

Copyright © 2014 Open Geospatial Consortium i

Open Geospatial Consortium

Publication Date: 2014-02-24

Submission Date: 2013-09-05

Reference number of this document: OGC 13-053r1

Reference URL for this document: http://www.opengis.net/doc/PER/chisp1-er

Category: Engineering Report

Editor(s): Panagiotis (Peter) A. Vretanos

OGC® CHISP-1 Engineering Report

Copyright © 2014 Open Geospatial Consortium.
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning
This document is not an OGC Standard. This document is an OGC Public
Engineering Report created as a deliverable in an OGC Interoperability Initiative
and is not an official position of the OGC membership. It is distributed for review
and comment. It is subject to change without notice and may not be referred to as
an OGC Standard. Further, any OGC Engineering Report should not be referenced
as required or mandatory technology in procurements.

Document type: OGC® Engineering Report
Document subtype: NA
Document stage: Approved for public release
Document language: English

OGC 13-053r1

ii

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below,
to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property
without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish,
distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to
do so, provided that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above
copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS
THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF
INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY
DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH
THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all
copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as
provided in the following sentence, no such termination of this license shall require the termination of any third party end-user
sublicense to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual
Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent,
copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license
without any compensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or
cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual
Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without
prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may
authorize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any
LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United
Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In the event any provision of this
Agreement shall be deemed unenforceable, void or invalid, such provision shall be modified so as to make it valid and enforceable,
and as so modified the entire Agreement shall remain in full force and effect. No decision, action or inaction by LICENSOR shall be
construed to be a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise exported or reexported in
violation of U.S. export laws and regulations. In addition, you are responsible for complying with any local laws in your jurisdiction
which may impact your right to import, export or use the Intellectual Property, and you represent that you have complied with any
regulations or registration procedures required by applicable law to make this license enforceable

Copyright © 2014 Open Geospatial Consortium iii

Contents Page

1.	
 INTRODUCTION 6	

1.1	
 Scope 6	

1.2	
 Document contributor contact points 7	

1.3	
 Future work 7	

1.3.1	
 Introduction 7	

1.3.2	
 Catalogue 7	

1.3.3	
 Big data handling 8	

1.3.4	
 Semantic mediation 8	

1.3.5	
 Service performance 8	

1.3.6	
 Subscription client enhancements 8	

1.3.7	
 ENS enhancements 9	

1.3.8	
 Nutrient Load Calculation Model enhancements 9	

1.4	
 Forward 9	

2.	
 REFERENCES 10	

3.	
 CONVENTIONS 14	

3.1	
 Abbreviated terms 14	

3.2	
 UML notation 15	

4.	
 NRCAN PROFILE OF SOS 15	

4.1	
 Introduction 15	

4.2	
 UML model 15	

4.3	
 Sequence diagrams 17	

4.3.1	
 Introduction 17	

4.3.2	
 Retrieving a time series 17	

4.3.3	
 Harvester algorithm 17	

4.3.4	
 SOS operations 19	

4.3.4.1	
 Introduction 19	

4.3.4.2	
 GetCapabilities 19	

4.3.4.3	
 DescribeSensor 19	

4.3.4.4	
 GetFeatureOfInterest 20	

4.3.4.5	
 GetObservation 20	

4.3.4.6	
 GetDataAvailability profile 21	

4.3.4.6.1	
 Introduction 21	

4.3.4.6.2	
 Offering parameter 21	

OGC 13-053r1

4

4.3.4.6.3	
 Extracting the last value 22	

5.	
 USE CASES 25	

5.1	
 Introduction 25	

5.2	
 Project participants 25	

5.2.1	
 Introduction 25	

5.2.2	
 Sponsors 25	

5.2.3	
 Participants 26	

5.3	
 Flood event and notification use case 26	

5.3.1	
 Introduction 26	

5.3.2	
 Area of interest 27	

5.3.3	
 Components 28	

5.3.3.1	
 Introduction 28	

5.3.3.2	
 Pre-existing components 29	

5.3.3.3	
 Components developed during CHISP-1 29	

5.3.4	
 Basic course of action 30	

5.3.4.1	
 Introduction 30	

5.3.4.2	
 Monitoring action 31	

5.3.4.3	
 Subscription activity 32	

5.3.4.4	
 Notification action 33	

5.4	
 Nutrient load calculation use case 37	

5.4.1	
 Introduction 37	

5.4.2	
 Components 37	

5.4.2.1	
 Pre-existing components 37	

5.4.2.2	
 Components developed during CHISP-1 38	

5.4.3	
 Basic course of action 38	

6.	
 COMPONENT DETAILS 40	

6.1	
 Upstream WPS 40	

6.1.1	
 Introduction 40	

6.1.2	
 Service endpoint 40	

6.1.3	
 Implementation details 40	

6.1.4	
 Operational details 40	

6.1.4.1	
 Introduction 40	

6.1.4.2	
 Process add_gauge_to_stream 40	

6.1.4.3	
 Process remove_gauge_from_stream 41	

6.1.4.4	
 Process find_upstream_gauges 41	

6.1.5	
 Examples 42	

6.2	
 Catalogue 43	

6.2.1	
 Introduction 43	

6.2.2	
 Service endpoint 43	

6.2.3	
 Implementation details 43	

6.2.4	
 Operational details 44	

6.2.5	
 Examples 45	

6.3	
 Event Notification Service 47	

Copyright © 2014 Open Geospatial Consortium 5

6.3.1	
 Introduction 47	

6.3.2	
 Service end points 48	

6.3.2.1	
 Servers and control components 48	

6.3.2.2	
 Test clients 48	

6.3.3	
 Implementation details 48	

6.3.4	
 Operational details 50	

6.3.4.1	
 Harvester 50	

6.3.4.2	
 Subscription broker 52	

6.3.4.2.1	
 Introduction 52	

6.3.4.2.2	
 Subscribe process 53	

6.3.4.2.3	
 Unsubscribe process 57	

6.3.4.2.4	
 Subscriber management 60	

6.3.4.2.4.1	
 Introduction 60	

6.3.4.2.4.2	
 RegisterUser operation 60	

6.3.4.2.4.3	
 GetUser operation 61	

6.3.4.2.5	
 Notification process 62	

6.3.4.3	
 Web notification service 65	

6.3.5	
 Issues 65	

6.4	
 GetDataAvailability 65	

6.5	
 Subscription client 66	

6.5.1	
 Introduction 66	

6.5.2	
 Client endpoint 66	

6.5.3	
 Implementation details 67	

6.5.4	
 Operational details 67	

6.6	
 Water Quality SOS 70	

6.6.1	
 Introduction 70	

6.6.2	
 Service end point 70	

6.6.3	
 Implementation details 70	

6.6.4	
 Operational details 71	

6.6.4.1	
 Introduction 71	

6.6.4.2	
 Architecture 71	

6.6.5	
 Examples 72	

6.6.6	
 Issues 74	

6.7	
 Nutrient Load Calculation WPS 74	

6.7.1	
 Introduction 74	

6.7.2	
 Client 74	

6.7.2.1	
 Client endpoint 74	

6.7.2.2	
 Implementation details 74	

6.7.2.3	
 Operational details 75	

6.7.3	
 Server 75	

6.7.3.1	
 Service endpoint 75	

6.7.3.2	
 Implementation details 76	

6.7.3.3	
 Operational details 76	

6.7.3.3.1	
 Introduction 76	

6.7.3.3.2	
 Process calc_nutrient_load 77	

6.7.3.4	
 Examples 77	

6.7.3.5	
 Issues 77	

OGC Engineering Report OGC 13-053r1

 6

OGC® CHISP-1 Engineering Report

1. Introduction

1.1 Scope

This document provides a technical description of the work completed for the
Climatology-Hydrology Information Sharing Pilot, Phase 1 project.

This document describes a profile of SOS, the NRCan GIN SOS 2.0 profile, developed in
order to define a baseline of interoperability among the sensor observation services used
in the project.

This document describes the use cases used to drive the component development during
the project. The first use case was a flood scenario that involved exchanging cross-
border hydrologic data with a unified alert service. The second use case involved
calculating nutrient loads to the Great Lakes, which also involved the cross-border
exchange of analytic data.

This document describes each component developed during the project and the
challenges encountered and overcome during the development. The newly developed
components include a nutrient load calculation client, a SOS integrating water quality
data form the U.S. and Canada, a nutrient load calculation service, an upstream gauge
service, a subscription client, and an event notification service composed of a number of
sub-components including a subscription broker, an observation harvester and a CAP
alert client.

OGC Engineering Report OGC 13-053r1

 7

1.2 Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

Name Organization Email Address
Dave Blodgett USGS dblodgett [at] usgs.gov
Eric Boisvert NRCan Eric.Boisvert [at] RNCan-NRCan.gc.ca
Nate Booth USGS Nlbooth [at] usgs.gov
Denis Boutin NRCan Denis.Boutin [at] RNCan-NRCan.gc.ca
Jean-Francois Bourgon NRCan Jean-Francois.Bourgon [at] RNCan-NRCan.gc.ca
Boyan Brodaric NRCan Boyan.Brodaric [at] NRCan-RNCan.gc.ca

欣永 Buck GIS-FCU Buck [at] gis.tw

Spencer Cox Explorus spencer.cox [at] explorus.org
Alex Crosby ASA acrosby [at] asascience.com
Laura DeCicco USGS ldecicco [at] usgs.gov

振宇 How GIS-FCU How [at] gis.tw

Alex Joseph Explorus alex.joseph [at] explorus.org
Tom Kralidis EC Tom.Kralidis [at] ec.gc.ca
Lew Leinenweber OGC lleinenweber [at] opengeospatial.org

友華 Orange GIS-FCU Orange [at] gis.tw

Yves Richard Explorus yves.richard [at] explorus.org

育縉 Tericky GIS-FCU Tricky [at] gis.tw

袁琿 Thomas GIS-FCU Thomas [at] gis.tw

Panagiotis (Peter) A. Vretanos CubeWerx Inc. pvretano [at] cubewerx.com

1.3 Future work

1.3.1 Introduction

This clause identifies work items that might be considered for future initiatives.

1.3.2 Catalogue

This project used the ISO profile of the OGC Catalogue specification. Such a catalogue
is specifically designed to maintain metadata about services and data and their
relationships. During the CHISP-1 project however, it was clear that other objects and
relationships needed to be catalogued. For example, metadata about gauge stations and
their relationship to the hydrographic network needed to be maintains and accessed and
this was not easily handled in an ISO based catalogue. A better choice would have been

OGC Engineering Report OGC 13-053r1

 8

an ebRIM based catalogue which includes a rich set of structures for cataloguing objects
of all kinds including classifying objects and maintaining arbitrary relationships between
those objects.

1.3.3 Big data handling

During this project an SOS profile was developed which, among other things, was
designed to compensate for shortcomings in the SOS standard related to handling large
networks of sensors. For example, in situations where large networks of sensors are
made accessible via SOS, managing the capabilities document of these services becomes
cumbersome because the content section can become quite large. A future work item
would be to enhance the SOS standard to handle large networks of sensors. This would
include work to enhance the GetCapabilities operation to allow large content sections to
be accessed more efficiently – perhaps employing paging or some simple query
capability to limit the number of items appearing in the response at one time.

1.3.4 Semantic mediation

The nutrient load calculation use case illustrated a need that commonly arises in cross-
border projects which is the need for semantic mediation of information. An example of
this was the need to mediate analyte names. During the CHISP-1 projects a SPARQL
server was deployed to investigate its use in this mediation role. However, the server was
never populated and so a future work item would be to complete the integration of the
SPARQL server into the system.

1.3.5 Service performance

The CHISP-1 project deployed a large number of services that interacted with each other.
Some of these services were not stable resulting in frequent service outages and
connection problems which required robust exception handling. This was particularly
true for components that operated on a periodic basis such as the Harvester module (see
6.3.4.1). Another example in clause 5.3.4.4 describes a performance issues with the
upstream WPS that required modifications to how notification actions were executed. A
future work item would be to (a) determine why the underlying services were having
performance and stability issues and (b) consider more fault tolerant system designs.

1.3.6 Subscription client enhancements

The following enhancements could be considered for the web-based subscription client:

 Include a search box to allow geo-search by name (e.g. user enters “Milk River”
and map zooms to Milk river area)

 The current set of data sources presented on the map is fixed and displayed in a
legend in the upper right. Allow sources to be dynamically discovered and added

OGC Engineering Report OGC 13-053r1

 9

to the map and make the legend dynamic to reflect which sources are currently
being displayed.

 Suggestion capability – when creating a subscription it would be useful if the
web-based subscription client could access historical information to suggest
values for the various input parameters.

1.3.7 Event Notification System enhancements

The CHISP-1 project has only considered subscription and notification via a web-based
browser client and email. However, there are many other standards that might be useful
in real world situations. Some examples include GeoSMS (see OGC 11-030r1), that can
send notification via SMS and can include all the spatial information that a subscriber
needs to know; GeoPackage (see OGC 12-128r1), a draft standard that allows mobile
applications to describe and store spatial information locally in a user’s mobile devices;
Geosync. (see OGC 10-069r1), that allows users to sync in-situ information back to
emergency management centres for further integration.

1.3.8 Nutrient Load Calculation Model enhancements

Because of issues with data availability and sparseness on the Canadian side, a simple
and ultimately non-scientifically correct model was used in the CHISP-1 project to
compute nutrient load. This approach – while yielding invalid results -- allowed us to
show that OGC services could be used to (a) provide the data to drive the model and (b)
make the model available as a service via WPS. A future work item would be to enhance
the model to account for the sparseness of observation and thus generate scientifically
valid results.

1.4 Forward

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. The Open Geospatial Consortium shall not be held
responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of
any relevant patent claims or other intellectual property rights of which they may be
aware that might be infringed by any implementation of the standard set forth in this
document, and to provide supporting documentation.

OGC Engineering Report OGC 13-053r1

 10

2. References

The following documents are referenced in this document. For dated references,
subsequent amendments to, or revisions of, any of these publications do not apply. For
undated references, the latest edition of the normative document referred to applies.

OGC 04-094, OpenGIS Web Feature Service (WFS) Implementation Specification,
Version 1.1.0

OGC 05-005r1, OpenGIS Web Processing Service, Version 1.0

OGC 06-042, OpenGIS Web Map Service (WMS) Implementation Specification,
Version 1.3.0

OGC 06-095r1, OpenGIS Web Notification Service, Version 0.0.9

OGC 07-006r1, OpenGIS Catalogue Services Specification, Version 2.0.2

OGC 07-045, OpenGIS Catalogue Services Specification 2.0.2 – ISO Metadata
Application Profile, Version 1.0.0

OGC 10-126r2, OGC WaterML 2.0: Part 1 – Timeseries

OGC 12-006, OGC Sensor Observation Service Interface Standard, Version 2.0

Common Alerting Protocol, Version 1.2, (http://docs.oasis-
open.org/emergency/cap/v1.2/CAP-v1.2.html)

OGC Engineering Report OGC 13-053r1

 11

Terms and definitions

For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard [OGC 06-121r3] shall apply. In addition, the following terms
and definitions apply.

3.1
Attribute
<XML>
name-value pair contained in an element

[ISO 19136:2007]

NOTE In this document an attribute is an XML attribute unless otherwise specified.

3.2
client
software component that can invoke an operation from a server

[ISO 19128:2005]

3.3
coordinate
one of a sequence of n numbers designating the position of a point in n-dimensional
space

[ISO 19111:2007]

3.4
coordinate reference system
coordinate system that is related to an object by a datum

[ISO 19111:2007]

3.5
coordinate system
set of mathematical rules for specifying how coordinates are to be assigned to points

[ISO 19111:2007]

3.6
element
<XML>
basic information item of an XML document containing child elements, attributes and
character data

OGC Engineering Report OGC 13-053r1

 12

[ISO 19136:2007]

3.7
feature
abstraction of real world phenomena

[ISO 19101:2002]

NOTE A feature can occur as a type or an instance. The term "feature type" or "feature instance"
should be used when only one is meant.

3.8
feature identifier
identifier that uniquely designates a feature instance

3.9
filter expression
predicate expression encoded using XML

[ISO 19143]

3.10
harvester
a module of the event notification system responsible for monitoring the last observed
value of water monitoring stations

3.11
Harvest operation
an operation defined by the CSW standard that may be used to automatically register
resources (e.g. services) with the catalogue

3.12
interface
named set of operations that characterize the behaviour of an entity

[ISO 19119:2005]

3.13
namespace
<XML>
collection of names, identified by a URI reference which are used in XML documents as
element names and attribute names

[W3C XML Namespaces]

OGC Engineering Report OGC 13-053r1

 13

3.14
operation
specification of a transformation or query that an object may be called to execute

[ISO 19119:2005]

3.15
property
facet or attribute of an object, referenced by a name

[ISO 19143]

3.16
request
invocation of an operation by a client

[ISO 19128:2005]

3.17
response
result of an operation returned from a server to a client

[ISO 19128:2005]

3.18
server
particular instance of a service

[ISO 19128:2005]

3.19
service
distinct part of the functionality that is provided by an entity through interfaces

[ISO 19119:2005]

3.20
service metadata
metadata describing the operations and geographic information available at a server

[ISO 19128:2005]

3.21
Uniform Resource Identifier
unique identifier for a resource, structured in conformance with IETF RFC 2396

OGC Engineering Report OGC 13-053r1

 14

[ISO 19136:2007]

NOTE The general syntax is <scheme>::<scheme-specified-part>. The hierarchical syntax with a
namespace is <scheme>://<authority><path>?<query>

3. Conventions

3.1 Abbreviated terms

AOI Area of interest

API Application Program Interface
BBOX Bounding box

CHISP Climatology-Hydrology Information Sharing Pilot
CRS Coordinate Reference System

EC Environment Canada
EMA Emergency Management Analyse

ER Engineering Report
FES Filter Encoding Standard

GDA GetDataAvailability operation
GML Geography Markup Language

HTTP Hypertext Transfer Protocol
KVP Keyword-Value Pair

NLCS Nutrient Load Calculation Service
NRCan Natural Resources Canada

SOS Sensor Observation Service
UML Unified Modelling Language

USGS United States Geological Survey
WFS Web Feature Service

WPS Web Processing Service
WQA Water Quality Analyst

WML Water Markup Language
WSGI Web Server Gateway Interface

XML Extensible Markup Language

OGC Engineering Report OGC 13-053r1

 15

3.2 UML notation

Most diagrams that appear in this standard are presented using the Unified Modelling
Language (UML) static structure diagram, as described in Sub-clause 5.2 of [OGC 06-
121r3].

4. NRCan profile of SOS

4.1 Introduction

This clause describes a profile of SOS 2.0 (see OGC 12-006) developed by NRCan and
used in the CHISP-1 project as an interoperable baseline of capabilities.

The profile is named “The NRCan Profile of SOS 2.0 for CHISP-1” but is typically
referred to as the “NRCan profile” or the “NRCan profile of SOS” in this document.

All SOS’s deployed in the CHISP-1 project were implemented or were modified to
conform to this profile.

4.2 UML model

Figure 1 illustrates the UML model that describes the NRCan profile. The main features
of the profile as implemented for the CHISP-1 project are:

1. The service shall implement the GetCapabilities, DescribeSensor,
GetObservations, GetFeatureOfInterest and GetDataAvailability operations.

2. The service shall support the spatial filtering profile.

3. The service shall support the BBOX operator for the KVP binding (see
http://www.opengis.net/spec/SOS/2.0/req/kvp-core/go-bbox-encoding,
requirement 116).

4. The service shall implement WaterML 2.0.

5. For the GetDataAvailability operation, the “offering” parameter shall be
mandatory.

6. The feature of interest shall be a SamplingFeature.

7. Extracting the last observation from a time series shall be performed using a
GetObservation request (see 4.3.3)

OGC Engineering Report OGC 13-053r1

 16

Figure 1 – UML Model for the NRCan SOS 2.0 Profile for CHISP-1

OGC Engineering Report OGC 13-053r1

 17

4.3 Sequence diagrams

4.3.1 Introduction

The following sequence diagrams illustrates how to obtain a time series for a specific
feature of interest and also illustrates the Harvester algorithm (see 4.3.3) used to obtain
the last observed value for a procedure, which is loaded into the system catalogue.

4.3.2 Retrieving a time series

The following sequence diagram (see Figure 2) illustrates how to retrieve a time series
from an SOS that is compliant with the NRCan profile.

Figure 2 – Sequence diagram for fetching a time series

4.3.3 Harvester algorithm

The following sequence diagram illustrates the harvesting algorithm that is used to
populate the catalogue with the last observed value of an observable.

The metadata that needs to be gathered by the harvester and stored in the catalogue
includes the URL of the sensor observation service, the feature of interest, the observable,
its last value and the timestamp.

The harvesting algorithm (see Figure 3) proceeds as follows:

OGC Engineering Report OGC 13-053r1

 18

 The harvester module uses the GetCapabilities request to determine the available
observables and their extents (observedArea).

 Using a GetFeatureOfInterest request, the harvester gets all the features of interest
(using a BBOX) over the entire AOI.

 For each returned feature of interest, the GetDataAvailability request is used to
determine the parameter values necessary to formulate a GetObservation request
to read the last value.

 The GetObservation request is executed to extract the last value.

 The last value is stored in the catalogue along with the URL of the service, the
FOI, the observable, the last value and a timestamp.

Figure 3 – Sequence diagram for the harvester algorithm

It should be noted that the AOI can be segregated into sub-regions and the entire last
value harvesting method can be parallelized. That is, multiple harvesters can be running
processing sub-regions of the AOI thus allowing the harvesting process to be scaled as
required.

OGC Engineering Report OGC 13-053r1

 19

4.3.4 SOS operations

4.3.4.1 Introduction

This clause discusses the features of the NRCan profile by using example SOS requests,
encoded using both KVP and XML.

4.3.4.2 GetCapabilities

The following request causes a compliant SOS to generate service metadata in the form
of an OGC capabilities document:

http://ngwd-bdnes.cits.nrcan.gc.ca:8080/proxy/GinService/sos/gw?REQUEST=GetCapabilities&SERVICE=SOS&VERSION=2.0.0

The salient portion of the response is presented here and illustrates the profile directives
that a SOS compliant with the NRCan profile would include in its capabilities document:
<ows:Profile>http://www.opengis.net/spec/SOS/2.0/conf/gfoi</ows:Profile>

<!-- TODO: add KVP BBOX profile when implemented -->
<!-- Observation can be queries using spatial geometry expressed in param --></pre>
<ows:Profile>http://www.opengis.net/spec/SOS/2.0/conf/spatialFilteringProfile</ows:Profil
e>

<!-- sampling feature must have a point geometry -->
<ows:Profile>http://www.opengis.net/spec/OMXML/2.0/conf/samplingPoint</ows:Profile>

<!-- Observation encoded with GML 3.2 XML-->
<ows:Profile>http://www.opengis.net/spec/OMXML/2.0/conf/observation</ows:Profile>

<!-- this service implement WaterML 2.0 -->
<ows:Profile>http://www.opengis.net/spec/waterml/2.0/conf/xsd-measurement-timeseries-tvp-
observation</ows:Profile>

4.3.4.3 DescribeSensor

The following two examples encode the same DescribeSensor request -- one using the
KVP encoding and the other using the XML encoding.

KVP-encoded example:
http://198.103.103.7/GinService/sos?REQUEST=DescribeSensor&VERSION=2.0.0&SE
RVICE=SOS&procedure=urn:ogc:object:Sensor::EC_WaterFlowProcess&procedurDesc
riptionFormat=http://www.opengis.net/sensorML/1.0.1

XML-encoded example:
<swes:DescribeSensor
 service="SOS"
 version="2.0.0"
 xmlns="http://www.opengis.net/swes/2.0"
 xmlns:sos="http://www.opengis.net/sos/2.0"
 xmlns:fes="http://www.opengis.net/fes/2.0"
 xmlns:gml="http://www.opengis.net/gml/3.2"
 xmlns:swe="http://www.opengis.net/swe/2.0"

OGC Engineering Report OGC 13-053r1

 20

 xmlns:swes="http://www.opengis.net/swes/2.0"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <procedure>urn:ogc:object:Sensor::EC_WaterLevelProcess</procedure>
<procedureDescriptionFormat>http://www.opengis.net/sensorML/1.0.1</proc
edureDescriptionFormat>
</swes:DescribeSensor>

4.3.4.4 GetFeatureOfInterest

The following KVP-encoded request illustrates a GetFeatureOfInterest request employing
a BBOX spatial filter:

http://198.103.103.7/GinService/sos?REQUEST=GetFeatureOfInterest&VERSION=2.0.
0&SERVICE=SOS&spatialFilter=om:featureOfInterest/*/sams:shape,-101.2,49,-
99.5,50.1&namespaces=xmlns(sams,http://www.opengis.net/samplingSpatial/2.0),xmlns(
om,http://www.opengis.net/om/2.0

This following XML-encoded request similarly includes a spatial predicate on the
GetFeatureOfInterest request:
<sos:GetFeatureOfInterest
 service="SOS"
 version="2.0.0"
 xmlns:sos="http://www.opengis.net/sos/2.0"
 xmlns:fes="http://www.opengis.net/fes/2.0"
 xmlns:gml="http://www.opengis.net/gml/3.2"
 xmlns:sams="http://www.opengis.net/spatialSampling/2.0">
 <sos:spatialFilter>
 <fes:Intersects>
 <fes:ValueReference>sams:shape</fes:ValueReference>
 <gml:Envelope srsName="urn:ogc:def:crs:EPSG::4326">
 <gml:lowerCorner>49 -140</gml:lowerCorner>
 <gml:upperCorner>60 -110</gml:upperCorner>
 </gml:Envelope>
 </fes:Intersects>
 </sos:spatialFilter>
</sos:GetFeatureOfInterest>

Finally, the following KVP-encoded request illustrates a GetFeatureOfInterest request
employing an identifier to retrieve a specific feature of interest:

http://198.103.103.7/GinService/sos?REQUEST=GetFeatureOfInterest&VERSION=2.0.
0&SERVICE=SOS&featureOfInterest=ca.gc.ec.station.11AA001

4.3.4.5 GetObservation

The following KVP and XML encoding examples encode the same request:

KVP-encoded example:
http://198.103.103.7/GinService/sos?REQUEST=GetObservation&VERSION=2.0.0&SE

OGC Engineering Report OGC 13-053r1

 21

RVICE=SOS&offering=WATER_LEVEL&featureOfInterest=ca.gc.ec.station.05NG021
&observedProperty=urn:ogc:def:phenomenon:OGC:1.0.30:waterlevel

XML-encoded example:
<sos:GetObservation
 service="SOS"
 version="2.0.0"
 xmlns:sos="http://www.opengis.net/sos/2.0"
 xmlns:fes="http://www.opengis.net/fes/2.0"
 xmlns:gml="http://www.opengis.net/gml/3.2"
 xmlns:swe="http://www.opengis.net/swe/2.0"
 xmlns:swes="http://www.opengis.net/swes/2.0"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/sos/2.0
 http://schemas.opengis.net/sos/2.0/sos.xsd
 http://www.opengis.net/gml/3.2
 http://schemas.opengis.net/gml/3.2.1/gml.xsd">
 <sos:offering>WATER_LEVEL</sos:offering>
<sos:observedProperty>urn:ogc:def:phenomenon:OGC:1.0.30:waterlevel</sos
:observedProperty>
<sos:featureOfInterest>ca.gc.ec.station.05NG021</sos:featureOfInterest>
</sos:GetObservation>

4.3.4.6 GetDataAvailability profile

4.3.4.6.1 Introduction

For the NRCan profile is it mandatory to implement the GetDataAvailability request that
plays an important role in this project because it provides the means by which the last
value of a procedure can be monitored by the notification system.

This clause discusses various aspects of the GetDataAvailabilty operation including why
the profile makes the offering parameter mandatory and how to use the operation to
extract the last value.

4.3.4.6.2 Offering parameter

For CHISP, it is proposed that the offering be a mandatory item in the request. The
reason for this is illustrated in the following example:

The NRCan SOS service (see 5.3.3.2) provides the same observed property and
procedure in two different offerings, WATER_FLOW and WATER_FLOW_LIVE. The
only difference between them is the time span and the features of interest.

Offering: WATER_FLOW_LIVE

OGC Engineering Report OGC 13-053r1

 22

 WATER_FLOW_LIVE has only 10 features of interest and values from around
2011 to now

 Observed property : water flow
("urn:ogc:def:phenomenon:OGC:1.0.30:waterflow")

 procedure : Water flow process
("urn:ogc:object:Sensor::EC_WaterFlowProcess")

Offering: WATER_FLOW

 WATER FLOW has historical data for a large number of features of interest,
including the 10 present in LIVE, but the observation are all BEFORE 2011.

 Observed property : water flow
("urn:ogc:def:phenomenon:OGC:1.0.30:waterflow")

 procedure : Water flow process
("urn:ogc:object:Sensor::EC_WaterFlowProcess")

Because some features of interest actually appear in both offerings (05NB036 is an
example), a GetDataAvailability response will be ambiguous if the request does not
specify an offering (the service considers all offerings to be in scope - WATER_FLOW
and WATER_FLOW_LIVE). This might further encourage the omission of an offering
from an SOS GetObservation request, which could result in only one value returned
instead of two.

Although not clearly stated in the SOS specification (see OGC 12-006), the time span
should probably be an aggregation of both time spans from both offerings.

4.3.4.6.3 Extracting the last value

This clause discusses how the GetDataAvailability operation may be used to determine
the request parameters for a GetObservation request that may be used to extract the last
observed value for an offering of a feature of interest.

Consider the following KVP-encoded request is an example of the GetDataAvailability
operation.

http://198.103.103.7/GinService/sos?REQUEST=GetDataAvailability&VERSION=2.0.0
&SERVICE=SOS&featureOfInterest=ca.gc.ec.station.01AJ013&offering=WATER_FL
OW

OGC Engineering Report OGC 13-053r1

 23

The GetDataAvailability operation can includes parameters to specify a procedure, an
observation, a feature of interest, the offering and a time range. By default, if a value is
not specified for a parameter, then the entire range of values for that parameter is
included in the response.

Consider the following example which is requesting all procedures and observations
related to feature of interest 05NB036 for offering WATER_FLOW_LIVE during 1900-
01-01T12:00:00 to 2013-12-12T23:59:59.

o procedure = ? (response will include all matching procedures)

o observation = ? (response will include all matching observations)

o featureOfInterest = 05NB036

o offering = WATER_FLOW_LIVE

o time range = 1900-01-01T12:00:00 to 2013-12-12T23:59:59
Because we did not specify an observed property or a procedure in the request, the
response will return all observed properties and procedures in the context of that offering,
feature of interest and time span. Here is the request encoded as XML:

<gda:GetDataAvailability
 version="2.0.0"
 service="SOS"
 xmlns:gml="http://www.opengis.net/gml/3.2"
 xmlns:gda="http://www.opengis.net/sosgda/1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/sosgda/1.0
file:///W:/LCNP/Normes/SOS/SOS2/GetDataAvailability_Extension/xsd/sosGe
tDataAvailability.xsd">
 <gda:availabilityTimeframe>
 <gml:TimePeriod gml:id="x">
 <gml:beginPosition>1900-01-01T12:00:00</gml:beginPosition>
 <gml:endPosition>2013-12-12T23:59:59</gml:endPosition>
 </gml:TimePeriod>
 </gda:availabilityTimeframe>
 <gda:featureOfInterest>05NB036</gda:featureOfInterest>
 <gda:offering>WATER_FLOW_LIVE</gda:offering>
</gda:GetDataAvailability>

Notice, that as per the NRCan profile the request includes a mandatory offering. A
minimal response to this request might be:
<?xml version="1.0" encoding="UTF-8"?>
<gda:GetDataAvailabilityResponse
 xmlns:swes="http://www.opengis.net/swes/2.0"
 xmlns:gml="http://www.opengis.net/gml/3.2"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:gda="http://www.opengis.net/sosgda/1.0"

OGC Engineering Report OGC 13-053r1

 24

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/sosgda/1.0
file:///W:/LCNP/Normes/SOS/SOS2/GetDataAvailability_Extension/xsd/sosGe
tDataAvailability.xsd">
 <gda:featurePropertyRelationship>
 <gda:FeaturePropertyTemporalRelationship
 xmlns:gml="http://www.opengis.net/gml/3.2">
 <gda:phenomenonTime>
 <gml:TimePeriod gml:id="x1">
 <gml:beginPosition>2011-05-
15T23:16:00</gml:beginPosition>
 <gml:endPosition>2013-01-14T14:00:00</gml:endPosition>
 </gml:TimePeriod>
 </gda:phenomenonTime>
 <gda:targetFeature xlink:href="#foi_05NB036"/>
 <gda:targetProperty xlink:href="#water_flow"/>
 </gda:FeaturePropertyTemporalRelationship>
 </gda:featurePropertyRelationship>
 <gda:propertyEntryPoint>
 <gda:ObservedPropertyInfo swes:id="water_flow">
<gda:property>"urn:ogc:def:phenomenon:OGC:1.0.30:waterflow"</gda:proper
ty>
 </gda:ObservedPropertyInfo>
 </gda:propertyEntryPoint>
 <gda:featureOfInterestEntryPoint>
 <gda:FeatureOfInterestInfo swes:id="foi_05NB036">
 <gda:feature>05NB036</gda:feature>
 <gda:relatedProperty xlink:href="#water_flow"/>
 </gda:FeatureOfInterestInfo>
 </gda:featureOfInterestEntryPoint>
</gda:GetDataAvailabilityResponse>

The salient fragment from this response is:

<gda:FeaturePropertyTemporalRelationship
 xmlns:gml="http://www.opengis.net/gml/3.2">
 <gda:phenomenonTime>
 <gml:TimePeriod gml:id="x1">
 <gml:beginPosition>2011-05-15T23:16:00</gml:beginPosition>
 <gml:endPosition>2013-01-14T14:00:00</gml:endPosition>
 </gml:TimePeriod>
 </gda:phenomenonTime>
 <gda:targetFeature xlink:href="#foi_05NB036"/>
 <gda:targetProperty xlink:href="#water_flow"/>
</gda:FeaturePropertyTemporalRelationship>

which essentially says that the feature of interest is related to water flow observation over
the time period 2011-05-15 to 2013-01-14. Given this fragment, the two methods that
may be employed to extract the last observed water flow value for the feature of interest
05NB036:

OGC Engineering Report OGC 13-053r1

 25

1. Because we know the time period from the fragment above, we now have all the
information necessary to formulate a GetObservation request to obtain the last
value.

2. Alternatively, we could take advantage of the fact that the specification for the
GetDataAvailability operation supports an extension point that could be exploited
to allow us to include the last value in question in the response above without
forcing a second request from the client application as proposed by
option (1).

In order to avoid the use of an extension point in an ad-hoc manner the NRCan profile
proposed to use the first method (i.e. formulate a GetObservation request).

5. Use cases

5.1 Introduction

Two use cases were developed in the initial stages of the CHISP-1 project that were used
to drive the development of the system architecture and ultimately the components
developed by the project participants. The first use case was a flood event use case. The
second use case was a nutrient load calculation use case. This clause describes these use
cases as they ultimately manifested themselves during the course of the CHISP-1 project
and were present at the final webinar.

5.2 Project participants

5.2.1 Introduction

This clause lists the CHISP-1 project sponsors and participants.

5.2.2 Sponsors

The CHISP-1 project was sponsored by the following organizations:

 Environment Canada

 Natural Resources Canada (NRCan)

 GeoConnections

 NRCan Groundwater Geoscience Program

 US Geological Service (USGS)

OGC Engineering Report OGC 13-053r1

 26

 Environmental Protection Agency (EPA)

 National Oceanic and Atmospheric Administration (NOAA)

In addition to sponsoring the project, Environment Canada, NRCan and USGS
participated in the project by enhancing their offerings to conform to the NRCan profile
(see Clause 4).

5.2.3 Participants

The following organizations were projects participants responsible for the bulk of the
new components developed during the CHISP-1 project (see Table 2, Table 4):

 Explorus (http://www.explorus.org)

 GIS.FCU (http://www.gis.tw/En/)

 RPS ASA (http://www.asascience.com/)

5.3 Flood event and notification use case

5.3.1 Introduction

The flood event and notification use case focuses on monitoring cross-border stream flow
and groundwater levels in order to detect when a potential flood event may be occurring.
When a potential flood event is detected a unified alert service is used to notify EM
analysts who have subscribed with the system to be notified of such events.

The use case can be broken down into three activities:

1. An on-going monitoring activity where the system periodically monitors stream
and ground water gauges and tracks water flow and water level values.

2. A subscription activity where an emergency management analyst indicates his/her
desire to be notified of an event of interest – such as an imminent flood – by
choosing a monitoring point and specifying threshold parameters that signal the
beginning of a potential flood. The event notification system automatically
subscribes the EM analyst to monitor all the stations upstream of the specified
point on interest.

3. A notification activity where the system checks the monitored values from
activity (1) against the thresholds specified in activity (2) to determine if a flood is
imminent and notification of the EM analyst is required.

OGC Engineering Report OGC 13-053r1

 27

This clause described the components used and the basic course of action for each of
these activities as developed during the CHISP-1 project.

5.3.2 Area of interest

Two basins with potions in both the U.S. and Canada were considered as areas of interest
for the CHISP-1 project.

Milk River Basin:
The Milk River basin includes parts of Alberta, Saskatchewan, and Montana (see Figure
4).

Figure 4 – Milk River Basin

Source: http://www.umt.edu/watershedclinic/images/clip_image002.jpg

Souris River Basin:
The Souris River basin includes parts of Manitoba, North Dakota, and Saskatchewan (see
Figure 5). The Souris River flows into the Assiniboine River, and then into the Red
River and Lake Winnipeg, which is part of the Hudson Bay. The Souris River basin
shows the locations of stream gauges as green circles.

OGC Engineering Report OGC 13-053r1

 28

Figure 5 – Souris River Basin

Source: http://nd.water.usgs.gov/floodinfo/souris.html

The available data for both river basins was inspected to find a suitable historical flood
event that could be used to drive component developed in CHISP-1 and that could also be
used for the demo at the end of the project. The chosen event was the 2011 flood on the
Milk River that occurred in the months of April and May.

5.3.3 Components

5.3.3.1 Introduction

This clause lists the components used for the flood event and notification use case. The
components are segregated into pre-existing components that were immediately available
for the CHISP-1 profile and components developed during the CHISP-1 project.

OGC Engineering Report OGC 13-053r1

 29

It should be noted that some of the pre-existing SOS components were modified during
the course of the CHISP-1 project to conform to the NRCan profile (see Clause 4) .

5.3.3.2 Pre-existing components

Table 1 lists the components for the flood event and notification use case that already
existed at the start of project.

The table lists the name of the component and what kinds of information it provides, the
organization providing the component, the standard to which the API of the component
conforms and the standard to which the output format provided by the component
conforms.

Table 1 – Pre-existing components for the flood event and notification use case

Component Provider Standard Output Format

1. Sensor Observation Service
(Water Level, Water Flow, historic &
live)

Environment Canada
(via NRCan)

SOS 2.0 WaterML 2.0

2. Sensor Observation Service
(Groundwater Level)

NRCan SOS 2.0 WaterML 2.0

3. Sensor Observation Service
(Water Level, Water Flow)

USGS SOS 2.0 WaterML 2.0

4. Web Feature Service
(Station info)

USGS WFS 1.1.0 WaterML 2.0

5. Web Processing Service
(Upstream geometry NHD/NHN)

NRCan WPS 1.0 WPS 1.0

6. Web Map Service
(Stream segments)

NRCan WMS
1.3.0

Map image
(png,gif,jpg,wbmp,svg)

7. Multi-agency Situational Awareness
System (MASAS Common Alert
Protocol system)

Government of Canada ad-hoc Common Alert
Protocol (CAP)
Messages

5.3.3.3 Components developed during CHISP-1

Table 2 lists the components for the flood event and notification use case that were
developed during the CHISP-1 project.

OGC Engineering Report OGC 13-053r1

 30

The table lists the name of each component and brief statement about what the
component does and/or what kind of information it provides, the organization providing
the component, the standard to which the API of the component conforms and the
standard to which the output format provided by the component conforms.

Table 2 -
Components developed during CHISP-1 for the flood event and notification use case

Component Provider Standard Output Format

1. Web-based subscription client
(Subscribe to upstream stations)

Explorus N/A N/A

2. Event Notification Service
(Monitor stations, flood even notification)

GIS.FCU N/A N/A

3. Web Notification Service
(Does notifications to subscribers)

GIS.FCU WNS 0.0.9 email

4. Web Processing Service
(Upstream stations/gauges)

ASA WPS 1.0 WPS1.0

5. Catalogue
(Service metadata, Station metadata)

Explorus
(Hosted pycsw
instance)

CSW 2.0.2
APISO 1.0.0

ISO19115, ISO19119,
OGC Core (csw:Record)

The event notification service, Component 2 in Table 2, is composed of the sub-
components:

 A harvester module that monitors upstream stations and gauges. This component
is also referred to as the “harvester” in this document.

 A subscription broker that handles subscriptions and checks whether notification
is required. This component is also referred to as the “broker” in this document.

 An OGC compliant web notification service (see Table 2, Component 3) that
performs the notification to subscribers.

5.3.4 Basic course of action

5.3.4.1 Introduction

The flood event and notification use case can be segregated into three actions:

OGC Engineering Report OGC 13-053r1

 31

1. An ongoing monitoring action where the system periodically monitors stream and
ground water gauges and tracks their last value.

2. A subscription action where an emergency management analyst indicates his/her
desire to be notified of an event of interest – such as a flood – by choosing a
monitoring point, specifying event threshold parameters and having the system
automatically subscribe to all the stations upstream of the specified point of
interest.

3. A notification action where the system checks the monitored values from activity
(1) against thresholds specified in activity (2) to determine if a flood is imminent
and notification is required.

5.3.4.2 Monitoring action

The following course of actions, as illustrated in Figure 6, is performed by the event
notification system to monitor the last observed value for gauges on the network. Each
numbered item in this list corresponds to a circled number in Figure 6.

1. The harvester periodically reads the last observed value from gauges on the
network.

2. The harvester stores these values as part of the metadata maintained in the CSW
(see Table 2, Component 5) for each station.

3. Whenever the harvester reads a value that has changed it notifies the broker of the
change.

4. This causes the broker to read the changed value from the CSW (see Table 2,
Component 5).

At this point, the broker executes the course of action required to determine if a
notification must be send out (see 5.3.4.4).

OGC Engineering Report OGC 13-053r1

 32

Figure 6 – Basic course of action for the monitoring activity

5.3.4.3 Subscription activity

The following course of actions, as illustrated in Figure 7, is performed by the event
notification system to register a subscription for an emergency management analyst. The
subscription indicates to the system that the analyst is interested in being notified of an
imminent flood at a point of interest. Each numbered item in this list corresponds to a
circled number in Figure 7.

1. An emergency manager analyst uses the web client to show water monitoring
stations on a map. Figure 17 is a detailed example of such a map.

2. The analyst chooses a station or monitoring point of interest.

3. The causes the broker to get the list of upstream stations to monitor using the
upstream WPS and is then used to create a subscription. Figure 18 provides a
detailed illustration of the dialogue box presented to the client in order to create a
subscription.

OGC Engineering Report OGC 13-053r1

 33

4. The broker then registers the subscription with the WNS.

Figure 7 – Subscription action

5.3.4.4 Notification action

The following course of actions, as illustrated in Figure 8, is performed by the event
notification system to determine if an event of interest has occurred and if it has to notify
subscribers. Each numbered item in the list bellow corresponds to a circled number in
Figure 8.

Editor’s Note: The original intent, with the notification action, was to have the ENS call
the upstream WPS during each polling interval to get an up-to-date sensor list. Thus, if
any new sensors were added to the network they would automatically be picked up for
monitoring by the ENS. However, because of performance reasons -- the upstream WPS
was slow to respond – this functionality was disabled and the ENS only checked the
upstream WPS for the list of sensors once when the subscription was created. For the
CHISP-1 pilot this was a reasonable fix for this performance issue because the sensor
network was static. Thus, this clause describes the notification action as it was actually

OGC Engineering Report OGC 13-053r1

 34

executed during the pilot.

The notification action proceeds as follows:

1. When notified by the harvester (see 5.3.4.2), the broker reads the last value from
the CSW.

2. If the value violates a subscription threshold (e.g. the water level has risen above a
set threshold) the broker creates a notification email.

3. The event notification system uses the WNS to do the notification.

4. The WNS sends the notification email created in step 2 to the EM analyst.

5. Among other things, the notification email includes a link to invoke a CAP Alert

6. The EM analyst can click the CAP Alert link which brings up a dialogue box to
create the alert (see Figure 10).

7. The alert is then sent to the MASAS hub which is responsible for distributing the
alert.

Figure 8 – Notification action

OGC Engineering Report OGC 13-053r1

 35

Figure 9 is a sample of a notification email generated by the event notification system
and sent to subscribers by the WNS when an event of interest occurs. The email includes

 Metadata about the subscription

 A map showing the station locations

o the status of each station in indicated by color

o blue indicates that the last observed values from the corresponding station
has not exceeded subscription thresholds

o red indicates that the last observed value from the corresponding station
has exceeded subscription threshold

 A table listing all the upstream stations. The table includes the station id, the last
measured values for water level, water flow and ground water level and the time
the value was read. Any stations whose measured values exceed the specified
subscription thresholds are highlighted in red in the table.

 Depending of the role of user, the email may also contain a link that may be
invoked to send a CAP alert using the MASAS system.

OGC Engineering Report OGC 13-053r1

 36

Figure 9 – Notification email

Figure 10 show the dialogue box that is presented to the EM analyst if he/she chooses to
invoke the “Cap Alert” link. The dialogue allows the EM analyst to fill in the detail of
the alert which is submitted to the MASAS hub for distribution when the “Submit” button
is clicked.

OGC Engineering Report OGC 13-053r1

 37

Figure 10 – MASAS posting tool

5.4 Nutrient load calculation use case

5.4.1 Introduction

The Nutrient Load Calculation use case computes known nutrient loads to the Great
Lakes from tributaries, using web-accessible inputs of water quality observations and
flow rates, to produce web-accessible outputs of nutrient loads. The use case focuses on
the analytes Phosphorus and Nitrogen.

5.4.2 Components

5.4.2.1 Pre-existing components

Table 3 lists the components for the nutrient load calculation use case that already existed
at the start of the CHISP-1 project.

The table lists the name of the component and what kinds of information it provides, the
organization providing the component, the standard to which the API of the component
conforms and the standard to which the output format provided by the component
conforms.

Table 3 – Pre-existing components for the nutrient load calculation use case

OGC Engineering Report OGC 13-053r1

 38

Component Provider API
Standard

Output Format
Standard

1. Sensor Observation Service
(Water Level, Water Flow, historic & live)

Environment Canada
(via NRCan)

SOS 2.0 WaterML V2.0

2. Sensor Observation Service
(Water Level, Water Flow)

USGS SOS 2.0 WaterML V2.0

5.4.2.2 Components developed during CHISP-1

Table 4 lists the components for the flood event and notification use case that were
developed and deployed during the CHISP-1 project.

The table lists the name of each component and brief statement about what the
component does and/or what kind of information it provides, the organization providing
the component, the standard to which the API of the component conforms and the
standard to which the output format provided by the component conforms.

Table 4 – Components developed during CHISP-1 for the nutrient load calculation use case

Component Provider API Standard Output Format
Standard

1. Web Processing Service
(Nutrient load calculation)

ASA WPS 1.0 WPS 1.0

2. Sensor Observation Service
(Integrates US and CAN water quality servers)

ASA SOS 2.0 IOOS SWE
XML

3. Nutrient Load Calculation Web Client ASA N/A N/A

4. Local catalogue
(Catalogue of streams, tributaries and water
quality gauges)

ASA Django Database
Abstraction API

N/A

5. SPARQL Server
(Analyte equivalents US, CAN)

NRCan SPARQL RDF

5.4.3 Basic course of action

Figure 11 illustrates the basic course of actions for the nutrient load calculation use case.
Each numbered item in this list corresponds to a circled number in Figure 11:

OGC Engineering Report OGC 13-053r1

 39

1. A WQA initiates the nutrient load calculation web client and provides these
inputs: a Great Lake of interest, the name of an analyte, a time period of interest

2. The web client invokes the nutrient load calculation WPS to run the model.

3. The nutrient load calculation WPS queries the local catalog for tributaries on the
lake of interest that have both a stream gauge and water quality samples available
for the nutrient of interest.

4. For the stations returned by the catalogue query, the NLCS makes requests to the
water quality and stream flow SOS services

5. The nutrient load calculation WPS interpolates the water quality and stream flow
measurements for the period specified by the request. It calculates nutrient flux
from the interpolated measurements and numerically integrates the results to
determine the total load over the period of interest for each tributary

6. It sums all of the tributaries' contributions for the total load on the lake
(converting units between standard and SI where appropriate) ... and presents the
results to the WQA

Figure 11 – Nutrient Load Calculation Use Case

OGC Engineering Report OGC 13-053r1

 40

6. Component details

6.1 Upstream WPS

6.1.1 Introduction

The function of the upstream WPS is, given a point of interest, to determine which water
monitoring stations or gauges exist upstream of that point.

6.1.2 Service endpoint

The service endpoint for the upstream WPS can be found at:

http://64.72.74.103:8080/wps/?request=GetCapabilities&version=1.0.0

6.1.3 Implementation details

The upstream WPS was implemented in Python using a custom developed WPS
framework for flexibility and depends on the following libraries:

 For scientific computing: numpy (http://www.numpy.org)

 Web framework: django (http://www.djangoproject.com)

 For making HTTP requests: requests (http://docs.python-requests.org)

 A python-based HTTP server: gunicorn (http://www.gunicorn.org)

o was used as a WSGI server for the service

6.1.4 Operational details

6.1.4.1 Introduction

The upstream WPS service implements the following operations: GetCapabilities,
DescribeProcess and Execute.

The upstream WPS offers the following methods or processes: add_gauge_to_stream,
remove_gauge_to_stream and find_upstream_gauges.

6.1.4.2 Process add_gauge_to_stream

The add_gauge_to_stream method allows a list of gauges to be related with a river
segment.

OGC Engineering Report OGC 13-053r1

 41

The process accepts as input a list of gauge id’s and a river reach identifier (in the
Canadian NHN ID format) and then updates its local database with the relationship.

The response is either an acknowledgement that the relationship was successfully
registered or an exception message.

6.1.4.3 Process remove_gauge_from_stream

The remove_gauge_from_stream process removes the relationship between a list of
gauges and a river segment.

The process accepts as input a list of gauge id’s and a river reach identifier (in the
Canadian NHN ID format) and then removes the relations from the local database.

The response is either an acknowledgement that the relationship was successfully
removed or an exception message.

6.1.4.4 Process find_upstream_gauges

Give a point of interest, the find_upstream_gauges process finds all the gauges upstream
of that point.

The find_upstream_gauges process queries the NRCan upstream river segment WPS (see
Table 1, Component 5) and based on the river segments, returns the stream gauge id’s
that are located on those rivers segments (if any exist).

The find_upstream_gauges process then uses a local database to manage the river/gauge
relationships – originally provided by the sponsors as an Excel spread sheet – via
django’s database abstraction API.

The response from the find_upstream_gauges process is an XML document that encodes
the stream id/gauge id relationships. The following XML fragment is an example of a
response to the find_upstream_gauges process:

<Stream>
 <id>7bb9c0305c7f4802956c8f7277819f7e</id>
 <name>Souris River</name>
 <Stations>
 <Station latitude="49.9888916"
 longitude="-104.19000244">ca.gc.ec.station.05NB031</Station>
 </Stations>
</Stream>
<Stream>
 <id>64744610f8e74928890282eafe7f73ad</id>
 <name>Souris River</name>
 <Stations>
 <Station latitude="49.33666992"

OGC Engineering Report OGC 13-053r1

 42

 longitude="-103.54110718">ca.gc.ec.station.05NB037</Station>
 </Stations>
</Stream>
<Stream>
 <id>50633f5b9f7e425786545276de3bec58</id>
 <name>Souris River</name>
 <Stations>
 <Station latitude="49.49361038"
 longitude="-103.66221619">ca.gc.ec.station.05NB017</Station>
 </Stations>
</Stream>
<Stream>
 <id>2876fe821ae34b49a0d91428a5ebd308</id>
 <name>Souris River</name>
 <Stations>
 <Station latitude="49.57556152"
 longitude="-103.76889038">ca.gc.ec.station.05NB020</Station>
 </Stations>
</Stream>
<Stream>
 <id>42ddf48f83fe47e49ac8aaf1da906f5b</id>
 <name>None</name>
 <Stations>
 <Station latitude="49.5616684"
 longitude="-103.67443848">ca.gc.ec.station.05NB024</Station>
 </Stations>
</Stream>
<Stream>
 <id>a536171eecbf4d66afc93629df2488dc</id>
 <name>Souris River</name>
 <Stations>
 <Station latitude="48.9963913"
 longitude="-100.95806122">ca.gc.ec.station.05NF012</Station>
 <Station latitude="48.9964079"
 longitude="-100.9584889">05124000</Station>
 </Stations>
</Stream>

6.1.5 Examples

 Capabilities document:

o http://64.72.74.103:8080/wps/?service=WPS&version=1.0.0&request=Get
Capabilities

 Process descriptions:

o http://64.72.74.103:8080/wps/?service=WPS&version=1.0.0&request=De
scribeProcess&identifier=all

 Find upstream stations:

OGC Engineering Report OGC 13-053r1

 43

o http://64.72.74.103:8080/wps/?service=WPS&version=1.0.0&request=exe
cute&identifier=find_upstream_gauges&datainputs=latitude=49.37833023
%3Blongitude=-100.78943634

o http://64.72.74.103:8080/wps/?service=WPS&version=1.0.0&request=exe
cute&identifier=find_upstream_gauges&datainputs=latitude=49.1448%3B
longitude=-112.0769

6.2 Catalogue

6.2.1 Introduction

The catalogue deployed for the CHISP-1 project was used to store metadata about servers
participating in the project and metadata about water monitoring stations. The primary
function of the catalogue within the CHISP-1 project was to support dynamic discovery
of the registered components by other components participating in the project. For
example, the harvester module (see 6.3.4.1) of the event notification system uses the
CSW to discover the available sensor observation services to monitor and also updates
the station metadata stored in the CSW to store the last observed value for each offering.

6.2.2 Service endpoint

The service endpoint for the catalogue can be found at:

http://107.22.84.193/pycsw/csw.py?service=CSW&version=2.0.2&request=GetCapabiliti
es

6.2.3 Implementation details

The initial deployment of the catalogue used the GeoNetwork catalogue (see
http://sourceforge.net/projects/geonetwork/). However, several issues were encountered
that forced the project to seek an alternative catalogue.

The specific issues encountered using the GeoNetwork catalogue included:

1. A number of documented and undocumented bugs were encountered that
consumed a significant amount of project resource to try and resolve.
Eventually a properly configured CSW service was deployed as described in
the GeoNetwork documentation.

2. Despite being properly configured the server did not always respond to CSW
requests as described in the OGC implementation specification (see OGC 07-
006r1).

OGC Engineering Report OGC 13-053r1

 44

3. The catalogue did not implement the CSW Harvest operation1 which allows
services to be easily registered. The lack of this operation would require a
much more involved and likely manual process to register each service in the
project.

NOTE 1: The CSW Harvest operation should not be confused with the Harvester module of the event notification
system (see 6.3.4.1). The CSW Harvest operation allows the catalogue to read resource metadata (such as the
capabilities document of an OGC service) and register the resource to make it discoverable. The Harvest module, on
the other hand, is the sub-component of the event notification system that reads the last observed value from a
monitoring station and stored that value in the catalogue (see 6.2).

As a result of these issues, the pycsw (see http://pycsw.org/) catalogue was chosen to
replace the GeoNetwork catalogue. The pycsw catalogue is an OGC CSW (see OGC 07-
006r1) server implementation written in Python and is certified OGC Compliant. The
pycsw server offered the following capabilities:

1. The server provided a stable CSW with transactional support that the project
required.

2. The pycsw catalogue supports a number of profiles of the OGC CSW but for the
CHISP-1 project, the ISO application profile (see OGC 07-045) was selected.

3. The server supports the Harvest operation; although the operations did not
initially support harvesting OGC sensor observation service (see item 4 below).

4. One of the primary implementers of pycsw was part of the sponsor team from
Environment Canada which allowed any issues encountered to be addressed
quickly and which also allowed the pycsw to be extended to suite the
requirements of the project (see 6.3.4).

Enhancements:

The pycsw catalogue supports the ability to register many OGC compliant services by
reading their capabilities document and then automatically registering the service (e.g.
WFS, WMS, WCS, etc.). This is accomplished using the CSW Harvest operation. The
pycsw catalogue, however, did not support registering OGC sensor observation services
(see OGC 12-006) in this way.

To resolve this issue, the pycsw source code was extended to add the ability to use the
Harvest operation to register OGC sensor observation services. These changes were
checked back into the pycsw code base maintained on GitHub (see
https://github.com/geopython/pycsw).

6.2.4 Operational details

Operationally, the catalogue was used to support the following activities:

OGC Engineering Report OGC 13-053r1

 45

 Register CHISP-1 services into the catalogue to make them discoverable.

 Register the available water monitoring stations to make then discoverable.

 Use the CSW to get the list of services and stations within the AOI.

 Periodically update the water monitoring station metadata to include the last
observed value.

The examples in Clause 6.2.6 illustrate CSW requests that perform each of these
activities.

6.2.5 Examples

Example 1: Register a sensor observation service with the CSW

<?xml version="1.0" encoding="UTF-8"?>
<Harvest
 xmlns="http://www.opengis.net/cat/csw/2.0.2"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:gmd="http://www.isotc211.org/2005/gmd"
 xmlns:ows="http://www.opengis.net/ows"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:dct="http://purl.org/dc/terms/"
 xmlns:gml="http://www.opengis.net/gml"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/cat/csw/2.0.2
 http://schemas.opengis.net/csw/2.0.2/CSW-publication.xsd"
 service="CSW"
 version="2.0.2">
 <Source>http://ngwd-
bdnes.cits.nrcan.gc.ca/GinService/sos?SERVICE=SOS&REQUEST=GetCapabiliti
es</Source>
 <ResourceType>http://www.opengis.net/sos/2.0</ResourceType>
 <ResourceFormat>application/xml</ResourceFormat>
</Harvest>

Example 2: Register a water monitoring station

<?xml version="1.0" encoding="UTF-8"?>
<csw:Transaction
 xmlns:csw="http://www.opengis.net/cat/csw/2.0.2"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:dct="http://purl.org/dc/terms/"
 xmlns:ows="http://www.opengis.net/ows"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/cat/csw/2.0.2
 http://schemas.opengis.net/csw/2.0.2/CSW-publication.xsd"
 service="CSW"

OGC Engineering Report OGC 13-053r1

 46

 version="2.0.2">
 <csw:Insert>
 <csw:Record>
 <dc:identifier>ca.gc.ec.station.05NB004</dc:identifier>
 <dc:title>BEAVERDAM CREEK NEAR WEYBURN</dc:title>
 <dc:type>station</dc:type>
 <dc:subject>offering:WATER_FLOW</dc:subject>
 <dc:subject>offering:WATER_LEVEL</dc:subject>
<dc:subject>observedProperty=urn:ogc:def:phenomenon:OGC:1.0.30:waterflo
w</dc:subject>
<dc:subject>observedProperty=urn:ogc:def:phenomenon:OGC:1.0.30:waterlev
el</dc:subject>
 <dc:relation/>
 <dct:modified>2013-02-20T16:10:00-08:00</dct:modified>
 <dct:abstract></dct:abstract>
 <ows:WGS84BoundingBox>
 <ows:LowerCorner>49.5972 -103.9652</ows:LowerCorner>
 <ows:UpperCorner>49.5972 -103.9652</ows:UpperCorner>
 </ows:WGS84BoundingBox>
 </csw:Record>
 </csw:Insert>
</csw:Transaction>

Example 3: Query to obtain the set of sensor observation services within the AOI

<?xml version="1.0"?>
<GetRecords
 service="CSW"
 version="2.0.2"
 maxRecords="100"
 resultType="results"
 xmlns="http://www.opengis.net/cat/csw/2.0.2"
 xmlns:csw="http://www.opengis.net/cat/csw/2.0.2"
 xmlns:fes="http://www.opengis.net/ogc"
 xmlns:gmd="http://www.isotc211.org/2005/gmd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/cat/csw/2.0.2
 http://schemas.opengis.net/csw/2.0.2/csw.xsd">
 <Query typeNames="csw:Record">
 <ElementSetName>full</ElementSetName>
 <Constraint version="1.0.0">
 <fes:Filter>
 <fes:And>
 <fes:PropertyIsEqualTo>
 <fes:PropertyName>dc:type</fes:PropertyName>
 <fes:Literal>service</fes:Literal>
 </fes:PropertyIsEqualTo>
 <fes:PropertyIsEqualTo>
 <fes:PropertyName>dc:format</fes:PropertyName>
 <fes:Literal>OGC:SOS</fes:Literal>
 </fes:PropertyIsEqualTo>
 <fes:BBOX>
 <gml:Envelope srsName="urn:ogc:def:crs:EPSG::4326">

OGC Engineering Report OGC 13-053r1

 47

 <gml:lowerCorner>48.25 -112.56</gml:lowerCorner>
 <gml:upperCorner>59.32 -109.21</gml:upperCorner>
 </gml:Envelope>
 </fes:BBOX>
 </fes:And>
 </fes:Filter>
 </Constraint>
 </Query>
</GetRecords>

Example 4: Update the metadata for a station to store the last value

<?xml version="1.0" encoding="UTF-8"?>
<csw:Transaction
 xmlns:csw="http://www.opengis.net/cat/csw/2.0.2"
 xmlns:fes="http://www.opengis.net/ogc"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:dct="http://purl.org/dc/terms/"
 xmlns:ows="http://www.opengis.net/ows"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/cat/csw/2.0.2
 http://schemas.opengis.net/csw/2.0.2/CSW-publication.xsd"
 service="CSW" version="2.0.2">
 <csw:Update>
 <csw:RecordProperty>
 <csw:Name>dct:abstract</csw:Name>
 <csw:Value>type:water_flow;value:6.792</csw:Value>
 </csw:RecordProperty>
 <csw:Constraint version="1.0.0">
 <fes:Filter>
 <fes:PropertyIsEqualTo>
 <fes:PropertyName>dc:identifier</fes:PropertyName>
 <fes:Literal>ca.gc.ec.station.05NB004</fes:Literal>
 </fes:PropertyIsEqualTo>
 </fes:Filter>
 </csw:Constraint>
 </csw:Update>
</csw:Transaction>

6.3 Event Notification Service

6.3.1 Introduction

The function of the event notification service is to notify subscribers when an event of
interest occurs. The event of interest is defined at the time the subscription is created.
Thereafter the event notification service monitors the system and if the defined event
occurs, it sends a notification message to all affected subscribers. For the CHISP-1
project the event of interest was a flood event (see 5.3).

OGC Engineering Report OGC 13-053r1

 48

The overall architecture of the event notification service is illustrated in Figure 12. The
event notification system is composed of the following sub-components:

 Harvester

 Subscription Broker

 Notification service

The implementation and operational details of each component are described in this
clause.

6.3.2 Service end points

6.3.2.1 Servers and control components

 Harvester control program: https://github.com/gisfcuchisp1/DemoTool
Note: The Harvester control program allows the harvester to be invoked for a
specific period of time thus allowing historical flood events to be demonstrated
using the monitoring system developed for the CHISP-1 project.

 Subscription broker: http://59.125.87.213/WNS/Broker/RegisterInfo.ashx

 Web Notification service: http://59.125.87.213/WNS/notification/wns.ashx

6.3.2.2 Test clients

The following components are not strictly part of the system developed for CHISP-1 but
rather are test harnesses built to test various sub-components of the event notification
server and the GetDataAvailability extensions built by GIS.FCU.

 Broker API test client: http://59.125.87.213/wns/broker/testbroker.aspx

 Harvester test client: http://59.125.87.213/Harvester/Default.aspx

 CAP test client: http://59.125.87.213/wns/broker/CAPAlertPosting/new_cap.aspx

 GetDataAvailability test client: http://59.125.87.213:443/sos-4.0.0/client

6.3.3 Implementation details

Harvester, Subscription Broker, Web Notification Service

The Harvester, broker, notification service and CAP alert client were implemented using
C#. The development environment consisted of:

OGC Engineering Report OGC 13-053r1

 49

 Windows Server 2008

 MS SQL Server 2008

 NET Framework4.0.

CAP Alert Client

The MASAS Tool (https://sandbox2.masas-sics.ca/portal/main) was used for publishing
to the MASAS HUB from the CAP Alert client (see 6.3.4.2.5).

GetDataAvailability operation

Version 4.0 of the 52North code was used to implement the SOS GDA operation that
complied with the NRCan profile (see Clause 4). Documentation for 52North’s open
source sensor observation service can be found at:
https://wiki.52north.org/bin/view/SensorWeb/SensorObservationServiceIVDocumentatio
n). The development environment consisted of the following components:

 Java runtime environment (JRE) 7.0

 Tomcat7.0

 PostgreSQL9.2

 PostGIS 2.0.3

OGC Engineering Report OGC 13-053r1

 50

Figure 12 – ENS architecture

6.3.4 Operational details

6.3.4.1 Harvester

In order for the event notification system to operate it must, for each subscription, read
the last observed value and compare it to threshold values defined at the time the
subscription was created. When the monitored value exceeds a defined threshold the
system sends a notification of the event to each affected subscriber.

One approach for accomplishing this monitoring task would be to fire off an agent
responsible for each subscription. This agent would read the last observed value for each
station that needs to be monitored to satisfy each subscription. The problem with this
approach is that it does not scale. As the number of subscriptions grows, the number of
agents that are reading the same last value from any particular water monitoring station
would grow and eventually overwhelm the SOS’s providing the observed values.

A better, more scalable approach would be to have a single process reading the last
observed value from each water monitoring station and storing that value is a cache. That
process is called the Harvester in the CHISP-1 project. The Harvester reads the last
observed value from each SOS – independent of any particular subscription – and caches
that value. More than one Harvester can be run in parallel, each reading last observed
values from different sets of water monitoring stations, and thus scale as the number of
stations that need to be monitored increases. The event notification system can then read

OGC Engineering Report OGC 13-053r1

 51

the last observed value from the cache and perform its threshold checks to determine if an
event of interest has occurred.

For the CHISP-1 project, the initial implementation proposal for the last value cache was
a lightweight REST-based service that used a JSON payload to encode the last value.
This proposal however, was abandoned in favor of a more standards based approach
using the OGC catalogue (see OGC 07-006r1). Since the catalogue was already being
used to stored metadata about each water monitoring station (see 6.2.4), it was decided to
simply add the last observed value as part of the metadata and the event notification
service could simple access that value using the standard catalogue GetRecord request.

The catalogue approach is a more heavyweight approach than the initially proposed
REST-based caching service but it was decided to push the OGC technology and see if it
could satisfy the requirements of the event notification system. For the CHISP-1
projects using the catalogue for the last value cache worked perfectly. However, due to
resource limitation in the project, the system was not sufficiently stress tested, with a
large number of subscribers, to determine if indeed an OGC catalogue could act as a
suitable last-value cache in most real-world situations with hundred or perhaps thousands
of subscribers.

OGC Engineering Report OGC 13-053r1

 52

Figure 13 - Sequence diagram of Harvester and its operations

Figure 13 illustrates, in detail, the operation of the harvester. The sequence of actions is
as follows:

 Initially the Harvester uses a GetRecords request to obtain the URLs for the list of
available sensor observations services from the CSW.

 For each SOS obtained from the CSW:

o The Harvester executes a GetObservation request to read the last observed
value. The parameters for the GetObservation request are determined
using the harvester algorithm described in the NRCan profile (see 4.3.3).

o The Harvester then compares the previous “last value”, stored in the CSW,
with the value that it just read.

o If the values are different, the Harvester updates the metadata in the CSW
with this new value and notifies the subscription broker that the value has
changed.

o When notified by the Harvester, the subscription broker will read the
changed value from the CSW and for each subscription will:

 Compare the changed value with the threshold value defined for
each subscription

 If the changed value exceeds the threshold, the broker will generate
the content of a notification message for that subscription and
deliver that notification message to the WNS to actually do the
notification.

6.3.4.2 Subscription broker

6.3.4.2.1 Introduction

The primary functions of the subscription broker are to manage subscriptions to the flood
monitoring system and to notify subscribers when an event of interest (e.g. flood) occurs.

The primary user interface to the broker’s API is the web subscription client (see 6.5)
which calls the broker to execute the actions performed by the user. Specifically, the
broker supports the subscription process whereby subscriptions are created; the update
process whereby existing subscriptions are modified; the unsubscribe process whereby
subscriptions are canceled; and the notification process whereby subscribers are notified
that the event of interest has occurred. The broker also supports user (i.e. subscriber)

OGC Engineering Report OGC 13-053r1

 53

management operations that are currently only accessible through the broker test harness
(see 6.3.2.2).

This clause describes the operations implemented by the broker that support the
capabilities offered by the web subscription client. It also describes the operations
implements in the broker to support the management of subscribers.

6.3.4.2.2 Subscribe process

A subscription declares an emergency management analyst’s desire to be notified by the
ENS when an event of interest occurs. In the CHISP-1 project, subscriptions are related
to an emergency management analyst though his/her email address.

Figure 14 illustrates the sequence diagram for the subscription process. An EMA, logs
into the web subscription client (see 6.5) using his/her email address. The EMA can then
subscribe to a specific water monitoring station or to a point of interest on the map. In
either case, the EMA also provides additional subscription parameters (see 5.3.4.3) that
include threshold and frequency values for the subscription. The web subscription client
then uses these user-supplied values to execute the Subscribe operation of the ENS and
thus create the subscription.

If the subscription is for a point on interest, the broker automatically determines the entire
set of upstream stations that are in the same catchment by calling the upstream WPS (see
6.1). Once the broker receives a response from the upstream WPS, it generates an email
to the subscriber that reports the status of the subscription. Note, that it is a valid
response for the WPS to report no upstream stations for a point of interest.

The Subscribe operation of the ENS is the means by which a subscription – to a point of
interest or specific water monitoring stations – is created. Table 5 defines the parameters
of the Subscribe operation:

Table 5 – Subscribe operation parameters

Parameter Name Description Value type

op Operation name String
(fixed “Subscribe”)

email email to which notifications will be sent String

swLevelThreshold Surface water level threshold. Number

swLevelThresholdUnit Unit of measure for the value of the
swLevelThreshold parameter.

String
(one of “Meters” or
“Feet”)

OGC Engineering Report OGC 13-053r1

 54

swFlowThreshold Surface water flow threshold Number

swFlowThresholdUnit Unit of measure for the value of the
swFlowThreshold parameters.

String
(one of
CubicMetersPerDay or
CubicFeedPerSecond)

frequency The event notification frequency AFTER an event
of interest, such as a flood, has been detected.

Number
(in minutes)

lat
(mutually exclusive with
stationId parameter)

Latitudes of the subscription point of interest. Number

lng
(mutually exclusive with
stationId parameter)

Longitude of the subscription point of interest Number

stationId
(mutually exclusive with lat
and lng parameters)

Identifier for the subscription station of interest. String

The response to a Subscribe operation is a JSON document containing the details of the
response or an exception message, again encoded using JSON.

The following javascript fragments show how to create a subscription using a point or
interest or specifying a specific station id.

/*
 *subscribe by position
 */
$.ajax({
url : "http://59.125.87.213/WNS/Broker/RegisterInfo.ashx?op=subscribe",
type : 'post',
dataType : 'json',
cache : false,
data : JSON.stringify([
{"email":"user1@test.com","swLevelThreshold":11.5,"swLevelThresholdUnit
":"Meters","swFlowThreshold":10.5,"swFlowThresholdUnit":"CubicMetersPer
Day","frequency":15,"lat":48.257599,"lng":-
100.511856},{"email":"user1@test.com","swLevelThreshold":13,"swLevelThr
esholdUnit":"Feet","swFlowThreshold":13,"swFlowThresholdUnit":"CubicFee
tPerSecond","frequency":20,"lat":49.37833023,"lng":-100.78943634}]),
success : function (obj, status, jqXHR) {
 if (obj.poiIDs == null) {
 alert(obj.code+"\n"+obj.message);
 } else {
 alert(obj.code+"\nIDs:"+obj.poiIDs.join(","));}
 },

OGC Engineering Report OGC 13-053r1

 55

error : function (req, message) {
 alert(req.statusText);
 }

});

/*
 * subscribe by station id
 */
$.ajax({
url:"http://59.125.87.213/WNS/Broker/RegisterInfo.ashx?op=subscribe" ,
type : 'post',
dataType : 'json',
cache : false,
data : JSON.stringify([
{"email":"user1@test.com","swLevelThreshold":11.5,"swLevelThresholdUnit
":"Meters","swFlowThreshold":10.5,"swFlowThresholdUnit":"CubicMetersPer
Day","frequency":15,"stationID":"ca.gc.ec.station.05NB007"},{"email":"u
ser1@test.com","swLevelThreshold":13,"swLevelThresholdUnit":"Feet","swF
lowThreshold":13,"swFlowThresholdUnit":"CubicFeetPerSecond","frequency"
:20,"stationID":"05116000"}]),
success : function (obj) {
 if (obj.poiIDs == null) {
 alert(obj.code+"\n"+obj.message);
 } else {
 alert(obj.code+"\nIDs:"+obj.poiIDs.join(","));}
 },
error : function (req, message) {
 alert(req.statusText);
 }

});

The following JSON documents show a successful response by the ENS to a Subscribe
operation.

// return sample of subscribing with a position
[{"email":"user1@test.com",
 "frequency":15,
 "swLevelThreshold":11.5,
 "swLevelThresholdUnit":"Meters",
 "swFlowThreshold":10.5,
 "swFlowThresholdUnit":"CubicMetersPerDay",
 "lat":48.257599, "lng":-100.511856,
 "poiType": "P",
 "status": "Pending",
 "poiID": 58},
 {"email":"user1@test.com",
 "frequency":20,
 "swLevelThreshold":13,
 "swLevelThresholdUnit":"Feet",
 "swFlowThreshold":13,
 "swFlowThresholdUnit":"CubicFeetPerSecond",

OGC Engineering Report OGC 13-053r1

 56

 "lat":49.37833023,
 "lng":-100.78943634,
 "poiType": "P",
 "status": "Pending",
 "poiID": 59}
]

// return sample of subscribing with a station ID
[{"email":"user1@test.com",
 "frequency":15,
 "swLevelThreshold":11.5,
 "swLevelThresholdUnit":"Meters",
 "swFlowThreshold":10.5,
 "swFlowThresholdUnit":"CubicMetersPerDay",
 "stationID":"ca.gc.ec.station.05NB007",
 "poiType": "S",
 "status": "Pending",
 "poiID": 58},
 {"email":"user1@test.com",
 "frequency":20,
 "swLevelThreshold":13,
 "swLevelThresholdUnit":"Feet",
 "swFlowThreshold":13,
 "swFlowThresholdUnit":"CubicFeetPerSecond",
 "stationID":"05116000",
 "poiType": "S",
 "status": "Pending",
 "poiID": 59}
]

The following JSON document shows an exception response by the ENS to a Subscribe
operation that has failed.

// return sample of failed subscribing
{"code":"EmailMustBeSet",
 "message":"Emails of subscription requests should be set."}

OGC Engineering Report OGC 13-053r1

 57

Figure 14 - Sequence diagrams for Subscribe and Unsubscribe processes

6.3.4.2.3 Unsubscribe process

The last sequence diagram in Figure 14 illustrates the steps the web subscription client
must perform in order to cancel a subscription. After the EMS logs onto the system, the
of process of unsubscribing involves two steps. First, the web based subscription client
must determine which subscriptions the EMA. Second the web base subscription client
must let the EMA select which subscription to cancel.

The GetUserSubscription operation is used to determine a EMA’s subscriptions. Table 6
defines the parameters of the GetUserSubscription operation.

Table 6 – GetUserSubscription operation parameters

Parameter Name Description Value type

op Operation name String
(fixed “GetUserSubscription”)

email email to which notifications will be sent String

OGC Engineering Report OGC 13-053r1

 58

The following URL is an example of the GetUserSubscription operation:

http://59.125.87.213/WNS/Broker/RegisterInfo.ashx?op=GetUserSubscriptio
n&email=user1@test.com

and the following JSON document is an example of the response that such a request
might generate.

[{"email":"user1@test.com",
 "poiID":0,
 "frequency":15,
 "swLevelThreshold":11.5,
 "swLevelThresholdUnit":"Meters",
 "swFlowThreshold":10.5,
 "swFlowThresholdUnit":"CubicMetersPerDay",
 "poiType": "S",
 "stationID": "ca.gc.ec.station.05NB007",
 "status": "Valid" },
 {"email":"user1@test.com",
 "poiID":1,
 "frequency":20,
 "swLevelThreshold":13,
 "swLevelThresholdUnit":"Feet",
 "swFlowThreshold":13,
 "swFlowThresholdUnit":"CubicFeetPerSecond",
 "poiType":"P",
 "lat":48.257599,
 "lng":-100.511856,
 "status": "Pending" },
 {"email":"user1@test.com",
 "poiID":2,
 "frequency":15,
 "swLevelThreshold":11.5,
 "swLevelThresholdUnit":"Meters",
 "swFlowThreshold":10.5,
 "swFlowThresholdUnit":"CubicMetersPerDay",
 "poiType":"P",
 "lat":49.37833023,
 "lng":-100.78943634,
 "status":"Invalid"}
]

The following table describes the fields of the return document.

Table 7 – GetUserSubscription response parameters

Parameter Name Description Type/Domain

OGC Engineering Report OGC 13-053r1

 59

email User’s email address. String

poiID The subscription identifier String

frequency The even notification frequency after the
event has been detected

Number
(in minutes)

swLevelThreshold The surface water level threshold set when
the subscription was created

Number

swLevelThresholdUnit The units used to express the value of the
swLevelThreshold parameter

String
(one of meter or feet)

swFlowThreshold The surface water flow threshold set when
the subscription was created.

Number

swFlowThresholdUnit The units used to express the value of the
swFlowThreshold value (one of
CubeMeterPerDate or CubicFeetPerSecond)

String
(one of CubicMetersPerDay
or CubicFeetPerSecond)

poiType Whether the point of interest is a water
monitoring station or some arbitrary point
on a map.

String
(one of “S” or “P”)

lat If poiType=”P” then this is the latitude of
the subscription point

Number (in WGS84)

lng If poiType=”P” then this is the longitude of
the subscription point

Number (in WGS84)

stationId If poiType=”S” then this is the id of the
subscription station

String

Status The status of the subscription. The
subscription can be Valid, meaning that this
is an active subscription; Pending meaning
that the Subscribe request has been made
and a response from the ENS is pending;
Invalid meaning that the subscription point
is not valid.

String
(one of “Pending”, “Valid”
or “Invalid”)

The EMA can then pick one or more subscriptions to cancel. The subscriptions are
identified using the poiID value obtained from the response of the GetUserSubscription
operation.

Table 8 defines the parameters of the UnSubscribe operation.

Table 8 – Unsubscribe operation parameters

Parameter Name Description Value type

OGC Engineering Report OGC 13-053r1

 60

email Email to which notifications will be sent String

poiID Point of interest identifier as determined using the
GetUserSubscription operation.

List of String.

The response to an UnSubscribe operation is a JSON document indicating
acknowledging the success of the operation or an exception message.

The following javascript fragment illustrates how the web subscription client might
invoke the Unsubscribe operation:

$.ajax({
 url :
"http://59.125.87.213/WNS/Broker/RegisterInfo.ashx?op=Unsubscribe&email
=user1@test.com" ,
 type : 'post',
 dataType : 'json',
 cache : false,
 data : JSON.stringify([21, 54, 34]), // the poi id
 success : function (obj) { alert(obj.code); },
 error : function (req, message) { alert(req.statusText); }
});

and the following JSON document represent a successful response.

{success : {"code":"Success"}}

6.3.4.2.4 Subscriber management

6.3.4.2.4.1 Introduction

The broker implements two operations, RegisterUser and GetUser, for the management is
subscribers. These functions allow a user to be registered with the system and then
subsequently get the user profile including their role within the system. The role of the
user is important because only certain user roles have the ability to invoke a CAP alter
(see Clause 2, Common Alerting Protocol).

6.3.4.2.4.2 RegisterUser operation

The RegisterUser operation is used to create and assign a role to a user within the event
notification system. The CHISP-1 project defines two roles. The “Normal” role is the
role assigned to an EMA without the privileges necessary to invoke a CAP alert. The
“EM” role is the role assigned to an EMS with the necessary privileges to send a CAP
alert using the MASAS hub. As a result, a notification message sent to an EMA with the
“EM” role would include a link to the MASAS posting tool (see Figure 10).

OGC Engineering Report OGC 13-053r1

 61

Table 9 defines the parameters of the RegisterUser operation.

Table 9 – RegisterUser operation parameters

Parameter Name Description Value type

op Operation name String
(fixed value of RegisterUser)

email The subscriber’s email address. String

role The role the user has within the ENS. String
(one of “Normal” or “EM”)

The response to a RegisterUser operation is a JSON document echoing the detailed of the
registered user or an exception message, again encoded as a JSON document.

The following javascript fragment illustrates how to use the RegisterUser function may
be invoked:

var req = {"email" : "user1@test.com", "role" : "EM"};
$.ajax({
 url: "RegisterInfo.ashx?op=registerUser",
 type: 'post',
 dataType: 'json',
 cache: false,
 data: JSON.stringify(req),
 success: function (obj, status, jqXHR) {
 alert(jqXHR.responseText);
 },
 error: function (req, message) {
 alert(req.statusText);
 }
});

And the following JSON fragment is the response:

{"email":"user1@test.com", "role":"EM"}

6.3.4.2.4.3 GetUser operation

The GetUser operation may be used to determine a user’s role within the system. In the
CHISP-1 project this function was used primarily to determine if the notification email
sent to a subscriber (see 6.3.4.2.5) should include a link to invoke a CAP alter or not.

Table 10 defines the parameters of the GetUser operation:

OGC Engineering Report OGC 13-053r1

 62

Table 10 – GetUser operation parameters

Parameter Name Description Value type

op Operation name String
(fixed value of GetUser)

email The subscriber’s email address. String

The response to a GetUser operation is a JSON document containing the profile of the
user within the ENS or an exception message, again encoded as a JSON document.

The following URL is an example of the GetUser operation:

http://59.125.87.213/WNS/Broker/RegisterInfo.ashx?op=GetUser&email=user
1@test.com

and the following JSON fragment is a sample response:

{"email":"user1@test.com", "role":"EM"}

6.3.4.2.5 Notification process

The notification process is the logic that the broker executes to determine if a notification
is required. Figure 15 illustrates the sequence document for the notification process.

Once broker gets the last observed value for a station from the CSW, the broker will
compare that value with the threshold defined when a subscription is created. In this way
the broker filters the stations that exceed the threshold and then prepares a notification
message. The content of the notification message includes:

 The station location or POI to which the user subscribed when the subscription
was originally created.

 The water level threshold and water flow thresholds specified by the user when
the subscription was created

 The locations of the stations that have exceeded the thresholds are presented on a
map showing the entire upstream extent using the Google Map API.

 A table containing a list of all upstream stations and their last observed value.
The stations exceeding the thresholds highlighted in RED within the table (see
Figure 9).

OGC Engineering Report OGC 13-053r1

 63

 If the user’s role within the ENS is “EM”, the notification message will also
include a link to invoke the CAP Alert GUI.

Figure 9 illustrates an example notification message. The notification message is then
sent to the web notification service that does the subscriber notification via email. The
WNS also offers an ATOM and RSS feed that contains the notifications that can be
monitored by a subscriber using their favourite feed reader.

Figure 15 - Sequence diagram for notification process

If the user’s role within the system is “EM” the notification message will include a link to
invoke the CAP Alter GUI. Figure 15 also include the sequence of event should this link
be invoked.

When the CAP Alter link is clicked the user is presented with a dialogue box shown in
Figure 16. Using this form, the user entire the following information:

 The user’s MASAS access code

 The status of the Event

 The type of Event

 The urgency of the event

OGC Engineering Report OGC 13-053r1

 64

 The severity of the event

 A certainty classification for the event

 A human-readable headline for the even

 A more detailed human-readable description of the event

 Contact information for the EMA.

 An optional web link providing more information about the event

 An expiry time or period.

Figure 16 – MASAS posting tool

Clicking the “Sumbit” button causes the alter to be published to the MASAS hub.

OGC Engineering Report OGC 13-053r1

 65

6.3.4.3 Web notification service

The web notification component within the ENS is an implementation of OGC’s Web
Notification Service (see OGC 06-095r1) and its primary function within the system is to
send notification emails to subscribers once the broker (see 6.3.4.2) has determines that a
notification is required.

6.3.5 Issues

The primary issue encountered implementing the ENS was related to the stability and
performance of the other components of the CHISP-1 project and in particular the
stability and performance of the sensor observation services offering data from the water
monitoring stations. The Harvester module, for example, was particularly sensitive to
performance issues because of its periodic access to the sensor observation services.

In this kind of framework, the broker – the element that needs to integrate and
communicate with other components – must consider a lot of exception in order to avoid
connection problems.

6.4 GetDataAvailability

In this pilot, GIS.FCU applied 52North code base to implement NRCan SOS GDA
extension which follow the requirement of NRCan’s GIN profile
(https://portal.opengeospatial.org/wiki/CHISP1/CHISP1GINSOSProfile).

	

OGC Engineering Report OGC 13-053r1

 66

	

6.5 Subscription client

6.5.1 Introduction

The subscription client is the web-based user interface for the event notification system
(see 6.3). It allows an emergency management analyst to view, on a map, the river
network and the locations of water monitoring stations. The EM analyst can then chose
one or more stations, or a point of interest on the map and subscribe to be notified if a
flood event occurs at the chosen stations or upstream of the point of interest.

6.5.2 Client endpoint

The subscription client can be found at: http://184.73.217.132/map

OGC Engineering Report OGC 13-053r1

 67

6.5.3 Implementation details

The subscription client was built as a web application in javascript using the following
components:

 The primary UX is based on Twitter's Bootstrap (see
http://twitter.github.io/bootstrap/)

 The map component leverages Leaflet and associated plugins (see
http://leafletjs.com/)

6.5.4 Operational details

Figure 17 shows the web-based subscription client. The subscription client is composed
of a live map showing the river network and monitoring stations. The client implements
the following features:

1. At the top right there is a login field where the EM analyst enters his/here email
address and logs into the system. Subscription notifications will be sent to this
email address.

2. In the upper right, on the map, there is a color-coded legend show the sources of
data presented on the maps. Individual sources can be turned on an off by
checking the box on the right within the legend. For the CHISP-1 project the
following sources of data were presented: stream segments (see Table 1,
Component 6), USGS surface water monitoring stations, Environment Canada
(via NRCan) water monitoring stations, NRCan groundwater stations.

3. Water monitoring stations are shown on the map as color coded circles. The color
of the circle corresponds to the data source presented in the legend.

4. A color coded circle may also contain a number indicating that at the current
zoom level the circle represents more than one water monitoring station. The
number represents the specific number of water monitoring stations represented.
As the client zooms in, numbered circles will eventually separate out into
individual water monitoring stations.

5. Mousing over a water monitoring station causes the web client to draw the
catchment monitored by the station.

6. At the bottom of the map is a table that shows chosen subscription points. The
columns of the table are:

a. Actions – allows the EM analyst to Subscribe, Cancel, Update or
Unsubscribe from the point of interest.

OGC Engineering Report OGC 13-053r1

 68

b. Show – allows the EM analyst to turn points of interest on and off on the
map.

c. Description – shows the exact coordinate of the point of interest

d. Status – shows the subscription status of the point of interest. Possible
values are:

i. Selected – indicates that the point of interest has been chosen on the
map but has not been subscribed to

ii. Pending – indicates that a subscription request has been made for the
point of interest and the web client is waiting to get verification
that the subscription has been registered

iii. Subscribed – indicates that there is a registered subscription for the
point of interest

e. Level threshold – if there is a registered subscription for the point of
interest this column shows the water level threshold specified with the
subscription

f. Flow threshold – if there is a registered subscription for the point of
interest, this column shows the flow threshold specified with the
subscription

g. Frequency – if there is a registered subscription for the point of interest,
this column shows the notification frequency specified with the
subscription

OGC Engineering Report OGC 13-053r1

 69

Figure 17 – Web subscription client

Having chosen a point of interest on the map, an EM analyst can click the “Subscribe”
action in the “Actions” column (see Figure 17) to subscribe to that point. This action
causes the web subscription client to present the EM analyst with the dialogue box shown
in Figure 18.

The “New Subscription” dialogue allows the EM analyst to choose their preferred units
of measure. The EM analyst can then enter threshold values for surface water level and
surface water flow that will trigger the event notification system to send a notification
message. Finally, the EM analyst can enter a frequency value that represents how often

OGC Engineering Report OGC 13-053r1

 70

the EM analyst will receive notifications, with updated information, once an event has
been triggered. So, for example, entering a value of 15 minutes will cause the event
notification system to send the analyst an email every 15 minutes, after the flood event
has been detected, with the lasted water level and flow data.

Figure 18 – Subscription dialogue

6.6 Water Quality SOS

6.6.1 Introduction

The water quality service layers an OGC compliant SOS API on top of a couple of non-
OGC water quality data sources; one from Canada and one from the United States.
Putting an SOS façade on top of these non-OGC sources allows their information to be
easily accessed by other components in the CHISP-1 project that are implemented to
OGC standards.

6.6.2 Service end point

The service endpoint for the water quality SOS can be found at:

http://sos.chisp1.asascience.com/sos?service=SOS&request=GetCapabilities

6.6.3 Implementation details

The water quality SOS was built in Python using the following libraries:

 Web development framework: Flask (http://flask.pocoo.org/)

 Geometric objects, predicates and operations: Shapely
(https://pypi.python.org/pypi/Shapely)

 For making HTTP requests: requests (http://docs.python-requests.org)

OGC Engineering Report OGC 13-053r1

 71

 World time zone database in Python: pytz (http://pytz.sourceforge.net/)

 Extended date/time manipulation in Python: python-dateutil
(https://pypi.python.org/pypi/python-dateutil)

 OGC Web Service Utility library: OWSLib
(http://geopython.github.io/OWSLib/)

 A Python library for collecting Met/Ocean observations: pyoos
(https://github.com/asascience-open/pyoos)

 XML and HTML processing in Python: lxml (http://lxml.de/)

 A python-based HTTP server: gunicorn used as a WSGI server for the service
(http://gunicorn.org/)

6.6.4 Operational details

6.6.4.1 Introduction

The water quality SOS implements the following operations: GetCapabilities,
DescribeSensor and GetObservation.

The water quality SOS does not implement all the operations required by the NRCan
profile because the discussion about the profile during the CHISP-1 project was not
completed before the server’s implementation was completed. In addition, the nutrient
load calculation use case does not use the other, unimplemented, operations from the
profile.

6.6.4.2 Architecture

Figure 19 illustrates the architecture of the water quality SOS. One side the service
implements an OGC compliant SOS v2.0 API (see OGC 12-006). On the other side, the
service implements the necessary access methods to read information from the two water
quality sources, convert the information into a compatible format – taking into account
differences in units of measure, semantics, etc. -- and then serve it through the SOS API.

When the water quality server receives a GetObservation request it makes dynamic calls
to waterqualitydata.us (for the US data) and a local database (for CAN Ontario Provence
data). It then processes the responses and serves the information through the SOS API in
IOOS SWE xml format. The server also offers the legacy formats txt/tsv and txt/csv.

OGC Engineering Report OGC 13-053r1

 72

Figure 19 – Water Quality SOS Architecture

The WQ SOS architecture diagram (see Figure 19), also shows a SPARQL service. The
intended function of this server was to provide semantic mediation services for analyte
names. For example, the name for Nitrogen for a US station is “Nitrogen”. The same
name for a Canadian station would be “NNTKUR”. The idea was to use the SPARQL
server to determine the semantic equivalence between “Nitrogen” and “NNTKUR” this
allowing a client to use either nutrient parameter name in a request to the server.
Resource limitations within the CHISP-1 project, however, prevented the SPARQL
server from being integrated into the system.

6.6.5 Examples

 Capabilities document:

o http://sos.chisp1.asascience.com/sos?service=SOS&request=GetCapabiliti
es

 DescribeSensor examples:

o PWQMN station 04001309202

 http://sos.chisp1.asascience.com/sos?service=SOS&request=Describ
eSensor&version=1.0.0&outputformat=text/xml;subtype=%22sens
orML/1.0.1%22&procedure=04001309202

o WaterQualityData.us stations WIDNR_WQX-10001133

OGC Engineering Report OGC 13-053r1

 73

 http://sos.chisp1.asascience.com/sos?service=SOS&request=Describ
eSensor&version=1.0.0&outputformat=text/xml;subtype=%22sens
orML/1.0.1%22&procedure=WIDNR_WQX-10001133

o WaterQualityData.us station ISGS-04085427

 http://sos.chisp1.asascience.com/sos?service=SOS&request=Describ
eSensor&version=1.0.0&outputformat=text/xml;subtype=%22sens
orML/1.0.1%22&procedure=USGS-04085427

 GetObservation examples:

o All 'Mercury' data from WaterQualityData.us station USGS-04085427

 http://sos.chisp1.asascience.com/sos?service=SOS&request=GetObs
ervation&version=1.0.0&responseformat=text/xml;subtype=%22o
m/1.0.0%22&offering=network-
all&observedProperty=Mercury&procedure=USGS-04085427

o Mercury' data from WaterQualityData.us station USGS-04085427
between 1980 and 1990

 http://sos.chisp1.asascience.com/sos?service=SOS&request=GetObs
ervation&version=1.0.0&responseformat=text/xml;subtype=%22o
m/1.0.0%22&offering=network-
all&observedProperty=Mercury&procedure=USGS-
04085427&eventtime=1980-01-01T00:00:00Z/1990-01-
01T00:00:00Z&

o All Phosphorus and Nitrite data from PWQMN station 04001309202

 http://sos.chisp1.asascience.com/sos?service=SOS&request=GetObs
ervation&version=1.0.0&responseformat=text/xml;subtype=%22o
m/1.0.0%22&offering=network-
all&observedProperty=PPUT,NNO2UR&procedure=04001309202

o Phosphorus and Nitrite data from PWQMN station 04001309202 between
2005 and 2010

 http://sos.chisp1.asascience.com/sos?service=SOS&request=GetObs
ervation&version=1.0.0&responseformat=text/xml;subtype=%22o
m/1.0.0%22&offering=network-
all&observedProperty=PPUT,NNO2UR&procedure=04001309202
&eventtime=2005-01-01/2010-01-01

OGC Engineering Report OGC 13-053r1

 74

6.6.6 Issues

The SOS specification needs to be reconsidered for these kinds of use cases: enormous
networks of sensors aren't sufficiently supported. Listing all procedures and features of
interest is often not manageable - particularly in large dynamic SOS systems

6.7 Nutrient Load Calculation WPS

6.7.1 Introduction

This clause describes the details of the components developed for the nutrient load
calculation use case. Specifically it discusses the web client built to allow a water quality
analyst run a nutrient load calculation and the server implemented to make the calculation
model web accessible via the WPS (see OGC 05-005r1) API.

As described in clause 5.4, the use case also uses the water quality SOS developed during
the CHISP-1 project which is describe in Clause 6.6.

6.7.2 Client

6.7.2.1 Client endpoint

The client endpoint for the NLCS client can be found at:
http://client.chisp1.asascience.com/

6.7.2.2 Implementation details

The client was built as a browser application in javascript using the following libraries:

o HTML manipulation: jquery (http://jquery.com/)

o UI components: jquery-ui (http://jqueryui.com/)

o Vector graphics: jquery-svg
(http://archive.plugins.jquery.com/project/svg)

o HTML data library: d3js (http://d3js.org/)

o CSS activity indicator: spin (http://www.myjqueryplugins.com/jquery-
plugin/spinjs)

o Statistics module: geostats (https://github.com/simogeo/geostats)

OGC Engineering Report OGC 13-053r1

 75

6.7.2.3 Operational details

Figure 20 illustrates the client build for the nutrient load calculation use case. The client
allows a user to select a Great Lake of interest, a nutrient of interest and a time period of
interest and then invokes the nutrient load calculation WPS with those arguments.

The NCLS returns a jsonp type response with its typical XML response as a payload.
This allows the client to communicate directly with server avoiding the need to proxy the
NLCS WPS response.

No technical challenges or recommendations resulted from implementing the client.

Figure 20 – Nutrient Load Calculation Client

6.7.3 Server

6.7.3.1 Service endpoint

The service endpoint for the nutrient load calculation service can be found at:

http://64.72.74.103:8080/nlcs/?request=GetCapabilities&version=1.0.0

OGC Engineering Report OGC 13-053r1

 76

6.7.3.2 Implementation details

The nutrient load calculation WPS was built in Python using a custom developed WPS
framework for flexibility and depends on the following libraries:

 For scientific computing: numpy (http://www.numpy.org)

 Web framework: django (http://www.djangoproject.com)

 For making HTTP requests: requests (http://docs.python-requests.org)

 A python-based HTTP server: gunicorn (http://www.gunicorn.org)

o was used as a WSGI server for the service

Due to a number of implementation and data issues (see 6.7.3.5) a simplified nutrient
load calculation model was developed that could be used for both U.S. and Canadian
data. The simplified model does the following steps to calculate the nutrient load for a
given lake:

 Query a local catalogue for tributaries on the lake of interest that have both a
stream gauge and water quality samples available for the nutrient of interest.

 Access data from the water quality and stream flow SOS services for the stations
returned by the catalogue query.

 Union the time series of water quality samples if more than 1 water quality station
is found.

 Interpolate the water quality and stream flow measurements of the period
specified by the WQ analyst’s request.

 Calculates nutrient flux from the interpolated measurements and numerically
integrate the results to determine the total load over the period of interest for each
tributary

 Sums all of the tributaries' contributions for the total load of the lake, converting
units between standard and SI where appropriate

6.7.3.3 Operational details

6.7.3.3.1 Introduction

The nutrient load calculation WPS implements the following operations: GetCapabilities,
DescribeProcess and Execute.

OGC Engineering Report OGC 13-053r1

 77

The nutrient load calculation WPS offers the following methods or processed:
calc_nutrient_load

6.7.3.3.2 Process calc_nutrient_load

The calc_nutrient_load method computes the nutrient load on a Great Lake using a
simplified calculation model (see 6.7.3.2).

The process accepts as input the name of a Great Lake, a date interest, a nutrient of
interest, and a duration of interest (one of “year”, “month” or “day”).

The response is either an XML document containing the results of calculation or an
exception message is a problem was encountered.

6.7.3.4 Examples

 Capabilities document:

o http://64.72.74.103:8080/nlcs/?service=WPS&version=1.0.0&request=Get
Capabilities

 Process descriptions:

o http://64.72.74.103:8080/nlcs/?service=WPS&version=1.0.0&request=De
scribeProcess&identifier=all

6.7.3.5 Issues

The original intent was to use the “rpy” (http://rpy.sourceforge.net/) or “rpy2”
(http://rpy.sourceforge.net/rpy2.html) libraries to interface with the USGS EGRET
WRTDS Nutrient Load model written in R (see https://github.com/USGS-
CIDA/WRTDS). However a couple of problems were encountered that ultimately lead to
abandoning the use of the WRTDS model.

First, a lot of effort was expended writing middle wear to help move the correct kinds of
objects between R and Python and ultimately some bugs and limitations in both the rpy
libraries and some c libraries that the python service was depending on made it
impossible within the given time to track down all of the problems and resolve them.

Second, the Canadian data was not suitable to drive the WRTDS model, due to its
sparseness, and so a simplified calculation model would be required.

Taking both these issues into account it was decided to implement a simplified
computation model for both countries’ data (see 6.7.3.2).

OGC Engineering Report OGC 13-053r1

 78

The following additional challenges, not including the R model implementation, were
encountered:

 using Python's urllib2 for requests to distributed services was hard to debug,
switching to the requests library made the code easier to write, read and debug

 using gunicorn workers that depended on libevent had intermittent problems
making requests to distributed services

o this appears to be a known bug in libevent or the python bindings

o switching to using tornado workers and the requests library seems to help
stability

 sometimes requests that don't timeout the gunicorn WSGI server would timeout
the nginx http server (see http://wiki.nginx.org), causing hung workers, defunct
processes and slow performance as a whole

 moved the NLCS model work to an asynchronous style WPS and urge people to
use the ip/port URL instead of the subdomain URL for both the NLCS WPS and
the upstream service WPS (see 6.1)

 implemented a jsonp style response that wraps the typical xml WPS response so
that web clients can communicate directly with the NLCS service without having
to proxy

