
Open Geospatial Consortium

Date: 2012-11-02

External identifier of this OGC
®
 document: http://www.opengis.net/doc/arml2x0/1.0

Internal reference number of this OGC
®
 document: 12-132r1

Version: 1.0.1

Category: OGC® Implementation Specification

Editor: Martin Lechner

OGC Augmented Reality Markup Language 2.0 (ARML 2.0)

[Candidate Standard – Request for Comments]

Copyright notice

Copyright © 2012 Open Geospatial Consortium

To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. This document is distributed for review and comment. This

document is subject to change without notice and may not be referred to as an OGC Standard.

Recipients of this document are invited to submit, with their comments, notification of any relevant

patent rights of which they are aware and to provide supporting documentation.

Document type: OGC
®
 Publicly Available Standard

Document subtype: -

Document stage: Draft

Document language: English

http://www.opengeospatial.org/legal/

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below, to

any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property without

restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish, distribute,

and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so,

provided that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual Property

is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above copyright

notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT MAY BE IN FORCE

ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT

LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY

RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE

INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE

UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO

EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE

LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING

FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR

UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR

PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all copies in

any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as provided in the

following sentence, no such termination of this license shall require the termination of any third party end-user sublicense to the

Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual Property, or the

operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other

right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license without any compensation or liability to

you, your licensees or any other party. You agree upon termination of any kind to destroy or cause to be destroyed the Intellectual

Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual Property shall

not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without prior written

authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize you or any third

party to use certification marks, trademarks or other special designations to indicate compliance with any LICENSOR standards or

specifications. This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the

United Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In the event any provision of this

Agreement shall be deemed unenforceable, void or invalid, such provision shall be modified so as to make it valid and enforceable, and as

so modified the entire Agreement shall remain in full force and effect. No decision, action or inaction by LICENSOR shall be construed to be

a waiver of any rights or remedies available to it.

i. Abstract

This OGC™ Standard defines the Augmented Reality Markup Language 2.0 (ARML 2.0). ARML 2.0

allows users to describe virtual objects in an Augmented Reality (AR) scene, their appearances and

their anchors (a broader concept of a location) in the real world. Additionally, ARML 2.0 defines

ECMAScript bindings to dynamically modify the AR scene based on user behavior and user input.

ii. Keywords

The following are keywords to be used by search engines and document catalogues.

ogcdoc ar augmented reality virtual objects arml virtual reality mixed reality 3d graphics model

iii. Preface

Attention is drawn to the possibility that some of the elements of this document may be the subject

of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any or

all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any

relevant patent claims or other intellectual property rights of which they may be aware that might be

infringed by any implementation of the standard set forth in this document, and to provide

supporting documentation.

iv. Submitting organizations

The following organizations submitted this Document to the Open Geospatial Consortium Inc. as a

Request For Comment (RFC):

a) Wikitude GmbH.

b) Georgia Tech

c) University of Alabama Huntsville - Information Technology & Systems Center

d) CACI International Inc.

v. Submitters

All questions regarding this submission should be directed to the editor or the submitters:

Name Company

Martin Lechner

martin.lechner@wikitude.com

Wikitude GmbH.

Blair MacIntyre

blair@cc.gatech.edu

Georgia Tech

Hafez Rouzati

hafez@gatech.edu

Georgia Tech

mailto:martin.lechner@wikitude.com
mailto:blair@cc.gatech.edu
mailto:hafez@gatech.edu

Manil Maskey

mmaskey@itsc.uah.edu

University of Alabama Huntsville –
Information Technology & Systems
Center

Scott Simmons

scsimmons@caci.com

CACI International Inc.

Contents
1 Scope ... 6

2 References ... 6

3 Terms and Definitions ... 7

4 Conventions ... 7

4.1 Abbreviated terms ... 7

4.2 Schema language ... 8

4.3 Scripting Components ... 8

5 Introduction ... 8

5.1 History of ARML - ARML 1.0 .. 8

6 Augmented Reality Markup Language (ARML) 2.0 ... 9

6.1 Units .. 9

6.2 Separation of Anchors and Visual Assets .. 9

6.3 Declarative and Scripting Specification ... 9

7 Object Model ... 10

7.1 Document Structure .. 10

7.2 interface ARElement .. 12

7.3 class Feature .. 12

7.4 interface Anchor .. 14

7.4.1 interface ARAnchor ... 15

7.4.2 class ScreenAnchor .. 29

7.5 interface VisualAsset ... 32

7.5.1 VisualAsset Types .. 34

7.5.2 Orienting VisualAssets ... 42

7.5.3 class ScalingMode - Scaling VisualAssets... 45

7.5.4 interface Condition .. 47

8 Examples .. 50

8.1 Typical geospatial AR Browser .. 51

8.2 Different Representations based on Distance .. 52

mailto:mmaskey@itsc.uah.edu
mailto:scsimmons@caci.com

8.3 3D Model on a Trackable ... 54

8.4 Color the Outline of the artificial marker .. 54

8.5 Color the entire area of a marker .. 55

9 ECMAScript Bindings ... 56

9.1 Accessing ARElements and Modifying the Scene .. 56

9.2 Object Creation and Property Access .. 57

9.3 Object and Constructor Definitions ... 58

9.3.1 General Interface Definitions .. 58

9.3.2 Feature .. 58

9.3.3 Anchor ... 58

9.3.4 ARAnchor ... 58

9.3.5 ScreenAnchor .. 59

9.3.6 Geometry ... 59

9.3.7 GMLGeometryElement .. 59

9.3.8 Point .. 59

9.3.9 LineString ... 60

9.3.10 Polygon .. 60

9.3.11 RelativeTo .. 60

9.3.12 Tracker ... 60

9.3.13 Trackable ... 61

9.3.14 VisualAsset ... 61

9.3.15 Orientation .. 61

9.3.16 ScalingMode .. 61

9.3.17 VisualAsset2D .. 62

9.3.18 Label .. 62

9.3.19 Fill .. 62

9.3.20 Text .. 63

9.3.21 Image ... 63

9.3.22 Model .. 63

9.3.23 Scale ... 64

9.3.24 DistanceCondition ... 64

9.3.25 SelectedCondition ... 64

9.3.26 Animation .. 65

9.3.27 NumberAnimation ... 65

9.3.28 GroupAnimation .. 66

9.3.29 Event Handling... 66

Annex A: Revision history .. 68

Annex B: Bibliography ... 68

1 Scope
The scope of ARML 2.0 is to provide an interchange format for Augmented Reality applications to

describe an AR scene, with a focus on vision-based AR (as opposed to AR relying on audio etc.). The

format describes the virtual objects that are placed into an AR environment, as well as their

registration in the real world. ARML 2.0, in its first version, is specified as an XML grammar. Both the

specification, as well as the XSD schema is provided.

Additionally, ARML 2.0 provides ECMAScript bindings to allow dynamic modification of the scene, as

well as interaction with the user. The ECMAScript bindings use the same core object models as the

XML grammar, described in JSON, and include event handling and animations.

The goal of ARML 2.0 is to provide an extensible standard and framework for AR applications to serve

the AR use cases currently used or developed. With AR, many different standards and computational

areas developed in different working groups come together. ARML 2.0 needs to be flexible enough to

tie into other standards without actually having to adopt them, thus creating an AR-specific standard

with connecting points to other widely used and AR-relevant standards.

As a requirement, a device running an AR implementation using ARML 2.0 must have a component

(screen, see-through display etc.) where the virtual objects are projected onto. It must have sensors

to analyze the real world - such as a camera, GPS, Orientation Sensors etc.

Users interact with the virtual scene by moving around in the real world. Based on the movement of

the user, the scene on the screen is constantly updated. A user can also interact with the scene by

selecting virtual objects, typically by touching them on the screen. However, how a user can select a

virtual object is application- and device-specific and out of scope for ARML 2.0.

It is planned to extend ARML in the future to also support non-visual virtual objects, such as sound

and haptic feedback. The current specification of ARML 2.0, however, focusses on visual objects.

2 References
The following normative documents contain provisions that, through reference in this text,

constitute provisions of this document. For dated references, subsequent amendments to, or

revisions of, any of these publications do not apply. For undated references, the latest edition of the

normative document referred to applies.

XML Schema Part 1: Structures Second Edition. W3C Recommendation (28 October 2004)
http://www.w3.org/TR/xmlschema-1/

ECMAScript Language Specification
http://www.ecma-international.org/ecma-262/5.1/ECMA-262.pdf

Web IDL Specification
http://www.w3.org/TR/WebIDL/

http://www.w3.org/TR/xmlschema-1/
http://www.ecma-international.org/ecma-262/5.1/ECMA-262.pdf
http://www.w3.org/TR/WebIDL/

GML Specification
http://www.opengeospatial.org/standards/gml

COLLADA Specification
http://www.khronos.org/collada/

3 Terms and Definitions
Terms and definitions used in this document are reused form the AR Glossary developed by the

International AR Standards Community [AR Glossary] where applicable. The glossary is a public

document, and specific permission for usage was given by the community's chairperson.

The following definitions are used within the document:

An (AR) Implementation or AR Application is any service that provides Augmentations to an AR-

ready device or system.

The Device is the hardware unit the AR implementation is running on.

An Augmentation is a relationship between the real world and a digital asset. The realization of an

augmentation is a composed scene. An augmentation may be formalized through an authoring and

publishing process where the relationship between real and virtual is defined and made discoverable.

A Digital Asset is data that is used to augment users' perception of reality and encompasses various

kinds of digital content such as text, image, 3d models, video, audio and haptic surfaces. A digital

asset is part of an augmentation and therefore is rendered in a composed scene. A digital asset can

be scripted with behaviors. These scripts can be integral to the object (for example, a GIF animation)

or separate code artifacts (for example, browser markup). A digital asset can have styling applied that

changes its default appearance or presentation. Visual Assets are digital assets that are represented

visually. As ARML in its current version focusses on visual representations of augmentations, only

Visual Assets are allowed.

A Composed Scene is produced by a system of sensors, displays and interfaces that creates a

perception of reality where augmentations are integrated into the real world. A composed scene in

an augmented reality system is a manifestation of a real world environment and one or more

rendered digital assets. It does not necessarily involve 3D objects or even visual rendering. The

acquisition of the user (or device)'s current pose is required to align the composed scene to the

user's perspective. Examples of composed scenes with visual rendering (AR in camera view) include a

smartphone application that presents visualization through the handheld video display, or a

webcam-based system where the real object and augmentation are displayed on a PC monitor.

The Camera View or AR View is the term used to describe the presentation of information to the

user (the augmentation) as an overlay on the camera display.

4 Conventions

4.1 Abbreviated terms
ARML Augmented Reality Markup Language

GML Geography Markup Language

JSON JavaScript Object Notation

KML Keyhole Markup Language

OGC Open Geospatial Consortium

UML Unified Modeling Language

XML Extensible Markup Language

XSD W3C XML Schema Definition Language

4.2 Schema language
The XML implementation specified in this Standard is described using the XML Schema language

(XSD) [XML Schema Part 1: Structures].

4.3 Scripting Components
The Scripting components described are based on the ECMAScript language specification

[ECMAScript Language Specification] and are defined using Web IDL [Web IDL Specification].

5 Introduction
Even though Augmented Reality is researched for a couple of decades already, no formal definition

of Augmented Reality exists. Below are two descriptions/definitions of Augmented Reality:

[Wikipedia AR Definition]: Augmented reality (AR) is a live, direct or indirect, view of a physical, real-

world environment whose elements are augmented by computer-generated sensory input such as

sound, video, graphics or GPS data. As a result, the technology functions by enhancing one's current

perception of reality. AR is about augmenting the real world environment with virtual information by

improving people's senses and skills. AR mixes virtual characters with the actual world.

[Ronald Azuma AR Definition]: Augmented Reality is a system that has the following three

characteristics:

 Combines real and virtual

 Interactive in real time

 Registered in 3-D

5.1 History of ARML - ARML 1.0
ARML 2.0's predecessor ARML 1.0 [ARML 1.0 Specification] was developed in 2009 as a proprietary

interchange format for the Wikitude World Browser. ARML 2.0 does not extend ARML 1.0, it is a

complete redesign of the format. ARML 1.0 documents are not expected to work with

implementations based on ARML 2.0. ARML without a version number implicitly stands for ARML 2.0

in this document.

ARML 1.0 is a descriptive, XML based data format, specifically targeted for mobile Augmented Reality

(AR) applications. ARML focuses on mapping geo-referenced Points of Interest (POIs) and their

metadata, as well as mapping data for the POI content providers publishing the POIs to the AR

application. ARML 1.0 was defined in late 2009 by the creators of the Wikitude World Browser to

enable developers to create content for Augmented Reality Browsers. ARML 1.0 combines concepts

and functionality typically shared by AR Browser, reuses concepts defined in OGC's KML standard and

is already used by hundreds of AR content developers around the world.

ARML 1.0 is fairly restrictive and focuses on functionality Wikitude required back in 2009. Thus,

ARML 2.0, while still using ideas coming from ARML 1.0, is targeted to be a complete redesign of the

1.0 format, taking the evolution of the AR industry, as well as other concepts and ideas into account.

6 Augmented Reality Markup Language (ARML) 2.0

6.1 Units
Units in ARML are given in meters. Whenever any virtual object in ARML has a size of x meters, the

size of this object on the screen is equal to a real world object of the same size and the same distance

in the camera view.

Remark: The actual size on the screen is dependent on certain camera parameters on the device.

6.2 Separation of Anchors and Visual Assets
ARML was built on the fundamental concept of separating the augmentations from their visual

representations. Augmentations are called Anchors, defining the link between the digital and the

physical world (a broader concept of a location). Typically, multiple anchors representing the same

real world object are wrapped into a Feature. Consequently, a Feature has one or more Anchors.

However, the Anchors only describe where the Feature appears in the composed scene. Visual Assets

describe how the Feature appears in the composed scene.

6.3 Declarative and Scripting Specification
ARML 2.0 comes with a declarative specification describing the objects in the AR scene, as well as a

scripting specification allowing dynamically modifying the scene and reacting on user-triggered

events. This document describes the declarative specification first, followed by the ECMAScript

bindings. The scripting spec uses ECMAScript for the scripting parts and the JSON serialization of the

objects for accessing the objects' properties.

The scripting spec declares hooks to the descriptive spec, so both specs, while existing separately

from another, work together for a dynamic experience. An implementation only supporting the

declarative spec (for instance in case scripting parts cannot be implemented on the platform the

implementation is running on) must clearly state this restriction and ignore any scripting

components.

The scripting spec contains sections which are intended for advanced users only. These sections are

clearly marked as Advanced ARML in the title and are intended for those already familiar with the

basic concepts of ARML.

7 Object Model
ARML 2.0 is build based on a generic object model. The objects involved in ARML are specified and

described in this chapter.

7.1 UML Diagram
The following UML class diagram introduces the objects involved in ARML 2.0, as well as their

relations. A more detailed description of each object in the specification follows below.

7.2 Document Structure
An ARML document is grouped into three parts: The declarative part (AR Elements), the styling part

and the scripting part. The root element of the document is <arml>, which contains the following

elements:

 The ARElements element contains a list of ARElement objects, as specified in the ARML

specification below.

 The optional style element contains styles (typically CSS) used for styling the virtual objects in

the scene. An optional type-attribute allows the specification of the style-mimetype (typically

text/css).

 The optional script part contains scripting code (typically ECMAScript or JavaScript). An

optional type-attribute allows the specification of the script-mimetype (typically

text/ecmascript or text/javascript)

XML Example (shortest possible ARML document):

<arml xmlns="http://opengeospatial.org/arml/2.0">

 <ARElements>

 </ARElements>

</arml>

XML Example:

<arml xmlns="http://opengeospatial.org/arml/2.0">

 <ARElements>

 <Feature id="myFeature">

 <name>My first Feature</name>

 <anchors>

 <Point>

 <pos>48.123 13.456</pos>

 </Point>

 </anchors>

 </Feature>

 </ARElements>

 <style type="text/css">

 <![CDATA[

 ... CSS style definitions of any Visual Assets

]]>

 </style>

 <script type="text/ecmascript"> <!--might also be javascript and other

derivatives -->

 <![CDATA[

 ... ECMAScript goes here ...]]>

 </script>

</arml>

XSD:

<xsd:complexType name="ArmlType">

 <xsd:sequence>

 <xsd:element name="ARElements" maxOccurs="1" minOccurs="1">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="ARElement" minOccurs="0" maxOccurs="unbounded"

/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="style" maxOccurs="1" minOccurs="0">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:attribute name="type" type="xsd:string" use="optional" />

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="script" maxOccurs="1" minOccurs="0">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:attribute name="type" type="xsd:string" use="optional" />

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

http://opengeospatial.org/arml/2.0

 </xsd:sequence>

</xsd:complexType>

<xsd:element name="arml" type="ArmlType" />

7.3 interface ARElement
Most classes specified in ARML 2.0 are derived from ARElement. Only ARElements are allowed as

root nodes in the ARElements tag of the document. An ARElement has an optional id property which

uniquely identifies the object. When set, the id must be unique in the document.

The id user is pre-assigned by the system and must not be used with objects. If user is used, the

attribute must be ignored.

Properties:

Name Description Type Multiplicity

id The unique ID of the ARElement string 0 or 1

id

The unique ID of the ARElement which makes it uniquely accessible and referenceable.

XSD:

<xsd:complexType name="ARElementType" abstract="true">

 <xsd:attribute name="id" type="xsd:string" use="optional" />

</xsd:complexType>

<xsd:element name="ARElement" abstract="true" type="ARElementType" />

7.4 class Feature
Inherits From ARElement.

A Feature is an abstraction of a real world phenomenon [GML Specification]. In ARML, a Feature has

one or more Anchors, which describe how the Feature is registered in the real world. Each of these

Anchors have one or more VisualAssets attached to it, which visually represent the Feature('s

Anchors) in the composed scene.

Properties:

Name Description Type Multiplicity

name The name of the Feature string 0 or 1

description A description of the Feature string 0 or 1

enabled A boolean flag controlling the state of the Feature boolean 0 or 1

anchors A list of anchors the Feature is referenced with Anchor[] 0 or 1

https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=0;table=1;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=1;table=1;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=2;table=1;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=3;table=1;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=0;table=2;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=1;table=2;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=2;table=2;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=3;table=2;up=0#sorted_table

name

The optional name of the Feature. Can be reused in Label and Text VisualAssets by using $[name] in

the Label or Text. Additionally, the name of the Feature is used as a Text-VisualAsset when an Anchor

of the Feature has no VisualAsset attached to it. The property can be omitted.

description

The optional description of the Feature. Can be reused in Label and Text VisualAssets by using

$[description] in the Label or Text.

enabled

Setting the boolean flag to true (enabled) means that VisualAssets attached to the Anchors of the

Feature are part of the composed scene, setting it to false (disabled) causes all Assets attached to the

Feature to be ignored for the composed scene (i.e. they are never visible in the AR View). Defaults to

true if not given.

anchors

contains a list of Anchors describing the Anchors of the Feature in the real world.

An Anchor can either be defined directly in the anchors-tag, or referenced using the anchorRef tag.

Both ways can be mixed within one Feature, and a Feature can have an arbitrary number of Anchors.

XSD:

<xsd:complexType name="FeatureType">

 <xsd:complexContent>

 <xsd:extension base="ARElementType">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" maxOccurs="1"

minOccurs="0" />

 <xsd:element name="description" type="xsd:string" maxOccurs="1"

minOccurs="0" />

 <xsd:element name="enabled" type="xsd:boolean" maxOccurs="1"

minOccurs="0" />

 <xsd:element name="anchors" maxOccurs="1" minOccurs="0">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="anchorRef" type="xsd:anyURI"

maxOccurs="unbounded" minOccurs="0" />

 <xsd:element ref="Anchor" minOccurs="0" maxOccurs="unbounded"

/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:element name="Feature" type="FeatureType"

substitutionGroup="ARElement" />

XML Example:

<Feature id="empireStateBuilding">

 <name>The Empire State Building</name>

 <enabled>true</enabled>

 <anchors>

 <!-- either defined directly in the tag -->

 <Trackable>

 ...

 </Trackable>

 <!-- or referenced (assuming that an Anchor with id myAnchor was

previously defined) -->

 <anchorRef>#myAnchor</anchorRef>

 </anchors>

</Feature>

7.5 interface Anchor
Inherits From ARElement.

An Anchor describes the registration (location) of a Feature in the real world or on the screen. Two

different types of Anchors are used in ARML:

 ARAnchor describes the location of a Feature in the real world. This Anchor is used for virtual

objects that are registered in the real world and move around on the screen as the user

moves around.

 ScreenAnchor describes a fixed location of a Feature on the screen. This Anchor is used for

objects that have a fixed location on the screen (similar to HTML components inside a HTML

page). The objects associated with a ScreenAnchor will not move when the user is moving

around, but remains static on the screen. Typical use cases are game HUDs or static

informational displays on certain Features.

Properties:

Name Description Type Multiplicity

enabled The state of the anchor boolean 0 or 1

enabled

Setting the boolean flag to true (enabled) means that VisualAssets attached to the Anchor are part of

the composed scene (if the Feature the Anchor is attached to is also enabled), setting it to false

(disabled) causes all VisualAssets attached to the Anchor to be ignored in the composed scene (i.e.

they are never visible in the AR View). Defaults to true if not given.

XSD:

<xsd:complexType name="AnchorType" abstract="true">

 <xsd:complexContent>

 <xsd:extension base="ARElementType">

 <xsd:sequence>

 <xsd:element name="enabled" type="xsd:boolean" maxOccurs="1"

minOccurs="0" />

 </xsd:sequence>

https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=0;table=3;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=1;table=3;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=2;table=3;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=3;table=3;up=0#sorted_table

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:element name="Anchor" type="AnchorType" abstract="true"

substitutionGroup="ARElement" />

Remark: Anchors are typically used within Features, however, an Anchor can also exist outside a

Feature. Regardless if it is located within a Feature or was defined separately (immediately within the

ARElements section), it is part of the composed scene.

7.5.1 interface ARAnchor

Inherits From Anchor.

An ARAnchor describes the registration (location) of a Feature in the real world. An ARAnchor might

be declared using spatial coordinates, i.e. a location in a (geo-)spatial sense, or an image or marker

that is recognized in the live camera video stream and even a sound that is recognized over the

microphone.

ARAnchor is an abstract class which must not be instantiated directly. We define the following

concrete types of ARAnchors in ARML:

 Geometry

 Trackable

 RelativeTo

Properties:

Name Description Type Multiplicity

assets The assets representing the anchor in the live scene Asset[] 0 or 1

assets

A list of VisualAssets attached to the ARAnchor. These VisualAssets will represent the ARAnchor.

A VisualAsset can either be defined directly in the assets-tag, or referenced using the assetRef tag.

Both ways can be mixed within one ARAnchor, and an ARAnchor can have an arbitrary number of

VisualAssets.

If no VisualAsset is supplied, a Text VisualAsset with its text set to the name of Feature the ARAnchor

is attached to is used as the default VisualAsset. In case even the name property is omitted for the

Feature, no VisualAsset is attached as default.

XSD:

<xsd:complexType name="ARAnchorType" abstract="true">

 <xsd:complexContent>

 <xsd:extension base="AnchorType">

 <xsd:sequence>

 <xsd:element name="assets" maxOccurs="unbounded" minOccurs="0">

 <xsd:complexType>

https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=0;table=4;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=1;table=4;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=2;table=4;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=3;table=4;up=0#sorted_table

 <xsd:sequence>

 <xsd:element name="assetRef" type="xsd:anyURI"

maxOccurs="unbounded" minOccurs="0" />

 <xsd:element ref="VisualAsset" maxOccurs="unbounded"

minOccurs="0" />

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:element name="ARAnchor" type="ARAnchorType" abstract="true"

substitutionGroup="Anchor" />

7.5.1.1 Local Coordinate System and Dimensions

ARAnchor types specify their own local coordinate system, which allows VisualAssets to be correctly

placed on top of the ARAnchor (see Orienting VisualAssets for details), and RelativeTo Anchors

created relative to an underlying ARAnchor. For each ARAnchor type, it is explicitly stated how the CS

is defined for this particular type of ARAnchor. Additionally, each ARAnchor has a dimension

associated with it. As VisualAssets take on different dimensions (a Text is 2D, while a 3D model is 3D),

it is important to define the dimension of an ARAnchor as well, to allow a high level definition of how

an n-dimensional Visual Asset will be rendered on top of an m-dimensional ARAnchor, without

having to specifically consider each ARAnchor and VisualAsset combination.

Whenever a concrete ARAnchor is defined, the dimension and coordinate system is defined as well.

7.5.1.2 class Geometry

Inherits from ARAnchor.

A Geometry Anchor is used when a Feature is registered in the real world using spatial coordinates

(such as geolocations). The Geometry Anchor serves as a wrapper for GMLGeometryElements which

essentially describe the spatial location of the Feature. A Geometry Anchor contains all properties

inherited from ARAnchor, as well as an additional element which describes the wrapped

GMLGeometryElement and the spatial coordinates.

The following GMLGeometryElements are allowed in ARML 2.0 and are described below:

 Point (a single position)

 LineString (a list of positions, connected to form a line)

 Polygon (a list of positions, connected to form a planar area)

Remark: GML Geometry anchors can only be considered if an implementation is capable of detecting

the user's current position and is thus capable of calculating spatial relationships between the user

and the Geometry anchors.

XSD:

<xsd:complexType name="GeometryType">

 <xsd:complexContent>

 <xsd:extension base="ARAnchorType">

 <xsd:sequence>

 <xsd:element ref="GMLGeometryElement" maxOccurs="1" minOccurs="1"

/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:element name="Geometry" type="GeometryType"

substitutionGroup="ARAnchor" />

Example:

<Feature id="myFeature">

 <anchors>

 <Geometry>

 <enabled>true</enabled>

 <assets>

 ...

 </assets>

 <Point>

 <pos>1 2</pos>

 </Point>

 </Geometry>

 </anchors>

</Feature>

7.5.1.2.1 interface GMLGeometryElement

Derived from [GML Specification].

Every concrete GMLGeometryElement type inherits from GMLGeometryElement, which allows the

definition of the underlying coordinate reference system (CRS) of the GML Geometry. The structure

of GMLGeometryElement, as well as the concrete GMLGeometryElement types is derived from

Geometries specified in GML [GML Specification].

The default CRS for Geometries is WGS84 (EPSG code 4326; "longitude latitude"; decimal numbers;

no altitude). Alternative CRSes can be specified using srsName, either by supplying the EPSG code

[EPSG Codes], or by pointing to an OGC WKT CRS definition. Implementations are required to at least

support WGS84. If a certain CRS used in ARML is unknown to an implementation, the entire

Geometry Anchor must be gracefully ignored.

If custom altitude values should be used, the CRSes dimension must be set to 3 (see srsDimension),

and values must be provided in "longitude latitude altitude" format (altitude in meters). If no altitude

is supplied, the altitude of every position will be set to the user's current altitude.

Properties:

Name Description Type Multiplicity

srsName The link to a well-known CRS or an EPSG code string 0 or 1

https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=0;table=5;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=1;table=5;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=2;table=5;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=3;table=5;up=0#sorted_table

Name Description Type Multiplicity

srsDimension The dimension of the CRS specified positiveInteger 0 or 1

srsName

optionally specifies either a link to an OGC WKT CRS, or an EPSG code. If srsName is omitted, WGS84

is implicitly assumed to be the default CRS.

srsDimension

The optional attribute srsDimension specifies the number of coordinate values in a position (i.e. the

dimension of the underlying CRS). srsDimension should be used when srsName is specified. If both

srsName and srsDimension are not given, srsDimension defaults to 2.

XSD:

<xsd:complexType name="GMLGeometryElementType" abstract="true">

 <xsd:attribute name="srsName" type="xsd:anyURI" />

 <xsd:attribute name="srsDimension" type="xsd:positiveInteger" />

</xsd:complexType>

<xsd:element name="GMLGeometryElement" type="GMLGeometryElementType"

abstract="true" />

7.5.1.2.2 class Point

Inherits From GMLGeometryElement. Derived from [GML Specification].

A Point specifies a position in the referenced coordinate reference system by a single coordinate

tuple.

Properties:

Name Description Type Multiplicity

pos The list of doubles, specifying the position of the Point list of double values 1

pos

Specifies the coordinate vector describing the position of the Point, in a blank-separated list.

XSD:

<xsd:simpleType name="doubleList">

 <xsd:list itemType="xsd:double" />

</xsd:simpleType>

<xsd:complexType name="PointType">

 <xsd:complexContent>

 <xsd:extension base="GMLGeometryElementType">

 <xsd:sequence>

 <xsd:element name="pos" type="doubleList" maxOccurs="1"

minOccurs="1" />

 </xsd:sequence>

 </xsd:extension>

https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=0;table=5;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=1;table=5;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=2;table=5;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=3;table=5;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=0;table=6;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=1;table=6;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=2;table=6;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=3;table=6;up=0#sorted_table

 </xsd:complexContent>

</xsd:complexType>

<xsd:element name="Point" type="PointType"

substitutionGroup="GMLGeometryElement" />

XML Example:

<Point id="myPointWithAltitudeOfUser">

 <pos>

 47.48 13.14

 </pos>

</Point>

<Point id="myPointWithExplicitAltitude" srsDimension="3">

 <pos>

 47.48 13.14 520

 </pos>

</Point>

7.5.1.2.3 class LineString

Inherits From GMLGeometryElement. Derived from [GML Specification].

A LineString is defined by two or more coordinate tuples, with linear interpolation between them.

The number of direct positions in the list shall be at least two.

Properties:

Name Description Type Multiplicity

posList The list of doubles, specifying the vector of positions of the

LineString

list of double

values

1

posList

Specifies the list coordinate vectors describing the vertices of the LineString, in a blank-separated list.

XSD:

<xsd:complexType name="LineStringType">

 <xsd:complexContent>

 <xsd:extension base="GMLGeometryElementType">

 <xsd:sequence>

 <xsd:element name="posList" type="doubleList" maxOccurs="1"

minOccurs="1" />

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:element name="LineString" type="LineStringType"

substitutionGroup="GMLGeometryElement" />

XML Example:

https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=0;table=7;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=1;table=7;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=2;table=7;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=3;table=7;up=0#sorted_table

<LineString id="myLineString">

 <posList>

 47.48 13.14 48.49 14.15

 </posList>

</LineString>

7.5.1.2.4 class Polygon

Inherits From GMLGeometryElement. Derived from [GML Specification].

A Polygon is a planar object defined by an outer boundary and 0 or more inner boundaries. The

boundaries are specified using the exterior and interior elements. The boundaries, in turn, are

defined by LinearRings.

A LinearRing is a closed LineString that should not cross itself. Simplified, a LinearRing is a LineString

where the last position equals the first position.

As a convention, the vertices of the Polygon (especially the vertices of the exterior LinearRing) should

be specified in anti-clockwise direction, as VisualAssets will only be visible on the front face of the

Polygon, the back face of the Polygon will appear grey. See Orienting VisualAssets for details.

Properties:

Name Description Type Multiplicity

exterior A LinearRing forming the outer boundary of the Polygon LinearRing 1

interior A LinearRing forming a hole in the interior of the Polygon LinearRing 0 .. *

exterior

A LinearRing forming the outer boundary of the Polygon

interior

A LinearRing forming a hole in the Polygon

XSD:

<xsd:complexType name="PolygonType">

 <xsd:complexContent>

 <xsd:extension base="GMLGeometryElementType">

 <xsd:sequence>

 <xsd:element ref="exterior" minOccurs="1" />

 <xsd:element ref="interior" minOccurs="0" maxOccurs="unbounded" />

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:element name="Polygon" type="PolygonType"

substitutionGroup="GMLGeometryElement" />

<xsd:complexType name="LinearRingType">

 <xsd:complexContent>

 <xsd:extension base="GMLGeometryElementType">

https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=0;table=8;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=1;table=8;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=2;table=8;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=3;table=8;up=0#sorted_table

 <xsd:sequence>

 <xsd:element name="posList" type="doubleList" minOccurs="1"

maxOccurs="1" />

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:element name="exterior" type="LinearRingType" />

<xsd:element name="interior" type="LinearRingType" />

XML Example:

<Polygon id="myPolygon">

 <exterior>

 <LinearRing>

 <posList>

 47.48 13.14 48.49 14.15 48.49 14.13 47.48 13.14

 </posList>

 </LinearRing>

 </exterior>

 <interior>

 <LinearRing>

 <posList>

 48.00 14.00 48.01 14.01 48.01 13.99 48.00 14.00

 </posList>

 </LinearRing>

 </interior>

 <interior>

 <LinearRing>

 ...

 </LinearRing>

 </interior>

</Polygon>

7.5.1.2.5 Advanced ARML: Coordinate Reference System and Dimensions

Dimensions:

The dimensions of Geometries are defined as specified in GML (Point: 0, LineString : 1, Polygon: 2).

The coordinate systems defined below are all of cartesian type (i.e. orthogonal axes).

Local Coordinate Systems:

Point

The ground plane is defined by the projected earth's surface at the specified Point. In case the Point

is used relative to a Trackable, the ground plane is formed by the Trackable's surface. The x and z axis

run within the ground plane.

Origin: The point itself

x-axis: pointing east (or right, parallel to the Trackable's lower and upper edges, when used relative

to a Trackable, see RelativeTo Anchor for details)

y-axis: pointing up, perpendicular to earth's (or Trackable's) surface

z-axis: pointing north (or towards the top edge, running parallel to the left and right edges of the

Trackable when used relative to a Trackable)

Unit: Meters

LineString

Origin: The point on the LineString being equidistant from the start and end of the LineString (the

center of the LineString)

x-axis pointing east (or right, parallel to the Trackable's lower and upper edges, when used relative to

a Trackable, see RelativeTo Anchor for details)

y-axis pointing up, perpendicular to earth's (or Trackable's) surface

z-axis pointing north (or towards the top edge, running parallel to the left and right edges of the

Trackable when used relative to a Trackable)

Unit: Meters

Polygon

The Polygon's local coordinate system is derived from the (uniquely defined) bounding rectangle (the

smallest rectangle fully enclosing the Polygon) having two of the four edges parallel to the earth's

surface (or Trackable's surface when used relative to a Trackable, see RelativeTo Anchor for details).

This ensures that the bounding rectangle is aligned with the (earth's or Trackable's) surface. The

bounding rectangle forms the ground plane of the coordinate system, x and z axis run within the

ground plane.

Origin: The point marking the center of the bounding rectangle

x-axis running parallel to the edges of the bounding rectangle which run parallel to the surface. When

the origin of the CS is viewed from the center of the lower edge (the one edge parallel to the surface

which is closer to the earth's or Trackable's surface) of the bounding rectangle, the x axis points right.

y-axis runs perpendicular to the ground plane of the polygon, pointing upwards

z-axis perpendicular to x and y axis, creating a left-handed coordinate system

Unit: Meters

Illustration:

Explanation:

The bounding box and its center were determined as described above. We assume that the edge

v3/v4 is the edge parallel to the surface which is closer to the surface than edge v1/v2. When the

origin of the CS is viewed from the center of edge v3/v4, the x axis points right, parallel to the edges

of the bounding rectangle. The y axis runs perpendicular to the bounding rectangle and points

upwards. The z axis creates a left-handed coordinate system.

Special case:

In case the Polygon is placed parallel to the earth's (or Trackable's) surface (that means altitude is

equal for each vertex), the bounding rectangle cannot be determined in the above definition. In this

case, the bounding rectangle's edges are aligned with the vectors pointing north/south and

east/west from the first vertex of the Polygon (or up/down and left/right when used relative to a

Trackable), and the southern/down edge form the lower edge of the Bounding Rectangle (which is

used to determine the x axis).

7.5.1.3 Trackable and Tracker

Trackables are a more general concept of a location of a Feature in the real world. Instead of

specifying an exact, well known set of coordinates somewhere within a well-known coordinate

reference system by using the geometry types specified in the previous section, a Trackable describes

something that is tracked in the real world (typically by a camera) and serves as the Anchor of a

Feature. As an example, a Trackable could be a 2D image, QR code or 3D model, however, Trackables

are not restricted to visual objects, an application could also track Sounds coming in from the

microphone. As Trackables are mostly visual in AR implementations, we will put a focus on those.

Two classes are required to specify a Trackable:

 Trackable: The Trackable describes the trigger (in whatever form) that should be tracked in

the scene. A Trackable might be an artificial game marker, the reference image or reference

3D model, the description of a face, the referenced song etc.

 Tracker: A Trackable is always linked to one specific Tracker, which references the framework

that needs to be used to track the referenced Trackable. For instance, if the Trackable is a

generic image, the Tracker needs to reference a generic image tracking capability the

implementation needs to be bundled with. If the implementation uses face tracking and the

Trackable describes a specific face, the Tracker needs to reference an underlying face

tracking functionality, which is exposed by the implementation.

7.5.1.3.1 class Tracker

Inherits From ARElement.

The Tracker describes the tracking framework to be used to track the Trackables associated with this

Tracker.

A Tracker is uniquely and globally identified by a URI. It is not required that any meaningful content is

accessible via the URI, however, a developer of a Tracker is encouraged to expose some descriptions

about the Tracker when the URI is called from a standard web browser. A definition of the exposed

content is beyond the scope of ARML 2.0.

Properties:

Name Description Type Multiplicity

uri The URI identifying the Tracker string 1

src The container the Tracker is operating in string 0 or 1

uri

To reference the framework used to track the associated Trackables, a Tracker specifies a uri

property that uniquely identifies the underlying tracking software. The URI might be registered in a

Tracker dictionary that assigns a unique URI to any publicly used Tracker, so AR implementations

using the standard can use this as a reference to what tracking framework should be used. The URI

might also point to a custom tracker implementation that is used just within the specific

implementation. If the URI cannot be resolved to any of the Trackers available on the

implementation, the Tracker cannot be used and must be gracefully ignored along with any

associated Trackables.

src

Optionally specifies a URI which references the container the Tracker is operating in, and the

associated Trackables can be found in. This mechanism allows a two-level location of the actual

Trackable in case it is contained within a container. src must be set if the Trackable is not directly

accessible via some sort of URI or any other identifier, but is located in any sort of container, such as

a zip file or a proprietary binary container containing all targets.

XSD:

<xsd:complexType name="TrackerType">

 <xsd:complexContent>

 <xsd:extension base="ARElementType">

 <xsd:sequence>

 <xsd:element name="uri" type="xsd:anyURI" maxOccurs="1"

minOccurs="1" />

 <xsd:element name="src" type="xsd:string" maxOccurs="1"

minOccurs="0" />

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:element name="Tracker" type="TrackerType"

substitutionGroup="ARElement" />

XML Example:

<!-- a generic image Tracker -->

<Tracker id="myGenericImageTracker">

 <uri>http://opengeospatial.org/arml/tracker/genericImageTracker</uri>

</Tracker>

<!-- a generic image Tracker operating on a set of image targets supplied

via a zip file -->

<Tracker id="myGenericImageTrackerWithZip">

https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=0;table=9;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=1;table=9;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=2;table=9;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=3;table=9;up=0#sorted_table

 <uri>http://opengeospatial.org/arml/tracker/genericImageTracker</uri>

 <src>http://www.myserver.com/myTargets/myTargets.zip</src>

</Tracker>

<!-- a custom Tracker -->

<Tracker id="myCustomTracker">

 <uri>http://www.myServer.com/myTracker</uri>

 <src>http://www.myServer.com/myTrackables/binary.file</uri>

</Tracker>

The following generic tracker URI is defined for every implementation:

 http://opengeospatial.org/arml/tracker/genericImageTracker hosting a tracker which takes

jpeg, png or gif images as image targets. The Trackables can be zipped, the src property must

then point to the zip file containing the Trackables.

7.5.1.3.2 class Trackable

Inherits From ARAnchor.

A Trackable represents the object that will be tracked with the associated Tracker. It provides the

actual Anchor of the Feature in the real world. A Trackable is always associated with one and only

one Tracker.

Properties:

Name Description Type Multiplicity

tracker The URI of the Tracker that is used to track the Trackable string 1

src The identification of the Trackable string 1

size The real world size of the Trackable, in meters double 0 or 1

tracker

The tracker property holds the URI to the referenced Tracker the Trackable will be tracked with

(format: #id).

src

The src property references the Trackable as such. Depending on the src property of the Tracker, the

src property of the Trackable must be of different formats:

 If src of the referenced Tracker is not set, src of the Trackable must contain a URI pointing to

the Trackable.

 If src of the referenced Tracker is set (e.g. pointing to a zip file), src of the Trackable must be

set to a String that uniquely identifies the Trackable for the given Tracker (e.g. the path to

the Trackable in a zip file, or any unique ID in another container)

size

The size property allows to specify the size of the real world object that is tracked with the Trackable.

If the Trackable is any sort of 2-dimensional object (such as images, face descriptions etc.), the size

http://opengeospatial.org/arml/tracker/genericImageTracker
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=0;table=10;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=1;table=10;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=2;table=10;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=3;table=10;up=0#sorted_table

specifies the width of the Trackable in meters. For example, if a billboard advertisement sized 5 by 10

meters in the real world should be tracked, the image representing the Trackable should be in the

same aspect ratio as the real object (1:2), and the size property needs to be set to 5. If the Trackable

is a 3-dimensional object, the size property specifies the meters representing one unit in the 3D

mesh. For example, if the model is using meters as the unit, set size to 1, if it is using feet, set it to

0.3048.

Certain Trackables might already contain information on the actual size of the Trackable within the

referenced file. Examples include 3D models in COLLADAfile format [COLLADA Specification]. In this

case, the size property of the Trackable can be omitted. However, the usage of the size element is

encouraged even in these cases. The size property overrules any size-properties implicitely set in the

file format. A Trackable without any defined size (either in the file or with the size property) by the

implementation must be ignored.

XSD:

<xsd:complexType name="TrackableType">

 <xsd:complexContent>

 <xsd:extension base="ARAnchorType">

 <xsd:sequence>

 <xsd:element name="tracker" type="xsd:string" maxOccurs="1"

minOccurs="1" />

 <xsd:element name="src" type="xsd:string" maxOccurs="1"

minOccurs="1" />

 <xsd:element name="size" type="xsd:double" maxOccurs="1"

minOccurs="0" />

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:element name="Trackable" type="TrackableType"

substitutionGroup="ARAnchor" />

XML Example:

<!-- using the trackers specified above -->

<!-- a png image tracked with the generic image tracker -->

<Trackable id="myBirdTrackable">

 <tracker>#myGenericImageTracker</tracker>

 <src>http://www.myserver.com/myTrackables/bird.png</src>

 <size>0.2</size> <!-- in real word dimensions, the bird image is 20 cm

wide -->

</Trackable>

<!-- a jpg image tracked with the generic image tracker operating on a zip

file-->

<Trackable id="myBirdTrackableInZip">

 <tracker>#myGenericImageTrackerWithZip</tracker>

 <src>/images/bird.png</src>

 <size>0.2</size>

</Trackable>

<!-- a jpg image tracked with the generic image tracker operating on a zip

file-->

<Trackable id="myCustomBirdTrackable">

 <tracker>#myCustomTracker</tracker>

 <src>bird</src> <!-- the custom tracker is supposed to understand the ID

"bird" in the Tracker's binary container -->

 <size>0.2</size>

</Trackable>

7.5.1.3.3 Advanced ARML: Coordinate Reference System and Dimension

Dimensions:

The center (see Local Coordinate Systems below for details) of the Trackable will be tracked, resulting

in a 0-dimensional ARAnchor (similar to a Geometry ARAnchor of type Point). Other areas of the

Trackable (such as Outline etc.) can be tracked using RelativeTo locations, see RelativeTo section for

details.

Local Coordinate Systems:

2D Trackables (QR Codes, Markers, Images etc.):

origin: the intersection of the diagonals of the bounding rectangle of the marker (for rectangular

markers, this is the natural "center" of the image).

x-axis: pointing right with respect to the Trackable, running parallel to the top and bottom edge of

the marker

y-axis: perpendicular to x and z axis (i.e. the plane the Trackable is forming), pointing upwards (out of

the marker)

z-axis: pointing up, parallel to the left and right edge of the marker

Unit: Meters

This definition of the local CS allows 3D models in a left-handed coordinate system with typical x/y/z

(right, up, front) axis orientation to be placed on top of the marker without changing the axis.

w := width of Trackable

h := height of Trackable (calculated based on aspect ratio)

3D Trackables (tracked 3D models):

origin: the origin of the model.

x, y and z axis are reused from the model

Unit: As specified in the size property of the model (or any implicit size detected in the model file

itself)

Other Trackables:

Trackables which do not fall into or cannot be mapped onto one of the above categories must specify

their local coordinate system on their own.

7.5.1.4 Advanced ARML: class RelativeTo

Inherits From ARAnchor.

RelativeTo Anchors are defined relative to another ARAnchor, to the user or relative to a Model.

RelativeTo allows ARAnchors to be defined relative to other objects, regardless of where they are

actually located. A Trackable, for example, defaults to a 0-dimensional ARAnchor. RelativeTo can be

used to track the outline or any specific area in the Trackable without having to specify the Trackable

again. The area can be specified using the local coordinate system of a Trackable.

RelativeTo are specified using GMLGeometryElements. The coordinate system is calculated according

to the rules set forth in Local Coordinate Systems of GMLGeometryElements, based on the

underlying ARAnchor or Model (in which case the model's x/z plane serves as the surface plane for CS

calculations).

While it is technically possible to define RelativeTo anchors relative to another RelativeTo anchor,

usage of this construct is discouraged due to complex local CS handling. It is advised to always base a

RelativeTo-Anchor directly on a non-RelativeTo ARAnchor, a Model or the user.

Properties:

Name Description Type Multiplicity

ref The ARAnchor or Model the

RelativeTo Anchor is referencing

string 1

any

GMLGeometryElement

The geometry describing the

RelativeTo ARAnchor

GMLGeometryElement 1

ref

Specifies the ID of the object the Anchor is referencing, using #id. Either another ARAnchor or Model,

or #user is allowed as reference. If an ARAnchor is specified as rel, the ARAnchors's local coordinate

system is used to calculate the relative location (based on the GMLGeometryElement of the

RelativeTo Anchor). If a Model is used, the engineering CS of the Model is used as CS for the

calculation of the relative location.

If #user is provided as reference, the current location of the user is considered a Point-Anchor (with

its local CS set accordingly).

Geometry

The GMLGeometryElement describing the location relative to the object specified in ref. Thus, the

resulting RelativeTo-Anchor can either be a Point, LineString or Polygon.

https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=0;table=11;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=1;table=11;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=2;table=11;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=3;table=11;up=0#sorted_table

srsName and srsDimension for the GMLGeometryElement are ignored, srsDimension is implicitely set

to 3. The local CS of the underlying ARAnchor or Model will be used.

XSD:

<xsd:complexType name="RelativeToType">

 <xsd:complexContent>

 <xsd:extension base="ARAnchorType">

 <xsd:sequence>

 <xsd:element name="ref" type="xsd:string" maxOccurs="1"

minOccurs="1" />

 <xsd:element ref="GMLGeometryElement" maxOccurs="1" minOccurs="1"

/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:element name="RelativeTo" type="RelativeToType"

substitutionGroup="ARAnchor" />

Example (to mark the outline of a Trackable):

<Trackable id="myTrackable">

 <width>5</width> <!-- assuming a square Trackable for this example-->

 ...

</Trackable>

<RelativeTo>

 <rel>#myTrackable</rel>

 <LineString id="trackableOutline">

 <posList dimension="3"> <!-- will describe the outline of the square

marker (2.5 meters from origin to top, bottom, left and right edge -->

 2.5 0 2.5 2.5 0 -2.5 -2.5 0 -2.5 -2.5 0 2.5 2.5 0 2.5

 </posList>

 </LineString>

</RelativeTo>

7.5.2 class ScreenAnchor

Inherits From Anchor.

A ScreenAnchor describes a fixed location on the screen which can be used to draw HTML

components on the screen which are not registered in the real world and will not move on the screen

as the user moves through the environment. A ScreenAnchor describes a rectangular area on the

screen, aligned with the edges of the screen.

Properties:

Name Description Type Multiplicity

style inline styling for the element String 0 or 1

https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=0;table=12;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=1;table=12;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=2;table=12;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=3;table=12;up=0#sorted_table

Name Description Type Multiplicity

class References a CSS class String 0 or 1

assets The Labels representing the anchor in the live scene Label[] 1

style and class

see CSS styling for details

CSS Styles are used to position the ScreenAnchor on the screen, similar to absolute positioning of an

iframe in a HTML page. The following CSS properties are available for ScreenAnchor:

 top specifies how far the top edge of the ScreenAnchor is offset below the top edge of the

screen

 bottom specifies how far the bottom edge of the ScreenAnchor is offset above the bottom

edge of the screen

 left specifies how far the left edge of the ScreenAnchor is offset to the right of the left edge

of the screen

 right specifies how far the right edge of the ScreenAnchor is offset to the left of the right

edge of the screen

 width specifies the width of the ScreenAnchor

 height specifies the height of the ScreenAnchor

top, bottom, left, right, width and height can either be non-negative integer values (representing

pixels on the screen) or percentage values (top, bottom and height in percentage of screen height,

left, right and width in percentage of screen width). Only one value of top and bottom should be set.

In case of conflicting top/bottom/height values, top takes precedence over height, which takes

precedence over bottom. In case of conflicting left/right/width values, left takes precedence over

width, which takes precedence over right. If neither top, not bottom is given, the ScreenAnchor will

be placed as if top would be set to 0. If neither left, nor right is given, the ScreenAnchor will be

placed as if left would be set to 0. width and height default to 100% if not given.

It is advised that out of top/bottom/height and left/right/width respectively, 2 out of the 3 values are

always specified.

assets

A list of Labels attached to the ScreenAnchor which will be projected on the screen.

When Labels are attached to a ScreenAnchor, the following properties of the Label will be ignored:

 width and height

 Orientation

 orientationMode

 ScalingMode

 any DistanceConditions

https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=0;table=12;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=1;table=12;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=2;table=12;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=3;table=12;up=0#sorted_table

Additionally, the distance from the user to any ScreenAnchor is always 0, causing Labels attached to

ScreenAnchors to occlude any other VisualAsset with a lesser or equal zOrder. Two overlapping

ScreenAnchors should never have the same zOrder value set.

Absolute width and height values of a Label attached to a ScreenAnchor represent pixels on the

screen. Percentage values represent the length in percent of the total screen width or height. If the

content of the Label does not fit in the specified ScreenAnchor, the content should be made

scrollable.

XSD:

<xsd:complexType name="ScreenAnchorType">

 <xsd:complexContent>

 <xsd:extension base="AnchorType">

 <xsd:sequence>

 <xsd:element name="style" type="xsd:string" maxOccurs="1"

minOccurs="0" />

 <xsd:element name="class" type="xsd:string" maxOccurs="1"

minOccurs="0" />

 <xsd:element name="assets" maxOccurs="unbounded" minOccurs="1">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="assetRef" type="xsd:anyURI"

maxOccurs="unbounded" minOccurs="0" />

 <xsd:element ref="Label" maxOccurs="unbounded" minOccurs="0"

/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:element name="ScreenAnchor" type="ScreenAnchorType"

substitutionGroup="Anchor" />

Example (a Placemark also contains a ScreenAnchor showing some information on the POI):

<Feature id="myPlacemark">

 <anchors>

 <ScreenAnchor style="bottom:0; left:0; width: 100%;">

 <!-- area spans the entire screen width, and is located at the bottom

of the screen; top is dynamic -->

 <assets>

 <Label>

 <src><![CDATA[<div>My Restaurant is wonderful, come in and

have a seat!</div>]]></src>

 </Label>

 </assets>

 </ScreenAnchor>

 </anchors>

</Feature>

7.6 interface VisualAsset
Inherits From ARElement.

Visual Assets are the visual representations of the Features (and their Anchors) on the screen. The

following VisualAssets are defined:

 2-dimensional

o Label: a VisualAsset specified through HTML elements

o Fill: a colored area

o Text: plain text

o Image: an image

 3-dimensional

o Model: a 3D model

Properties:

Name Description Type Multiplicity

enabled The state of the VisualAsset boolean 0 or 1

zOrder Defines the Drawing order int 0 or 1

conditions Conditions in which the VisualAsset will be projected Condition[] 0 or 1

Orientation An Orientation object that describes how the VisualAsset is

oriented in the Anchor's CS

Orientation 0 or 1

ScalingMode The scaling mode of the VisualAsset ScalingMode 0 or 1

enabled

Setting the boolean flag to true (enabled) means that the VisualAsset is part of the composed scene

(if the corresponding Anchor and Feature is enabled as well), setting it to false (disabled) causes the

VisualAsset to be ignored in the composed scene. Defaults to true if not given.

zOrder

Visual Assets are projected onto the screen according to their distance, with Assets of closer Anchors

occluding assets of Anchors further away. To customize the drawing order, any VisualAsset has a

zOrder property. Assets with higher zOrder values will occlude assets with lower zOrder values,

independent on their distance. Only if the zOrder values of two assets are equal, the distance is taken

into account again. If not given, zOrder defaults to 0.

conditions

A list of conditions controlling when the VisualAsset will be drawn. This is particularly useful for a

Level Of Detail (LOD) control over how an anchor is represented. From further away, an Anchor

might have a Label representation, when the user gets closer, the representation might change to a

3D Model. Refer to Conditions for details.

https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=0;table=13;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=1;table=13;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=2;table=13;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=3;table=13;up=0#sorted_table

Orientation

A VisualAsset's orientation can be manually configured using an Orientation object. See Orientation-

class for details.

ScalingMode

Defines how the VisualAsset will be scaled, see Scaling VisualAssets for details.

XSD :

<xsd:complexType name="VisualAssetType" abstract="true">

 <xsd:complexContent>

 <xsd:extension base="ARElementType">

 <xsd:sequence>

 <xsd:element name="enabled" type="xsd:boolean" maxOccurs="1"

minOccurs="0" />

 <xsd:element name="zOrder" type="xsd:int" maxOccurs="1"

minOccurs="0" />

 <xsd:element name="conditions" maxOccurs="1" minOccurs="0">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="Condition" maxOccurs="unbounded" />

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="Orientation" type="OrientationType"

maxOccurs="1" minOccurs="0" />

 <xsd:element name="ScalingMode" type="ScalingModeType"

maxOccurs="1" minOccurs="0" />

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:element name="VisualAsset" type="VisualAssetType" abstract="true"

substitutionGroup="ARElement" />

Example:

<VisualAsset id="myVisualAsset">

 <enabled>true</enabled>

 <zOrder>0</zOrder>

 <Orientation>

 <roll>90</roll>

 <tilt>90</tilt>

 <heading>90</heading>

 </Orientation>

 <Conditions>

 ..

 </Conditions>

</VisualAsset>

7.6.1 VisualAsset Types

7.6.1.1 interface VisualAsset2D

Inherits From VisualAsset.

VisualAsset2D is an abstract class that provides common properties for every concrete instance of 2-

dimensional VisualAssets.

Properties:

Name Description Type Multiplicity

width The width of the VisualAsset string 0 or 1

height The height of the VisualAsset string 0 or 1

orientationMode defines how VisualAssets are automatically aligned in the

underlying Anchor

string 0 or 1

width and height

2-dimensional VisualAssets like Images do not have an implicit width and height in the composed

scene. Thus, width and height can be explicitly set for 2-dimensional VisualAssets.

Both width and height can be set in absolute values (representing meters in the real world), as well

as percentage values (the percentage of the total area of the underlying ARAnchor covered by the

VisualAsset). If only one of width and height is set, the other value is implicitly calculated based on

the aspect ratio of the VisualAsset (for Fill where an aspect ratio is not applicable, the unset value is

always implicitly set to 100%). If neither width, nor height is set, width is implicitly set to 100%, and

height is calculated based on the aspect ratio. If both width and height are set, the VisualAsset is

stretched accordingly.

Examples:

The Anchor used in the examples below is a flat polygon with a real world width of 20 meters and

height of 18 meters. The Visual Asset projected onto it is a simple Text saying "This is my example

Text". The examples showcase different settings of width and height, the actual measures are only

approximate to show the effects of different settings.

Image

Setting - <width>

 100%

</width>

<height>

 100%

<height>

 100%

</height>

<width>

 5

</width>

<width>

 5

</width>

<height>

 2

https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=0;table=14;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=1;table=14;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=2;table=14;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=3;table=14;up=0#sorted_table

</height> </height>

Automatically

Calculated

width = 100%;

height

according to

aspect ratio

 width according

to aspect ratio

height according

to aspect ratio

-

If the underlying Anchor does not have an extent in width and/or height direction (like a Point (no

width and height) or a LineString (no height)), the Anchor's extent in the affected direction is set to 1

meter. For example, when an Image is projected onto a Point Anchor, and the Image's width is set to

100%, the Image is rendered 1 meter wide. Height is calculated according to the aspect ratio of the

Image.

orientationMode

This property controls how the VisualAsset2D is initially oriented in the Anchor's CS (before roll, tilt

and heading are applied) and can take on three different values: auto (default), user and absolute.

Setting the value to user orients the VisualAsset2D towards the user. absolute positions the

VisualAsset2D according to the CS specification of the VisualAsset and the Anchor. auto sets the

orientationMode implicitly to absolute when the VisualAsset2D is attached to a Trackable (or a

RelativeTo Anchor referencing a Trackable), and sets it to user for all other cases. See Orienting

VisualAssets for details on how this affects the orientation of a VisualAsset.

XSD:

<xsd:complexType name="VisualAsset2DType" abstract="true">

 <xsd:complexContent>

 <xsd:extension base="VisualAssetType">

 <xsd:sequence>

 <xsd:element name="width" type="xsd:string" maxOccurs="1"

minOccurs="0" />

 <xsd:element name="height" type="xsd:string" maxOccurs="1"

minOccurs="0" />

 <xsd:element name="orientationMode" maxOccurs="1" minOccurs="0">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="user" />

 <xsd:enumeration value="absolute" />

 <xsd:enumeration value="auto" />

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:element name="VisualAsset2D" type="VisualAsset2DType" abstract="true"

substitutionGroup="VisualAsset" />

7.6.1.1.1 class Label

Inherits From VisualAsset2D .

A Label is a VisualAsset representing a HTML view, it's content is specified in HTML. The content can

either be specified using a URI pointing to a HTML file, or specified with inline HTML. Any HTML5

content is allowed, and implementations are encouraged to support the full feature set of HTML5,

ECMAScript and CSS.

Properties:

Name Description Type Multiplicity

href A link to a HTML page that describes the rendered

content

String 0 or 1

src Inline HTML that will be used to describe the content String 0 or 1

clickThroughEnabled A flag determining if clicks on the Label should be

tunneled through to the Label's HTML content

boolean 0 or 1

viewportWidth An optional viewport setting positive

integer

0 or 1

href and src

href and src describe the content of the Label. href is a URI pointing to a HTML page that is rendered

in the Label, src holds inline HTML content. If both properties are set, src takes precedence over href.

In case click through is enabled for the Label and a link is clicked, the target parameter of the link

determines if the link should be opened in a full screen HTML view (target _blank) or if the content

inside the Label should be updated in the Label itself (all other targets).

$[name] and $[description] in the HTML code supplied to src (or implicitly through href) will be

replaced by the name and description of the Feature, or an empty string if not specified.

clickThroughEnabled

If set to true, click events on the Label also fire on the underlying HTML content, if set to false, clicks

will not traverse through the HTML content. Defaults to true.

viewportWidth

An optional setting to control the viewport width of the Label, in pixels. This setting effectively

controls the size of the content in the Label (contrary to width and height of the Label, which only

describe the size of the Label itself), as well as how much space is available in the Label. If not set or

set to a non-positive value, viewportWidth defaults to 256. The larger the value, the smaller the

content is rendered. Implementations are allowed to set an implicit maximum threshold for

viewportWidth.

Consider an image, 256 pixels wide. Setting the viewport to 256 pixels causes the Image to

horizontally span across the entire Label. Setting viewportWidth to 512 causes the Image to span

across the first half of the Label, with the right half of the Label being blank.

XSD:

<xsd:complexType name="LabelType">

 <xsd:complexContent>

https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=0;table=16;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=1;table=16;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=2;table=16;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=3;table=16;up=0#sorted_table

 <xsd:extension base="VisualAsset2DType">

 <xsd:sequence>

 <xsd:element name="href" type="xsd:string" maxOccurs="1"

minOccurs="0" />

 <xsd:element name="src" type="xsd:anyType" maxOccurs="1"

minOccurs="0" />

 <xsd:element name="clickThroughEnabled" type="xsd:boolean"

maxOccurs="1" minOccurs="0" />

 <xsd:element name="viewportWidth" type="xsd:positiveInteger"

maxOccurs="1" minOccurs="0" />

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:element name="Label" type="LabelType"

substitutionGroup="VisualAsset2D" />

Example:

<Label id="mySrcLabel">

 <src>

 <div>Here's my Label in a div</div>

 </src>

</Label>

<Label id="myHrefLabel">

 <href>

 http://www.myserver.com/myLabel.html

 </href>

</Label>

7.6.1.1.2 class Fill

Inherits From VisualAsset2D.

Fill is used when an Anchor should appear colored. It is most useful for coloring LineStrings and

Polygons. Fill can be styled using CSS styles.

Properties:

Name Description Type Multiplicity

style inline styling for the element String 0 or 1

class References a CSS class String 0 or 1

style and class

see CSS styling for details

The following CSS properties are available for Fill:

 color defines the fill color of the Fill, in #RGB or #RGBA; defaults to black

http://www.myserver.com/myLabel.html
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=0;table=17;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=1;table=17;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=2;table=17;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=3;table=17;up=0#sorted_table

XSD:

<xsd:complexType name="FillType">

 <xsd:complexContent>

 <xsd:extension base="VisualAsset2DType">

 <xsd:sequence>

 <xsd:element name="style" type="xsd:string" maxOccurs="1"

minOccurs="0" />

 <xsd:element name="class" type="xsd:string" maxOccurs="1"

minOccurs="0" />

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:element name="Fill" type="FillType" substitutionGroup="VisualAsset2D"

/>

Example:

<Fill id="myFill" style="color:#FF0000;" />

<!-- the same can be achieved with -->

<!-- style-section in arml document -->

<style type="text/css">

 Fill.redFill {

 color : #FF0000;

 }

</style>

<!-- ARElements section of arml document -->

<Fill id="myFill" class="redFill" />

7.6.1.1.3 class Text

Inherits From VisualAsset2D.

Text allows plain text to be rendered. Contrary to Label, where HTML styling can be used, Text only

allows a limited set of styling options. Developers are encouraged to use Text when no HTML content

is necessary, as Text does not need viewport settings to be correctly set. The size of the text is

dependent on the width and height settings of the Text and will be automatically calculated.

Text can be styled using CSS styles.

Properties:

Name Description Type Multiplicity

src The text that will be rendered String 1

style Achieve inline styling for the element String 0 or 1

class References a CSS class String 0 or 1

https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=0;table=18;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=1;table=18;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=2;table=18;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=3;table=18;up=0#sorted_table

src

The text to be rendered. Implementations use the platform's primary font style to render the text.

No control sequences such as \n or \t are available, use Label in these cases.

$[name] and $[description] in the text supplied to src will be replaced by the name and description of

the Feature, or an empty string if not specified.

style and class

see CSS styling for details

The following CSS properties are available for Text:

 font-color defines the font color of the Text, in #RGB or #RGBA; defaults to black

 background-color defines the color of the background, in #RGB or #RGBA; defaults to

transparent

XSD:

<xsd:complexType name="TextType">

 <xsd:complexContent>

 <xsd:extension base="VisualAsset2DType">

 <xsd:sequence>

 <xsd:element name="src" type="xsd:string" maxOccurs="1"

minOccurs="1" />

 <xsd:element name="style" type="xsd:string" maxOccurs="1"

minOccurs="0" />

 <xsd:element name="class" type="xsd:string" maxOccurs="1"

minOccurs="0" />

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:element name="Text" type="TextType" substitutionGroup="VisualAsset2D"

/>

Example:

<Text id="myText" style="font-color:#FF0000;">

 <src>This text will be displayed</src>

</Text>

7.6.1.1.4 class Image

Inherits From VisualAsset2D.

Image allows an image to be rendered. Developers are encouraged to use Image instead of Label

when only an image should be displayed, as Image does not need viewport settings to be correctly

set. The size of the image is dependent on the width and height settings of the Image and will be

automatically calculated.

Properties:

Name Description Type Multiplicity

href A URI to an image string 1

href

A URI to the image that will be displayed on the screen. Supported image formats are PNG, GIF and

JPEG.

XSD:

<xsd:complexType name="ImageType">

 <xsd:complexContent>

 <xsd:extension base="VisualAsset2DType">

 <xsd:sequence>

 <xsd:element name="href" type="xsd:string" maxOccurs="1"

minOccurs="1" />

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:element name="Image" type="ImageType"

substitutionGroup="VisualAsset2D" />

Example:

<Image id="myImage">

 <href>http://www.myserver.com/myImage.png</href>

</Image>

7.6.1.2 class Model

Inherits From VisualAsset.

A Model is a Visual Asset representing a 3D Model. Model files are stored in the COLLADA format,

using the COLLADA Common Profile. Implementations are encouraged to make sure that COLLADA

Common Profile is fully supported as a minimum. If parts are not supported, it should be clearly

stated. Implementations are also allowed to support additional file formats, however, these will not

be standardized.

Properties:

Name Description Type Multiplicity

href A URI to a model file string 1

type The type of the Model, either normal or infrastructure string 0 or 1

Scale Setting the scale of the Model Scale 0 or 1

href

The Model file itself is specified using a URI containing the source of the Model.

https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=0;table=19;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=1;table=19;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=2;table=19;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=3;table=19;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=0;table=20;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=1;table=20;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=2;table=20;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=3;table=20;up=0#sorted_table

type

defines the role of the model in the augmented scene. Type can take on two different values, normal

(default) and infrastructure.

Models with type normal are rendered in the composed scene. Infrastructure models are declared in

the scene and used for occlusion detection, but are not visible in the scene (for example, a real world

building might be modeled as an infrastructure model, so it's not rendered on the screen, but it is

used to virtually occlude other VisualAssets behind the real world building).

Scale

allows scaling of the Model, see class Scale for details.

XSD:

<xsd:complexType name="ModelType">

 <xsd:complexContent>

 <xsd:extension base="VisualAssetType">

 <xsd:sequence>

 <xsd:element name="href" type="xsd:anyURI" maxOccurs="1"

minOccurs="1" />

 <xsd:element name="type" maxOccurs="1" minOccurs="0">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="normal" />

 <xsd:enumeration value="infrastructure" />

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="Scale" type="ScaleType" maxOccurs="1"

minOccurs="0" />

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:element name="Model" type="ModelType" substitutionGroup="VisualAsset"

/>

Example:

<Model id="myModel">

 <href>http://domain.com/myColladaFile.zip</href> <!-- a URI to a zip

file, containing the COLLADA dae file, textures and any other ressources

required -->

 <type>infrastructure</type> <!-- one of normal|infrastructure -->

 <Orientation>

 <roll>0</roll>

 <tilt>0</tilt>

 <heading>0</heading> <!-- Model is oriented towards north -->

 </Orientation>

 <Scale>

 <x>1</x>

 <y>1</y>

 <z>1</z>

 </Scale>

 <zOrder>0</zOrder> <!-- int value controlling the rendering order

(defaults to 0)-->

<Model>

7.6.1.2.1 class Scale

Scale allows scaling of the Model along the x, y and z axis. The values default to 1 if not specified. As

with orientations, applying scales does not affect the axes of the Model itself, only the object is

scaled.

XSD:

<xsd:complexType name="ScaleType">

 <xsd:sequence>

 <xsd:element name="x" type="xsd:double" maxOccurs="1" minOccurs="0" />

 <xsd:element name="y" type="xsd:double" maxOccurs="1" minOccurs="0" />

 <xsd:element name="z" type="xsd:double" maxOccurs="1" minOccurs="0" />

 </xsd:sequence>

</xsd:complexType>

7.6.2 Orienting VisualAssets

Depending on the dimension of the VisualAsset and dimension of the ARAnchor it is attached to,

different rules apply how VisualAssets are rendered on ARAnchors. The orientation is also dependent

on the properties orientationMode (VisualAsset2D only) and Orientation.

7.6.2.1 Orienting VisualAsset2Ds

VisualAsset2Ds come with an orientationMode property (see interface VisualAsset2D) which controls

how the VisualAsset is oriented. Per default, orientationMode is set to user, which generally orients

the VisualAsset's surface towards the user.

Case 1: Underlying ARAnchor is of Dimension 0, orientationMode = "user"

In this case, the center point of the VisualAsset2D is placed right onto the position of the ARAnchor in

3D space (either the geolocation for Point-Geometries, or the center point of the Trackable for

Trackables). The upper face of the VisualAsset2D is always oriented towards the user's current

location. The upper and lower edges of the VisualAsset2D run parallel to the earth's surface in case

of a Point-Geometry, and parallel to the Trackable's surface in case of a Trackable.

Case 2: Underlying ARAnchor is of Dimension 1, orientationMode = "user"

The VisualAsset2D runs along the defined LineString. The horizontal center line of the Asset (the line

being equidistant from the top and bottom of the VisualAsset) is placed onto the defined LineString.

The horizontal center of the 2-dimensional VisualAsset (the point being equidistant from the center

point of the left and right edge of the VisualAsset) is placed on the point being equidistant from the

left and right end of the LineString (the origin of the CS of the Anchor). This ensures that the

VisualAsset expands from the center of the LineString, equally in both directions.

The VisualAsset's left and right edges are placed parallel to the earth's surface for LineStrings

associated with a Geometry, and parallel to the Trackable's surface for LineStrings associated with

Trackables. This ensures the VisualAsset appears to be lying flat on top of the LineString when viewed

from above. In both cases, the VisualAsset's front is facing the user.

Remark: In case the LineString or a LineString segment is perpendicular to the earth's surface or the

Trackable's surface, the VisualAsset cannot be placed parallel to the corresponding surface. In this

case, the VisualAsset is facing the user as much as possible.

Case 3: Underlying ARAnchor is of Dimension 2, orientationMode = "user"

The center of the VisualAsset2D is placed in the center of the BoundingRectangle of the ARAnchor,

which can be considered the center of the Polygon forming the ARAnchor (see Local Coordinate

System of a Polygon for details). The lower and upper edges and the left and right edges of the

VisualAsset respectively are parallel to the lower and upper edges and the left and right edges of the

BoundingRectangle of the Polygon respectively. The front face of the VisualAsset2D faces the user.

In case the Polygon and the VisualAsset are not of the same shape, the Polygon's boundaries will cut

off any areas of the VisualAsset that do not lie within the Polygon's boundaries. This also applies to

any holes in the Polygon defined by interior LinearRings.

Case 4: Underlying ARAnchor is of Dimension 0, orientationMode = "absolute"

Same as case 1, with the exception that the VisualAsset is placed into the x/z plane of the coordinate

system of the Anchor, regardless of the user's position. The top and bottom edges of the VisualAsset

are parallel to the x-axis, the left and right edges of the VisualAsset are parallel to the z axis of the

ARAnchor's coordinate system. The top edge of the VisualAsset is located in the positive z-half, the

right edge of the VisualAsset is located in the positive x-half.

Case 5: Underlying ARAnchor is of Dimension 1, orientationMode = "absolute"

The same as case 2, with the exception that the VisualAsset's front face is always facing up, whereat

up is defined as:

When viewing the first LineSegment in a way that the first specified vertex is on the left side, and the

second vertex is on the right side, the side facing the viewer is the upper side).

Case 6: Underlying ARAnchor is of Dimension 2, orientationMode = "absolute"

The same as case 3, with the exception that the VisualAsset's front face is always facing up

(depending on the order the vertices of the Polygon were specified).

7.6.2.2 Orienting 3D VisualAssets

Case 1: Underlying ARAnchor is of Dimension 0

3-dimensional assets are projected into the coordinate system of a 0-dimensional location. Both the

Model and the ARAnchor use the same CS origin and the same axis alignment.

Case 2: Underlying ARAnchor is of Dimension 1 or 2

3-dimensional assets cannot be attached to 1- or 2-dimensional Anchors and must be ignored in

these cases.

7.6.2.3 class Orientation - Manual Orientation of VisualAssets

The Orientation class allows to manually adjust the orientation of a VisualAsset in 3D space after it

was automatically oriented according to the above rules.

Properties:

Name Description Type Multiplicity

roll rotation around a certain rotation axis, see below for details double 0 or 1

tilt rotation around a certain rotation axis, see below for details double 0 or 1

heading rotation around a certain rotation axis, see below for details double 0 or 1

The orientation object has 3 properties, roll, tilt and heading, which define rotations of the

VisualAsset in 3 directions. The following rules apply:

 The rotation is applied using static axes (meaning that the axes are not transformed, only the

object inside the CS is rotated)

 The rotation steps are executed in the following order: roll - tilt - heading

 roll, tilt and heading are specified in degrees from -180 to 180.

Depending on the orientationMode and the type of the Anchor, the rotations are applied slightly

different:

case 1: 0-dimensional Anchor, orientationMode absolute or VisualAsset is 3-dimensional

 roll rotates the VisualAsset about the z axis. A positive rotation is clockwise around the z axis.

 tilt rotates the VisualAsset about the x axis. A positive rotation is clockwise around the x axis.

 heading rotates the VisualAsset about the y axis. A positive rotation is clockwise around the y

axis.

case 2: 0-dimensional Anchor, orientationMode user

 tilt rotates the VisualAsset about the line parallel to the (earth's or Trackable's) surface,

running through the center of the VisualAsset (the user will see the VisualAsset flipping

towards or away from him). A positive rotation is clockwise (the VisualAsset's top moves

towards the user at first).

 heading rotates the VisualAsset about the line connecting the center of the screen with the

center of the VisualAsset (the user will see the VisualAsset rotating in the plane that is facing

him). A positive rotation is clockwise when viewed from the user.

 roll rotates the VisualAsset about the axis that is perpendicular to the other two axes

specified above, pointing away from the surface. A positive rotation is clockwise (the user

will see the right edge of the VisualAsset coming towards him first).

case 3: 1-dimensional Anchor

 roll does not apply

https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=0;table=21;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=1;table=21;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=2;table=21;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=3;table=21;up=0#sorted_table

 tilt rotates the VisualAsset about each LineSegment of the LineString. A positive rotation is to

the right when viewed from the start of each LineSegment towards the end of the

LineSegment.

 heading does not apply

case 4: 2-dimensional Anchor

 roll does not apply

 tilt does not apply

 heading rotates the VisualAsset inside the plane the Polygon is forming around the center of

the VisualAsset (and the CS of the Anchor). A positive rotation is clockwise when viewed

from above the Polygon.

XSD:

<xsd:complexType name="OrientationType">

 <xsd:sequence>

 <xsd:element name="roll" type="xsd:double" maxOccurs="1" minOccurs="0"

/>

 <xsd:element name="tilt" type="xsd:double" maxOccurs="1" minOccurs="0"

/>

 <xsd:element name="heading" type="xsd:double" maxOccurs="1"

minOccurs="0" />

 </xsd:sequence>

</xsd:complexType>

7.6.3 class ScalingMode - Scaling VisualAssets

VisualAssets appear smaller when their attached Anchors are further away, and appear bigger when

the user moves towards the Anchor.

Consider, for example, a Polygon geometry representing a billboard on the street, with measures

20x10 meters, where a Label is attached to it (with width set to 100%). As the Anchor (and thus the

Label) is scaled naturally, the further away the user, the smaller the Label is rendered, so it always

fits the billboard. This is called natural scaling.

However, as the user walks away from the billboard, pretty soon the Label will become almost

invisible, as a width of 20 meters, seen from a distance of 1000 meters, will appear very tiny.

Contrary, if standing right in front of the billboard, the Label will obstruct the entire screen, occluding

anything else.

To overcome this, a Visual Asset can be scaled in custom mode. In custom scaling mode, a

minScalingDistance and maxScalingDistance are supplied. These two values specify the distance of

the user to the anchor of the VisualAsset (precisely: the distance of the origin of the CS of the anchor)

where natural scaling should start and stop.

For example, setting a minScalingDistance to 10 meters causes the Label to be rendered as if the

billboard would be 10 meters away, even if the user is standing a lot closer. Similarly, setting a

maxScalingDistance to 100 meters causes the Label to be rendered as if the billboard would be 100

meters away, even if the user is standing a lot closer. Between 10 and 100 meters, scaling behaves as

in natural scaling mode.

If both minScalingDistance and maxScalingDistance are set to the same value, the VisualAsset will

appear at the same size on the screen, regardless of the distance.

Example:

Natural scaling of a Label, with viewing distances

10 meters, 20 meters, 30 meters and 40 meters

Custom scaling of a Label, with viewing distances

10 meters, 20 meters, 30 meters and 40 meters,

minScalingDistance set to 20 and maxScalingDistance

set to 30.

In the second example, natural scaling applies between 20 and 30 meters distance. If the user is

closer than 20 meters, the Label is rendered on the screen as if the Anchor would be 20 meters away

(minScalingDistance set to 20 meters). Similarly, if the user is further than 30 meters away, the Label

is rendered on the screen as if the Anchor would be 30 meters away (maxScalingDistance set to 30).

The scaling mode calculations are applied after the VisualAsset was positioned, scaled (according to

width and height for VisualAsset2D, and Scaling for Model) and aligned according to the orientation

settings.

Properties:

Name Description Type Multiplicity

type The type of the scaling mode, either "natural" or "custom" string 1

minScalingDistance The distance the natural scaling effect should start double 0 or 1

maxScalingDistance The distance the natural scaling effect should stop double 0 or 1

https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=0;table=23;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=1;table=23;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=2;table=23;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=3;table=23;up=0#sorted_table

type

Either natural or custom

minScalingDistance

The distance the natural scaling effect should start. Should only be specified when type is set to

custom and is ignored for natural. If not specified or set to a negative value, custom scaling acts as if

the value would be set to 0. Must be less than or equal to maxScalingDistance.

maxScalingDistance

The distance the natural scaling effect should stop. Should only be specified when type is set to

custom and is ignored for natural. If not specified or set to a non-positive value, custom scaling acts

as if the value would be set to Infinity. Must be greater than or equal to minScalingDistance.

XSD:

<xsd:complexType name="ScalingModeType">

 <xsd:complexContent>

 <xsd:extension base="ARElementType">

 <xsd:sequence>

 <xsd:element name="minScalingDistance" type="xsd:double"

maxOccurs="1" minOccurs="0" />

 <xsd:element name="maxScalingDistance" type="xsd:double"

maxOccurs="1" minOccurs="0" />

 </xsd:sequence>

 <xsd:attribute name="type" use="required">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="natural" />

 <xsd:enumeration value="custom" />

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:attribute>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

Example:

<VisualAsset id="myVisualAsset">

 ... <!-- visual asset definition -->

 <ScalingMode type="custom">

 <minScalingDistance>20</minScalingDistance>

 <maxScalingDistance>30</maxScalingDistance>

 </ScalingMode>

</VisualAsset>

<VisualAsset id="myVisualAsset2">

 ... <!-- visual asset definition -->

 <ScalingMode type="natural" /> <!-- this is the default behavior -->

</VisualAsset>

7.6.4 interface Condition

Inherits from ARElement.

Depending on the situation, certain VisualAssets might be visible on the screen at different times.

Consider a mountain with a mountain hut on its summit which should be remodeled. The mountain

hut has a representation as a 3D model, showing the shape of the mountain hut in the future.

However, from further away, the 3D model is not visible at all. Hikers starting at the valley ground,

however, want to see a big Label indicating where the Mountain hut is actually located.

The following conditions are available:

 distance (min and max distance)

 selected (true/false)

If multiple conditions are supplied for a particular VisualAsset, all these conditions must yield true for

the VisualAsset to be visible.

Remark: To achieve a "condition1 or condition2" situation, the VisualAsset must be duplicated

(asset1 and asset2), where asset1 is tied to condition1, and asset2 is tied to condition2.

XSD:

<xsd:complexType name="ConditionType" abstract="true">

 <xsd:complexContent>

 <xsd:extension base="ARElementType" />

 </xsd:complexContent>

</xsd:complexType>

<xsd:element name="Condition" type="ConditionType" abstract="true"

substitutionGroup="ARElement" />

7.6.4.1 class DistanceCondition

Inherits from Condition.

DistanceCondition allows VisualAssets to be activated and deactivated based on the distance of the

user to the anchor (precisely: the origin of the CS of the anchor).

Properties:

Name Description Type Multiplicity

max The maximum distance the VisualAsset will be visible for double 0 or 1

min The minimum distance the VisualAsset will be visible for double 0 or 1

max

denotes the maximum distance the VisualAsset will be visible for, in meters. For example, if it is set

to 100, VisualAssets attached to Anchors with a distance of more than 100 meters are not visible.

min

denotes the minimum distance the VisualAsset will be visible for, in meters. For example, if it is set to

100, VisualAssets attached to Anchors with a distance of less than 100 meters are not visible.

If both min and max are set, both conditions must yield true for the visual asset to be rendered

https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=0;table=24;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=1;table=24;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=2;table=24;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=3;table=24;up=0#sorted_table

XSD :

<xsd:complexType name="DistanceConditionType">

 <xsd:complexContent>

 <xsd:extension base="ConditionType">

 <xsd:sequence>

 <xsd:element name="max" type="xsd:double" maxOccurs="1"

minOccurs="0" />

 <xsd:element name="min" type="xsd:double" maxOccurs="1"

minOccurs="0" />

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:element name="DistanceCondition" type="DistanceConditionType"

substitutionGroup="Condition" />

Example:

<Model id="myModel">

 ... <!-- representation of the mountain hut as a 3D model

 <conditions>

 <DistanceCondition>

 <min>200</min> <!-- only visible when distance is more than 200

meters -->

 </DistanceCondition>

 </conditions>

</Model>

<Label id="myLabel">

 ... <!-- representation of the mountain hut as a Label

 <conditions>

 <DistanceCondition>

 <max>500</max>

 <min>200</min> <!-- only visible when distance more than 200 meters,

but less than 500 meters -->

 </DistanceCondition>

 </conditions>

</Label>

7.6.4.2 class SelectedCondition

Inherits from Condition.

The selected condition allows VisualAssets to be activated and deactivated based on the selected-

status of the Feature or Anchor.

Properties:

Name Description Type Multiplicity

listener The element type the selected-condition is listening for, either String 0 or 1

https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=0;table=25;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=1;table=25;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=2;table=25;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=3;table=25;up=0#sorted_table

Name Description Type Multiplicity

"feature" or "anchor"

selected The selected state the VisualAsset should be visible boolean 1

listener

One of feature or anchor, defaults to anchor.

If set to feature, the selected-condition listens on the selected state of the Feature the VisualAsset is

attached to (if either one of the VisualAssets the Feature is associated with is clicked, the Feature is

considered selected). If set to anchor, the selected-condition listens on the selected state of the

Anchor the VisualAsset is attached to.

selected

If set to true, the VisualAsset is only visible when the Anchor or Feature (see listener) is currently

selected. If set to false, it is only visible when the Anchor or Feature is not currently selected.

XSD:

<xsd:complexType name="SelectedConditionType">

 <xsd:complexContent>

 <xsd:extension base="ConditionType">

 <xsd:sequence>

 <xsd:element name="listener" type="xsd:string" maxOccurs="1"

minOccurs="0" />

 <xsd:element name="selected" type="xsd:boolean" maxOccurs="1"

minOccurs="1" />

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:element name="SelectedCondition" type="SelectedConditionType"

substitutionGroup="Condition" />

Example:

<Model id="myModel">

 <conditions>

 <SelectedCondition>

 <listener>feature</listener>

 <selected>true</selected> <!-- only visible when the Feature the

VisualAsset is attached to is selected -->

 <SelectedCondition>

 </conditions>

</Model>

8 Examples
The following section provides some examples of ARML snippets in common use cases. All usecases

assume the following:

https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=0;table=25;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=1;table=25;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=2;table=25;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/Spec?cover=print;sortcol=3;table=25;up=0#sorted_table

 A valid COLLADA 3D Model (including correctly referenced texture images) exists at the

following location: http://www.myserver.com/myModel.dae; the Model's coordinate system

is left-handed (x points left, y points up, z points to the front)

 A 512x512 (arbitrary) image exists at the following location:

http://www.myserver.com/myImage.jpg

 A 512px wide and 1024px high artificial marker exists at the following location:

http://www.myserver.com/myMarker.jpg. When printed, the marker is 20cm wide and 40cm

high.

8.1 Typical geospatial AR Browser
A typical geospatial AR Browser shows placemarks, referenced by latitude and longitude values, as

icons on the camera screen. When the user clicks on a placemark, a static info window is shown at

the bottom of the screen, displaying some textual information.

Remark: Descriptions of the Placemarks are taken from the Wikipedia pages of the Golden Gate

Bridge and Coit Tower.

<arml>

 <ARElements>

 <!-- define the placemark marker; we use custom scaling mode to allow

markers to be visible from further away markers will appear 20 meters wide

as a maximum in the composed scene. The Image will be used by each

Placemark in the scene. -->

 <Image id="placemarkMarker">

 <ScalingMode type="custom">

 <minScalingDistance>50</minScalingDistance>

 <maxScalingDistance>100</maxScalingDistance>

 </ScalingMode>

 <width>20</width>

 <href>http://www.myserver.com/myImage.jpg</href>

 </Image>

 <!-- define the info window. The info window is located at the bottom of

the screen and displays the name and description of the Feature it is

attached to. It will only be visible when the particular Feature

(placemark) was selected, and will disappear as soon as the Feature is

unselected. The Anchor will be used by each Placemark in the scene. -->

 <ScreenAnchor id="infoWindow">

 <style>left: 0; width: 100%; bottom: 0; height: 25%</style>

 <assets>

 <Label>

 <conditions>

 <SelectedCondition>

 <listener>feature</listener>

 <selected>true</selected>

 </SelectedCondition>

 </conditions>

 <src>$[name]
$[description]</src>

 </Label>

http://www.myserver.com/myModel.dae

 </assets>

 </ScreenAnchor>

 <!-- Golden Gate Placemark -->

 <Feature id="goldenGateBridge">

 <name>Golden Gate Bridge</name>

 <description>The Golden Gate Bridge is a suspension bridge spanning the

Golden Gate, the opening of the San Francisco Bay into the Pacific

Ocean.</description>

 <anchors>

 <anchorRef>#infoWindow</anchorRef>

 <Geometry>

 <assets><assetRef>#placemarkMarker</assetRef></assets>

 <Point><pos>37.818599 -122.478511</pos></Point>

 </Geometry>

 </anchors>

 </Feature>

 <!-- Coit Tower Placemark -->

 <Feature id="coitTower">

 <name>Coit Tower</name>

 <description>Coit Tower, also known as the Lillian Coit Memorial Tower,

is a 210-foot (64 m) tower in the Telegraph Hill neighborhood of San

Francisco, California.</description>

 <anchors>

 <anchorRef>#infoWindow</anchorRef>

 <Geometry>

 <assets><assetRef>#placemarkMarker</assetRef></assets>

 <Point><pos>37.802494 -122.405727</pos></Point>

 </Geometry>

 </anchors>

 </Feature>

 </ARElements>

</arml>

8.2 Different Representations based on Distance
The Golden Gate Bridge example from above will be reused, but this time, the Golden Gate Bridge

should appear as a (scaled) icon when viewed from more than 5 kilometers away, as a red colored

line when viewed from between 1 and 5 kilometers away, and as a 3D model showing the bridge just

after its completion when viewed from less than 1 kilometer away.

<arml>

 <ARElements>

 <Image id="placemarkMarker">

 <conditions>

 <DistanceCondition>

 <min>5000</min>

 </DistanceCondition>

 </conditions>

 <ScalingMode type="custom">

 <minScalingDistance>50</minScalingDistance>

 <maxScalingDistance>100</maxScalingDistance>

 </ScalingMode>

 <width>20</width>

 <href>http://www.myserver.com/myImage.jpg</href>

 </Image>

 <Fill id="myRedFill">

 <!-- only visible when 1km <= distance <= 5km -->

 <conditions>

 <DistanceCondition>

 <max>5000</max>

 <min>1000</min>

 </DistanceCondition>

 </conditions>

 <!-- the Golden Gate Bridge is 27.4 meters wide, thus the height of

the Fill (which represents the width of the Bridge) is set to 27.4 meters -

->

 <height>27.4</height>

 <!-- red color -->

 <style>color:#FF0000;</style>

 </Fill>

 <Model id="3dModel">

 <!-- only visible when distance <= 1km -->

 <conditions>

 <DistanceCondition>

 <max>1000</max>

 </DistanceCondition>

 </conditions>

 <href>http://www.myserver.com/myModel.dae</href>’

 </Model>

 <!-- Golden Gate Placemark -->

 <Feature id="goldenGateBridge">

 <name>Golden Gate Bridge</name>

 <anchors>

 <Geometry>

 <assets>

 <!-- the model and the icon are mapped onto the same point, but

shown at different distances (see the VisualAssets declaration on top for

details) -->

 <assetRef>#placemarkMarker</assetRef>

 <assetRef>#3dModel</assetRef>

 </assets>

 <Point><pos>37.818599 -122.478511</pos></Point>

 </Geometry>

 <Geometry>

 <!-- the line-representation must be mapped as a LineString

Geometry -->

 <assets><assetRef>#filledLine</assetRef></assets>

 <LineString><posList>37.827752 -122.479541 37.811005 -

122.477739</posList></LineString>

 </Geometry>

 </anchors>

 </Feature>

 </ARElements>

<arml>

8.3 3D Model on a Trackable
The 3D Model should appear on top of the referenced marker to play a game etc.

<arml>

 <ARElements>

 <!-- register the Tracker to track a generic image -->

 <Tracker id="defaultImageTracker">

 <uri>http://opengeospatial.org/arml/tracker/genericImageTracker</uri>

 </Tracker>

 <!-- define the artificial marker the Model will be placed on top of --

>

 <Trackable>

 <assets>

 <!-- define the 3D Model that should be visible on top of the

marker -->

 <Model>

 <href>http://www.myserver.com/myModel.dae</href>

 </Model>

 </assets>

 <tracker>#defaultImageTracker</tracker>

 <src>http://www.myserver.com/myMarker.jpg</src>

 <size>0.20</size>

 </Trackable>

 </ARElements>

</arml>

8.4 Color the Outline of the artificial marker
Use case: When the marker is detected in the camera screen, a red line, 1 centimeter wide, should

be drawn around the marker (the marker outline).

<arml>

 <ARElements>

 <!-- define the VisualAsset for the outline - the LineString will be

filled with red color -->

 <Fill id="myRedFill">

 <!-- height set to 0.01 causes the LineString to be drawn 1cm thick -

->

 <height>0.01</height>

 <!-- define red color for the fill -->

 <style>color:#FF0000;</style>

 </Fill>

 <!-- define the Tracker and the Marker (see previous example) -->

 <Tracker id="defaultImageTracker">

 <uri>http://opengeospatial.org/arml/tracker/genericImageTracker</uri>

 </Tracker>

 <Trackable id="myTrackable">

 <tracker>#defaultImageTracker</tracker>

 <src>http://www.myserver.com/myMarker.jpg</src>

 <size>0.20</size>

 </Trackable>

 <!-- defines the location of the outline of the marker as a LineString

which has to be defined relative to the Trackable's center point -->

 <RelativeTo id="markerOutline">

 <assets>

 <!-- use the Fill-VisualAsset defined above to draw the LineString

-->

 <assetRef>#myRedFill</assetRef>

 </assets>

 <!-- reference the Trackable the RelativeTo-geometry will be using --

> <ref>#myTrackable</ref>

 <!-- define the Outline as LineString, from the top right corner of

the marker, moving clockwise. The top right point is 10 centimeters to the

right, 0 centimeters above and 20 centimeters to the top of the Trackable's

center (0.01, 0 and 0.02 meters). -->

 <LineString>

 <posList>0.01 0 0.02 0.01 0 -0.02 -0.01 0 -0.02 -0.01 0 0.02 0.01 0

0.02</posList>

 </LineString>

 </RelativeTo>

 </ARElements>

</arml>

8.5 Color the entire area of a marker
The use case above can be slightly altered to color the entire marker area instead of just the outline,

only the LineString-element must be significantly changed, while the Fill-element is implicitly set back

to 100% width and height, causing the entire marker area to be filled.

<arml>

 <ARElements>

 <!-- define the VisualAsset for the colored area -->

 <Fill id="myRedFill">

 <!-- define red color for the fill -->

 <style>color:#FF0000;</style>

 </Fill>

 <!-- define the Tracker and the Marker (see previous example) -->

 <Tracker id="defaultImageTracker">

 <uri>http://opengeospatial.org/arml/tracker/genericImageTracker</uri>

 </Tracker>

 <Trackable id="myTrackable">

 <tracker>#defaultImageTracker</tracker>

 <src>http://www.myserver.com/myMarker.jpg</src>

 <size>0.20</size>

 </Trackable>

 <!-- defines the location of the area of the marker as a Polygon which

has to be defined relative to the Trackable's center point -->

 <RelativeTo id="markerOutline">

 <assets>

 <!-- use the Fill-VisualAsset defined above to draw the LineString

-->

 <assetRef>#myRedFill</assetRef>

 </assets>

 <!-- reference the Trackable the RelativeTo-geometry will be using --

>

 <ref>#myTrackable</ref>

 <!-- define the Outline as LineString, from the top right corner of

the marker, moving clockwise. The top right point is 10 centimeters to the

right, 0 centimeters above and 20 centimeters to the top of the Trackable's

center (0.01, 0 and 0.02 meters). -->

 <Polygon>

 <exterior>

 <LinearRing>

 <posList>0.01 0 0.02 0.01 0 -0.02 -0.01 0 -0.02 -0.01 0 0.02

0.01 0 0.02</posList>

 </LinearRing>

 </exterior>

 </Polygon>

 </RelativeTo>

 </ARElements>

</arml>

9 ECMAScript Bindings
ARML provides ECMAScript (the standardized version of JavaScript) bindings to allow the dynamic

access and modification of objects in the AR scene, as well as event handlers to react on user input.

In addition to the XML serialization, each class defined in ARML also has a JSON serialization, which is

used to access and modify the properties of the objects in the scene.

Implementations are encouraged to support ARML's ECMAScript bindings to allow the developer

dynamic access to the scene. However, if ECMAScript bindings cannot be provided for whatever

reason, the implementation must clearly state that only the descriptive ARML specification is

supported.

9.1 Accessing ARElements and Modifying the Scene
Implementations must ensure that an arml object is injected on startup. This object is the root node

for any scripting operations on the AR scene.

arml has the following properties and methods:

interface arml {

 readonly attribute ARElement[] arElements;

 ARElement getARElementById(String id);

 void addToScene(ARElement element);

 void removeFromScene(ARElement element);

 void addEventListener(String type, EventListener listener);

 void removeEventListener(String type, EventListener listener);

}

getARElementById(String id)

returns the object having its id property set to the passed String. In case no such object exists, or id is

empty, the call returns null.

addToScene(ARElement element)

adds the given element to the AR scene

removeFromScene(ARElement element)

removes the given element from the AR scene

9.2 Object Creation and Property Access
Each concrete subclass of ARElement has its own constructor. To make an object accessible in the

scene, ar.addToScene(element) must be invoked first, only then is the element accessible via

ar.getARElementById(element.id).

An implementation must ensure that properties set in the descriptive spec are always in sync with

the matching properties in the scripting spec. For example, if the following feature is defined in the

declarative spec,

<Feature id="empireStateBuilding">

 <name>The Empire State Building</name>

 <enabled>true</enabled>

 <anchors>

 ...

 </anchors/>

</Tracker>

the implementation must ensure that the following object is accessible

var empireState = arml.getARElementById("empireStateBuilding");

and the object stored in empireState has its properties set to the following values:

empireState = {

 "id" : "empireStateBuilding",

 "name" : "The Empire State Building",

 "enabled" : true,

 anchors : [

 ... //the array of Anchors defined for the Feature

]

}

The properties of empireState can now be accessed and modified using empireState.name etc.

9.3 Object and Constructor Definitions
The ECMAScript bindings of the objects specified in ARML follow some simple principles.

1. Only concrete classes of ARML can be constructed.
2. Constructor parameters consist of all mandatory attributes of the class, plus an optional

dictionary (key/value JSON object) parameter allowing to populate all optional parameters.
3. Read-only parameters can only be populated at construction time of the object and must not

be altered later.

Any misuse of constructors, methods or properties (e.g. wrong number of parameters or illegal

values) provided must result in an Exception.

9.3.1 General Interface Definitions

interface ARElement {

 readonly attribute string id;

};

dictionary ARElementDict {

 string id;

};

9.3.2 Feature

[Constructor(optional FeatureDict initDict)]

interface Feature : ARElement {

 attribute string name;

 attribute boolean enabled;

 attribute Anchor[] anchors;

};

dictionary FeatureDict : ARElementDict {

 string name;

 boolean enabled;

 Anchor[] anchors;

};

9.3.3 Anchor

interface Anchor : ARElement {

 attribute boolean enabled;

};

dictionary AnchorDict : ARElementDict {

 boolean enabled;

};

9.3.4 ARAnchor

interface ARAnchor : Anchor {

 attribute VisualAsset[] assets;

 void addEventListener(string type, EventListener listener);

 void removeEventListener(string type, EventListener listener);

};

dictionary ARAnchorDict : AnchorDict {

 VisualAsset[] assets;

};

9.3.5 ScreenAnchor

[Constructor(Label[] assets, optional ScreenAnchorDict initDict)]

interface ScreenAnchor : Anchor {

 attribute string class;

 attribute ScreenAnchorStyleDict style;

 attribute Label[] assets;

};

dictionary ScreenAnchorDict : AnchorDict {

 string class;

 ScreenAnchorStyleDict style;

};

dictionary ScreenAnchorStyleDict {

 string top;

 string bottom;

 string left;

 string right;

 string width;

 string height;

};

9.3.6 Geometry

interface Geometry : ARAnchor {

 readonly attribute GMLGeometry gmlGeometry;

};

dictionary GeometryDict : ARAnchorDict {

 GMLGeometryElement gmlGeometry;

};

9.3.7 GMLGeometryElement

interface GMLGeometryElement {

 readonly attribute string srsName;

 readonly attribute string srsDimension;

};

dictionary GMLGeometryElementDict {

 string srsName;

 string srsDimension;

};

9.3.8 Point

[Constructor(double[] pos, optional PointDict initDict)]

interface Point : GMLGeometryElement{

 attribute double[] pos;

};

dictionary PointDict : GMLGeometryElementDict {

 double[] pos;

};

9.3.9 LineString

[Constructor(double[][] posList, optional LineStringDict initDict)]

interface LineString : GMLGeometryElement{

 attribute double[][] posList;

};

dictionary LineStringDict : GMLGeometryElementDict {

 double[][] posList;

};

9.3.10 Polygon

[Constructor(LineString exterior, optional PolygonDict initDict)]

interface Polygon : GMLGeometryElement{

 attribute LineString[] interior;

 attribute LineString exterior;

};

dictionary PolygonDict : GMLGeometryElementDict {

 LineString[] exterior;

};

Note: As LinearRings are nothing but closed LineStrings from a technical perspective, ARML's

ECMAScript bindings avoid an additional LinearRing type and use LineString instead.

9.3.11 RelativeTo

[Constructor(Object ref, GMLGeometryElement gmlGeometry, optional

RelativeToDict initDict)]

interface RelativeTo : ARAnchor {

 readonly attribute Object ref;

 attribute GMLGeometryElement gmlGeometry;

};

dictionary RelativeToDict : ARAnchorDict {

};

ref can either be another ARAnchor, a Model or a String with its value set to "#user".

9.3.12 Tracker

[Constructor(string uri, optional TrackerDict initDict)]

interface Tracker : ARElement {

 readonly attribute string uri;

 attribute string src;

};

dictionary TrackerDict : ARElementDict {

 string src;

};

9.3.13 Trackable

[Constructor(Tracker tracker, string src, optional TrackableDict initDict)]

interface Trackable : ARAnchor {

 readonly attribute Tracker tracker;

 readonly attribute string src;

 attribute double size;

 void addEventListener(string type, EventListener listener);

 void removeEventListener(string type, EventListener listener);

};

dictionary TrackableDict : ARAnchorDict {

 double size;

};

9.3.14 VisualAsset

interface VisualAsset : ARElement {

 attribute boolean enabled;

 attribute int zOrder;

 attribute Condition[] conditions;

 attribute Orientation orientation

 attribute ScalingMode scalingMode;

 void addEventListener(string type, EventListener listener);

 void removeEventListener(string type, EventListener listener);

};

dictionary VisualAssetDict : ARElementDict {

 boolean enabled;

 int zOrder;

 Condition[] conditions;

 Orientation orientation;

};

9.3.15 Orientation

[Constructor(OrientationDict initDict)]

interface Orientation {

 attribute double roll;

 attribute double tilt;

 attribute double heading;

}

dictionary OrientationDict {

 double roll;

 double tilt;

 double heading;

};

9.3.16 ScalingMode

[Constructor(string type, optional ScalingModeDict initDict)]

interface ScalingMode {

 readonly attribute string type;

 attribute double minScalingDistance;

 attribute double maxScalingDistance;

};

dictionary ScalingModeDict {

 double minScalingDistance;

 double maxScalingDistance;

};

9.3.17 VisualAsset2D

interface VisualAsset2D : VisualAsset {

 attribute string width;

 attribute string height;

 attribute string orientationMode;

};

dictionary VisualAsset2DDict : VisualAssetDict {

 string width;

 string height;

 string orientationMode;

};

9.3.18 Label

[Constructor(LabelDict initDict)]

interface Label : VisualAsset2D {

 attribute string href;

 attribute string src;

 attribute boolean clickThroughEnabled;

 attribute int viewportWidth;

};

dictionary LabelDict : VisualAsset2DDict {

 string href;

 string src;

 boolean clickThroughEnabled;

 int viewportWidth;

};

9.3.19 Fill

[Constructor(FillDict initDict)]

interface Fill : VisualAsset2D {

 attribute FillStyleDict style;

 attribute string class;

};

dictionary FillDict : VisualAsset2DDict {

 FillStyleDict style;

 string class;

};

dictionary FillStyleDict {

 string color;

};

9.3.20 Text

[Constructor(string src, TextDict initDict)]

interface Text : VisualAsset2D {

 attribute string src;

 attribute TextStyleDict style;

 attribute string class;

};

dictionary TextDict : VisualAsset2DDict {

 TextStyleDict style;

 string class;

};

dictionary TextStyleDict {

 string fontColor;

 string backgroundColor;

};

9.3.21 Image

[Constructor(string href)]

interface Image : VisualAsset2D {

 attribute string href;

};

9.3.22 Model

[Constructor(string href, ModelDict initDict)]

interface Model : VisualAsset {

 attribute string href;

 attribute string type;

 attribute Scale scale;

 string start3DAnimation(string id, int loopCount, EventListener

callback);

 void stop3DAnimation(string animationId);

};

dictionary ModelDict : VisualAssetDict {

 string href;

 string type;

 Scale scale;

};

start3DAnimation starts an animation that was declared in the Model's file.

Parameters:

id: The animation to start is referenced by an id with which the animation can be identified in the

Model file. In case the animations in the Model file are not referenceable with IDs, the position of the

Animation in the file (starting with 1) can be used as a reference. In case no such animation exists, an

Exception must be thrown.

loopCount: An optional parameter specifying how often the animation should loop. If set to -1, the

animation will loop infinitively often. Defaults to 1.

callback: An optional callback function can be supplied which will be executed right after the

animation finished with all the loops provided. The callback will not be executed when the animation

was manually stopped (see stop3DAnimation). For more details on EventListeners, see Event

Handling.

Returns:

a string identifying the 3DAnimation. This String can be used to stop the Animation.

stop3DAnimation stops an animation before it regularily finishes.

Parameters:

animationId: The id returned when the animation was started

Returns:

void

9.3.23 Scale

[Constructor(ScaleDict initDict)]

interface Scale {

 attribute double x;

 attribute double y;

 attribute double z;

};

dictionary ScaleDict {

 double x;

 double y;

 double z;

};

9.3.24 DistanceCondition

[Constructor(DistanceConditionDict initDict)]

interface DistanceCondition : ARElement {

 attribute double max;

 attribute double min;

};

dictionary DistanceConditionDict : ARElementDict {

 double max;

 double min;

};

9.3.25 SelectedCondition

[Constructor(boolean selected, SelectedConditionDict initDict)]

interface SelectedCondition : ARElement {

 attribute string listener;

 attribute boolean selected;

};

dictionary SelectedConditionDict : ARElementDict {

 string listener;

 boolean selected;

};

9.3.26 Animation

interface Animation {

 void addEventListener(string type, EventListener listener);

 void removeEventListener(string type, EventListener listener);

 void start(int loopCount, int delay);

 void stop();

 boolean isRunning();

};

Animations cannot be defined in the declarative part of ARML, they can only be declared and

controlled in the scripting part. Animations constantly modify the value of a property over a certain

time period.

2 different types of Animations are supported in the ECMAScript bindings of ARML,

NumberAnimations and GroupAnimations, they all inherit from Animation.

start starts an animation.

Parameters:

loopCount: An optional parameter specifying how often the animation should loop. If set to -1, the

animation will loop infinitively often. Defaults to 1.

delay: The number of milliseconds the start of the animation will be delayed. Defaults to 0

(immediate start).

Returns:

void

stop stops an animation before it regularly finished.

Parameters:

-

Returns:

void

isRunning returns if an animation is currently running.

Parameters:

-

Returns:

true if the Animation is currently running, false otherwise.

9.3.27 NumberAnimation

[Constructor(ARElement target, string property, float start, float end,

float duration)]

interface PropertyAnimation : Animation {

 readonly attribute ARElement target;

 readonly attribute string property;

 readonly attribute float start;

 readonly attribute float end;

 readonly attribute int duration;

};

NumberAnimations constantly modify a numeric value over a certain period of time from a given

start value to a specified end value. Between start and end, the value is linearly interpolated.

Properties:

target specifies the ARElement that holds the property that will be animated. Must not be null.

property holds the name of the property that will be animated. The property must hold a numeric

value.

start holds the start value of the Animation. If null, the current value of the property is used as start

value.

end holds the end value of the Animation. The property will take on this value after the Animation

completed.

duration, supplied in miliseconds, specifies the duration of one loop of the Animation.

9.3.28 GroupAnimation

[Constructor(string type, Animation[] animations)]

interface GroupAniimation : Animation {

 readonly attribute string type;

 readonly attribute Animation[] animations;

};

A GroupAnimation groups multiple Animations and runs them depending on the type of the

GroupAnimation. Type can either be parallel, causing all Animations in the GroupAnimation to start

at the same time, or sequential, causing the Animations to run one after another.

Properties:

type specifies the type of the GroupAnimation, either parallel or sequential.

animations holds the array of Animations contained in the GroupAnimation.

A parallel GroupAnimation loop has finished when the longest Animation in the group has finished. A

sequential GroupAnimation loop has finished when the last Animation in the group has finished.

9.3.29 Event Handling

EventHandling in ARML is based on concepts of event handling in HTML, see

http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html for details.

Developers can react on certain events by registering EventListeners listening on the occurance of a

certain Event type on specific event targets.

The following ARML classes serve as event targets, with their corresponding Events.

EventTarget Event Type Description

arml locationChanged fires when the implementation receives a new geolocation

representing the user's current position

VisualAsset enterFieldOfVision fires when at least one pixel of the VisualAsset becomes visible on

the screen

 exitFieldOfVision fires when the last pixel of the VisualAsset moves out of the screen

 click fires when the VisualAsset was clicked

http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html
https://portal.opengeospatial.org/wiki/ARML2x0swg/SpecEcmascript?cover=print;sortcol=0;table=1;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/SpecEcmascript?cover=print;sortcol=1;table=1;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/SpecEcmascript?cover=print;sortcol=2;table=1;up=0#sorted_table

EventTarget Event Type Description

ARAnchor enterFieldOfVision fires when at least a part of the area the ARAnchor covers becomes

visible on the screen

 exitFieldOfVision fires when the ARAnchor becomes invisible on the screen

Trackable tracked fires when the Trackable was detected in the scene

 trackingLost fires when the Trackable cannot be tracked anymore

Animation start fires just before the animation starts

 finish fires just after the animation finished

Event Listeners are registered in the event targets using

eventTarget.addEventListener(string type, EventListener listener);

and removed using

eventTarget.removeEventListener(string type, EventListener listener);

9.3.29.1 EventListener

interface EventListener {

 void handleEvent(Event evt);

};

handleEvent is called whenever an event occurs of the type for which the EventListener interface was

registered. The evt parameter holds the Event object containing contextual information about the

event.

9.3.29.2 Event

interface Event {

 readonly attribute EventTarget target;

};

target is used to indicate the Event Target to which the event was originally dispatched.

Example:

var clickFunction = function(event){

 var t = event.eventTarget.src;

 //do something

};

var text = new Text("This is my text");

text.addEventListener("click", clickFunction);

https://portal.opengeospatial.org/wiki/ARML2x0swg/SpecEcmascript?cover=print;sortcol=0;table=1;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/SpecEcmascript?cover=print;sortcol=1;table=1;up=0#sorted_table
https://portal.opengeospatial.org/wiki/ARML2x0swg/SpecEcmascript?cover=print;sortcol=2;table=1;up=0#sorted_table

Annex A: Revision history

Date Release Author Paragraph modified Description

2012-10-31 1.0.0 Martin
Lechner

All Copy from TWiki to this document for
RFC

2012-11-02 1.0.1 Martin
Lechner

1,2,4,5,7 Fixed some broken Links, added
historical information on ARML 1.0

Annex B: Bibliography
[AR Glossary] - http://www.perey.com/ARStandards/AR_Glossary_2.2_May_3.pdf

[Wikipedia AR Definition] - http://en.wikipedia.org/wiki/Augmented_reality

[Ronald Azuma AR Definition] - http://www.cs.unc.edu/~azuma/ARpresence.pdf

[EPSG Codes] - http://spatialreference.org/ref/epsg/

[ARML 1.0 Specification] - http://openarml.org

http://www.perey.com/ARStandards/AR_Glossary_2.2_May_3.pdf
http://en.wikipedia.org/wiki/Augmented_reality
http://www.cs.unc.edu/~azuma/ARpresence.pdf
http://spatialreference.org/ref/epsg/
http://openarml.org/

