All Fields marked with * are mandatory.

Change Request 157
#:

Assigned OGC 11-080
Document #:

Name: *Panagiotis (Peter) A. Vretanos

Organization: *CybeWerx Inc.

Email: *pyretano@cubewerx.com

Document *OpenGIS Web Feature Service 2.0 Interface Standard (also ISO 19142) /2.0
Name/Version:

OGC Project *09-025r1

Document:

If this is a revision of a previous submission and you have a Change Request Number, then check here: [
Enter the CR number here: | '

Enter the Revsion Number that you are revising here: |

Title:& A REST binding for WFS 2.0

Source: ¢

S

*Self

Work item
code: &

Category: @ = (:)

¥

Reason for

change: ©
The WFS specification already defines an OGC XML-POST binding, an OGC
KVP-GET binding and a SOAP binding. The other popular service
binding, which the WFS does not currently support, is REST. This
change proposal attempts to address this omission.

*

Summary of

change: ©
See attached Notes.

Consequences if
not approved: &

Clauses

affected: &
Clause 8.3 plus the addition of a new ANNEX.

Additional OWS Common 2.0
Documents

affected: &

Supporting
Documentation: &

Comments: &

Status: & @

Assigned To: & wrswg

-

Disposition: & (Referred and Posted 3)

ANNEX X - REST binding for WFS

Table of contents
X Introduction
Conformance classes
Basic service elements
Service root
Service parameter
Version negotiation
Feature representation
Content negotiation
Exceptions
Authentication and Access Control
Summary of resources
Content types
10 A word about examples
Service metadata
Feature type schemas
Feature access and management
Advanced queries
1 Ad-hoc queries
2 Stored queries
Complex Transactions
Capabilities document example

Vo ~NOU A WN P

DX 3 DK X XX 3K X X X X X X X X X X X X X
WO NNNOUTEWWWWWWWWWWWN R

X.1 Introduction
- this annex describes a REST binding for WFS 2.0
- it is anticipated that this binding will establish a pattern
for other 0GC data access services (e.g. CSW)
- the characteristics of a RESTful service are:

-> URIs -- every URI designates exactly one resource

-> addressability -- all the interesting aspects of a service are
exposed as resources (e.g. features)

-> statelessness -- every HTTP request includes all necessary

information for the server to fulfill the
request without relying on information from
previous requests

-> representation -- useful information about the state of a resource
-> connectedness -- resource should link to each other and their
representations

uniform interface -- GET/HEAD to retrieve resources
POST to create a resource
PUT tp modify a resource
DELETE to remove a resource
OPTIONS to get available options for the resource
(e.g. which methods can be used)

v

v

safety and
idempotence -

safe means to client-requested side effects;
idempotent means making one request is the same
as making a dozen (e.g. whether you delete a
resource one or a dozen times the effect is the
same - the resource is gone); GET, HEAD are safe;
GET, HEAD, PUT, DELETE are idempotent
since REST is resource oriented and the standard 0GC web architecture
is service oriented some adaptation of the standard 0GC service model
is required
however, rather than throw the baby out with the bath water, this
ANNEX describes an evolutionary approach to developing the REST
binding
- the characteristics of WFS that are preserved in this binding are:
-> service metadata (i.e. capabilities document)
- all 0GC services provide service metadata describing:
-> the type of service being offered
-> information about the service provider
-> the set of parameter and server constraints
-> a list of feature type that are available at the service
-> the kinds of query predicates the service can support
although the capabilities document is much maligned it is ironic
to note that there are examples of RESTful services that use
a similar concept; ATOMPUB uses a service document to perform
much the same function as the OGC capability document
-> get the structure or schema of a feature type
-> access to individual feature instances
-> simple query capability
- the ability to dynamically define collections of feature types
of a single type using simple predicates (e.g. bbox)
advanced query capability
- the ability to dynamically define a collection of features of
one or more types using combinations of simple and/or complex
predicates that can include scalar, spatial and temporal
operators (e.g. joins, spatial joins, temporal joins, etc...)
- stored query capability
- the ability to create and invoke predefined, stored queries
-> simple transaction capability
- the ability to create/modify/delete single feature type instances
-> advanced transaction capability
- the ability to create/modify/delete multiple instances of features
of one or more types and do so atomically

v

X.2 Conformance classes
-the following table maps resources and methods to the WFS conformance
classes (see X.3.8 for a summary of resources)

Simple WFS GetCapabilities GET / @
DescribeFeatureType GET schemal/...] ([©))
ListStoredQueries OPTIONS query @
GetFeature (with GET query/{Query Id} @
stored queries only)
GetFeatureById GET FeatureTypes/{Feature Ty
pe}/{Feature Id} ©)
Basic WFS GetFeature GET FeatureTypes/{Feature Ty
pet[/...] (6
GET query[/...] @
GetPropertyValue GET FeatureTypes/{Feature Ty
pe}/{Featureld}/Properties/
{Property Name} 6)
Transactional WFS Transaction POST FeatureTypes/{Feature Type} (6)

PUT FeatureTypes/{Feature Type} (6)
DELETE FeatureTypes{Feature Type} (6)
POST/PUT/DELETE transaction[/...] (8)

Locking WFS N/A

HTTP GET

HTTP POST

SOAP N/A

Inheritance schema-element() PUT query/{Query Id}/typeNames ([@D)

Remote Response resolve query parameters 6)

Response Paging include prev/next parameters in @®)
response

Standard joins PUT query/{Query Id}/typeNames (@)
PUT query/{Query Id}/filter @

Spatial joins PUT query/{Query Id}/typeNames @
PUT query/{Query Id}/filter @

Temporal joins PUT query/{Query Id}/typeNames @
PUT query/{Query Id}/filter @

Feature version N/A

Manage Stored Qry CreateStoredQuery PUT query/{Query Id} @

DropStoredQuery DELETE query/{Query Id} @

NOTES:
- the notation {...} is used to indicate a component of a URL
that is implementation or run-time specific
- the notation [...] or [/...] means "and all sub-resources"

3 Basic service elements
3.1 Service root
- this binding assumes that all resources that a WFS offers are accessible
through some parent resource called the "service root"
- the response to accessing the service root with the GET method shall be
a WFS capabilities document
- if an implementation supports multiple versions of the WFS specification,
and hence multiple versions of the WFS capabilities document, each one
of these shall have a its own service root
- a specific format or pattern for the service root URL is not specified
by this standard

X.
X.

X.3.2 Service parameter
- the service parameter is not required since the service root URL,
whatever it is, will point the client to the correct parent resource

X.3.3 Version negotiation
- for interaction with a RESTful WFS to commence, a client needs to
discover the service root(s) of a WFS
-> in the other bindings version negotiation, using the ACCEPT_VERSIONS
and VERSIONS parameter, is used to connect a client a the version
of the WFS they understand
in the REST binding, where connectedness is a concern, this approach
is not very satisfying since it forces the client to construct a
URL and we are trying, as much as possible, to make all interesting
aspects of the service directly accessible through links
for the REST binding we assume the existence of a "service roots"
document whose URL the client knows
-> interaction between the client and the service commences by
accessing this "service roots" document with the GET method
-> the response shall be a wfs:ServiceRoots document that simply
contains a list of versioned WFS service root links
the schema of the wfs:ServiceRoots element shall be
<xsd:element name="ServiceRoots" type="wfs:ServiceRootsType"/>
<xsd:complexType name="ServceRootsType">
<xsd:sequence>

'
v

<xsd:element name="Link" maxOccurs="unbounded">
<xsd:complexType>
<xsd:attribute name="href"
type="xsd:anyURI"
use="required"/>
<xsd:attribute name="wfsVersion
type="xsd:string"
use="required"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
- each service root link resolves to a WFS capabilities document
that corresponds to the version asserted by the wfsVersion
attribute
- all sub-resources that the service offers are accessible through
this service root 1link

Example:
Example: Get the service roots document
CLIENT SERVER
| |
| GET / HTTP/1.1 |
| Host: wfs.someserver.com
e e L L L L L L L PP >

HTTP/1.1 200 OK
Content-Type: text/xml

|
|
| |
| |
| |
| |
I <?xml version="1.0"?>

| <wfs:ServiceRoots>

| <Link wfsVersion="1.0.0" |
| serviceRoot="http://wfs.somserver.com/1.0"/> |
| <Link wfsVersion="1.1.0"

| serviceRoot="http://wfs.somserver.com/1.1"/> |
| <Link wfsVersion="2.0.0"

| serviceRoot="http://wfs.somserver.com/2.0"/> |
I </wfs:Servicelinks>
| |
|

|

|

GET /1.1 HTTP/1.1
Host: wfs.someserver.com
| o >

Content-Type: text/xml

|
|
|
|
| |
| HTTP/1.1 200 0K |
| |
| |
I <?xml version="1.0"7>
| <wfs:Capabilities version="1.1.0">
| e |
| </wfs:Capabilities>
LS |
X.3.4 Feature representation
- the canonical representation of features for this binding shall be
GML 3.2
- other representations (e.g. JSON) are allowed
- a strong recommendation
-> for server that support JSON this standard strongly recommends that
GeoJSON (http://www.geojson.org/geojson-spec.html) be used to
represent features and JSON-schema (http://tools.ietf.org/html/
draft-zyp-json-schema-03) be used for describing the schema

X.3.5 Content negotiation
- content negotiation shall proceed in the standard HTTP way using
the Accept header
- when submitting an HTTP request to a service the client shall
set the Accept header with a list of desired content types
if order of preference
- the server shall respond with the most preferred content type
the OPTIONS methods may be used on a resource to determine the
representation that the service offers

X.3.6 Exceptions
- exceptions shall be handled as described in clause 7.5
- servers shall return an appropriate HTTP error code
-> all exceptions that are the result of something the client
request has wrong (where the client should have known better)
should have an HTTP error code in the 4xx range (and in most if
not all cases should be specifically "400 Bad Request")
-> server-side issues should be given an HTTP error code in the 5xx
range (and in most if not all cases should be specifically
"500 Internal Server Error").
-> Table 28 in the OWS Common 2.0 specification (0GC 06-121r9) is
a bit wonky, because it messes up what (I think) should be returned
for OperationNotSupported, OptionNotSupported and NoApplicableCode.
- content of the exception shall be a 0GC service exception report
- this specification does not define behaviour for all HTTP methods for
all resources (e.g. the behaviour of the PUT method is not described
for the capabilities resource "/")
-> when a server is presented with an unsupported HTTP method for a
particular resource it should be responded with the HTTP error code
"40Q5 Method Not Allowed" and should contain a 0GC exception message
in the body of the response

-> Editors Note: implementation are free to implement (or not) whatever
behaviour they want in cases where behaviour is not
defined in this standard (e.g. for experimental purposes
or vendor extensions) but whatever they do will be
outside the scope of this document

X.3.7 Authentication and Access Control

- all methods and resource described in this standard are subject to

FeatureTypes

Transaction

authentication and access control

- e.g. someone who does not have authorization to create new features
would not see the POST methods when interrogating a resource

with the OPTIONS method

- authentication and access control are envisioned to be layered ontop

of a RESTful WFS but the description of how that would be done is

beyond the scope of this standard

X.3.8 Summary of resources

DESCRIPTION

service metadata document
that includes a number of
sections and includes links

to the available collections

of features

a document describing the
structure of one or more
feature type offered by a
service

a collection of features
of a specific type

a specific feature
a property of a feature
of a specific type

the property of a specific
feature

a resource used to define
an advanced query

a specific instance of an
advanced query

the projections clause of
a specific query

the selection clause of
a specific query

the features types being
queried by a specific
query

the sorting clause of a
specific query

a resource to support
atomic transactions on
multiple feature types

a specific transaction

a collection of features
being operated on by a
specific transaction

a specific feature being
operated on by a specific
transaction

a specific property of a
feature being operated on
by a specific transaction

X.3.9 Content types

GML instance doc:

-> application/gml+xml; version=X.X

XML-Encoded 0GC Filter:

URIs (relative to service root)

/
ServiceIdentification
ServiceProvider
FeatureTypelist
FilterCapabilities

schema
schema/{Feature Type}

FeatureTypes/{Feature Type}
FeatureTypes/{Feature Type}/{Fea
ture Id}

FeatureTypes/{Feature Type}/{Pro
perty Name}

FeatureTypes/{Feature Type}/{Fea
ture Id}/Properties/{Property Name}

query/{Query Id}

query/{Query Id}/properties

query/{Query Id}/filter

query/{Query Id}/typeNames

query/{Query Id}/sort

transaction

transaction/{Transaction Id}
transaction/{Transaction Id}/{Fe

ature Type}

transaction/{Transaction Id}/{Fe
ature Type}/{Feature Id}

transaction/{Transaction Id}/{Fe
ature Type}/{Feature Id}/{Property
Name}

-> urn:ogc:def:query Language:0GC-FES:Filter

Common Query Language:

-> urn:ogc:def:query Language:0GC-CSW:Cql

WFS query expression:

-> urn:ogc:def:queryLanguage:0GC-WFS: :WFS_QueryExpression

GML/GMLSF application schema:

-> text/xml; gmlver=X.X [,gmlsflev=X]

X.3.10 A word about examples

- many of the concepts discussed in this binding are accompanied by
examples in the form of sequence diagrams showing the HTTP interaction
between a client and server

- the examples in this document are presented using a fictitious
service root: http://wfs.someserver.com/2.0
-> this means that that the "/2.0" component of the paths in the

examples is not part of the canonical resource URLs but simply
part of this example service root

- in a number of examples, text that is supposed to be on a single line
is wrapped across multiple lines for the sake of clarity

X.4 Service metadata
Resources (relative to the service root URL):
(the service root URL itself)
ServiceIdentification
ServiceProvider
FeatureTypelist
FilterCapabilities

Representations:
- the canonical representation for service metadata shall
be the XML-encoded 0GC capabilities document as define in
WFS clause 8.3 (with changed proposed is Discussion)
- other representations (e.g. JSON, HTML) are allow but are
not described in this specification

Methods:
OPTIONS -> gets the available methods and representations
GET -> gets the complete capabilities document or a section

of the capabilities document depending upon the
resource being retrieved
POST -> not specified by this standard (see X.3.6)
PUT -> not specified by this standard (see X.3.6)
DELETE -> not specified by this standard (see X.3.6)

Discussion:
the following changes need to be made to the schema of the
capabilities document to accommodate the REST binding
- need to add a ServiceRoot element to the capabilities doc
- the definition of the OperationsMetadata in ows common
needs to be changed to minOccurs="0"
-> it is currently set to minOccurs=2 to accommodate
the GetCapabilities operation and one other operation
-> the problem is that REST services have a uniform
API consisting of the HTTP methods OPTIONS, GET, POST,
PUT and DELETE; so, no operations need to be specified
in the capabilities document for REST implementations
the definition of ows:Operation needs to be changed to make
the cardinality of ows:DCP, minOccurs="0"
-> REST services do not need DCP urls
the wfs:FeatureTypelist element should be modified to
allow zero or more Link elements
-> this will allow the server to provide a link to
the complete application schema plus links to any
stored queries
- the wfs:Feature element should be modified to allow zero
or more Link elements
-> this will allow the server to a provide links to
the cannonical represetation of each feature type
(i.e. GML 3.2), links to any alternative representations,
links to the schema, etc ...

Examples:
Example: Get available representations
CLIENT SERVER

| OPTIONS /2.0 HTTP/1.1
| Host: wfs.someserver.com

|
| HTTP/1.1 200 OK

| Allow: OPTIONS, GET

| Accept: text/xml, text/html
|

Example: Get the XML capabilities document
CLIENT SERVER

| GET /2.0 HTTP/1.1
| Host: wfs.someserver.com
| Accept: text/xml

HTTP/1.1 200 OK
Content-Type: text/xml

<wfs:Capabilities version="2.0.0">
. see X.9 for a complete example ...
</wfs:Capabilities>

|
|
|
|
| <?xml version="1.0"?>
|
|
|
|

Example: Get the feature type list (i.e. resource list) for a WFS
CLIENT SERVER

|
| GET /2.0/FeatureTypelist HTTP/1.1
| Host: wfs.someserver.com

|

Accept: test/xml

|
|
|
|
|
|
HTTP/1.1 200 0K
Content-Type: text/xml
|
|
|
|
|
|
|
|

|

|

|

|

I <?xml version="1.0"7?>

| <FeatureTypelList...>

| <Link rel="describedby"

| type="text/xml; gmlver=3.2"
| href="http://www.BlueOx.org/2.0/schema"/>
| <FeatureType xmlns:bo="http://www.BlueOx.org/BlueOx"
| <Link rel="self"

| type="application/gml+xml; version=3.2" |
| href="http://www.BlueOx.org/2.0/FeatureTypes/Woods" />
| <Link rel="alternate"
| type="application/json" |
| href="http://www.BlueOx.org/2.0/FeatureTypes/Woods"/>
| <Link rel="describedby"
| type="text/xml; gmlver=3.2" |
| href="http://www.BlueOx.org/2.0/schema/Woods" />
| <Name>bo :Woods</Name>
| <Title>The Great Northern Forest</Title> |
| <Abstract>

| Describes the arborial diversity of the |
| Great Northern Forest.

| </Abstract>

| <ows :Keywords>

| <ows :Keyword>forest</ows :Keyword> |
| <ows : Keyword>north</ows : Keyword> |
| <ows : Keyword>woods</ows : Keyword> |
| <ows :Keyword>arborial</ows :Keyword> |
| <ows :Keyword>diversity</ows:Keyword> |
| </ows :Keywords> |
| <DefaultCRS>urn:ogc:def:crs:EPSG: :6269</Defaul tCRS>
| <OtherCRS>urn:ogc:def:crs:
| <OtherCRS>urn:ogc:def:crs:
| <OtherCRS>urn:ogc:def:crs:EPSG: :32617</0therCRS>
| <OtherCRS>urn:ogc:def:crs:EPSG: :32618</0therCRS>
| <ows :WGS84BoundingBox>
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

2616</0therCRS>

<ows :UpperCorner>180 90</ows :UpperCorner>
</ows :WGS84BoundingBox>
</FeatureType>
<FeatureType
<Link rel="self"
type="application/gml+xml; version=3.2" |
href="http://www.BlueOx.org/2.0/FeatureTypes/Lakes"/>
<Link rel="alternate"
type="application/json"
href="http://www.BlueOx.org/2.0/FeatureTypes/Lakes"/>
<Link rel="describedby"
type="text/xml; gmlver=3.2" |
href="http://www.BlueOx.org/2.0/schema/Lakes"/>
<Name>bo: Lakes</Name>
<Title>The Great Northern Lakes</Title>
<Abstract>
Lake boundaries for all lakes in the
Great Northern Forest.
</Abstract>
<ows : Keywords>
<ows : Keyword>1akes</ows : Keyword>
<ows :Keyword>boundaries</ows :Keyword>
<ows : Keyword>water</ows : Keyword>
<ows : Keyword>hydro</ows :Keyword>
</ows :Keywords>
<DefaultCRS>urn:ogc:def:crs:EPSG: :6269</DefaultCRS>
<0therCRS>urn:ogc:def:crs:EPSG: :32615</0therCRS>

|
|
|
|
|
<ows : LowerCorner>-180 -90</ows:LowerCorner> |
|
|
|
|
|

|
<OtherCRS>urn:ogc:def:crs:EPSG: :32616</0therCRS>
<OtherCRS>urn:ogc:def:crs:EPSG: :32617</0therCRS> |
<0therCRS>urn:ogc:def:crs:EPSG: :32618</0therCRS> |
<ows :WGS84BoundingBox>
<ows : LowerCorner>-180 -90</ows:LowerCorner> |
<ows :UpperCorner>180 90</ows :UpperCorner> |
</ows :WGS84BoundingBox>
</FeatureType>
</FeatureTypelist>

X.5 Feature type schemas (= DescribeFeatureType)
Resources (relative to the service root URL):
schema
schema/{Feature Type}

Representations:
- the canonical representation of the schema of features shall be
a GML 3.2 application schema (see WFS, clause 9.3)
- other representations (e.g. JSON-Schema) are allowed but are not
described in this standard

Methods :

OPTIONS -> gets the supported methods and representations for
the schema resource via the Allow and Accept HTTP

headers

GET -> gets the schemas of all feature types or the specified
feature type id the /schema/{Feature Type} resource is
specified

POST -> creates the feature types described in the schema
(future item from OWS8)

PUT -> not specified by this standard (see X.3.6)

DELETE -> not specified by this standard (see X.3.6)

Description:
- for GML application schemas, the variables "gmlver" and "gmlsflev"
may be used to specify the version(s) of GML that the server

supports
Examples:
Example: Get all available schema representations.
CLIENT SERVER

| |
| OPTIONS /2.0/schema HTTP/1.1

| Host: wfs.someserver.com

R e s e DD E R >

|

|
| |
| HTTP/1.1 200 OK |
| Allow: OPTIONS, GET, PUT |
| Accept: text/xml; gmlver=3.2,
| |
| |
|

text/xml; gmlver=3.1,
text/xml; gmlver=2.1,application/json

In this case the server support JSON and

Example: Get the XML schema of all available feature types
as a GML 2.1 application schema
CLIENT SERVER
| |
| GET /2.0/schema HTTP/1.1
| Host: wfs.someserver.com
| Content-Type: text/xml; gmlver=2.1
[e i C T >

Content-Type: text/xml; gmlver=2.1

<?xml version="1.0"7>

|
|
|
|
HTTP/1.1 200 OK
|
|
|
</xs:schema> |

|
|
|
|
|
| <xs:schema> .
|
Example: Get the XML schema of INWATERA_1M
CLIENT SERVER

|

| GET /2.0/schema/INWATERA_IM HTTP/1.1

| Host: wfs.someserver.com

| Content-Type: text/xml; gmlver=3.2

e et e L L LS L e L PP >

HTTP/1.1 200 OK
Content-Type: text/xml; gmlver=3.2

|

|

|

|

| <?xml version="1.0"7?>
| <xs:schema ...>
|

|

|

|

|

<xs:element name="INWATERA_IM" ...>

</xs:schema>

X.6 Feature access and management (= GetPropertyValue/GetFeature/Transaction)
Resources (relative to the service root URL):
(a) FeatureTypes/{Feature Type}
(b) FeatureTypes/{Feature Type}/{Feature Id}
(c) FeatureTypes/{Feature Type}/Properties/{Property Name}
(d) FeatureTypes/{Feature Type}/{Feature Id}/Properties/{Property Name}

Representations:
- the canonical representation of features shall be GML 3.2
- the canonical representation of property values shall be plain
text for scalar values and XML (possibly GML) for composite
or complex values (e.g. the value of geometry property)
- other representations (e.g. JSON) are allowed but are
not described in this standard

Methods :
- the following table describes the actions the server should take when
the specified method is applied to the specified resource
-> the resources from the "Resource:" section above are reference
by letter (a),(b),(c),(d) for the sake of brevity

RESOURCE ~ METHOD ACTION

all OPTIONS - gets list of supported representations
and methods for the feature type via the

Accept and Allow HTTP headers
(a) GET - gets a collection of features of the specified
featured type

(€3] GET - gets a list of values for the specified
property for a collection of features of
the specified type

()] GET - gets the value of the specified property
for the feature with the specified id

(a) POST - creates a new instance of the specified
feature type; a represented of the new
feature is supplied in the body of the request

POST - not specified by this standard (see X.3.6)

POST - not specified by this standard (see X.3.6)

()] POST - not specified by this standard (see X.3.6)
(a) PUT - replaced all features or a subset of features (if

query parameters are supplied on the request --
e.g. bbox) of the specified type; a representation
of the new feature is supplied as the body of the
request (actually, should probably now allow this
operation and server should throw an exception)

(bd PUT - replaces the existing feature; a representation
of the new features is supplied as the body
of the request

(€3] PUT - replaces the value of the specified property
for all features or a subset of features
(if query parameters are supplied on the
request -- e.g. bbox)

()] PUT - replaced the value of the specified property
for the feature with the specified id

(a) DELETE - deletes all instances of the specified feature
type (should probably now allow this!)

(3] DELETE - sets the value of the specified property to
NULL for all features or a subset of features
if query parameters (e.g. bbox) are supplied
on the request
()] DELETE - sets the value of the specified property to
NULL for the feature with the specified id

Description:
- the {Feature Id} shall, like the other bindings, be supplied by the
server when the resource is created

- a resource URI can also include query parameters to identify subsets
of features to be operated upon; here is the list of query parameters
for WFS:

-> count (see WFS Table 5)
-> startIndex (see WFS Table 5)
-> resolve (see WFS Table 6)
-> resolveDepth (see WFS Table 6)
-> resolveTimeout (see WFS Table 6)
-> nameSpaces (see WFS Table 7)
-> srsName (see WFS Table 8)
-> filter_Language (see WFS Table 8)
-> filter (see WFS Table 8)
-> bbox (see WFS Table 8)
-> sortBy (see WFS Table 8)
-> propertyName (see WFS Table 9)
- here is the list of NEW query parameters:
-> geometry - WKT-encoded geometry
-> crs - CRS for geometry
-> spatialOp - one of: Equals, Disjoint, Touches, Within, Overlaps,
Crosses, Intersects (d), Contains
-> time - IS08601 time instance or interval
-> temporalOp - one of After, Before, Begins, During(d) EndedBy,
Ends, TEquals, Meets, MetBy

Examples:
Example: Get the available representations for INWATERA_1M
CLIENT SERVER
| OPTIONS /2.0/FeatureType/INWATERA_IM HTTP/1.1 |

| Host: wfs.someserver.com

| HTTP/1.1 200 0K

| Allow: OPTIONS, GET, POST, PUT, DELETE

| Accept: application/gml+xml; version=3.2,
| application/gml+xml; version=3.1
|
|

application/json

Example: Get the available representations of the property F_CODE
CLIENT SERVER
| |
| OPTIONS /2.0/FeatureTypes/INNATERA_IM/Properties/F_CODE HTTP/1.1
| Host: wfs.someserver.com

[e >|
| |
| HTTP/1.1 200 OK |
| Allow: OPTIONS, GET, PUT
| Accept: text/plain
| |
Example: Get a collection of INWATERA_IM features
CLIENT SERVER
| |
| GET /2.0/FeatureTypes/INWATERA_1IM?count=1@ HTTP/1.1 |
| Host: wfs.someserver.com
| Accept: application/gml+xml; version=3.2
e e L L L L L L L PP >

HTTP/1.1 200 OK
Content-Type: application/gml+xml; version=3.2

<wfs:FeatureCollection next="http://...">

|

|

|

|

| <?xml version="1.0"?>

|

| ce.

| </wfs:FeatureCollection>
|

NOTES:
-> the response would contain at most 10 features since
the default value for the "count" parameter is 10
-> the "next" link points to the next 10 set of features

Example: Get a specific feature instance
CLIENT SERVER
| |
| GET /2.0/FeatureTypes/INWATERA_IM/1013 HTTP/1.1 |
| Host: wfs.someserver.com
| Accept: application/gml+xml; version=3.2

Content-Type: application/gml+xml; version=3.2

<?xml version="1.0"7?>

|
|
|
|
HTTP/1.1 200 OK
|
|
|
<tns:INWATERA_IM gml:id="1013"> ... </tns:INWATERA_1M>

NOTES:
-> getting a specific instance of a feature does not
return a collection but rather the XML fragment that
represents the feature

Example: Get a collection of features inside a specific BBOX
CLIENT SERVER
| |
| GET /2.0/FeatureTypes/INNATERA_1M?bbox=10,10,20,20 HTTP/1.1

| Host: wfs.someserver.com
| Accept: application/gml+xml; version=3.2

|
L et i DL L L b >|
| |
| HTTP/1.1 200 OK |
| Content-Type: application/gml+xml; version=3.2 |
| |
I <?xml version="1.0"?>
| <wfs:FeatureCollection> ... </wfs:FeatureCollection> |
R e e e et |
Example: Get a collection of features based on a CQL filter
CLIENT SERVER

GET /2.0/FeatureTypes/INWATERA_IM?filter_Language=CQL&
filter=depth+between+10+and+20 HTTP/1.1

Host: wfs.someserver.com

Accept: application/gml+xml; version=3.2

HTTP/1.1 200 OK
Content-Type: application/gml+xml; version=3.2

<?xml version="1.0"7>
<wfs:FeatureCollection> ... </wfs:FeatureCollection>

Example: Get the value of the F_CODE property for the INWATERA_IM
feature with id 1013
CLIENT SERVER

| |

| GET /2.0/FeatureTypes/INNATERA_1M/1013/Properties/F_CODE HTTP/1.1
| Host: wfs.someserver.com
| Accept: text/plain

|
|
f o >|
| |
| HTTP/1.1 200 0K |
| |
| Content-Type: text/plain
| GH301 |
| |
Example: Get the list of depth values for features that lie
within a specific bbox
CLIENT SERVER

| |

| GET /2.0/FeatureTypes/INNATERA_1M/Properties/F_CODE?bbox=10,10,20,20 HTTP/1.1
| Host: wfs.someserver.com

| Accept: text/plain

HTTP/1.1 200 0K
Content-Type: text/plain

Example: Create a new feature instance (INSERT) represented as GML
CLIENT SERVER

| POST /2.0/FeatureTypes/INNATERA_IM HTTP/1.1

| Host: wfs.someserver.com

| Content-Type: application/gml+xml; version=3.2
|

|

|

<myns : INWATERA_IM> ... </myns:INWATERA_1M>

| HTTP/1.1 201 Created

|
|
|
|
<?xml version="1.0"7>
|
|
|
|
| Location: /2.@/FeatureTypes/INWATERA_1M/1013 |

Example: Create a new feature instance represented as geo JSON
CLIENT SERVER
| |
POST /2.0/FeatureTypes/INNATERA_IM HTTP/1.1

Host: wfs.someserver.com
Content-Type: application/json

|

|

|

|

| { "type": "Feature",

| "geometry": {

| "type": "LineString",

| "coordinates": [

| [102.0, 0.0],[103.0,1.0],[104.0,0.0],[105.0,1.0]
I]

I 1,

| "properties": {

| "prop@": "value@",

| "propl": 0.0

|
|

| HTTP/1.1 201 Created
| Location: /2.0/FeatureTypes/INWATERA_1M/1014

Example: Update an existing feature (UPDATE)
CLIENT SERVER

PUT /2.0/FeatureTypes/INNATERA_1IM/1013 HTTP/1.1
Host: wfs.someserver.com
Content-Type: application/gml+xml; version=3.2

|

|

|

|

<?xml version="1.0"7>

<myns: INNATERA_IM> ... </myns:INWATERA_IM> |
|
|
|
|

| HTTP/1.1 200 0K
| Location: /2.@/FeatureTypes/INWATERA_1IM/1013

Example: Can I update the F_CODE property of a feature?
CLIENT SERVER
| |
| OPTIONS /2.0/FeatureTypes/INNATERA_1IM/1013/Properties/F_CODE HTTP/1.1

| Host: wfs.someserver.com
L et i DL L L b >

|
|
| |
| HTTP/1.1 200 OK |
| Allow: OPTIONS, GET, PUT |
| Accept: text/plain
| |
Example: Change the value of the F_CODE property.
CLIENT SERVER

| |
| PUT /2.0/FeatureTypes/INNATERA_1M/1013/Properties/F_CODE HTTP/1.1
| Host: wfs.someserver.com

| Content-Type: text/plain

| |
| |
|

| HTTP/1.1 200 OK
l<--

Example: Change a geometric property of a feature
CLIENT SERVER

PUT /2.0/FeatureTypes/INNATERA_1M/1013/extent HTTP/1.1
Host: wfs.someserver.com
Content-Type: application/gml+xml; version=3.2

|
|
|
|
<?xml version="1.0"?>
<gml:Polygon> ... </gml:Polygon>

|

|

|

| = m e e e e s >
|
| HTTP/1.1 200 OK
R e e L e Lt et |
Example: Delete a feature
CLIENT SERVER
| |
| DELETE /2.@/FeatureTypes/INWATERA_1M/1013 HTTP/1.1 |
| Host: wfs.someserver.com
e e EEE R R >|

X.7 Advanced queries (=GetPropertyValue/GetFeature)
X.7.1 Ad-hoc queries
Resources (relative to the service root URL):

(@) query

(b) query/{Query Id}

(c) query/{Query Id}/properties

(d) query/{Query Id}/filter

(e) query/{Query Id}/typeNames

(f) query/{Query Id}/aliases

(@) query/{Query Id}/sort

Representations:
- there is no canonical representation for (a)
- the canonical representation for (b) is text/xml in the form
of a wfs:FeatureCollection document that contains the collection
of features that satisfy the query
-> other representations are allowed (e.g. JSON) but are not described
in this standard
the canonical representation for (c) is text/plain in the form
of a space-separated list of property names; the names may be
qualified in which case the NAMESPACE query parameter must be
specified
- the canonical representation for (d) is the XML-encoding for
the 0GC Filter
-> other representations (i.e. filter languages) are allowed (e.g. CQL)
but are not described in this standard
- the canonical representation for (e) is text/plain in the form of
a space-separated list of feature type names; the names may be
qualified in which case the NAMESPACE query parameter must be
specified
the canonical representation for (f) is text/plain in the form of
a space-separated list of aliases; the names may be qualified in
which case the NAMESPACE query parameter must be specified
- the canonical representation for (g) is XML-encoding for a
sort clause as specified in the 0GC filter specification
-> other representations are allowed but are not described in this
standard

Methods :
- the following table describes the actions the server should take when
the specified method is applied to the specified resource
-> the resources from the "Resource:" section above are reference
by letter (a),(b),(c),(d),(e),(f),(g) for the sake of brevity

RESOURCE ~ METHOD ACTION

all OPTIONS - gets list of supported representations
and methods for the feature type via the

Accept and Allow HTTP headers

GET - not specified by this standard (see X.3.6)

GET - gets the collection of features that satisfy the
query
(€3] GET - gets a list of properties that the query is
retrieving
()] GET - gets the text of the query predicate

for the feature with the specified id; the only

representation that shall available is the one

provided when the resource was created

-> in other words the server is not expected to
convert an 0GC filter into CQL or any other
query language it supports

(ed GET - gets list of feature type names that are being
queried
(D) GET - gets the list of feature types alias names

(should align 1:1 with the list from (e))

(a) POST - creates a new query resource that can be used
to define an ad-hoc query
(€] POST - creates a new query resource that can be used
to define a stored query; the client must
supply the {Query Id}; the body of the request
may contain the text of the stored query (see X.7.2)

(€3] POST - not specified by this standard (see X.3.6)

(@ POST - ot specified by this standard (see X.3.6)
(@ POST - ot specified by this standard (see X.3.6)
(@ POST - ot specified by this standard (see X.3.6)
(@ POST - not specified by this standard (see X.3.6)
(@ PUT - ot specified by this standard (see X.3.6)
T PUT - allows additional query expressions to be added

to a stored query (see X.7.2)

(€3] PUT - updates the specified query to add or replace
a list of optional properties to present in
the response document

()] PUT - update the specified query to add or replace a
query predicate used to identified a subset of
features to present in the response document

PUT - update the specified query to add or replace a
list of one or more feature type names to be
queried; multiple type names indicates that a
join is being performed
D PUT - update the specified query to add or replace a
list of alternative names or aliases for the
feature type names in the (e) resource; this
is mostly to support self-joins
@ PUT - update the specified query to add or replace a sort
clause that defines the order in which features
should be presented in the response document

DELETE standard (see X.3.6)

DELETE)
(O DELETE - not specified by this. standard (see X.3.6)
(D DELETE - not specified by this standard (see X.3.6)
() DELETE - not specified by this standard (see X.3.6)
() DELETE - not specified by this. standard (see X.3.6)
(@ DELETE - not specified by this standard (see X.3.6)

Description:

- the query resource and its sub-resources allow servers to
support advanced query capabilities such as stored queries,
joins, complex predicates, etc...

Examples:
Example: Perform a Join Query - this is a hypothetical sequence
designed to show how the various resource and HTTP

methods interact to perform an ad-hoc query. In
practice it is unlikely that a client would need to
perform this many steps to execute a query

STEP 1: Does the server support advanced queries?
CLIENT SERVER

| OPTIONS /2.0/query HTTP/1.1
| Host: wfs.someserver.com

| HTTP/1.1 200 OK
| Allow: OPTIONS, POST

NOTE: if the server supported stored queries there would be an
Accept header indicating the supported representations and
the PUT method would be included in the Allow list

STEP 2: Create the query resource (no content)
CLIENT SERVER

| POST /2.@/query HTTP/1.1
| Host: wfs.someserver.com

| HTTP/1.1 201 Created
| Location: /2.0/query/7f26634c

STEP 3: Using the OPTION method a client can discover the query
capabilities of the server.

-> Does the server support ad-hoc queries?
CLIENT SERVER
| |
| OPTIONS /2.0/query/7f26634c/filter HTTP/1.1 |

| Host: wfs.someserver.com

|
L it aiaininn L e L b >|
| |
| HTTP/1.1 200 0K |
| Allow: OPTIONS, GET, PUT
| Accept: urn:ogc:def:query Language:0GC-FES:Filter, |
| urn:ogc:def:query Language:0GC-CSW:Cql |
| Qo |
|
| OPTIONS /2.0/query/7f26634c/typeNames HTTP/1.1
| Host: wfs.someserver.com

| HTTP/1.1 200 OK
I Allow: OPTIONS, GET, PUT

NOTE: Since the PUT method is allowed for these resources
ad-hoc queries can be supported. We also see that the
server support predicates encoded using 0GC Filter or
CQL. The other resources that comprise an ad-hoc query
can be similarly interrogated to determine the server's
capabilities.

-> What query response representations does the server provide
CLIENT SERVER
| |

| OPTIONS /2.0/query/7f26634c HTTP/1.1
| Host: wfs.someserver.com
e e E L LR R e >

|
|
| |
| HTTP/1.1 200 OK |
| Allow: OPTIONS, GET, DELETE

| Accept: application/gml+xml; version=3.2, |
| application/gml+xml; version=3.2, |
| application/gml+xml; version=3.2, |
| application/json

|

STEP 4: Edit the query resource to add feature type names to the
ad-hoc query.
CLIENT SERVER

| PUT /2.0/query/7f26634c/typeNames HTTP/1.1
| Host: wfs.someserver.com

| Content-Type: text/plain
|
|

|
|
|
|
PARKL_1M ROADL_1IM
|
|
|

NOTES:

-> encoded just like the typeNames parameter for the XML
encoding (i.e. a space-separated list of values on a
single line)

-> the "aliases" resource can be used to associate aliases
with each feature type; the two lists must match up 1:1

STEP 5: Edit the query resource to add a filter
CLIENT SERVER
| |
| PUT /2.0/query/7f26634c/filter HTTP/1.1
| Host: wfs.someserver.com
| Content-Type: urn:ogc:def:query Language:0GC-FES:Filter
|
|
|

<fes:Filter> ... </fes:Filter>

|
|
|
|
<?xml version="1.0"7?>
|
|
|
|

STEP 6: Get the collection of features that satisfy the query.
CLIENT SERVER

| GET /2.0/query/7f26634c HTTP/1.1
| Host: wfs.someserver.com
| Accept: application/gml+xml; version=3.2

HTTP/1.1 200 0K
Content-Type: text/xml

<?xml version="1.0"7>
<wfs:FeatureCollection> ... </wfs:FeatureCollection>

STEP 7: Delete the query resource (or it could just expire)
CLIENT SERVER

| DELETE /2.@/query/7f26634c
| Host: wfs.someserver.com

X.7.2 Stored queries (=GetFeature)
Resources (relative to the service root URL):
- see X.7.1

Methods :
- see X.7.1

Description:
- stored queries are create and behave like ad-hoc queries with
the following exceptions:
-> the {Query Id} shall be assigned by the client
-> the response to an OPTIONS request on the query resource
shall include an Accept header indicating the supported
query languages
server that support stored queries shall support stored
queries defined using the sub-resources (c), (d), (e), (f),
(g) (see X.7.1) and using a WFS query expression indicated by the
content type urn:ogc:def:querylLanguage:0GC-WFS: :WFS_QueryExpression
- other query languages may be supported (e.g. SQL) but these are
not described in this standard
- the notation {variable-name} is used in the text of the query
to indicate parameter substitution; the parameters appear as
query parameters

Examples:
Example: Does the server support stored queries?
CLIENT SERVER
| |
| OPTIONS /2.0/query HTTP/1.1
| Host: wfs.someserver.com

| HTTP/1.1 200 0K |

| Allow: OPTIONS, POST, PUT

| Accept: urn:ogc:def:querylLanguage:0GC-WFS: :WFS_QueryExpression,
| application/x-sql

|

NOTES:
-> the server supports stored queries expressed as WFS query
expressions encoded in XML or as SQL queries

Example: Create a stored query using the /typeNames and
/filter sub-resources
STEP 1: Create an empty stored query
CLIENT SERVER

| PUT /2.0/query/ParksInPolygon HTTP/1.1 |
| Host: wfs.someserver.com

| HTTP/1.1 201 Created

| Location:/2.0/query/FeaturesInPolygon

NOTES:
-> if the specified query name already exists, the server shall
return a "409 Conflict" HTTP code

STEP 2: Add the PARKL_IM feature type
CLIENT SERVER

| PUT /2.0/query/ParksInPolygon/typeNames HTTP/1.1
| Host: wfs.someserver.com

| Content-Type: text/plain
|
|

PARKL_1M
e e e L LS L L PP >
|
| HTTP/1.1 200 OK
<= |
STEP 3: Add a filter to the stored query
CLIENT SERVER

PUT /2.0/query/ParksInPolygon/filter HTTP/1.1
Host: wfs.someserver.com
Content-Type: urn:ogc:def:query Language:0GC-FES:Filter

| |

| |

| |

| |

| <?xml version="1.0"?>

| <fes:Filter> |

| <fes:Within> |

| <fes:ValueReference>geometry</fes:ValueReference>

| ${AreaOfInterest}

| </fes:Within> |

| </fes:Filter> |
|
|
|

STEP 4: Get the collection of features that satisfy the query
for a specified value of {AreaOfInterest}.
CLIENT SERVER
| |
| GET /2.0/query/ParksInPolygon?AreaOfInterest=.. HTTP/1.1
| Host: wfs.someserver.com
| Accept: application/gml+xml; version=3.2 |

|

|

HTTP/1.1 200 OK

Content-Type: application/gml+xml; version=3.2 |
|
|
|

|
|
|
|
| <?xml version="1.0"7?>
| <wfs:FeatureCollection> ... </wfs:FeatureCollection>
|
Example: Create the same query as in the previous example using
a WFS query expression.

CLIENT SERVER

| |
PUT /2.0/query/ParksInPolygon HTTP/1.1 |
Host: wfs.someserver.com
ContentType: urn:ogc:def:queryLanguage:0GC-WFS: :WFS_QueryExpression

<?xml version="1.0"?>
<wfs:Query typeNames="myns:Parks"> |
<fes:Filter> |
<fes:Within>
<fes:ValueReference>geometry</fes:ValueReference> |
${AreaOfInterest}
</fes:Within>
</fes:Filter> |
</wfs:Query>

HTTP/1.1 201 Created
Location: /2.0/query/ParksInPolygon

CLIENT SERVER
| |
| GET /2.0/query/ParksInPolygon?AreaOfInterest=.. HTTP/1.1
| Host: wfs.someserver.com
| Accept: application/gml+xml; version=3.2 |

|

|

HTTP/1.1 200 OK

Content-Type: application/gml+xml; version=3.2 |
|
|
|

<?xml version="1.0"7?>
<wfs:FeatureCollection> ... </wfs:FeatureCollection>

Example: Create a more complex stored query. In this example

the stored query actually executes three queries. WFS
query expressions are used to encode each of the
member queries.
CLIENT SERVER
| |
| PUT /2.0/query/FeaturesInPolygon HTTP/1.1 |
| Host: wfs.someserver.com
| ContentType: urn:ogc:def:querylLanguage:0GC-WFS: :WFS_QueryExpression
| |
I <?xml version="1.0"?>
| <wfs:Query typeNames="myns:Parks">
| <fes:Filter>
| <fes:Within>
| <fes:ValueReference>geometry</fes:ValueReference> |
| ${AreaOfInterest}
| </fes:Within>
| </fes:Filter>
I </wfs:Query> |
|
|
|
|

| HTTP/1.1 201 Created
| Location: /2.@/query/FeaturesInPolygon

CLIENT SERVER
| |

| PUT /2.0/query/FeaturesInPolygon HTTP/1.1 |

| Host: wfs.someserver.com

| ContentType: urn:ogc:def:queryLanguage:0GC-WFS: :WFS_QueryExpression

| |

| <?xml version="1.0"7?>

| <wfs:Query typeNames="myns:Lakes">

| <fes:Filter>

| <fes:Within>

| <fes:ValueReference>region</fes:ValueReference>

| ${AreaOfInterest}

| </fes:Within>

| </fes:Filter>

|

|
|
|
|
|
|
|
|
</wfs:Query> |
|
|
|

CLIENT SERVER
| |

| PUT /2.0/query/FeaturesInPolygon HTTP/1.1 |

| Host: wfs.someserver.com

| ContentType: urn:ogc:def:queryLanguage:0GC-WFS: :WFS_QueryExpression

| |

| <?xml version="1.0"?>

| <wfs:Query typeNames="myns:Rivers">

| <fes:Filter>

| <fes:Within>

| <fes:ValueReference>region</fes:ValueReference>

| ${AreaOfInterest}

| </fes:Within>

| </fes:Filter>

|

|
|
|
|
|
|
|
|
</wfs:Query> |
|
|
|

Example: Create a stored query using SQL.
CLIENT SERVER

PUT /2.0/query/Neighbours HTTP/1.1
Host: wfs.someserver.com
ContentType: application/x-sql

where touches(cl.the_geom,c2.the_geom)="T"

|
|
|
|
| select cl.cntry_name
|
|
| and c2.cntry_name="{country}"'

|
|
|
|
|
from country cl, country c2 |
|
|
|
|
|

X.8 Complex Transactions (=Transaction)
Resources (relative to the service root URL):
(a) transaction
(b) transaction/{Transaction Id}
(c) transaction/{Transaction Id}/{Feature Type}
(d) transaction/{Transaction Id}/{Feature Type}/{Feature Id}
(e) transaction/{Transaction Id}/{Feature Type}/{Feature Id}/Properties/{Property Name}

Methods :

RESOURCE ~ METHOD ACTION

all OPTIONS - gets list of supported representations
and methods for the transaction and sub-resources

Desc

Exam

via the Accept and Allow HTTP headers

GET - not specified by this standard (see X.3.5)

GET - not specified by this standard (see X.3.6)

(€3] GET - not specified by this standard (see X.3.6)
()] GET - gets a representation of the feature type with the

specified feature id from the transaction resource;
this representation of the feature is only valid
in the context of the transaction and does not
permanently become part of the server's datastore
until the transaction is committed

(ed GET - get the value of the specified property name from
the transaction resource; this value is only valid
in the context of the transaction and does not
permanently become part of the server's datastore
until the transaction is committed

(a) POST - creates an new transaction resource
()] POST - not specified by this standard (see X.3.6)
(€3] POST - creates a new instance of the specified feature

type within the context of the transaction; a
representation of the new feature is provided in
body of the request

()] POST - not specified by this standard (see X.3.6)

(&) POST - not specified by this standard Csee X.3.6)
(@ PUT - not specified by this standord Csee X.3.6)
®) PUT - used to comit the transaction
(© PUT - not specified by this standord (see X.3.6)
() PUT - replaces the existing feature with the specified

identifier; a representation of the replacement
feature is provided in the body of the request

(ed PUT - replace the existing value of the specified
property; a representation of the replacement value
is provided in the body of the request

DELETE - not specified by this standard (see X.3.6)
DELETE - deletes the transaction and rolls back any pending
changes
(€3] DELETE - deletes all instances of the specified feature type

(should probably not allow this to happen)

()] DELETE - deletes the feature with the specified identifier
(ed DELETE - sets the value of the specified property to NULL
ription:

supports complex transactions such as transactions on multiple

features that need to happen atomically (as opposed to modifying

a single features as in clause 6)

POST, PUT and DELETE methods are used to perform insert, update

and delete actions within the transaction

the Native action is not supported in the REST binding

- extended Transaction operators are not supported either

all actions performed on the transaction (i.e. POST, PUT, DELETE)

are not committed to the server's datastore until the token "commit"

is sent to the server with the PUT method

-> the response to a transaction, upon commit shall be the
standard wfs:TransactionResponse

- a transaction can be rolled back by deleting it without sending a
commit token; the response is simply a "200 OK" HTTP code

ples:

Example: Insert, update and delete features atomically
STEP 1: Create a transaction resource

C

LIENT SERVER
| POST /2.@/transaction HTTP/1.1

| Host: wfs.someserver.com

|
|
| HTTP/1.1 201 Created
| Location: /2.@/transaction/xB7857n

STEP 2: Figure out what representations the transaction can accept

C

LIENT SERVER
| |

| OPTIONS /2.0/transaction/xB7857n HTTP/1.1
| Host: wfs.someserver.com
Lttt D L DO R b >

|
| HTTP/1.1 200 0K

| Allow: OPTIONS, POST, PUT, DELETE

| Accept: application/gml+xml; version=3.2,
| application/gml+xml; version=3.1,
| application/json

|

STEP 3: Insert a new feature
CLIENT SERVER

POST /2.0/transaction/xB7857n/INNATERA_IM HTTP/1.1
Host: wfs.someserver.com
ContentType: application/gml+xml; version=3.2

|
|
|
|
<?xml version="1.0"?>
<INWATERA_IM>. . .</INWATERA_1M>
|
|
|
|

| HTTP/1.1 201 Created
| Location: /2.0/transaction/xxB7857n/INWATERA_1M/57634

STEP 4: Replace a feature

CLIENT SERVER
| |

PUT /2.0/transaction/xB7857n/BUILTUPA_1M/12357 HTTP/1.11

Host: wfs.someserver.com

ContentType: application/gml+xml; version=3.2

|
|
<?xml version="1.0"7> |
<BUILTUPA_1IM>. ..</BUILTUPA_IM> |
|
|
|

L et i DL L L b >

|

| HTTP/1.1 200 OK

| Qo |
STEP 5: Update the property of a feature
CLIENT SERVER

| |
| PUT /2.0/transaction/xB7857n/BUILTUPA_1M/12357/Properties/F_CODE HTTP/1.1
| Host: wfs.someserver.com

| ContentType: text/plain
|

|

307 |
[e EE L L >
| |
| HTTP/1.1 200 OK |
LS |
STEP 6: Delete a feature
CLIENT SERVER

| |
| DELETE /2.0/transaction/xB7857n/WATERL_IM/329876 HTTP/1.1
| Host: wfs.someserver.com

[L L L e CE >
| |
| HTTP/1.1 200 OK
R L L L L L e e e |
STEP 7: Commit the transaction
CLIENT SERVER
| |
| PUT /2.0/transaction/xB7857n HTTP/1.1
| Host: wfs.someserver.com
| ContentType: text/plain
|
| commit

HTTP/1.1 200 0K
ContentType: text/xml

<?xml version="1.0"7>
<wfs:TransactionResponse> ..</wfs:TransactionResponse>

X.9 Capabilities document example
CLIENT SERVER
| |
| GET /2.0 HTTP/1.1
| Host: wfs.someserver.com
| Accept: text/xml

Content-Type: text/xml

<?xml version="1.0"7?>
<WFS_Capabilities

|
|
|
|
HTTP/1.1 200 OK
|
|
|
|
version="2.0.0"

xmlns="http://www.opengis.net/wfs/2.0"
xmlns:gml="http://www.opengis.net/gml/3.2"
xmlns:fes="http://www.opengis.net/fes/2.0"
xmlns:xlink="http://www.w3.0rg/1999/x1ink"
xmlns:ows="http://www.opengis.net/ows/1.1"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" |
xsi:schemalLocation="http://www.opengis.net/wfs/2.0 |
http://www.pvretano.com/schemas/wfs/2.0.0/wfs.xsdl|
http://www.opengis.net/ows/1.1 |
http://schemas.opengis/net/ows/1.1.0/owsAll.xsd">|
<ServiceRoot>http://www.BlueOx.org/2.0</ServceRoot> |
<ows:ServiceIdentification> |
<ows:Title>0GC Member WFS</ows:Title> |
<ows :Abstract>
Web Feature Service maintained by NSDI data |
provider, serving FGDC framework layer XXX; |
contact Paul.Bunyon@BlueOx.org |
|
|
|
|

</ows:Abstract>
<ows :Keywords>
<ows : Keyword>FGDC</ows : Keyword>
<ows : Keyword>NSDI</ows :Keyword>
<ows :Keyword>Framework Data Layer</ows:Keyword>|
<ows : Keyword>BlueOx</ows :Keyword> |
<ows : Type>String</ows:Type>
</ows :Keywords>
<ows:ServiceType>WFS</ows:ServiceType> |
<ows:ServiceTypeVersion>2.0.0</ows:ServiceTypeVersion>
<ows:ServiceTypeVersion>1.1.0</ows:ServiceTypeVersion>
<ows:ServiceTypeVersion>1.0.0</ows:ServiceTypeVersion>
<ows :AccessConstraints>NONE</ows :AccessConstraints>
</ows:Serviceldentification> |
<ows:ServiceProvider> |
<ows :ProviderName>BlueOx Inc.</ows:ProviderName> |
<ows:ProviderSite xlink:href="http://www.cubewerx.com"/>
<ows :ServiceContact>
<ows: IndividualName>Paul Bunyon</ows:IndividualName>
<ows :PositionName>Mythology Manager</ows:PositionName>
<ows : ContactInfo>
<ows : Phone>
<ows:Voice>1.800.BIG.WOOD</ows:Voice> |
<ows:Facsimile>1.800.FAX.WO0D</ows:Facsimile>
</ows :Phone> |
<ows :Address> |
<ows:DeliveryPoint>
North Country
</ows:DeliveryPoint>
<ows:City>Small Town</ows:City> |
<ows :AdministrativeArea> |
Rural County
</ows:AdministrativeArea> |
<ows : PostalCode>12345</ows : PostalCode> |
<ows : Country>USA</ows : Country> |
<ows:ElectronicMailAddress> |
Paul.Bunyon@BlueOx.org |
</ows:ElectronicMailAddress> |
</ows :Address> |
<ows:OnlineResource
xlink:href="http://www.BlueOx.org/contactUs"/>
<ows :HoursOfService>24x7</ows :HoursOfService>
<ows : ContactInstructions>
eMail Paul with normal requsts; Phone
Paul for emergency requests; if you get
voice mail and your request can't wait, |
contact another mythological figure listed
on the contactUs page of our web site. |
</ows:ContactInstructions>
</ows:ContactInfo>
<ows :Role>PointOfContact</ows:Role>
</ows:ServiceContact>
</ows:ServiceProviders>
<ows :OperationsMetadata>
<ows:Constraint name="AutomaticDatalocking">
<ows :NoValues/>
<ows :DefaultValue>TRUE</ows :DefaultValue>
</ows:Constraint>
<ows:Constraint name="PreservesSiblingOrder">
<ows :NoValues/>
<ows :DefaultValue>TRUE</ows:DefaultValue>
</ows:Constraint>

<!-- -—>
<!l-- -=>
<ows :Constraint name="ImplementsBasicWFS">

<ows :NoValues/>

<ows :DefaultValue>TRUE</ows :DefaultValue>
</ows:Constraint>
<ows:Constraint name="ImplementsTransactionalWFS"

<ows :NoValues/>
<ows :DefaultValue>TRUE</ows :DefaultValue>
</ows:Constraint>
<ows:Constraint name="ImplementsLockingWFS">
<ows :NoValues/>

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

<l-- * CONFORMANCE DECLARATION * o>

|

|

|

|

|
>|
|

|

|

|

|
<ows :DefaultValue>TRUE</ows:DefaultValue> |

</ows:Constraint> |
<ows :Constraint name="KVPEncoding"> |
<ows :NoValues/> |
<ows :DefaultValue>TRUE</ows :DefaultValue> |
</ows:Constraint> |
<ows:Constraint name="XMLEncoding"> |
<ows :NoValues/> |
<ows :DefaultValue>TRUE</ows:DefaultValue> |
</ows:Constraint> |
<ows:Constraint name="SOAPEncoding"> |
<ows :NoValues/> |
<ows :DefaultValue>TRUE</ows :DefaultValue> |
</ows:Constraint> |
<ows:Constraint name="ImplementsInheritance"> |
<ows :NoValues/> |
<ows :DefaultValue>TRUE</ows :DefaultValue> |
</ows:Constraint> |
<ows :Constraint name="ImplementsRemoteResolve"> |
<ows :NoValues/> |
<ows :DefaultValue>TRUE</ows:DefaultValue> |
</ows:Constraint> |
<ows:Constraint name="ImplementsResultPaging"> |
<ows :NoValues/> |
<ows :DefaultValue>TRUE</ows:DefaultValue> |
</ows:Constraint> |
<ows:Constraint name="ImplementsStandardloins"> |
<ows :NoValues/> |
<ows :DefaultValue>TRUE</ows :DefaultValue> |
</ows:Constraint> |
<ows:Constraint name="ImplementsSpatialloins"> |
<ows :NoValues/> |
<ows :DefaultValue>TRUE</ows:DefaultValue> |
</ows:Constraint>
<ows:Constraint name="ImplementsTemporalloins"> |
<ows :NoValues/> |
<ows:DefaultValue>TRUE</ows:DefaultValue> |
</ows:Constraint> |
<ows:Constraint name="ImplementsFeatureVersioning">
<ows :NoValues/> |
<ows :DefaultValue>TRUE</ows :DefaultValue> |
</ows:Constraint> |
<ows:Constraint name="ManageStoredQueries"> |
<ows :NoValues/> |
<ows :DefaultValue>TRUE</ows :DefaultValue> |
</ows:Constraint> |

<!-- -=>1
<!-- * CAPACITY CONSTRAINTS * -—>|
<!-- -=>1

<ows:Constraint name="PagingIsTransactionSafe"> |
<ows :NoValues/> |
<ows :DefaultValue>FALSE</ows :DefaultValue> |
</ows:Constraint> |
<ows:Constraint name="CountDefault"> |
<ows :NoValues/> |
<ows:DefaultValue>1000</ows:DefaultValue> |
</ows:Constraint> |
<ows:Constraint name="ResolveTimeoutDefault"> |
<ows :NoValues/> |
<ows :DefaultValue>300</ows:DefaultValue> |
</ows:Constraint> |
<ows:Constraint name="SortLevellimit"> |
<ows :NoValues/> |
<ows :DefaultValue>1</ows:DefaultValue> |
</ows:Constraint>
<ows:Constraint name="ResolvelocalScope"> |
<ows :NoValues/> |
<ows:DefaultValue>*</ows:DefaultValue> |
</ows:Constraint> |
<ows :Constraint name="ResolveRemoteScope"> |
<ows :NoValues/> |
<ows :DefaultValue>5</ows :DefaultValue> |
</ows:Constraint> |
<ows:Constraint name="ResponseCacheTimeout"> |
<ows :NoValues/> |
<ows :DefaultValue>300</ows :DefaultValue> |
</ows:Constraint> |
<ows:Constraint name="QueryExpressions"> |
<ows :AllowedValues> |
<ows :Value>wfs:Query</ows:Value> |
<ows:Value>wfs:StoredQuery</ows:Value> |
</ows :AllowedValues> |
</ows:Constraint> |
<!l-- -->1
</ows :OperationsMetadata> |
<FeatureTypelList> |
<Link rel="describedby" |
type="text/xml; gmlver=3.2" |
href="http://www.BlueOx.org/2.0/schema"/> |
<FeatureType xmlns:bo="http://www.BlueOx.org/BlueOx"
<Link rel="self" |
type="application/gml+xml; version=3.2" |
href="http://www.BlueOx.org/2.0/FeatureTypes/Woods"/>
<Link rel="alternate" |
type="application/json" |

href="http://www.BlueOx.org/2.0/FeatureTypes/Woods" />
<Link rel="describedby" |
type="text/xml; gmlver=3.2" |
href="http://www.BlueOx.org/2.0/schema/Woods" />
<Name>bo :Woods</Name> |
<Title>The Great Northern Forest</Title> |
<Abstract>
Describes the arborial diversity of the |
Great Northern Forest.
</Abstract>
<ows :Keywords>
|
|
|
|
|

<ows : Keyword>forest</ows :Keyword>
<ows : Keyword>north</ows :Keyword>
<ows : Keyword>woods</ows : Keyword>
<ows : Keyword>arborial</ows :Keyword>
<ows : Keyword>diversity</ows:Keyword>
</ows :Keywords> |
<DefaultCRS>urn:ogc:def:crs:EPSG: :6269</Defaul tCRS>
<OtherCRS>urn:ogc:def:crs:EPSG: :32615</0therCRS>
<OtherCRS>urn:ogc:def:crs:EPSG: :32616</0therCRS>
<OtherCRS>urn:ogc:def:crs:EPSG: :32617</0ther(RS>
<0therCRS>urn:ogc:def:crs:EPSG: :32618</0therCRS>
<ows :WGS84BoundingBox>
<ows:LowerCorner>-180 -90</ows:LowerCorner> |
<ows :UpperCorner>180 90</ows:UpperCorner> |
</ows :WGS84BoundingBox>
|
|
|

</FeatureType>
<FeatureType
<Link rel="self"
type="application/gml+xml; version=3.2"

href="http://www.BlueOx.org/2.0/FeatureTypes/Lakes"/>
<Link rel="alternate" |

type="application/json" |
href="http://www.BlueOx.org/2.0/FeatureTypes/Lakes"/>
<Link rel="describedby" |
type="text/xml; gmlver=3.2" |
href="http://www.BlueOx.org/2.0/schema/Lakes"/>
<Name>bo: Lakes</Name> |
<Title>The Great Northern Lakes</Title>
<Abstract>
Lake boundaries for all lakes in the
Great Northern Forest.
</Abstract>
<ows :Keywords>
<ows : Keyword>1akes</ows :Keyword>
<ows : Keyword>boundaries</ows : Keyword>
<ows : Keyword>water</ows :Keyword>
<ows : Keyword>hydro</ows : Keyword>
</ows :Keywords> |
<DefaultCRS>urn:ogc:def:crs:EPSG: :6269</Defaul tCRS>
<OtherCRS>urn:ogc:def:crs:EPSG: :32615</0therCRS>
<OtherCRS>urn:ogc:def:crs:EPSG: :32616</0therCRS>
<OtherCRS>urn:ogc:def:crs:EPSG: :32617</0therCRS>
<OtherCRS>urn:ogc:def:crs:EPSG: :32618</0therCRS>
<ows :WGS84BoundingBox>
<ows:LowerCorner>-180 -90</ows:LowerCorner> |
<ows :UpperCorner>180 90</ows:UpperCorner> |
</ows :WGS84BoundingBox>
</FeatureType>
</FeatureTypelList>
<fes:Filter_Capabilities>
<fes:Conformance>
<fes:Constraint name="ImplementsQuery"> |
<ows :NoValues/>
|
|
|
|
|
|
|
|
|
|

<ows :DefaultValue>TRUE</ows :DefaultValue>
</fes:Constraint>
<fes:Constraint name="ImplementsAdHocQuery">
<ows :NoValues/>
<ows :DefaultValue>TRUE</ows :DefaultValue>
</fes:Constraint>
<fes:Constraint name="ImplementsFunctions">
<ows :NoValues/>
<ows:DefaultValue>TRUE</ows:DefaultValue>
</fes:Constraint>
<fes:Constraint name="ImplementsMinStandardFilter">
<ows :NoValues/>
<ows :DefaultValue>TRUE</ows:DefaultValue> |
</fes:Constraint>
<fes:Constraint name="ImplementsStandardFilter">
<ows :NoValues/>
<ows :DefaultValue>TRUE</ows:DefaultValue> |
</fes:Constraint>
<fes:Constraint name="ImplementsMinSpatialFilter">
<ows :NoValues/>
<ows :DefaultValue>TRUE</ows:DefaultValue> |
</fes:Constraint>
<fes:Constraint name="ImplementsSpatialFilter">|
<ows :NoValues/>
<ows:DefaultValue>TRUE</ows:DefaultValue> |
</fes:Constraint>
<fes:Constraint name="ImplementsMinTemporalFilter">
<ows :NoValues/>
<ows :DefaultValue>TRUE</ows:DefaultValue> |
</fes:Constraint>

<fes:Constraint name="ImplementsTemporalFilter">

<OWs:

<ows :DefaultValue>TRUE</ows :DefaultValue>

NoValues/>

</fes:Constraint>

<fes:Constraint name="ImplementsVersionNav">

<OwWs:

<ows :DefaultValue>FALSE</ows :DefaultValue>

NoValues/>

</fes:Constraint>

<fes:Constraint name="ImplementsSorting">

<OWS:

<ows:DefaultValue>FALSE</ows:DefaultValue>

NoValues/>

</fes:Constraint>
<fes:Constraint name="ImplementsExtendedOperators">

<OWs:

<ows :DefaultValue>FALSE</ows :DefaultValue>

NoValues/>

</fes:Constraint>
</fes:Conformance>
<fes:Id_Capabilities>

<fes:ResourceIdentifier name="fes:Resourceld"/>

</fes:Id_Capabilities>
<fes:Scalar_Capabilities>
<fes:LogicalOperators/>

<fes:ComparisonOperators>

<fes:

<fes:

<fes:

<fes:

<fes:

<fes:

<fes:

<fes:

<fes:

<fes:

<fes:
<fes:
<fes:
<fes:
<fes:
<fes:
<fes:
<fes:
<fes:
<fes:
<fes:
<fes:
<fes:

ComparisonOperator

name="PropertyIsLessThan"/>

ComparisonOperator

name="PropertyIsGreaterThan"/>

ComparisonOperator

name="PropertyIsLessThanOrEqualTo"/>

ComparisonOperator

name="PropertyIsGreaterThanOrEqualTo"/>

ComparisonOperator

name="PropertyIsEqualTo"/>

ComparisonOperator

name="PropertyIsNotEqualTo"/>

ComparisonOperator

name="PropertyIsLike"/>

ComparisonOperator

name="PropertyIsBetween"/>

ComparisonOperator

name="PropertyIsNull"/>

ComparisonOperator
name="PropertyIsNil"/>
</fes:ComparisonOperators>
</fes:Scalar_Capabilities>
<fes:Spatial_Capabilities>
<fes:GeometryOperands>

GeometryOperand
GeometryOperand
GeometryOperand
GeometryOperand
GeometryOperand
GeometryOperand
GeometryOperand
GeometryOperand
GeometryOperand
GeometryOperand
GeometryOperand
GeometryOperand
GeometryOperand

</fes:GeometryOperands>
<fes:SpatialOperators>

<fes:
<fes:
<fes:
<fes:
<fes:
<fes:
<fes:
<fes:
<fes:
<fes:
<fes:

SpatialOperator
SpatialOperator
SpatialOperator
SpatialOperator
SpatialOperator
SpatialOperator
SpatialOperator
SpatialOperator
SpatialOperator
SpatialOperator
SpatialOperator

</fes:SpatialOperators>
</fes:Spatial_Capabilities>
<fes:Temporal_Capabilities>

<fes:TemporalOperands>

<fes:
<fes:
<fes:
<fes:
<fes:
<fes:

TemporalOperand
TemporalOperand
TemporalOperand
TemporalOperand
TemporalOperand
TemporalOperand

</fes:TemporalOperands>
<fes:TemporalOperators>

<fes:
<fes:
<fes:
<fes:
<fes:
<fes:
<fes:
<fes:
<fes:

TemporalOperator
TemporalOperator
TemporalOperator
TemporalOperator
TemporalOperator
TemporalOperator
TemporalOperator
TemporalOperator
TemporalOperator

name="DWithin"/>

name=
name=
name=
name=
name=
name=
name=
name=
name=

|
|
|
|
|
|
|
|
|
|
|
r
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

:Point"/> |
:MultiPoint"/>|
:LineString"/>1
:MultilineString"/>
:Curve"/> |
:MultiCurve"/>|
:Polygon"/> |
:MultiPolygon"/>
:Surface"/> |
:MultiSurface"/>
:MultiGeometry"/>
:Box"/>
:Envelope"/>

|
|
|
|
|
|
|
|
|
|
|
|
|
Beyond"/> |
|
|
|
|

|
:validTime"/> |
:TimeInstant"/>
:TimePeriod"/>|
:timePosition"/>
stimeInterval"/>
:duration"/> |

|

|
"After"/> |
"Before"/> |
"Begins"/> |
"BegunBy"/> |
"TContains"/> |
"During"/> |
"TEquals"/> |
"TOverlaps"/> |
"Meets"/> |

| <fes:TemporalOperator name="OverlappedBy"/>
| <fes:TemporalOperator name="MetBy"/>

| <fes:TemporalOperator name="EndedBy"/>
| </fes:TemporalOperators>

| </fes:Temporal_Capabilities>

| <fes:Functions>

| <fes:Function name="min">

| <fes:Returns>xsd:double</fes:Returns>
| <fes:Arguments>

| <fes:Argument name="valuel">

| <fes:Type>xsd:double</fes:Type>
| </fes:Argument>

| <fes:Argument name="value2">

| <fes:Type>xsd:double</fes:Type>
| </fes:Argument>

| </fes:Arguments>

| </fes:Function>

| <fes:Function name="max">

| <fes:Returns>xsd:double</fes:Returns>
| <fes:Arguments>

| <fes:Argument name="valuel">

| <fes:Type>xsd:double</fes:Type>
| </fes:Argument>

| <fes:Argument name="value2">

| <fes:Type>xsd:double</fes:Type>
| </fes:Argument>

| </fes:Arguments>

| </fes:Function>

| </fes:Functions>

| </fes:Filter_Capabilities>

| </WFS_Capabilities>

|

	11-080.pdf
	REST_BINDING

