
 
 
 
 

 
 

Open Geospatial Consortium  
Submission Date: 2013-09-05 

Approval Date:   2013-09-25 

Publication Date:   2013-11-06  

External identifier of this OGC® document: http://www.opengis.net/doc/DP/GEOXACML-CORE 

Internal reference number of this OGC® document:    OGC 13-100  

Category: OGC® Publicly Available Discussion Paper 

Editor:    Andreas Matheus  

 

OGC Geospatial eXensible Access Control Markup 
Language (GeoXACML) 3.0 Core 

 

Copyright © 2013 Open Geospatial Consortium 
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/. 

 

 

Warning 

This document is not an OGC Standard. This document is an OGC Discussion Paper and is therefore not 
an official position of the OGC membership. It is distributed for review and comment. It is subject to 

Document type:    OGC® Discussion Paper 
Document stage:    Draft OGC Standard 
Document language:  English 

Attention 

This document is written using the OGC template for Implementation 
Standards and contains normative language.  

But it is important to notice that this OGC publication represents the 
opinion of the author and submitters regarding GeoXACML 3.0 Core. 



 
 
 
 

OGC 13-100   

 ii 

change without notice and may not be referred to as an OGC Standard. Further, an OGC Discussion Paper 
should not be referenced as required or mandatory technology in procurements. 

 

License Agreement 

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below, 
to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property 
without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish, 
distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to 
do so, provided that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual 
Property is furnished agrees to the terms of this Agreement. 

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above copyright 
notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR. 

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS 
THAT MAY BE IN FORCE ANYWHERE IN THE WORLD. 

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED 
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL 
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE 
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT 
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF 
INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY 
DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING 
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF 
CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH 
THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY. 

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all 
copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as 
provided in the following sentence, no such termination of this license shall require the termination of any third party end-user 
sublicense to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual 
Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, 
copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license 
without any compensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or 
cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party. 

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual 
Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without 
prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may 
authorize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any 
LICENSOR standards or specifications. This Agreement is governed by the laws of the Commonwealth of Massachusetts. The 
application to this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is hereby expressly 
excluded. In the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be 
modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force and effect. No 
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies available to it. 



 
 
 
 

OGC 13-100   

 iii 

 

Contents	  
1.	   Scope ............................................................................................................................ 7	  

2.	   Conformance ................................................................................................................ 7	  

2.1	   Overview ................................................................................................................ 7	  

2.2	   Specification identifier ........................................................................................... 8	  

2.3	   Conformance classes related to GeoXACML implementation .............................. 8	  

2.4	   Backward Compatibility with GeoXACML 1.0 .................................................... 8	  

3.	   References .................................................................................................................. 10	  

4.	   Terms and Definitions ................................................................................................ 10	  

5.	   Conventions ................................................................................................................ 13	  

5.1	   Abbreviated terms ................................................................................................ 13	  

5.2	   Document presentation of the specification ......................................................... 14	  

6.	   GeoXACML 3.0 Core Introduction (Informative) ..................................................... 14	  

6.1	   Introduction .......................................................................................................... 14	  

6.2	   Policy Language and Authorization Models ........................................................ 15	  

6.3	   Information Flow Model ...................................................................................... 17	  

6.4	   Extension capabilities of XACML ....................................................................... 19	  

6.4.1	   Defining a new Data Type Geometry ........................................................... 19	  

6.4.2	   Encoding of Data Type Geometry ................................................................ 19	  

6.4.3	   Defining a new Function ............................................................................... 20	  

6.3.3	   Defining new Identifiers / Attributes ............................................................ 21	  

6.5	   XACML as a programming language .................................................................. 22	  



 
 
 
 

OGC 13-100   

 iv 

6.6	   GeoXACML Core – BASIC Conformance Class (Informative) ......................... 25	  

6.7	   GeoXACML Core – ADVANCED Conformance Class (Informative) .............. 26	  

6.8	   GeoXACML Core – ANALYSIS Conformance Class (Informative) ................. 27	  

6.9	   Use Case – Restricting access to geospatial data ................................................. 29	  

6.10	   Use Case – Restricting access based on user location ....................................... 30	  

7.	   Requirements for GeoXACML 3.0 Core ................................................................... 30	  

7.1	   Introduction (informative) .................................................................................... 30	  

7.2	   Common Requirements Class .............................................................................. 31	  

7.3	   Requirements Class: Specification ....................................................................... 32	  

Annex A: Conformance Class Abstract Test Suite (Normative) ...................................... 46	  

A.1	   Conformance testing XACML 3.0 ...................................................................... 46	  

A.2	   Conformance testing Data Type Geometry ......................................................... 46	  

A.3	   Conformance testing Functions ........................................................................... 46	  

A.4	   Conformance testing Condition Functions .......................................................... 47	  

A.5	   Conformance testing Data Type Geometry ......................................................... 47	  

A.6	   Conformance testing Functions ........................................................................... 47	  

A.7	   Conformance testing Data Type Geometry ......................................................... 48	  

A.8	   Conformance testing Functions ........................................................................... 48	  

 



 
 
 
 

OGC 13-100   

 v 

 

i. Abstract 
This standard defines the version 3.0 of a geospatial extension to the OASIS eXtensible 
Access Control Markup Language (XACML) Version 3.0 standard. It thereby enables the 
interoperable definition of access rights / constraints using the XACML 3.0 language, 
processing model and policy schema but extends the ability to phrase conditions on 
geographic characteristics of subjects, resources and objects.  

In that sense, a GeoXACML policy could restrict access to geospatial information, e.g. 
provided by OGC Web Services. However, a GeoXACML policy could also restrict 
access to non geospatial assets by stating restrictions for access based on the location of 
the user (or the mobile device used) trying to access the protected assets. Therefore, this 
standard applies to main stream IT. 

For enabling processing of access control decisions based on geometry, Geospatial 
eXensible Access Control Markup Language (GeoXACML) 3.0 Core inherits by 
normative reference ISO 19125 which defines a geometry model and functions on 
geometry instances which enrich the XACML 3.0 specification.  

ii. Keywords 
The following are keywords to be used by search engines and document catalogues. 

ogcdoc, OGC document, standard, GeoXACML, XACML, access control, geometric 
XACML 

iii. Preface 
This document defines the version 3.0 of the geospatial extension to the OASIS 
eXtensible Access Control Markup Language (XACML) Version 3.0. It hereby 
supersedes the previous version GeoXACML 1.0 which defines the geospatial extension 
to OASIS extensible Access Control Markup Language 2.0. It is important to notice that 
version 2.0 of GeoXACML does not exist! 

The geospatial extension defined by GeoXACML 3.0 Core uses the extension points 
from OASIS eXtensible Access Control Markup Language (XACML) Version 3.0 to 
introduce a new data type Geometry and functions that extend the set of available 
functions in XACML 3.0. The semantics of the data type Geometry and the functions 
introduced is defined in ISO 19125.  

In a nutshell, GeoXACML 3.0 defines the appropriate XML wrapper to fit OGC Simple 
Features into XACML 3.0. 



 
 
 
 

OGC 13-100   

 vi 

Attention is drawn to the possibility that some of the elements of this document may be 
the subject of patent rights. The Open Geospatial Consortium shall not be held 
responsible for identifying any or all such patent rights. 

Recipients of this document are requested to submit, with their comments, notification of 
any relevant patent claims or other intellectual property rights of which they may be 
aware that might be infringed by any implementation of the standard set forth in this 
document, and to provide supporting documentation. 

iv. Submitting organizations 
The following organizations submitted this Document to the Open Geospatial Consortium 
(OGC):  

University of the Bundeswehr 

Oracle 

Defense Information Systems Agency (DISA) 

National Geospatial-Intelligence Agency (NGA) 

v. Submitters 
All questions regarding this submission should be directed to the editor: 

 

Name Affiliation 
Andreas Matheus andreas.matheus <at> unibw.de 



 
 
 
 

 
 

7 

1. Scope 

This Standard defines Geospatial eXensible Access Control Markup Language 
(GeoXACML) 3.0 Core as a geospatial extension to OASIS eXtensible Access Control 
Markup Language (XACML) Version 3.0. 

As such, this specification defines implementation rules for a geospatially enriched Policy 
Decision Point (GeoPDP) as defined by OASIS eXtensible Access Control Markup 
Language (XACML) Version 3.0.   

2. Conformance 

Conformance to this standard can be reached by an implementation of a geospatially 
enriched Policy Decision Point (GeoPDP). In order to fulfill this, this standard provides 
different conformance classes under the standardization target “implementation”.  

In order to ensure that an implementation provides successful processing of a 
GeoXACML 3.0 policy, responds to authorization decision requests, and produces 
compliant authorization decisions, this standard defines conformance classes under the 
standardization target “instance”. 

Finally, for the purpose of defining semantics when extending the XACML 3.0 
processing language, this standard also defines requirements and conformance classes 
under the standardization target “specification”. 

2.1 Overview 

This Standard defines multiple standardization target types: 

- Specification: Help to define processing semantics when extending the XACML 3.0 
model. This standardization target type is mainly used for defining the GeoXACML 
3.0 Adapter to ISO 19125. 

- Instance: Ensure that GeoXACML 3.0 policies, ADRs (Authorization Decision 
Requests) and ADs (Authorization Decisions) are properly encoded 

 policy instances: i.e. XML documents that encode a GeoXACML compliant 
policy defining access rights / constraints; 



 
 
 
 

OGC 13-100   

 8 

 request instances: i.e. XML documents that encode a GeoXACML compliant 
ADR; 

 response instances: i.e. XML documents that encode a GeoXACML compliant 
AD; 

- Implementation: Ensure that geometry encoding and functions on geometry instances 
are understood by a GeoPDP implementation when processing GeoXACML policies 
as well as requests and producing authorization decisions; 

NOTE: GeoXACML 3.0 is XACML 3.0 schema compliant. Therefore, a GeoXACML 3.0 Policy, or a ADR or 
AD instance is using the XACML 3.0 namespace as defined in OASIS eXtensible Access Control Markup Language 
(XACML) Version 3.0.  

2.2 Specification identifier 

All requirements-classes and conformance-classes described in this document are owned 
by the specification identified as http://www.opengis.net/spec/GEOXACML/3.0/Core  

2.3 Conformance classes related to GeoXACML implementation  

The conformance rules are based on processing logic as defined by GeoXACML 3.0.  

Table 2 — Conformance classes related GeoXACML implementation 

Conformance class Description Clause 

BASIC Bag and Set as well as Condition functions, e.g. test 
functions for topological relations 

 

ADVANCED BASIC + functions for marshall / unmarshall + simple 
analysis functions including e.g. union, intersection 

 

ANALYSIS ADVANCED + all analysis functions e.g. convexHull, 
PolygonN 

 

 

2.4 Backward Compatibility with GeoXACML 1.0  

This version of GeoXACML reflects the new Policy structure mandated by XACML 3.0. 
Because the XACML 3.0 Schema is different from the Schema published with XACML 
2.0, a GeoXACML 1.0 Policy document has a different structure than a GeoXACML 3.0 
policy document. Even though a validation of a GeoXACML policy document of version 
1.0 must fail if tested against the XACML 3.0 Schema, a transformation from the 
XACML 2.0 to the XACML 3.0 structure is possible. Therefore, a GeoXACML 1.0 
policy can still be used in the GeoXACML 3.0 context, but a structure change is required. 

In order to support the transformation from a GeoXACML 1.0 policy to a GeoXACML 
3.0 policy, all GeoXACML 1.0 functions must be supported by GeoXACML 3.0. Even 



 
 
 
 

OGC 13-100   

 9 

though GeoXACML 3.0 is based on a new version of ISO 19125, additional capabilities 
are introduced which guarantee backwards compatibility for the functions. 
Implementations must take care that all new capabilities introduced in ISO 19125, e.g. the 
geometry types Empty and Circle, get new URNs indicating the Version 3.0. This 
requires that a policy document transformation from GeoXACML 1.0 to 3.0 includes the 
change of the function URNs as it is possible in 3.0 to process Empty and Circle which 
was not supported in 1.0. 

Precaution must be taken with GeoXACML 1.0 policy instances, using GML 2 or GML 3 
encoding extension, can actually be transformed to 3.0: A transformation is only possible, 
if all GML encoded geometries of the GeoXACML 1.0 policy instance are supported by a 
given Encoding Extension to this standard.



 
 
 
 

 
 

10 

 

3. References 

The following normative documents contain provisions that, through reference in this 
text, constitute provisions of this document. For dated references, subsequent 
amendments to, or revisions of, any of these publications do not apply. For undated 
references, the latest edition of the normative document referred to applies. 

The following referenced documents are indispensable for the application of this 
document. For dated references, only the edition cited applies. For undated references, 
the latest edition of the referenced document (including any amendments) applies. 

OASIS eXtensible Access Control Markup Language (XACML) Version 3.0, 22 January 
2013, http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf 

OASIS eXtensible Access Control Markup Language (XACML) Version 3.0 XML 
Schema, http://docs.oasis-open.org/xacml/3.0/xacml-core-v3-schema-wd-17.xsd  

ISO 191251 http://portal.opengeospatial.org/files/?artifact_id=25355 

OGC Naming Authority (OGC-NA) Policies & Procedures OGC Document 09-046r2 
http://www.opengis.net/doc/POL/OGC-NA/1.1   

Policy Directives for Writing and Publishing OGC Standards: TC Decisions. OGC 
Document 06-135r7. http://www.opengis.net/doc/POL/STD  

The Specification Model — A Standard for Modular specifications OGC Document 08-
131r3. http://www.opengis.net/doc/POL/SPEC 

4. Terms and Definitions 

This document uses the terms defined in Sub-clause 5.3 of [OGC 06-121r8], which is 
based on the ISO/IEC Directives, Part 2, Rules for the structure and drafting of 
International Standards. In particular, the word “shall” (not “must”) is the verb form used 
to indicate a requirement to be strictly followed to conform to this standard. 

For the purposes of this document, the following terms and definitions apply. 

                                                
1 Currently under revision 

2 A v B = ¬(¬A ^ ¬B) 

3 Please see the normative section for the mandatory set of functions defined for the basic and the advanced 



 
 
 
 

OGC 13-100   

11 
Copyright © 2013 Open Geospatial Consortium 

4.1  
element <XML>  
basic information item of an XML document containing child elements, attributes and 
character data  

[ISO 19136:2007] 

NOTE From the XML Information Set: ―Each XML document contains one or more elements, the boundaries of 
which are either delimited by start-tags and end-tags, or, for empty elements, by an empty-element tag. Each element 
has a type, identified by name, sometimes called its ‗generic identifier‘ (GI), and may have a set of attribute 
specifications. Each attribute specification has a name and a value.  

 
4.2  
schema <XML Schema>  
collection of schema components within the same target namespace  

EXAMPLE Schema components of W3C XML Schema are types, elements, attributes, groups, etc.  

[ISO 19136:2007] 

4.3  
schema document <XML Schema>  
XML document containing schema component definitions and declarations  

NOTE The W3C XML Schema provides an XML interchange format for schema information. A single schema 
document provides descriptions of components associated with a single XML namespace, but several documents may 
describe components in the same schema, i.e. the same target namespace.  

[ISO 19136:2007] 

4.4  
GeoPDP  
A Geospatial Policy Decision Point is an implementation of GeoXACML. It provides the 
capabilities to process the data type Geometry and the functions defined on Geometry. 
Because a GeoXACML compliant implementation must implement all mandatory 
capabilities of XACML, a GeoPDP is always capable to process “pure” XACML 
policies.  

 

4.5  
XACML definitions  
The following definitions, as defined in OASIS eXtensible Access Control Markup 
Language (XACML) Version 3.0 are listed here for ease of reading. 

Access - Performing an action 

Advice - A supplementary piece of information in a policy or policy set which is 
provided to the PEP with 11 the decision of the PDP. 

Access control - Controlling access in accordance with a policy 



 
 
 
 

OGC 13-100   

12 
Copyright © 2013 Open Geospatial Consortium 

Action - An operation on a resource 

Applicable policy - The set of policies and policy sets that governs access for a specific 
decision request 

Attribute - Characteristic of a subject, resource, action or environment that may be 
referenced in a predicate or target (see also – named attribute) 

Authorization decision - The result of evaluating applicable policy, returned by the PDP 
to the PEP. A function that evaluates to “Permit”, “Deny”, “Indeterminate” or 
“NotApplicable", and (optionally) a set of obligations 

Bag – An unordered collection of values, in which there may be duplicate values 

Condition - An expression of predicates. A function that evaluates to "True", "False" or 
“Indeterminate” 

Conjunctive sequence - a sequence of predicates combined using the logical ‘AND’ 
operation 

Conjunctive Normal Form - xxxx 

Context - The canonical representation of a decision request and an authorization 
decision 

Context handler - The system entity that converts decision requests in the native request 
format to the XACML canonical form and converts authorization decisions in the 
XACML canonical form to the native response format 

Decision – The result of evaluating a rule, policy or policy set 

Decision request - The request by a PEP to a PDP to render an authorization decision 

Disjunctive sequence - a sequence of predicates combined using the logical ‘OR’ 
operation 

Effect - The intended consequence of a satisfied rule (either "Permit" or "Deny") 

Environment - The set of attributes that are relevant to an authorization decision and are 
independent of a particular subject, resource or action  

Named attribute – A specific instance of an attribute, determined by the attribute name 
and type, the identity of the attribute holder (which may be of type: subject, resource, 
action or environment) and (optionally) the identity of the issuing authority 

Obligation - An operation specified in a policy or policy set that should be performed by 
the PEP in conjunction with the enforcement of an authorization decision 



 
 
 
 

OGC 13-100   

13 
Copyright © 2013 Open Geospatial Consortium 

Policy - A set of rules, an identifier for the rule-combining algorithm and (optionally) a 
set of obligations. May be a component of a policy set 

Policy administration point (PAP) - The system entity that creates a policy or policy set 

Policy-combining algorithm - The procedure for combining the decision and obligations 
from multiple policies 

Policy decision point (PDP) - The system entity that evaluates applicable policy and 
renders an authorization decision. This term is defined in a joint effort by the IETF Policy 
Framework Working Group and the Distributed Management Task Force 
(DMTF)/Common Information Model (CIM) in [RFC3198]. This term corresponds to 
"Access Decision Function" (ADF) in [ISO10181-3]. 

Policy enforcement point (PEP) - The system entity that performs access control, by 
making decision requests and enforcing authorization decisions. This term is defined in a 
joint effort by the IETF Policy Framework Working Group and the Distributed 
Management Task Force (DMTF)/Common Information Model (CIM) in [RFC3198]. 
This term corresponds to "Access Enforcement Function" (AEF) in [ISO10181-3]. 

Policy information point (PIP) - The system entity that acts as a source of attribute 
values 

Policy set - A set of policies, other policy sets, a policy-combining algorithm and 
(optionally) a set of obligations. May be a component of another policy set 

Predicate - A statement about attributes whose truth can be evaluated 

Resource - Data, service or system component 

Rule - A target, an effect and a condition. A component of a policy 

Rule-combining algorithm - The procedure for combining decisions from multiple rules 

Subject - An actor whose attributes may be referenced by a predicate 

Target - The set of decision requests, identified by definitions for resource, subject and 
action, that a rule, policy or policy set is intended to evaluate  

5. Conventions 

5.1 Abbreviated terms 

1D One Dimensional 

2D Two Dimensional 



 
 
 
 

OGC 13-100   

14 
Copyright © 2013 Open Geospatial Consortium 

3D Three Dimensional 

AD Authorization Decision 

ADR  Authorization Decision Request 

GeoXACML Geospatial eXtensible Access Control Markup Language 

ISO International Organization for Standardization 

OASIS Organization for the Advancement of Structured Information Standards 

OGC Open Geospatial Consortium 

PAP Policy Administration Point 

PDP Policy Decision Point 

PEP Policy Enforcement Point 

PIP Policy Information Point 

UML Unified Modeling Language 

XACML eXtensible Access Control Markup Language 

XML Extensible Markup Language 

XSD W3C XML Schema Definition Language 

5.2 Document presentation of the specification 

This document presents the GeoXACML 3.0 Core specification using a representation 
that follows the structures defined in the OGC Policy [The Specification Model — A 
Standard for Modular specifications OGC Document 08-131r3. 
http://www.opengis.net/doc/POL/SPEC]. All normative material is organized as 
requirements, conformance tests and conformance classes. Each is identified with a URI, 
and the content and dependencies are described in tables whose structure matches the 
specification model.  

6. GeoXACML 3.0 Core Introduction (Informative) 

6.1 Introduction 

GeoXACML 3.0 Core  defines a geospatial extension to the OASIS eXtensible Access 
Control Markup Language (XACML) Version 3.0 by introducing the data type Geometry 
and functions that work on the data type Geometry as defined in ISO 19125. 



 
 
 
 

OGC 13-100   

15 
Copyright © 2013 Open Geospatial Consortium 

The XACML standard can be separated into two main sections, which are introduced in 
more detail in the following sections: (i) Policy Language and Authorization Model as 
well as (ii) Information Flow Model. 

 

6.2 Policy Language and Authorization Models 

The XACML Policy Language Model defines an XML encoding for expressing general 
purpose access restrictions and extension points to define your own Attribute Values, 
Functions, etc. The entire set of access rights/restrictions (rules) defines an XACML 
Policy. The Policy is structured, according to the following UML diagram (see Figure 1). 

The top level element can either be a <Policy> or <PolicySet>. The <PolicySet> can host 
zero or more <PolicySet> elements, which can be included inline or by reference. This 
powerful feature allows the reuse of pre-defined policy segments as well as the 
integration of multiple policies. 

Each <PolicySet> element can host one or more <Policy> elements, which is the 
container for a set of <Rule> elements. Inside the <Rule> element, conditions can be 
formed to express complex access restrictions, using the <Condition> element.  

Each <PolicySet>, <Policy> and <Rule> element have a <Target> element, which can be 
used to define simple matching conditions for categories such as Subject, Action, 
Resource and Environment. This allows the effective structuring of a policy into sub-
trees, which eases the maintenance of rights defined in a policy. On the other hand, the 
simple matching in a <Target> element ensures fast decision making, when it comes to 
deriving an authorization decision. 

In order to derive an authorization decision (i.e. XACML authorization decision) for a 
given request, the XACML policy is traversed from the top (i.e. <PolicySet> element) to 
the leaves (i.e. <Rule> elements). For all matching <Rule> elements, their Effect (i.e. 
Permit or Deny) is taken as the most basic driver for the authorization decision. By 
traversing up the policy the effects of all Rules – associated to a <Policy> element – are 
combined using the Rule Combining Algorithm. The resulting effects of all <Policy> 
elements are matched on the next highest level, until reaching the top <PolicySet> 
element; the Policy Combining Algorithm creates the final effect of the entire policy, 
which represents the authorization decision. 

The XACML Policy Language defines four different results for the authorization 
decision: (i) Permit, (ii) Deny, (iii) Indeterminate and (iv) NotApplicable. Finally, the 
process of deriving an authorization decision can result in an error, which is documented 
as additional information in the <Decision> element.  

OASIS eXtensible Access Control Markup Language (XACML) Version 3.0 also defines 
the concepts of Advice and Obligations. Whereas it is optional for a PEP to process an 
Advice, it is mandatory for Obligations. The PEP may only act according to the decision, 



 
 
 
 

OGC 13-100   

16 
Copyright © 2013 Open Geospatial Consortium 

after the successful processing of all Obligations attached to the decision. Basically, two 
options exist: The decision can be “Permit with Obligation” or “Deny with Obligation”, 
which can be expressed in the <Obligation> element, attached to the <Rule>, <Policy> or 
<PolicySet> element. It is also possible to attach an Advice to the decision. Care must be 
taken when structuring a policy that comprises Obligations as the processing of included  
Obligations vary with the different Combining Algorithms. 

Regarding the differences of XACML 3.0 over 2.0 it is important to mention the change 
in the new structure of the <Target>. For XACML 2.0 matching was separated into 
Subject, Action, Resource and Environment, XACML 3.0 supports the Matching as a 
Conjunctive Normal Form (CNF) using the elements <AnyOf> and <AllOf> where each 
individual Matching must specify a category (e.g. Subject, Action, Resource or 
Environment). This improves the conditional matching when attribute values from 
different categories must be compared; this was not possible in XACML 2.0.  

 

 

Figure 1 — XACML Policy Language Model  

As a consequence of this change to the <Target> matching, the XACML 3.0 matching is 
more comprehensive and therefore enables automtic transformation from XACML 2.0 to 
XACML 3.0. However, direct transformed into the other direction (from XACML 3.0 to 



 
 
 
 

OGC 13-100   

17 
Copyright © 2013 Open Geospatial Consortium 

XACML 2.0 <Target> matching) may be impossible, depending on the concrete 
matching.  

The following example illustrates the deficit in the XACML 2.0 machting by introducing 
a <Target> matching that is XACML 3.0 but not XACML 2.0 compliant. The breaking is 
caused by the OR matching of different categories; here environment and subject 
category: considering the IP address of the client to reside in the environment category 
and the subject name to reside in the subject category, the OR matching between these 
categories cannot be mapped to XACML 2.0 matching as the logic alsways is AND 
between different categories. Even though the logic could be transformed using the de 
Morgan transformation2 – which is only possible if many other constraints that are out of 
scope for this example have been certified – to adopt the AND matching between the 
different categories, the required “not equals” matching function is not available in 
XACML 2.0. 

 

Figure 2  — Example <Target> matching supported by XACML 3.0 but not by 
XACML 2.0 

Another improved feature in the Language Model is the ability to define the delegation of 
rights. In that respect, GeoXACML introduces the concept of a Policy Issuer. The use of 
<PolicyIssuer> allows to distinguish between trusted and delegated policies. Any 
<PolicySet> or <Policy> that does not indicate a <PolicyIssuer> is trusted and 
participates in the process of deriving an authorization decision. Any <PolicySet> or 
<Policy> that includes a <PolicyIssuer> element requires the PDP to determine if a 
“trusted relationship” between the accessing subject in the ADR context and the 
<PolicyIssuer> exists. Only in the case of a successful trust verification, the <PolicySet> 
or <Policy> may participate in the process of deriving an authorization decision. 

6.3 Information Flow Model 

The XACML Information Flow Model defines the architecture of a modular and 
distributed access control system. In addition, it defines the exchange of messages 
between the components and the structure of the messages. The following figure 
illustrates the informative architecture and the sequence of messages, sent between the 
components of the access control system.  

                                                
2 A v B = ¬(¬A ^ ¬B) 



 
 
 
 

OGC 13-100   

18 
Copyright © 2013 Open Geospatial Consortium 

 

 

Figure 3 — XACML Information Flow Model [XACML 3.0, figure1] 

 

The Policy Administration Point (PAP) is the component that allows one or multiple 
policy administrators to maintain access rights in a set of policies. In addition, the PAP 
might provide an interface for requesting policies. 

The Policy Decision Point (PDP) is the component that derives an authorization decision 
based on a request, received from one or multiple Policy Enforcement Point(s) (PEP). A 
PDP may request policies from the PAP or use a policy repository on file or in a 
database. 

The Policy Enforcement Point (PEP) can be characterized as a binary switch that either 
forwards the intercepted request from the client to the service (and the response from the 
service to the client respectively) or replies with an adequate error message. The decision 
if the request or response is to be forwarded or blocked depends on the authorization 



 
 
 
 

OGC 13-100   

19 
Copyright © 2013 Open Geospatial Consortium 

decisions, received from the PDP. Because the PEP must request authorization decisions 
in a particular XACML message format, it is the duty of the context handler to collect all 
relevant information and prepare the authorization decision request message. The 
information, collected by the context handler can include the identity information about 
the user, the action to be taken on the resource, information about the resource itself, the 
IP address of the client, the time of the request, certificate information, etc… In order to 
collect all relevant information, it can be required to request such information from the 
Policy Information Point (PIP). 

The PIP provides interfaces to the context handler in a proxy fashion to simplify the 
information fetching. For example, the PIP could provide an interface for collecting user 
credentials which maps to LDAP, Kerberos, etc. Also, the PIP could provide a database 
or Web Service interface to enable the collection of resources via a “trusted custom” 
channel. 

6.4 Extension capabilities of XACML 

The XACML specification defines the non-normative extensibility points (section 8, 
OASIS eXtensible Access Control Markup Language (XACML) Version 3.0). For this 
specification, it is important to note that the DataType, FunctionId and AttributeId 
can be extended.  

Please see the XACML schema definitions in http://docs.oasis-
open.org/xacml/3.0/xacml-core-v3-schema-wd-17.xsd (OASIS eXtensible Access 
Control Markup Language (XACML) Version 3.0) for the XML format of the elements. 

6.4.1 Defining a new Data Type Geometry 

Section 8.1 of the XACML specification states that “The following XML attributes have 
values that are URIs. These may be extended by the creation of new URIs associated with 
new semantics for these attributes. … “Category, AttributeId, DataType, FunctionId, 
MatchId, ObligationId, AdviceId, PolicyCombiningAlgId, RuleCombiningAlgId, 
StatusCode, SubjectCategory.” 

This capability allows the definition of geometry data type, as defined by GeoXACML 
using the extension point DataType. The XACML compliant URN is defined to be 
urn:ogc:def:dataType:geoxacml:3.0:geometry. 

6.4.2 Encoding of Data Type Geometry 

Section 8.2 of the XACML specification states that “<xacml:AttributeValue> and 
<xacml-context:AttributeValue> elements MAY contain an instance of a structured XML 
data-type.”.  

This provides two options for encoding a geometry: 

1. As a string value to the <AttributeValue> element 



 
 
 
 

OGC 13-100   

20 
Copyright © 2013 Open Geospatial Consortium 

The GeoXACML 3.0 Core defines the mandatory encoding for using the string 
value to use Well Known Text 

2. As XML 

The GeoXACML 3.0 Core defines an extension point such that Encoding 
Extension can define different XML encodings. 

 

<xs:element name="AttributeValue" type="xacml:AttributeValueType" 
substitutionGroup="xacml:Expression"/> 
<xs:complexType name="AttributeValueType" mixed="true"> 
  <xs:complexContent mixed="true"> 
    <xs:extension base="xacml:ExpressionType"> 
      <xs:sequence> 
        <xs:any namespace="##any" processContents="lax" minOccurs="0"   
                maxOccurs="unbounded"/> 
      </xs:sequence> 
      <xs:attribute name="DataType" type="xs:anyURI" use="required"/> 
        <xs:anyAttribute namespace="##any" processContents="lax"/> 
    </xs:extension> 
  </xs:complexContent> 
</xs:complexType>  

Figure 4 — XACML schema definition of the <AttributeValue> element 

 

6.4.3 Defining a new Function 

A <Function> element has an attribute named FunctionId, which is of type xs:anyURI. 
According to the extension capabilities of XACML, additional functions can be defined 
by associating a unique FunctionId to it.  

This capability allows the definition of geo-specific functions, as defined by 
GeoXACML. 

<xs:element name="Function" type="xacml:FunctionType"/> 
<xs:complexType name="FunctionType"> 
  <xs:attribute name="FunctionId" type="xs:anyURI" use="required"/> 
</xs:complexType> 

Figure 5 — XACML schema definition of the <Function> element 

 



 
 
 
 

OGC 13-100   

21 
Copyright © 2013 Open Geospatial Consortium 

6.3.3 Defining new Identifiers / Attributes  

An <AttributeDesignator> element allows fetching information from an XACML 
AuthorizationDecisionRequest based on named attributes. In order to specify new 
names for attributes, the <AttributeDesignatorType> has an attribute named 
AttributeId. In order to use GeoXACML specific data types, the value of the attribute 
DataType SHALL be used according to the specified data types. According to the 
extension capabilities of XACML, additional identifier-names or attribute-names can be 
defined by associating a unique AttributeId to it. 

An <AttributeSelector> element allows fetching information from an XACML 
AuthorizationDecisionRequest based on the XML encoded information as it can be 
inserted into the <Content> element. The value of the attribute named DataType SHALL 
be used according to the specified data type.  

These capabilities allow the fetching of geo-specific information from the ADR using 
either the  XACML AttributeDesignator or the AttributeSelector without modifying any 
XACML schema (policy, authorization decision request or authorization decision 
schema). 

The following two figures highlight the extension points in the XACML schema that are 
used by GeoXACML.  

<xs:complexType name="AttributeDesignatorType"> 
  <xs:complexContent> 
    <xs:extension base="xacml:ExpressionType"> 
      <xs:attribute name="Category" type="xs:anyURI" use="required"/> 
      <xs:attribute name="AttributeId" type="xs:anyURI" use="required"/> 
      <xs:attribute name="DataType" type="xs:anyURI" use="required"/> 
      <xs:attribute name="Issuer" type="xs:string" use="optional"/> 
      <xs:attribute name="MustBePresent" type="xs:boolean" use="required"/> 
    </xs:extension> 
  </xs:complexContent> 
</xs:complexType> 

Figure 6 — XACML schema definition of the <AttributeDesignatorType> element 

 

<xs:complexType name="AttributeSelectorType"> 
  <xs:complexContent> 
    <xs:extension base="xacml:ExpressionType"> 
      <xs:attribute name="Category" type="xs:anyURI" use="required"/> 
      <xs:attribute name="ContextSelectorId" type="xs:anyURI" use="optional"/> 
      <xs:attribute name="Path" type="xs:string" use="required"/> 
      <xs:attribute name="DataType" type="xs:anyURI" use="required"/> 
      <xs:attribute name="MustBePresent" type="xs:boolean" use="required"/> 
    </xs:extension> 
  </xs:complexContent> 
</xs:complexType>> 



 
 
 
 

OGC 13-100   

22 
Copyright © 2013 Open Geospatial Consortium 

Figure 7 — XACML schema definition of the <AttributeSelectorType> element 

 

6.5 XACML as a programming language 

Looking at the actual extension GeoXACML from a developers point of view, it can best 
be understood when XACML is seen as a programming language where the dialect is 
encoded in XML. In that respect, GeoXACML bridges the gap between the OO Design 
described in ISO 19125 and the Procedural Design taken in XACML. At the highest 
level, GeoXACML can be understood according to the Adapter Pattern [see Gamma, 
et.al.], as illustrated in the following example. 

Let’s assume that we want to implement a condition function testing if the dimension of a 
given geometry instance is greater than zero and if so, return the integer value 1.  

The following pseudo code will illustrate the approach following the OO Design Pattern: 

1: Integer Permit = 1; 
2: Integer Rule () 
3: { 
4:   Geometry g = new Point (“Point (0 0 )”); 
5:   if (g.Dimension() > 0) 
6:  return Permit; 
7: } 
 

Line1:   Defines the constant Permit as type Integer 

Line 2:  Define the condition function Rule 

Lines 3-7:  The Code block for the function 

Line 4:  Instantiate a geometry of concrete type Point 

Line 5:  The actual condition testing the dimension of the geometry instance and 
comparing it with the literal value 0 

Line 6:  Iff the condition from line 5 is true, return 1 

 

The pseudo code below illustrates the above Rule following Procedural Programming: 

1: Integer Permit = 1; 
2: Integer Rule () 
3: { 
4:   Geometry g = new Point (“Point (0 0 )”); 
5:   if (GeoXACML.Dimension(g) > 0) 



 
 
 
 

OGC 13-100   

23 
Copyright © 2013 Open Geospatial Consortium 

6:  return Permit; 
7: } 
 

The only major difference to this pseudo code is in line 5, where the function Dimension 
is not called from the geometry object instance but statically. For that to work, the static 
function with the signature Dimension(Geometry):Integer must have been defined 
in a adapter class GeoXACML. To define different adapters by different conformance 
classes is what the GeoXACML 3.0 Core specification is all about. 

In order to be compliant with the XACML environment, the functions defined by 
GeoXACML through the adapter pattern must also implement XACML compliant error 
handling. This is particularly important as GeoXACML does not differentiate the 
concrete sub-types to Geometry as defined in ISO 19125. And therefore, it is possible 
that a GeoXACML function gets invoked on a geometry type for which it is not defined. 
Therefore, a GeoXACML implementation must check the concrete types of parameters 
and issue a XACML conformant PROCESSING_ERROR in case the function is not 
defined for the data type of the parameter. Furthermore, functions defined by ISO 19125 
often return NULL in the case of an error. This is not possible with XACML; instead a 
PROCESSING_ERROR must be returned. In that sense, the Adapter Pattern (as defined 
in Gamma et.al.) used in GeoXACML adapts the function signature and its behavior as 
defined in ISO 19125 to be conform with XACML 3.0. 

The following pseudo code illustrates a more precise Adapter behavior for the example 
function.  

1: class GeoXACML <<extends>> ISO19125 
2: { 
3:   public static Integer Dimension (Geometry g) 
4:   { 
5:     if (g instanceOf Empty) 
6:     { 
7:       return new ProcessingError(„operation not defined on 

Empty“); 
8:     } 
9:     Try 
10:     { 
11:       return g.dimension(); 
12:     } 
13:     catch (NullException) 
14:     { 
15:       return new ProcessingError(„operation error: NULL“); 
16:     } 
17:   } 
18: } 
 

Line 5-8: Adapt the behavior to GeoXACML environment and check for the 
concrete type of the parameter. 



 
 
 
 

OGC 13-100   

24 
Copyright © 2013 Open Geospatial Consortium 

Line 7:  Return PROCESSING_ERROR if actual type is Empty. 

Line 13-16: Adapt the error behavior of the function as defined in ISO 19125. 

 

Because XACML 3.0 mandates an XML encoding of the programming logic, the above 
condition must be presented in XML. The following XML code illustrates the exact same 
logic but compliant with the XACML 3.0 Schema and using the ISO 19125 function 
defined in GeoXACML. 

1: <Rule RuleId="dimension" Effect="Permit"> 
2:  <Condition> 
3:   <Apply 

FunctionId="urn:oasis:names:tc:xacml:1.0:function:integer-
greater-than"> 

4:    <Apply FunctionId=" 
urn:ogc:def:function:geoxacml:3.0:geometry-dimension"> 

5:     <AttributeValue 
DataType="urn:ogc:def:dataType:geoxacml:3.0:geometry" 
    >Point(0 0)</AttributeValue> 

6:    </Apply> 
7:    <AttributeValue 

DataType="http://www.w3.org/2001/XMLSchema#integer">0</Attri
buteValue> 

8:   </Apply> 
9:  </Condition> 
10: </Rule> 
 

Line 1:  Use of the Rule element as defined in XACML 3.0. The “function” return 
value Permit is already in the definition. 

Line 2:  Declaring the if-statement using the Condition element as defined in 
XACML 3.0. Paratemeters are in line 4 and 7. 

Line 3:  Declaration of the comparison logic for the if-statement using predefined 
comparison operators from XACML 3.0. 

Line 4:  Call of the GeoXACML 3.0 function Dimension using the Apply 
element as defined in XACML 3.0. Parameter in line 5. 

Line 5:  Instantiating a concrete geometry of type Point (from ISO 19125) using 
WKT for the GeoXACML data type Geometry. 

Line 7:  Declaring the literal value 0 of type Integer to be part of the comparison 
function. 



 
 
 
 

OGC 13-100   

25 
Copyright © 2013 Open Geospatial Consortium 

The final bit that GeoXACML must specify to reach compliance with XACML are URNs 
for each defined function. So for example the function Dimension():Integer as 
defined in ISO 19125 gets the GeoXACML signature 
Dimension(Geometry):Integer and the function URN is  
urn:ogc:def:function:geoxacml:3.0:geometry-dimension. 

6.6 GeoXACML Core – BASIC Conformance Class (Informative) 

For the purpose of better understanding what the normative section defines, this is the 
pseudo code that illustrates the implementation for the BASIC conformance class adapter 
functions. The functions defined in ISO 19125 are shaded grey. 

class GeoXACML_BASIC <<extends>> ISO19125 

{ 

  #define Equals ” urn:ogc:def:function:geoxacml:3.0:geometry-equals”; 
  #define Disjoint ”urn:ogc:def:function:geoxacml:3.0:geometry-
disjoint”; 
  #define Intersects ” urn:ogc:def:function:geoxacml:3.0:geometry-
intersects”; 
  #define Touches ” urn:ogc:def:function:geoxacml:3.0:geometry-
touches”; 
  #define Crosses ” urn:ogc:def:function:geoxacml:3.0:geometry-
crosses”; 
  #define Within ” urn:ogc:def:function:geoxacml:3.0:geometry-within”; 
  #define Contains ” urn:ogc:def:function:geoxacml:3.0:geometry-
contains”; 
  #define Overlaps ” urn:ogc:def:function:geoxacml:3.0:geometry-
overlaps”; 
 

  Boolean Equals (Geometry this, Geometry another)  

  { return this.dimension(another);} 

  Boolean Disjoint (Geometry this, Geometry another)  

  { return this.disjoint(another);} 

  Boolean Intersects (Geometry this, Geometry another)  

  { return this.intersects(another);} 

  Boolean Touches (Geometry this, Geometry another)  

  { return this.touches(another);} 

  Boolean Crosses (Geometry this, Geometry another)  

  { return this.crosses(another);} 

  Boolean Within (Geometry this, Geometry another)  

  { return this.within(another);} 

  Boolean Contains (Geometry this, Geometry another)  

  { return this.contains(another);} 

  Boolean Overlaps (Geometry this, Geometry another)  

  { return this.overlaps(another);} 

} 

 



 
 
 
 

OGC 13-100   

26 
Copyright © 2013 Open Geospatial Consortium 

6.7 GeoXACML Core – ADVANCED Conformance Class (Informative) 

For the purpose of better understand what the normative section defines, this is the 
pseudo code that illustrates the implementation for the ADVANCED conformance class 
adapter functions. The functions defined in ISO 19125 are shaded grey. 

class GeoXACML_AVANCED <<extends>> GeoXACML_BASIC 

{ 

  #define IsWithinDifference ” urn:ogc:def:function:geoxacml:3.0:geometry-
is-within-distance”; 
  #define Dimension ” urn:ogc:def:function:geoxacml:3.0:geometry-
dimension”; 
  #define GeometryType ” urn:ogc:def:function:geoxacml:3.0:geometry-
type”; 
  #define SRID “urn:ogc:def:function:geoxacml:3.0:geometry-srid”; 
  #define AsText ”urn:ogc:def:function:geoxacml:3.0:string-from-
geometry; 
  #define IsEmpty ” urn:ogc:def:function:geoxacml:3.0:geometry-is-
empty”; 
  #define IsSimple ”urn:ogc:def:function:geoxacml:3.0:geometry-is-
simple”; 
  #define Is3D ” urn:ogc:def:function:geoxacml:3.0:geometry-is-3d”; 
  #define IsClosed ” urn:ogc:def:function:geoxacml:3.0:geometry-is-
closed”; 
  #define IsValid ” urn:ogc:def:function:geoxacml:3.0:geometry-is-
valid”; 
  #define IsRing ” urn:ogc:def:function:geoxacml:3.0:geometry-is-ring”; 
  #define IsMeasured ” urn:ogc:def:function:geoxacml:3.0:geometry-is-
measured”; 
  #define Relate ” urn:ogc:def:function:geoxacml:3.0:geometry-relate”; 
  #define Length ” urn:ogc:def:function:geoxacml:3.0:geometry-length”; 
  #define Area ” urn:ogc:def:function:geoxacml:3.0:geometry-area”; 
 

  Boolean IsWithinDistance (Geometry this, Geometry another, distance:Double)  

  { return this.isWithinDistance(another, distance);} 

  Integer Dimension (Geometry this)  

  { return this.dimension();} 

  String GeometryType (Geometry this)  

  { return this.geometryType();} 

  Integer SRID (Geometry this)  

  { return this.srid();} 

  String AsText (Geometry this)  

  { return this.asText();} 

  Boolean IsEmpty (Geometry this)  

  { return this.isEmpty();} 

  Boolean IsSimple (Geometry this)  

  { return this.isSimple();} 

  Boolean Is3D (Geometry this)  

  { return this.is3D();} 

  Boolean IsClosed (Geometry this)  



 
 
 
 

OGC 13-100   

27 
Copyright © 2013 Open Geospatial Consortium 

  { if this instanceOf (Curve or MultiCurve) return this.isClosed(); else return 

PROCESSING_ERROR;} 

  Boolean IsValid (Geometry this)  

  { return this.isValid();} 

  Boolean IsRing (Geometry this)  

  { if this instanceOf Curve return this.isRing(); else return PROCESSING_ERROR;} 

  Boolean IsMeasured (Geometry this)  

  { return this.isMeasured();} 

  Boolean Relate (Geometry this, Geometry another, String matix)  

  { return this.relate(another, matrix);} 

  Double Distance (Geometry this, Geometry another)  

  { return this.distance(another);} 

  Double Length (Geometry this)  

  { if this instanceOf (Curve or MultiCurve) return this.length(); else return 

PROCESSING_ERROR;} 

  Double Area (Geometry this)  

  { if this instanceOf (Surface or MultiSurface) return this.area(); else return 

PROCESSING_ERROR;} 

  Double X (Geometry this)  

  { if this instanceOf Point return this.X(); else return PROCESSING_ERROR;} 

  Double Y (Geometry this)  

  { if this instanceOf Point return this.Y(); else return PROCESSING_ERROR;} 

  Double Z (Geometry this)  

  { if this instanceOf Point return this.Z(); else return PROCESSING_ERROR;} 

  Double M (Geometry this)  

  { if this instanceOf Point return this.M(); else return PROCESSING_ERROR;} 

} 

6.8 GeoXACML Core – ANALYSIS Conformance Class (Informative) 

For the purpose of better understand what the normative section defines, this is the 
pseudo code that illustrates the implementation for the ANALYSIS conformance class 
adapter functions. The functions defined in ISO 19125 are shaded grey. 

class GeoXACML_ANALYSIS <<extends>> GeoXACML_ AVANCED 

{ 

  #define Envelope ”urn:ogc:def:function:geoxacml:3.0:geometry-
envelope 
  #define Boundary ” urn:ogc:def:function:geoxacml:3.0:geometry-
boundary”; 
  #define LocateAlong ” urn:ogc:def:function:geoxacml:3.0:geometry-
locate-along”; 
  #define LocateBetween ” urn:ogc:def:function:geoxacml:3.0:geometry-
locate-between”; 
  #define Buffer ” urn:ogc:def:function:geoxacml:3.0:geometry-buffer”; 
  #define ConvexHull ” urn:ogc:def:function:geoxacml:3.0:geometry-
convex-hull”; 
  #define Intersection ” urn:ogc:def:function:geoxacml:3.0:geometry-
intersection”; 
  #define Union ” urn:ogc:def:function:geoxacml:3.0:geometry-union”; 
  #define Difference ” urn:ogc:def:function:geoxacml:3.0:geometry-
difference”; 



 
 
 
 

OGC 13-100   

28 
Copyright © 2013 Open Geospatial Consortium 

  #define SymDifference ” urn:ogc:def:function:geoxacml:3.0:geometry-
sym-difference”; 
  #define NumGeometries ” urn:ogc:def:function:geoxacml:3.0:geometry-
num-geometries”; 
  #define GeometryN ” urn:ogc:def:function:geoxacml:3.0:geometry-n”; 
  #define StartPoint ” urn:ogc:def:function:geoxacml:3.0:geometry-
start-point”; 
  #define EndPoint ” urn:ogc:def:function:geoxacml:3.0:geometry-end-
point”; 
  #define NumPoints ” urn:ogc:def:function:geoxacml:3.0:geometry-num-
points”; 
  #define PointN ” urn:ogc:def:function:geoxacml:3.0:geometry-point-n”; 
  #define ExteriorRing ” urn:ogc:def:function:geoxacml:3.0:geometry-
exterior-ring”; 
  #define NumInteriorRing ” urn:ogc:def:function:geoxacml:3.0:geometry-
num-interior-ring”; 
  #define InteriorRingN ” urn:ogc:def:function:geoxacml:3.0:geometry-
interior-ring-n”; 
  #define Centroid ” urn:ogc:def:function:geoxacml:3.0:geometry-
centroid”; 
  #define PointOnSurface ” urn:ogc:def:function:geoxacml:3.0:geometry-
point-on-surface”; 
  #define NumPatches ” urn:ogc:def:function:geoxacml:3.0:geometry-num-
patches”; 
  #define PatchN ” urn:ogc:def:function:geoxacml:3.0:geometry-patch-n”; 
  #define BoundaryPolygons ” urn:ogc:def:function:geoxacml:3.0:geometry-
bounding-polygons”; 
  #define GCFromGeometryBag ” urn:ogc:def:function:geoxacml:3.0:geometry-
collection-from-geometry-bag”; 
  #define GeometryBagFromGC ” urn:ogc:def:function:geoxacml:3.0:geometry-
bag-from-geometry-collection”; 
 

  Geometry Envelope (Geometry this)  

  { return this.envelope(); } 

  Geometry Boundary (Geometry this)  

  { if this instanceOf Surface return this.boundary(); else return PROCESSING_ERROR;} 

  Geometry LocateAlong (Geometry this, Geometry another, Double mValue)  

  { return this.locateAlong(another, mValue); } 

  Geometry LocateBetween (Geometry this, Double mStart, Double mEnd)  

  { return this.locateBetween(mStart, mEnd); } 

  Geometry Buffer (Geometry this)  

  { return this.buffer(); } 

  Geometry ConvexHull (Geometry this)  

  { return this.convexHull(); } 

  Geometry Intersection (Geometry this, Geometry another)  

  { return this.intersection(another); } 

  Geometry Union (Geometry this, Geometry another)  

  { return this.union(another); } 

  Geometry Difference (Geometry this, Geometry another)  

  { return this.difference(another); } 

  Geometry SymDifference (Geometry this, Geometry another)  

  { return this.symDifference(another); } 

  Integer NumGeometries (GeometryCollection this)  



 
 
 
 

OGC 13-100   

29 
Copyright © 2013 Open Geospatial Consortium 

  { return this.numGeometries();} 

  Geometry GeometryN (GeometryCollection this, Integer N)  

  { if this instanceOf GeometryCollection return this.geometryN(N); else return 

PROCESSING_ERROR; } 

  Geometry StartPoint (Geometry this)  

  { if this instanceOf Curve return this.startPoint(); else return PROCESSING_ERROR;} 

  Geometry EndPoint (Geometry this)  

  { if this instanceOf Curve return this.endPoint(); else return PROCESSING_ERROR;} 

  Integer NumPoints (Geometry this)  

  { if this instanceOf LineString return this.numPoints();else return PROCESSING_ERROR;} 

  Geometry PointN (Geometry this, Integer N)  

  { if this instanceOf LineString return this.PointN(N); else return PROCESSING_ERROR;} 

  Geometry ExteriorRing (Geometry this)  

  { if this instanceOf Surface return this.exteriorRing(); else return PROCESSING_ERROR;} 

  Integer NumInteriorRing (Geometry this)  

  { if this instanceOf Surface return this.numInteriorRing(); else return 

PROCESSING_ERROR;} 

  Geometry InteriorRingN (Geometry this, Integer N)  

  { if this instanceOf Surface return this.interiorRing(N); else return 

PROCESSING_ERROR;} 

  Geometry Centroid (Geometry this)  

  { if this instanceOf (Surface or MultiSurface) return this.centroid(); else return 

PROCESSING_ERROR;} 

  Geometry PointOnSurface (Geometry this)  

  { if this instanceOf (Surface or MultiSurface) return this.pointOnSurface(); else 

return PROCESSING_ERROR;} 

  Integer NumPatches (Geometry this)  

  { if this instanceOf PolyhedralSurface return this.numPatches(); else return 

PROCESSING_ERROR;} 

  Geometry PatchN (Geometry this, Integer N)  

  { if this instanceOf PolyhedralSurface return this.patchN(N); else return 

PROCESSING_ERROR;} 

  Geometry BoundingPolygons (Geometry this, Geometry another)  

  { if this instanceOf PolyhedralSurface return this.boundingPolygons(another); else 

return PROCESSING_ERROR;} 

  GeometryCollection GCFromGeometryBag (GeometryBag this)  

  {  GeometryCollection gc = new GeometryCollection(); 

     for (int ix = 0; ix < this.bagSize(); ix++) {gc.add(this.get(ix));} 

     return gc; 

  } 

  Geometry GeometryBagFromGC (GeometryCollection this)  

  { GeometryBag gb = new GeometryBag(); 

    for (int ix = 0; ix < this.numGeometries(); ix++) {gb.add(this.geometryN(ix);} 

    return gb;   

  } 

} 

6.9 Use Case – Restricting access to geospatial data 

 



 
 
 
 

OGC 13-100   

30 
Copyright © 2013 Open Geospatial Consortium 

6.10 Use Case – Restricting access based on user location 

 

7. Requirements for GeoXACML 3.0 Core 

7.1 Introduction (informative) 

The GeoXACML 3.0 Core is defined as an extension to OASIS eXtensible Access 
Control Markup Language (XACML) Version 3.0. In that regard, a GeoXACML 3.0 
Core implementation must be fully compliant with the XACML 3.0 specification; in 
particular all data types and functions marked “mandatory” must be supported.  

But because typical use cases for GeoXACML involve deriving authorization decisions 
based on XML encoded resources, e.g. OWS POST requests or OWS responses such as 
WFS feature collections, the GeoXACML 3.0 Core compliance will require 
implementing the one data type urn:oasis:names:tc:xacml:3.0:data-
type:xpathExpression marked “optional” in XACML and all functions related to 
that data type. 

By introducing the data type urn:ogc:def:dataType:geoxacml:3.0:geometry, 
GeoXACML 3.0 Core must define functions on that data type which follow the 
procedural semantics of the XACML 3.0 standard. In particular the functions to marshall 
/ unmarshall any data type to/from a string representation must be supported. Therefore, 
GeoXACML 3.0 Core must define the functions 
urn:ogc:def:function:geoxacml:3.0:string-from-geometry and 
urn:ogc:def:function:geoxacml:3.0:geometry-from-string. In addition, 
matching, test, bag and set functions defined by OASIS eXtensible Access Control 
Markup Language (XACML) Version 3.0 must be supported for the geometry data type. 

In order for GeoXACML 3.0 Core to support spatial indexing of policies by target 
matching, the set of condition functions must be extended. According to OASIS 
eXtensible Access Control Markup Language (XACML) Version 3.0 the function 
signature must be two non-bag parameters with a boolean result. According to the 
geometry model and functions adopted from SF, functions to testing topological relations 
such as geometry-equals, geometry-within, etc. qualify. It is important for GeoXACML 
3.0 Core to nominate all qualifying functions to be condition functions in the sense of 
OASIS eXtensible Access Control Markup Language (XACML) Version 3.0. 

In order to accommodate the ease of implementation, GeoXACML 3.0 Core defines three 
implementation levels: basic, advanced and analysis. The basic implementation requires 
that the implementation supports the topological test functions. The advanced 
implementation basically3 supports all functions on geometry from ISO 19125 that are 

                                                
3 Please see the normative section for the mandatory set of functions defined for the basic and the advanced 
conformance class. 



 
 
 
 

OGC 13-100   

31 
Copyright © 2013 Open Geospatial Consortium 

labeled “query”. The analysis implementation conformance class requires that the 
implementation supports all functions on geometry from ISO 19125 and in addition the 
bag and set functions defined in XACML. Because the geometry data type marshalling / 
unmarshalling function is adopted from OASIS eXtensible Access Control Markup 
Language (XACML) Version 3.0, both conformance classes must support these 
functions. 

Because GeoXACML 3.0 Core leverages the extension points as identified by OASIS 
eXtensible Access Control Markup Language (XACML) Version 3.0, all GeoXACML 
3.0 policy instance documents are XACML 3.0 Schema compliant. Also, the XACML 
3.0 Schema definitions for encoding the Authorization Decision Request and Response 
are sufficient for GeoXACML 3.0. Therefore, GeoXACML must not define compliance 
tests for policy, request and response instance documents. 

In order to provide an overview, the following “quasi” UML diagram illustrates the 
relationships that GeoXACML is using / establishing. 

 

Figure 6 — 

Figure 7 — GeoXACML relations illustrated in UML  

 

7.2 Common Requirements Class 

This section defines requirements that are common to other requirements. 



 
 
 
 

OGC 13-100   

32 
Copyright © 2013 Open Geospatial Consortium 

7.3 Requirements Class: Specification 

The standardization target for this requirements class is specification. 

Req 1 GeoXACML 3.0 urn prefix for function 

GeoXACML 3.0 Core defines a non resolvable urn base identifier for functions 
urn:ogc:def:function:geoxacml:3.0 

Req 2 GeoXACML 3.0 urn prefix for data type 

GeoXACML 3.0 Core defines a non resolvable urn base identifier for functions 
urn:ogc:def:dataType:geoxacml:3.0 

Req 3 OASIS eXtensible Access Control Markup Language (XACML) Version 3.0 

GeoXACML 3.0 Core  SHALL adopt all OASIS eXtensible Access Control Markup 
Language (XACML) Version 3.0 as defined in the section 10 “Conformance”.  

GeoXACML 3.0 Core  SHALL adopt OASIS eXtensible Access Control Markup 
Language (XACML) Version 3.0 data type 
urn:oasis:names:tc:xacml:3.0:data-type:xpathExpression marked “O” 
(optional) in section10.2.7. 

GeoXACML 3.0 Core  SHALL adopt OASIS eXtensible Access Control Markup 
Language (XACML) Version 3.0 functions for data type 
urn:oasis:names:tc:xacml:3.0:data-type:xpathExpression marked “O” 
(optional) in section10.2.8. 

Req 4 XACML 3.0 Schema 

GeoXACML 3.0 Core shall adopt the XACML 3.0 Schema. 

Req 5 Data type Geometry 

GeoXACML 3.0 Core defines the following XACML compliant identifier for the data 
type Geometry as defined in ISO 19125: 
urn:ogc:def:dataType:geoxacml:3.0:geometry 

Req 6 Geometry encoding using WKT 

An instance of data type Geometry SHALL be represented as a string value of an XACML 
<AttributeValue> element where the DataType attribute is set to the value 
urn:ogc:def:dataType:geoxacml:3.0:geometry.  

The encoding of the enclosed geometry SHALL be compliant to the definition of Well-
Known-Text is ISO 19125. 



 
 
 
 

OGC 13-100   

33 
Copyright © 2013 Open Geospatial Consortium 

Req 7 Geometry encoding using XML 

An instance of data type Geometry SHALL be represented as a direct child of an XACML 
<AttributeValue> element where the DataType attribute is set to the value 
urn:ogc:def:dataType:geoxacml:3.0:geometry.  

The encoding of the enclosed geometry SHALL be compliant to the definition of a 
geometry encoding extension to this standard. 

Req 8 Data type GeometryBag 

A GeometryBag shall be an XACML bag with the data type 
urn:ogc:def:dataType:geoxacml:3.0:geometry 

Req 9 Function GeometryType 

This function SHALL have the signature GeometryType(this:Geometry):String 
and the identifier as urn:ogc:def:function:geoxacml:3.0:geometry-type. 

This function SHALL be compliant to GeometryType():String as defined in ISO 
19125. 

Note: This function returns the class name of the concrete geometry subtype according to 
the UML diagram as defined in ISO 19125. 
Req 10 Function Dimension 

This function SHALL have the signature Dimension(this:Geometry):Integer and 
the identifier as urn:ogc:def:function:geoxacml:3.0:geometry-dimension. 

This function SHALL be compliant to Dimension():Integer as defined in ISO 
19125. 

Req 11 Function SRID 

This function SHALL have the signature Dimension(this:Geometry):Integer and 
the identifier as urn:ogc:def:function:geoxacml:3.0:geometry-srid. 

This function SHALL be compliant to SRID():Integer4 as defined in ISO 19125. 

Req 12 Function Envelope 

                                                
4 This is most likely going to change to SRID():String 



 
 
 
 

OGC 13-100   

34 
Copyright © 2013 Open Geospatial Consortium 

This function SHALL have the signature Envelope(this:Geometry):Geometry 
and the identifier as urn:ogc:def:function:geoxacml:3.0:geometry-
envelope. 

This function SHALL be compliant to Envelope():Geometry as defined in ISO 
19125. 

Req 13 Function AsText 

This function SHALL have the signature AsText(this:Geometry):String and the 
identifier as urn:ogc:def:function:geoxacml:3.0:string-from-geometry. 

This function SHALL be compliant to AsText():String  as defined in ISO 19125. 

Req 14 Function AsBinary 

GeoXACML 3.0 Core DOES NOT define a XACML 3.0 corresponding representation 
and identifier for the function AsBinary():Binary as defined in ISO 19125.  

Req 15 Function IsEmpty 

This function SHALL have the signature IsEmpty(this:Geometry):Boolean and 
the identifier as urn:ogc:def:function:geoxacml:3.0:geometry-is-empty. 

This function SHALL be compliant to IsEmpty():Integer as defined in ISO 19125. 

Req 16 Function IsSimple 

This function SHALL have the signature IsSimple(this:Geometry):Boolean and 
the identifier as urn:ogc:def:function:geoxacml:3.0:geometry-is-simple. 

This function SHALL be compliant to IsSimple():Integer as defined in ISO 19125. 

Req 17 Function Is3D 

This function SHALL have the signature Is3D(this:Geometry):Boolean and the 
identifier as urn:ogc:def:function:geoxacml:3.0:geometry-is-3d. 

This function SHALL be compliant to Is3D():Boolean as defined in ISO 19125. 
Req 18 Function IsMeasured 

This function SHALL have the signature IsMeasured(this:Geometry):Boolean 
and the identifier as urn:ogc:def:function:geoxacml:3.0:geometry-is-
measured. 



 
 
 
 

OGC 13-100   

35 
Copyright © 2013 Open Geospatial Consortium 

This function SHALL be compliant to IsMeasured():Integer as defined in ISO 
19125. 

Req 19 Function Boundary 

This function SHALL have the signature Boundary(Geometry):Geometry and the 
identifier as urn:ogc:def:function:geoxacml:3.0:geometry-boundary. 

This function SHALL be compliant to Boundary():Geometry as defined in ISO 
19125. 

Req 20 Function Equals 

This function SHALL have the signature 
Equals(this:Geometry,another:Geometry):Boolean and the identifier as 
urn:ogc:def:function:geoxacml:3.0:geometry-equals. 

This function SHALL be compliant to Equals(Geometry):Integer as defined in ISO 
19125. 

Req 21 Function Disjoint 

This function SHALL have the signature 
Disjoint(this:Geometry,another:Geometry):Boolean and the identifier as 
urn:ogc:def:function:geoxacml:3.0:geometry-disjoint. 

This function SHALL be compliant to Disjoint(Geometry):Integer as defined in 
ISO 19125. 

Req 22 Function Intersects 

This function SHALL have the signature 
Intersects(this:Geometry,another:Geometry):Boolean and the identifier as 
urn:ogc:def:function:geoxacml:3.0:geometry-intersects. 

This function SHALL be compliant to Intersects(Geometry):Integer as defined 
in ISO 19125. 

Req 23 Function Touches 

This function SHALL have the signature 
Touches(this:Geometry,another:Geometry):Boolean and the identifier as 
urn:ogc:def:function:geoxacml:3.0:geometry-touches. 

This function SHALL be compliant to Touches(Geometry):Integer as defined in 
ISO 19125. 



 
 
 
 

OGC 13-100   

36 
Copyright © 2013 Open Geospatial Consortium 

Req 24 Function Crosses 

This function SHALL have the signature 
Crosses(this:Geometry,another:Geometry):Boolean and the identifier as 
urn:ogc:def:function:geoxacml:3.0:geometry-crosses. 

This function SHALL be compliant to Crosses(Geometry):Integer as defined in 
ISO 19125. 

Req 25 Function Within 

This function SHALL have the signature 
Within(this:Geometry,another:Geometry):Boolean and the identifier as 
urn:ogc:def:function:geoxacml:3.0:geometry-within. 

This function SHALL be compliant to Within(Geometry):Integer as defined in ISO 
19125. 

Req 26 Function Contains 

This function SHALL have the signature 
Contains(this:Geometry,another:Geometry):Boolean and the identifier as 
urn:ogc:def:function:geoxacml:3.0:geometry-contains. 

This function SHALL be compliant to Contains(Geometry):Integer as defined in 
ISO 19125. 

Req 27 Function Overlaps 

This function SHALL have the signature 
Overlaps(this:Geometry,another:Geometry):Boolean and the identifier as 
urn:ogc:def:function:geoxacml:3.0:geometry-overlaps. 

This function SHALL be compliant to Overlaps(Geometry):Integer as defined in 
ISO 19125. 

Req 28 Function Relate 

This function SHALL have the signature 
Relate(this:Geometry,another:Geometry,String):Boolean and the 
identifier as urn:ogc:def:function:geoxacml:3.0:geometry-relate. 

This function SHALL be compliant to Relate(Geometry,String):Integer as 
defined in ISO 19125. 

Req 29 Function LocateAlong 



 
 
 
 

OGC 13-100   

37 
Copyright © 2013 Open Geospatial Consortium 

This function SHALL have the signature 
LocateAlong(this:Geometry,another:Geometry,Double):Geometry and the 
identifier as urn:ogc:def:function:geoxacml:3.0:geometry-locate-along. 

This function SHALL be compliant to LocateAlong(Geometry,Double):Geometry 
as defined in ISO 19125. 

Req 30 Function LocateBetween 

This function SHALL have the signature 
LocateBetween(this:Geometry,mStart:Double,mEnd:Double):Geometry 
and the identifier as urn:ogc:def:function:geoxacml:3.0:geometry-locate-
between. 

This function SHALL be compliant to LocateBetween(Double,Double):Geometry 
as defined in ISO 19125. 

Req 31 Function Distance 

This function SHALL have the signature 
Distance(this:Geometry,another:Geometry):Double and the identifier as 
urn:ogc:def:function:geoxacml:3.0:geometry-distance. 

This function SHALL be compliant to Distance(another:Geometry):Double as 
defined in ISO 19125. 

Req 32 Function IsWithinDistance 

This function SHALL have the signature 
IsWithinDistance(this:Geometry,another:Geometry,d:Double):Boolean 
and the identifier as urn:ogc:def:function:geoxacml:3.0:geometry-is-
within-distance. 

This function SHALL be compliant to IsWitinDistance():Double as defined in ISO 
19125. 

Req 33 Function Buffer 

This function SHALL have the signature 
Buffer(this:Geometry,distance:Double):Geometry and the identifier as 
urn:ogc:def:function:geoxacml:3.0:geometry-buffer. 

This function SHALL be compliant to Buffer(Double):Geometry as defined in ISO 
19125. 

Req 34 Function ConvexHull 



 
 
 
 

OGC 13-100   

38 
Copyright © 2013 Open Geospatial Consortium 

This function SHALL have the signature ConvexHull(this:Geometry):Geometry 
and the identifier as urn:ogc:def:function:geoxacml:3.0:geometry-convex-
hull. 

This function SHALL be compliant to ConvexHull():Geometry as defined in ISO 
19125. 

Req 35 Function Intersection 

This function SHALL have the signature 
Intersection(this:Geometry,another:Geometry):Geometry and the 
identifier as urn:ogc:def:function:geoxacml:3.0:geometry-intersection. 

This function SHALL be compliant to Intersection(Geometry):Geometry as 
defined in ISO 19125. 

Req 36 Function Union 

This function SHALL have the signature 
Union(this:Geometry,another:Geometry):Geometry and the identifier as 
urn:ogc:def:function:geoxacml:3.0:geometry-union. 

This function SHALL be compliant to Union(Geometry):Geometry as defined in ISO 
19125. 

Req 37 Function Difference 

This function SHALL have the signature 
Difference(this:Geometry,another:Geometry):Geometry and the identifier 
as urn:ogc:def:function:geoxacml:3.0:geometry-difference. 

This function SHALL be compliant to Difference(Geometry):Geometry as defined 
in ISO 19125. 

Req 38 Function SymDifference 

This function SHALL have the signature 
SymDifference(this:Geometry,another:Geometry):Geometry and the 
identifier as urn:ogc:def:function:geoxacml:3.0:geometry-sym-
difference.  

This function SHALL be compliant to SymDifference(Geometry):Geometry as 
defined in ISO 19125. 

Req 39 Function NumGeometries 



 
 
 
 

OGC 13-100   

39 
Copyright © 2013 Open Geospatial Consortium 

This function SHALL have the signature 
NumGeometries(this:GeometryCollection):Integer and the identifier as 
urn:ogc:def:function:geoxacml:3.0:geometry-num-geometries. 

This function SHALL be compliant to NumGeometries():Integer as defined in ISO 
19125. 

Req 40 Function GeometryN 

This function SHALL have the signature 
Geometry(this:GeometryBag,N:Integer):Geometry and the identifier as 
urn:ogc:def:function:geoxacml:3.0:geometry-n. 

This function SHALL be compliant to GeometryN(N:Integer):Geometry as 
defined in ISO 19125. 

Req 41 Function Length 

This function SHALL have the signature Length(this:Geometry):Double and the 
identifier as urn:ogc:def:function:geoxacml:3.0:geometry-length. 

This function SHALL be compliant to Length():Double as defined in ISO 19125. 

Req 42 Function X 

This function SHALL have the signature X(this:Geometry):Double and the 
identifier as urn:ogc:def:function:geoxacml:3.0:geometry-x. 

This function SHALL be compliant to X():Double as defined in ISO 19125. 

Req 43 Function Y 

This function SHALL have the signature Y(this:Geometry):Double and the 
identifier as urn:ogc:def:function:geoxacml:3.0:geometry-y. 

This function SHALL be compliant to Y():Double as defined in ISO 19125. 

Req 44 Function Z 

This function SHALL have the signature Z(this:Geometry):Double and the 
identifier as urn:ogc:def:function:geoxacml:3.0:geometry-z. 

This function SHALL be compliant to Z():Double as defined in ISO 19125. 

Req 45 Function M 



 
 
 
 

OGC 13-100   

40 
Copyright © 2013 Open Geospatial Consortium 

This function SHALL have the signature M(this:Geometry):Double and the 
identifier as urn:ogc:def:function:geoxacml:3.0:geometry-m. 

This function SHALL be compliant to M():Double as defined in ISO 19125. 

Req 46 Function StartPoint 

This function SHALL have the signature StartPoint(Geometry):Geometry and 
the identifier as urn:ogc:def:function:geoxacml:3.0:geometry-start-
point. 

This function SHALL be compliant to StartPoint():Geometry as defined in ISO 
19125. 

Req 47 Function EndPoint 

This function SHALL have the signature EndPoint(this:Geometry):Geometry 
and the identifier as urn:ogc:def:function:geoxacml:3.0:geometry-end-
point. 

This function SHALL be compliant to EndPoint():Geometry as defined in ISO 
19125. 

Req 48 Function IsClosed 

This function SHALL have the signature IsClosed(this:Geometry):Boolean and 
the identifier as urn:ogc:def:function:geoxacml:3.0:geometry-is-closed. 

This function SHALL be compliant to IsClosed():Integer as defined in ISO 19125. 

Req 49 Function IsValid 

This function SHALL have the signature IsValid(this:Geometry):Boolean and 
the identifier as urn:ogc:def:function:geoxacml:3.0:geometry-is-valid. 

This function SHALL be compliant to IsValid():Integer as defined in ISO 19125. 

Req 50 Function IsRing 

This function SHALL have the signature IsRing(this:Geometry):Boolean and 
the identifier as urn:ogc:def:function:geoxacml:3.0:geometry-is-ring. 

This function SHALL be compliant to IsRing():Integer as defined in ISO 19125. 

Req 51 Function NumPoints 



 
 
 
 

OGC 13-100   

41 
Copyright © 2013 Open Geospatial Consortium 

This function SHALL have the signature NumPoints(this:Geometry):Integer 
and the identifier as urn:ogc:def:function:geoxacml:3.0:geometry-num-
points. 

This function SHALL be compliant to NumPoints():Integer as defined in ISO 
19125. 

Req 52 Function PointN 

This function SHALL have the signature 
PointN(this:Geometry,N:Integer):Geometry and the identifier as 
urn:ogc:def:function:geoxacml:3.0:geometry-point-n. 

This function SHALL be compliant to PointN(Integer):Point as defined in ISO 
19125. 

Req 53 Function Area 

This function SHALL have the signature Area(this:Geometry):Double and the 
identifier as urn:ogc:def:function:geoxacml:3.0:geometry-area. 

This function SHALL be compliant to Area():Double as defined in ISO 19125. 

Req 54 Function Centroid 

This function SHALL have the signature Centroid(this:Geometry):Geometry 
and the identifier as urn:ogc:def:function:geoxacml:3.0:geometry-
centroid. 

This function SHALL be compliant to Centroid():Point as defined in ISO 19125. 

Req 55 Function PointOnSurface 

This function SHALL have the signature 
PointOnSurface(this:Geometry):Geometry and the identifier as 
urn:ogc:def:function:geoxacml:3.0:geometry-point-on-surface. 

This function SHALL be compliant to PointOnSurface():Point as defined in ISO 
19125. 

Req 56 Function ExteriorRing 

This function SHALL have the signature 
ExteriorRing(this:Geometry):Geometry and the identifier as 
urn:ogc:def:function:geoxacml:3.0:geometry-exterior-ring. 



 
 
 
 

OGC 13-100   

42 
Copyright © 2013 Open Geospatial Consortium 

This function SHALL be compliant to ExteriorRing():LineString as defined in 
ISO 19125. 

Req 57 Function NumInteriorRing 

This function SHALL have the signature 
NumInteriorRing(this:Geometry):Integer and the identifier as 
urn:ogc:def:function:geoxacml:3.0:geometry-num-interior-ring. 

This function SHALL be compliant to NumInteriorRing():Integer as defined in 
ISO 19125. 

Req 58 Function InteriorRingN 

This function SHALL have the signature 
InteriorRingN(this:Geometry,N:Integer):Geometry and the identifier as 
urn:ogc:def:function:geoxacml:3.0:geometry-interior-ring-n. 

This function SHALL be compliant to InteriorRingN(Integer):LineString as 
defined in ISO 19125. 

Req 59 Function NumPatches 

This function SHALL have the signature NumPatches(this:Geometry):Integer 
and the identifier as urn:ogc:def:function:geoxacml:3.0:geometry-num-
patches. 

This function SHALL be compliant to NumPatches():Integer as defined in ISO 
19125. 

Req 60 Function PatchN 

This function SHALL have the signature 
PatchN(this:Geometry,N:Integer):Geometry and the identifier as 
urn:ogc:def:function:geoxacml:3.0:geometry-patch-n. 

This function SHALL be compliant to PatchN(Integer):Geometry as defined in ISO 
19125. 

Req 61 Function BoundingPolygons 

This function SHALL have the signature 
BoundingPolygons(this:Geometry,p:Geometry):Geometry and the identifier 
as urn:ogc:def:function:geoxacml:3.0:geometry-bounding-polygons. 



 
 
 
 

OGC 13-100   

43 
Copyright © 2013 Open Geospatial Consortium 

This function SHALL be compliant to 
BoundingPolygons(Polygon):MultiPolygon as defined in ISO 19125. 

Req 62 Function GeometryFromString 

This function SHALL have the signature 
GeometryFromString(wkt:String):Geometry and the identifier as 
urn:ogc:def:function:geoxacml:3.0:geometry-from-string. 

This function SHALL accept a parameter of type String which value is compliant to the 
WKT representation as defined in ISO 19125. 

This function SHALL return a geometry instance according to the WKT representation of 
the argument. 

Req 63 Function GeometryOneAndOnly 

This function SHALL have the signature 
GeometryOneAndOnly(bag:GeometryBag):Geometry and the identifier as 
urn:ogc:def:function:geoxacml:3.0:geometry-one-and-only. 

This function SHALL return the only value in the bag. 

This function SHALL return “Immediate” if the bag does not have one and only one 
value. 

Req 64 Function GeometryBagSize 

This function SHALL have the signature 
GeometryBagSize(bag:GeometryBag):Integer and the identifier as 
urn:ogc:def:function:geoxacml:3.0:geometry-bag-size. 

This function SHALL return the number of values of type Geometry in the bag. 

Req 65 Function GeometryIsIn 

This function SHALL have the signature 
GeometryIsIn(g:Geometry,bag:GeometryBag):Boolean and the identifier as 
urn:ogc:def:function:geoxacml:3.0:geometry-is-in. 

The function SHALL return "True" if and only if the first argument matches by the  
urn:ogc:def:function:geoxacml:3.0:geometry-equals any value in the bag.  

This function SHALL return “False” otherwise or if the argument is an empty bag. 

Req 66 Function Bag 



 
 
 
 

OGC 13-100   

44 
Copyright © 2013 Open Geospatial Consortium 

This function SHALL have the signature Bag(Geometry*):GeometryBag and the 
identifier as urn:ogc:def:function:geoxacml:3.0:geometry-bag. 

This function SHALL return a bag of values where each member is of type Geometry. 

This function SHALL return an empty bag (a  bag with zero members) in case there is no 
argument value. 

Req 67 Function BagIntersection 

This function SHALL have the signature 
BagIntersection(bag1:GeometryBag,bag2:GeometryBag):GeometryBag 
and the identifier as urn:ogc:def:function:geoxacml:3.0:geometry-bag-
intersection. 

This function SHALL return a bag of values of type Geometry such that it contains only 
elements that are common between the two bags. This is determined by using the 
function  urn:ogc:def:function:geoxacml:3.0:geometry-equals. 

No duplicates as determined by  
urn:ogc:def:function:geoxacml:3.0:geometry-equals, SHALL exist in the 
result. 

Req 68 Function BagAtLeastOneMemberOf 

This function SHALL have the signature 
BagAtLeastOneMemberOf(bag1:GeometryBag,bag2:GeometryBag):Boolean 
and the identifier as urn:ogc:def:function:geoxacml:3.0:geometry-bag-at-
least-one-member-of. 

This function SHALL return "True" if and only if at least one element of the first 
argument is contained in the second argument as determined by 
urn:ogc:def:function:geoxacml:3.0:geometry-is-in . 

Req 69 Function BagUnion 

This function SHALL have the signature 
BagUnion(bag1:GeometryBag,bag2:GeometryBag):GeometryBag and the 
identifier as urn:ogc:def:function:geoxacml:3.0:geometry-bag-union. 

This function SHALL return a bag of Geoemtry such that it contains all elements of all 
the argument bags. No duplicates, as determined by  
urn:ogc:def:function:geoxacml:3.0:geometry-equals, SHALL exist in the 
result. 

Req 70 Function BagSubset 



 
 
 
 

OGC 13-100   

45 
Copyright © 2013 Open Geospatial Consortium 

This function SHALL have the signature 
BagSubset(bag1:GeometryBag,bag2:GeometryBag):Boolean and the identifier 
as urn:ogc:def:function:geoxacml:3.0:geometry-bag-subset. 

This function SHALL return "True" if and only if the first argument is a subset of the 
second argument. Each argument SHALL be considered to have had its duplicates 
removed, as determined by  urn:ogc:def:function:geoxacml:3.0:geometry-
equals, before the subset calculation. 

Req 71 Function SetEquals 

This function SHALL have the signature 
SetEquals(bag1:GeometryBag,bag2:GeometryBag):Boolean and the identifier 
as urn:ogc:def:function:geoxacml:3.0:geometry-set-equals. 

This function SHALL return the result of applying 
urn:oasis:names:tc:xacml:1.0:function:and to the application of 
urn:ogc:def:function:geoxacml:3.0:geometry-bag-subset to the first and 
second arguments and the application of 
urn:ogc:def:function:geoxacml:3.0:geometry-bag-subset to the second 
and first arguments. 

Req 72 Function BagFromGeometryCollection 

This function SHALL have the signature 
BagFromGC(gc:GeometryCollection):GeometryBag and the identifier as 
urn:ogc:def:function:geoxacml:3.0:geometry-bag-from-geometry-
collection. 

This function SHALL return a bag of values of type Geometry by adding each geometry 
of the GeometryCollection as a member of type Geometry. 

Req 73 Function GeometryCollectionFromBag 

This function SHALL have the signature 
GCFromBag(GeometryBag):GeometryCollection and the identifier as 
urn:ogc:def:function:geoxacml:3.0:geometry-collection-from-
geometry-bag. 

This function SHALL return a GeometryCollection as defined in ISO 19125 by adding 
each member of the bag as a geometry to the collection. 

Req 74 Function GeometryFromBinary 

GeoXACML 3.0 Core DOES NOT define a XACML 3.0 corresponding representation 
and identifier for this function. 



 
 
 
 

OGC 13-100   

46 
Copyright © 2013 Open Geospatial Consortium 

 

Annex A: Conformance Class Abstract Test Suite (Normative) 

 
This Annex defines three implementation levels of GeoXACML enriched Policy Decision 
Point (GeoPDP). Each implementation level is represented by a conformance class that 
provides tests to ensure compliance of an implementation. 
 

Conformance class: BASIC Implementation  

A.1 Conformance testing XACML 3.0 

Test that the implementation is compliant with XACML 3.0 according to Req 3. 

 

Test that the implementation is able to process a GeoXACML 3.0 Policy, which is a valid XML 
document according to Req 4. 

A.2 Conformance testing Data Type Geometry 

Test that the implementation supports the creation of an <AttributeValue> with data type 
urn:ogc:def:dataType:geoxacml:3.0:geometry according to Req 5 
and where the geometry is described as a value encoded using WKT according to 
Req 6. 

A.3 Conformance testing Functions 

Test that the following functions are supported by the implementation: 

Function URN Requirement 
 urn:ogc:def:function:geoxacml:3.0:geometry-contains Req 26 
 urn:ogc:def:function:geoxacml:3.0:geometry-crosses Req 24 
urn:ogc:def:function:geoxacml:3.0:geometry-disjoint Req 21 
urn:ogc:def:function:geoxacml:3.0:geometry-equals Req 20 
 urn:ogc:def:function:geoxacml:3.0:geometry-intersects Req 23 
urn:ogc:def:function:geoxacml:3.0:geometry-overlaps Req 27 
urn:ogc:def:function:geoxacml:3.0:geometry-touches Req 23 
urn:ogc:def:function:geoxacml:3.0:geometry-within Req 25 
 



 
 
 
 

OGC 13-100   

47 
Copyright © 2013 Open Geospatial Consortium 

A.4 Conformance testing Condition Functions  

Test that the following functions are supported by the implementation are supported as XACML 
Condition Functions and can participate in matching inside the <Target> element: 

Function URN Requirement 
 urn:ogc:def:function:geoxacml:3.0:geometry-contains Req 26 
 urn:ogc:def:function:geoxacml:3.0:geometry-crosses Req 24 
urn:ogc:def:function:geoxacml:3.0:geometry-disjoint Req 21 
urn:ogc:def:function:geoxacml:3.0:geometry-equals Req 20 
 urn:ogc:def:function:geoxacml:3.0:geometry-intersects Req 23 
urn:ogc:def:function:geoxacml:3.0:geometry-overlaps Req 27 
urn:ogc:def:function:geoxacml:3.0:geometry-touches Req 23 
urn:ogc:def:function:geoxacml:3.0:geometry-within Req 25 
 

Conformance class: ADVANCED Implementation  

This conformance class extends the conformance class “BASIC”.  

Test that the implementation is supporting the conformance class “BASIC”. 

A.5 Conformance testing Data Type Geometry 

Test that the implementation supports the creation of a geometry from an <AttributeValue> with 
data http://www.w3.org/2001/XMLSchema#string according to Req 62. 

A.6 Conformance testing Functions 

Test that the following functions are supported by the implementation: 

Function URN Requirement 
urn:ogc:def:function:geoxacml:3.0:geometry-is-within-distance Req 32 
urn:ogc:def:function:geoxacml:3.0:geometry-dimension Req 10 
urn:ogc:def:function:geoxacml:3.0:geometry-type Req 9 
urn:ogc:def:function:geoxacml:3.0:geometry-srid Req 11 
urn:ogc:def:function:geoxacml:3.0:geometry-is-empty Req 15 
urn:ogc:def:function:geoxacml:3.0:geometry-is-

simple 
Req 16 

urn:ogc:def:function:geoxacml:3.0:geometry-is-3d Req 17 
urn:ogc:def:function:geoxacml:3.0:geometry-is-valid Req 49 
urn:ogc:def:function:geoxacml:3.0:geometry-is-closed Req 48 
urn:ogc:def:function:geoxacml:3.0:geometry-is-measured Req 18 
urn:ogc:def:function:geoxacml:3.0:geometry-is-ring Req 50 
urn:ogc:def:function:geoxacml:3.0:geometry-relate Req 28 
urn:ogc:def:function:geoxacml:3.0:geometry-distance Req 31 



 
 
 
 

OGC 13-100   

48 
Copyright © 2013 Open Geospatial Consortium 

urn:ogc:def:function:geoxacml:3.0:geometry-length Req 41 
urn:ogc:def:function:geoxacml:3.0:geometry-area Req 53 
urn:ogc:def:function:geoxacml:3.0:geometry-x Req 42 
urn:ogc:def:function:geoxacml:3.0:geometry-y Req 43 
urn:ogc:def:function:geoxacml:3.0:geometry-z Req 44 
urn:ogc:def:function:geoxacml:3.0:geometry-m Req 45 
 

Conformance class: ANALYSIS Implementation  

This conformance class extends the conformance class “ADVANCED”.  

 

Test that the implementation is supporting the conformance class “ADVANCED”. 

A.7 Conformance testing Data Type Geometry 

Test that the implementation supports the creation of a bag with data type 
urn:ogc:def:dataType:geoxacml:3.0:geometry according to Req 8. 

A.8 Conformance testing Functions 

Test that the following functions are supported by the implementation: 

Function URN Requirement 
urn:ogc:def:function:geoxacml:3.0:geometry-envelope Req 12 
urn:ogc:def:function:geoxacml:3.0:geometry-boundary Req 19 
urn:ogc:def:function:geoxacml:3.0:geometry-locate-along Req 29 
urn:ogc:def:function:geoxacml:3.0:geometry-locate-between Req 30 
urn:ogc:def:function:geoxacml:3.0:geometry-buffer Req 33 
urn:ogc:def:function:geoxacml:3.0:geometry-convex-hull Req 34 
urn:ogc:def:function:geoxacml:3.0:geometry-intersection Req 35 
urn:ogc:def:function:geoxacml:3.0:geometry-union Req 36 
urn:ogc:def:function:geoxacml:3.0:geometry-difference Req 37 
urn:ogc:def:function:geoxacml:3.0:geometry-sym-difference Req 38 
urn:ogc:def:function:geoxacml:3.0:geometry-num-geometries Req 39 
urn:ogc:def:function:geoxacml:3.0:geometry-n Req 40 
urn:ogc:def:function:geoxacml:3.0:geometry-start-point Req 46 
urn:ogc:def:function:geoxacml:3.0:geometry-num-points Req 51 
urn:ogc:def:function:geoxacml:3.0:geometry-end-point Req 47 
urn:ogc:def:function:geoxacml:3.0:geometry-point-n Req 52 
urn:ogc:def:function:geoxacml:3.0:geometry-exterior-ring Req 56 
urn:ogc:def:function:geoxacml:3.0:geometry-num-interior-ring Req 57 
urn:ogc:def:function:geoxacml:3.0:geometry-interior-ring-n Req 58 



 
 
 
 

OGC 13-100   

49 
Copyright © 2013 Open Geospatial Consortium 

urn:ogc:def:function:geoxacml:3.0:geometry-centroid Req 54 
urn:ogc:def:function:geoxacml:3.0:geometry-point-on-surface Req 55 
urn:ogc:def:function:geoxacml:3.0:geometry-patch-n Req 60 
urn:ogc:def:function:geoxacml:3.0:geometry-num-patches Req 59 
urn:ogc:def:function:geoxacml:3.0:geometry-bounding-polygons Req 61 
urn:ogc:def:function:geoxacml:3.0:geometry-collection-from-geometry-bag Req 73 
urn:ogc:def:function:geoxacml:3.0:geometry-bag-from-geometry-collection Req 72 



 
 
 
 

OGC 13-100   

50 
Copyright © 2013 Open Geospatial Consortium 

Annex B: Conformance Test Files (informative) 



 
 
 
 

OGC 13-100   

51 
Copyright © 2013 Open Geospatial Consortium 

Annex C: Bibliography 

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design Patterns: Elements 
of Reusable Object-Oriented Software, ISBN 0-201-63361-2 

Annex D: Document revision history 

Date Release Author Paragraph 
modified 

Description 

2013-03-21 0.1 Andreas 
Matheus 

All Document created 

2013-05-03 0.2 Andreas 
Matheus 

All Comments from Norman Brickman 
(MITRE) incorporated 

2013-10-28 0.3 Andreas 
Matheus 

All Cleanup for Discussion Paper release 

 


