OGC 09-154

Open Geospatial Consortium Inc.
Date: 2009-11-09
Reference number of this document: OGC 09-154
Version: 1.0.0
Category: Response to NO votes for adoption of WMTS 1.0.0
Editors: Joan Masó and Keith Pomakis

Responses to NO votes to adoption of OpenGIS® Web Map Tile Service as an Implementation Standard (07-057r7)
Copyright © 2009 Open Geospatial Consortium Inc. COMMENTS * MERGEFORMAT
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

Document type:
Response to NO votes for adoption
Document subtype:

Document stage:
WMS SWG official position
Document language:
English
Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Introduction

This document is the official response of the WMS 1.4 SWG to the following NO votes:

· Department of Defence Teresa Crowley - 2009-10-29 20:00:59
· GeoConnections - Natural Resources Canada (NO) Brian McLeod - 2009-10-30 15:05:08
The vote was suspended on Fri, 30 Oct 2009 15:05:08 -0400.
This document also includes a response to IGN France that has expressed their intention to change their vote from YES to NO as soon as the vote continues.

These responses have been discussed in the WMS-1.4 SWG and express the group general agreement.

Vote status when the vote was suspended:

Number of Yes Votes Received: 38

Number of No Votes Received: 2

Number of Comments Received: 5

Number of Active Voters (Start): 51

Number of Active Voters (Completed): 0

Number of Eligible Voters: 89

Department of Defence (NO)

Comments with the NO vote:

The WMTS being considered allows the interface to be implemented in multiple different ways: REST, GET (KVP), POST (KVP), POST (XML) and POST (SOAP). However, while we support this richness, the WMTS specification does not seem to mandate the minimum set of interfaces that MUST be implemented.

In effect, this means that if a server were to implement a KVP interface using HTTP GET, and a client were to implement a RESTful interface, both would be compliant with the specification, but they would not be able to communicate with each other.

This is a significant deficiency that would result in an interoperability specification that could not be guaranteed to be interoperable. Overall we would suggest that to be successful and widely adopted, a minimum part of the specification needs to be made mandatory thereby imposing minimum levels of interoperability.

Teresa Crowley - 2009-10-29 20:00:59
Response form WMS-1.4 SWG:
We completely share your concerns about WMTS and we have debated this issue sometime ago.

Yes, it is true that WMTS has 3 encodings. It is also true that the document do not favor any of them. It is also true that this is bad for interoperability.

I think that, in OGC, we are in point of time where there is a conflict of interests:

- Tradition: in favor of KVP that worked so well in the past

- Big corporations: in favor of SOAP for security and chaining reasons.

- Geo-community: in favor of RESTful simpler solutions.

To decide between them is a responsibility that is too big for WMS.SWG.

Architecture WG and future users will decide which architecture will win in the future. Talking about this with Arnulf Christl (OSGeo), he said: "It will be natural selection".

Meanwhile, we think that:

- KVP is the best way to insure that current WMS clients and serves can adapt to WMTS

- We have a mandate form Architecture WG to develop SOAP encodings for each WS (Edinburgh TC). We did our homework there.

- We had the obligation to integrate RESTful new ideas because WMTS is idea to test them and because since Valencia TC we have a mandate to consider REST in each WS.

Furthermore, in the words of Carl Reed (on 2009-10-31):

 "In general the OGC Planning Committee believes that the OGC cannot explicitly endorse one technology or external standard over another. This philosophy can make standards development more difficult but in the long run makes our standards more flexible and responsive to market forces. And Arnulf is correct - over time the market decides. And right now the market says we must support multiple architecture patterns."

Said so, there is a solution that has not been explored in any previous standards but solves part of the interoperability problem:

Separate the server side and the client side when considering which request is mandatory:

* A WMTS client SHOULD support both KVP and RESTful. SOAP support is optional.

* A WMTS server SHOULD support either KVP and/or REST. SOAP support is optional.

Clients and servers that follows this recommendation any client-server interaction will work for KVP or REST and interoperability is guarantied between this 2 encodings.

We consider this change a minor change that will be included in the final version of the document.

GeoConnections - Natural Resources Canada (NO)
Comments with the NO vote:

The RESTful WMTS specification profile, and indeed the entire WMTS specification, could be extremely valuable to GeoConnections' priority communities participating in the Canadian Geospatial Data Infrastructure, because it will certainly 'lower the bar' to using geospatial data through web services.

Comments received [6] during the comment period highlighted some omissions in the WMTS RESTful specification profile, regarding the application of the architectural constraints which define REST. Specifically, several possible resources were left out of the resource model because they were 'not necessary' for implementation. This is inconsistent with [0], which is a summary of the importance of hypertext to RESTful APIs. Adding those resources would have little impact on client or server performance, would augment discoverability, and might add other beneficial attributes to services based on the RESTful profile.

However, the RESTful portion of the WMTS 1.0 specification is deficient not only because of minor omissions, but more importantly because it very incompletely follows established industry encoding, publishing, discovery and interaction standards and patterns for RESTful data services. Such standards are best exemplified by the Atom standards [1] and [2], the OpenSearch standard [3] and by numerous implementations based on those standards eg. [4] and [5].

OGC should establish an (abstract) implementation specification model at a conceptual level between the OGC Abstract specification and the various Implementation specifications, in other words at the OWS specification level, based on or derived from [1], [2] and [3]. This pattern should then be used as guidance by not only WMTS to rectify the omissions noted above, but indeed by all implementation specifications which publish a RESTful profile.

[0] Roy Fielding: REST APIs must be hypertext driven http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

[1] The Atom Syndication Format http://www.ietf.org/rfc/rfc4287.txt

[2] The Atom Publishing Protocol http://www.ietf.org/rfc/rfc5023.txt

[3] The OpenSearch standard http://www.opensearch.org/Home [4] The Google Data Protocol http://code.google.com/apis/gdata/

[5] ADO.NET Data Services http://msdn.microsoft.com/en-us/library/cc956153.aspx

[6] https://lists.opengeospatial.org/mailman/private/requests/2009-March/000057.html

Brian McLeod - 2009-10-30 15:05:08

Response form WMS-1.4 SWG:
It is true that the current draft of the WMTS specification does not define an addressable set of connected resources representing the intermediate objects between the top-level capabilities document and the tile resources themselves. After lengthy consideration by the revision working group, this level of addressability was purposefully omitted from the draft specification for the following reasons:

· As required of all OGC web services, the WMTS is required to conform to the OWS Common Implementation Specification. This specification has been developed and refined over the years with RPC-style services in mind. That's not to say that a service that conforms to OWS Common can't also have a rich RESTFUL interface. However, the details of how to define such an synthesis require careful consideration if we are to maintain harmonization amongst the different services. The underlying models of OGC services as a whole as defined by OWS Common may need to be adapted to properly accommodate this synthesis. Such consideration was considered beyond the scope of version 1.0 of a new service since it requires concerted deliberation at the OWS Common level.
· An analysis of the use cases that have been presented during the course of the development of the draft WMTS specification revealed three general classes of use cases:
· Client applications that support the standard KVP request mechanism as defined by all existing OGC services. E.g., existing WMS client applications whose quick adaptation to support WMTS services is desired.
· SOAP-based environments that require clients and servers to communicate via a SOAP interface.
· A tile access model where the URL of a tile is not an RPC-style request, but a REST-style address. This access model follows the RESTful principle of having the HTTP request method (GET) indicate the operation being performed where the URL is the address of the object that the operation is being performed on. Among other things, this allows client applications to use standard HTTP mechanisms (HEAD, If-Modified-Since, etc.) to potentially optimize access to the tiles. It also allows for file-system-only implementations where tile access may bypass executable scripts altogether and return pre-generated tiles for optimal performance.

· The three access mechanisms defined by the draft WMTS specification were specifically crafted to address these three use cases.
· All these use cases have been successfully tested in OWS-6.
· Perhaps navigation through an addressable set of connected resources representing the intermediate objects between the top-level capabilities document and the tile resources is another potential use case, but no actual use cases of this nature have been presented to us. At present it remains a hypothetical use case.(The only similar use case is the google superoverlays but they force a power of 2 relation between zoom levels and WMTS is more flexible)
· One of the primary objectives of the WMTS is to define a service for efficient access to tiles. It would not be efficient for a client application to fetch and navigate through several layers of XML documents in order to access the actual tile images necessary to present the requested map to the user.
· The WMTS as currently specified satisfies all of the initial requirements requested of it. This specification has been in the works for two years. Releasing it now would provide the community with the long-awaited, much-needed ability to efficiently serve tiles in an OGC-standard way. In this light, we have decided that it would be better to release it now, and then explore the possibility of defining further optional interfaces (such as a more-fully RESTful interface, a JSON interface, etc.) in the next version of the specification.
· The definition of a more-fully RESTful interface which provides an addressable set of connected resources representing the intermediate objects between the top-level capabilities document and the tile resources is something that would take considerably more deliberation, and would likely delay the release of version 1.0 of the WMTS specification by at least another year. In the meantime, all interested parties waiting for a WMTS standard that satisfies the three primary use cases would be left with nothing during this time. In contrast, if version 1.0 of the WMTS specification is released now, the community would finally have something to work with, and work can begin on including a more-fully RESTful interface in the next version.
· Removing REST style of the document completely is not acceptable because it removes the "file-system-only implementations" use case that has been tested and performed better that any other encoding.
· Resources that the use case requires: tiles and FeatureInfos can be discovered from a single entry point: the ServiceMetadata document It is not true that the resources are not discoverable or connected.
· Relations between resources exist because tiles and FeatureInfos are georeferenced and the "geo" component of the information can not be ignored by servers, clients or geo-standards. A tile is related to its neighbors because they are "next to". A FeatureInfo document is related to a particular pixel of a tile because it is "over" it. Making explicit the relation is redundant with the implicit ones. The benefits of explicitly express the implicit geo-relations have not been identified in OWS-6 prototypes and engineering reports.
One final comment: You mentioned OpenSearch as an exemplification of an industry standard that the WMTS specification should attempt to follow. In fact, the URL template mechanism defined by the current draft of the WMTS specification was inspired directly from the OpenSearch URL template syntax. The vocabulary, of course, is different (OpenSearch uses "searchTerms", "count", "startIndex", etc., while WMTS uses "TileMatrixSet", "TileRow", etc.), as is the XML element name (to better match OGC terminology), but the concept and approach is the same.

(It is an oversight that the OpenSearch specification is not cited in the WMTS bibliography. This will be corrected in the final version.)
IGN France (YES)
Comments to possible change to NO vote:

IGN supports the specification of a tiled WMS with the aim to improve the performances of a web map service in situations where certain constraints may apply: - high number of requests, e.g. in a mass-market context

- high number of requests for each client (to build the map)

- client applications with limited computing capabilities or limited computing accuracy (e.g. javascript)

- small bandwidth (e.g. smartphone)

Some technical choices made in the current spec limit its applicability to these contexts.

1. Binding

The specification does not mandate any binding. Joan has already provided an answer as to why this was the case but we would like to emphasize this problem.

- Client applications will very likely only implement one binding and will therefore not be able to interoperate with all WMTS servers.

- HTTP POST XML and SOAP are heavyweight solutions for a service intended for good performances on the web. SOAP requests may even be bigger than the tiles themselves. It is also very difficult to use HTTP POST XML/SOAP in certain languages used for web client applications such as Javascript. Suggestion: We believe that HTTP GET is more adapted to the usage that can be expected for the WMTS and should be mandated. POST XML / SOAP should be made optional.

2. Resolution vs scale denominator

The WMTS specification uses a scale denominator as the scale parameter. This parameter can easily be understood by a human but may not be the most convenient for software, which may more easily handle a resolution (in units/pixel e.g. m/pixel). Conversion between both is easy but can lead to errors, e.g. when the scale denominator is a very long number with lots of decimals and gets truncated in the GetCapabilities document or when manipulated by programming languages with single precision only (rounding errors). Our data products have a round resolution, which will lead to very long expressions of scale denominators.

Suggestion: consider using resolution instead of scale denominator.

3. GetTile request

Almost all parameters of the GetTile request are mandatory:

- building requests is complex for client applications

- greater amount of data to be transferred over the network

The GetTile operation is the core functionality of the WMTS. It will be the primary source of data exchange between the client and the server; it should therefore be optimized.

Suggestions:

· shorten parameter names (or define short aliases)
· make some mandatory parameters optional with default values
· Style is mandatory while a default value can be defined in the capabilities document
· Similarly, default values could be specified for format and TileMatrixSet
· define simplified request URLs instantiating only a very limited number of fundamental parameters, e.g. Layer, TileMatrix, TileRow, TileCol

Here is an example of parameter names simplification:

TileCol => x -6

TileRow => y -6

TileMatrix => h or z -9

layer => l -4

version=1.0.0& by default -14

service=WMTS& by default -13

request=GetTile& by default -16

style=default& by default -14

format=image/png& by default -17

TileMatrixSet=WholeWorld_CRS_84& by default -32

Request URL size reduction: -131 octets

In the case of our map service, this would represent a 10% reduction of the incoming data flow.

Other example:

Google request: http://mt0.google.com/vt/v=w2.106&hl=fr&x=4&y=2&z=3&s=Galile

WMTS example provided in the spec:

http://www.maps.cat/maps.cgi?service=WMTS&request=GetTile&version=1.0.0&layer=etopo2&style=default&format=image/png&TileMatrixSet=WholeWorld_CRS_84&TileMatrix=10m&TileRow=1&TileCol=3

Clients with a low upload bandwidth (e.g. smartphones) would also benefit from this kind of simplification.

4. Well-known scale set for virtual globes

Some popular web 3D clients use tiled quadtree pyramids where the resolution is multiplied/divided by 2 at each level. It would be useful to define a well-known scale set based on CRS84 and using such a mechanism.
Marie-Lise November 3th, 2009 5:22 am

Response form WMS-1.4 SWG:
> Following an internal review within IGN, we wanted to change our Yes

> vote to No vote with comments. However, the suspension of the vote

> prevented us from doing so. I hope that our comments listed below can

> still be taken into account as part of this review/consolidation cycle.

Absolutely. We'll try our best to take your comments into account,

at the very least providing you and the community with the rationales

behind the way the draft specification is currently defined.

> 1. Binding

>

> The specification does not mandate any binding. Joan has already

> provided an answer as to why this was the case but we would like to

> emphasize this problem.

>

> - Client applications will very likely only implement one binding

> and will therefore not be able to interoperate with all WMTS servers.

>

> - HTTP POST XML and SOAP are heavyweight solutions for a service

> intended for good performances on the web. SOAP requests may even

> be bigger than the tiles themselves. It is also very difficult to

> use HTTP POST XML/SOAP in certain languages used for web client

> applications such as Javascript. Suggestion: We believe that HTTP

> GET is more adapted to the usage that can be expected for the WMTS

> and should be mandated. POST XML / SOAP should be made optional.

Each of the three bindings defined by the draft WMTS specification were specifically crafted to address the three general classes of the use cases that have been presented during the course of the development of the specification:

· Client applications that support the standard KVP request mechanism as defined by all existing OGC services. E.g., existing WMS client applications whose quick adaptation to support WMTS services is desired.
· SOAP-based environments that require clients and servers to communicate via a SOAP interface.
· A tile access model where the URL of a tile is not an RPC-style request, but a REST-style address. This access model follows the RESTful principle of having the HTTP request method (GET) indicate the operation being performed where the URL is the address of the object that the operation is being performed on. Among other things, this allows client applications to use standard HTTP mechanisms (HEAD, If-Modified-Since, etc.) to potentially optimize access to the tiles. It also allows for file-system-only implementations where tile access may bypass executable scripts altogether and return pre-generated tiles for optimal performance.

These use cases are all very different, and imposing the implementation of any one of the corresponding bindings would unnecessarily complicate and hinder the effort required to satisfy each of the other two use cases.

On a practical note, making either the KVP or SOAP bindings required would make it impossible to implement the WMTS as a file-system-only service. I believe that this is a very important ability for the WMTS specification to allow. Making the URL-template binding required is technically possible, but would be rather presumptuous as to how WMTS services are to be used.

Furthermore, in the words of Carl Reed (on 2009-10-31):

 "In general the OGC Planning Committee believes that the OGC cannot explicitly endorse one technology or external standard over another. This philosophy can make standards development more difficult but in the long run makes our standards more flexible and responsive to market forces. […] over time the market decides. And right now the market says we must support multiple architecture patterns."

Said so, there is a solution that has not been explored in any previous standards but solves part of the interoperability problem:

Separate the server side and the client side when considering which request is mandatory:

* A WMTS client SHOULD support both KVP and RESTful. SOAP support is optional.

* A WMTS server SHOULD support either KVP and/or REST. SOAP support is optional.

Clients and servers that follows this recommendation any client-server interaction will work for KVP or REST and interoperability is guarantied between this 2 encodings.

We consider this change a minor change that will be included in the final version of the document.

> 2. Resolution vs scale denominator

>

> The WMTS specification uses a scale denominator as the scale parameter.

> This parameter can easily be understood by a human but may not be

> the most convenient for software, which may more easily handle a

> resolution (in units/pixel e.g. m/pixel). Conversion between both

> is easy but can lead to errors, e.g. when the scale denominator is

> a very long number with lots of decimals and gets truncated in the

> GetCapabilities document or when manipulated by programming languages

> with single precision only (rounding errors). Our data products have a

> round resolution, which will lead to very long expressions of scale

> denominators.

>

> Suggestion: consider using resolution instead of scale denominator.

Firstly, the GetTile request doesn't have a scale parameter. Individual tile matrixes are identified by their declared identifiers, which are opaque strings. The only place scale denominators exist is in the ScaleDenominator property of the TileMatrix elements in the capabilities document. A WMTS server has full control over the number that gets generated into these fields, and the responsibility to actually generate scale denominators that match the corresponding declared well-known scale set is an easy one.

The document is clear on how to convert scales to pixel sizes.

On the client side, WMTS client applications are responsible for choosing an appropriate tile matrix based on their declared scales. Client code should compensate for roundoff errors by comparing with an appropriate tolerance. This is true for any piece of software comparing any floating point numbers.

Secondly, regardless as to whether scale denominators or resolutions are used, unround numbers are going to be a reality. There are some standard scale sets which have round scale denominators and unround resolutions (e.g., the GlobalCRS84Scale well-known scale set), and some standard scale sets which have round resolutions and unround scale denominators (e.g., the GlobalCRS84Pixel well-known scale set). If tile matrixes are redefine to declare resolution rather than scale denominator, it doesn't get rid of unround numbers; it only changes which tile matrix sets have them.

Thirdly, and perhaps most importantly, scale is independent coordinate-system units (e.g., 1:1M is 1:1M regardless as to whether the coordinate system is in units of feet, degrees, radians, gradians, arcseconds, etc.), whereas resolution is in the units of the coordinate system and therefore can't be easily compared across different coordinate systems or shared between different well-known scale sets. Here's an example of why this is important. If a client is looking at a map at a particular zoom level, and then switches to a different coordinate system, the expectation is for the zoom level to stay (at least mostly) the same. If the selection of tile matrices is based on scale, then this is trivial. Simply select the new tile matrices with the scale that's closest to the scale of the current zoom level. If the selection of tile matrices is based on resolution, however, then the client application must perform calculations to adjust for the different units of resolution (and chances are that an intermediate step of that calculation will be to calculate the scale). For example, a reasonably-matched zoom level for the GlobalCRS84Scale scale of 1:1e6 is the GoogleMapsCompatible scale of 1:1.09195754693109e6. This can be determined simply by looking at the numbers. But try making this determination by looking at the corresponding resolutions: 2.51528279553466e-3 degrees/pixel versus 3.057481131407052e2 meters/pixel. These numbers differ by five orders of magnitude. They mean different things, so comparing them directly is out of the question.

Another good example of why this is important is the following. Imagine defining a new well-known scale set that is similar to GlobalCRS84Scale but with a coordinate system of, say, Transverse Mercator, which has units of meters. It's possible to do this because the "scale denominator" column can stay exactly the same, and the only numbers that change are the incidental resolution numbers. This allows for standard sets of scale denominators to be utilized across coordinate systems and across well-known scale sets. But this becomes impossible if resolution is the key number (i.e., if we're dealing with well-known resolution sets rather than well-known scale sets). The tables can't share resolution numbers because they're in different units and therefore have different meanings. So defining similar well-known resolution sets that differ only by coordinate system is impossible.

> 3. GetTile request

>

> Almost all parameters of the GetTile request are mandatory:

> - building requests is complex for client applications

> - greater amount of data to be transferred over the network

> The GetTile operation is the core functionality of the WMTS. It will

> be the primary source of data exchange between the client and the

> server; it should therefore be optimized.

>

> Suggestions:

> - shorten parameter names (or define short aliases)

> - make some mandatory parameters optional with default values

> o Style is mandatory while a default value can be defined in

> the capabilities document

> o Similarly, default values could be specified for format and

> TileMatrixSet

> - define simplified request URLs instantiating only a very limited

> number of fundamental parameters, e.g. Layer, TileMatrix, TileRow,

> TileCol

>

> Here is an example of parameter names simplification:

> TileCol => x -6

> TileRow => y -6

> TileMatrix => h or z -9

> layer => l -4

> version=1.0.0& by default -14

> service=WMTS& by default -13

> request=GetTile& by default -16

> style=default& by default -14

> format=image/png& by default -17

> TileMatrixSet=WholeWorld_CRS_84& by default -32

>

> Request URL size reduction: -131 octets

> In the case of our map service, this would represent a 10% reduction of

> the incoming data flow.

> Other example:

> Google request: http://mt0.google.com/vt/v=w2.106&hl=fr&x=4&y=2&z=3&s=Galile

> WMTS example provided in the spec:

> http://www.maps.cat/maps.cgi?service=WMTS&request=GetTile&version=1.0.0&layer=etopo2&style=default&format=image/png&TileMatrixSet=WholeWorld_CRS_84&TileMatrix=10m&TileRow=1&TileCol=3

>

> Clients with a low upload bandwidth (e.g. smartphones) would also benefit

> from this kind of simplification.

The decision to make all parameters mandatory was made to reduce the complexity of fulfilling a GetTile request. Efficient WMTS servers should be able to collect the values of the parameters, and piece together its own internal address as to where the requested tile resides or its own internal instructions as to how it should be generated. If any of the parameters were optional, then WMTS server would be required to have the ability to look up the metadata defining each of the layers during a GetTile request in order to fill in the default values of the missing parameters. This can be a complex and time-consuming operation. This requirement can be avoided by simply requiring the client application to provide all values. I say simply because the client is given the set of legal values for every parameter. Besides, with the possible exception of the STYLE parameter, having default values would be dangerous because the client application needs to know the exact spatial details of the tile in order to make use of it. And if STYLE is the only parameter that could possibly be made optional, why making it an exception merely to save a few bytes of URL size?

(VERSION, SERVICE and REQUEST can't be optional because that would violate the OWS Common Implementation Specification and preclude the ability for a single base URL to support multiple services and/or multiple version of a service. TileMatrixSet can't be optional because either the specification must dictate required support for a particular well-known scale set (which the specification would declare as the default value) or the client application would have no idea where the resulting tile is spatially located.)

In general, your concern about URL size can be addressed by utilizing REST and the URL template mechanism. I realize that a client application doesn't have control over how long the URL templates of a WMTS server are, but it's a good bet that the URL templates provided by a server are considerably shorter than their equivalent KVP requests because they're typically used to indicate URLs for direct file-system access. So for your example above, the URL template may very well result in a tile access URL of:
 http://www.maps.cat/tiles/etopo2/default/WholeWorld_CRS_84/10m/1/3.png

If you have control over the server than the situation is even better because you can define the URL templates to be as compact as you'd like.

> 4. Well-known scale set for virtual globes

>

> Some popular web 3D clients use tiled quadtree pyramids where the

> resolution is multiplied/divided by 2 at each level. It would be useful

> to define a well-known scale set based on CRS84 and using such a

> mechanism.

Geovirtual (Barcelona's company and OGC strategic member) uses the same system (lat/long WGS84 and multiples of 2). They requested us this WKSS in informal conversations but we did not include it on first place because they were the only company we knew using it. We agree on including it as a 4th WKSS in annex E
We consider this change a minor change that will be included in the final version of the document.

Response of the WMS 1.4 SWG to NO votes for adoption of WMTS standard candidate

