable process.

Example:

A configurable process based on the linear equation (y=mx+b) defines two parameters for “slope” and “y-intercept”
but does not provide values for these parameters. A configured process can inherit from this configurable process
and set the values of those parameters (e.g. y=2x+4).

SensorML OGC 12-000

A process becomes “configurable” by one or more of the following characteristics:
a) it defines parameters, but not defining their values
b) it defines a range or selection of possible values for parameters using the
swe:AllowedValues property
c¢) it defines modes which in turn set a collection of parameter values when enabled
d) it allows inputs, outputs, or components to be enabled or disabled

A process becomes “configured” by having both of the following two characteristics:
a) it inherits from a configurable process using the typeOf property
b) it specifies one or more settings within the configuration property

7.9.1 Modes

A process mode is a specific configuration in which the values for multiple parameters
can be set and multiple options selected by enabling that mode. Often modes are
established as a convenience so that a process can be configured during deployment or
execution in order to best meet some specific operational need.

Example:
A Doppler radar for monitoring storms may have several modes from which one can select depending on the

LIS

prevailing conditions at the time. For instance, there can be “clear-sky”, “storm”, and “severe-storm” modes in
which the scanning properties, radar intensity, and gain settings can all change by simply changing the mode setting

A configurable process can but is not required to contain one or more modes properties.
The modes property takes an AbstractModes as its value. As shown in Figure 7.19, the
concrete ModeChoice class defined in this conformance clause is derived from
AbstractModes and serves as the concrete instantiation for defining modes in this
specification.

ModeChoice will include two or more mode properties that take Mode as their value. In
addition to metadata provided by the base DescribedObject class, Mode includes a
configuration property that allows one to define a collection of settings for that mode.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/configurable-process/two-modes-required

Req 40. A ModeChoice instantiation shall include two or more mode properties.

Copyright © 2014 Open Geospatial Consortium 67

class Modes /

«FeatureTypes
Core::DescribedObject

«propertys

extension: Any [0..7]

language: CharacterString [0..1]
keywords: MD_Keywords [0..7]
identification: IdentifierList [0..7]
classification: ClassifierList [0..7]
validTime: TimelnstantOrPeriod [0..7]
securityConstraints: Any [0..7]
legalConstraints: MD_LegslConstraints [0..7]
characteristics: CharacteristicList [0..%]
capabilities: CapabilityList [0..7]
contacts: ContactList [0..%]
documentation: DocumentList [0..%]
history: EventList [0..7]

1

LB I BN BN AL BN IR BN BN N I B

AbstractModes
aTypes
«Types Mode
ModeChoice
«property»
«property» + configuration: Settings
+ mode: Mode [1..7]

Figure 7.19 — Model for Modes

The configuration property takes a Settings object, which will be described in more detail
below.

7.9.2 Settings

The configuration property and it Settings value can be utilized in two cases:
a) within the Mode definition of a configurable process for defining a collection of
settings for that particular mode
b) as a required property within a configured process for setting one or more
configurable properties

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/configurable-process/settings-property

Req 41. A configured process shall include a configuration property that takes a
Settings class as its value.

The Settings class is shown in Fig. 7.20 with its possible property values shown in Fig.
7.21. For all settings, the property in the configurable process is specified by the
DataComponentPath reference.

Within the Settings class, one may (a) set particular values for parameters, (b) set an array
of values for a parameter (and only a parameter that takes a DataArray as its value, (c)

68 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

further constrain allowed values for parameters, (d) set the operational mode, and (e)
enable or disable an input or output.

class Settings /

AbstractSettings

«Types
Settings

«property»s

+ setValue: ValueSetting [0..7]

+ setAmayVslues: AmaySetting [0..7]

+ setConstraint: ConstraintSetting [0..%]
+ setMode: ModeSetting [0..7]

+ setStatus: StatusSetting [0..7]

Figure 7.20 — Model for Configured Process Settings

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/configurable-process/set-value-restriction

Req 42. The setValue property shall only reference and set values for a parameter
defined in a configurable process.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/configurable-process/set-array-value-restriction

Req 43. The setArrayValues property shall only reference and set array values for a
parameter defined in a configurable process.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/model/configurable-process/set-constraint-restriction

Req 44. The setConstraint property shall only reference and set constraints for a
parameter defined in a configurable process.

Copyright © 2014 Open Geospatial Consortium 69

class Configuration /

«DsataTypes
ConstraintSetting ';I::tea;ey;g»
ng
wpropertys
+ value: Constraint «proplerty»L "
+ wvslue: LocalName

«DataTypex
Value Setting «DataTypes «DataTypes
Array Settin i
oo R y g Status Setting
+ value: ComponentValue «propertys «property»
+ encoding: AbstractEncoding + wvalue: Status
+ value: EncodedValues
«Unionx»
Core::ComponentValue
«Unionx» «Enumerations
«propertys Constraint Status
+ byBoolean: Boolean
+ bylnteger: Integer xpropertys «property»
+ byRe_aI: Real i + category: AllowedTokens + disabled: CharacterString
+ byString: CharacterString + time: AllowedTimes + enabled: CharacterString
+ byTime: TM_Position + number: AllowedValues

Figure 7.21 — Model for Settings Elements

Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

8 XML Schema Implementation (normative)

This standard defines a normative XML Schema grammar and a set of patterns that
represent an XML implementation of the conceptual models presented in Section 7. The
standardization target type for all requirements classes in this clause is an XML instance
that seeks compliance with this XML encoding model.

XML schemas defined in this section are a direct implementation of the UML conceptual
models described in Section 7. They have been automatically generated from these
models by strictly following well-defined encoding rules described in Annex C. All
attributes and composition/aggregation associations contained in the UML models are
encoded either as XML elements or XML attributes but the names are fully consistent.
One XML schema file is produced for each UML package.

Schematron patterns implement most additional requirements stated in Section 7. One
Schematron file is produced for each XML package.

All example instances given in this section are informative and are used solely for
illustrating features of the normative model. Many of these examples reference semantic
information by using URLSs that are resolvable to definitions maintained in one of several
online ontologies:

- The general sensor community ontologies at http://sensorml.com/orr .

- The OGC online registry at http://www.opengis.net/def/.
- The SWEET ontology maintained by NASA JPL at http://sweet.jpl.nasa.gov/2.0/.

- The MMI ontology registry and repository at http://mmisw.org/orr/.

All XML examples are marked by a light gray background and formatted with a fixed-
width font.

NOTE: These and additional examples, with explanation, can be found at:
http://www.sensorml.com/SensorML-2.0/examples/index.html

Copyright © 2014 Open Geospatial Consortium 71

8.1 Requirements Class: Core Abstract Process Schema

Requirements Class

http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process

Target Type | XML Instance

Dependency http://www.opengis.net/spec/sensorml/2.0/req/model/core-process

Dependency http://www.opengis.net/spec/SWE/2.0/req/xml-encoding-principles

Dependency | ISO 19136 (GML)

Dependency | OGC 08-094r1 (SWE Common Data)

Dependency | ISO 19139 (GMD)

Dependency | ISO 19139 (GCO)

XML Schema elements and types defined in the “core.xsd” schema file implements all
classes defined in the “Core Abstract Process” UML package.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/schema-valid

Req 45. The XML instance shall be valid with respect to the XML grammar defined in
the “core.xsd”, as well as satisfy all Schematron patterns defined in “core.sch”.

8.1.1 General XML Principles

This section lists common requirements associated to the XML encoding rules used in the
context of this standard. As mentioned above, the normative XML schemas in this
standard have been generated by strictly following UML to XML encoding rules, such
that the schemas are the exact image of the UML models. The same encoding principles
will be used by all extensions of this standard.

8.1.1.1 XML Encoding Conventions

The rules used to encode the SensorML models into an XML Schema are similar to those
used to derive GML application schemas and defined in ISO 19136. Most extensions to
these rules were defined and implemented within the OGC SWE Common Data v2.0
standard and have been defined to allow:
- Use of “soft-typed” properties. These properties are encoded as XML elements
with a generic element name but provide a “name” attribute for further
disambiguation.

72 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

- Encoding of certain properties as XML attributes. This type of encoding adds to the
“element-only” rules defined by ISO 19136. It is restricted to properties with a
primitive type and indicated by a new tagged value in the UML model.

- Use of a new abstract base type. A custom base type called “AbstractSWEType” is
used for all complex types.

Following ISO 19136 encoding rules, each UML class with a <<Type>> or
<<DataType>> stereotype, or no stereotype at all, is implemented in the schema as a
global XML complex type with a corresponding global XML element (called object
element). Each of these elements has the same name as the UML class (i.e. always
UpperCamelCase) and the name of the associated complex type is a concatenation of this
name and the word “Type”.

Each UML class attribute is implemented either as a global complex type and a
corresponding local element (called property element), or as an XML attribute. Each
property complex type is given a name composed of the UML attribute name (always
lowerCamelCase) and the words “PropertyType”. The element is defined locally within
the complex type representing the class carrying the attribute and named exactly like the
attribute in UML (i.e. no global elements are created for class attributes). Class
associations are implemented similarly except they cannot be implemented as an XML
attributes.

8.1.1.2 IDs and Linkable Properties

The schemas defined in this standard make extensive use of “x/ink” features to support
hypertext referencing in XML. This allows most property elements to reference content
either internally or externally to the instance document, instead of including this content
inline. This is supported by extensive use of the “id” attribute (of type xs:ID) on most
object elements, and of the “swe:AssociationAttributeGroup™ attribute group, on most
property elements.

According to settings in the SensorML models, values for properties can be provided
inline, by reference, or by either method.

In properties that support “x/ink” attributes, one can usually choose to define that
property value inline, as in:

<swe:field>
<swe:Quantity id="TEMP" ... />
</swe:field>

One can then reference an object within the same document by its ID:

<swe:field xlink:href="#TEMP"/>

An object within an external document can also be referenced by including the full URI:

Copyright © 2014 Open Geospatial Consortium 73

<swe:field xlink:href="http://www.my.com/fields.xmI#TEMP"/>

Typically, “xlink” references will be specified as resolvable URLs. It is required that the
property has either the “xlink:href’ attribute set or contain an inline value, even though
this cannot be enforced by XML schema.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/ref-or-inline-value-present

Req 46. A property element supporting the “swe:AssociationAttributeGroup” shall
either contain the value inline or populate the “xlink:href” attribute with a valid
reference, but shall not be empty.

As later specified, further requirements may be placed on the use of objects reference by
xlink. This includes in some case, the use of both xlink:href to provide a resolvable link
to the object’s description as well as the use of an x/ink:title to provide the uniquelD of
the object. Particular properties ay also require the application of xlink:role or
xlink:arcrole to provide the absolute and relative role of the object, respectively.

8.1.1.3 Extensibility Points

The SensorML schemas define extensibility points that can be used to insert ad-hoc XML
content that is not specified by this standard. This is done via optional “extension”
property of type “xs:anyType” in the base abstract complex type “AbstractSWEType”.
Since all object types defined in this standard derive from this base type, extensions can
be added for many properties in a SensorML instance.

This mechanism allows for a “laxist” way of including extended content in XML
instances as the extended content is by default ignored by the validator. However, it is
also possible to formally validate extended content by writing an XML schema for the
extension and feeding it to the validator via the “xsi:schemaLocation™ attribute in all
instances using the extension.

The recommended way of extending the XML schema of this standard is to define new
properties on existing objects by inserting them in an “extension” slot. Additionally this
should be done in a way that these new properties can be safely ignored by an
implementation that is not compatible with a given extension. However, it should be
recognized that defining new XML object elements (such as new data component
objects) rather than new properties will greatly reduce forward compatibility of
implementations compliant to this standard with XML instances containing extensions of
this standard.

In any case, all such extensions of the XML schema described in this standard will be
defined in a new namespace (other than the namespaces used by this standard and its
dependencies) in order to allow easy detection of extensions by implementations.

74 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/extension-namespace-unique

Req 47. The value of the extension property shall be a schema in which the root
element is defined in a new unique namespace (other than the namespaces used
by this standard and its dependencies).

Extensions are not allowed to change the meaning or behavior of elements and types
defined by this standard in any way (in this case, new classes or properties will be
defined). This guarantees that implementations, which may have no knowledge of an
extension, can still properly use XML instances containing these extensions.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/extension-coherent-with-core

Req 48. The value of the extension property shall not redefine or change the
meaning or behavior of XML elements and types defined in this standard.

The execution of the process should not depend on information contained within an
extension. Data values required for process execution will be provided within the input,
output, and parameter properties, and within the SensorML and SWE Common Data
namespace elements (i.e. sml and swe, respectively), and cannot exclusively be contained
in the extension classes.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/extension-process-execution

Req 49. The value of the extension property shall not exclusively contain
information required for the successful execution of the process.

Note that extension points are also supported by the SWE Common Data specification
such that community-specific XML elements can be added to any property value that
uses a SWE Common data type element as its value. Common anticipated applications of
property-specific extension points include security tagging of individual properties and
community-specific quality control characterization of property values.

8.1.2 General XSD Dependencies and XML Heading

The header for all specified schema provides namespaces and dependencies. The header
for core processes below specifices the namespaces and dependent schema for “sml”,

(13 29 ¢

swe”, “gml”, “gco”, and “gmd”.

Copyright © 2014 Open Geospatial Consortium 75

<schema xmins="http://www.w3.0rg/2001/XMLSchema" xmlIns:xml|="http://www.w3.org/XML/1998/namespace
xmlins:gco="http://www.isotc211.0rg/2005/gco" xmIns:gmd="http://www.isotc211.org/2005/gmd"
xmlins:sml="http://www.opengis.net/sensorML/2.0" xmiIns:gml="http://www.opengis.net/gml/3.2"
xmins:swe="http://www.opengis.net/swe/2.0" targetNamespace="http://www.opengis.net/sensorML/2.0"
elementFormDefault="qualified" attributeFormDefault="unqualified">
<annotation>
<documentation>
The core elements of an abstract process from which all major elements of SensorML are derived.
</documentation>
</annotation>
<import namespace="http://www.isotc211.org/2005/gmd"
schemalocation="http://schemas.opengis.net/iso/19139/20070417/gmd/gmd.xsd"/>
<import namespace="http://www.isotc211.0org/2005/gco"
schemalocation="http://schemas.opengis.net/iso/19139/20070417/gco/gco.xsd"/>
<import namespace="http://www.opengis.net/gml|/3.2"
schemalocation="http://schemas.opengis.net/gml/3.2.1/gml.xsd"/>
<import namespace="http://www.opengis.net/swe/2.0"
schemalocation="http://schemas.opengis.net/sweCommon/2.0/swe.xsd"/>
<import namespace="http://www.w3.org/XML/1998/namespace"
schemalocation="http://www.w3.0rg/2001/xml.xsd"/>

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/gml-dependency

Req 50. This standard shall utilize and depend upon the OGC GML 3.2 standard
schema within the http://www.opengis.net/gml/3.2 namespace

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/swe-common-dependency

Req 51. This standard shall utilize and depend upon the OGC SWE Common Data 2.0
standard within the http://www.opengis.net/swe/2.0 namespace

Several base abstract types are defined in the SWE Common Data standard are used for
derivation of elements within this SensorML specification. These are defined in the
“swe” namespace and defined in:

http://schemas.opengis.net/sweCommon/2.0/basic types.xsd

These basic types are used as base substitution groups for all global XML elements
defined in this standard. Below are XML schema snippets for the “AbstractSWE”,
“AbstractSWEIldentifiable” and “AbstractSWEValue” elements and corresponding
complex types:

<element name="AbstractSWE" type="swe:AbstractSWEType" abstract="true">
<annotation>
<documentation>
Base substitution groups for all SWE Common objects other than value objects

76 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

</documentation>
</annotation>
</element>

<complexType name="AbstractSWEType">
<sequence>
<element name="extension" type="anyType" minOccurs="0" maxOccurs="unbounded">
<annotation>
<documentation>Extension slot for future extensions to this standard.</documentation>
</annotation>
</element>
</sequence>
<attribute name="id" type="ID" use="optional"/>
</complexType>

The “AbstractSWE” complex type is the base for all derived complex types defined in
this standard. It defines a first extension mechanism as an optional “extension” element
that allows for any extended element content (in a namespace other than the SWE
Common Data Model namespace). It also has an optional “id” attribute allowing
referencing the object that derives from it.

<element name="AbstractSWEldentifiable" type="swe:AbstractSWEIldentifiableType" abstract="true"
substitutionGroup="swe:AbstractSWE">
<annotation>
<documentation>
Base substitution groups for all SWE Common objects with identification metadata
</documentation>
</annotation>
</element>

<complexType name="AbstractSWEIdentifiableType">
<complexContent>
<extension base="swe:AbstractSWEType">
<sequence>
<element name="identifier" type="anyURI" minOccurs="0">
<annotation>
<documentation>
Unique identifier of the data component. It can be used to globally identify a particular
component of the dataset, a process input/output or a universal constant
</documentation>
</annotation>
</element>
<element name="label" type="string" minOccurs="0">
<annotation>
<documentation>
Textual label for the data component . This is often used for displaying a human readable
name for a dataset field or a process input/output
</documentation>
</annotation>
</element>
<element name="description" type="string" minOccurs="0">
<annotation>
<documentation>
Textual description (i.e. human readable) of the data component usually used to clarify its
nature
</documentation>
</annotation>
</element>
</sequence>
</extension>
</complexContent>
</complexType>

Copyright © 2014 Open Geospatial Consortium 77

The “AbstractSWEIdentifiable” complex type derives from “AbstractSWE” and adds
three identification elements. These elements are to be used as described in the UML
section of this standard.

Based on these dependencies, an example header for a typical SensorML instance is
given below:

<?xml version="1.0" encoding="UTF-8"?>
<sml:PhysicalSystem gml:id="DAVIS_PRO_VANTAGE2"
xmlins:sml="http://www.opengis.net/sensorML/2.0"
xmlins:swe="http://www.opengis.net/swe/2.0"
xmlins:gml="http://www.opengis.net/gml|/3.2"
xmlins:gmd="http://www.isotc211.0rg/2005/gmd"
xmlins:gco="http://www.isotc211.0org/2005/gco"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:xlink="http://www.w3.0rg/1999/xlink"
xsi:schemalocation="http://www.opengis.net/sensorML/2.0 http://schemas.opengis.net/sensorml/2.0/sensorml.xsd">

8.1.3 DescribedObject Properties

The DescribedObject element is an XML Schema implementation of the UML classes
defined in clause 7.2.2. DescribedObject is the base class for all process objects defined
in this standard. DescribedObject is derived from gml:AbstractFeature. In essence it
provides a common set of metadata for a general feature. It is particularly suited for
processes and functional devices, as later described in this specification.

The XML snippet for the DescribedObject element and its corresponding complex types
is shown below:

<element name="DescribedObject" type="sml:DescribedObjectType" abstract="true"
substitutionGroup="gml:AbstractFeature">
<annotation>
<documentation>
A feature with generic metadata which further clarifies the object and supports object discovery.
</documentation>
</annotation>
</element>

<complexType name="DescribedObjectType" abstract="true">
<complexContent>
<extension base="gml:AbstractFeatureType">
<sequence>
<element name="extension" type="anyType" minOccurs="0" maxOccurs="unbounded">
<annotation>
<documentation>
A property that allows one to extend a document using a schema in a different
namespace from the current schema.
</documentation>
</annotation>
</element>
<element name="keywords" type="sml:KeywordListPropertyType"
minOccurs="0" maxOccurs="unbounded">
<annotation>
<documentation>
Short keywords describing the context of this document to aid in discovery.
</documentation>
</annotation>

78 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

</element>
<element name="identification" type="sml:ldentifierListProperty Type"
minOccurs="0" maxOccurs="unbounded">
<annotation>
<documentation>
Identifiers useful for discovery of the process (e.g. short name, mission id, wing id, serial
number, etc.)
</documentation>
</annotation>
</element>
<element name="classification" type="sml:ClassifierListProperty Type"
minOccurs="0" maxOccurs="unbounded">
<annotation>
<documentation>
Classifiers useful for discovery of the process (e.g. process type, sensor type, intended
application, etc.)
</documentation>
</annotation>
</element>
<element name="validTime" minOccurs="0" maxOccurs="unbounded">
<annotation>
<documentation>
The time instance or time range during which this instance description is valid.
</documentation>
</annotation>
<complexType>
<sequence>
<group ref="sml:TimelnstantOrPeriod"/>
</sequence>
</complexType>
</element>
<element name="securityConstraints" type="anyType" minOccurs="0" maxOccurs="unbounded">
<annotation>
<documentation>
Overall security tagging of process description; individual tagging of properties can be
done using extension element.
</documentation>
</annotation>
</element>
<element name="legalConstraints" type="gmd:MD_LegalConstraints_PropertyType"
minOccurs="0" maxOccurs="unbounded">
<annotation>
<documentation>
Legal constraints applied to this description (e.g. copyrights, legal use, etc.)
</documentation>
</annotation>
</element>
<element name="characteristics" minOccurs="0" maxOccurs="unbounded">
<annotation>
<documentation>
Useful properties of this process that do not further qualify the output values (e.g.
component dimensions, battery life, operational limits, etc).
</documentation>
</annotation>
<complexType>
<complexContent>
<extension base="sml:CharacteristicListProperty Type">
<attribute name="name" type="NCName" use="required"/>
</extension>
</complexContent>
</complexType>
</element>
<element name="capabilities" minOccurs="0" maxOccurs="unbounded">
<annotation>
<documentation>
Properties that further clarify or quantify the output of the process (e.g. dynamic range,

Copyright © 2014 Open Geospatial Consortium 79

sensitivity, threshold, etc.). These can assist in the discovery of processes that meet
particular requirements.
</documentation>
</annotation>
<complexType>
<complexContent>
<extension base="sml:CapabilityListProperty Type">
<attribute name="name" type="NCName" use="required"/>
</extension>
</complexContent>
</complexType>
</element>
<element name="contacts" type="sml:ContactListProperty Type"
minOccurs="0" maxOccurs="unbounded">
<annotation>
<documentation>
Persons or responsible parties that are relevant to this process (e.g. designer,
manufacturer, expert, etc.)
</documentation>
</annotation>
</element>
<element name="documentation" type="sml:DocumentListPropertyType"
minOccurs="0" maxOccurs="unbounded">
<annotation>
<documentation>
Additional external online documentation of relevance to this process (e.g. user's guides,
product manuals, specification sheets, images, technical papers, etc.)
</documentation>
</annotation>
</element>
<element name="history" type="sml:EventListPropertyType"
minOccurs="0" maxOccurs="unbounded">
<annotation>
<documentation>
A collection of time-tagged events relevant to this process.
</documentation>
</annotation>
</element>
</sequence>
<attribute ref="xml:lang" use="optional">
<annotation>
<documentation>
A tag that identifies the language (e.g. english, french, etc.) for the overall document using a
two-letters code as defined by ISO 639-1.
</documentation>
</annotation>
</attribute>

</extension>
</complexContent>
</complexType>

Most properties in DescribedObject are optional, thereby allowing the description to be
as small or as robust as one desires.

All property elements in DescribedObject are of type DescribedObjectPropertyType
which supports the ability to reference the value of the property externally through
xlink:href or provide the value inline.

80

<complexType name="DescribedObjectPropertyType">
<sequence minOccurs="0">
<element ref="sml:DescribedObject"/>
</sequence>

Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

<attributeGroup ref="gml:AssociationAttributeGroup"/>
<attributeGroup ref="gml:OwnershipAttributeGroup"/>
</complexType>

Additionally, most property values in DescribedObject are of type
AbstractMetadataListType, which supports a list structure along with identification and
definition properties.

<element name="AbstractMetadataList" type="sml:AbstractMetadataListType"
substitutionGroup="swe:AbstractSWEIdentifiable"/>

<complexType name="AbstractMetadataListType">
<complexContent>
<extension base="swe:AbstractSWElIdentifiable Type">
<attribute name="definition" type="anyURI" use="optional"/>
</extension>
</complexContent>
</complexType>
<complexType name="AbstractMetadataListPropertyType">
<sequence minOccurs="0">
<element ref="sml:AbstractMetadataL.ist"/>
</sequence>
<attributeGroup ref="swe:AssociationAttributeGroup"/>
</complexType>

8.1.3.1 Description Property

The description property is inherited from gml:AbstractFeature and provides a textual
description for the feature.
An example of a description is given below:

<gml:description>Thermometer on the window of the Cass Building, Room 315</gml:description>

8.1.3.2 Name Property

The name property is inherited from gml:AbstractFeature and provides a common name
for the feature.

An example of the name property is given below:

<gml:name>Health Physics Instruments 2070 Gamma Detector</gml:name>

8.1.3.3 Unique Identifier

This specification reserves the gml:identifier, inherited from gml:AbstractFeature, as a
means of providing a unique identifier for the DescribedObject. This unique identifier
should be referenced in any other specification that involves this object, thereby
providing a means of searching for all references to this object.

Requirement

Copyright © 2014 Open Geospatial Consortium 81

http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/globally-unique-id

Req 52. An instance supporting DescribedObject shall have one and only one
gml:identifier and this element shall have a codespace attribute with a value set
to “uniquelD”. The value of the gml:identifier shall be a globally unique
identifier for the DescribedObject.

The value of the gml:identifier can be a URI (e.g. URL or URN) or a series of string
characters that uniquely identify the object. An example of a globally unique identifier
for a weather station is given below:

<gml:identifier codeSpace="uid">urn:icd:stations:FR8766</gml:identifier>

<gml:identifier codeSpace="uid">38a7s8f9d55</gml:identifier>

8.1.3.4 Keywords

The keyword property and the KeywordList element are XML Schema implementations
of the UML classes defined in clause 7.2.2.2.

The XML snippet for the KeywordList element and its corresponding complex types is
shown below:

<element name="KeywordList" type="sml:KeywordListType" substitutionGroup="sml:AbstractMetadatalL.ist"/>

<complexType name="KeywordListType">
<complexContent>
<extension base="sml:AbstractMetadataListType">
<sequence>
<element name="codeSpace" type="swe:Reference" minOccurs="0" maxOccurs="1"/>
<element name="keyword" type="string" minOccurs="1" maxOccurs="unbounded"/>
</sequence>
</extension>
</complexContent>
</complexType>
<complexType name="KeywordListPropertyType">
<sequence minOccurs="0">
<element ref="sml:KeywordList"/>
</sequence>
<attributeGroup ref="swe:AssociationAttributeGroup"/>
</complexType>

The KeywordList element includes an optional codespace attribute that should reference
an external dictionary or keyword list that includes all possible keyword entries. An
example of a keyword list without a codespace defined is shown below:

<keywords>
<KeywordList>
<keyword>weather station</keyword>
<keyword>precipitation</keyword>

82 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

<keyword>wind speed</keyword>
<keyword>temperature</keyword>
</KeywordList>
</keywords>

An example of a keyword list with codespace is shown below:

<keywords>
<KeywordList codespace="http://myAuthoritativeDomain.org/def/myKeywordList">
<keyword>weather station</keyword>
<keyword>precipitation</keyword>
<keyword>wind speed</keyword>
<keyword>temperature</keyword>
</KeywordList>
</keywords>

8.1.3.5 Identifiers

The IdentifierList and the Term elements are XML Schema implementations of the UML
classes defined in clause 7.2.2.3. The identifier property of the IdentifierList takes a Term
as its value. The Term element has an optional definition attribute that should reference a
resolvable definition of the term within an online dictionary or ontology.

The XML snippets for the IdentifierList and Term elements and their corresponding
complex types are shown below:

Term:
<element name="Term" type="sml:TermType" substitutionGroup="swe:AbstractSWE"/>

<complexType name="TermType">
<complexContent>
<extension base="swe:AbstractSWEType">
<sequence>
<element name="label" type="string"/>
<element name="codeSpace" type="swe:Reference" minOccurs="0" maxOccurs="1"/>
<element name="value" type="string"/>
</sequence>
<attribute name="definition" type="anyURI" use="optional"/>
</extension>
</complexContent>
</complexType>
<complexType name="TermPropertyType">
<sequence minOccurs="0">
<element ref="sml:Term"/>
</sequence>
<attributeGroup ref="swe:AssociationAttributeGroup"/>
</complexType>

IdentifierList:

<element name="ldentifierList" type="sml:IdentifierListType" substitutionGroup="sml:AbstractMetadatalL.ist"/>

<complexType name="IdentifierListType">
<complexContent>
<extension base="sml:AbstractMetadataListType">
<sequence>

Copyright © 2014 Open Geospatial Consortium 83

<element name="identifier" minOccurs="1" maxOccurs="unbounded">
<complexType>
<sequence>
<element ref="sml:Term"/>
</sequence>
</complexType>
</element>
</sequence>
</extension>
</complexContent>
</complexType>

<complexType name="IdentifierListProperty Type">
<sequence minOccurs="0">
<element ref="sml:IdentifierList"/>
</sequence>
<attributeGroup ref="swe:AssociationAttributeGroup"/>
</complexType>

An example of an identifier list is shown below:

<sml:identification>
<sml:ldentifierList>
<sml:identifier>
<sml:Term definition="http://sensorml.com/ont/swe/property/ShortName">
<sml:label>Short Name</sml:label>
<sml:value>Thermometer FR8766</sml:value>
</sml:Term>
</sml:identifier>
<sml:identifier>
<sml:Term definition="http://sensorml.com/ont/swe/property/Manufacturer">
<sml:label>Manufacturer Name</sml:label>
<sml:value>ACME Inc</sml:value>
</sml:Term>
</sml:identifier>
<sml:identifier>
<sml:Term definition="http://sensorml.com/ont/swe/property/ModelNumber">
<sml:label>Manufacturer Model</sml:label>
<sml:value>T911</sml:value>
</sml:Term>
</sml:identifier>
<sml:identifier>
<sml:Term definition=" http://sensorml.com/ont/swe/property/SerialNumber">
<sml:label>Serial Number</sml:label>
<sml:value>FT5743456566-997</sml:value>
</sml:Term>
</sml:identifier>
</sml:IdentifierList>
</sml:identification>

8.1.3.6 Classifiers

The ClassifierList is an XML Schema implementations of the UML classes defined in
clause 7.2.2.4. The classifier property of the ClassifierList takes a Term as its value.

The XML snippet for the ClassifierList element and its corresponding complex types is
shown below:

<element name="ClassifierList" type="sml:ClassifierListType" substitutionGroup="sml:AbstractMetadataL.ist"/>

84 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

<complexType name="ClassifierListType">
<complexContent>
<extension base="sml:AbstractMetadataListType">
<sequence>
<element name="classifier" minOccurs="1" maxOccurs="unbounded">
<complexType>
<sequence>
<element ref="sml:Term"/>
</sequence>
</complexType>
</element>
</sequence>
</extension>
</complexContent>
</complexType>

<complexType name="ClassifierListProperty Type">
<sequence minOccurs="0">
<element ref="sml:ClassifierList"/>
</sequence>
<attributeGroup ref="swe:AssociationAttributeGroup"/>
</complexType>

An example of a classifier list is shown below:

<sml:classification>
<sml:ClassifierList>
<sml:classifier>
<sml:Term definition="http://sensorml.com/ont/swe/property/SensorType">
<sml:label>Sensor Type</sml:label>
<sml:value>Weather Station</sml:value>
</sml:Term>
</sml:classifier>
<sml:classifier>
<sml:Term definition="http://sensorml.com/ont/swe/property/IntendedApplication">
<sml:label>Intended Application</sml:label>
<sml:value>Weather</sml:value>
</sml:Term>
</sml:classifier>
</sml:ClassifierList>
</sml:classification>

8.1.3.7 Security Constraints

The securityConstraints property provides an overall security tagging for the overall
document. Typically if any part of a document is classified as Secret, for instance, then
the entire document is tagged as Secret.

Because various nations and other entities may have developed their own XML schema
for supporting security tagging, the value of the securityConstraints property is provide
as xs:any. Thus, like the extension property, the value of the securityConstraint property
can be any XML, but this XML will be defined in a namespace other than those used in
this standard.

Requirement

Copyright © 2014 Open Geospatial Consortium 85

http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/document-security-tags

Req 53. All values for the securityConstraints property shall be defined in a new
unique namespace (other than the namespaces used by this standard and its
dependencies).

8.1.3.8 Note on Security Tagging Individual Properties

It is often required or desireable that security tagging exists not only for the entire
document but for individual property values as well. SensorML supports tagging of
individual property values and lists through the extension property that is inherited by all
elements derived from AbstractSWEType and AbstractSWEIldentifiableType.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/individual-security-tags

Req 54. Security tagging of individual property values shall utilize the extension
element within the appropriate SensorML or SWE Common data elements.

8.1.3.9 Valid Time Constraints

The validTime element is an XML Schema implementation of the UML class defined in
clause 7.2.2.6.

The XML Schema snippet from DescribedObject that pertains to the validTime property
is given below. The validTime property takes either a GML TimePeriod or Timelnstant
as its value.

<element name="validTime" minOccurs="0" maxOccurs="unbounded">
<annotation>
<documentation>
The time instance or time range during which this instance description is valid.
</documentation>
</annotation>
<complexType>
<sequence>
<group ref="sml:TimelnstantOrPeriod"/>
</sequence>
</complexType>
</element>

<group name="TimelnstantOrPeriod">
<annotation>
<documentation>Either a Time Instant or Time Period</documentation>
</annotation>
<choice>
<element ref="gml:TimePeriod"/>
<element ref="gml:Timelnstant"/>
</choice>
</group>

<complexType name="TimelnstantOrPeriodProperty Type">

<sequence minOccurs="0">
<group ref="sml:TimelnstantOrPeriod"/>

86 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

</sequence>
<attributeGroup ref="swe:AssociationAttributeGroup"/>

</complexType>

An example of the valid time being given by a TimePeriod is shown below:

<validTime>
<gml: TimePeriod gml:id="deploymentDates">
<gml:beginPosition>2009-01-01T14:00:00Z</gml:beginPosition>
<gml:endPosition>2013-12-31T08:20:00Z</gml:endPosition>
</gml:TimePeriod>
</validTime>

8.1.3.10 Legal Constraints
The legalConstraints element is an XML Schema implementation of the UML class

defined in clause 7.2.2.7.

The XML Schema snippet from DescribedObject that pertains to the legalConstraints
property is given below. The legalConstraints property takes an ISO 19115
MD LegalConstraints element as its value, which is encoded according to ISO19139

schema.

<element name="legalConstraints" type="gmd:MD_LegalConstraints_PropertyType"
minOccurs="0" maxOccurs="unbounded">
<annotation>
<documentation>Legal constraints applied to this description (e.g. copyrights, legal use, etc.)
</documentation>
</annotation>
</element>

An example of legalConstraints is provided below:

<sml:legalConstraints>
<gmd:MD_LegalConstraints>
<gmd:useLimitation>
<gco:CharacterString>
Disclaimer - While every effort has been made to ensure that the data from this sensor
is accurate and reliable within the limits of the current state of the art, we cannot assume
liability for any damages caused by any errors or omissions in the data, nor as a result of
the failure of the data to function on a particular system. We makes no warranty, expressed
or implied, nor does the fact of distribution constitute such a warranty.
</gco:CharacterString>
</gmd:useLimitation>
</gmd:MD_LegalConstraints>
</sml:legalConstraints>

8.1.3.11 Capabilities
The capabilities property and the CapabilitiesList element are XML Schema
implementations of the UML classes defined in clause 7.2.2.9. The capabilities property

Copyright © 2014 Open Geospatial Consortium 87

takes a CapabilitiesList as its value. The CapabilitiesList member property accepts any
SWE Common data component as its value.

The XML snippet for the CapabilitiesList element and its corresponding complex types is
shown below:

<element name="CapabilityList" type="sml:CapabilityListType" substitutionGroup="sml:AbstractMetadataL.ist"/>

<complexType name="CapabilityListType">
<complexContent>
<extension base="sml:AbstractMetadataListType">
<sequence>
<element name="capability" minOccurs="1" maxOccurs="unbounded">
<complexType>
<complexContent>
<extension base="swe:AbstractDataComponentProperty Type">
<attribute name="name" type="NCName" use="required"/>
</extension>
</complexContent>
</complexType>
</element>
</sequence>
</extension>
</complexContent>
</complexType>

<complexType name="CapabilityListProperty Type">
<sequence minOccurs="0">
<element ref="sml:CapabilityList"/>
</sequence>
<attributeGroup ref="swe:AssociationAttributeGroup"/>
</complexType>

Thus capabilities can be described using SWE Common simple types, such as Quantity,
Count, Boolean, Category, Text, and Time as well as be aggregate types such as
DataRecord, DataArray, Vector, or Matrix.
An example of capabilities is given below:

<sml:capabilities>
<sml:CapabilityList>
<sml:capability name="measurementProperties">
<swe:DataRecord definition="http://sensorml.com/ont/swe/property/MeasurementProperties">
<swe:label>Measurement Properties</swe:label>
<swe:field name="RadiationRange">
<swe:QuantityRange definition="http://sensorml.com/ont/swe/property/RadiationLevel">
<swe:uom code="R/h"/>
<swe:value>0 30</swe:value>
</swe:QuantityRange>
</swe:field>
<swe:field name="Sensitivitity">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/RadiationSensitivity">
<swe:uom code="{tot}/uR"/>
<swe:value>1</swe:value>
</swe:Quantity>
</swe:field>
<swe:field name="SamplePeriod">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/SamplePeriod">
<swe:uom code="s"/>
<swe:value>1</swe:value>
</swe:Quantity>
</swe:field>
<swe:field name="MeasurementOutputTime">

88 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

<swe:Quantity definition="http://sensorml.com/ont/swe/property/OutputPeriod">
<swe:uom code="s"/>
<swe:value>450</swe:value>

</swe:Quantity>

</swe:field>
</swe:DataRecord>
</sml:capability>
</sml:CapabilityList>
</sml:capabilities>

8.1.3.12 Characteristics

The characteristics property and the CharacteristicsList element are XML Schema
implementations of the UML classes defined in clause 7.2.2.9. The characteristics
property takes a CharacteristicsList as its value. The CharacteristicsList member
property accepts any SWE Common data component as its value.

The XML snippet for the CharacteristicsList element and its corresponding complex
types is shown below:

<element name="CharacteristicList" type="sml:CharacteristicListType"
substitutionGroup="sml:AbstractMetadatalL ist"/>

<complexType name="CharacteristicListType">
<complexContent>
<extension base="sml:AbstractMetadataListType">
<sequence>
<element name="characteristic" minOccurs="1" maxOccurs="unbounded">
<complexType>
<complexContent>
<extension base="swe:AbstractDataComponentPropertyType">
<attribute name="name" type="NCName" use="required"/>
</extension>
</complexContent>
</complexType>
</element>
</sequence>
</extension>
</complexContent>
</complexType>

<complexType name="CharacteristicListProperty Type">
<sequence minOccurs="0">
<element ref="sml:CharacteristicList"/>
</sequence>
<attributeGroup ref="swe:AssociationAttributeGroup"/>
</complexType>

Thus characteristics can be described using SWE Common simple types, such as
Quantity, Count, Boolean, Category, Text, and Time as well as be aggregate types such as
DataRecord, DataArray, Vector, or Matrix.

An example of characteristics that groups like properties in data records is given below:

<sml:characteristics name="generalProperties">
<sml:CharacteristicList>

<sml:characteristic name="physicalProperties">

<swe:DataRecord definition="http://sensorml.com/ont/swe/property/PhysicalProperties">
<swe:label>Physical Properties</swe:label>

Copyright © 2014 Open Geospatial Consortium 89

<swe:field name="PhysicalProperties">
<swe:DataRecord>
<swe:field name="Weight">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/Weight">
<swe:uom code="o0z"/>
<swe:value>10</swe:value>
</swe:Quantity>
</swe:field>
<swe:field name="Length">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/Length">
<swe:uom code="in"/>
<swe:value>4.5</swe:value>
</swe:Quantity>
</swe:field>
<swe:field name="Width">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/Width">
<swe:uom code="in"/>
<swe:value>2.5</swe:value>
</swe:Quantity>
</swe:field>
<swe:field name="Height">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/Height">
<swe:uom code="in"/>
<swe:value>1.4</swe:value>
</swe:Quantity>
</swe:field>
<swe:field name="CasingMaterial">
<swe:Category definition="http://sensorml.com/ont/swe/property/Material">
<swe:value>Aluminum</swe:value>
</swe:Category>
</swe:field>
</swe:DataRecord>
</swe:field>
</swe:DataRecord>
</sml:characteristic>

<sml:characteristic name="electricalRequirements">
<swe:DataRecord definition="http://sensorml.com/ont/swe/property/PowerRequirement">
<swe:label>Electrical Requirements</swe:label>
<swe:field name="voltage">
<swe:QuantityRange definition="http://sensorml.com/ont/swe/property/Voltage">
<swe:uom code="V"/>
<swe:value>8 12</swe:value>
</swe:QuantityRange>
</swe:field>
<swe:field name="CurrentType">
<swe:Category definition="http://sensorml.com/ont/swe/property/ElectricalCurrentType">
<swe:value>DC</swe:value>
</swe:Category>
</swe:field>
<swe:field name="AmpRange">
<swe:QuantityRange definition="http://sensorml.com/ont/swe/property/ElectricalCurrent">
<swe:uom code="mA"/>
<swe:value>20 40</swe:value>
</swe:QuantityRange>
</swe:field>
</swe:DataRecord>
</sml:characteristic>

</sml:CharacteristicList>
</sml:characteristics>

90 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

8.1.3.13 Contacts

The contacts property and the ContactList element are XML Schema implementations of
the UML classes defined in clause 7.2.2.11. The contacts property takes a ContactList as
its value. The ContactList member property supports an ISO 19115 CI ResponsibleParty
as its value, which is encoded according to ISO19139 schema.

The XML snippet for the ContactList element and its corresponding complex types is
shown below:

<element name="ContactList" type="sml:ContactListType" substitutionGroup="sml:AbstractMetadatalL.ist"/>

<complexType name="ContactListType">
<complexContent>
<extension base="sml:AbstractMetadataListType">
<sequence>
<element name="contact" type="gmd:C|_ResponsibleParty PropertyType"
minOccurs="1" maxOccurs="unbounded"/>
</sequence>
</extension>
</complexContent>
</complexType>

<complexType name="ContactListPropertyType">
<sequence minOccurs="0">
<element ref="sml:ContactList"/>
</sequence>
<attributeGroup ref="swe:AssociationAttributeGroup"/>
</complexType>

A contact can have multiple roles for which it is responsible. What is of most interest in
this standard is the role the responsible party plays relative to the object being described.
Therefore, the role of the responsible party (e.g. manufacturer, expert, owner, etc.) should
be given by the x/ink:arcrole attribute in the member property of the ContactList.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/contact-role

Req 55. The role of the responsible party relative to the described object shall be
provided using the xlink:arcrole attribute of the relevant member property of
the Contactlist.

An example of a ContactList is shown below (note that the gmd schema requires a
CharacterString element before the values of properties).

<sml:contacts>
<sml:ContactList>

<sml:contact xlink:arcrole="http://sensorml.com/ont/swe/role/Operator">
<gmd:CIl_ResponsibleParty>

<gmd:organisationName>

<gco:CharacterString>METEO France</gco:CharacterString>
</gmd:organisationName>
<gmd:contactinfo>

<gmd:Cl_Contact>

<gmd:phone>

Copyright © 2014 Open Geospatial Consortium 91

<gmd:Cl_Telephone>
<gmd:voice>
<gco:CharacterString>+33 5 99 11 22 33 44</gco:CharacterString>
</gmd:voice>
</gmd:Cl_Telephone>
</gmd:phone>
<gmd:address>
<gmd:CI|_Address>
<gmd:deliveryPoint>
<gco:CharacterString>42 Avenue Gaspard Coriolis</gco:CharacterString>
</gmd:deliveryPoint>
<gmd:city>
<gco:CharacterString>TOULOUSE</gco:CharacterString>
</gmd:city>
<gmd:postalCode>
<gco:CharacterString>31100</gco:CharacterString>
</gmd:postalCode>
<gmd:country>
<gco:CharacterString>FRANCE</gco:CharacterString>
</gmd:country>
</gmd:Cl_Address>
</gmd:address>
</gmd:Cl_Contact>
</gmd:contactinfo>
<gmd:role gco:nilReason="inapplicable"/>
</gmd:CIl_ResponsibleParty>
</sml:contact>

<sml:contact
xlink:arcrole="http://sensorml.com/ont/swe/role/Manufacturer"
xlink:href="http://www.myCompany.com/contact/company.xml"/>

</sml:ContactList>
</sml:contacts>

8.1.3.14 Documentation

The documentation property and the DocumentList element are XML Schema
implementations of the UML classes defined in clause 7.2.2.11. The documentation
property takes a DocumentList as its value. The DocumentList member property supports
an ISO 19115 CI OnlineResource as its value, which is encoded according to ISO19139
schema.

The XML snippet for the DocumentList element and its corresponding complex types is
shown below:

<element name="DocumentList" type="sml:DocumentListType" substitutionGroup="sml:AbstractMetadataList"/>

<complexType name="DocumentListType">
<complexContent>
<extension base="sml:AbstractMetadataListType">
<sequence>
<element name="document" type="gmd:Cl_OnlineResource_PropertyType"
minOccurs="1" maxOccurs="unbounded"/>
</sequence>
</extension>
</complexContent>
</complexType>

<complexType name="DocumentListPropertyType">

92 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

<sequence minOccurs="0">
<element ref="sml:DocumentList"/>
</sequence>
<attributeGroup ref="swe:AssociationAttributeGroup"/>
</complexType>

An example of documentation is given below (note that the gco and gmd schema require
a CharacterString element before the values of properties):

<documentation>
<DocumentList>
<document xlink:arcrole="http://sensorml.com/ont/swe/role/UserManual">
<gmd:Cl_OnlineResource>
<gmd:linkage>
<gmd:URL>http://myCompany.com/ref/2031manual.pdf</gmd:URL>
</gmd:linkage>
<gmd:name>
<gco:CharacterString>
User Manual for Model 2031
</gco:CharacterString>
</gmd:name>
<gmd:description>
<gco:CharacterString>
This document provides the complete Users Manual for the myCompany sensor model 2031.
</gco:CharacterString>
</gmd:description>
</gmd:Cl_OnlineResource>
</document>

<document xlink:arcrole="http://sensorml.com/ont/swe/role/Productimage">
<gmd:Cl_OnlineResource>
<gmd:linkage>
<gmd:URL>http://myCompany.com/ref/2031image.jpg</gmd:URL>
</gmd:linkage>
<gmd:name>
<gco:CharacterString>
Sensor Model 2031
</gco:CharacterString>
</gmd:name>
<gmd:description>
<gco:CharacterString>
This is an image of sensor model 2031.
</gco:CharacterString>
</gmd:description>
</gmd:Cl_OnlineResource>
</document>

</DocumentList>
</documentation>

8.1.3.15 History

The history property and the EventList and Event elements are XML Schema
implementations of the UML classes defined in clause 7.2.2.12. The history property
takes an EventList as its value. The EventList member property takes an Event as its
value. The XML snippets for the EventList and Event elements and their corresponding
complex types are shown below:

EventlList:

<element name="EventList" type="sml:EventListType" substitutionGroup="sml:AbstractMetadataList"/>

Copyright © 2014 Open Geospatial Consortium 93

<complexType name="EventListType">
<complexContent>
<extension base="sml:AbstractMetadataListType">
<sequence>
<element name="event" type="sml:EventProperty Type"
minOccurs="1" maxOccurs="unbounded"/>
</sequence>
</extension>
</complexContent>
</complexType>

<complexType name="EventListProperty Type">
<sequence minOccurs="0">
<element ref="sml:EventList"/>
</sequence>
<attributeGroup ref="swe:AssociationAttributeGroup"/>
</complexType>

Event:
<element name="Event" type="sml:EventType" substitutionGroup="swe:AbstractSWEIldentifiable">
<annotation>
<documentation>A time tagged Event with description and relevant property values.</documentation>
</annotation>
</element>
<complexType name="EventType">
<complexContent>
<extension base="swe:AbstractSWEldentifiable Type">
<sequence>
<element name="keywords" type="sml:KeywordListPropertyType" minOccurs="0" maxOccurs="1">
<annotation>
<documentation>keywords useful for discovery of the event</documentation>
</annotation>
</element>
<element name="identification" type="sml:ldentifierListProperty Type"
minOccurs="0" maxOccurs="1">
<annotation>
<documentation>Identifiers relevant to the event</documentation>
</annotation>
</element>
<element name="classification" type="sml:ClassifierListProperty Type"
minOccurs="0" maxOccurs="1">
<annotation>
<documentation>Type of event (useful for discovery)</documentation>
</annotation>
</element>
<element name="contacts" type="sml:ContactListPropertyType" minOccurs="0" maxOccurs="1">
<annotation>
<documentation>Persons or parties relevant to this event</documentation>
</annotation>
</element>
<element name="documentation" type="sml:DocumentListPropertyType"
minOccurs="0" maxOccurs="1">
<annotation>
<documentation>Additional documentation relevant to this event</documentation>
</annotation>
</element>
<element name="time">
<annotation>
<documentation>DateTime of the event</documentation>
</annotation>
<complexType>
<sequence>
<group ref="sml:TimelnstantOrPeriod"/>
</sequence>
</complexType>

94 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

</element>
<element name="property" type="swe:AbstractDataComponentProperty Type"
minOccurs="0" maxOccurs="1">
<annotation>
<documentation>
Properties of interest to the event (e.g. calibration values, condition category, error codes,
etc)
</documentation>
</annotation>
</element>
<element name="configuration" minOccurs="0" maxOccurs="1">
<annotation>
<documentation>Configuration settings adjusted during event</documentation>
</annotation>
<complexType>
<sequence>
<element ref="sml:AbstractSettings"/>
</sequence>
</complexType>
</element>
</sequence>
<attribute name="definition" type="anyURI" use="optional"/>
</extension>
</complexContent>
</complexType>

<complexType name="EventPropertyType">
<sequence minOccurs="0">
<element ref="sml:Event"/>
</sequence>
<attributeGroup ref="swe:AssociationAttributeGroup"/>
</complexType>

An example of an EventList is shown below. EventList could of course be presented
inline as a value of the history property, or could be maintained externally and referenced
by the x/ink:href attribute of the history property.

<sml:EventList>
<sml:event>
<sml:Event>
<swe:label>Scheduled Maintenance</swe:label>
<swe:description>
Monthly maintenance of station exterior.-Checked electronics-Checked casingChecked power
supply.Everything OK.
</swe:description>
<sml:time>
<gml:TimePeriod gml:id="MP1">
<gml:beginPosition>2002-03-01T10:00:00Z</gml:beginPosition>
<gml:endPosition>2002-03-01T11:00:00Z</gml:endPosition>
</gml:TimePeriod>
</sml:time>
</sml:Event>
</sml:event>
<sml:event>
<sml:Event>
<swe:label>Calibration</swe:label>
<swe:description>Recalibration of acquisition electronics using temperature reference</swe:description>
<sml:time>
<gml:Timelnstant gml:id="MP2">
<gml:timePosition>2002-03-01T18:00:00Z</gml:timePosition>
</gml:Timelnstant>
</sml:time>
<sml:configuration>

Copyright © 2014 Open Geospatial Consortium 95

<sml:Settings>
<sml:setArrayValues ref="base/components/raingauge/parameters/steady-state-response">
1,2,3,4,52,4,6,8,10
</sml:setArrayValues>
</sml:Settings>
</sml:configuration>
</sml:Event>
</sml:event>
</sml:EventList>

8.1.4 Abstract Process

AbstractProcessType is derived from DescribedObject and serves as the base class for all
processes modelled and encoded in this specification. Thus, all processes include the
metadata described above plus the elements defined in this section and its subsections.
The AbstractProcess element is an XML Schema implementation of the UML class
defined in clause 7.2.3.

The XML snippet for the AbstractProcess element and its corresponding complex types
is shown below. The various properties of AbstractProcess will be discussed in more
detail in the following subsections.

<element name="AbstractProcess" type="sml:AbstractProcessType" abstract="true"
substitutionGroup="sml:DescribedObject">
<annotation>
<documentation>The general base model for any process.</documentation>
</annotation>
</element>
<complexType name="AbstractProcessType" abstract="true">
<complexContent>
<extension base="sml:DescribedObjectType">
<sequence>
<element name="typeOf" type="gml:ReferenceType" minOccurs="0" maxOccurs="1">
<annotation>
<appinfo>
<gml:targetElement>sml:AbstractProcess</gml:targetElement>
</appinfo>
<documentation>
A reference to a base process from which this process inherits properties and constraints
(e.g. original equipment manufacturer's model description, generic equation, etc.). The
uniquelD of the referenced process must be provided using the xlink:title attribute while
the URL to the process description must be provided by the xlink:href attribute.
</documentation>
</annotation>
</element>
<element name="configuration" minOccurs="0" maxOccurs="1">
<annotation>
<documentation>
Value settings that further constrain the properties of the base process.
</documentation>
</annotation>
<complexType>
<sequence>
<element ref="sml:AbstractSettings"/>
</sequence>
</complexType>
</element>
<element name="featuresOfInterest" minOccurs="0" maxOccurs="1">
<annotation>
<documentation>
A collection of features relevant to a process (e.g. the Gulf of Mexico, the White House,

96 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

the set of all Fibonacci Numbers, etc.); can also support a sampling feature. The primary
purpose of the Features of Interest is to support discovery.
</documentation>
</annotation>
<complexType>
<sequence>
<element ref="sml:FeatureList"/>
</sequence>
</complexType>
</element>
<element name="inputs" minOccurs="0" maxOccurs="1">
<annotation>
<documentation>
The list of data components (and their properties and semantics) that the process will
accept as input; In the standard linear equation y=mx+b; x is the input, m and b are the
parameters, and y is the output.
</documentation>
</annotation>
<complexType>
<sequence>
<element ref="sml:InputList"/>
</sequence>
</complexType>
</element>
<element name="outputs" minOccurs="0" maxOccurs="1">
<annotation>
<documentation>
The list of data components (and their properties and semantics) that the process will
accept as output; In the standard linear equation y=mx+b; x is the input, m and b are the
parameters, and y is the output.
</documentation>
</annotation>
<complexType>
<sequence>
<element ref="sml:OutputList"/>
</sequence>
</complexType>
</element>
<element name="parameters" minOccurs="0" maxOccurs="1">
<annotation>
<documentation>
The list of data components (and their properties and semantics) that the process will
accept as parameters; In the standard linear equation y=mx+b; x is the input, m and b are
the parameters, and y is the output.
</documentation>
</annotation>
<complexType>
<sequence>
<element ref="sml:ParameterList"/>
</sequence>
</complexType>
</element>
<element name="modes" minOccurs="0" maxOccurs="unbounded">
<annotation>
<documentation>
A collection of parameters that can be set at once through the selection of a particular
predefined mode.
</documentation>
</annotation>
<complexType>
<sequence>
<element ref="sml:AbstractModes"/>
</sequence>
</complexType>
</element>
</sequence>

Copyright © 2014 Open Geospatial Consortium 97

<attribute name="definition" type="anyURI|">
<annotation>
<documentation>
An optional property that allows one to reference the process instance in an online ontology
or dictionary. The value of the property must be a resolvable URI.
</documentation>
</annotation>
</attribute>
</extension>
</complexContent>
</complexType>

<complexType name="AbstractProcessPropertyType">
<sequence minOccurs="0">
<element ref="sml:AbstractProcess"/>
</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>
<attributeGroup ref="gml:OwnershipAttributeGroup"/>
</complexType>

8.1.4.1 Definition

As with the definition attribute used in SWE Common simple and aggregate data
components, the definition attribute for a DescribedObject provides the ability to link to a
definition or classification within an online ontology. Relationships of this object with
various other objects can then be inferred based on the ontology. There is some potential
for overlap of functionality between the definition attribute and the identification and
classification properties. Some communities may prefer to primarily use classification
and identification elements, while others prefer to use the definition attribute or both.

8.1.4.2 TypeOf

The #ypeOf property provides a reference to a base process from which this process
inherits properties and constraints. It is a key component in support of inheritance as
described in the models in Clause 7.2.3.3.

Two pieces of information required in order to reference a base process instance, the
uniquelD of the process and a resolvable URL reference to the process description. These
should be provided by the xlink:title and xlink:href attributes, respectively.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/type-of-reference

Req 56. The typeOf property shall require meaningful values for the xlink:title and
xlink:href attributes. The uniquelD of the referenced process, given by its
gml:identifier property, shall be the value of the xlink:title attribute, while a
resolvable URL to the reference process description shall be the value of the
xlink:href attribute.

An example of the typeOf property is given below:

<sml:typeOf xlink:tittle="urn:heath:2070"

98 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

xlink:href="http://www.sensors.ws/examples/sensorml-2.0/configuration/gamma2070.xml"/>

8.1.4.3 Abstract Configuration

The optional configuration property takes an AbstractConfiguration as its value, which
provides a placeholder for configuration information in the AbstractProcess. A concrete
class supporting configuration will be provided in a higher-level conformance class in
Requirements Class: Configurable Process Schema in Clause 8.6.

8.1.4.4 FeatureOfinterest

The featureOfInterest property and the FeatureList element are XML Schema
implementations of the UML classes defined in clause 7.2.3.1. The featureOfInterest
property takes a FeatureList as its value. The FeatureList member property takes any
object derived from GML AbstractFeature as its value. This feature can be described
inline, but will most often be provided by reference using the x/ink:href attribute.

The XML snippet for the FeatureList element and its corresponding complex types is
shown below.

<element name="FeatureList" type="sml:FeatureListType" substitutionGroup="sml:AbstractMetadatalL.ist"/>

<complexType name="FeatureListType">
<complexContent>
<extension base="sml:AbstractMetadataListType">
<sequence>
<element name="feature" type="gml:FeaturePropertyType"
minOccurs="1" maxOccurs="unbounded"/>
</sequence>
</extension>
</complexContent>
</complexType>

<complexType name="FeatureListPropertyType">
<sequence minOccurs="0">
<element ref="sml:FeatureList"/>
</sequence>
<attributeGroup ref="swe:AssociationAttributeGroup"/>
</complexType>

An example for a Feature-of-Interest list is given below. In this case, all features are by
reference.

<sml:featureOfInterest>
<sml:FeatureList>
<sml:feature xlink:arcrole="http://sensorml.com/ont/swe/feature/Station"
xlink:title="urn:myDomain:station:A209"
xlink:href="http://myDomain.com/features/officeA209.xml"/>
<sml:feature xlink:arcrole="http://sensorml.com/ont/swe/feature/ObservedFeature"
xlink:title="urn:mmi:features:GulfOfMexico"
xlink:href="http://mmi.org/features/GulfOfMexico.xml"/>
</sml:FeatureList>
</sml:featureOflnterest>

Copyright © 2014 Open Geospatial Consortium 99

To better understand the role that the feature of interest plays with regard to the process,
the xlink:arcrole attribute of the feature property should be used to specify this
relationship. To aid in discovery, the unique ID or name of the feature should be provided
in the x/ink:title attribute if it exists.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/foi-arcrole-and-title

Req 57. Regardless of whether a feature of interest is described inline or provided
by reference, the xlink:arcrole attribute of the member property of the
Featurelist shall be used to specify the relationship of the associated feature to
the process. If a unique identifier or name for the feature of interest exists, it
shall be the value of the xlink:title of the member property of the Featurelist.

8.1.4.5 Inputs, Outputs, and Parameters

The input, output, and parameter properties and the InputList, OutputList, and
ParameterList elements are XML Schema implementations of the UML classes defined
in clause 7.2.3.1. The input, output, and parameter properties takes InputList, OutputList,
and ParameterList elements as their respective value. The member properties of these
lists take any element of the DataComponentOrObservable Union as their value. This
union and its components will be discussed in more detail in subsequent sections.

The XML snippets for the InputList, OutputList, and ParameterList elements and their
corresponding complex types are shown below:

Inputs:

<element name="InputList" type="sml:InputListType" substitutionGroup="swe:AbstractSWE"/>

<complexType name="InputListType">
<complexContent>
<extension base="swe:AbstractSWEType">
<sequence>
<element name="input" minOccurs="1" maxOccurs="unbounded">
<complexType>
<complexContent>
<extension base="sml:DataComponentOrObservableProperty Type">
<attribute name="name" type="NCName" use="required"/>
</extension>
</complexContent>
</complexType>
</element>
</sequence>
</extension>
</complexContent>
</complexType>

<complexType name="InputListPropertyType">
<sequence minOccurs="0">
<element ref="sml:InputList"/>
</sequence>
<attributeGroup ref="swe:AssociationAttributeGroup"/>
</complexType>

100 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

Outputs:
<element name="OutputList" type="sml:OutputListType" substitutionGroup="swe:AbstractSWE"/>

<complexType name="OutputListType">
<complexContent>
<extension base="swe:AbstractSWEType">
<sequence>
<element name="output" minOccurs="1" maxOccurs="unbounded">
<complexType>
<complexContent>
<extension base="sml:DataComponentOrObservableProperty Type">
<attribute name="name" type="NCName" use="required"/>
</extension>
</complexContent>
</complexType>
</element>
</sequence>
</extension>
</complexContent>
</complexType>

<complexType name="OQutputListPropertyType">
<sequence minOccurs="0">
<element ref="sml:OutputList"/>
</sequence>
<attributeGroup ref="swe:AssociationAttributeGroup"/>
</complexType>

Parameters:
<element name="ParameterList" type="sml:ParameterListType" substitutionGroup="swe:AbstractSWE"/>

<complexType name="ParameterListType">
<complexContent>
<extension base="swe:AbstractSWEType">
<sequence>
<element name="parameter" minOccurs="1" maxOccurs="unbounded">
<complexType>
<complexContent>
<extension base="sml:DataComponentOrObservableProperty Type">
<attribute name="name" type="NCName" use="required"/>
</extension>
</complexContent>
</complexType>
</element>
</sequence>
</extension>
</complexContent>
</complexType>

<complexType name="ParameterListPropertyType">
<sequence minOccurs="0">
<element ref="sml:ParameterList"/>
</sequence>
<attributeGroup ref="swe:AssociationAttributeGroup"/>
</complexType>

An example of inputs, outputs, and parameters from a particular process is given below
(in this case, a gamma radiation sensor):

Copyright © 2014 Open Geospatial Consortium 101

<sml:inputs>
<sml:InputList>
<sml:input name="gammaRadiation">
<sml:ObservableProperty definition="http://sensorml.com/ont/swe/property/Radiation">
<swe:label>Electromagnetic Radiation</swe:label>
</sml:ObservableProperty>
</sml:input>
</sml:InputList>
</sml:inputs>

<l-- outputs
o ==
<sml:outputs>
<sml:OutputList>
<sml:output name="dose">
<swe:DataRecord>
<swe:field name="averageDose">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/DoseRate.htm|">
<swe:label>Average Dose of Gamma Radiation</swe:label>
<swe:uom code="uR/min"/>
</swe:Quantity>
</swe:field>
<swe:field name="InstantaneousDose">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/RadiationDose">
<swe:label>Instantaneous Dose of Gamma Radiation</swe:label>
<swe:uom code="uR"/>
</swe:Quantity>
</swe:field>
</swe:DataRecord>
</sml:output>
</sml:OutputList>
</sml:outputs>

<l-- Parameters
<!
<sml:parameters>
<sml:ParameterList>
<sml:parameter name="energyResponse">
<swe:DataArray definition="http://sensorml.com/ont/swe/property/SpectralResponse">
<swe:label>Gamma Radiation Response Curve</swe:label>
<swe:description>
The normalized energy response per KeV showing the sensitivity to gamma radiation
</swe:description>
<swe:elementCount>
<swe:Count>
<swe:value>7</swe:value>
</swe:Count>
</swe:elementCount>
<swe:elementType name="energyResponse">
<swe:DataRecord>
<swe:label>Normalize Energy Response</swe:label>
<swe:field name="radiationEnergy">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/RadiationEnergy">
<swe:label>Radiation Energy</swe:label>
<swe:uom code="KeV"/>
</swe:Quantity>
</swe:field>
<swe:field name="relativeResponse">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/RelativeResponse">
<swe:label>Relative Response</swe:label>
<swe:uom code="%"/>
</swe:Quantity>
</swe:field>
</swe:DataRecord>

102 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

</swe:elementType>
<swe:encoding>
<swe:TextEncoding blockSeparator="
" tokenSeparator=","/>
</swe:encoding>
<swe:values>
10.0,73 17.5,89.5 20.0,94.0 30.,95.5 40.0,96.0 50.0,96.0 100.0,94.0
</swe:values>
</swe:DataArray>
</sml:parameter>
</sml:ParameterList>
</sml:parameters>

8.1.4.5.1 Data Component Union

The DataComponentOrObservable group provides three choices to serve as process
inputs, outputs, and parameters. These include swe:AbstractDataComponent,
sml:ObservableProperty, and sml:Datalnterface. These will each be discussed further in
the following sections.

The XML snippet defining the DataComponentOrObservable group is given below:

<group name="DataComponentOrObservable">
<choice>
<element ref="swe:AbstractDataComponent">
<annotation>
<documentation>
A single digital number (DN) or aggregate of DNs that represent the value of some property.
Single data components can be of type Quantity, Count, Category, Boolean, Text, or Time; these
can be aggregated in records, arrays, vector, and matrices.
</documentation>
</annotation>
</element>
<element ref="sml:ObservableProperty">
<annotation>
<documentation>
A physical property of the environment that can be observed by an appropriate detector (e.g.
temperature, pressure, etc.); Typically,an ObservableProperty serves as the input of a detector
and the output of an actuator.
</documentation>
</annotation>
</element>
<element ref="sml:Datalnterface">
<annotation>
<documentation>
A data interface serves as an intermediary between the pure digital domain and the physical
domain where DN are encoded into a format and perhaps transmitted through physical
connections using some well-defined protocol. The Datalnterface element allows one to define
the components, semantics, encoding, connections, and protocol at an input, output, or parameter
port.
</documentation>
</annotation>
</element>
</choice>
</group>

<complexType name="DataComponentOrObservablePropertyType">
<sequence minOccurs="0">
<group ref="sml:DataComponentOrObservable"/>
</sequence>
<attributeGroup ref="swe:AssociationAttributeGroup"/>
</complexType>

Copyright © 2014 Open Geospatial Consortium 103

8.1.4.5.2 ObservableProperty

The ObservableProperty element is an XML encoding of the model defined in Clause
7.2.1 and discussed more in Clause 7.2.3.1. The ObservableProperty is used to represent
an observable property or state in the environment. It is often used as an input field (e.g.
stimulus) for a detector or the output field (e.g. action) of an actuator.

The XML snippet defining ObservableProperty and its associated complex types is
shown below:

<element name="ObservableProperty" type="sml:ObservableProperty Type"
substitutionGroup="swe:AbstractSWEIdentifiable">
<annotation>
<documentation>
A physical property that can be observed and possibly measured (e.g. temperature, color, position). An
ObservableProperty has unambiguous definition, but does not have units of measure.
</documentation>
</annotation>
</element>

<complexType name="ObservablePropertyType">
<complexContent>
<extension base="swe:AbstractSWElIdentifiable Type">
<attribute name="definition" type="anyURI" use="required"/>
</extension>
</complexContent>
</complexType>

<complexType name="ObservablePropertyPropertyType">
<sequence minOccurs="0">
<element ref="sml:ObservableProperty"/>
</sequence>
<attributeGroup ref="swe:AssociationAttributeGroup"/>
</complexType>

The ObservableProperty element requires a URL as the value of its definition attribute,
which should resolve to a definition for the observable within an online dictionary or
ontology.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/observable-definition

Req 58. The ObservableProperty element shall include the definition attribute that
shall take as its value, a resolvable URL referencing the definition of the
observable within an online dictionary or ontology.

An minimal example of the use of ObservableProperty as a value for an input property is
given below:

<sml:input name="temperature">
<sml:ObservableProperty
definition="http://sensorml.com/ont/swe/property/AtmosphericTemperature"/>
</sml:input>

104 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

8.1.4.5.3 SWE Common Data

SWE Common data types support the description and encoding of determined values,
those measured or calculated by a physical or computational process. In addition to the
those properties described in ObservableProperty, SWE Common data types can also
support other properties such as units of measure, constraints, quality indicators, and
values. It is highly recommended that one become familiar with the SWE Common Data
specification in OGC 08-094.

In addition to simple data types such as Quantity, Count, Boolean, Category, Time, and
Text, SWE Common Data also supports several aggregate data types, such as
DataRecord, DataArray, Vector, and Matrix. These allow appropriate grouping of data
components, such as a DataRecord including an instantaneous snapshot of the
atmosphere (e.g. temperature, pressure, wind direction, and wind speed), a DataArray
providing the axes definitions and values for a calibration curve, a Vector providing the
GPS location (e.g. latitude, longitude, and altitude) of a dynamic platform, or a Matrix
providing the covariance of a set of measurements.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/data-record

Req 59. Input, output, and parameter data components that are dependent on one
another or represent the state at a given time, shall be surrounded by an
appropriate aggregate data component

The following example for a wind chill calculation process uses only SWE Common
Quantity elements for inputs and outputs. Note that the input fields are surrounded by a
swe:DataRecord element since the temperature and wind speed fields express the
condition of the environment at a given time instance.

R S
<l-- Inputs -->
QERS====———=
<sml:inputs>

<sml:InputList>
<sml:input name="process_inputs">
<swe:DataRecord>
<swe:field name="temperature">
<swe:Quantity definition="http://sweet.jpl.nasa.gov/2.2/quanTemperature.owl#Temperature">
<swe:uom code="cel"/>
</swe:Quantity>
</swe:field>
<swe:field name="windSpeed">
<swe:Quantity definition="http://sweet.jpl.nasa.gov/2.2/quanSpeed.owl#WindSpeed">
<swe:uom code="m/s"/>
</swe:Quantity>
</swe:field>
</swe:DataRecord>
</sml:input>
</sml:InputList>
</sml:inputs>

Copyright © 2014 Open Geospatial Consortium 105

<sml:outputs>
<sml:OutputList>
<sml:output name="windChill">
<swe:Quantity definition="http://sweet.jpl.nasa.gov/2.2/quanTemperature.owl#WindChill">
<swe:uom code="cel"/>
</swe:Quantity>
</sml:output>
</sml:OutputList>
</sml:outputs>

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/vector-use

Req 60. A swe:Vector shall be used for any input, output, or parameter value that
requires position to be specified relative to a specific axis of a reference frame.

An example of position output provided as output of a system is given below. This
example uses both Vector and DataRecord elements to group the fields appropriately.

<sml:output>
<swe:DataRecord>
<swe:field name="location">
<swe:Vector
definition="http://sensorml.com/ont/swe/property/SensorLocation"
referenceFrame="http://www.opengis.net/def/crs/EPSG/6.7/4979"
localFrame="#SENSOR_FRAME">
<swe:coordinate name="Lat">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/Latitude" axis|ID="Lat">
<swe:uom code="deg"/>
</swe:Quantity>
</swe:coordinate>
<swe:coordinate name="Lon">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/Longitude" axis|ID="Long">
<swe:uom code="deg"/>
</swe:Quantity>
</swe:coordinate>
<swe:coordinate name="Alt">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/Altitude" axis|D="Alt">
<swe:uom code="m"/>
</swe:Quantity>
</swe:coordinate>
</swe:Vector>
</swe:field>
<swe:field name="orientation">
<swe:Vector
definition="http://sensorml.com/def/property/SensorOrientation"
referenceFrame="http://www.opengis.net/def/crs/NED"
localFrame="#SENSOR_FRAME">
<swe:coordinate name="TrueHeading">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/TrueHeading" axis|D="2">
<swe:uom code="deg"/>
</swe:Quantity>
</swe:coordinate>
<swe:coordinate name="Pitch">

106 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

<swe:Quantity definition="http://sensorml.com/ont/swe/property/Pitch" axis|D="Y">
<swe:uom code="deg"/>

</swe:Quantity>

</swe:coordinate>

</swe:Vector>
</swe:field>
</swe:DataRecord>
</sml:output>

8.1.4.5.4 Data Interface

The Datalnterface element is an XML encoding of the model defined in Clause 7.10.
Datalnterface describes the data components as described in the previous clause, but also
provides a description of the data encoding of a datastream flowing to or from a process
interface as well as a description of interface characteristics itself (e.g. the
communication protocols and perhaps physical nature as outlined in the OSI interface
stack).

The XML snippet for the Datalnterface element and its associated complex types is
shown below:

<element name="Datalnterface" type="sml:Datalnterface Type" substitutionGroup="swe:AbstractSWEIdentifiable">
<annotation>
<documentation>
The Datalnterface description provides information sufficient for "plug-and-play" access to and parsing of
the data stream or file at the particular 10 port.
</documentation>
</annotation>
</element>

<complexType name="DatalnterfaceType">
<complexContent>
<extension base="swe:AbstractSWEldentifiable Type">
<sequence>
<element name="data" type="swe:DataStreamProperty Type">
<annotation>
<documentation>
The definition of the digital data components and encoding accessed through the data
interface.
</documentation>
</annotation>
</element>
<element name="interfaceParameters" type="swe:DataRecordProperty Type"
minOccurs="0" maxOccurs="1">
<annotation>
<documentation>
A set of property values that define the type and configuration of a data interface (e.g. the
port settings of an RS232 interface).
</documentation>
</annotation>
</element>
</sequence>
</extension>
</complexContent>
</complexType>

<complexType name="DatalnterfacePropertyType">
<sequence minOccurs="0">
<element ref="sml:Datalnterface"/>
</sequence>

Copyright © 2014 Open Geospatial Consortium 107

<attributeGroup ref="swe:AssociationAttributeGroup"/>
</complexType>

The Datalnterface essentially consists of a required data property, which takes a SWE
Common DataStream element as its value, and an optional interfaceParameters property
that defines the interface as a set of fields within a SWE Common DataRecord. This
specification does not define the specific fields required to define the interface, but it is
expected that one or more profiles will be defined for common interface definitions.

In the following example, the values property reference a RESTful resource (e.g. a daily
record of weather) available on the web through html protocol. This example is for a
network of weather sensors; thus the network stream includes station ID and location as
part of the data components. In this case, a description of the InterfaceParameters is
neither required nor useful.

<sml:outputs>
<sml:OutputList>
<sml:output name="sensorNetworkStream">
<sml:Datalnterface>
<sml:data>
<swe:DataStream>
<swe:description>
This stream is for a sensor network where all output are homogeneous;
The station ID and location is provided with each reading;
</swe:description>
<swe:elementType name="weather_data">
<swe:DataRecord>
<swe:label>Atmospheric Conditions</swe:label>
<swe:field name="time">
<swe:Time
definition="http://sensorml.com/ont/swe/property/SamplingTime">
<swe:uom
xlink:href="http://www.opengis.net/def/uom/ISO-8601/0/Gregorian"/>
</swe:Time>
</swe:field>
<swe:field name="sensorID">
<swe:Text
definition="http://sensorml.com/ont/swe/property/Sensor|D"/>
</swe:field>

<swe:field name="location">
<swe:Vector
definition="http://sensorml.com/ont/swe/property/PlatformLocation"
referenceFrame="http://www.opengis.net/def/crs/EPSG/0/4979">
<swe:coordinate name="lat">
<swe:Quantity
definition="http://sweet.jpl.nasa.gov/2.0/spaceCoordinates.owl#Latitude"
axis|D="Lat">
<swe:uom code="deg"/>
</swe:Quantity>
</swe:coordinate>
<swe:coordinate name="lon">
<swe:Quantity
definition="http://sweet.jpl.nasa.gov/2.0/spaceCoordinates.owl#Longitude"
axis|ID="Long">
<swe:uom code="deg"/>
</swe:Quantity>
</swe:coordinate>
<swe:coordinate name="alt">
<swe:Quantity

108 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

definition="http://sweet.jpl.nasa.gov/2.0/spaceExtent.owl#Altitude"
axis|ID="h">
<swe:uom code="m"/>
</swe:Quantity>
</swe:coordinate>
</swe:Vector>
</swe:field>

<swe:field name="temp">
<swe:Quantity
definition="http://mmisw.org/ont/cf/parameter/air_temperature">
<swe:uom code="Cel"/>
</swe:Quantity>
</swe:field>
<swe:field name="pressure">
<swe:Quantity
definition="http://mmisw.org/ont/cf/parameter/barometric_pressure">
<swe:uom code="kPa"/>
</swe:Quantity>
</swe:field>
<swe:field name="wind_speed">
<swe:Quantity
definition="http://mmisw.org/ont/cf/parameter/wind_speed">
<swe:uom code="km/h"/>
</swe:Quantity>
</swe:field>
<swe:field name="wind_dir">
<swe:Quantity
definition="http://mmisw.org/ont/cf/parameter/wind_to_direction">
<swe:uom code="deg"/>
</swe:Quantity>
</swe:field>
</swe:DataRecord>
</swe:elementType>
<swe:encoding>
<swe:TextEncoding tokenSeparator="," blockSeparator=""/>
</swe:encoding>

<swe:values xlink:href="rtp://mySensors.com:4356/76455"/>

</swe:DataStream>
</sml:data>
</sml:Datalnterface>
</sml:output>

The returned resource “weatherNetwork201.txt” might return the most recent reading

from the network and look like:

2009-05-23T19:36:15Z,urn:myNet:stations:76455,35.4,135.6,5.0,25.4,100.3,7.31,270.8
2009-05-23T19:36:15Z,urn:myNet:stations:55577,34.1,138.9,4.1,25.5,100.5,7.54,271.4
2009-05-23T19:38:15Z,urn:myNet:stations:85643,43.9,141.0,3.8,25.7,100.1,7.44,260.2
2009-05-23T19:39:15Z,urn:myNet:stations:22298,46.7,140.0,1.2,26.5,100.6,7.30,271.9
2009-05-23T19:40:15Z,urn:myNet:stations:92675,43.1,131.0,6.7,25.5,100.2,7.54,271.0

The following example also references an external source for the values of the stream,
but instead of a static resource, it references a Real-Time-Protocol (RTP) server that will
continue to send real-time measurements until the client disconnects.

<sml:output name="gammaRadiation">
<sml:Datalnterface>

<!-- data description -->
<sml:data>

Copyright © 2014 Open Geospatial Consortium 109

<swe:DataStream>
<swe:elementType name="gamaRadiation">
<swe:DataRecord>
<swe:field name="averageDose">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/DoseRate.htm|">
<swe:label>Average Dose of Gamma Radiation</swe:label>
<swe:uom code="uR/min"/>
</swe:Quantity>
</swe:field>
<swe:field name="InstantaneousDose">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/RadiationDose">
<swe:label>Instantaneous Dose of Gamma Radiation</swe:label>
<swe:uom code="uR"/>
</swe:Quantity>
</swe:field>
</swe:DataRecord>
</swe:elementType>

<!-- encoding description -->
<swe:encoding>

<swe:TextEncoding tokenSeparator="," blockSeparator=""/>
</swe:encoding>

<!l-- a Real-Time-Protocol (RTP) server that continues to stream real time measurements -->
<swe:values xlink:href="rtp://myServer.com:4563/sensor/02080"/>

</swe:DataStream>
</sml:data>
</sml:Datalnterface>
</sml:output>

Once one establishes connection to such a server, the server would then begin streaming
over real-time values for the data as they become available. Such a stream might look
like:

7248,26.3 7248,26.4 7250,26.6 7251,28.3 ... [continues until disconnected]

Since SWE Common also supports binary encodings, the same sensor system could
describe binary data, as in the current example:

<sml:output name="gammaRadiation">
<sml:Datalnterface>

<!-- data description -->
<sml:data>
<swe:DataStream>
<swe:elementType name="gamaRadiation">
<swe:DataRecord>
<swe:field name="averageDose">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/DoseRate.htm|">
<swe:label>Average Dose of Gamma Radiation</swe:label>
<swe:uom code="uR/min"/>
</swe:Quantity>
</swe:field>
<swe:field name="InstantaneousDose">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/RadiationDose">
<swe:label>Instantaneous Dose of Gamma Radiation</swe:label>
<swe:uom code="uR"/>
</swe:Quantity>
</swe:field>
</swe:DataRecord>
</swe:elementType>

110 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

<swe:encoding>
<swe:BinaryEncoding byteEncoding="raw" byteOrder="bigEndian">
<swe:member>
<swe:Component ref="averageDose"

dataType="http://www.opengis.net/def/dataType/OGC/0/float32"/>
</swe:member>
<swe:member>
<swe:Component ref="instantaneousDose"

dataType="http://www.opengis.net/def/dataType/OGC/0/float32"/>
</swe:member>

</swe:BinaryEncoding>
</swe:encoding>

<swe:values xlink:href="rtp://myServer.com:4563/sensor/02080"/>

</swe:DataStream>
</sml:data>
</sml:Datalnterface>
</sml:output>

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/data-stream-url

Req 61. When the values of a DataStream can be referenced by a resolvable URL,

that URL shall be the value of of the xlink:href attribute in the value property of
the DataStream.

Using the SWE Common Data element, DataChoice, it is also possible to define and
stream a collection of disparate packets within the same DataStream. According to the
SWE Common Data specification, the structure of each packet should be defined as a
separate item within the DataChoice object. The subsequent values of each packet should
be preceded by the item name, as in the example XML and data stream below:

<sml:output name="tempAndWind">
<sml:Datalnterface>
<sml:data>
<swe:DataStream>
<swe:elementType name="message">
<swe:DataChoice>

<!-- packet definition 1 - temperature -->
<swe:item name="TEMP">
<swe:DataRecord>
<swe:label>Temperature Measurement</swe:label>
<swe:field name="time">
<swe:Time definition="http://sensorml.com/ont/swe/property/SamplingTime">

<swe:uom xlink:href="http://www.opengis.net/def/uom/ISO-8601/0/Gregorian"/>
</swe:Time>

</swe:field>
<swe:field name="temp">
<swe:Quantity definition="http://mmisw.org/ont/cf/parameter/air_temperature">
<swe:uom code="Cel"/>
</swe:Quantity>
</swe:field>
</swe:DataRecord>

Copyright © 2014 Open Geospatial Consortium 111

</swe:item>

<!-- packet definition 2 - wind -->
<swe:item name="WIND">
<swe:DataRecord>
<swe:label>Wind Measurement</swe:label>
<swe:field name="time">
<swe:Time definition="http://sensorml.com/ont/swe/property/SamplingTime">
<swe:uom xlink:href="http://www.opengis.net/def/uom/ISO-8601/0/Gregorian"/>
</swe:Time>
</swe:field>
<swe:field name="wind_speed">
<swe:Quantity definition="http://mmisw.org/ont/cf/parameter/wind_speed">
<swe:uom code="km/h"/>
</swe:Quantity>
</swe:field>
<swe:field name="wind_dir">
<swe:Quantity definition="http://mmisw.org/ont/cf/parameter/wind_to_direction">
<swe:uom code="deg"/>
</swe:Quantity>
</swe:field>
</swe:DataRecord>
</swe:item>
</swe:DataChoice>
</swe:elementType>

<swe:encoding>
<swe:TextEncoding tokenSeparator="," blockSeparator=""/>
</swe:encoding>

<swe:values xlink:href="rtp://mySensors.com:4356/76455"/>

</swe:DataStream>
</sml:data>
</sml:Datalnterface>
</sml:output>

With an example streaming values looking like:
TEMP,2009-05-23T19:36:15Z,25.5
TEMP,2009-05-23T19:37:15Z,25.6
WIND,2009-05-23T19:37:17Z,56.3,226.3
TEMP,2009-05-23T19:38:15Z,25.5
WIND,2009-05-23T19:38:16Z,58.4,225.1

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/multiplexed-data-stream

Req 62. When the values of a DataStream consist of a series of multiplexed packets,
the value of the elementType property shall be specified using the SWE Common
Data DataChoice element.

In addition to online interfaces to data, Datalnterface can also support physical interfaces
such as RS232 or USB. In such cases, the value property is ignored, and the

interfaceParameters property of the Datalnterface element should be used to specify the
interface characteristics.

112 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

An example of an interface description is given below. Since interface description
profiles will be created under separate documents, the following example is informative,
not normative.

<sml:interfaceParameters>
<swe:DataRecord definition="http://sensorml.com/ont/swe/property/SerialPortSettings">
<swe:field name="portType">
<swe:Category definition="http://sensorml.com/ont/swe/property/SerialPortType">
<swe:label>Port Type</swe:label>
<swe:value>RS232</swe:value>
</swe:Category>
</swe:field>
<swe:field name="portNumber">
<swe:Count definition="http://sensorml.com/ont/swe/property/PortNumber">
<swe:label>Port Number</swe:label>
<swe:value>0</swe:value>
</swe:Count>
</swe:field>
<swe:field name="baudRate">
<swe:Count definition="http://sensorml.com/ont/swe/property/BaudRate">
<swe:label>Baud Rate</swe:label>
<swe:value>9600</swe:value>
</swe:Count>
</swe:field>
<swe:field name="bits">
<swe:Count definition="http://sensorml.com/ont/swe/property/DataBitSize">
<swe:label>Data Bits</swe:label>
<swe:value>8</swe:value>
</swe:Count>
</swe:field>
<swe:field name="parity">
<swe:Category definition="http://sensorml.com/ont/swe/property/DataParity">
<swe:label>Parity</swe:label>
<swe:value>N</swe:value>
</swe:Category>
</swe:field>
<swe:field name="stopBits">
<swe:Count definition="http://sensorml.com/ont/swe/property/StopBits">
<swe:label>Stop Bits</swe:label>
<swe:value>1</swe:value>
</swe:Count>
</swe:field>
</swe:DataRecord>
</sml:interfaceParameters>

8.1.4.6 Modes

The AbstractModes element provides a base class from which will be derived a concrete
Modes class in the higher-level conformance class specified by the Requirements Class:
Configurable Process Schema in Clause 8.6.

The XML Schema implementation of AbstractModes and its related complex type is
given below:

<element name="AbstractModes" type="sml:AbstractModesType" substitutionGroup="swe:AbstractSWE"/>
<complexType name="AbstractModesType">

<complexContent>
<extension base="swe:AbstractSWEType"/>

Copyright © 2014 Open Geospatial Consortium 113

</complexContent>
</complexType>

<complexType name="AbstractModesProperty Type">
<sequence minOccurs="0">
<element ref="sml:AbstractModes"/>
</sequence>
<attributeGroup ref="swe:AssociationAttributeGroup"/>
</complexType>

114 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

8.2 Requirements Class: Simple Process Schema
Requirements Class

http://www.opengis.net/spec/sensorml/2.0/req/xml/simple-process

Target Type | XML Instance

Dependency http://www.opengis.net/spec/sensorml/2.0/req/model/simple-process

Dependency http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process

XML Schema elements and types defined in the “simple process.xsd” schema file
implement all classes defined respectively in the “simple-process” UML package defined
in Clause 7.3.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/simple-process/schema-valid

Req 63. The XML instance shall be valid with respect to the XML grammar defined in
the “simple_process.xsd”, as well as satisfy all Schematron patterns defined in
“simple_process.sch”.

The following XML snippet provides the appropriate header and import statements for
the simple process.xsd:

<schema xmins="http://www.w3.0rg/2001/XMLSchema" xmlIns:sml="http://www.opengis.net/sensorML/2.0"
xmins:gml="http://www.opengis.net/gml/3.2" xmIns:swe="http://www.opengis.net/swe/2.0"
targetNamespace="http://www.opengis.net/sensorML/2.0" elementFormDefault="qualified"
attributeFormDefault="unqualified">
<annotation>
<documentation>
The elements of a concrete simple non-physical process derived from the core process
model.
</documentation>
</annotation>
<import namespace="http://www.opengis.net/gml|/3.2"
schemalocation="http://schemas.opengis.net/gml/3.2.1/gml.xsd"/>
<import namespace="http://www.opengis.net/swe/2.0"
schemalocation="http://schemas.opengis.net/sweCommon/2.0/swe.xsd"/>
<include schemalocation="core.xsd"/>

8.2.1 Simple Process
The “SimpleProcesss” element is the XML schema implementation of the
“SimpleProcess” UML class defined in clause 7.3.1. The schema snippet for this element
and its corresponding complex type is shown below:

<element name="SimpleProcess" type="sml:SimpleProcessType" substitutionGroup="sml:AbstractProcess"/>

<complexType name="SimpleProcessType">
<complexContent>

Copyright © 2014 Open Geospatial Consortium 115

<extension base="sml:AbstractProcessType">
<sequence>
<element name="method" type="sml:ProcessMethodProperty Type" minOccurs="0" maxOccurs="1"/>
</sequence>
</extension>
</complexContent>
</complexType>

<complexType name="SimpleProcessPropertyType">
<sequence minOccurs="0">
<element ref="sml:SimpleProcess"/>
</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>
<attributeGroup ref="gml:OwnershipAttributeGroup"/>
</complexType>

The SimpleProcess element and complex type is derived from AbstractProcess and adds
a method property to the properties inherited from AbstractProcess. The method property
takes a ProcessMethod element as its value.

8.2.2 Process Method

The “ProcessMethod” element is the XML schema implementation of the
“ProcessMethod” UML class defined in clause 7.3.2. The schema snippet for this
element and its corresponding complex type is shown below:

<element name="ProcessMethod" type="sml:ProcessMethodType"
substitutionGroup="swe:AbstractSWEIdentifiable">
<annotation>
<documentation>
The method describes (as an algorithm or text) how the process takes the input and parameter values
and generates output values.
</documentation>
</annotation>
</element>

<complexType name="ProcessMethodType">
<complexContent>
<extension base="swe:AbstractSWEldentifiable Type">
<sequence>
<element name="algorithm" minOccurs="0" maxOccurs="unbounded">
<complexType>
<sequence>
<element ref="sml:AbstractAlgorithm"/>
</sequence>
</complexType>
</element>
</sequence>
</extension>
</complexContent>
</complexType>

<complexType name="ProcessMethodPropertyType">
<sequence minOccurs="0">
<element ref="sml:ProcessMethod"/>
</sequence>
<attributeGroup ref="swe:AssociationAttributeGroup"/>
</complexType>

<element name="AbstractAlgorithm" type="sml:AbstractAlgorithmType" abstract="true"
substitutionGroup="gml:AbstractObject"/>

116 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

<complexType name="AbstractAlgorithmType" abstract="true">
<sequence/>
<attribute ref="gml:id" use="optional"/>

</complexType>

<complexType name="AbstractAlgorithmProperty Type">
<sequence minOccurs="0">
<element ref="sml:AbstractAlgorithm"/>
</sequence>
<attributeGroup ref="swe:AssociationAttributeGroup"/>
</complexType>

The ProcessMethod element is derived from SWEIdentifiableType and thus supports the
swe:identifier, swe:label, and swe:description properties, as well as the swe:extension
property, which supports the ability to specify community-specific XML elements for
describing the method.

Furthermore, ProcessMethod has an algorithm property that takes an AbstractAlgorithm
element as its value. It is anticipated that profiles will be specified in separate
specifications that will support algorithms descriptions through schema such as MathML.

Copyright © 2014 Open Geospatial Consortium 117

8.3 Requirements Class: Aggregate Process Schema
Requirements Class

http://www.opengis.net/spec/sensorml/2.0/req/xml/aggregate-process

Target Type | XML Instance

Dependency http://www.opengis.net/spec/sensorml/2.0/req/model/aggregate-process

Dependency http://www.opengis.net/spec/sensorml/2.0/req/xml/simple-process

XML Schema elements and types defined in the “aggregate process.xsd’ schema file

implement all classes defined respectively in the “aggregate-process” UML package
defined in Clause 7.4.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/aggregate-process/schema-valid

Req 64. The XML instance shall be valid with respect to the XML grammar defined in

the “aggregate_process.xsd”, as well as satisfy all Schematron patterns defined
in “aggregate_process.sch”.

The following XML snippet provides the appropriate header and import statements for
the simple process.xsd:

<schema xmins="http://www.w3.0rg/2001/XMLSchema" xmlIns:sml="http://www.opengis.net/sensorML/2.0"
xmins:gml="http://www.opengis.net/gml/3.2" xmIns:swe="http://www.opengis.net/swe/2.0"
targetNamespace="http://www.opengis.net/sensorML/2.0" elementFormDefault="qualified"
attributeFormDefault="unqualified">
<annotation>
<documentation>
The elements of a concrete aggregate non-physical process derived from the core process
model.
</documentation>
</annotation>
<import namespace="http://www.opengis.net/gml|/3.2"
schemalocation="http://schemas.opengis.net/gml/3.2.1/gml.xsd"/>
<import namespace="http://www.opengis.net/swe/2.0"
schemalocation="http://schemas.opengis.net/sweCommon/2.0/swe.xsd"/>
<include schemal.ocation="simple_process.xsd"/>

118 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

8.3.1 Aggregate Process

The “AggregateProcess” element is the XML schema implementation of the
“AggregateProcess” UML class defined in clause 7.4.1. The schema snippet for this
element and its corresponding complex type is shown below:

<element name="AggregateProcess" type="sml:AggregateProcessType" substitutionGroup="sml:AbstractProcess">
<annotation>
<documentation>
A process that consist of a collection of linked component processes resulting in a specified
output.
</documentation>
</annotation>
</element>

<complexType name="AggregateProcessType">
<complexContent>
<extension base="sml:AbstractProcessType">
<sequence>
<element name="components" type="sml:ComponentListPropertyType"
minOccurs="0" maxOccurs="1"/>
<element name="connections" type="sml:ConnectionListPropertyType"
minOccurs="0" maxOccurs="1">
<annotation>
<documentation>
The explicit definition of data links between outputs, inputs, and parameters of the
components within an aggregate process.
</documentation>
</annotation>
</element>
</sequence>
</extension>
</complexContent>
</complexType>

<complexType name="AggregateProcessPropertyType">
<sequence minOccurs="0">
<element ref="sml:AggregateProcess"/>
</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>
<attributeGroup ref="gml:OwnershipAttributeGroup"/>
</complexType>

The AggregateProcess element and complex type is derived from AbstractProcess and
adds components and connections properties to the properties inherited from
AbstractProcess. The components and connections properties take ComponentList and
ConnectionList as their values, respectively.

The following two examples show the same aggregate process. A graphic of this “Slice
and Clip” AggregateProcess is shown in Figure 8.1. In this diagram, inputs to the
aggregate process and its components are shown on the left of the object, while outputs
are on the right and parameters are on top. In this example, the parameter values are set
and constant, as shown by the values assigned them. However, parameters can be
variable and supplied by connections as can inputs.

This diagram and the following SensorML instances illustrate that an AggregateProcess
can have multiple components and connections that will be discussed in more detail in
the following Sections 8.3.2 and 8.3.3. Notice that inputs, outputs, and parameters can be
defined for the aggregate process as well as for the individual components.

Copyright © 2014 Open Geospatial Consortium 119

23 1.76 15.0

slope intersect threshold passValue
valueln b3 ¥ e valueOut
oam——D eaa—= failValue
(om
Linearinterpolator: Threshold:
scale clip
AggregateProcess:
Scale and Clip

Figure 8.1. A diagram showing the components and connections of the “Scale and Clip”
AggregateProcess.

The first example provides a complete definition of the component processes and the
setting of parameter values inline.

<?xml version="1.0" encoding="UTF-8"?>
<sml:AggregateProcess gml:id="scaleAndClip01"

xmlns:sml="http://www.opengis.net/sensorML/2.0"

xmins:swe="http://www.opengis.net/swe/2.0"

xmins:gml="http://www.opengis.net/gml/3.2"

xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xmins:xlink="http://www.w3.0rg/1999/xlink"

xsi:schemalocation="http://www.opengis.net/sensorML/2.0 http://schemas.opengis.net/sensorml/2.0/SensorML.xsd "
definition="http://sensors.ws/process/linearinterpolator">

G = e oD
<l-- Descriptions
= e o= s

<gml:description>
A simple aggregate process that scales according to linear equation y = 2.3x + 1.76 and then clips if below 15.0
In this example all processes are defined inline with no configuration settings. Parameter values are set inline.
</gml:description>
<gml:identifier codeSpace="uid">urn:myCompany:swe:process:scaleAndClip01</gml:identifier>
<gml:name>Scale and Clip Aggregate Process 01</gml:name>

G = e oD
<I-- Aggregate Process Inputs -->
G = e oD
<sml:inputs>

<sml:InputList>
<sml:iinput name="valueln">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/DN">
<swe:uom code="any"/>
</swe:Quantity>
</sml:input>
</sml:InputList>
</sml:inputs>

G = e oD
<I-- Aggregate Process Outputs -->
G = e oD

<sml:outputs>
<sml:OutputList>

120 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

<sml:output name="valueOut">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/DN">
<swe:uom code="any"/>
</swe:Quantity>
</sml:output>
</sml:OutputList>
</sml:outputs>

L= ====== SS=SS=SSS=SSSSS WL
<l-- Aggregate process components declared -->
<!-- R e e e e e}

<sml:components>
<sml:ComponentList >

<!-- Component 1 - Linear Interpolator -->
<sml:component name="scale">
<sml:SimpleProcess gml:id="linearlnterpolator01"
definition="http://sensors.ws/process/linearlnterpolator">

o S=m=mmmmmm e oD
<l-- Linear Interpolator Descriptions -->
= = = === —————cc————c———— e

<gml:description>A linear interpolator based on equation y = mx + b </gml:description>
<gml:identifier codeSpace="uid">urn:myCompany:process:8755d73ab</gml:identifier>
<gml:name>Linear Equation 01</gml:name>

<!-- e e e .
<l-- Linear Interpolator Inputs -->
<!-- e e e .
<sml:inputs>

<sml:InputList>
<sml:iinput name="x">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/XCoordinate">
<swe:uom code="any"/>
</swe:Quantity>
</sml:input>
</sml:InputList>
</sml:inputs>

<!-- == -->
<l-- Linear Interpolator Outputs -->
<!-- == -->

<sml:outputs>
<sml:OutputList>
<I-- scaled output value -->
<sml:output name="y">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/DN">
<swe:uom code="any"/>
</swe:Quantity>
</sml:output>
</sml:OutputList>
</sml:outputs>

<!-- == -->
<l-- Linear Interpolator Parameters -->
<!-- == -->

<sml:parameters>
<sml:ParameterList>
<sml:parameter name="slope-intercept">
<swe:DataRecord>
<swe:field name="slope">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/LinearSlope">
<swe:uom code="any"/>
<!-- slope value set inline -->
<swe:value>2.3</swe:value>
</swe:Quantity>
</swe:field>
<swe:field name="intercept">
<swe:Quantity
definition="http://sensorml.com/ont/swe/property/LinearAxisIntercept">

Copyright © 2014 Open Geospatial Consortium 121

<I-- y-intercept value set inline -->
<swe:uom code="any"/>
<swe:value>1.76</swe:value>
</swe:Quantity>
</swe:field>
</swe:DataRecord>
</sml:parameter>
</sml:ParameterList>
</sml:parameters>
</sml:SimpleProcess>
</sml:component>

<!-- Component 2 - Threshold clipper -->
<sml:component name="clip">
<sml:SimpleProcess gml:id="thresholdClipper"
definition="http://sensors.ws/process/thresholdClipper">

<!-- == -->
<l-- Threshold Clipper Descriptions -->
<!-- == -->

<gml:description>

A process that clips anything below threshold;

values higher than threshold to passValue output;

Values below threshold sent to failValue output</gml:description>
<gml:identifier codeSpace="uid">urn:myCompany:swe:process:65d74a65c</gml:identifier>
<gml:name>Threshold Clipper 01</gml:name>

<!-- e e e .
<l-- Threshold Clipper Inputs -->
<!-- e e e .
<sml:inputs>

<sml:InputList>
<sml:iinput name="valueln">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/DN">
<swe:uom code="any"/>
</swe:Quantity>
</sml:input>
</sml:InputList>
</sml:inputs>

o S=m=mmmmmm e oD
<l-- Threshold Clipper Outputs -->
N == = === —————cc————c———— e

<sml:outputs>
<sml:OutputList>
<I-- output for values that pass -->
<sml:output name="passValue">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/PassValue">
<swe:uom code="any"/>
</swe:Quantity>
</sml:output>
<I-- output for values that fail -->
<sml:output name="failValue">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/FailValue">
<swe:uom code="any"/>
</swe:Quantity>
</sml:output>
</sml:OutputList>
</sml:outputs>

<!-- == -->
<l-- Threshold Clipper Parameters -->
<!-- == -->

<sml:parameters>
<sml:ParameterList>
<sml:parameter name="threshold">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/LowerThreshold">
<swe:uom code="any"/>
<!-- threshold value set inline -->

122 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

<swe:value>15.0</swe:value>
</swe:Quantity>
</sml:parameter>
</sml:ParameterList>
</sml:parameters>
</sml:SimpleProcess>
</sml:component>

</sml:ComponentList>
</sml:components>

s S e e o D
<l-- Aggregate process links declared -->
>

<sml:connections>
<sml:ConnectionList>

<l-- Connect AggregateProcess input to Linearlnterpolator (scale) input -->
<sml:connection>
<sml:Link>
<sml:source ref="inputs/valueln"/>
<sml:destination ref="components/scale/inputs/x"/>
</sml:Link>
</sml:connection>

<l-- Connect Linearlnterpolator (scale) output to ThresholdClipper (clip) input -->
<sml:connection>
<sml:Link>
<sml:source ref="components/scale/outputs/y"/>
<sml:destination ref="components/clip/inputs/valueln"/>
</sml:Link>
</sml:connection>

<!I-- Connect ThresholdClipper (clip) passValue output to AggregateProcess passValue output -->
<sml:connection>
<sml:Link>
<sml:source ref="components/clip/outputs/passValue"/>
<sml:destination ref="outputs/valueOut"/>
</sml:Link>
</sml:connection>

<l-- Note: ThresholdClipper (clip) failValue output is ignored in this example -->

</sml:ConnectionList>
</sml:connections>
</sml:AggregateProcess>

Typically, however, aggregate processes will consist of well-defined, modular component
processes that exist in a process repository and can be referenced and configured using
the typeOf and configuration properties, respectively (discussed in subsequent Section
8.6). The second example utilizes components that are externally defined but are
referenced and configured within the aggregate process description.

<?xml version="1.0" encoding="UTF-8"?>

<sml:AggregateProcess gml:id="scaleAndClip06"
xmlIns:sml="http://www.opengis.net/sensorML/2.0"
xmlins:swe="http://www.opengis.net/swe/2.0"
xmins:gml="http://www.opengis.net/gml/3.2"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:xlink="http://www.w3.0rg/1999/xlink"

Copyright © 2014 Open Geospatial Consortium 123

xsi:schemalocation="http://www.opengis.net/sensorML/2.0 http://schemas.opengis.net/sensorml|/2.0/sensorML.xsd"
definition="http://sensors.ws/process/linearinterpolator">

G = e oD
<I-- Descriptions -->
| = e = S === ———cC———C—————

<gml:description>
A simple aggregate process that scales according to linear equation y = 2.3x + 1.76 and then clips if below 15.0
In this example all processes are defined externally and configured.
</gml:description>

<gml:identifier codeSpace="uid">urn:myCompany:process:scaleAndClip06</gml:identifier>

<gml:name>Scale and Clip Aggregate Process 06</gml:name>

<!-- e e
<l-- Aggregate Process Inputs -=>
<!-- e e
<sml:inputs>

<sml:InputList>
<sml:iinput name="valueln">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/DN">
<swe:uom code="any"/>
</swe:Quantity>
</sml:input>
</sml:InputList>
</sml:inputs>

<!-- e e
<l-- Aggregate Process Outputs -=>
<!-- e e

<sml:outputs>
<sml:OutputList>
<sml:output name="valueOut">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/DN">
<swe:uom code="any"/>
</swe:Quantity>
</sml:output>
</sml:OutputList>
</sml:outputs>

<!-- B e e e,
<l-- Aggregate process components declared -->
<!-- R e e e e e,)

<sml:components>
<sml:ComponentList >

<!-- Component 1 - Linear Interpolator -->
<sml:component name="scale">
<sml:SimpleProcess gml:id="linearlnterpolatorConfigured"
definition="http://sensorml.com/ont/swe/process/Linearlnterpolator">

o S=m=mmmmmm e oD
<l-- Linear Interpolator Descriptions -->
= = = === —————cc————c———— e

<gml:description>A linear interpolator with slope of 2.3 and intercept of 1.76</gml:description>
<gml:identifier codeSpace="uid">urn:myCompany:swe:process:09h57b21</gml:identifier>
<gml:name>Linear Equation 01 Configured</gml:name>
<sml:typeOf xlink:title="urn:net:swe:process:linearEquation01"
xlink:href="http://sensors.ws/processes/Linearlnterpolator01"/>
<sml:configuration>
<sml:Settings>
<sml:setValue ref="parameters/slope-intercept/slope">2.3</sml:setValue>
<sml:setValue ref="parameters/slope-intercept/intercept">1.76</sml:setValue>
</sml:Settings>
</sml:configuration>
</sml:SimpleProcess>
</sml:component>

<!-- Component 2 - Threshold clipper -->
<sml:component name="clip">

124 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

<sml:SimpleProcess gml:id="thresholdClipperConfigured"
definition="http://sensors.ws/process/thresholdClipper">

o S=m=mmmmmm e oD
<l-- Threshold Clipper Descriptions -->
o S e e oD

<gml:description>
A process that passes values of 15.0 and above to the passValue output;
</gml:description>
<gml:identifier codeSpace="uid">urn:myCompany:swe:process:0678b365a</gml:identifier>
<gml:name>Threshold Clipper 01 Configured</gml:name>
<sml:typeOf xlink:title="urn:net:swe:process:thresholdClip01"
xlink:href="http://sensors.ws/processes/ThresholdClipper01"/>
<sml:configuration>
<sml:Settings>
<sml:setValue ref="parameters/threshold">15.0</sml:setValue>
</sml:Settings>
</sml:configuration>
</sml:SimpleProcess>
</sml:component>

</sml:ComponentList>
</sml:components>

<!-- et -->
<I-- Aggregate process links declared -->
<!-- = -->

<sml:connections>
<sml:ConnectionList>

<!I-- Connect AggregateProcess input to Linearlnterpolator (scale) input -->
<sml:connection>
<sml:Link>
<sml:source ref="inputs/valueln"/>
<sml:destination ref="components/scale/inputs/x"/>
</sml:Link>
</sml:connection>

<!-- Connect LinearInterpolator (scale) output to ThresholdClipper (clip) input -->
<sml:connection>
<sml:Link>
<sml:source ref="components/scale/outputs/y"/>
<sml:destination ref="components/clip/inputs/valueln"/>
</sml:Link>
</sml:connection>

<!-- Connect ThresholdClipper (clip) passValue output to AggregateProcess passValue output -->
<sml:connection>
<sml:Link>
<sml:source ref="components/clip/outputs/passValue"/>
<sml:destination ref="outputs/valueOut"/>
</sml:Link>
</sml:connection>

<l-- Note: ThresholdClipper (clip) failValue output is ignored in this example -->
</sml:ConnectionList>

</sml:connections>
</sml:AggregateProcess>

8.3.2 Components

The components property and the ComponentList elements are XML Schema
implementations of the UML classes defined in clause 7.4. The components property

Copyright © 2014 Open Geospatial Consortium 125

takes a ComponentList as its value. The ComponentList component property takes an
AbstractProcess as its value. Thus any SensorML process can be a component of an
aggregate process, whether that process is itself simple or aggregate, non-physical or
physical.

The XML snippet for the ComponentList element and its corresponding complex types is

shown below:
<element name="ComponentList" type="sml:ComponentListType" substitutionGroup="swe:AbstractSWE"/>

<complexType name="ComponentListType">
<complexContent>
<extension base="swe:AbstractSWEType">
<sequence>
<element name="component" minOccurs="1" maxOccurs="unbounded">
<annotation>
<documentation>
A description of a component of the aggregate process. If by reference, the uniquelD of
the referenced process must be provided using the xlink:title attribute while the URL to
the process description must be provided by the xlink:href attribute.
</documentation>
</annotation>
<complexType>
<complexContent>
<extension base="sml:AbstractProcessPropertyType">
<attribute name="name" type="NCName" use="required"/>
</extension>
</complexContent>
</complexType>
</element>
</sequence>
</extension>
</complexContent>
</complexType>

<complexType name="ComponentListPropertyType">
<sequence minOccurs="0">
<element ref="sml:ComponentList"/>
</sequence>
<attributeGroup ref="swe:AssociationAttributeGroup"/>
</complexType>

The component process can be described inline or be referenced through the xlink:href
property. For a reference to an external process description, two pieces of information are
required in order to reference a component process instance, the uniquelD of the process
and a resolvable URL referencing the process description. These should be provided by
the x/ink:title and xlink:href attributes, respectively.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/aggregate-process/component-reference

Req 65. When the value of the component property is “byReference”, there shall be
meaningful values for the xlink:title and xlink:href attributes. The uniquelD of
the referenced process, given by its gml:identifier property, shall be the value of
the xlink:title attribute, while a resolvable URL to the referenced process
description shall be the value of the xlink:href attribute.

126 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

The examples in Section 8.3.1 show that the components of an aggregate process can be
fully described inline, or be externally referenced processes that are configurable.

8.3.3 Connections

The connections property and the ConnectionList elements are XML Schema
implementations of the UML classes defined in clause 7.4. The connections property
takes a ConnectionlList as its value. The ConnectionList connection property takes a Link
as its value.

The XML snippet for the ConnectionList and Link elements and their corresponding
complex types is shown below:

ConnectionlList:
<element name="ConnectionList" type="sml:ConnectionListType" substitutionGroup="swe:AbstractSWE"/>

<complexType name="ConnectionListType">
<complexContent>
<extension base="swe:AbstractSWEType">
<sequence>
<element name="connection" minOccurs="1" maxOccurs="unbounded">
<complexType>
<sequence>
<element ref="sml:Link"/>
</sequence>
</complexType>
</element>
</sequence>
</extension>
</complexContent>
</complexType>

<complexType name="ConnectionListProperty Type">
<sequence minOccurs="0">
<element ref="sml:ConnectionList"/>
</sequence>
<attributeGroup ref="swe:AssociationAttributeGroup"/>
</complexType>

Link:

<element name="Link" type="sml:LinkType" substitutionGroup="gml:AbstractObject"/>

<complexType name="LinkType">
<sequence>
<element name="source" type="sml:DataComponentRefProperty Type">
<annotation>
<documentation>The output from which the link originates.</documentation>
</annotation>
</element>
<element name="destination" type="sml:DataComponentRefProperty Type">
<annotation>
<documentation>The input or parameter into which the data flows.</documentation>
</annotation>
</element>
</sequence>
<attribute ref="gml:id" use="optional"/>
</complexType>

<complexType name="LinkProperty Type">

<sequence minOccurs="0">
<element ref="sml:Link"/>

Copyright © 2014 Open Geospatial Consortium 127

</sequence>
<attributeGroup ref="swe:AssociationAttributeGroup"/>
</complexType>

From core.xsd:

<complexType name="DataComponentRefProperty Type">
<attribute name="ref" type="sml:DataComponentPathProperty Type" use="required"/>
</complexType>

<simpleType name="DataComponentPathProperty Type">
<restriction base="token">
<pattern value="([a-zA-Z_][a-zA-Z0-9_\-\.]*)(/[a-zA-Z_][a-zA-Z0-9_\-\.]*)*"/>
</[restriction>
</simpleType>

8.3.3.1 Rules for Connections

The Link element may define a data connection between any properties of a process, but
it typically connects inputs, outputs, and parameters. However, certain rules apply
regarding sources for data (provided by the source property of the Link element) and
destinations for data (provided by the destination property of the Link element).

Typical data flow is from an aggregate processes input to one or more component’s input,
from a component output to another component’s input, or from a component’s output to
an output of the aggregate process.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/aggregate-process/input-connection-restrictions

Req 66. The input of an enclosing aggregate process can connect to the input of one
or more of its components; otherwise an input cannot connect to another input.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/aggregate-process/output-connection-restrictions

Req 67. The output of a component can connect to an output of its enclosing
aggregate process; otherwise an output cannot connect to another output.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/aggregate-process/multiple-connections

Req 68. An output can connect to multiple destinations, but an input can only have
one source connection.

128 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/aggregate-process/parameter-connection-
restrictions

Req 69. A parameter can only be connected as a destination; a parameter cannot
serve as a source.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/aggregate-process/property-connection-
restrictions

Req 70. Process properties other than inputs, outputs, or parameters can only serve
as sources of data not destinations.

8.3.3.2 Rules for Path Designation

While the use of XPath was considered as a means of designating Link sources and
destinations, this protocol was rejected on the grounds that its was too complicated for
our needs and because it did not allow continues designation of paths for “byReference”
objects. The designation of a path starts at the base element of the aggregate process and
only uses property elements. Where the attribute name exists for an element, it is used;
otherwise the element name is used.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/aggregate-process/designating-link-paths

Req 71. The following rules shall be used for designating the source and destination
paths within the Linked element.

a) The path begins at the base of the current process

b) The path includes only property elements (lowerCamelCase) and not
value objects (UpperCamelCase)

c) If the property has an attribute name and it has a value, then it shall be
used; otherwise the unqualified name of the property element should
be used

d) The path can follow properties that are byReference

As an example, a snippet of the previous example is given below, highlighting the source
path parts in yellow and the destination path parts in cyan. The subsequent example
shows the appropriate source link path (in yellow) and the destination link path (in cyan).

<?xml version="1.0" encoding="UTF-8"?>
<sml:AggregateProcess gml:id="scaleAndClip06"

Copyright © 2014 Open Geospatial Consortium 129

... deleted for brevity sake ...

<!-- e e
<l-- Aggregate Process Inputs -=>
<!-- e e
<sml:inputs>

<sml:InputList>
<sml:iinput name="valueln">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/DN">
<swe:uom code="any"/>
</swe:Quantity>
</sml:input>
</sml:InputList>
</sml:inputs>

... deleted for brevity sake ...

<sml:components>
<sml:ComponentList >

<!-- Component 1 - Linear Interpolator -->
<sml:component name="scale">
<sml:SimpleProcess gml:id="linearlnterpolator01"
definition="http://sensorml.com/ont/swe/process/Linearlnterpolator">

o S=m=mmmmmm e oD
<l-- Linear Interpolator Descriptions -->
= = = === —————cc————c———— e

<gml:description>A linear interpolator based on equation y = mx + b </gml:description>
<gml:identifier codeSpace="uid">urn:myCompany:process:8755d73ab</gml:identifier>
<gml:name>Linear Equation 01</gml:name>

<!-- e e e .
<l-- Linear Interpolator Inputs -->
<!-- e e e .
<sml:inputs>

<sml:InputList>
<sml:iinput name="x">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/XCoordinate">
<swe:uom code="any"/>
</swe:Quantity>
</sml:input>
</sml:InputList>
</sml:inputs>

... deleted for brevity sake ...

<sml:connections>
<sml:ConnectionList>

<!-- Connect AggregateProcess input to Linearlnterpolator (scale) input -->
<sml:connection>
<sml:Link>
<sml:source ref="inputs/valueln"/>
<sml:destination ref="components/scale/inputs/x"/>
</sml:Link>
</sml:connection>

... deleted for brevity sake ...

130 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

8.4 Requirements Class: Physical Component Schema
Requirements Class

http://www.opengis.net/spec/sensorml/2.0/req/xml/physical-component

Target Type | XML Instance

Dependency http://www.opengis.net/spec/sensorml/2.0/req/model/physical-component

Dependency http://www.opengis.net/spec/sensorml/2.0/req/xml/simple-process

XML Schema elements and types defined in the “physical component.xsd” schema file

implement all classes defined respectively in the “physical-component” UML package
defined in Clause 7.6.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/physical-component/schema-valid

Req 72. The XML instance shall be valid with respect to the XML grammar defined in
the “physical_component.xsd”, as well as satisfy all Schematron patterns
defined in “physical_component.sch”.

The following XML snippet provides the appropriate header and import statements for
the physical component.xsd:

<schema xmins="http://www.w3.0rg/2001/XMLSchema" xmlIns:sml="http://www.opengis.net/sensorML/2.0"
xmins:gml="http://www.opengis.net/gml/3.2" xmIns:swe="http://www.opengis.net/swe/2.0"
targetNamespace="http://www.opengis.net/sensorML/2.0" elementFormDefault="qualified"
attributeFormDefault="unqualified">
<annotation>
<documentation>
The elements of a concrete simple physical process derived from the core process model.
</documentation>
</annotation>
<import namespace="http://www.opengis.net/swe/2.0"
schemalocation="http://schemas.opengis.net/sweCommon/2.0/swe.xsd"/>
<import namespace="http://www.opengis.net/gml|/3.2"
schemalocation="http://schemas.opengis.net/gml/3.2.1/gml.xsd"/>
<include schemal.ocation="simple_process.xsd"/>

8.4.1 Abstract Physical Process

AbstractPhysicalProcess is derived from AbstractProcess and serves as the base class for
all physical processes modelled and encoded in this specification..

Copyright © 2014 Open Geospatial Consortium 131

The “AbstractPhysicalProcess” element is the XML schema implementation of the
“AbstractPhysicalProcess” UML class defined in clause 7.6. The schema snippet for this
element and its corresponding complex type is shown below.

<element name="AbstractPhysicalProcess" type="sml:AbstractPhysicalProcessType" abstract="true"
substitutionGroup="sml:AbstractProcess">
<annotation>
<documentation>
A physical process where the spatial and temporal state of the process is relevant.
</documentation>
</annotation>
</element>
<complexType name="AbstractPhysicalProcessType" abstract="true">
<complexContent>
<extension base="sml:AbstractProcessType">
<sequence>
<element name="attachedTo" type="gml:ReferenceType" minOccurs="0" maxOccurs="1">
<annotation>
<appinfo>
<gml:targetElement>sml:AbstractPhysicalProcess</gml:targetElement>
</appinfo>
<documentation>
References the physical component or system (e.g. platform) to which to which this
component or system is attached.
</documentation>
</annotation>
</element>
<element name="localReferenceFrame" minOccurs="0" maxOccurs="unbounded">
<annotation>
<documentation>

A spatial reference frame of the physical component itself; this reference frame is
absolute and defines the relationship of the reference frame to the physical body of the
component; position of the component relates this reference frame to some external
reference frame. Note that units are specified in the position so they are not specified as
part of the SpatialFrame.
</documentation>
</annotation>
<complexType>
<sequence>
<element ref="sml:SpatialFrame"/>
</sequence>
</complexType>
</element>
<element name="localTimeFrame" minOccurs="0" maxOccurs="unbounded">
<annotation>
<documentation>
Supports local time reference frames such as "time past mission start". Note that units are
handled in timePosition so they are not specified in the TemporalFrame.
</documentation>
</an notation>
<complexType>
<sequence>
<element ref="sml:TemporalFrame"/>
</sequence>
</complexType>
</element>
<element name="position" type="sml:PositionUnionProperty Type"
minOccurs="0" maxOccurs="unbounded">
<annotation>
<documentation>
Provides positional information relating the component's spatial reference frame to an
external spatial reference frame. Positional information can be given by location, by full

body state, by a time-tagged trajectory, or by a measuring or computational process.
</documentation>

132 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

</annotation>
</element>
<element name="timePosition" type="swe:TimePropertyType"
minOccurs="0" maxOccurs="unbounded">
<annotation>
<documentation>
Provides Time positions typically reference a local time frame to an external time frame.
For example, a timer-start-time might be given relative to an "absolute” GPS time.
</documentation>
</annotation>
</element>
</sequence>
</extension>
</complexContent>
</complexType>
<complexType name="AbstractPhysicalProcessPropertyType">
<sequence minOccurs="0">
<element ref="sml:AbstractPhysicalProcess"/>
</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>
<attributeGroup ref="gml:OwnershipAttributeGroup"/>
</complexType>

AbstractPhysicalProcess element adds the following properties to the AbstractProcess:
attachedTo, localReferenceFrame, temporalReferenceFrame, and position. These
properties of AbstractPhysicalProcess will be discussed in more detail in the following
subsections.

8.4.1.1 AttachedTo

The attachedTo property provides a reference to either a Physical Component or
PhysicalSystem. It provides a means for an attached component to reference back to the
component or system to which it is attached. This is particularly useful when the
movement of the parent affects the movement of the component.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/physical-component/attached-to-target

Req 73. The attachedTo property shall provide a reference to an object of type
PhysicalComponent or PhysicalSystem.

The same rules should apply as those for component references stated earlier.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/physical-component/attached-to-reference

Req 74. The attachedTo property shall require meaningful values for the xlink:title
and xlink:href attributes. The uniquelD of the referenced process, given by its
gml:identifier property, shall be the value of the xlink:title attribute, while a
resolvable URL to the reference process description shall be the value of the

Copyright © 2014 Open Geospatial Consortium 133

xlink:href attribute.

8.4.1.2 Local Reference Frame

The localReferenceFrame property takes a SpatialFrame as its value. The
“SpatialFrame” element is an XML schema implementation of the “SpatialFrame” UML
class defined in clause 7.6. The schema snippet for this element and its corresponding
complex type is shown below.

<element name="SpatialFrame" type="sml:SpatialFrameType" substitutionGroup="swe:AbstractSWEIdentifiable">
<annotation>
<documentation>
A general spatial Cartesian Reference Frame where the axes and origin will be defined textually relative
to a physical component.
</documentation>
</annotation>
</element>

<complexType name="SpatialFrameType">
<complexContent>
<extension base="swe:AbstractSWEldentifiable Type">
<sequence>
<element name="origin" type="string">
<annotation>
<documentation>
A textual description of the origin of the reference frame relative to the physical device
(e.g. "the origin is at the point of attachment of the sensor to the platform").
</documentation>
</annotation>
</element>
<element name="axis" minOccurs="1" maxOccurs="unbounded">
<annotation>
<documentation>
Axis with name attribute and a textual description of the relationship of the axis to the
physical device; the order of the axes listed determines their relationship according to the
right-handed rule (e.g. axis 1 cross axis 2 = axis 3).
</documentation>
</annotation>
<complexType>
<simpleContent>
<extension base="string">
<attribute name="name" type="NCName" use="required"/>
</extension>
</simpleContent>
</complexType>
</element>
</sequence>
</extension>
</complexContent>
</complexType>

<complexType name="SpatialFrameProperty Type">
<sequence minOccurs="0">
<element ref="sml:SpatialFrame"/>
</sequence>
<attributeGroup ref="swe:AssociationAttributeGroup"/>
</complexType>

134 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

The SpatialFrame element provides a textual description of the physical process’ local
coordinate reference frame. The position of this physical component or system is based
on relating this local reference frame to some external reference frame (e.g. a platform or
geographic reference frame).

NOTE WELL: It is important that the following assumptions are understood when
defining a local spatial reference frame:

(a) there is an assumption of a right-handed coordinate system (i.e. X cross y = z)

(b) the listing of the axes is assumed to be in order according to the right-hand rule

(i.e. axis]1 cross axis2 = axis3)

Failure to adher to these assumptions cannot be determined by a conformance test but can
have dire consequences when tasking an actuator or geolocating sensor data. Failure to
follow these assumptions typically results in negation of one or more axes or incorrect
rotation directions about one or more axes.

An example of a local reference frame description is given below:

<sml:localReferenceFrame>
<sml:SpatialFrame id="SENSOR_FRAME">
<sml:origin>
Origin is at the intersection of the symmetric axis of the cylinder and the rear of the sensor
</sml:origin>
<sml:axis name="X">X is perdendicular to the symmetric axis and intersects the indicator marked "x"
on the casing</sml:axis>
<sml:axis name="Y">Y is orthogonal to Z and X (= Z cross X)</sml:axis>
<sml:axis name="Z">Z is along the symmetric axis of the sensor in the direction of view</sml:axis>
</sml:SpatialFrame>
</sml:localReferenceFrame>

8.4.1.3 Position

The position property of a physical component can be defined by one of several methods,
including (1) by description, (2) by point, (3) by position, (4) by dynamic state, (5) by
trajectory, or (6) by process. These are defined by the PositionUnion element shown

below:
<group name="PositionUnion">
<annotation>
<documentation>
A choice of elements for defining spatial state (e.g. location, orientation, linear/angular velocity and
linear/angular acceleration.
</documentation>
</annotation>
<choice>
<element ref="swe:Text">
<annotation>
<documentation>
Provides positional information in textual form (e.g. "located on the intake line before the catalytic
converter"); shall only be used when a more precise location is unknown or irrelevant.
</documentation>
</annotation>
</element>
<element ref="gml:Point">
<annotation>

Copyright © 2014 Open Geospatial Consortium 135

<documentation>Provides static location only using a gml:Point element.</documentation>
</annotation>
</element>
<element ref="swe:Vector">
<annotation>
<documentation>Provides a static location using a swe:Vector.</documentation>
</annotation>
</element>
<element ref="swe:DataRecord">
<annotation>
<documentation>
Provides location and orientation as a DataRecord consisting of one or two Vector elements.
</documentation>
</annotation>
</element>
<element ref="swe:DataArray">
<annotation>
<documentation>
Provides time-tagged dynamic state information that can include, for instance, location,
orientation, velocity, acceleration, angular velocity, angular acceleration; shall be a DataArray
consisting of a DataRecord element of multiple Vector fields.
</documentation>
</annotation>
</element>
<element ref="sml:AbstractProcess">
<annotation>
<documentation>
Provides for positional information to be provided by a process; example processes could include
a physical sensor such as a GPS, a computational process such as an orbital propagation model,
a specific web service such as a SOS, or any process who's output provides positional
information.
</documentation>
</annotation>
</element>
</choice>
</group>

<complexType name="PositionUnionProperty Type">
<sequence minOccurs="0">
<group ref="sml:PositionUnion"/>
</sequence>
<attributeGroup ref="swe:AssociationAttributeGroup"/>
</complexType>

The location of a component is the location of origin of the components local reference
frame relative to the origin of some defined external reference frame (e.g. the reference
frame of a sensor’s platform or a geospatial reference frame). Likewise, the orientation of
the component is the angular displacement of the x-y-z axes of the local reference frame
relative to the corresponding axes of the external reference frame. For dynamic state, the
velocity and acceleration are the first and second time derivatives of location,
respectively, while angular velocity and angular acceleration are the first and second time
derivatives of orientation.

Each option is defined in more detail below with appropriate examples.

8.4.1.3.1 Position by Description

There are physical components for which the precise location is either not known or is
not really relevant. One example would be an O2 sensor on the exhaust line of a car as
shown in the following example:

<sml:position>

136 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

<swe:Text>Located on the exhaust manifold before the catalytic converter</swe:Text>
</sml:position>

8.4.1.3.2 Position by Point

Position by point supports a static location using the gml: Point element. It is not
appropriate if the orientation of the component is relevant or the component is has a
dynamic location.

<sml:position>
<!-- EPSG 4326 is for latitude-longitude, in that order -->
<gml:Point gml:id="stationLocation" srsName="http://www.opengis.net/def/crs/EPSG/0/4326">
<gml:coordinates>47.8 88.56</gml:coordinates>
</gml:Point>
</sml:position>

8.4.1.3.3 Position by Location

As an alternative to using the gml:Point, a static location can also be provided using a
swe:Vector, as in the example below:

<sml:position>
<swe:Vector definition="http://sensorml.com/ont/swe/property/SensorLocation"
referenceFrame="http://www.opengis.net/def/crs/EPSG/6.7/4326">
<swe:coordinate name="Lat">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/Latitude" axisID="Lat">
<swe:uom code="deg"/>
<swe:value>47.8</swe:value>
</swe:Quantity>
</swe:coordinate>
<swe:coordinate name="Lon">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/Longitude" axis|D="Long">
<swe:uom code="deg"/>
<swe:value>2.3</swe:value>
</swe:Quantity>
</swe:coordinate>
</swe:Vector>
</sml:position>

8.4.1.3.4 Position by Position

Position is defined here as consisting of both location and orientation. A static position
should be provided using a swe:DataRecord consisting of two swe: Vector elements, one
for location and one for orientation.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/physical-component/position-by-position

Copyright © 2014 Open Geospatial Consortium 137

Req 75. The position property shall take a swe:DataRecord as its value when both
location and orientation are relevant. This swe:DataRecord shall consist of two
swe:Vector fields, the first for location and the second for orientation.

An example of location and orientation defined for the position is shown below:

<sml:position>
<swe:DataRecord>
<swe:field name="location">
<swe:Vector
definition="http://sensorml.com/ont/swe/property/SensorLocation"
referenceFrame="http://www.opengis.net/def/crs/EPSG/6.7/4979"
localFrame="#SENSOR_FRAME">
<swe:coordinate name="Lat">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/Latitude" axis|ID="Lat">
<swe:uom code="deg"/>
<swe:value>47.8</swe:value>
</swe:Quantity>
</swe:coordinate>
<swe:coordinate name="Lon">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/Longitude" axis|ID="Long">
<swe:uom code="deg"/>
<swe:value>2.3</swe:value>
</swe:Quantity>
</swe:coordinate>
<swe:coordinate name="Alt">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/Altitude" axis|D="Alt">
<swe:uom code="m"/>
<swe:value>40.8</swe:value>
</swe:Quantity>
</swe:coordinate>
</swe:Vector>
</swe:field>
<swe:field name="orientation">
<swe:Vector
definition="http://sensorml.com/def/property/SensorOrientation"
referenceFrame="http://www.opengis.net/def/crs/NED"
localFrame="#SENSOR_FRAME">
<swe:coordinate name="TrueHeading">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/TrueHeading" axis|ID="2">
<swe:uom code="deg"/>
<swe:value>-6.8</swe:value>
</swe:Quantity>
</swe:coordinate>
<swe:coordinate name="Pitch">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/Pitch" axis|D="Y">
<swe:uom code="deg"/>
<swe:value>0.3</swe:value>
</swe:Quantity>
</swe:coordinate>
</swe:Vector>
</swe:field>
</swe:DataRecord>
</sml:position>

138 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

8.4.1.3.5 Position by Trajectory

For components moving within an external reference frame, the state of the component

through time should be expressed using a swe:DataArray or process (described in the
following section).

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/physical-component/dynamic-state

Req 76. The dynamic state through time of a moving physical component shall be
described using a swe:DataArray or a sml:AbstractProcess.

The data array should describe the time-dependent state of the physical component as

appropriate and may include location, orientation, linear and angular velocity, and linear
and angular acceleration.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/physical-component/position-by-trajectory

Req 77. A swe:DataArray describing the trajectory of a moving component shall
contain as its elementType a swe:DataRecord that includes a time field plus one
or more swe:Vector fields supporting any or all appropriate properties of

dynamic state (e.g. location, orientation, linear velocity, linear acceleration,
angular velocity, and angular acceleration).

An example of dynamic position being defined as a trajectory is shown below. In this
example the values for the location are provided inline within the DataArray element.

<sml:position>
<swe:DataArray definition="http://www.opengis.net/def/trajectory">
<swe:elementCount>
<swe:Count>
<swe:value>10</swe:value>
</swe:Count>
</swe:elementCount>
<swe:elementType name="trajectory">

<swe:DataRecord definition="http://sensorml.com/ont/swe/property/Trajectory">
<swe:field name="samplingTime">

<swe:Time definition="http://sensorml.com/ont/swe/property/SamplingTime">
<swe:label>Sampling Time</swe:label>

<swe:uom xlink:href="http://www.opengis.net/def/uom/ISO-8601/0/Gregorian"/>
</swe:Time>

</swe:field>
<swe:field name="location">
<swe:Vector
definition="http://sensorml.com/ont/swe/property/Location"

referenceFrame="http://www.opengis.net/def/crs/EPSG/6.7/4326"
localFrame="#SENSOR_CRS">

<swe:label>Platform Location</swe:label>
<swe:coordinate name="Lat">

<swe:Quantity definition="http://sensorml.com/ont/swe/property/Latitude"

Copyright © 2014 Open Geospatial Consortium 139

axis|D="Lat">
<swe:uom code="deg"/>
</swe:Quantity>
</swe:coordinate>
<swe:coordinate name="Lon">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/Longitude"
axis|ID="Long">
<swe:uom code="deg"/>
</swe:Quantity>
</swe:coordinate>
</swe:Vector>
</swe:field>
</swe:DataRecord>
</swe:elementType>
<swe:encoding>
<swe:TextEncoding blockSeparator="
" tokenSeparator=","/>
</swe:encoding>
<swe:values>
2011-03-01T04:20:002,25.72,-61.75
2011-03-14T13:10:002,25.49,-61.70
2011-03-21T18:43:002,25.35,-61.63
2011-03-30T05:13:00Z,24.87,-61.43
2011-04-08T01:45:00Z,24.86,-61.42
2011-04-12T08:34:002,24.32,-61.67
2011-04-15T09:12:00Z,24.54,-61.53
2011-04-21T703:21:002,24.53,-61.68
2011-04-27T04:34:002,24.32,-61.76
2011-05-01T12:01:00Z,24.28,-61.56
</swe:values>
</swe:DataArray>
</sml:position>

It is also possible to support “out-of-band” values by referencing an external “flat file”
through the x/ink:href attribute of the values property, such as:

<swe:values xlink:href="http://myDomain/data/aircraftLocation_20048763">

Futhermore, the trajectory does not need to be constrained to provide only location. A
trajectory DataRecord could include time, location, and orientation (e.g. pitch, roll, yaw),
as well as perhaps velocity, and acceleration.

Finally, if part of the physical process (e.g. a sensor system) outputs its own position (e.g.
using a GPS), that DataRecord can be referenced as in the following example:

<sml:outputs>
<sml:OutputList>
<l-- for the case of moving thermometer output in sync with GPS location -->
<sml:output name="tempStream">
<swe:DataRecord>
<swe:field name="sampleTime">
<swe:Time definition="http://sensorml.com/ont/swe/property/SamplingTime"
referenceFrame="http://www.opengis.net/def/trssfOGC/0/GPS">
<swe:label>Sampling Time</swe:label>
<swe:uom xlink:href="http://www.opengis.net/def/uom/ISO-8601/0/Gregorian"/>
</swe:Time>
</swe:field>
<swe:field name="temperature">
<swe:Quantity definition="http://sweet.jpl.nasa.gov/2.2/quanTemperature.owl#Temperature">
<swe:label>Air Temperature</swe:label>

140 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

<swe:uom code="Cel"/>
</swe:Quantity>
</swe:field>
<swe:field name="location" >
<swe:Vector id="MY_LOCATION" definition="http://sensorml.com/ont/swe/property/Location"
referenceFrame="http://www.opengis.net/def/crs/EPSG/6.7/4326">
<swe:coordinate name="Lat">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/Latitude" axisID="Lat">
<swe:uom code="deg"/>
</swe:Quantity>
</swe:coordinate>
<swe:coordinate name="Lon">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/Longitude" axis|ID="Long">
<swe:uom code="deg"/>
</swe:Quantity>
</swe:coordinate>
</swe:Vector>
</swe:field>
</swe:DataRecord>
</sml:output>
</sml:OutputList>
</sml:outputs>

Gl S e e oD
<l-- Sensor Location from Component Output -->
e

<éml:position xlink:href="#MY_LOCATION"/>

8.4.1.3.6 Position by Process

With dynamic sensor systems, it is often necessary or more efficient to calculate position
or dynamic state as-needed, on-demand or to retrieve position values from a web service
as-needed.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/physical-component/position-by-process

Req 78. The position property shall take a SensorML-encoded process (either inline
or by reference) when those values are calculated or retrieved on-demand as-
needed. The output of that process shall be a swe:DataArray describing the
trajectory of the component, or a swe:DataRecord describing instantaneous
position or state of the component.

The following example shows a configured SimpleProcess that calculates position on-
demand using an orbital mechanics model. The process takes time as input and provides
dynamic state as output. The example utilizes a configurable process to be discussed in a
later section.

<sml:position>
<sml:SimpleProcess gml:id="OrbitalPropagationModel">
<sml:validTime>
<gml:TimePeriod gml:id="TimeSegment">
<gml:beginPosition>2010-03-01T00:20:00Z</gml:beginPosition>
<gml:endPosition>2010-03-02T04:01:00Z</gml:endPosition>
</gml:TimePeriod>
</sml:validTime>

Copyright © 2014 Open Geospatial Consortium 141

<sml:typeOf xlink:title="urn:sensors:sgp4" xlink:href="http://myDomain.org/processes/sgp4Propagation.xml"/>
<sml:configuration>
<sml:Settings>
<sml:setValue ref="base/parameters/elements/epoch">2010-03-01T02:00:14.32994Z</sml:setValue>
<sml:setValue ref="base/parameters/elements/star">0.11897E-4</sml:setValue>
<sml:setValue ref="base/parameters/elements/inclination">98.7187</sml:setValue>
<sml:setValue ref="base/parameters/elements/rightAscension">128.3968</sml:setValue>
<sml:setValue ref="base/parameters/elements/eccentricity">0.0000057 1</sml:setValue>
<sml:setValue ref="base/parameters/elements/argOfPerigee">101.8476</sml:setValue>
<sml:setValue ref="base/parameters/elements/meanAnomaly">258.2808</sml:setValue>
<sml:setValue ref="base/parameters/elements/meanMotion">14.20027191</sml:setValue>
</sml:Settings>
</sml:configuration>
<sml:method xlink:href="http://blah.blah/processes/sgp4_method.xml"/>
</sml:SimpleProcess>
</sml:position>

The following example shows position obtained as-needed from an oline SOS web
service. The SimpleProcess is a configured instance of an SOS client process. The
process takes time as input and provides position as output.

<sml:position>
<!-- position by process -->
<sml:SimpleProcess gml:id="SOS_Client">
<sml:typeOf xlink:title="urn:ogc:service:sos"
xlink:href="http://blah.blah/def/processes/SOS-position-client.xml"/>
<sml:configuration>
<sml:Settings>
<sml:setValue ref="base/parameters/URI">http://sensors.ws/services/mySOS</sml:setValue>
<sml:setValue ref="base/parameters/layer">position</sml:setValue>
<sml:setValue ref="base/parameters/procedure">mySat1</sml:setValue>
</sml:Settings>
</sml:configuration>
<sml:method xlink:href="http://blah.blah/processes/position_sos_method.xml"/>
</sml:SimpleProcess>
</sml:position>

8.4.1.4 Local Time Frame

The localTimeFrame property takes a TemporalFrame as its value and is an XML
schema implementation of the localTimeFrame UML model defined in clause 7.6. The
schema snippet for this element and its corresponding complex type is shown below.

<element name="TemporalFrame" type="sml:TemporalFrameType"
substitutionGroup="swe:AbstractSWEIdentifiable">
<annotation>
<documentation>
A general temporal frame such as a mission start time or timer start time. The origin should just describe
context of the start of time (e.g. start of local timer).
</documentation>
</annotation>
</element>

<complexType name="TemporalFrameType">
<complexContent>
<extension base="swe:AbstractSWEIdentifiableType">
<sequence>
<element name="origin" type="string"/>
</sequence>

142 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

</extension>
</complexContent>
</complexType>

<complexType name="TemporalFramePropertyType">
<sequence minOccurs="0">
<element ref="sml:TemporalFrame"/>
</sequence>
<attributeGroup ref="swe:AssociationAttributeGroup"/>
</complexType>

An example of a declared localTimeFrame is given below:

<sml:localTimeFrame>
<sml:TemporalFrame id="MISSION-START-TIME">
<sml:origin>
ISO 8601 formatted time at the start of the mission (i.e. when onboard clock is started)
</sml:origin>
</sml:TemporalFrame>
</sml:localTimeFrame>

8.4.1.5 Time Position

The timePosition property takes a swe: TimePropertyType element as its value. The
timePosition property allows one to specify the relationship between a local time frame
and some other internal or external time frame. as described above (Section 8.4.1.4).

The id of the localTimeFrame defined in the example above, can be used as the value of
the localFrame attribute of the swe:Time element in order to specify the relationship of
that local time frame to some external time frame. This way several time positions can be
defined relative to each other. The following example shows how this can be used to
express times of high frequency scan lines acquired by an airborne scanner relative to the
flight’s start time:

<sml:timePosition name="mission-start-time”>
<swe:Time definition="http://sensorml.com/ont/swe/property/MissionStartTime"

localFrame="#MISSION-START-TIME" referenceFrame="http://www.opengis.net/def/trs/fOGC/0/UTC">
<swe:label>Flight Time</swe:label>
<swe:description>Time at take-off in UTC</swe:description>
<swe:uom xlink:href="http://www.opengis.net/def/uom/ISO-8601/0/Gregorian"/>
<swe:value>2009-01-26T10:21:45+01:00</swe:value>

</swe:Time>

</sml:timePosition>

Scan times can then be expressed relative to the flight’s start time as in the example
below (note: the scan-start-time position might be defined in the SensorML document, as
below, but the high-frequency scan-start-time values would more likely be provided as
part of a block or stream of output data).

Copyright © 2014 Open Geospatial Consortium 143

<sml:timePosition name="scan-start-time”>
<swe:Time definition="http://sensorml.com/ont/swe/property/ScanStartTime"
localFrame="#SCAN-START-TIME" referenceFrame="#MISSION-START-TIME">
<swe:label>Scanline Time</swe:label>
<swe:description>Acquisition time of the scan line</swe:description>
<swe:uom code="s"/>
<swe:value>1256.235</swe:value>
</swe:Time>
</sml:timePosition>

8.4.2 Physical Component

PhysicalComponent is derived from AbstractPhysicalProcess and is the XML schema
implementation of the “PhysicalComponent” UML class defined in clause 7.6. The
schema snippet for this element and its corresponding complex type is shown below.

<element name="PhysicalComponent" type="sml:PhysicalComponentType"
substitutionGroup="sml:AbstractPhysicalProcess">
<annotation>
<documentation>
A PhysicalComponent is a physical process that will not be further divided into smaller components.
</documentation>
</annotation>
</element>
<complexType name="PhysicalComponentType">
<complexContent>
<extension base="sml:AbstractPhysicalProcessType">
<sequence>
<element name="method" type="sml:ProcessMethodPropertyType" minOccurs="0" maxOccurs="1">
<annotation>
<documentation>
The method describes (as an algorithm or text) how the process takes the input and,
based on the parameter values, generates output values.
</documentation>
</annotation>
</element>
</sequence>
</extension>
</complexContent>
</complexType>

<complexType name="PhysicalComponentProperty Type">
<sequence minOccurs="0">
<element ref="sml:PhysicalComponent"/>
</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>
<attributeGroup ref="gml:OwnershipAttributeGroup"/>
</complexType>

The example below illustrates the definition of a local coordinate reference frame as well
as the definition of position (i.e. both location and orientation) of the physical component.
While the position of the component is specified here relative to a geospatial reference
frame, it could also be specified relative to some other external reference frame, such as
the reference frame of a platform.

144 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

<?xml version="1.0" encoding="UTF-8"?>
<sml:PhysicalComponent gml:id="MY_SENSOR"
xmlIns:sml="http://www.opengis.net/sensorML/2.0"
xmlIns:swe="http://www.opengis.net/swe/2.0"
xmlns:gml="http://www.opengis.net/gml/3.2"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xlink="http://www.w3.0rg/1999/xlink"
xsi:schemalocation="http://www.opengis.net/sensorML/2.0 http://schemas.opengis.net/sensorml/2.0/sensorML.xsd">

<l--

CoCSSSS SIS EETE eeD>
I
<l-- ========__>
<gml:description>

Stationary Location and Orientation - Single-beam Motion Detector

</gml:description>
<!-- === o= == CoSSSSEIE e
<l-- Observed Property = Output -->
<!-- === o= == CoSSDSEIE e

<sml:outputs>
<sml:OutputList>
<sml:output name="motionDetection">
<swe:Boolean definition="http://sensorml.com/ont/swe/property/Motion"/>
</sml:output>
</sml:OutputList>
</sml:outputs>

<!-- === COoSSDS SIS aeD>
<l-- Station Reference Frame ->
<!-- === CoSSDS SIS aeD>

<!I-- Particularly when dealing with orientations, one needs to understand the sensor's
reference frame as defined by the OEM or sensor deployer; the position and
orientation of this local frame is then described relative to an external reference
frame in the "position" property -->
<sml:localReferenceFrame>
<sml:SpatialFrame id="SENSOR_FRAME">
<sml:origin>
Origin is at the intersection of the symmetric axis of the cylinder and the rear of the sensor
</sml:origin>
<sml:axis name="X">
X is perdendicular to the symmetric axis and intersects the indicator marked "x" on the casing
</sml:axis>
<sml:axis name="Y">Y = Z cross X</sml:axis>
<sml:axis name="2">
Z is along the symmetric axis of the sensor in the direction of view
</sml:axis>
</sml:SpatialFrame>
</sml:localReferenceFrame>

<!-- === o= == CoSSSSEIE e
<l-- Station Location and Orientation -->
<!-- === o= == CoSSSSEIE e

<sml:position>
<swe:DataRecord>
<swe:field name="location">
<swe:Vector
definition="http://sensorml.com/ont/swe/property/SensorLocation"
referenceFrame="http://www.opengis.net/def/crs/EPSG/6.7/4979"
localFrame="#SENSOR_FRAME">
<swe:coordinate name="Lat">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/Latitude" axisID="Lat">
<swe:uom code="deg"/>
<swe:value>47.8</swe:value>
</swe:Quantity>
</swe:coordinate>
<swe:coordinate name="Lon">

Copyright © 2014 Open Geospatial Consortium 145

<swe:Quantity definition="http://sensorml.com/ont/swe/property/Longitude" axis|ID="Long">
<swe:uom code="deg"/>
<swe:value>2.3</swe:value>
</swe:Quantity>
</swe:coordinate>
<swe:coordinate name="Alt">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/Altitude" axis|D="Alt">
<swe:uom code="m"/>
<swe:value>40.8</swe:value>
</swe:Quantity>
</swe:coordinate>
</swe:Vector>
</swe:field>
<swe:field name="orientation">
<swe:Vector
definition="http://sensorml.com/def/property0/SensorOrientation"
referenceFrame="http://www.opengis.net/def/crs/NED"
localFrame="#SENSOR_FRAME">
<swe:coordinate name="TrueHeading">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/TrueHeading" axis|ID="2">
<swe:uom code="deg"/>
<swe:value>-6.8</swe:value>
</swe:Quantity>
</swe:coordinate>
<swe:coordinate name="Pitch">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/Pitch" axis|D="Y">
<swe:uom code="deg"/>
<swe:value>0.3</swe:value>
</swe:Quantity>
</swe:coordinate>
</swe:Vector>
</swe:field>
</swe:DataRecord>
</sml:position>
</sml:PhysicalComponent>

146 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

8.5 Requirements Class: Physical System Schema
Requirements Class

http://www.opengis.net/spec/sensorml/2.0/req/xml/physical-system

Target Type | XML Instance

Dependency http://www.opengis.net/spec/sensorml/2.0/req/model/physical-system

Dependency http://www.opengis.net/spec/sensorml/2.0/req/xml/aggregate-process

Dependency http://www.opengis.net/spec/sensorml/2.0/req/xml/physical-component

XML Schema elements and types defined in the “physical system.xsd” schema file

implement all classes defined respectively in the “physical-system” UML package
defined in Clause 7.7.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/physical-system/schema-valid

Req 79. The XML instance shall be valid with respect to the XML grammar defined in

the “physical_system.xsd”, as well as satisfy all Schematron patterns defined in
“physical_system.sch”.

The following XML snippet provides the appropriate header and import statements for
the physical component.xsd:

<schema xmins="http://www.w3.0rg/2001/XMLSchema" xmlIns:sml="http://www.opengis.net/sensorML/2.0"
xmins:gml="http://www.opengis.net/gml/3.2" xmIns:swe="http://www.opengis.net/swe/2.0"
targetNamespace="http://www.opengis.net/sensorML/2.0" elementFormDefault="qualified"
attributeFormDefault="unqualified">
<annotation>
<documentation>
The elements of a concrete aggregate physical process derived from the core process model.
</documentation>
</annotation>
<import namespace="http://www.opengis.net/swe/2.0"
schemalocation="http://schemas.opengis.net/sweCommon/2.0/swe.xsd"/>
<import namespace="http://www.opengis.net/gml|/3.2"
schemalocation="http://schemas.opengis.net/gml/3.2.1/gml.xsd"/>
<include schemalocation="physical_component.xsd"/>
<include schemalocation="aggregate process.xsd"/>

8.5.1 Physical System

The PhysicalSystem element and complex type are derived from the
AbstractPhysicalProcess Type and ths has all of the inherited properties defined in Clause

Copyright © 2014 Open Geospatial Consortium 147

7.6. PhysicalSystem also has the components and connections properties that have
already been described in Clause 7.4.
The schema snippet for this element and its corresponding complex type is shown below.

<element name="PhysicalSystem" type="sml:PhysicalSystemType"
substitutionGroup="sml:AbstractPhysicalProcess">
<annotation>
<documentation>
A PhysicalSystem is an aggregate system that can include multiple components (both physical and non-
physical) with explicit links between the outputs, inputs, and parameters of the individual components. In a
PhysicalSystem, the spatial position of the System itself is relevant to its application.
</documentation>
</annotation>
</element>
<complexType name="PhysicalSystemType">
<complexContent>
<extension base="sml:AbstractPhysicalProcessType">
<sequence>
<element name="components" type="sml:ComponentListPropertyType"
minOccurs="0" maxOccurs="1">
<annotation>
<documentation>
The collection of processes that make up a process aggregation.
</documentation>
</annotation>
</element>
<element name="connections" type="sml:ConnectionListPropertyType"
minOccurs="0" maxOccurs="1">
<annotation>
<documentation>
The explicit definition of data links between outputs, inputs, and parameters of the
components within an aggregate process.
</documentation>
</annotation>
</element>
</sequence>
</extension>
</complexContent>
</complexType>

<complexType name="PhysicalSystemPropertyType">
<sequence minOccurs="0">
<element ref="sml:PhysicalSystem"/>
</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>
<attributeGroup ref="gml:OwnershipAttributeGroup"/>
</complexType>

A PhysicalSystem is a physical process that consists of multiple components that can be
both physical and non-physical. As with the non-physical AggregateProcess, the
PhysicalSystem allows for listing of the components as well as explicit mapping of the
flow of data throughout the system.

In the example below there are three components: a thermometer that outputs
temperature, an anemometer that outputs both wind speed and wind direction, and a non-
physical windchill process that takes temperature and wind speed and calculates a
windchill factor. The components are provided “by reference” using the x/ink:href
attribute. The outputs of these three components connect to the outputs of the system
itself, as shown in the ConnectionsList.

148 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

<?xml version="1.0" encoding="UTF-8"?>
<sml:PhysicalSystem gml:id="MY_WEATHER_STATION"
xmlins:sml="http://www.opengis.net/sensorML/2.0"
xmins:swe="http://www.opengis.net/swe/2.0"
xmlins:gml="http://www.opengis.net/gml|/3.2"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:xlink="http://www.w3.0rg/1999/xlink"
xsi:schemalocation="http://www.opengis.net/sensorML/2.0 http://schemas.opengis.net/sensorml/2.0/sensorML.xsd">

<!-- = ====== 1 -->
<l-- System Description -->
<|-- = -->

<gml:description> Weather station in my yard </gml:description>
<gml:identifier codeSpace="uid">urn:weather-we-is:stations:FR8766</gml:identifier>

<!-- R R e e e e e e e e

<l-- Inputs = Observed Properties -->

<!-- R R e e e e e e e e e
<sml:inputs>

<sml:InputList>
<sml:input name="temperature">
<sml:ObservableProperty definition="http://sweet.jpl.nasa.gov/2.3/propTemperature.owl#Temperature"/>
</sml:input>
<sml:input name="wind">
<sml:ObservableProperty definition="http://sweet.jpl.nasa.gov/2.3/phenAtmoWind.owl#Wind"/>
</sml:input>
</sml:InputList>
</sml:inputs>

<!-- = -->
<l-- Outputs = Quantities -->
<|-- = -->

<sml:outputs>
<sml:OutputList>
<sml:output name="weather">
<swe:DataRecord>
<swe:field name="temperature">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/AtmosphericTemperature">
<swe:label>Air Temperature</swe:label>
<swe:uom code="cel"/>
</swe:Quantity>
</swe:field>
<swe:field name="wind_chill">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/WindChillFactor">
<swe:label>Wind Chill Factor</swe:label>
<swe:uom code="cel"/>
</swe:Quantity>
</swe:field>
<swe:field name="wind_speed">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/WindSpeed">
<swe:label>Wind Speed</swe:label>
<swe:uom code="km/h"/>
</swe:Quantity>
</swe:field>
<swe:field name="wind_direction">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/WindDirection">
<swe:label>Wind Direction</swe:label>
<swe:uom code="deg"/>
</swe:Quantity>
</swe:field>
</swe:DataRecord>
</sml:output>
</sml:OutputList>
</sml:outputs>

Copyright © 2014 Open Geospatial Consortium 149

<!-- === o= == CoSSSSEIE e
<I-- System Location -->
<!-- === o= == CoSSSSEIE e
<sml:position>
<gml:Point gml:id="stationLocation" srsName="http://www.opengis.net/def/crs/EPSG/0/4326">
<gml:coordinates>47.8 88.56</gml:coordinates>
</gml:Point>
</sml:position>

<!-- === o= == CoSSSSEIE e
<l-- System Components -->
<!-- === o= == CoSSDSEIE e

<sml:components>
<sml:ComponentList>
<sml:component name="thermometer" xlink:title="urn:davis:sensors:7817"
xlink:href="http://www.sensors.ws/examples/SensorML-2.0/xml/sensors/Davis_7817_complete.xml"/>
<sml:component name="anemometer" xlink:title="urn:davis:sensors:barometer_internal"
xlink:href="http://www.sensors.ws/examples/SensorML-2.0/xml/sensors/Davis_7911.xml"/>
<sml:component name="windchill" xlink:title="urn:ogc:process:windchill-02"
xlink:href="http://www.sensors.ws/examples/SensorML-2.0/xml/processes/windchill-02.xml|"/>
</sml:ComponentList>
</sml:components>

<!-- === o= == == p—
<l-- Connections between components and system output -->
<!-- === o= == CESSSSDEEE aeD>

<sml:connections>
<sml:ConnectionList>
<!I-- connection between thermometer's output and system's temperature output -->
<sml:connection>
<sml:Link>
<sml:source ref="components/thermometer/outputs/temperature"/>
<sml:destination ref="outputs/weather/temperature"/>
</sml:Link>
</sml:connection>
<!I-- connection between anemometer's wind speed output and system's windspeed output -->
<sml:connection>
<sml:Link>
<sml:source ref="components/anemometer/outputs/wind_state/wind_speed"/>
<sml:destination ref="outputs/weather/wind_speed"/>
</sml:Link>
</sml:connection>
<!I-- connection between anemometer's wind direction output and system's wind direction output -->
<sml:connection>
<sml:Link>
<sml:source ref="components/anemometer/outputs/wind_state/wind_direction"/>
<sml:destination ref="outputs/weather/wind_direction"/>
</sml:Link>
</sml:connection>
<!I-- connection between thermometer's output and windchill temperature input -->
<sml:connection>
<sml:Link>
<sml:source ref="components/thermometer/outputs/temperature"/>
<sml:destination ref="components/windchill/inputs/process_inputs/temperature"/>
</sml:Link>
</sml:connection>
<!I-- connection between anemometer's wind speed output and windchill wind_speed input -->
<sml:connection>
<sml:Link>
<sml:source ref="components/thermometer/outputs/wind_state/wind_speed"/>
<sml:destination ref="components/windchill/inputs/process_inputs/wind_speed"/>
</sml:Link>
</sml:connection>
<!I-- connection between windchill process output and system's windchill output -->
<sml:connection>
<sml:Link>

150 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

<sml:source ref="components/thermometer/outputs/windchill"/>
<sml:destination ref="outputs/weather/windchill"/>
</sml:Link>
</sml:connection>
</sml:ConnectionList>
</sml:connections>
</sml:PhysicalSystem>

Copyright © 2014 Open Geospatial Consortium 151

Requirements Class: Configurable Process Schema
Requirements Class

http://www.opengis.net/spec/sensorml/2.0/req/xml/configuration

Target Type | XML Instance

Dependency http://www.opengis.net/spec/sensorml/2.0/req/model/configuration

Dependency http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process

XML Schema elements and types defined in the “configurable process.xsd” schema file
implement all classes defined respectively in the “configurable process” UML package
defined in Clause 7.7.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/configuration/schema-valid

Req 80. The XML instance shall be valid with respect to the XML grammar defined in
the “configuration.xsd”, as well as satisfy all Schematron patterns defined in
“configuration.sch”.

The following XML snippet provides the appropriate header and import statements for
the configurable process.xsd:

<schema xmins="http://www.w3.0rg/2001/XMLSchema" xmlIns:sml="http://www.opengis.net/sensorML/2.0"
xmins:swe="http://www.opengis.net/swe/2.0" targetNamespace="http://www.opengis.net/sensorML/2.0"
elementFormDefault="qualified" attributeFormDefault="unqualified">
<annotation>
<documentation>
The elements supporting configurability and configuration settings of a instance of any process.
</documentation>
</annotation>
<import namespace="http://www.opengis.net/swe/2.0"
schemalocation="http://schemas.opengis.net/sweCommon/2.0/swe.xsd"/>
<include schemal.ocation="simple_process.xsd"/>

The primary elements supporting configurable processes will be discussed in more detail
in the following subclauses.

8.5.2 Modes

The Mode element is an XML schema implementation of the models defined in Clause
7.9.1. It allows one to define a choice of modes, each of which in turn sets the values for
a collection of parameters.

The XML snippet for the Mode and ModeChoice elements and their complex types is
given below:

152 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

Mode:

<element name="Mode" type="sml:ModeType" substitutionGroup="sml:DescribedObject"/>

<complexType name="ModeType">
<complexContent>
<extension base="sml:DescribedObjectType">
<sequence>
<element name="configuration" type="sml:SettingsPropertyType"/>
</sequence>
</extension>
</complexContent>
</complexType>

<complexType name="ModePropertyType">
<sequence minOccurs="0">
<element ref="sml:Mode"/>
</sequence>
<attributeGroup ref="swe:AssociationAttributeGroup"/>
</complexType>

ModeChoice:

<element name="ModeChoice" type="sml:ModeChoiceType" substitutionGroup="sml:AbstractModes">
<annotation>
<documentation>
A collection of modes from which one can exclusively select during configuration of a process.
</documentation>
</annotation>
</element>

<complexType name="ModeChoiceType">
<complexContent>
<extension base="sml:AbstractModesType">
<sequence>
<element name="mode" type="sml:ModeProperty Type" minOccurs="1" maxOccurs="unbounded"/>
</sequence>
</extension>
</complexContent>
</complexType>

<complexType name="ModeChoiceProperty Type">
<sequence minOccurs="0">
<element ref="sml:ModeChoice"/>
</sequence>
<attributeGroup ref="swe:AssociationAttributeGroup"/>
</complexType>

A Mode is restricted in the values that it can set. In essence, a Mode is restricted to setting
only the values of previously defined parameters of the enclosed process and its base
processes, and the values of these parameters should be set consistent with the parameters
allowed values.

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/configuration/mode-restriction

Req 81. A Mode shall not set any process property values, other than the values of
parameters defined within the same process or its parent processes.

Copyright © 2014 Open Geospatial Consortium 153

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/configuration/parameter-values

Req 82. The parameter values set by a Mode cannot be outside of the values
allowed by the AllowedValues property of the parameter.

In the following example, the definition of the parameters, samplingRate and gain are
defined within the parameters section of the process description. Then two modes
(“lowThreat” and “highThreat”) are defined, each of which defines specific values for
these the two parameters.

<!--] -->
<I-- Parameters -->
<!-- B -->

<sml:parameters>
<sml:ParameterList>
<sml:parameter name="settings">
<swe:DataRecord id="CURRENT_SETTINGS">
<swe:field name="samplingRate">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/SamplingRate"
updatable="false">
<swe:label>Sampling Rate</swe:label>
<swe:uom code="Hz"/>
<swe:constraint>
<swe:AllowedValues>
<swe:interval>0.01 10.0</swe:interval>
</swe:AllowedValues>
</swe:constraint>
</swe:Quantity>
</swe:field>
<swe:field name="gain">
<swe:Quantity definition="http://sensorml.com/ont/swe/property/Gain" updatable="false">
<swe:label>Gain</swe:label>
<swe:uom code="Hz"/>
<swe:constraint>
<swe:AllowedValues>
<swe:interval>1.0 2.5</swe:interval>
</swe:AllowedValues>
</swe:constraint>
</swe:Quantity>

</swe:field>
<!I-- Note: no parameter values provided because the sensor switches automatically when mode is
changed -->

</swe:DataRecord>
</sml:parameter>
</sml:ParameterList>
</sml:parameters>

o = e oD
<l-- Modes -->
o s e e e s o D

<sml:modes>
<sml:ModeChoice id="THREAT_LEVEL_MODE">
<sml:mode>
<sml:Mode gml:id="lowThreat">
<gml:description> Setting when nothing has been detected </gml:description>
<gml:name>Low Threat Mode</gml:name>
<sml:configuration>

154 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

<sml:Settings>
<sml:setValue ref="parameters/settings/samplingRate">0.1</sml:setValue>
<sml:setValue ref="parameters/settings/gain">1.0</sml:setValue>
</sml:Settings>
</sml:configuration>
</sml:Mode>
</sml:mode>
<sml:mode>
<sml:Mode gml:id="highThreat">
<gml:description> Setting when something has been detected </gml:description>
<gml:name>High Threat Mode</gml:name>
<sml:configuration>
<sml:Settings>
<sml:setValue ref="parameters/settings/samplingRate">10.0</sml:setValue>
<sml:setValue ref="parameters/settings/gain">2.5</sml:setValue>
</sml:Settings>
</sml:configuration>
</sml:Mode>
</sml:mode>
</sml:ModeChoice>
</sml:modes>

8.5.3 Settings

The Settings element is an XML schema implementation of the models defined in Clause
7.9.2. It allows one to set values of parameters, to select modes, and to enable or disable
components.

The XML snippet for the Settings element and its complex types is given below:

<element name="Settings" type="sml:SettingsType" substitutionGroup="sml:AbstractSettings"/>

<complexType name="SettingsType">
<complexContent>
<extension base="sml:AbstractSettingsType">
<sequence>
<element name="setValue" type="sml:ValueSettingProperty Type"
minOccurs="0" maxOccurs="unbounded">
<annotation>
<documentation>Allows the setting of a particular property value.</documentation>
</annotation>
</element>
<element name="setArrayValues" type="sml:ValueSettingProperty Type"
minOccurs="0" maxOccurs="unbounded">
<annotation>
<documentation>Allows the setting of array values for a particular property.</documentation>
</annotation>
</element>
<element name="setConstraint" type="sml:ConstraintSettingProperty Type"
minOccurs="0" maxOccurs="unbounded">
<annotation>
<documentation>
Allows one to further restrain the allowed values of a particular property.
</documentation>
</annotation>
</element>
<element name="setMode" type="sml:ModeSettingProperty Type"
minOccurs="0" maxOccurs="unbounded">
<annotation>
<documentation>
Allows one to select a predefined mode, which by inference sets a collection of property
values according to the definition of that mode.
</documentation>

Copyright © 2014 Open Geospatial Consortium 155

</annotation>
</element>
<element name="setStatus" type="sml:StatusSettingProperty Type"
minOccurs="0" maxOccurs="unbounded">
<annotation>
<documentation>
Allows one to set the status (enabled, disabled, etc) of a particular input, output, or
parameter.
</documentation>
</annotation>
</element>
</sequence>
</extension>
</complexContent>
</complexType>

<complexType name="SettingsProperty Type">
<sequence minOccurs="0">
<element ref="sml:Settings"/>
</sequence>
<attributeGroup ref="swe:AssociationAttributeGroup"/>
</complexType>

setValue PropertyType:
<complexType name="ValueSettingProperty Type">
<simpleContent>
<extension base="token">
<attribute name="ref" type="sml:DataComponentPathProperty Type" use="required"/>
</extension>
</simpleContent>
</complexType>

setArrayValue PropertyType:
<complexType name="ArraySettingProperty Type">
<sequence>

<element name="ArrayValues">
<complexType>
<sequence>

<element name="encoding">
<complexType>

<sequence>
<element ref="swe:AbstractEncoding"/>
</sequence>
</complexType>
</element>
<element name="value" type="swe:EncodedValuesPropertyType"/>
</sequence>
</complexType>
</element>
</sequence>

<attribute name="ref" type="sml:DataComponentPathPropertyType" use="required"/>
</complexType>

setMode PropertyType:
<complexType name="ModeSettingProperty Type">
<simpleContent>
<extension base="NCName">
<attribute name="ref" type="sml:DataComponentPathProperty Type" use="required"/>
</extension>
</simpleContent>
</complexType>

156 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

setStatus PropertyType:
<complexType name="StatusSettingProperty Type">
<simpleContent>
<extension base="sml:StatusType">
<attribute name="ref" type="sml:DataComponentPathProperty Type" use="required"/>
</extension>
</simpleContent>
</complexType>

setConstraint PropertyType:
<complexType name="ConstraintSettingProperty Type">
<sequence>
<group ref="sml:Constraint"/>
</sequence>
<attribute name="ref" type="sml:DataComponentPathProperty Type" use="required"/>
</complexType>

<group name="Constraint">
<choice>
<element ref="swe:AllowedTimes"/>
<element ref="swe:AllowedTokens"/>
<element ref="swe:AllowedValues"/>
</choice>
</group>

<complexType name="ConstraintProperty Type">
<sequence minOccurs="0">
<group ref="sml:Constraint"/>
</sequence>
<attributeGroup ref="swe:AssociationAttributeGroup"/>
</complexType>

<simpleType name="StatusType">
<restriction base="string">
<enumeration value="enabled"/>
<enumeration value="disabled"/>
</restriction>
</simpleType>

The following example shows use of the configuration property within a configured
process. In this example, the value of the Averaging Period for the raingauge is set to
60.0 (in whatever units of measure are use by the parameter), the Sampling Period of the
raingauge has been constrained between 30.0 and 60.0, and the rain gauge component has
been enabled.

The path describing the properties and components will be provided by the ref attribute
and should follow the same rules set for connection Links in Section 8.3.3.2.

Copyright © 2014 Open Geospatial Consortium 157

Annex A
(normative)

Abstract Conformance Test Suite for Models

A.1 Conformance Test Class: Core Concepts

Conformance Test Class

http://www.opengis.net/spec/sensorml/2.0/conf/core

Target Type | Derived Encodings and Schema

Tests described in this section shall be used to test conformance of software and encoding
models implementing the Requirements Class: Core Concepts (normative core).

A.1.1 Core concepts are the base of all derived models

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/core/core-concepts-used

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/core/core-concepts-used
Req 1

Test Method | Inspect the schema or encoding definition to verify that it correctly
implements the core model concepts.

Test Type Capability

A.1.2 A process model has inputs, outputs, parameters, and method

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/core/processes

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/core/processes
Req 2

Test Method | Inspect the schema or encoding definition to verify that the model
defines inputs, outputs, parameters, and methodology.

Test Type Capability

158 Copyright © 2014 Open Geospatial Consortium

SensorML

O0GC 12-000

A.1.3 A process model has a unique ID

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/core/unique-id

Requirement | http://www.opengis.net/spec/sensorml/2.0/reg/core/unique-id
Req 3
Test Method | Inspect the schema or encoding definition to verify that the process
includes a unique ID.
Test Type Capability

A.1.4 A process model has metadata

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/core/metadata

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/core/metadata
Req 4
Test Method | Inspect the schema or encoding definition to verify that the core
model includes metadata supporting identification, discovery, and
qualification of the process.
Test Type Capability

A.1.5 Metadata not used in process execution

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/core/execution

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/core/execution
Req 5
Test Method | Verify that the implementation of the conceptual model has a
constraint that all information required fro execution of a process is
contained in the inputs, outputs, parameters, and methodology of the
process.
Test Type Capability

Copyright © 2014 Open Geospatial Consortium

159

A.2 Conformance Test Class: Core Abstract Process

Conformance Test Class

http://www.opengis.net/spec/sensorml/2.0/conf/model/core-process

Target Type | Derived Encodings and Schema

Dependency | http://www.opengis.net/spec/sensorml/2.0/conf/core

Dependency | http://www.opengis.net/spec/SWE/2.0/conf/uml-block-components

Dependency | ISO 19115:2006 (All Metadata)

Dependency | ISO 19136 (GML)

Tests described in this section shall be used to test conformance of software and encoding
models implementing the conceptual models defined in Requirements Class: Core
Abstract Process.

A.2.1 Dependency on Core

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/core-process/dependency-core

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/core-
Req 6 process/dependency-core

Test Method | Apply all tests in:
http://www.opengis.net/spec/sensorml/2.0/conf/core

Test Type Capability

A.2.2 Fully implement CoreProcess

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/core-process/package-fully-implement

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/core-process/package-
Req 7 fully-implement

Test Method | Inspect the schema or encoding definition to verify that it implements
all classes in the “core-process” package.

Test Type Capability

160 Copyright © 2014 Open Geospatial Consortium

SensorML

O0GC 12-000

A.2.3 DescribedObject derived from GML AbstractFeature

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/core-process/gml-dependency

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/core-process/gml-
Req 8 dependency
Test Method | Inspect the schema or encoding definition to verify that all classes
derived from DescribedModel are of type featureType.
Test Type Capability

A.2.4 Using GML identifier for uniquelD in CoreProcess

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/core-process/unique-id

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/core-process/unique-
Req 9 id
Test Method | Inspect the schema or encoding definition to verify that it provides a
unique identifier using the gm/:identifier property.
Test Type Capability

A.2.5 Extensions shall be in a separate namespace

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/core-process/extension-independence

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/core-
Req 10 process/extension-independence
Test Method | Inspect the schema or encoding definition to verify that any model
used to define the value of the extension property exist within a
separate namespace.
Test Type Capability

Copyright © 2014 Open Geospatial Consortium

161

A.2.6 Extensions shall not be required for process execution

Conformance Test
http://www.opengis.net/spec/sensorml/2.0/conf/model/core-process/extension-restrictions
Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/core-
Req 11 process/extension-restrictions
Test Method | Inspect the schema or encoding definition to verify that information
contained with the extension property is not required for execution of
the process.
Test Type Capability

A.2.7 ObservableProperty and SWE Common Data used for process input,
output, and parameters

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/core-process/swe-common-dependency

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/core-process/swe-
Req 12 common-dependency
Test Method | Inspect the schema or encoding definition to verify that the value of

inputs, outputs, and parameters are constrained to using SWE
Common Data Block Components.

Test Type

Capability

A.2.8 Use of SWE Common Data aggregate models for process input,
output, and parameters

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/core-process/aggregate-data

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/core-
Req 13 process/aggregate-data
Test Method | Inspect the schema or encoding definition to verify that tightly related
data components are modeled within an appropriate SWE Common
Data aggregate data model.
Test Type Capability
162 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

A.2.9 Application and requirements of typeOf property

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/core-process/type-of

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/core-process/type-of
Req 14

Test Method | Inspect the schema or encoding definition to verify that the typeOf
property is a resolvable URL that references an instance of a process.

Test Type Capability

A.2.10 Simple inheritance extends a base class referenced by typeOf

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/core-process/simple-inheritance

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/core-process/simple-
Req 15 inheritance

Test Method | Verify that the implementation of the conceptual model supports
simple, additive inheritance through the use of the #ypeOf property.

Test Type Capability

A.2.11 Supporting configuration in processes

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/core-process/configuration

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/core-
Req 16 process/configuration

Test Method | Inspect the schema or encoding definition to verify that model
supports restriction of inherited properties through the configuration

property.
Test Type Capability

A.2.12 Dependency on SWE Common Data simple types

Conformance Test

Copyright © 2014 Open Geospatial Consortium 163

http://www.opengis.net/spec/sensorml/2.0/conf/model/core-process/swe-common-dependency

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/core-process/swe-
Req 17 common-dependency

Test Method | Validate that the encoding or schema pass the SWE Common Data
conformance tests provided in “Records Components Package”.

Test Type Capability

164 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

A.3 Conformance Test Class: Simple Process

Conformance Test Class

http://www.opengis.net/spec/sensorml/2.0/conf/model/simple-process

Target Type | Derived Encodings and Schema

Dependency | http://www.opengis.net/spec/sensorml/2.0/conf/model/core-process

Tests described in this section shall be used to test conformance of software and encoding
models implementing the conceptual models defined in Requirements Class: Simple
Process.

A.3.1 Dependency on core

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/simple-process/dependency-core

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/simple-
Req 18 process/dependency-core

Test Method | Apply all tests in:

http://www.opengis.net/spec/sensorml/2.0/conf/model/core-process

Test Type Capability

A.3.2 Fully Implement SimpleProcess

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/simple-process/package-fully-implement

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/simple-
Req 19 process/package-fully-implement

Test Method | Inspect the schema or encoding definition to verify that it implements
all classes defined in “simple-process” package.

Test Type Capability

Copyright © 2014 Open Geospatial Consortium 165

A.3.3 Simple process definition

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/simple-process/definition

Requirement
Req 20

http://www.opengis.net/spec/sensorml/2.0/req/model/simple-
process/definition

Test Method

Inspect the schema or encoding definition to verify that it supports
well-defined inputs and outsputs but cannot be further divided into
sub-processes.

Test Type

Capability

A.3.4 Simple process has method

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/simple-process/method

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/simple-
Req 21 process/method
Test Method | Inspect the schema or encoding definition to verify that it support
definition of the process method.
Test Type Capability
166 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

A.4 Conformance Test Class: Aggregate Process

Conformance Test Class

http://www.opengis.net/spec/sensorml/2.0/conf/model/aggregate-process

Target Type | Derived Encodings and Schema

Dependency | http://www.opengis.net/spec/sensorml/2.0/conf/model/core-process

Tests described in this section shall be used to test conformance of software and encoding
models implementing the conceptual models defined in Requirements Class: Aggregate
Process.

A.4.1 Dependency on core

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/aggregate-process/dependency-core

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/aggregate-
Req 22 process/dependency-core

Test Method | Apply all tests in:

http://www.opengis.net/spec/sensorml/2.0/conf/model/simple-process

Test Type Capability

A.4.2 Fully Implement Aggregate Process

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/aggregate-process/package-fully-implemented

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/aggregate-
Req 23 process/package-fully-implemented

Test Method | Inspect the schema or encoding definition to verify that it implements
all classes within the “aggregate-process” package.

Test Type Capability

Copyright © 2014 Open Geospatial Consortium 167

A.4.3 Definition of Aggregate Process

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/aggregate-process/definition

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/aggregate-
Req 24 process/definition
Test Method | Inspect the schema or encoding definition to verify that it supports
well-defined inputs and outputs, and the ability to divide the process
into sub-processes.
Test Type Capability

A.4.4 Aggregate Process requires one or more components

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/aggregate-process/components

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/aggregate-
Req 25 process/components
Test Method | Inspect the schema or encoding definition to verify that the aggregate
process has at least on sub-process.
Test Type Capability
168 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

A.5 Conformance Test Class: Physical Component

Conformance Test Class

http://www.opengis.net/spec/sensorml/2.0/conf/model/physical-component

Target Type | Derived Encodings and Schema

Dependency | http://www.opengis.net/spec/sensorml/2.0/conf/model/core-process

Tests described in this section shall be used to test conformance of software and encoding
models implementing the conceptual models defined in Requirement Class: Physical
Component.

A.5.1 Fully implement Physical Component

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/physical-component/package-fully-implement

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/physical-
Req 26 component/package-fully-implement

Test Method | Inspect the schema or encoding definition to verify that it fully
implements all classes of the “physical-component” package.

Test Type Capability

A.5.2 Dependency on core process

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/physical-component/dependency-core

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/physical-
Req 27 component/dependency-core

Test Method | Apply all tests in:

http://www.opengis.net/spec/sensorml/2.0/conf/model/core-process

Test Type Capability

Copyright © 2014 Open Geospatial Consortium 169

A.5.3 Position by point

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/physical-component/by-point-or-location

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/physical-
Req 28 component/by-point-or-location
Test Method | Inspect the schema or encoding to verify that when an object’s
position is specified “byPoint” or “byLocation” that the location is
defined as a set of spatial coordinates relative to an external reference
frame.
Test Type Capability

A.5.4 Position by location and orientation

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/physical-component/by-position

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/physical-
Req 29 component/by-position

Test Method | Inspect the schema or encoding definition to verify that, when an
object’s position is specified “byPosition”, that the location of origin
of the object’s reference frame relative to an external frame is
specified using one vector for location and that the object’s
orientation relative to an external frame is provided by another
vector. Furthermore, verify that these vectors specify an external
reference frame.

Test Type Capability

A.5.5 Position by trajectory

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/physical-component/by-trajectory

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/physical-
Req 30 component/by-trajectory
Test Method | Inspect the schema or encoding definition to verify that, when an
object’s position is provided “byTrajectory”, that at least the location
170 Copyright © 2014 Open Geospatial Consortium

SensorML

O0GC 12-000

is provided as a time-tagged series of values.

Test Type

Capability

A.5.6 Position by process

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/physical-component/by-process

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/physical-
Req 31 component/by-process

Test Method | Inspect the schema or encoding definition to verify that, when an
object’s position is provided “byProcess” that position value is
defined as a process modeled using SensorML, and that this process
provides, at a minimum, a time-tagged series of location values
reative to an external reference frame.

Test Type Capability

A.5.7 Physical Component definition

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/physical-component/by-process

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/physical-
Req 32 component/by-process
Test Method | Inspect the schema or encoding definition to verify that it includes
well-defined inputs and outputs, that there is no ability to further
divide the process into sub-processes, and that it provides a position
property.
Test Type Capability

Copyright © 2014 Open Geospatial Consortium 171

A.6 Conformance Test Class: Physical System

Conformance Test Class

http://www.opengis.net/spec/sensorml/2.0/conf/model/physical-system

Target Type | Derived Encodings and Schema

Dependency | http://www.opengis.net/spec/sensorml/2.0/conf/model/physical-component

Tests described in this section shall be used to test conformance of software and encoding
models implementing the conceptual models defined in Requirements Class: Physical
System.

A.6.1 Fully implement Physical System

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/physical-system/package-fully-implemented

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/physical-
Req 33 system/package-fully-implemented

Test Method | Inspect the schema or encoding definition to verify that it implements
all classes of the “physical-system” package.

Test Type Capability

A.6.2 Physical System definition

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/physical-system/definition

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/physical-
Req 34 system/definition

Test Method | Inspect the schema or encoding definition to verify that it includes
well-defined inputs and outputs, that there is the ability to further
divide the process into sub-processes, and that it provides a position
property.

Test Type Capability

172 Copyright © 2014 Open Geospatial Consortium

SensorML

O0GC 12-000

A.6.3 Physical System dependency

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/physical-system/dependency-core

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/physical-
Req 35 system/dependency-core
Test Method | Apply all test in:
http://www.opengis.net/spec/sensorml/2.0/conf/model/physical-component
Test Type Capability

Copyright © 2014 Open Geospatial Consortium 173

A.7 Conformance Test Class: Process with Advanced Data Types

Conformance Test Class

http://www.opengis.net/spec/sensorml/2.0/conf/model/advanced-process

Target Type | Derived Encodings and Schema

Dependency | http://www.opengis.net/spec/sensorml/2.0/conf/model/core-process

Dependency | http://www.opengis.net/spec/SWE/2.0/conf/uml-block-components

Dependency | http://www.opengis.net/spec/SWE/2.0/conf/uml-choice-components

Tests described in this section shall be used to test conformance of software and encoding
models implementing the conceptual models define Requirements Class: Processes with
Advanced Data Types.

A.7.1 Advanced Process dependency

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/advanced-process/dependency-core

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/advanced-
Req 36 process/dependency-core

Test Method | Apply all tests in:

http://www.opengis.net/spec/sensorml/2.0/conf/model/core-process

Test Type Capability

A.7.2 Fully implement AdvancedProcess

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/advanced-process/package-fully-implement

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/advanced-
Req 37 process/package-fully-implement

Test Method | Inspect the schema or encoding definition to verify that it implements
all classes within the “advanced-process” package.

Test Type Capability

174 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

A.8 Conformance Test Class: Configurable Processes

Conformance Test Class

http://www.opengis.net/spec/sensorml/2.0/conf/model/configurable-process

Target Type | Derived Encoding and Software Implementation

Dependency | http://www.opengis.net/spec/sensorml/2.0/conf/conf/core-process

Tests described in this section shall be used to test conformance of software and encoding
models implementing the conceptual models defined in Requirements Class:
Configurable Processes.

A.8.1 Dependency on Core Process

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/configurable-process/dependency-core

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/configurable-
Req 38 process/dependency-core

Test Method | Apply all tests in:

http://www.opengis.net/spec/sensorml/2.0/conf/model/core-process

Test Type Capability

A.8.2 Fully Implement Configurable Process

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/configurable-process/package-fully-
implemented

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/configurable-
Req 39 process/package-fully-implemented

Test Method | Inspect the schema or encoding definition to verify that it implements
all classes within the “configuration” package.

Test Type Capability

A.8.3 ModeChoice requires 2 or more Modes

Conformance Test

Copyright © 2014 Open Geospatial Consortium 175

http://www.opengis.net/spec/sensorml/2.0/conf/model/configurable-process/two-modes-required
Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/configurable-
Req 40 process/two-modes-required
Test Method | Inspect the schema or encoding definition to verify that it includes
two or more mode properties.
Test Type Capability

A.8.4 A configured process requires a Settings element

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/configurable-process/settings-property

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/configurable-
Req 41 process/settings-property
Test Method | Verify that the implementation of the configured process has a
constraint that takes a Settings class as its value..
Test Type Capability

A.8.5 Only parameter values can be set by setValue

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/configurable-process/set-value-restriction

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/configurable-
Req 42 process/set-value-restriction
Test Method | Verify that the setValue property of a configured process references
only parameters defined within a configurable process.
Test Type Capability

A.8.6 Only parameter array values can be set by setArrayValues

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/configurable-process/set-array-value-

176

Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000
restriction
Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/configurable-
Req 43 process/set-array-value-restriction
Test Method | Verify that the setdrrayValue property of a configured process
references only array values for a parameter defined within a
configurable process.
Test Type Capability

A.8.7 Only parameter values can be constrained with setConstraint

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/model/configurable-process/set-constraint-restriction|

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/model/configurable-
Req 44 process/set-constraint-restriction
Test Method | Verify that a setConstraint property of a configured process
references a parameter defined within a configurable process.
Test Type Capability

Copyright © 2014 Open Geospatial Consortium 177

Annex B
(normative)

Abstract Conformance Test Suite for Schema

B.1 Conformance Test Class: Core Abstract Process Schema

Conformance Test Class

http://www.opengis.net/spec/sensorml/2.0/conf/xml/core-process

Target Type | XML Instance

Dependency | http://www.opengis.net/spec/sensorml/2.0/conf/model/core-process

Dependency http://www.opengis.net/spec/SWE/2.0/conf/xml-encoding-principles

Dependency | http://schemas.opengis.net/gml/3.2.1/gml.xsd

Dependency | http://schemas.opengis.net/sweCommon/2.0/swe.xsd

Dependency http://schemas.opengis.net/iso/19139/20070417/gmd/gmd.xsd

Dependency http://schemas.opengis.net/iso/19139/20070417/gco/gco.xsd

All tests in this conformance test class and in the following shall be used to check
conformance of XML instances created according to the schemas defined in this
standard. They shall also be used to check conformance of software implementations that
output XML instances.

B.1.1 Compliance with core XML schemas and Schematron patterns

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/core-process/schema-valid

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/schema-
Req 45 valid

Test Method | Validate the XML instance containing core process with the
“core.xsd” XML schema file and the Schematron patterns in
“core.sch”.

Test Type Capability

178 Copyright © 2014 Open Geospatial Consortium

SensorML

O0GC 12-000

B.1.2 XML property values are included inline or by reference

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/core-process/ref-or-inline-value-present

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/ref-or-
Req 46 inline-value-present
Test Method | Check that all properties either include an inline value or an
“xlink:href” attribute.
Test Type Capability

B.1.3 Each extension uses a different namespace

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/core-process/extension-namespace-unique

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/extension-
Req 47 namespace-unique
Test Method | Test the value of the extension property to determine that the
namespace of the root element is not
http://schemas.opengis.net/sensorml/*.
Test Type Capability

B.1.4 Extensions do not redefine XML elements or types

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/core-process/extension-coherent-with-core

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/extension-
Req 48 coherent-with-core

Test Method | Verify that all XML elements of the XML instance containing
extensions can still be interpreted correctly without reading the
extended information.
Note: This test cannot be run automatically as the meaning the
extension shall be known and thus is not required to be implemented
in the Executable Test Suite.

Test Type Capability

Copyright © 2014 Open Geospatial Consortium

179

B.1.5 The value of the definition attribute is a resolvable URI

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/core-process/extension-process-execution

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/extension-
Req 49 process-execution

Test Method | Verify that the process execution does not require information to be
retrieved from the extension element.

Test Type Capability

B.1.6 Dependence on GML 3.2

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/core-process/gml-dependency

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/gml-
Req 50 dependency

Test Method | Validate the XML Instance according to GML 3.2 conformance tests

Test Type Capability

B.1.7 Dependence on SWE Common Data 2.0

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/core-process/swe-common-dependency

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/swe-
Req 51 common-dependency

Test Method | Validate the XML Instance according to SWE Common Data v2.0
conformance tests

Test Type Capability

B.1.8 Globally unique ID required

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/core-process/globally-unique-id

180 Copyright © 2014 Open Geospatial Consortium

SensorML

O0GC 12-000

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/globally-
Req 52 unique-id
Test Method | Validate the XML Instance contains a unique ID for gm!:identifier
based on a well-defined protocol and that the value of the codespace
attribute is “uniquelD”.
Test Type Capability

B.1.9 External namespace required for security constraints

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/core-process/document-security-tags

Requirement
Req 53

http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/document-
security-tags

Test Method

Validate that the XML Instance does not use the
http://schemas.opengis.net/sensorml/* namespace for the value of the
securityConstraint property.

Test Type

Capability

B.1.10 Extension element used for security tagging of individual

properties

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/core-process/individual-security-tags

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/individual-
Req 54 security-tags
Test Method | Validate within a derived schema or XML Instance that security
tagging of individual properties uses the extension element.
Test Type Capability

B.1.11 Xlink role or arcrole shall be used to define relationship of contacts

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/core-process/contact-role

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/contact-

Copyright © 2014 Open Geospatial Consortium

181

Req 55 role
Test Method | Validate within the XML Instance that either xlink:arcrole or
xlink:role attribute is present in the member element of ContactList.
Test Type Capability
B.1.12 The typeOf property shall provide the uniquelD and resolvable

location of the description on the referenced object

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/core-process/type-of-reference

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/type-
Req 56 of-reference
Test Method | Validate within the XML Instance that an xlink:title and xlink:href
are present in any #ypeOf element of an XML Instance.
Test Type Capability
B.1.13 The feature of interest property shall specify a role, and if

available, the uniquelD of the feature

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/core-process/foi-arcrole-and-title

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/foi-arcrole-
Req 57 and-title
Test Method | Validate within the XML Instance that the member property of a
FeatureList has a xlink:arcrole attribute present.
Test Type Capability
B.1.14 The definition attribute required for ObservableProperty

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/core-process/observable-definition

Requirement

http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/observable-

182

Copyright © 2014 Open Geospatial Consortium

SensorML

O0GC 12-000

Req 58 definition
Test Method | Validate within the XML Instance, the presence and resolvability of
the definition attribute for any ObservableProperty element.
Test Type Capability
B.1.15 Use aggregate data for related data elements

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/core-process/data-record

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/data-record
Req 59
Test Method | Validate by inspection that dependent data components and those
representing the state at a given time are encapsulted within an
appropriate aggregate data component.
Test Type Capability
B.1.16 Use Vector for inputs, outputs, and parameters that specify

position

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/core-process/vector-use

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/vector-use
Req 60
Test Method | Validate that positions within inputs, outputs, and parameters utilize
the swe:Vector element.
Test Type Capability
B.1.17 Use of resolvable URL to reference data streams

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/core-process/data-stream-url

Requirement
Req 61

http://www.opengis.net/spec/sensorml/2.0/req/xml/core-process/data-
stream-url

Copyright © 2014 Open Geospatial Consortium

183

Test Method | Validate the presence of an x/ink:href atribute with resolvable URL
for DataStream values provided by reference.

Test Type Capability

B.1.18 Use DataChoice in multiplexed data streams

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/core-process/multiplexed-data-stream

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/core-
Req 62 process/multiplexed-data-stream

Test Method | Validate that a DataStream consisting of disparate packages utilizes
DataChoice to encapsulate those packages and that each package is
defined as an item.

Test Type Capability

184 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

B.2 Conformance Test Class: Simple Process Schema

Conformance Test Class

http://www.opengis.net/spec/sensorml/2.0/conf/xml/simple-process

Target Type | XML Instance

Dependency http://www.opengis.net/spec/sensorml/2.0/conf/model/simple-process

Dependency | http://www.opengis.net/spec/sensorml/2.0/conf/xml/core-process

All tests in this conformance test class and in the following shall be used to check
conformance of XML instances created according to the schemas defined in this

standard. They shall also be used to check conformance of software implementations that
output XML instances.

B.2.1 Compliance with simple_process XML schemas and Schematron
patterns

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/simple-process/schema-valid

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/simple-process/schema-
Req 63 valid

Test Method | Validate the XML instance containing core process with the

“simple process.xsd” XML schema file and the Schematron patterns
in “simple process.sch”.

Test Type Capability

Copyright © 2014 Open Geospatial Consortium 185

B.3 Conformance Test Class: Aggregate Process Schema

Conformance Test Class

http://www.opengis.net/spec/sensorml/2.0/conf/xml/aggregate-process

Target Type | XML Instance

Dependency http://www.opengis.net/spec/sensorml/2.0/conf/model/aggregate-process

Dependency | http://www.opengis.net/spec/sensorml/2.0/conf/xml/simple-process

All tests in this conformance test class and in the following shall be used to check
conformance of XML instances created according to the schemas defined in this

standard. They shall also be used to check conformance of software implementations that
output XML instances.

B.3.1 Compliance with simple_process XML schemas and Schematron
patterns

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/aggregate-process/schema-valid

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/aggregate-
Req 64 process/schema-valid

Test Method | Validate the XML instance containing core process with the

“aggregate process.xsd” XML schema file and the Schematron
patterns in “aggregate process.sch”.

Test Type Capability

B.3.2 Title and resolvable URL required for components provided by
Reference

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/aggregate-process/component-reference

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/aggregate-
Req 65 process/component-reference

Test Method | Validate the presence of x/ink:title and xlink:href for the component
property when its value is provided by reference.

Test Type Capability

186 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/aggregate-process/input-connection-restrictions

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/aggregate-process/input-
Req 66 connection-restrictions

Test Method | Validate that there are no input-to-input connections, other than from
the aggregate process to one or more of its components.

Test Type Capability

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/aggregate-process/output-connection-
restrictions

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/aggregate-
Req 67 process/output-connection-restrictions

Test Method | Validate that there are no output-to-output connections, other than
from a component process to the output of the aggregate process to.

Test Type Capability

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/aggregate-process/multiple-connections

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/aggregate-
Req 68 process/multiple-connections

Test Method | Validate that there are no multiple connection within any given input
port.

Test Type Capability

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/aggregate-process/parameter-connection-
restrictions

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/aggregate-
Req 69 process/parameter-connection-restrictions

Copyright © 2014 Open Geospatial Consortium 187

Test Method | Validate that there are no parameters listed as a source in any path.

Test Type Capability

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/aggregate-process/property-connection-
restrictions

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/aggregate-
Req 70 process/property-connection-restrictions

Test Method | Validate that no properties other than inputs, outputs, and parameters
are included as a destination.

Test Type Capability

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/aggregate-process/input-connection-restrictions

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/aggregate-process/input-
Req 71 connection-restrictions

Test Method | Validate that all paths lead to valid ports.

Test Type Capability

188 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

B.4 Conformance Test Class: Physical Component Schema

Conformance Test Class

http://www.opengis.net/spec/sensorml/2.0/conf/xml/physical-component

Target Type | XML Instance

Dependency | http://www.opengis.net/spec/sensorml/2.0/conf/model/physical-component

Dependency | Http://www.opengis.net/spec/sensorml/2.0/conf/xml/simple-process

All tests in this conformance test class and in the following shall be used to check
conformance of XML instances created according to the schemas defined in this
standard. They shall also be used to check conformance of software implementations that
output XML instances.

B.4.1 Compliance with physical_component XML schemas and Schematron
patterns

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/physical-system/schema-valid

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/physical-system/schema-
Req 72 valid

Test Method | Validate the XML instance containing core process with the
“physical component.xsd” XML schema file and the Schematron
patterns in “physical component.sch”.

Test Type Capability

B.4.2 A physical process can only attach to a physical process

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/physical-component/attached-to-target

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/physical-
Req 73 component/attached-to-target

Test Method | Validate that the x/ink:href attribute for the attachedTo property
resolves to a PhysicalComponent or PhysicalSystem.

Test Type Capability

Copyright © 2014 Open Geospatial Consortium 189

B.4.3 The attachedTo element shall have xlink:title and xlink:href

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/physical-component/attached-to-reference

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/physical-
Req 74 component/attached-to-reference
Test Method | Validate that the attachedTo property has values for the xlink:href
and xlink:title attributes.
Test Type Capability

B.4.4 Position requires a DataRecord with two Vectors

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/physical-component/position-by-position

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/physical-
Req 75 component/position-by-position
Test Method | When the position element takes a swe:DataRecord as its value,
validate that the DataRecord contains two swe: Vector elements as its
fields.
Test Type Capability

B.4.5 Dynamic state requires a Data Array or Process

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/physical-component/dynamic-state

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/physical-
Req 76 component/dynamic-state
Test Method | Validate through inspection that time-tagged locations, positions, or
state values are provided by either swe:DataArray or a class derived
from sml:AbstractProcess.
Test Type Capability
190 Copyright © 2014 Open Geospatial Consortium

SensorML

O0GC 12-000

B.4.6 Trajectory requires a DataArray with a time field and one or more

Vectors

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/physical-component/position-by-trajectory

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/physical-
Req 77 component/position-by-trajectory
Test Method | When the position element takes a swe:DataArray as its value,
validate that the DataArray contains a time field and one or more
swe: Vector elements as its fields.
Test Type Capability

B.4.7 Process required for positions or state provided on-demand

Conformance Test
http://www.opengis.net/spec/sensorml/2.0/conf/xml/physical-component/position-by-process
Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/physical-

Req 78 component/position-by-process
Test Method | When the position element takes an instance of sml:AbstractProcess
as its value, validate that the output of the process contains a
swe:DataArray ~ with time-tagged trajectory data, or a
swe:DataRecord with time-tagged position or state data.
Test Type Capability

Copyright © 2014 Open Geospatial Consortium 191

B.5 Conformance Test Class: Physical System Schema

Conformance Test Class

http://www.opengis.net/spec/sensorml/2.0/conf/xml/physical-system

Target Type | XML Instance

Dependency http://www.opengis.net/spec/sensorml/2.0/conf/model/physical-system

Dependency http://www.opengis.net/spec/sensorml/2.0/conf/xml/aggregate-process

Dependency | http://www.opengis.net/spec/sensorml/2.0/conf/xml/physical-component

All tests in this conformance test class and in the following shall be used to check
conformance of XML instances created according to the schemas defined in this

standard. They shall also be used to check conformance of software implementations that
output XML instances.

B.5.1 Compliance with physical_system XML schemas and Schematron
patterns

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/physical-system/schema-valid

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/physical-system/schema-
Req 79 valid

Test Method | Validate the XML instance containing core process with the

“physical_system.xsd” XML schema file and the Schematron
patterns in “physical system.sch”.

Test Type Capability

192 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

B.6 Conformance Test Class: Configurable Process Schema

Conformance Test Class

http://www.opengis.net/spec/sensorml/2.0/conf/xml/configuration

Target Type | XML Instance

Dependency | http://www.opengis.net/spec/sensorml/2.0/conf/model/configuration

Dependency | http://www.opengis.net/spec/sensorml/2.0/conf/xml/core-process

All tests in this conformance test class and in the following shall be used to check
conformance of XML instances created according to the schemas defined in this

standard. They shall also be used to check conformance of software implementations that
output XML instances.

B.6.1 Compliance with configuration XML schemas and Schematron
patterns

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/configuration/schema-valid

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/configuration/schema-
Req 80 valid

Test Method | Validate the XML instance containing core process with the

“configuration.xsd” XML schema file and the Schematron patterns in
“configuration.sch”.

Test Type Capability

B.6.2 Modes can change values of parameters

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/configuration/mode-restriction

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/configuration/mode-
Req 81 restriction

Test Method | Validate that setValue references only parameter properties and only
parameter properties within the current process or parent process.

Test Type Capability

Copyright © 2014 Open Geospatial Consortium 193

B.6.3 Modes can only set values of parameters to those allowed by its

constraints

Conformance Test

http://www.opengis.net/spec/sensorml/2.0/conf/xml/configuration/parameter-values

Requirement | http://www.opengis.net/spec/sensorml/2.0/req/xml/configuration/parameter-
Req 82 values
Test Method | Validate that the parameter values set within Mode are within the
appropriate range as defined in the swe:AllowedValues property of
that parameter.
Test Type Capability
194 Copyright © 2014 Open Geospatial Consortium

SensorML OGC 12-000

Annex C
(normative)

UML to XML Schema Encoding Rules

This standard follows a model-driven approach to automatically generate the XML
Schema detailed in Section 8 from the UML models introduced in Section 7. The
encoding rules used by this standard to generate XML schema are derived from GML
encoding rules defined in ISO 19136.
A few changes have been introduced to GML encoding rules in order to accommodate for
Sensor Web Enablement specific needs. These changes are listed and explained below:
- Relaxed rule on the mandatory gml:id attribute. gml:id is thus optional in
SWE schemas.
- Introduced new stereotype for soft-typed-properties.
- Added support for encoding simple-type properties as XML attributes.
- Use different base type for <<Type>> stereotype (Elements are derived from
anyType and made substitutable for gml:AbstractValue instead of
gml:AbstractGML).

Copyright © 2014 Open Geospatial Consortium 195

Annex D: Revision History

Date Release Author Paragraph modified Description
2012-03-16 |2.0 draft |Mike Botts All Initial reviewed version
2012-07-27 (2.0 Mike Botts All Completed specification
2012-09-12 (2.0 John Greybeal All Edits and corrections throughout
2012-09-12 (2.0 Alex Robin All Edits and corrections throughout
2013-07-04 |2.0 Mike Botts All Final draft version
2013-10-29 (2.0 Mike Botts All Editorial and requirements
2013-12-03 (2.0 Mike Botts/Simon | All Final updates to model images and

Cox requirements references

196 Copyright © 2014 Open Geospatial Consortium

