
All Fields marked with * are mandatory.

Change Request
#:

204

Assigned OGC
Document #:

12-017

Name: *Adrian Custer

Organization: *independent

Email: *ac@pocz.org

Document
Name/Version:

*

OGC Project
Document:

*

then check here:

Title: *

Source: *

Work item code:

Category: *

Reason for
change:

*

The standard, while exceedingly useful, is poorly structured and written.

Summary of
change:

*

Reexamine the goal of the document, for a better title, better
organized introductory text, and more systematic organization of the
content.
Review the language of the normative text to fix the language and
order.
Fix errata.

Consequences if
not approved:

Without this editorial work, the standard will remain exceedingly
difficult to use since most of the requirements are wrong---a reader
has to interpret them to figure out what they are trying to say---and
because the material has poor internal organization

Clauses affected: *

All

Additional
Documents
affected:

Supporting
Documentation:

The text of the change request as a zip archive containing two
versions, one in PDF and another in Word format.

Comments: This change request is sufficiently extensive that it would warrant
several working meetings when the authors are ready to tackle the
work.

Status:

Assigned To:

Disposition:

2

Open Geospatial Consortium

Date: 2012-02-14

External identifier of this OGC® document: <>

Internal reference number of this OGC® document: YY-nnnrx

Version: 0.1

Category: OGC® Change Request

Editor: Adrian Custer

Change Request for

The Specification Model (08-131r3)

Table of Contents
1. Introduction..2

2. Big issues...5

3. Evaluation of the Requirements...8

4. The UML model...23

5. Editorial comments..24

6. A general outline of a new text..28

7. A new set of requirements...29

1. Introduction

This Change Request presents an extensive analysis of the OGC Standard
The Specification Model — A Standard for Modular specifications 08-131r3

which aims to clarify the goals, organization, and realization of the document. Through
this analysis, it becomes apparent that the standard could use extensive revision in order
to:

 edit the text for clarity,
 state the purpose of each requirement class,
 organize like requirements together,
 systematize the requirements for parallelism between the various injunctions,
 edit the requirement language to specify the target and phrase the injunction

against that target,
 drop unenforceable, burdensome, or useless requirements and requirement

classes,
 clarify the role of the UML model of 'Well-Formed Standards' in the document,
 fix the UML,
 improve the tests from the trivial and vague "Inspect the document to verify the

above,"
 harmonize or clarify the differences between the UML and XML requirement

classes,
 fix errata,

but much of that work will only make sense after clarifying the conceptual model behind
the document, the goals of each requirement class and requirement, and the purpose and
organization of each section of the text.

The document The Specification Model contributes greatly to improving the quality and
content of OGC specifications and the work on that standard has been invaluable in
getting the consortium working together towards this goal. The criticism in this document
should be seen in a context of praise for the existing work and recognition that this
critique is only possible due to the existence of that work: it is much easier to improve a
conceptual effort than to conceive of it anew. Therefore, in an Orwellian twist, this
criticism is actually praise: my willingness to invest work on the improvement of the
standard testifies to the value I see in that document.

The standard, unfortunately, is confused. As a quick illustration of its confusion, it
nowhere states what Standardization Target Types it tackles. An exercise for the reader of
this document illustrating the confusion of the standard would be to name the Target

Types. If the only Target is a 'specification document' as appears clear from the tests then
how do you restate Requirement 10 to target a specification document explicitly?

Req 10 A certificate of conformance shall specify all parameter values used to
pass the tests in its conformance test class.

(Update: actually this is possible as shown below but requires whole new concepts.)
Another example of the lack of self-conscious focus comes from the stress of
'modularization' as the key contribution of the standard. The greatest contribution of the
standard to the OGC standardization process is actually not a framework for modularity
but the rule that 'Formal OGC Requirements' must be injunctions made against 'Targets'
and injunctions which are testable. The process of phrasing a testable injunction against a
target entity reveals so much about our intent and its possibility that it helps us write
better standards. Indeed, much of the critique in this document comes simply from the
effort below of rephrasing each requirement in the form:

<standardization target> SHALL (NOT) <injunction>
coupled with building a test for those injunctions. The effort reveals directly some of the
confusion in the Requirements themselves. I have personally decided that all my
injunctions must be in that form; it's boring but exceedingly helpful to me as an author. A
second trivial tell tale sign of disorganization is that the 'OGC Requirement Classes' in
the document occur at such different levels: §6 for core, §7.2.2, §7.2.3, §7.2.4, and §7.2.5
for the others, something which is not disorganized inherently but suggests the
possibility of being so.

The root of the confusion appears to come from the incomplete conceptual model against
which the standard is written. The clearest phrasing of the 'world view' against which the
standard is written comes in §6.2, ¶1 which states:

The primary difficulty in speaking of specifications (or candidate standards) as a
group is their diverse nature. Some specifications use UML to define behavior,
others use XML to define data structures, and others use no specific modeling
language at all. However, they all must model the standardization target to which
they apply since they need to use unambiguous language to specify requirements.
Thus, the only thing they have in common is that they define testable
requirements and recommendations against some model of an implementation of
the specification (the standardization target) type. {ending modified}

This could use editorial clarification to become a statement of intent but it gets to the core
of what the standard clearly realizes it is attempting to do. The standard aims, among
other things, to develop a model of a 'well formed specification' and develop rules which,
if respected, would ensure any specification document would be 'well formed'.
Conceptually that is at the root of the standard but the standard actually rests on a bigger
conceptual foundation than that. The key pieces of that bigger foundation seem to be:
target entities, injunctions, evaluations to determine if a target entity fulfills the
injunctions, a process to perform the evaluations, and a result of the evaluating process.
In other language, the key conceptual elements are: Targets, Requirements, Tests, an
unnamed testing processor, and Certificates of Conformance. The unnamed processor
might be a review by the OAB (running the tests of The Spec. Model standard) or might
be a CITE test suite (running the tests of some service implementation specifications) but
the processor has no generic representation in the language of the The Spec. Model

standard. The Requirements in The Spec. Model standard make injunctions against these
elements: against Targets (documents shall group requirements in clauses), against
Requirements (each requirement has a single target type), against Tests (only that they
have a URI), against the processor (the processor shall only issue a certificate if the target
passes all the tests in a conformance class), and against the certificate (the certificate
shall list any parameters of the testing process). The first three of these can actually be
rephrased as requirements of a specification document but the latter two, seemingly, can
not. (Update: well we can, as shown tackling req. 10 below, but this requires introducing
the concept of the 'testing process' so the requirement can force spec documents to
require their 'testing process' to behave in a particular way.) The requirements that
specify the grouping mechanism I see as fulfilling a secondary purpose: first the standard
is aiming to make rules for well written specs, then the standard is aiming to ensure those
specs are modular by developing rules for grouping. (A tertiary aim is to define the use of
UML and XML schema systems; those have their own issues as we will see later.)

A note on terminology since that also is confused. I will attempt systematically to
capitalize and italicize entities which are part of the UML model, i.e. the 'classifiers,' and
to capitalize and label other entities. We have many 'specifications' floating around: we
need to distinguish a 'specification' which is any document which makes injunctions,
from a 'Specification' which is the classifier in the UML model, from a 'Conformant OGC
Specification Document' which is a specification which meets all the requirements of the
core requirement class (and could potentially become an 'OGC Standard'). Similarly,
there are many 'requirements' so I speak of 'injunction' which is a rule against some entity
to be some way, of 'Requirement' which is the UML classifier, and 'Formal Requirement'
which is an injunction stated formally in the text to enjoin a Target to be a certain way
(although I mix up the last two a bit). Also, I will attempt to systematically call The
Specification Model 'the standard', call this change request in which this sentence appears
'this document,' and otherwise speak only of 'specifications' since 'standards' are defined
as 'specifications' that have undergone some approval process.

This change request document has the following structure.

 The first clause tackles the 'big issues': self-definition of the document in which it
is self-conscious of what it is doing, a formal listing of the target types, the role of
the UML model in the document, the need to split internal OGC policy from what
is otherwise a general document, and the recognition that there are several types
of requirements.

 The next clause works systematically through the published requirements to
evaluate each one.

 The following clause tackles all the issues with the UML model.

 The final clause works through the text of the document with editorial comments
and errata.

2. Big issues

Several major issues related to the standard document must be resolved prior to
productive work improving the document.

2.1 Self-definition

The standard must be explicitly clear as to its intent: it aims for better specification
documents. To do that it will develop a model of well structured specifications, and will
develop rules for realizations of the model and model elements, for the expression of that
model in text, for the evaluation of the result, and for the declaration of successful
evaluations. The standard hopes that better specification documents will lead to all sorts
of good benefits (see the Introduction and §1, ¶1) but those benefits are not tackled
directly by the standard.

The standard must be explicitly clear as to what it is: it is a specification for specification
documents. While the standard calls itself a model (The Specification Model ...) that is
only one part of what it aims to be as I have argued above. Really the model is only a
means by which the standard does what it aims to do (even if it claims that modeling of
the target is an inherent necessity of what all specifications do). The issue of modularity
is an extra that exists to facilitate reuse, correction, and extension of pieces of these
specifications.

If we agree on the goals and the nature of the standard, we can evaluate our work writing
the clauses of the text, phrasing the injunctions of the requirements, and grouping the
requirements into classes by comparing our work against those two.

2.2 Types of targets

Critical to the process of writing good specifications, and in my mind the single biggest
contribution of the formalized approach to specifications contributed by the standard, is
forcing the specification documents to define the entities which are being enjoined by the
text of the Formal Requirements. Conversely, the single biggest failure of the standard
itself is that it does not formally list its own Standardization Target Types and does not
phrase its Requirements as injunctions made of Targets of those Types.

Clearly, one Standardization Target Type targeted by the standard is "specification
documents". Some requirements clearly target such documents by expressing injunctions
on the text of the specifications (e.g. related to the content and organization of 'clauses').
For example we have Req. 6's "The requirements shall be grouped together in clauses..."
and Req. 7's "structure of the document". All the tests appear to assume that a
'specification document' is the target.

While the phrasing of other Requirements suggests a further group of Standardization
Target Types which are the elements of the UML model (i.e. "classifiers"), it seems that
the language of those injunctions could be rephrased as injunctions of a specification
document containing such classifiers. Keeping existing phrasing would bring on the cost
of introducing a Target Type for each classifier. However, regardless of the formal

Target Type used, it still serves us to organize these Requirements by kind of classifier
because it makes the testing procedure simpler to express and apply. Instead of the mixed
requirement

Req 2 Each component of the standard, including requirements, requirements
modules, requirements classes, conformance test cases, conformance modules and
conformance classes shall be assigned a URI as specified by the OGC naming
authority or its equivalent.

and the test of inspecting the document and seeing that this is true for all "components",
in my work on WMS 2.0, I develop a Requirement for each classifier, e.g. that it have an
HTTP URI. My test then becomes that every occurrence of a text element represented by
a classifier should be inspected for the presence of the URI. In my test procedure, all the
tests of each classifier are together so that checking each element is a simple run down of
the list of requirements. The organized approach grouping Requirements by classifier also
allows one to see clearly the parallels between the Requirements for the different kinds of
elements at the minor expense of having more Requirements (but which involve less
work in assessing them).

A second type of Standardization Target Type appears to be an assessment process, but
this only emerges from the examination of the language of certain Requirements. The
second sentence of Req. 1 seems to be of a different genre from the first sentence. The
first could be rephrased to target the document as shown below, the second is a criterion
for the testing process to decide on the failure by a specification document to conform
with a Conformance Class.

A third type of Standardization Target Type appears in Req. 10 which targets a
'certificate of conformance'. I see no way to modify the language of that requirement to
target either a 'specification document' or an 'assessment process'. (Update: I actually did
below with some conceptual evolution.)

This leads me to view the core of the standard as actually targeting three different
Standardization Target Types: specification documents, a conformance testing process,
and a certificate of conformance.

Beyond the core, the targets get more confusing. The UML requirement class seems to
target 'specifications which use UML to model their target' but it could also be targeting
'specifications that use UML in any way' I am not sure. The XML requirement classes
seem to target XML schemas either in general or only those used to model 'data' (see
Req. 41). That needs to be clarified by the authors and would be the subject of a future
discussion. Note in passing that Req. 39 is against something that could pass the testing
of the core conformance class, i.e. a document, whereas Req. 40 is against something that
could pass the W3C recommendation, i.e. an XML schema probably expressed as a text
'.xsd' file. The two are totally different things and so the language should not call each
using the same 'an implementation' language.

2.3 Role of UML model

Given the centrality of the UML model of specifications to the requirements of the
standard, I do not understand how it could be squirreled away in an 'informative' annex.
The text of Annex C1, despite its conflicts with the rest of the standard, stands as the best
textual expression the model of a standard, the UML graph (which seems to be required
by Req. 29, claimed as normative in the 'Scope' clause and referenced in clause 6.1)
appears to be the only listing of the classifiers, and the classifier by classifier writeup
seems to posit the existence of attributes but these are not required elsewhere.

Since I suspect the model should be central to the text of the standard, the UML model
should be folded into clause 6 as a section (possibly a formal 'Module') which discusses
the model, its entities, and their relations. Alternatively this will have to be done, piece by
piece, in the language of requirements.

2.4 Separation of OGC specifics

The standard is both a specification for specifications and is a base requirement for all
future OGC Standards. However, this second part is trivial in the doc: that the naming
authority issuing URIs be the OGC NA and that the standard be an annex to the Policies
and Procedures of the Technical Committee. These must be separated from the rest of the
standard, it is too useful as a general help to writing specifications to be tied to the OGC.

2.5 Types of requirements

Identifying the different types of requirements gives us a way to organize them.

Obviously, requirements differ by the Standardization Target Type of their Target.
Properly those are to be in different Requirement Classes. However, even within a single
class, other characteristics can distinguish Formal Requirements within the core. The
different kinds of Formal Requirements for core seem to be:

 Formal Requirements enjoining documents to define model elements in a
particular way, e.g. Req.4 "Each requirement in a conformant specification shall
have a single standardization target type {sic},"

 Formal Requirements enjoining documents to structure model elements in a
particular way, e.g. the first sentence of Req. 15, "Each requirement in the
standard {sic} shall be contained in one and only one requirement class",

 Formal Requirements enjoining documents to a particular form, e.g. Req. 6 "The
requirements shall be grouped together in clauses (numbered sections) of the
document..."

 Formal Requirements enjoining the conformance process, e.g. second sentence of
Req. 1 "Failure to meet any part of any requirement shall be a failure to pass

 the associated conformance test class."

 Formal Requirements enjoining the certificate of conformance, e.g. Req. 10 "A
certificate of conformance shall specify all parameter values used to pass the tests
in its conformance test class."

These kinds of Formal Requirements give us an organizational system, especially for the
first three kinds which could occur in the same Requirements Class.

(Update: Formal Requirements of the latter two kinds actually can be rephrased to have
the same target as the first, and therefore all actually could be in the same Requirements
Class.)

3. Evaluation of the Requirements

In this clause, I examine each Formal Requirement in turn. Part of the analysis involves
rephrasing the language of the Formal Requirements into a phrasing where the target is
explicit in the language. It is also worth specifying exactly what the testing is to be.

CORE

3.1 Analysis of Req. 1

The text reads:

Req 1 All the parts of a requirement, a requirement module or requirements class
shall be tested. Failure to meet any part of any requirement shall be a failure to
pass the associated conformance test class.

Starting the requirements with testing seems problematic. You are just done saying 'we
assume a spec. document has these parts: ...' It would be better to start with defining the
rules for each part before getting to how an evaluating process will use that whole
structure.

The first sentence needs refactoring. Requirements are supposed to be 'atomic' (see p. 10,
paragraph before 1st note.); if so, speaking of their parts, "parts of a requirement," is
wrong. And Requirement Modules or Requirement Classes are only tested via their
Requirements so that if the language of 'parts of ' is supposed to be transitive to 'module'
and 'class', "All the parts ofa requirements class", then those 'parts' are actually the
requirements and we are back to testing only single, atomic Requirements, which, I
suspect, is what this requirement should be doing.

Is this language trying to say, via 'parts of requirements' that the Tests targeting a
requirement must collectively, fully evaluate that requirement? That's unenforceable and
also impossible in certain cases where our injunctions can only ever be invalidated not
affirmed. So that sounds like we should be saying:

A conformant specification document SHALL have all of its Requirements
matched by one or more Tests that evaluate the Target of the Requirement for
conformance with that Requirement.

A conformant specification document SHOULD include Tests that evaluate as
completely as possible the conformance of the Target with the Requirement.

The second sentence of the requirement is about how the testing procedure fails a
specification document. I can see how to write this if the target is the procedure:

A conformance evaluating procedure SHALL evaluate the conformance of a
Target to a Requirements Class by applying to the Target each Conformance Test
in the Conformance Class associated with the Requirements Class. The
conformance evaluating procedure SHALL interpret the failure of the Target to
pass any Conformance Test in the Conformance Class as a failure to pass the
Conformance Class itself.

The 'associated with' needs to become a stronger language, probably it should be 'the
requirements class declared as its "own" by the conformance class' or some similar
formal declaration.

However I don't quite see how to rephrase that as a character of the 'conformant
specification document' itself (which is why I think there is more than one Target for the
core of the standard). Perhaps this becomes

A conformant specification document SHALL specify that the conformance
evaluating procedure MUST evaluate the conformance of a Target to a
Requirements Class by applying to the Target each Conformance Test in the
Conformance Class associated with the Requirements Class.

A conformant specification document SHALL specify that the conformance
evaluating procedure MUST interpret the failure of the Target to pass any
Conformance Test in the Conformance Class as a failure to pass the Conformance
Class itself.

but this posits that we have formalized that the spec. is developing a 'conformance
evaluating procedure'---something we have not yet done.

3.2 Analysis of Req. 2

The text reads:

Req 2 Each component of the standard, including requirements, requirements
modules, requirements classes, conformance test cases, conformance modules
and conformance classes shall be assigned a URI as specified by the OGC
naming authority or its equivalent.

What are the 'components of the standard'? Are they the classifiers that are listed (i.e.
'including only') or are they the listed classifiers plus others (i.e. 'including, amongst
others, ')? If the former, then simply enumerating the classifiers would be more clear.

Why, in the standard, do we care who generates the URIs. If they are Universal then it's
not our beef. As stated above, for OGC Standards we can mandate that the URIs are
issued by the OGC NA but that is a separate issue. This language should probably change
to

"Conformant specification documents SHALL assign a URI, preferably issued by
a proper IANA naming authority, to each occurrence in the document of a
requirement, requirements module, requirements class, conformance test case,
conformance module or conformance class."

and this should be grouped with the requirement that, at least some of, these classifiers
have names. The italic passage may or may not be a good idea.

3.3 Analysis of Req 3

The text reads:

Req 3 Requirements on the use and interpretation of vocabulary shall be in the
requirements class where that use or interpretation is used.

I am not sure how this relates to the Terms and Terminology section of our standards.
Would this part be above and beyond? If so, we should take it to heart and define XML
stuff in the XML classes; that would provide an example for future writers.

This could be phrased:

Conformant specification documents SHALL, when using new or modified
vocabulary in a particular Requirement Class, define that vocabulary or present
the rules for interpretation of that vocabulary in the Requirement Class where that
vocabulary or usage occurs.

However, the qualifying clause of that sentence brings us new issues. The
recommendation at the end of clause 6.5.6 would seem to take this phrasing to push us to
make this a separate, and optional, Requirement Class. Perhaps a different phrasing
would avoid that difficulty.

3.4 Analysis of Req 4

The text reads:

Req 4 Each requirement in a conformant specification shall have a single
standardization target type.

This is straight forwards except that requirements enjoin instances not types.

This could be phrased:

Conformant specification documents SHALL only include formal requirements
which enjoin a Target of a single Standardization Target Type.

3.5 Analysis of Req 5

The text reads:

Req 5 All conformance tests in a single conformance test class in a conformant
specification shall have the same standardization target.

Again, this grouping seems to come too early in the list of requirements and we should at
least first define the grouping for Requirements into Requirements Classes, then define
the grouping of Conformance Tests into Conformance Classes. Finally we can place
constraints on the groupings.

This could be phrased:

Conformant specification documents SHALL only contain conformance test
classes which group conformance tests that evaluate Target instances of the same
Standardization Target Type.

3.6 Analysis of Req 6

The text reads:

Req 6 The requirements shall be grouped together in clauses (numbered sections)
of the document in a strictly hierarchical manner, consistent with requirements
modules and requirements classes.

This is the first formal requirement whose text enjoins the textual structure of the
specification document. This type of requirement would seem to merit its own cluster
which might even be a formal Module.

The decision to include requirements which enjoin the textual structure raises the
question about why the 'assumptions' of clause 6.1 are not simply requirements of this
kind. What distinguishes the assumptions from this requirement?

This could be phrased:

Conformant specification documents SHALL structure their text with hierarchical
clauses (numbered sections) such that each Requirement Classes is in a separate
clause and contains as sub-clauses all its Requirement Modules and those, in turn,
contain all their requirements.

It would also be worth considering allowing an 'implicit' Requirements Module for all the
requirements classes we are writing which contain only a single module. That is, we
would allow Requirement Classes to hold their requirements directly. Either way, this
Module system must be clarified because it is not used by the standard itself leaving
future authors with no example of the usage of this module level of organization.

3.7 Analysis of Req 7

The text reads:

Req 7 The requirements structure of the document shall be in a logical
correspondence to the test suite structure.

The concept 'requirement structure' is close to meaningless since requirements are atoms.
What this is perhaps going for is the 'structuring of the requirements within the document'
but then we should really be talking about the groups, the modules and classes, not the
atoms.

The phrase 'logical correspondence' is also about a vague as we could get. Is it only
talking about matching the hierarchies of each Requirement Class with the hierarchy of
its corresponding Conformance Class?

So what this probably means is that the structure of the Requirement Classes and their
sub-hierarchies in the core of the document must match the structure of the Conformance
Classes and their sub-hierarchies in the separate section containing the Conformance Test
Suite, possibly an annex. We must be aware however, that the parallelism breaks down at
the level of tests and requirements since they are not one to one.

This could be phrased

Conformant specification documents SHALL structure their text to have the
Conformance Test Suite in a separate section which MUST organize its
Conformance Classes to follow the organization of the Requirements Classes in
the document, and each Conformance Class MUST organize its Conformance
Modules to follow the organization of the Requirements Modules in the
corresponding Requirements Class in the document.

where this includes assumption 5 as a starting point.

3.8 Analysis of Req 8

The text reads:

Req 8 The requirements classes shall be in a one-to-one correspondence to the
conformance test classes, and thus to the various certificate of conformance types
possible for a candidate implementation.

The one to one part of this should probably be linked with or at least next to the
requirement for parallelism of their names. What logical thread gets us to the 'and thus'?
We have not seen yet the notion of 'certificates of conformance' nor their link to
conformance classes let alone that it is one to one. The UML only mentions certificates as
attributes of the Target instance.

This could be phrased

Conformant specification documents SHALL have one conformance test class for
each requirements class.

but really this should be establishing the strong link from each conformance test class to a
requirements class that the conformance class declares to be its 'injunctive base'.

3.9 Analysis of Req 9

The text reads:

Req 9 A Conformance class shall not contain any optional conformance tests.

This raises an unfortunate trend in the standard to talk of two things that do not exist
'optional requirements' and 'optional tests'. It would seem better to carefully avoid any
linguistic construction that uses those terms.

This could be phrased

Conformant specification documents SHALL NOT have any conformance tests
which are optional.

followed by explanatory text that shows how optionality is done in conformant specs.

This immediately calls for

Conformant specification documents SHALL NOT have any requirements which
are optional.

with a similar explanation.

3.10 Analysis of Req 10

The text reads:

Req 10 A certificate of conformance shall specify all parameter values used to
pass the tests in its conformance test class.

As stated above, phrasing this as a character of the document is hard.

Conformant specification documents SHALL require that their conformance
testing process only issue certificates of conformance which specify all the
parameter values which were used during the application to a particular Target
instance of all the tests in the conformance class for which the certificate is being
issued.

Surprisingly, this is actually possible reversing my earlier belief that it was not. With this
language, we do need to introduce the 'conformance testing process' however. Is this what
we should be doing? Ideally we would define the common characters of this
'conformance testing process' (i.e. that it runs all tests in the class or that it work its way
through dependencies) so that all conformant specs would not need to.

3.11 Analysis of Req 11

The text reads:

Req 11 A Conformance class shall explicitly test only requirements from a single
requirements class.

Again, the injunction should not just focus on it being a 'single' class but on it being 'the'
associated class, so we need a stronger relation. And since conformance classes do not
'test' but only hold tests we need to be more precise.

This might be phrased

Conformant specification documents SHALL only contain Conformance Classes
whose Conformance Modules contain only Tests which evaluate conformance of
a Target with the requirements of the Requirement Class associated with the
Conformance Class containing the tests.

with the 'associated with' remaining a bit vague---we need a name for this association that
we can then reference in the requirements.

But wait! Is this testable? I suspect is is not. This seems to me to be a 'halting' level
problem. We certainly have to say it is our intent but I am not sure we can make it into a
testable requirement. How do we determine exactly what a test is testing? Maybe this
could be that the tests 'claim to test requirements' and we could use a strong association
between each test and the 'requirements whose injunctions the test claims to evaluate.'

3.12 Analysis of Req 12

The text reads:

Req 12 A Conformance class shall specify any other conformance class upon
which it is dependent and that other conformance class shall be used to test the
specified dependency.

This is clearly a two part requirement.

For the first, how does the specification happen? We probably want to force the
Conformance Class to list the name and URI of their dependencies (but the naming
requirement only happens below). Again this suggests we should restructure things.

For the second we run into trouble because we have two kinds of dependencies, direct
and indirect. The direct dependency is easy, the testing can recurse on the same Target
instance; however for the indirect dependency we need to establish the Target of that
indirect dependency. For example, if the target were a web service, the direct dependency
could be an OWS Common level Conformance Class but the indirect dependency could
be towards a data model Conformance Class and what we would want is that the service
be tested against the OWS Common level Conformance Class but that the service's
output be tested against the data model Conformance Class. Unfortunately we don't know

in general what the role played by the indirect dependency. Do we drop testing of indirect
dependencies? (It actually seems like these should be part of specific requirements.)

This could be phrased

Conformant specification documents SHALL only contain Conformance Classes
which formally list by name and URI each Conformance Class on which the
former Conformance Class depends.

Conformant specification documents SHALL require their testing procedure to
include in the evaluation of a Target for conformance with a Conformance Class
the evaluation of that same Target for conformance with any directly dependent
Conformance Classes.

which only works if this notion of 'direct dependency' makes sense outside the
requirement. (As stated elsewhere, the name is unfortunate suggesting the distance of the
dependency not that the dependency shares a the same target type.) We might need to
make that explanation directly part of the language of the requirement.

3.13 Analysis of Req 13

The text reads:

Req 13 If a requirements class is imported from another standard for use within a
specification conformant to this standard, and if any imported requirement is
"optional," then that requirement shall be factored out as a separate
requirements class in the profile of that imported standard used in the conformant
specification. Each such used requirements class shall be a conformance class of
the source standard or a combination of conformance classes of the source
standard or standards.

This raises the issue of external dependencies which could be either standards that are
conformant or documents which are not.

In the case that the specs that have 'requirements classes' presumably that means that they
follow the standard so they do not have any 'requirement {that} is "optional" ' which
saves us from the factoring work.

In the case that the imported specs have 'requirement{s that are} "optional",' then we do
need to separate out the required from the optional. However, I would not take the
approach of this requirement. I suspect the cleanest way to allow for the importing of
external specs is to require that they be 'wrapped' in one or more formal Req. Classes.
This would formalize both the obligatory and optional injunctions and formalize the tests.
This is so preferable to any other mechanism that I would personally require the
approach.

I do not attempt to rephrase this requirement. Without clarification on how 'another
standard' could have a 'requirements class' I will not attempt to rewrite this. The second
sentence is unclear 'each such used requirements class' is the 'imported class'? The

sentence also has "{e}ach such requirements class shall be a conformance class"
which is contradictory to the definitions so I don't know how to fix this.

3.14 Analysis of Req 14

The text reads:

Req 14 For the sake of consistency and readability, all requirements classes and
all conformance test classes shall be explicitly named, with corresponding
requirements classes and conformance test classes having similar names.

This could be phrased

Conformant specification documents SHALL explicitly assign a unique name to
each requirements class and each conformance test class, with the name of the
conformance test class being similar to that of its corresponding requirements
class.

but, again, the 'corresponding' should be a stronger language.

3.15 Analysis of Req 15

The text reads:

Req 15 Each requirement in the standard shall be contained in one and only one
requirements class. Inclusion of any requirement in a requirements class by a
conformance class shall imply inclusion of all requirements in its class (as a
dependency).

The second sentence is erroneously structured "Inclusion of any requirement in a
requirements class {so far so good} by a conformance class" makes no sense. It seems
what is wanted is that if a test (which is 'associated with' a requirement) is included in a
conformance class, then all the tests which are associated with all the requirements in the
same requirements class as the requirement associated with the first test must be included
in the conformance class.

These could be phrased

Conformant specification documents SHALL only have requirements which are
contained in one and only one requirements class.

Conformant specification documents SHALL organize their tests into
conformance classes in such a way that if a test is included in a conformance
class, then all the tests associated with all the requirements in the same
requirements class as the original test must be included in the conformance class.

It is a mouthful. Repeating myself the 'associated with' needs to be defined and could use
better language. This also suggests that we need a requirement that a test can only 'be
associated with' requirements in the same requirements module (class); maybe that exists
already, I am getting confused.

3.16 Analysis of Req 16

The text reads:

Req 16 If any two requirements or two requirements modules are co-dependent
(each dependent on the other) then they shall be in the same requirements class.
If any two requirements classes are co-dependent, they shall be merged into a
single class.

The phrasing of the second sentence introduces something that cannot exist and then
applies a procedure to fix things. It is sufficient to prohibit the state. An explanation can
be added to the descriptive text showing how to resolve a situation which might arise in
developing a standard but is not permitted.

These could be phrased

Conformant specification documents SHALL place in the same requirements
class any requirements or requirements modules which are mutually dependent.

Conformant specification documents SHALL NOT have mutually dependent
requirements classes. (They logically form a single requirements class).

Can a requirement be mutually dependent with a requirements module? If not, the first of
these should be split into two requirements or a compound requirement. Again, the whole
requirements module system needs explanation.

3.17 Analysis of Req 17

The text reads:

Req 17 There shall be a natural structure on the requirements classes so that
each may be implemented on top of any implementations of its dependencies and
independent of its extensions.

This should be dropped as a requirement. First of all it is untestable. How, by
"Inspect{ing} the document" could we ascertain this is so? Secondly "natural structure"
has no meaning. Thirdly, we go to great lengths to avoid dealing with implementation.
Yes, this can be a goal of modularity but that should be stated in the text not become a
normative injunction.

3.18 Analysis of Req 18

The text reads:

Req 18 No requirements class shall redefine the requirements of its dependencies,
unless that redefinition is for an entity derived from but not contained in those
dependencies.

Since the whole goal of this game is modularity and substitutability, it seems simpler to
simply ban re-definition of requirements. Anyone needing a requirements class

substantially similar to, but not identical to, an existing requirements class should simply
write a new one, include all the identical requirements by reference and add in their own
modified requirements. Since the requirements have URIs this cross-referencing should
be easy. (Well except that we are banned from doing this by the injunction that each
requirement appear in only one requirements class.)

I do not understand the meaning or intent of the second part of the sentence.

This could be phrased

Conformant specification documents SHALL NOT include any requirement
which redefines another requirement, but this requirement does not imply that
requirements cannot constrain other requirements.

Leading to the difficulty of distinguishing 'redefinition' from 'constraint'.

3.19 Analysis of Req 19

The text reads:

Req 19 The conformance tests for a profile of a specification shall be defined as
the union of a list of conformance classes that are to be satisfied by that profile’s
standardization targets.

Profiles, what are profiles? Profiles are specifications. Specifications have this
requirement so why would we need a new requirement targeting profiles?

Not sure how to handle this one. Personally, I think that 'profiles' are the new 'standards'.
For me, specs simply define lots of requirements classes; profiles then aggregate a
coherent set of requirements classes for a particular purpose.

3.20 Analysis of Req 20

The text reads:

Req 20 Every specification shall define and identify a core set of requirements as
a separate conformance class.

Well you can't identify a set of requirements as a conformance class; you could as a
requirements class. And this needs to be expanded for the various target types. And
actually this is a bad idea: I might have a standard that defines two text data structures
that work totally differently (say one is line structured, another structured by markup).
Why would we force on others the requirement to have an empty requirements class just
to have a 'core'. Having 'core' is a good idea where it makes sense but not something to
mandate.

This could be phrased

Conformant specification documents SHALL, for every standardization target
type for which the document defines a requirement, define one requirements class

to be the 'core requirements class' for that standardization target type and the
conformant specification document SHALL require that every target of that
standardization target type conform with the 'core requirements class' for the
target to conform to ...?... any requirements class derived from the core? any
requirements class enjoining targets of that standardization target type?

I'm not even sure how to complete this language.

3.21 Analysis of Req 21

The text reads:

Req 21 All general recommendations shall be in the core.

This breaks down upon looking up the definition of 'general recommendation':
"recommendation applying to all entities in a specification model." "All entities" seems a
bit broad: all classifiers in the UML? All targets of a given target type?

So what is the point and why would sensible authors not know where to make their
recommendations?

3.22 Analysis of Req 22

The text reads:

Req 22 Every other requirements class in a specification shall have a
standardization target type which is a subtype of that of the core and shall have
the core as a direct dependency.

By 'other requirements class' ('other' to what?) I presume we are talking of 'non-core'
classes.

We run into issues with multiple target types again. If we don't mandate core as I suggest
we cannot above, we could not mandate this.

This could be phrased

Conformant specification documents SHALL only have requirements classes
which are not defined as a 'core requirements class' if the non-core requirements
classes have a direct dependency, possibly transitive, on a 'core requirements
class'.

Here we see the problem with the language 'direct dependency' which suggests the
distance of the dependence not the similarity of target types. Calling them 'base
dependencies' or 'root dependencies', as against 'associated dependencies' or something
similar, might work better. The sub-type constraint of the requirement in the standard
follows naturally from the definition of direct dependency.

3.23 Analysis of Req 23

The text reads:

Req 23 Each specification conformant to this standard shall consist of the core
and some number of requirements classes defined as extensions to that core.

Wow. This requirement language is well structured. It would be perfect, except that we
need to allow for multiple target types, and the 'shall consist of' is problematic. Oh and
the standard will have a whole lot more than just requirements classes.

This could be phrased

Conformant specification documents SHALL only contain requirements classes
which are either a 'core requirements class' or are extensions, possibly transitively,
to a 'core requirements class'.

But at this point, the requirement is highly similar to the one above so they might be
merged. (And I am still against this concept of 'core'---I think we give authors tools to
write good specs not injunctions to make them write them in our particular way).

3.24 Analysis of Req 24

The text reads:

Req 24 A specification conformant to this standard shall require all conformant
extensions to itself to be conformant to this standard.

Ha! This recursion sucks. This was the first glimpse I had that WMS was going to have to
define a second target type, a 'specification document extending this WMS specification'.
Why? Extensions are either conformant to the standard or not; the work of extension is
no business of a conformant specification.

The phrasing is pretty good except for the "to itself" which is not unambiguous: in French
it would refer to 'this standard' in English usually to the conformant spec. (Reading anglo-
saxon possessives is delicate work---in the documentation of the GNOME project we
highly discourage their use since our translators and readers are world wide.)

3.25 Analysis of Req 25

The text reads:

Req 25 A specification conformant to this standard shall never restrict in any
manner future, logically-valid extensions of its standardization targets.

Well structured language but conflicts with the requirement immediately before it,
req. 24. Of questionable utility. The 'in any manner' seems vague enough to be untestable.
Since the requirements are what make normative injunctions, this should probably be
phrased as a constraint on requirements (that must not restrict) rather than on standards.

3.26 Analysis of Req 26

The text reads:

Req 26 The only optional requirements acceptable in a specification conformant
to this standard shall be expressible as a list of conformance classes to be passed.

Here are the non-existent 'optional requirements' again; no requirements are optional.
What would an example be of 'an optional list of conformance classes'? This seems to be
a natural result of banning the optionality of requirements rather than a requirement in its
own right.

3.27 Analysis of Req 27

The text reads:

Req 27 The common portion of any two requirements classes shall consist only of
references to other requirements classes.

I'm not sure how references are made so I can not evaluate this effectively. Requirements
classes have many "common portions" such as definitions and target types. If the
'references' were made in some normative statement then those normative statements
could be shared, possibly by reference. Absent that, references would always be made
anew and so we are not talking about 'common' elements but merely 'parallel' elements
and we get into trouble.

That takes care of the requirements in the 'core requirements class' of the standard. At
this point, I am giving up on this work pending feedback from the authors. I leave the text
below in case we eventually build on this particular document.

Req 28 An implementation passing the UML conformance test class shall first
pass the core conformance test class.

Req 29 To be conformant to this UML conformance class, UML shall be used to
express the object model, either as the core mechanism of the standard or as a
normative adjunct to formally explain the standard in a model.

Req 30 A UML model shall have an explicit dependency graph for the leaf
packages and external packages used by the standard consistent with the way their
classifiers use those of other packages.

Req 31 A UML leaf package shall be associated directly to only one requirements
class.

Req 32 Each requirements class shall be associated to a unique package in the
model and include either directly or by a dependency any requirement associated
to any of its subpackages.

Req 33 A requirements class shall be associated to some number of complete leaf
packages and all classes and constraints in those packages.

Req 34 Classes that are common to all requirements classes shall be in a package
associated to the core conformance/requirements class.

Req 35 In the UML model, if a "source" package is dependent on a "target"
package then their requirements class shall be equal or the source package’s class
shall be an extension of the target package’s class.

Req 36 If one leaf package is dependent on another leaf package, then the
requirements class of the first shall be the same or an extension of the
requirements class of the second.

Req 37 If two packages have a two-way dependency (a ―co-dependency), they‖
shall be associated to the same requirements class.

Req 38 The UML model shall segregate all classes into leaf packages.

Req 39 An implementation passing the XML schema conformance test class shall
first pass the core specification conformance test class.

Req 40 An implementation passing the XML schema conformance test class shall
first pass the W3C Recommendation for XML schema.

Req 41 If a specification conformant to the XML schema conformance class
defines a set of data schemas, all components (e.g. elements, attributes, types ...)
associated with a single conformance test class shall be scoped to a single XML
namespace.

Req 42 The all-components schema document for an XML Schema shall indicate
the URI of the associated conformance test class in the schema/annotation/appinfo
element.

Req 43 If a specification conformant to the XML schema conformance class
defines a direct dependency from one requirement class to another, then a
standardization target of the corresponding conformance test class shall import a
schema that has passed the associated conformance test class (dependency) or
shall itself pass the associated conformance test class.

Req 44 No requirements class in a specification conformant to the XML schema
conformance class shall modify elements, types or any other requirement from a
namespace to which it is not associated.

Req 45 A specification passing the Schematron conformance test class shall also
define or reference an XML schema that shall pass the XML schema conformance
class from this standard.

Req 46 Each sch:pattern element shall implement constraints described in no
more than one requirement. Each requirement shall be implemented by no more
than one sch:pattern.

Req 47 Each sch:pattern element shall be contained within one sch:schema
element.

Req 48 The value of the sch:schema/@fpi attribute shall be a URI that identifies
this implementation.

Req 49 The value of the sch:schema/@see attribute shall be the identifier for the
requirements class that contains the requirement(s) implemented by the schema.

Req 50 The value of the sch:schema/@fpi attribute shall be used on only one
Schematron schema.

Req 51 A specification passing the XML meta-schema conformance test class
shall first pass the core specification conformance test class.

Req 52 A specification passing the XML meta-schema conformance test class
shall require that its specification targets (XML schema) pass the XML schema
conformance class from this standard.

4. The UML model

The UML model could use a lot of work to improve it but the details of that will need to
await feedback from the authors on the issues raised in this change request.

There are two errors in the diagram.

The type of the 'reference' element in the ConformanceTest element is 'boolean' but in
C.11 it is 'String' which is probably the type required if it is to hold a URI.

The multiplicity of the 'module' relation for the RequirementsClass element is missing
but should be '1..' to allow for several modules in a class.

Some of the names of the relations seem problematic, e.g. the 'requirements' relation of
the ConformanceClass element should be 'requirementsClass'.

Many new elements could be added such as 'certificate' and many of the relations could
be qualified, e.g. all the 'requirements' in the relation from the ConformanceTest.

5. Editorial comments

In general there are some issues with vocabulary and terms. The pluralization of the
descriptive adjective in Requirements Class seems odd and lacks parallelism with
Conformance Class.

5.1 p.0 Editor:

Is there really a Policy 1.x SWG as exists on the twiki or is this actually a product of the
OAB / TC as a whole?

5.2 p0 Title:

The title, as explained above, misses out on what the standard is doing. The model is only
part of what it's doing, modularity is only one aspect of better specs.

Constraints on the title mean that it not only needs to reflect the contents of the standard
document but needs to be easily expressible in speech ('the mod spec' is current) and in
text where The Specification Model leaves something to be desired. Also, since 'standard'
is defined to be a 'spec' that has been approved, I would imagine it is bad policy to have
documents calling themselves 'standards'.

Possible improvements include The OGC Specification Specification --- A framework for
rigorous, testable, and modular specifications. It could be called the 'Spec Spec' and the
main title would make for easy reading when referenced in text. Alternatives for the main
title could be The OGC Specification Standard, with only a slight ambiguity of what
noun the OGC adjective attaches to, or The OGC Specification for Specifications. The
'framework' could be replaced with 'approach' or 'rule set' or 'model, requirements, and
tests'.

5.3 p xi Preface

In first sentence, drop "for writing standards to be used".

5.4 p xi Document terms ...

When referencing other documents, include their name, in this case OWS Common, so
that a reader does not have to stop and look up the reference.

5.5 p xiii Foreword

First paragraph: s/principals/principles

Second paragraph: drop the injunction to specify the source. We don't care. Serious
people will. It is not worth saying. And if we put OGC in the title, anyone referencing the
document will be acknowledging the source.

Paragraph 3 "structures of other specifications" and throughout the document. The target
is 'specification documents;' that some become standards is irrelevant.

Paragraph 3 drop "that would normally claim conformance" it is not needed and confuses
things. possibly bring in the from the first sentence in the Preface, "for software, services,
or data structures."

Paragraphs 4 and 5. Drop. This belongs in a separate document, say the P&P. Anyhow, it
was probably only needed early in the lifetime of the document before everyone heard
about 'the modular spec'.

Paragraph 7 (last) also in Template. This needs a contact info or web page so people
know how to submit stuff.

5.6 p xiv Introduction

line 3 s/standard/specification

add to list 'read and understood' to the list. A spec. is useful if people can quickly decide
that it is *not* releveant to their work.

first paragraph, last sentence. It might make more sense, but keep the play of the
paragraph by integrating the capitalization stressed in the footnote, to end with
'...conductive to being a Really Useful Specification.'

The first sentence of the last paragraph belongs with the proceeding paragraph.

The remainder of the last paragraph seems to be about "This standard" If so, this should
be a quick summary of the internal model of the spec. rules for targets, tests, a testing
proceedure, and certificates. all split into modules.

The note ends with "and its implementation" which seems to enter territory that our
specs are not allowed to tread. Implementations details are not our purview.

5.7 Scope p1

This section lacks clarity. The text "specifies some desirable" mixes two ideas 'specify'
(which implies 'required') and 'desriable' which is optional. "implementation structure" is
out of scope for our document---whether implementations do or do not reflects all sorts of
engineering decisions outside our knowledge.

The model is made to seem normative but then the UML diagram and text are all in the
informative annex: confusing.

A better intro might be along the lines of:

This specification aims to improve the quality and utility of specification
documents both by developing set of requirements for such documents that
improve their formalism and structure and by coupling the requirements to
testable procedures which can determine that the documents conform to, or at
least do not deviate from, the requirements.

The requirements of this specification ensure the normative text of those
documents is identifiable, that the normative text uses language which follows the
formalism of clearly identifying the entity enjoined by the language, and that the
normative text only contains testable injunctions since the tests are developed
along with the normative text.

The requirements of this specification also ensure that conformant specification
documents could be developed as modules, possibly dependent on other similar
modules. The goal of modularization is to facilitate coherency and reuse between
specifications thereby enabling the construction of a coherent system of
interdependent specifications without getting lost in the complexity.

This specification develops its requirements first by constructing a conceptual
model of specification documents and then by making its injunctions against the
components of the conceptual model. The conceptual model is presented
graphically in the diagram [ref] and verbally in [ref]. This specification also
develops rules for a testing procedure based on the inspection of a candidate
specification document. This specification also tackles injunctions for the use of
the Unified Modeling Language (UML) (?classifer?) diagrams and for the use of
schema definition and constraint languages.

5.8 Conformance p1

Drop the first paragraph, it should be in OGC TC internal rules.

The paragraph listing target types appears to claim to be listing conformance classes:
"There are 5 conformance classses: ...Specifications documents in general..." Probably
each entry should be in the form "<conf.cl. name>, which targets/enjoins ..."

5.9 Normative References pp2-3

Move ref [7] to end since we discuss XML schema before schematron.

5.10 Terms and definitions pp3-8

certificates are not awarded per standard but per conformance class so this definition
seems wrong.

conformance test case I suspect this multiplicity is problematic; probably it would make
more sense to have each test focus on one requirement and have the testing of multiple
requirements emerge only from the language of some requirement, either one of the
original ones or a new one.

conformance test class Drop the 'level' I have not seen it elsewhere. Does the defn. need
to address parameterization of the testing? The note discusses "optional requirements"
which are defined not to exist; optionality must be discussed with different language.

conformance suite "It is by definition the conformance class of the entire specification"
is false since a spec can have several target types and therefore several, separate root
conf.classes.

conformance test what is an "abstract" test? The tests merely describe the procedure by
which to test something.

core requirement class "unique per target type" "if it were possible"

direct dependency/indirect dependency the language of the definitions must be aligned.
the names should become something more significant say 'underlying' vs. 'related'.

extension Here 'another' is used differently than it was in the two previous definitions;
the usage should be aligned.

general recommendation What is an 'entity' of a specification model?

home The term is poor. It sounds like a work around for needing to discuss the
'injunction' throughout the text which allows us to reserve Requirement for the statement
itself (as proxy for the more complete 'normative statement of the requirement'). The
definition makes 'home' which is a place into a statement---that's a bad idea: the term
must at least be 'home statement' or some such.

leaf package What's a package, what's a classifier? How much of this are we going to
define? the [UML] notation is confusing, it should be "(see [UML])". (this should also
be done for all other references.)

model "something, with" => "some thing as a"

profile I would rewrite this as a spec that defines itself primarily by reuse of another,
selecting optional choices and adding constraints making corrections or clarifications and
adding obligations.

drop "or standard"

"base standard and/or other profiles"=>"dependent specification"

requirement we have to decide which form of this word we are defining, whether a
generic normative injunction in any standard, the Requirement classifier with name, URI,
statement, ... in conformant specs or just the normative injunction in a Requirement
classifier. It seems that this is closer to the latter; if so, it needs 'testable' 'against a target
instance' 'coupled to tests'

specification similarly which one are we defining? In note, s/standard/specification

standard What do we do about de-facto standards, say GeoTIFF which has never been
formalized? (well probably we should do the formalization work but that's a separate
question).

standardization target needs to include 'instance' add examples servers, clients, specs,
data structures...

standardization target type s/type/kind (don't reuse the word in its definition) Drop 'or
set of entities'? I am not sure what is added by the 'set' or maybe this is a transitive 'kind
of...set'. add examples Is there really a 'Open Web Service' type or do we just wish there
were one? A 'GML application schema' is not "a specification" (sensu above)---it is not a
'document containing recommendations ...'

5.11 5.3 p8

The ' "bold font" home' in the text should not be in red or bold, it distracts from the
examples.

"in this sense, all requirements are listed" but it's exactly NOT in that sense. home is in
the requirement class (as per the font), the listing is for convenience.

5.12 Conventions

add a section for the normative language SHALL, etc. taken from Clause 6.1, description
4, p10.

(My editorial work stops here. For the rest of the document, more fundamental issues like
organization and the requirements must be tackled before we worry about phrasing.

6. A general outline of a new text

This needs more work. The existing text which provides context and transitions
between requirements should be reviewed and allocated effectively into this
structure. Leaving for now until after feedback on what has been done so far.

General:

 make all req.cl. top level---they are few.

 the decision in par 2 of 6.2 to avoid the complexity of having several target types
in a standard is a mistake, it makes the standard easier to write but much harder to
read and interpret.

Clause 5 and before: existing structure is OK.

Clause 6: Core rules for specifications

On the generic nature of specs---§6.2, ¶1

Goal: develop good specs, build model, a

Process: the doc tackles first making good testable injunctions against well
defined targets, then deals with the modularity stuff.

The model of specifications: Target, Requirement, Tests, Eval.Process, Cert.

Requirements (following the new organization below)

Clause 7: Rules for specifications using UML (?to model their targets?)

Clause 8: Rules for specifications using XML Schema (?to model data structures?)

Clause 9: Rules for specifications using XML Schematron (for ...?)

7. A new set of requirements

This clause will need more work if it is deemed by the authors to be a way to
make progress. It is included to give a flavour of the new organization. To be
completed, first it must be reviewed to ensure the requirements systematically
describe the elements of the model and systematically cover the relations between
those elements. Next it would need review to ensure it includes all the good
requirements from the existing standard. Finally, the language of each
requirement would need very careful review to ensure correctness.

This clause suggests a more systematic approach to the presentation of the requirements,
working from the document, through the target types, to requirements and tests, their
grouping and the testing of target instances.

Conformant spec docs shall be text documents (possibly with associated
normative resources) that allow structuring of the text content into numbered
clauses and allow structuring those clauses into hierarchies.

(This will be tested by later tests so maybe this is an assumption.)

=> is the spec a text document? Does it allow structuring into
hierarachical clauses?

docs shall list all the Standardization Target Types for which the doc makes
normative statements and shall assign to each a name label, a URI, and a
description of the type and its possible instances.

=> is there a list? Does each type have a name label, URI, and
description? Are any requirements made against a target that is not
part of that list?

docs shall have as their normative text only requirements {and tests? and
recommendations?}. Requirements define atomic testable injunctions made of a
single Target, a particular instance of a single Standardization Target Type. Req.
are visibly identified as separate entities. Req. have a name label, (a summary,)
a URI, and the normative statement. Requirements may link to external
normative resources. The injunctive language of requirements uses ...
SHALL, ...) (Req. should be in form <target> <verb> (<state>) <injunction>)

=> find all normative text, establish that it is either in a req. or
linked from one.

=> find all requirements, for each see that it is visually separate,
that it has a name label, (summary,) URI, and normative statement.

(The summary is very useful for readers when they encounter a
reference. "shall follow req. 10" does nothing for a reader whereas
"shall follow req. 10 All requirements have a URI " makes for easy
reading.)

Docs shall have, for every requirement, at least one Test, a procedure that
evaluates conformance of a particular Target instance with the injunction made by
the requirement. (To the extent possible, the test or tests evaluating each
requirement should be comprehensive, that is together they evaluate conformance
thoroughly. (it is not always possible to affirm conformance but sometimes only
to negate it --- in that case we need to try to negate it in many ways before we can
believe it is true)).

=> find all requirements, for each find at least one test. (N.B. this
should be easy given the req. for parallelism made later.)

Docs shall have only tests that are visibly identified as separate entities. Tests
have a name label, a summary, a URI, and the statement of the procedure.

=> find each Test, for each see that it is visually separate, that it
has a name label, summary, URI, and statement of the procedure.

Okay, you get the picture. We start with the document, work our way through the
entities of the model, here only the key pieces Next we would turn to grouping
elements of the UML model, then to testing.

GROUPING

- group req. in to req.mod. and req.cl. Each has name and URI. Each has only req.
that have the same std. target type.

-for each target type, declare on rec.class as 'core'.

-group tests into test mod. and test cl. that parallel the req. in name and structure
but which are all together in a single clause, the test suite. Each has a name and
URI. (the natural consequence is that each will have tests that eval the same std.
target type.) Each test cl shall have an associated certificate of conformance;
discuss parameters.

-req.cl. can depend on others either b/c target must conform (direct) or b/c the
target of the dependency is used somehow (indirect). If req.cl depends, then the
conf.cl must also depend. Can't redefine requirements (but can
characterize/restrict them).

-dependencies on non-conformant standards (prob. needs to come through a req.cl
wrapper that deals with testing, optional stuff (a different class).

TESTING

docs declare a testing process by which a target can be evaluated for conformance
with a conformance class. The process must run through the tests of the
conformance class and failure in one test is failure to conform with the class. If
the target passes all then gets a certificate of conformance, possibly
parameterized.

Optionality is merely a consequence of this structure and needs
only mentioning rather than formal treatment. We have banned it
at any level below Conf.cl therefore that's the level where it comes
in and specs should adapt accordingly.

=> find that the process is declared and that it said to work this
way. (It does seem there should be a way for us to declare this
process and have other standards simply import it somehow.)

