

OpenGIS® Engineering Report OGC 12-097

 22

Figure 5 - GML Streaming accessed by Lockheed Martin application

In addition, Streaming GML access was successfully tested on the ESRI ArcGIS 10.0
desktop. Access required the setting of a number of parameters in the desktop
application, however, once set GML data access was seamless.

8 SQLite/SpatiaLite Workflow for GML Streaming

Mobile device users who require map/geospatial application services and operate in
disconnected or limited network connectivity environments are often challenged by
limited storage capacity and the lack of open format geospatial data to support these
applications. The current situation is that each map/geospatial application requires its
own potentially proprietary geospatial data store. These separate application-specific data
stores may contain the same geospatial data, wasting the limited storage available, and
requiring custom applications for data translation, replication, and synchronization to
enable different map/geospatial applications to share the same world view. In addition,
many existing geospatial data stores are platform-specific, which means that users with
different platforms must translate data to share it.

OGC® Engineering Report OGC 12-097

23
Copyright © 2013 Open Geospatial Consortium

This section describes how the OWS-9 effort assessed, developed and tested the delivery
of large payloads consisting of geospatial data sets and/or collections of data sets to
SpatiaLite to store the data for use by mobile applications using GML.

8.1 SQLite/SpatiaLite and GeoPackage Overview

SpatiaLite is an open source library that extends the SQLite core to support Spatial SQL
capabilities. SQLite is a software library that implements a self-contained, serverless,
transactional SQL database engine. SpatiaLite implementations described in this
document use the draft GeoPackage specification.

The draft OpenGIS® GeoPackage Implementation Specification defines a GeoPackage as
a self-contained, single-file, cross-platform, serverless, transactional, open source
RDBMS data container with table definitions, relational integrity constraints, an SQL
API exposed via a “C” CLI and JDBC, and an XML manifest that together act as an
exchange and direct-use format for multiple types of geospatial data, especially on
mobile / hand held devices in disconnected or limited network connected environments.

Direct use requirements include the ability to access and update data in a “native” format
without intermediate format translations in an environment (e.g. through an API) that
guarantees data model and data set integrity and identical access and update results in
response to identical requests from different client applications. Specifically, a
GeoPackage can contain multiple vector feature types, rasters from various sources, and
multiple tile matrix pyramids. A GeoPackage supports storage of rasters and tiles in
multiple specified image file formats. Tiles are expected to be georectified or
orthorectified view-space images, while rasters could also be raw “as collected” images.
An individual GPKG may contain one, some or all of these types of geospatial data. The
GeoPackage API provides Simple Features SQL access to vector features and geometries,
and additional SQL functions on Rasters, Tiles, and their descriptive metadata. The
GeoPackage API supports implementation of data content management and integrity
constraints via SQL triggers.

The GeoPackage Manifest serves as a table of contents and data source access metadata
store for the contents of the GeoPackage data container. The Carbon Project’s effort’s in
OWS-9 extended this aspect of GeoPackage since easy methods were needed by mobile
app developers to help determine what data was in each SQLite column as described in
the following section. .

OpenGIS® Engineering Report OGC 12-097

 24

8.2 Creating GeoPackage from WFS

The streaming approach may be used to create GeoPackages from WFS serving a set of
features encoded as GML. As part of this project a ‘GeoPackage Manager’ was
developed to access the cloud-based WFS established by The Carbon Project and support
testing this workflow.

Figure 6 and the following descriptions illustrate the sequence of operation calls to
initialize a GeoPackage, create feature tables in SQLite, obtain GML as streamed data
from a datastore across the WFS interface and populate the GeoPackage.

1. A GeoPackage Manager component initializes a GeoPackage on SQLite.

2. A GeoPackage Manager requests a capabilities document from the WFS.

3. A GeoPackage Manager component creates feature tables in GeoPackage.

4. A GeoPackage Manager component imports GML into GeoPackage.

Based on this workflow the OWS-9 GeoPackage Manager component implemented by
The Carbon Project provided the ability to initialize a GeoPackage on SQLite from a
Streaming GML source implementing the OGC Web Feature Service interface, and load
Streaming GML data into it.

Future versions of the GeoPackage specification and/or one for a GeoPackage Web
Service may address additional utilities for creating GeoPackages and importing vector,
raster and tile data in various formats.

OGC® Engineering Report OGC 12-097

25
Copyright © 2013 Open Geospatial Consortium

GeoPackage
Manager

StreamGMLContent

WFS

GetCapabilities() :servicemetadata

ImportData :GetFeature() :feature instance

CreateFeatureTable

InitializeGeoPackage

Figure 6 - Creating a GeoPackage from Streaming GML using The Carbon Project GeoPackage
Manager component

During the implementation process it was assessed that stores data in an ambiguous
way. Specifically, the question was raised – “How does an application, including a
mobile application, figure out what data is in each column?” For instance, SQLite has a
numeric affinity, and Boolean, Datetimes and decimal values should use a numeric
SQLite affinity. What we not clear when integration experiments commenced was - how
can an application determine what each column is from a client program that has nothing
to go by other than the SQLite file. The client may read the column as a numeric, but it
could really be either a Boolean, Datetime or decimal value stored. In other words,
methods were needed to figure out the exact datatype of each column. To address this
during testing The Carbon Project developed a simple XML description which led to
extensions of the GeoPackage draft and development of more standardized mechanisms.
A sample of this XML description is included below.

OpenGIS® Engineering Report OGC 12-097

 26

<?xml version="1.0" encoding="UTF-8"?>
<cp:CarbonMetadata xmlns:cp="
[[http://www.thecarbonproject.com/][http://www.thecarbonproject.com]]">
<cp:WfsUrl>http://somecloud.somecloudapplication.net/wfs</cp:WfsUrl>
<cp:FeatureType>cp:HaitiPoints</cp:FeatureType>
<cp:Filter/>
<cp:Fields xmlns:cp="
[[http://www.thecarbonproject.com/][http://www.thecarbonproject.com]]">
 <cp:Field xmlns:cp="
[[http://www.thecarbonproject.com/][http://www.thecarbonproject.com]]">
 <cp:Name>shape</cp:Name>
 <cp:Title>shape</cp:Title>
 <cp:Description/>
 <cp:FieldType>Point</cp:FieldType>
 <cp:IsRequired>False</cp:IsRequired>
 </cp:Field>
 <cp:Field xmlns:cp="
[[http://www.thecarbonproject.com/][http://www.thecarbonproject.com]]">
 <cp:Name>osm_id</cp:Name>
 <cp:Title>osm_id</cp:Title>
 <cp:Description/>
 <cp:FieldType>Integer</cp:FieldType>
 <cp:IsRequired>False</cp:IsRequired>
 </cp:Field>
 <cp:Field xmlns:cp="
[[http://www.thecarbonproject.com/][http://www.thecarbonproject.com]]">
 <cp:Name>timestamp</cp:Name>
 <cp:Title>timestamp</cp:Title>
 <cp:Description/>
 <cp:FieldType>String</cp:FieldType>
 <cp:MaxLength>20</cp:MaxLength>
 <cp:IsRequired>False</cp:IsRequired>
 </cp:Field>
 <cp:Field xmlns:cp="
[[http://www.thecarbonproject.com/][http://www.thecarbonproject.com]]">
 <cp:Name>name</cp:Name>
 <cp:Title>name</cp:Title>
 <cp:Description/>
 <cp:FieldType>String</cp:FieldType>
 <cp:MaxLength>48</cp:MaxLength>
 <cp:IsRequired>False</cp:IsRequired>
 </cp:Field>
 <cp:Field xmlns:cp="
[[http://www.thecarbonproject.com/][http://www.thecarbonproject.com]]">
 <cp:Name>type</cp:Name>
 <cp:Title>type</cp:Title>
 <cp:Description/>
 <cp:FieldType>String</cp:FieldType>
 <cp:MaxLength>16</cp:MaxLength>
 <cp:IsRequired>False</cp:IsRequired>
 </cp:Field>

OGC® Engineering Report OGC 12-097

27
Copyright © 2013 Open Geospatial Consortium

</cp:Fields>
</cp:CarbonMetadata>

The GeoPackage Manager component was also leveraged to obtain additional
performance metrics for data access by GML streaming to request and retrieve the data,
and insert the data into a SpatiaLite database, as shown in the last column of the table
below. Both the Haiti Buildings and Haiti Points FeatureType had four properties each
(including Geometry). The Haiti Roads FeatureType had had seven properties (including
Geometry).

Performance metrics on the time to insert the obtained GML data into a SpatiaLite
database are shown in the table below:

Table 3 - Time to insert GML into SQLite/GeoPackage for use on Mobile devices

FeatureType
Name

GML
Geometry

GML Feature
Count

Time to Access and
Obtain GML

Time to Insert
GML into
GeoPackage

Haiti Points Point 16,717 2.15 seconds 5 seconds

Haiti Roads MultiLineString 93,306 32 seconds 38 seconds

Haiti Buildings MultiPolygon 100,000 24 seconds 32 seconds

8.3 Using GeoPackage for Connected/Disconnected Mobile Apps

A GeoPackage mobile app was created to access and update the Streaming GML
imported into a GeoPackage, as shown in Figure 7 below.

OpenGIS® Engineering Report OGC 12-097

 28

Figure 7 - GeoPackage mobile app on Android

In this Integration Experiment, data in the GeoPackage created from Streaming GML
feature data sources described in Section 7 was transferred to an Android mobile
application from The Carbon Project. Once the GeoPackage was loaded this mobile
application provided the capability to access feature data from the GeoPackage, Pan,
Zoom, Select Layers, access data, and edit (Inert, Update, Delete) Feature Geometries
and Properties.

For this project The Carbon Project’s mobile application made Transactions against the
SQLite/SpatiaLite and the Streaming GML services (exposed as WFS). In this approach,
the features and changes are applied to the main table in GeoPackage. Transactions are
captured in a separate table, so the application knows what has changed. As a sync
occurs, the transaction table gets emptied and may be sent to a GeoSynchronization
service or the WFS. In this approach, transactions are stored as the feature type id,
feature id, operation and XML in a new table. The XML is WFS Transactions XML.
When a sync is performed, a WFS:Transaction is created containing all the
Inserts/Updates/Deletes in the table, and then sent. The table is emptied if the
Transaction was successful. The application code handles instances in which multiple
changes occur to the same feature before a sync occurs. For instance, if the user Inserts a
new feature and then edits it, all that is sent is a single Insert to the WFS.

OGC® Engineering Report OGC 12-097

29
Copyright © 2013 Open Geospatial Consortium

GeoPackageTransaction

GeoPackage
Manager

StreamGMLContent

WFS |
App Service

GetCapabilities() :servicemetadata

ImportData :GetFeature() :feature instance

CreateFeatureTable

InitializeGeoPackage

SendGeoPackage

Disconnected/Connected
Mobile App User

AccessGeoPackage

Transaction() :InsertUpdateDeletefeatures

Figure 8 – Sequence Diagram for GeoPackage creation from Streaming GML, and use on mobile
application

9 Recommendations

Key recommendations for future work include

 Testing the Streaming GML approach should be tested with OGC Web Feature
Services (WFS) delivering Geography Markup Language (GML; ISO 19136)
enhanced with “Resolution Parameters” on the GetFeature Request to support
data access client applications using density-specific content models.

OpenGIS® Engineering Report OGC 12-097

 30

 Transactions into GeoPackage.

 GeoSynchronization with Streaming GML and GeoPackages.

Of particular utility to the dissemination of large payloads consisting of geospatial data
sets and/or collections of data sets between machines connected via a network is OGC
Change Request (CR) 132, OGC Document 11-004. This CR recommends ‘Adding
resolution parameters to GetFeatureRequest to support visualization clients’ using Web
Feature Service (WFS) Implementation Specification 2.0. The scope of this CR covers
the addition of three optional parameters to the GetFeature request. The parameters are
called: resolution, resolutionX and resolutionY. In this approach, you either specify
resolution OR resolutionX/resolutionY. If you specify resolution this implies this means
that the resolution in the X and Y directions is that same. Otherwise you can set the X
and Y resolution independently. The resolution parameters may be used to generalize
geometry suitable for the specified resolution. This means that non-visible segments are
removed or it may even mean not displaying anything if you are zoomed too far out.

Based on the lessons learned in OWS-9 the “Resolution Parameters” on the GetFeature
Request described may be extended to support data access client applications using
density-specific content models where specific feature types or resolutions of feature
types are provided at differing resolution levels by Streaming GML services.

