
Copyright © 2007-2009 SANY Consortium Page 1 of 233

Open Geospatial Consortium Inc.

Date: 2009-10-02

Reference number of this document: OGC 09-132r1

Version: 3 (Rev 3.1)

Category: OGC
®
 Discussion Paper

Editor: Thomas Usländer (Ed.)

Specification of the Sensor Service Architecture
(SensorSA)

Copyright notice

See Copyright statement on next page

To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. It is distributed for review and comment. It is

subject to change without notice and may not be referred to as an OGC Standard.

Recipients of this document are invited to submit, with their comments, notification of any

relevant patent rights of which they are aware and to provide supporting documentation.

Document type: OGC® Discussion Paper

Document subtype: Abstract Specification

Document stage: Approved for Public release.

Document language: English

http://www.opengeospatial.org/legal/

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 2 of 233

Copyright © 2009, SANY Consortium

The SANY Consortium (http://www.sany-ip.eu/partners) grants third parties the right to use and

distribute all or parts of this document, provided that the SANY project and the document are

properly referenced.

THIS DOCUMENT IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS „AS IS‟ AND ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT

OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

DOCUMENT, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Preamble to the "Specification of the Sensor Service Architecture

(SensorSA)"

This document specifies the Sensor Service Architecture (SensorSA) of the European Integrated

Project FP6-033564 Sensors Anywhere (SANY).

The SensorSA follows the design principles of service-oriented architectures (SOA) with a

particular focus on the access, the discovery, the management and the processing of information

provided by sensors and sensor networks. As such, it contains sensor-specific services and

information models, however, in order to provide a higher-level, functionally and semantically

richer interface to environmental information and decision-support systems it also abstracts from

the peculiarities of sensors and encompasses generic information processing functionality. The

SensorSA foresees mechanisms to generate events and distribute them as notifications to

interested consumers. This enables spontaneous distribution of information about changing

configurations in underlying sensor networks. Furthermore, the SensorSA relates the basic

concepts of a resource-oriented architectural style such as resources and their representations to

the SOA concepts in order to gain flexibility in discovery tasks and the mapping to underlying

mainstream Web service environments.

The foundation for the conceptual architectural work for SANY is the OGC Best Practices

Document 07-097 which corresponds to the Reference Model for the ORCHESTRA

Architecture (RM-OA) as well as the architecture, the service and the information model

specifications of the OGC Sensor Web Enablement (SWE) initiative.

For further SANY specifications see http://sany-ip.eu .

http://www.sany-ip.eu/partners

Copyright © 2007-2009 SANY Consortium Page 1 of 233

Sixth Framework Programme
Priority IST 2.5.12

Information Society Technologies

Integrated Project

Contract No.: 033564

Project Deliverable D2.3.4

Specification of the Sensor Service Architecture V3

Document Version 3.1 (29/09/2009)

OGC 09-132r1

Due date of Project Deliverable: 30/11/2009

Actual submission date: xx/xx/2009

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 2 of 233

Document Control Page

Title Specification of the Sensor Service Architecture
Version 3 (Document Version 3.1)

Creator Fraunhofer IITB

Editor Thomas Usländer

Description Specification of a generic service-oriented architecture
integrating the access to, the management and the
processing of sensor-related information based upon the
emerging standards of the Open geospatial Consortium
(OGC), and resulting from the requirements analysis of
diverse application domains such as maritime risk
management, observation of geo-hazards and monitoring
of air quality.

Publisher SANY Consortium

Contributors Bartha, Mihai
Bleier, Thomas
Dihé, Pascal
Havlik, Denis
Hilbring, Désirée
Hugentobler, Marco
Iosifescu Enescu, Ionut
Kunz, Siegbert
Puhl, Sebastian
Scholl, Martin
Jacques, Patrick
Schlobinski, Sascha
Simonis, Ingo
Stumpp, Jörg
Usländer, Thomas
Watson, Kym

AIT
AIT
EIG
AIT
Fraunhofer IITB
ETH Zürich
ETH Zürich
Fraunhofer IITB
EIG
EIG
Spacebel
EIG
OGCE
Fraunhofer IITB
Fraunhofer IITB
Fraunhofer IITB

Type Text

Format MS Word

Language EN-GB

Creation date 24/09/2008

Version number 3.1

Version date 29/09/2009

Last modified by Fraunhofer IITB (Ed.) based upon input from SP2 team

Rights

Copyright “SANY Consortium”.
During the drafting process, access is generally limited to
the SANY Partners.

Audience internal
 public
 restricted,
access granted to:

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 3 of 233

Review status Draft
 WP Manager accepted
 SP Manager accepted
 MB quality controlled
 Co-ordinator accepted

Where applicable:
 Accepted by the GA
 Accepted by the GA

as public document

Action requested to be revised by Partners involved in the preparation of
the Project Deliverable

 to be revised by all SANY Partners
 for approval of the WP Manager
 for approval of the SP Manager
 for approval of the Quality Manager
 for approval of the Project Co-ordinator
 for approval of the General Assembly

Requested deadline 25/10/09

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 4 of 233

Revision history
Revision Date Modified by Comments

0.1 11/05/2007 TUS Initial draft structure

0.2 03/07/2007 TUS Inclusion of partners’ input

0.3 20/07/2007 TUS Result of SP2 meeting 18.-
20.07.07 Sasbachwalden

0.4 07/08/2007 TUS and SP2
team

Integration of input from SP2
partners
Harmonisation of text and glossary

0.5 13/09/2007 TUS comments of partners included

0.6 15/10/2007 TUS Results of SP2 meeting 11-
12.10.07 Karlsruhe

0.7 17/10/2007 TUS comments of partners included

0.8 05/11/2007 RDE MB level QA review

1.0 09/11/2007 TUS resolution of QA comments

1.1 20/03/2008 TUS Working draft for D2.3.2

1.2 30/06/2008 TUS partner contributions integrated,
consolidated and harmonised

1.3 01/07/2008 SPF Support of MB level QA

1.3 16/07/2008 RDE MB level QA

1.4 25/07/2008 TUS and SP2
team

resolution of QA comments and
change requests

1.41 06/08/2008 FHa Co-ordinator accepted

2.0 24/09/2008 TUS and SP2
team

Preparation of v2 (D2.3.3)

2.1 23/01/2009 TUS and SP2
team

Input to SP2 meeting Jan. 2009
and result of discussion

2.1 06/03/2009 TUS and SP2
team

Input/update on event-driven
interactions, access control,
GMES/GEOSS requirements

2.1 13/03/2009 TUS and SP2
team

Result of SP2 meeting in
Saarbrücken, 10-11 March 2009

2.1 02/04/2009 TUS Inclusion of comments and
contributions for the final draft

3.0 08/06/2009 TUS Extended structure for D2.3.4

3.0 08/07/2009 TUS Contributions of SP2 partners EIG,
OGCE, SPB and Fraunhofer IITB

3.0 10/07/2009 TUS and SP2
team

Contribution of AIT and result of
SP2 meeting, 9-10 July 209

3.0 11/09/2009 TUS and SP2
team

Integration of partners’
contributions and resolution of
comments

3.1 29/09/2009 TUS Minor editorial corrections;
publication as OGC 09-132r1

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 5 of 233

Table of Contents

1. Executive Summary ... 12

2. Introduction ... 13

2.1. Purpose of this document .. 13

2.2. Intended Audience .. 14

2.3. Abbreviations and acronyms ... 15

2.4. Glossary .. 16

2.4.1 General Remark ... 16

2.4.2 Terms and Definitions .. 16

3. Architectural Framework ... 26

4. Enterprise Viewpoint .. 28

4.1. Architectural Requirements ... 28

4.1.1 Rigorous Definition and Use of Concepts and Standards 28

4.1.2 Loosely Coupled Components ... 28

4.1.3 Technology Independence ... 28

4.1.4 Evolutionary Development - Design for Change 29

4.1.5 Component Architecture Independence ... 29

4.1.6 Generic Infrastructure .. 29

4.2. Relationship to the ORCHESTRA Architecture ... 29

4.3. Requirements of GMES .. 30

4.4. Requirements of GEOSS .. 36

4.5. Requirements of Sensor Networks .. 39

4.6. User Requirements ... 42

4.6.1 Overview .. 42

4.6.2 Sensor Network .. 43

4.6.3 Data and Information .. 43

4.6.4 Data Quality ... 44

4.6.5 Security .. 44

4.6.6 Processing and Fusion ... 45

4.6.7 Events, Alerts and Alarms .. 46

4.6.8 Decision Support .. 47

4.6.9 User Management .. 47

5. Sensor Model ... 48

5.1. Overview ... 48

5.2. Technology Viewpoint of a Sensor .. 48

5.2.1 Simple Form of a Sensor ... 49

5.2.2 Complex form of a Sensor ... 50

5.2.3 Sensor System ... 51

5.3. Enterprise Viewpoint of a Sensor .. 52

5.4. Engineering Viewpoint of a Sensor ... 52

5.5. Service Viewpoint of a Sensor .. 53

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 6 of 233

5.6. Information Viewpoint of a Sensor ... 56

6. Major Concepts of the Sensor Service Architecture ... 57

6.1. Overview ... 57

6.2. Functional Domains ... 57

6.3. Models of Interaction ... 60

6.3.1 Overview .. 60

6.3.2 Request/Reply Interaction Model ... 60

6.3.3 Event-based Interaction Model... 61

6.4. Event-based Architectural Style .. 62

6.4.1 Event Definition .. 62

6.4.2 Event Model ... 63

6.4.3 Event-Driven Processing System ... 69

6.4.4 Exemplary Event Types ... 73

6.5. Resources and their Identification ... 74

6.5.1 Resources .. 74

6.5.2 URN Namespace for SANY Resources ... 75

6.5.3 Naming principles ... 76

6.6. Management ... 79

6.6.1 Overview .. 79

6.6.2 Management Architecture .. 80

6.6.3 Resource Discovery ... 82

6.6.4 Sensor Planning ... 85

6.7. Meta-information Approach ... 88

6.7.1 Introduction .. 88

6.7.2 Data and Service Integration .. 88

6.7.3 Interpretation .. 88

6.7.4 Discovery ... 89

6.7.5 Monitoring .. 89

6.7.6 Authentication and Authorisation .. 89

6.7.7 Quality control and management ... 90

6.8. Security ... 92

6.8.1 Introduction .. 92

6.8.2 Access Control ... 93

6.8.3 Access Control Tasks .. 95

6.8.4 Access Control Service Architecture .. 98

6.9. Conceptual Building blocks for “Plug-and-Measure” 99

7. Information Viewpoint ... 101

7.1. Overview ... 101

7.2. Information Model for Observations & Measurements (O&M) 101

7.3. Information Model of the Sensor Observation Service 102

7.4. Access Control Information Model... 106

7.4.1 Model for Subject Related Information ... 106

7.4.2 Profiles and Identities ... 106

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 7 of 233

7.4.3 Groups ... 107

7.4.4 Roles .. 108

7.4.5 Policies ... 109

7.4.6 Assertion and Policy Encoding ... 109

7.5. Event Information Model ... 113

7.6. Resource Model .. 117

7.6.1 Introduction .. 117

7.6.2 ROA Concepts ... 117

7.6.3 Relationship between Resources, Services and Features 122

7.7. Meta-information Schema for Discovery ... 123

7.7.1 Overview .. 123

7.7.2 Generic Meta-information Sections .. 126

7.7.3 Meta-information Sections Related to Observation Discovery 130

8. Service Viewpoint ... 136

8.1. Overview ... 136

8.2. Services of the OGC Sensor Web Enablement ... 136

8.2.1 Overview .. 136

8.2.2 Sensor Observation Service... 137

8.2.3 Sensor Planning Service .. 138

8.2.4 Sensor Alert Service .. 140

8.2.5 Web Notification Service .. 142

8.3. Access Control Services ... 144

8.3.1 Overview .. 144

8.3.2 Profile Management Service .. 144

8.3.3 Identity Management and Authentication Service 145

8.3.4 Policy Management and Authorisation Service 147

8.3.5 Policy Enforcement Service ... 149

8.4. Services of the Mediation, Processing and Application Domain 150

8.4.1 Catalogue Service .. 151

8.4.2 Processing Service .. 155

8.4.3 Map and Diagram Service .. 156

8.5. Event Based Interaction Services.. 159

8.5.1 Interfaces of WS-Base Notification Specification 160

8.5.2 Interfaces of WS-Brokered Notification Specification 162

9. Technology Viewpoint .. 164

9.1. Properties of a Service Platform .. 164

9.2. The SensorSA Service Platform .. 165

9.2.1 Specification of the SensorSA W3C Web Services Platform 167

9.2.2 Specification of the SensorSA OGC Web Services Platform 168

9.2.3 Specification of the SensorSA RESTful Web Services Platform 170

9.3. Specification of Further Platform Properties .. 171

9.3.1 Selection of User Management, Authentication and Authorisation
Mechanisms ... 171

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 8 of 233

9.3.2 Agreement on Data Formats and Application Schemas 172

10. Engineering Viewpoint .. 173

10.1. Overview .. 173

10.2. Resource Discovery Policy .. 173

10.2.1 Introduction .. 173

10.2.2 Query Models ... 174

10.2.3 Typical resource discovery policies .. 174

10.2.4 Harvesting of SOS Capabilities .. 178

10.2.5 Event-based Harvesting ... 181

10.2.6 SOS Resource Model .. 182

10.3. Policies for Sensor and Service Monitoring ... 186

10.4. Policies for Sensor Planning .. 188

10.5. Policies for Access Control .. 189

10.5.1 Patterns for Non Intrusive Access Control ... 189

10.5.2 Patterns for Access Control in Service Chains 191

10.5.3 Patterns for Access Control in a Multi-Protocol Environment 195

10.5.4 Usage of SAML .. 195

10.5.5 Usage of XACML ... 198

10.6. Processing of Quality Information .. 201

10.6.1 Attachment of quality information ... 201

10.6.2 Multi-level measurement chains ... 202

10.6.3 Visualisation of Uncertainty Information ... 203

10.6.4 Unit conversion .. 204

10.7. Handling of large data sets .. 204

10.7.1 Accessing large data blocks ... 204

10.7.2 Accessing small pieces of a large data set .. 205

10.8. Cascading Sensor Observation Services .. 206

10.8.1 Data flow optimization .. 206

10.8.2 Providing alternative views to data ... 206

10.8.3 Data (pre-)processing .. 207

10.8.4 Multi-level sensor data storage .. 207

10.8.5 Caching of data .. 208

10.8.6 Event-based interaction in cascaded scenarios 209

10.9. Processing and Fusion Support ... 210

10.9.1 Processing Chains ... 210

10.9.2 Uncertainty Handling in Processing Chains ... 214

10.9.3 Combining Earth Observation and In-situ data....................................... 215

10.10. Integration of Mobile Sensors .. 217

10.11. Event Handling .. 218

10.11.1 Definition and Subscription of Events ... 219

10.11.2 Generation and Dispatching of Alerts ... 220

10.12. Plug-and-measure Support .. 221

10.12.1 Sensor Plug In .. 222

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 9 of 233

10.12.2 Sensor recognition and connection establishment 223

10.12.3 Sensor Adapters ... 223

10.12.4 Sensor Access through Service Interfaces ... 224

10.12.5 Publish plug-and-measure related information 224

11. References ... 225

11.1. Normative references .. 225

11.2. Documents and Books ... 226

Index of Figures

Figure 2-1: Scope of the Architectural Work in SANY .. 13

Figure 4-1: Major GMES Components ... 31

Figure 4-2: Basic Conceptual Representation of GMES .. 34

Figure 4-3: Ground Segment Program Board Vision GMES ... 35

Figure 4-4: GEOSS Architecture – Engineering Viewpoint (GEOSS AIP CFP, 2008) 38

Figure 4-5: GEOSS Interoperability Process (from GEOSS CAIR, 2007) 39

Figure 5-1: Sensor and actuator model (derived from (Ricker/Havens, 2005)) 48

Figure 5-2: Model of a simple form of a Sensor ... 49

Figure 5-3: Model of a complex form of a Sensor .. 51

Figure 5-4: Model of a Sensor System .. 52

Figure 5-5: Sensors connected to a Communication Network (here: Internet node) 53

Figure 5-6: Service Viewpoint of a Sensor (internal perspective) .. 54

Figure 5-7: Sensor Networks and Sensor Service Networks .. 55

Figure 6-1: Functional Domains of the SensorSA .. 58

Figure 6-2: Communication paths between the user and the sensor ... 59

Figure 6-3: Taxonomy of Interaction Models (Muehl/Fiege/Pietzuch, 2006) 60

Figure 6-4: Event generation verbosity levels of type binary (upper row) and nominal (lower

row) ... 67

Figure 6-5: Event Processing Role Model .. 70

Figure 6-6: Event Processing Interaction Models ... 71

Figure 6-7: Event Processing Chain .. 72

Figure 6-8: Event Processing Interfaces .. 73

Figure 6-9: Naming requirements for resources ... 77

Figure 6-10: Management Space in the Sensor Service Architecture ... 79

Figure 6-11: Publish-Find-Bind Pattern .. 83

Figure 6-12: Abstract Access Control Pattern ... 95

Figure 6-13: Abstract Access Control- Pattern and Access Control Tasks 96

Figure 7-1: Information Model Observation &Measurement from OGC 07-022 102

Figure 7-2: Information Model of the Sensor Observation Service .. 105

Figure 7-3: Profiles and Identities ... 107

Figure 7-4: Groups are special Identities .. 108

Figure 7-5: AttributeValue extension point of XACML ... 112

Figure 7-6: AttributeDesignatorType extension point of XACML .. 112

Figure 7-7: AttributeSelectorType extension point of XACML ... 112

Figure 7-8: Function type extension point of XACML... 113

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 10 of 233

Figure 7-9: Event model dependencies on packages from the ISO 19100 Harmonized model .. 114

Figure 7-10: Event model package structure ... 114

Figure 7-11: Event type and specializations ... 115

Figure 7-12: Resource Model .. 118

Figure 7-13: Model of the Uniform Interface ... 121

Figure 7-14: Services, features and resources and possible relationships 122

Figure 7-15: Meta-information resource types .. 124

Figure 7-16: Dependencies between Resource Types ... 126

Figure 7-17: Defined Meta-information Sections ... 127

Figure 7-18: Table of Contents Section .. 127

Figure 7-19: Core Meta-information Elements ... 128

Figure 7-20: Common Meta-information Elements .. 129

Figure 7-21: Feature of Interest Section .. 130

Figure 7-22: Procedure Section ... 131

Figure 7-23: Observed Property Section ... 131

Figure 7-24: SensorML Section .. 132

Figure 7-25: Example Section describing Specific Capabilities of a Service 132

Figure 7-26: Example Section including original OGC SOS Capabilities 133

Figure 7-27: Sensor Network Section ... 133

Figure 7-28: Service Description Section ... 134

Figure 7-29: Data Description Section .. 135

Figure 8-1: Overview about the Sensor Alert Service (Simonis, 2006) 141

Figure 9-1: Structure of the SensorSA Service Platform .. 165

Figure 10-1: Discovery of Observations ... 176

Figure 10-2: Discovery of Procedures .. 178

Figure 10-3: Creation and publication of INSPIRE and SANY related meta-information 180

Figure 10-4: Event-based Harvesting - Registration Phase .. 181

Figure 10-5: Event-based Harvesting - Operational Phase ... 182

Figure 10-6: Resource types for the access to sensor observations .. 184

Figure 10-7: Resource type network for the access to sensor observations 185

Figure 10-8: Example Representations of the SOS Resource Type “Observation Collection” .. 186

Figure 10-9: Monitoring SOS ... 187

Figure 10-10: Non Intrusive “compatible” Approach ... 190

Figure 10-11: Security Information in the SOAP Header ... 191

Figure 10-12: All elements accept identities (ID) from one IdP ... 192

Figure 10-13: All elements accept identities from different IdPs ... 193

Figure 10-14: All elements accept identities from one IdP (SC ID = service chain ID) 193

Figure 10-15: Access Control for HTTP based WMS & SOS .. 195

Figure 10-16: Example of a Subject NameID ... 196

Figure 10-17: Example of a Subject Confirmation ... 196

Figure 10-18: Example of an Authentication Statement ... 197

Figure 10-19: Example of an AttributeStatement ... 197

Figure 10-20: SAML in relation to the Access Control Pattern .. 198

Figure 10-21: Example of an SOS Policy ... 199

Figure 10-22: Example of an Authorisation Request for an SOS ... 200

Figure 10-23: UncertML block in a getObservations result ... 202

Figure 10-24: Example for a multi-level measurement chain in an SOS 203

Figure 10-25: Multi-level sensor data storage ... 208

Figure 10-26: Processing Flow ... 211

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 11 of 233

Figure 10-27: Processing Chain as an Instance of a Processing Service 212

Figure 10-28: Reception of Notifications by Processing Chain Instance 214

Figure 10-29: Combining Earth Observation and In-situ Data ... 215

Figure 10-30: Event handling using OGC Sensor Alert Services ... 219

Figure 10-31: Clients subscribe to sensor-defined event types ... 219

Figure 10-32: Clients define events based on observation offerings by sensors or SAS

respectively .. 220

Figure 10-33: SAS defines event types based on various incoming data sets. Clients subscribe to

those events ... 220

Figure 10-34: Event detection and alert dispatching at sensor .. 220

Figure 10-35: Event detection and alert dispatching by SAS ... 221

Figure 10-36: Event detection at the sensor level with conversion of alerts at SAS 221

Figure 10-37: Plug-and-measure Component Interaction ... 222

Figure 10-38: Smart Sensor Adapter ... 224

Index of Tables

Table 3-1: Mapping of the RM-ODP Viewpoints to the SensorSA .. 27

Table 4-1: Overview about Sensor Network Topologies .. 41

Table 6-1: Roles implemented by a related event ... 68

Table 6-2: Member Event - defined values of the role property in an EventEventRelationship .. 68

Table 6-3: Procedure Identifiers in different Sensor Network Topologies 78

Table 6-4: Management Aspects covered in the SensorSA .. 80

Table 6-5: Catalogue Types in a SensorSA .. 84

Table 8-1: Sensor Web Enablement Services ... 136

Table 8-2 : Description of the Sensor Observation Service .. 138

Table 8-3: Description of the Sensor Planning Service .. 140

Table 8-4: Description of the Sensor Alert Service .. 141

Table 8-5: Description of the Web Notification Service ... 143

Table 8-6: Access Control Services .. 144

Table 8-7: Description of the Profile Management Service .. 145

Table 8-8: Description of the Identity Management and Authentication Service....................... 147

Table 8-9: Description of the Policy Management and Authorisation Service 148

Table 8-10: Description of the Policy Enforcement Service ... 149

Table 8-11: Architecture Service applicable for a Sensor Service Network 151

Table 8-12: Description of the Catalogue Service .. 155

Table 8-13: Description of the Processing Service ... 156

Table 8-14: Description of the Map and Diagram Service ... 159

Table 8-15: Comparison between OASIS WS-Notification and the OGC Sensor Alert Service160

Table 8-16: Description of WS-BaseNotification Service .. 162

Table 8-17: Description of WS-BrokeredNotification Service ... 163

Table 9-1: Options for the SensorSA Service Platform .. 166

Table 9-2: Options for the SensorSA W3C Web Service Platform .. 167

Table 9-3: Options for the SensorSA OGC Web Service Platform .. 169

Table 9-4: Options for the SensorSA RESTful Web Service Platform 170

Table 10-1: Description of Service Proxy ... 190

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 12 of 233

1. Executive Summary

This document specifies the Sensor Service Architecture (SensorSA) of the European

Integrated Project FP6-033564 Sensors Anywhere (SANY). In its present Version 3 it

corresponds to the SANY deliverable D2.3.4.

The SensorSA belongs to the family of service-oriented architectures (SOA) but has a

particular focus on the access, the management and the processing of information provided by

sensors and sensor networks. As such, it contains sensor-specific services, however, in order

to provide a higher-level, functionally and semantically richer interface to environmental risk

management applications it also has to abstract from the peculiarities of sensors and to

encompass generic information processing functionality. Thus, there is a sliding passage to

the functionality of a generic service infrastructure. The SensorSA foresees mechanisms to

generate events and distribute them as notifications to interested consumers. This enables

spontaneous distribution of information about changing configurations in underlying sensor

networks, e.g. the dynamic addition or removal of sensor devices, which is a pre-requisite for

the support of the “plug-and-measure” type of operation. Furthermore, the SensorSA relates

the basic concepts of a resource-oriented architecture (ROA) such as resources and their

representations to the SOA concepts in order to gain flexibility in discovery tasks and the

mapping to underlying mainstream Web service environments.

The foundation for the conceptual architectural work for SANY has been taken from the

OGC Best Practices Document 07-097 which corresponds to the Reference Model for the

ORCHESTRA Architecture (RM-OA) as specified by the European Integrated Project FP6-

511678 ORCHESTRA (Open Architecture and Spatial Data Infrastructure for Risk

Management). The RM-OA provides a platform-neutral abstract specification of a geospatial

service-oriented architecture that responds to the requirements of environmental risk

management applications. It comprises generic architecture services and information models

based on and extending existing specifications of the Open Geospatial Consortium (OGC).

The objective of the SensorSA is to motivate and specify the basic design decisions

derived from user requirements and generic architectural principles. It is structured according

to the viewpoints of the Reference Model for Open Distributed Processing (RM-ODP) as

defined in ISO/IEC 10746-1:1998 (E). The RM-ODP viewpoints are interpreted in the context

of an SOA in analogy to the interpretation of the RM-ODP in the RM-OA. The SensorSA

provides the basic concepts, their interrelationships (conceptual models) and abstract

specifications of implementation models, services and interfaces. By abstract it is meant that

the specification is independent of the specifics of a particular service platform.

The specification of the SensorSA follows an iterative design approach. Each version

builds on the results of the former versions. Topics described in former versions are refined

and/or new topics are taken up and specified. Four versions (V0-V3) of the SensorSA

specification have been foreseen. The roadmap for the individual versions has been

continuously adapted according to the analysis of the user requirements and their

prioritisation as well as the technological challenges that SANY aimed to solve. The focus of

the final version 3 lies on refinements and enhancements of the event-based architectural style

and the use of events for cascades of Sensors Observation Service instances and catalogue

harvesting.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 13 of 233

2. Introduction

2.1. Purpose of this document

This document specifies the Sensor Service Architecture (SensorSA) of the SANY project.

The SensorSA belongs to the family of service-oriented architectures (SOA) with additional

support of event processing but has a particular focus on the access, management and

processing of information provided by sensors and sensor networks. As such, it contains

sensor-specific services. However, in order to provide a higher-level, functionally and

semantically richer interface to environmental risk management applications it also has to

abstract from the peculiarities of sensors and to encompass generic information processing

functionality. Thus, there is a sliding passage to the functionality of a generic service

infrastructure.

The service-oriented architecture specified by the European Integrated Project FP6-

511678 ORCHESTRA
1
 (Open Architecture and Spatial Data Infrastructure for Risk

Management) in its Reference Model for the ORCHESTRA Architecture (RM-OA, 2007) has

been chosen as the foundation for the conceptual architectural work in the SANY project. A

major cornerstone for a SANY application environment as part of an implementation

architecture is the Service Support Environment (ESA SSE, 2007). SSE is currently mainly

used in the domain of earth observation sensors.

 The architectural work in the SANY project distinguishes between

- a platform-neutral specification (SensorSA), and

- an implementation specification for the SANY application projects (SANY

Implementation Architecture).

This approach is illustrated in Figure 2-1. The present document only specifies the

conceptual SensorSA, which for simplicity is sometimes just called the SensorSA (SensorSA)

or the SANY Architecture.

Figure 2-1: Scope of the Architectural Work in SANY

1
 http://www.orchestra.eu.org

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 14 of 233

The objective of the SensorSA is to motivate and specify the basic design decisions

derived from user requirements and generic architectural principles. It provides the basic

concepts and their interrelationships (conceptual models) and abstract specifications. By

abstract it is meant that the specification is independent of the specifics of a particular service

platform. Such an abstract specification comprises service specifications, information models

and interaction patterns between the major architectural components.

The specification of the SensorSA is structured according to the viewpoints of the

Reference Model for Open Distributed Processing (RM-ODP) as defined in ISO/IEC 10746-

1:1998 (E). The RM-ODP viewpoints are interpreted in the context of a service-oriented

architecture (SOA) in analogy to the interpretation of the RM-ODP in the Reference Model

for the ORCHESTRA Architecture (RM-OA, 2007).

After the illustration of the architectural design process in section 3, the specification of

the business context and related requirements are described in section 4, “Enterprise

Viewpoint”. Section 5 provides the specification of the “Sensor Model” used in the

SensorSA. Further major concepts of the SensorSA are presented in section 6, followed by the

core conceptual specification of the SensorSA, the specification of the Service and

Information Viewpoints. Technological choices such as requirements and constraints about

underlying Web service platforms are covered in the Technology Viewpoint in section 9.

Engineering guidelines and recommendation how to use and compose the service and

information models are covered in the Engineering Viewpoint in section 10.

Note 1: If concepts and models of the RM-OA are re-used without change, they are just

referenced, sometimes accompanied by a short summary in order to enable a self-contained

specification of the SANY Architecture. In cases where RM-OA concepts and models have

been refined and even replaced for SANY purposes, they are specified in the present

document, but using the style and the templates of the RM-OA. This approach ensures

consistent editorial maintenance and review of both documents.

Note 2: The present version of the SensorSA continues and refines the work of the so-

called ORCHESTRA Architecture Services (OA Services) with a focus on replacing the

original Sensor Access Service as defined in the (RM-OA, 2007). In a subsequent version,

this architecture specification intends to provide more application-oriented services, which are

referred to in the RM-OA as ORCHESTRA Thematic Services. Then, the SensorSA will also

define elements of an Application Architecture.

2.2. Intended Audience

The intended audience of this document includes system architects, information modellers

and system developers engaged in designing sensor service networks and related applications

taking into account relevant standards from ISO, OGC, W3C and OASIS.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 15 of 233

2.3. Abbreviations and acronyms

ADC Architecture and Data Committee (GEOSS)

AS-MI Application Schema for Meta-information

CAFÉ Clean Air for Europe

DG-INFSO Directorate General for Information Society (EC)

EC European Commission

ECMWF European Center for Medium range Weather Forecasting

EO Earth Observation

ESA European Space Agency

ESDI European Spatial Data Infrastructure

EU European Union

FOI Feature of Interest

FP6/7 6
th

/7
th

 Framework Programme (EC)

GEOSS Global Earth Observation System of Systems

GFM General Feature Model

GMES Global Monitoring for Environment and Security

HMA Heterogeneous Missions Accessibility

ID Identifier

IETF Internet Engineering Task Force

INSPIRE Infrastructure for Spatial Information in the European Community

IdP Identity Provider

IS International Standard

ISO International Standardization Organisation

IST Information Society Technology

JRC Joint Research Centre (EC)

MIB Management Information Base

OASIS 1) Organization for the Advancement of Structured Information

Standards

2) Open Advanced System for Disaster and Emergency Management

(FP6 project)

OGC Open Geospatial Consortium

OMG Object Management Group

ORCHESTRA Open Architecture and Spatial Data Infrastructure for Risk Management

(FP6 project)

O&M Observations and Measurement

PDP Policy Decision Point

PEP Policy Enforcement Point

PIP Policy Information Point

RDF Resource Description Framework

RM-OA Reference Model for the ORCHESTRA Architecture

RM-ODP Reference Model for Open Distributed Processing

SAML Security Assertion Markup Language

SANY Sensors Anywhere (FP6 project)

SAS Sensor Alert Service

SDI Spatial Data Infrastructure

SensorSA Sensor Service Architecture

SensorML Sensor Model Language

SIF Standards and Interoperability Forum (GEOSS)

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 16 of 233

SLD Styled Layer Descriptor

SN Sensor Network

SOA Service-oriented Architecture

SOA-RA (OASIS) Reference Architecture for Service Oriented Architecture

SOA-RM (OASIS) Reference Model for Service Oriented Architecture

SOS Sensor Observation Service

SPS Sensor Planning Service

SSE Service Support Environment

SSL Secure Socket Layer

SSVN Sensor Service Network

SWE Sensor Web Enablement

UAA User Management, Authentication and Authorisation

UDDI Universal Description, Discovery and Integration

URI Uniform Resource Identifier

URN Uniform Resource Name

UTC Universal Coordinated Time

WADL Web Application Description Language

W3C World Wide Web Consortium

WIN Wide information network for Risk Management integrated

WNS Web Notification Service

XACML eXtensible Access Control Markup Language

2.4. Glossary

2.4.1 General Remark

This document follows the ISO/IEC Directives, Part 2: Rules for the structure and drafting of

International Standards with respect to the usage of the word “shall”. The word “shall” (not

“must”) is the verb form used to indicate a requirement to be strictly followed to conform to

this specification.

2.4.2 Terms and Definitions

Absolute Time (derived from ISO/IEC 18023:2006(E))

Provides 1) a means to specify an absolute time (UTC) for meta-information, and 2) a

general-purpose mechanism for describing points in absolute (UTC) time.

Note: ISO/IEC 18023-1:2006 addresses the concepts, syntax and semantics for the

representation and interchange of environmental data (SEDRIS). Its usage for the SensorSA

as a definition and for the representation of time values is provisional. How the SEDRIS

concepts go together with the ISO 19xxx series of standards will be determined. Thus, this

definition may be subject to change in future versions.

Access control
Ability to enforce a policy that identifies permissible actions on a particular resource by a

particular subject.

Accounting (OGC 07-097; RM-OA 2007)

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 17 of 233

Process of gathering information about the usage of resources by subjects.

Ad hoc Sensor Network

Sensor network in which communication links and/or nodes are not continually available or

change dynamically. An ad hoc sensor network is often, but not necessarily, based on wireless

communication between nodes with limited resources (energy supply, processing power). An

ad hoc sensor network may include mobile sensors which belong to the network for a limited

time or intermittently.

Alert

Synonym for notification.

Application (derived from http://www.opengeospatial.org/resources/?page=glossary)

Use of capabilities, including hardware, software and data, provided by an information system

specific to the satisfaction of a set of user requirements in a given application domain.

Application Domain (OGC 07-097; RM-OA 2007)

Integrated set of problems, terms, information and tasks of a specific thematic domain that an

application (e.g. an information system or a set of information systems) has to cope with.

Note: One example of an application domain is environmental risk management.

Application Schema (ISO 19109:2005)

Conceptual schema for data required by one or more applications.

Application Architecture (derived from OGC 07-097; RM-OA 2007)

Instantiation of a generic and open architecture (e.g. the ORCHESTRA Architecture) by

inclusion of those thematic aspects that fulfil the purpose and objectives of a given

application. The concepts for such an application stem from a particular application domain

(e.g. a risk management application).

Architecture (of a system) (ISO/IEC 10746-2:1996)

Set of rules to define the structure of a system and the interrelationships between its parts.

Architecture Service (derived from OGC 07-097; RM-OA 2007)

Service that provides a generic, platform-neutral and application-domain independent

functionality.

Assertion (SOA-RA, 2008)

An assertion is a proposition that is held to be true by a stakeholder. It is essentially a claim

about the state of the world.

Note: In the context of SAML the term Assertion is used as a synonymous expression for

Ticket.

Authentication (SOA-RA, 2008)

Concerns the identity of the participants in an exchange. Authentication refers to the means by

which one participant can be assured of the identity of other participants.

Authorisation (SOA-RA, 2008)

http://www.opengeospatial.org/resources/?page=glossary

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 18 of 233

Concerns the legitimacy of the interaction. Authorization refers to the means by which an

owner of a resource may be assured that the information and actions that are exchanged are

either explicitly or implicitly approved.

Catalogue (derived from http://www.opengeospatial.org/resources/?page=glossary)

Collection of entries, each of which describes and points to a collection of resources.

Catalogues include indexed listings of resource collections, their contents, their coverages,

and of meta-information. A catalogue registers the existence, location, and description of

resource collections held by an Information Community. Catalogues provide the capability to

add, modify and delete entries. A minimum Catalogue will include the name for the resource

collection and the locational handle that specifies where these data may be found. Each

catalogue is unique to its Information Community.

Component (OGC 07-097; RM-OA 2007)

Hardware component (device) or Software Component.

Conceptual model (ISO 19109:2005(E); ISO 19101)

Model that defines concepts of a universe of discourse.

Conceptual schema (ISO 19109:2005(E); ISO 19101)

Formal description of a conceptual model.

Confidentiality (SOA-RA, 2008)

Concerns the protection of privacy of participants in their interactions. Confidentiality refers

to the assurance that unauthorized entities are not able to read messages or parts of messages

that are transmitted.

Credential

Information used as proof of Identity (e.g. a password).

Note: During an Authentication process, credentials are presented to an Identity Provider to

obtain related identity information (Ticket).

Discovery (derived from W3C: http://www.w3.org/TR/2004/NOTE-ws-gloss-

20040211/#discovery)

Act of locating a machine-processable description of a resource that may have been

previously unknown and that meets certain functional, informational or qualitative criteria. It

involves matching a set of functional and other criteria with a set of resource descriptions.

End user (OGC 07-097; RM-OA 2007)

Members of agencies (e.g. civil or environmental protection agencies) or private companies

that are involved in an application domain (e.g. risk management) and that use the

applications built by the system users.

Error (of a measurement)

Difference between the measured value and the (in general unknown) „true value‟ of the

measured property.

Event (derived from Luckham and Schulte (Eds.) (2008) and ISO 19136)

http://www.opengeospatial.org/resources/?page=glossary
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#discovery
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#discovery

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 19 of 233

Anything that happens or is contemplated as happening at an instant or over an interval of

time.

Event Object

Record of an action that occurred at an instant or over an interval of time.

Environment (Oxford Dictionary)

1: (noun) the surroundings or conditions in which a person, animal, or plant lives or operates.

2: (the environment) the natural world, especially as affected by human activity.

3: (computing) Overall structure within which a user, computer, or program operates.

Feature (OGC 07-097; RM-OA 2007; derived from ISO 19101)

Abstraction of a real world phenomenon (ISO 19101) perceived in the context of an

application.

Note: As in (RM-OA, 2007), the SANY understanding of a “real world” explicitly comprises

hypothetical worlds. Features may but need not contain geospatial properties. In this general

sense, a feature corresponds to an “object” in analysis and design models.

Framework (http://www.opengeospatial.org/resources/?page=glossary)

An information architecture that comprises, in terms of software design, a reusable software

template, or skeleton, from which key enabling and supporting services can be selected,

configured and integrated with application code.

Generic (Service, Infrastructure…) (derived from OGC 07-097; RM-OA 2007)

Independent on the organisation structure and application domain, etc. For example, a service

is generic, if it is independent of the application domain. A service infrastructure is generic, if

it is independent of the application domain and if it can adapt to different organisational

structures at different sites, without programming (ideally).

Geospatial (http://www.opengeospatial.org/resources/?page=glossary)

Referring to a location relative to the Earth's surface. “Geospatial” is more precise in many

geographic information system contexts than "geographic," because geospatial information is

often used in ways that do not involve a graphic representation, or map, of the information.

Identity (Dictionary, 2004)

Collective aspect of the set of characteristics by which a thing is definitively recognizable or

known.

Note: In the SensorSA the term Identity refers to a concept that is used to recognise a subject.

A subject may have several identities

Identity Provider

Entity that issues identity information and possibly acts as authentication authority

Implementation (http://www.opengeospatial.org/resources/?page=glossary)

Software package that conforms to a standard or specification. A specific instance of a more

generally defined system.

Integrity (SOA-RA, 2008)

http://www.opengeospatial.org/resources/?page=glossary
http://www.opengeospatial.org/resources/?page=glossary
http://www.opengeospatial.org/resources/?page=glossary

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 20 of 233

Concerns the protection of information that is exchanged – either from unauthorized writing

or inadvertent corruption. Integrity refers to the assurance that information that has been

exchanged has not been altered.

Interface (ISO 19119:2005)

Named set of operations that characterize the behaviour of an entity.

The aggregation of operations in an interface, and the definition of interface, shall be for the

purpose of software reusability. The specification of an interface shall include a static portion

that includes definition of the operations. The specification of an interface shall include a

dynamic portion that includes any restrictions on the order of invoking the operations.

Interoperability (ISO 19119:2005 or OGC; http://www.opengeospatial.org/resources/?page=

glossary)

Capability to communicate, execute programs, or transfer data among various functional units

in a manner that require the user to have little or no knowledge of the unique characteristics of

those units (ISO 2382-1).

Loose coupling (W3C; http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/

#loosecoupling)

Coupling is the dependency between interacting systems. This dependency can be

decomposed into real dependency and artificial dependency: Real dependency is the set of

features or services that a system consumes from other systems. The real dependency always

exists and cannot be reduced. Artificial dependency is the set of factors that a system has to

comply with in order to consume the features or services provided by other systems. Typical

artificial dependency factors are language dependency, platform dependency, API

dependency, etc. Artificial dependency always exists, but it or its cost can be reduced. Loose

coupling describes the configuration in which artificial dependency has been reduced to the

minimum.

Meta-information (OGC 07-097; RM-OA 2007)

Descriptive information

about resources in the universe of discourse. Its structure is given by

a meta-information model depending on a particular purpose.

Note: A resource by itself does not necessarily need meta-information. The need for meta-

information arises from additional tasks or a particular purpose (like catalogue organisation),

where many different resources (services and data objects) must be handled by common

methods and therefore have to have/get common attributes and descriptions (like a location or

the classification of a book in a library).

Meta-information model (OGC 07-097; RM-OA 2007)

Implementation of a conceptual model for meta-information.

Non-repudiation (SOA-RA, 2008)

Concerns the accountability of participants. To foster trust in the performance of a system

used to conduct shared activities it is important that the participants are not able to later deny

their actions: to repudiate them. Non-repudiation refers to the means by which a participant

may not, at a later time, successfully deny having participated in the interaction or having

performed the actions as reported by other participants.

http://www.opengeospatial.org/resources/?page=%0bglossary
http://www.opengeospatial.org/resources/?page=%0bglossary
W3C;%20http:/www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#loosecoupling
W3C;%20http:/www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#loosecoupling

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 21 of 233

Notification
Message that transports one or more events. Depending on the form of the event, the

notification may resemble the event that it transports.

Note: An alert is a notification. The terms notification and alert are used synonymously.

Observed Property (derived from OGC 07-022r1)

Identifier or description of the phenomenon for which the observation result provides an

estimate of its value.

Observation (OGC 07-022)

Act of observing a property or phenomenon, with the goal of producing an estimate of the

value of the property.

Open Architecture (OGC 07-097; RM-OA 2007)

Architecture whose specifications are published and made freely available to interested

vendors and users with a view of widespread adoption of the architecture. An open

architecture makes use of existing standards where appropriate and possible and otherwise

contributes to the evolution of relevant new standards.

Operation (ISO 19119:2005; http://www.OpenGIS.org/docs/02-112.pdf)

Specification of a transformation or query that an object may be called to execute. An

operation has a name and a list of parameters.

ORCHESTRA Architecture (OGC 07-097; RM-OA 2007)

Open architecture that comprises the combined generic and platform-neutral specification of

the information and service viewpoint as part of the ORCHESTRA Reference Model.

ORCHESTRA Reference Model (http://www.eu-orchestra.org)

The ORCHESTRA Reference Model comprises a specification of all RM-ODP viewpoints

for the open architecture for risk management.

Note: The ORCHESTRA Reference Model is specified in (RM-OA, 2007) and is the result

of the European Integrated project ORCHESTRA. The relationship of the SANY Sensor

Service Specification to the ORCHESTRA Reference Model is specified in section 6.1.

Phenomenon (OGC 07-022)

Concept that is a characteristic of one or more feature types, the value for which may be

estimated by application of some procedure in an observation.

Plug-and-measure

Refers to the degree of capability to add a new sensor to a sensor network, register it in a

service network and access its observations through services in all functional domains of a

sensor service network without additional manual intervention.

Policy (derived from SOA-RM, 2006)

Representation of a constraint or condition on the use, deployment, or description of a

resource.

Purpose (of meta-information) (OGC 07-097; RM-OA 2007)

http://www.opengis.org/docs/02-112.pdf
http://www.eu-orchestra.org/

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 22 of 233

Describes the goal of the usage of the resources.

(Service) Platform (OGC 07-097; RM-OA 2007)

Set of infrastructural methods, technologies and rules that describe how to specify service

interfaces and related information and how to invoke services in a distributed system.

Examples for platforms are Web Services according to the W3C specifications including a

GML profile for the representation of geographic information or a CORBA-based

infrastructure with a UML profile according to the OMG specifications.

Principal

See Identity

Profile

Information (set of attributes) describing a subject.

Reference Model (ISO Archiving Standards; http://ssdoo.gsfc.nasa.gov/

nost/isoas/us04/defn.html)

Framework for understanding significant relationships among the entities of some

environment, and for the development of consistent standards or specifications supporting that

environment. A reference model is based on a small number of unifying concepts and may be

used as a basis for education and explaining standards to a non-specialist.

Representation (Richardson/Ruby 2007)

Comprises any useful information about the current state of a resource.

Resource (Richardson/Ruby 2007)

Anything that‟s important enough to be referenced as a thing itself.

Note: Applied to geospatial service-oriented architectures (derived from OGC 07-097; RM-

OA 2007): Functions (possibly provided through services) or data objects (possibly modelled

as features).

Security Domain

Set of resources protected in accordance with a common policy.

Sensor
Entity that provides information about an observed property at its output. A sensor uses a

combination of physical, chemical or biological means in order to estimate the underlying

observed property. At the end of the measuring chain electronic devices produce signals to be

processed.

Note: A more detailed discussion about simple and complex forms of a sensor as well as

sensor systems, also in the context of environmental models, is given in section 5. Here a

sensor model is presented according to several viewpoints.

Sensor Network

Collection of sensors and optional processing nodes, in which information on properties

observed by the sensors may be transferred and processed.

Note: A particular type of a sensor network is an ad hoc sensor network.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 23 of 233

Sensor Service Architecture (SensorSA)

Open Architecture comprising a platform-neutral conceptual specification of the architectural

components of a service network that includes the access to and the management of sensors,

sensor networks and sensor-related information.

Sensor Service Network

Service network that is compliant to the SensorSA specification.

Sensor System
System whose components are sensors. A sensor system as a whole may itself be referred to

as a sensor with an own management and sensor output interface. In addition, the components

of a sensor system are individually addressable.

Service (ISO 19119:2005)

Distinct part of the functionality that is provided by an entity through interfaces.

Service Instance (derived from OGC 07-097; RM-OA 2007)

Executing manifestation of a software component that provides an external interface of a

service according to an implementation specification for a given platform.

Service Network (derived from OGC 07-097; RM-OA 2007)

Set of service instances that interact in order to serve the objectives of applications. The basic

unit within a service network for the provision of functions are the service instances.

Session
Temporarily valid ticket

Signal

Any internal representation (i.e. internal to the sensor) of the observed property.

Software Component (derived from component definition of

http://www.opengeospatial.org/resources/?page=glossary)

Program unit that performs one or more functions and that communicates and interoperates

with other components through common interfaces.

Spatial Context

Specification of a spatial location of an observed property determined by a combination of a

point, a line, an area, a volume and/or a vector field.

Note: As an example for the combination of an area and a point, consider a sensor that is

capable of recording an image of an area. It may deliver both a spatial context for the area

(e.g. the polygon of the area) and/or for several points within that area (e.g. a grid laid upon

the area).

Subject (OGC 07-097; RM-OA 2007)

Abstract representation of a user or a software component in an application.

System (ISO/IEC 10746-2:1996)

http://www.opengeospatial.org/resources/?page=glossary

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 24 of 233

Something of interest as a whole or as comprised of parts. Therefore a system may be referred

to as an entity. A component of a system may itself be a system, in which case it may be

called a subsystem.

Note: For modelling purposes, the concept of system is understood in its general, system-

theoretic sense. The term "system" can refer to an information processing system but can also

be applied more generally.

System User (OGC 07-097; RM-OA 2007)

Provider of services that are used for an application domain as well as IT architects, system

developers, integrators and administrators that conceive, develop, deploy and run applications

for an application domain.

Temporal Context

Specification of the temporal reference of an observed property based on the absolute time. It

can be a single point in time, a time sequence, a time period or a combination of these. In a

sampling system for example several time periods and time points are needed to describe the

time behaviour. However, a time point is already an abstraction which does not really exist. It

means a very small time interval.

Thematic Service (derived from OGC 07-097; RM-OA 2007)

Service that provides an application domain-specific functionality built on top and by usage of

architecture services and/or other thematic services.

Ticket

Information issued by an identity provider to be used as proof of identity when accessing a

resource.

Uncertainty

Quantified description of the doubt about the measurement result.

Note: The error of a measurement may be small, even though the uncertainty is large.

Universe of discourse (ISO 19101)

View of the real or hypothetical world that includes everything of interest.

User (OGC 07-097; RM-OA 2007)

Human acting in the role of a system user or end user.

UTC - Coordinated Universal Time (ISO 19108:2004 (E))

Time scale maintained by the Bureau International des Poids et Mesures (International Bureau

of Weights and Measures) and the International Earth Rotation Service (IERS) that forms the

basis of a coordinated dissemination of standard frequencies and time signals (ITU-R

Rec.TF.686-1 (1997))

Viewpoint (RM-ODP)

Subdivision of the specification of a complete system, established to bring together those

particular pieces of information relevant to some particular area of concern during the design

of the system.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 25 of 233

Web Service
Self-contained, self-describing, modular service that can be published, located, and invoked

across the Web. A Web service performs functions, which can be anything from simple

requests to complicated business processes. Once a Web service is deployed, other

applications (and other Web services) can discover and invoke the deployed service.

W3C Web Service (W3C, http://www.w3.org/TR/2004/NOTE-ws-gloss-

20040211/#webservice)

Software system designed to support interoperable machine-to-machine interaction over a

network. It has an interface described in a machine-processable format (specifically WSDL).

Other systems interact with the Web service in a manner prescribed by its description using

SOAP-messages, typically conveyed using HTTP with an XML serialization in conjunction

with other Web-related standards.

http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 26 of 233

3. Architectural Framework

Continuing the pattern established by the ORCHESTRA project (RM-OA, 2007), an approach

based on the ISO Reference Model for Open Distributed Processing (ISO/IEC 10746-1:1998)

has been selected for the design of the SensorSA. Since a sensor service network will have the

characteristic of a loosely-coupled network of systems and services instead of a “distributed

processing system based on interacting objects” as presumed by RM-ODP, the RM-ODP

concepts are not followed literally. The usage of RM-ODP for the design and documentation

of a sensor service architecture is two-fold:

1. It is applied on a big scale to the structuring of ideas and the documentation of the

SensorSA itself. A mapping of RM-ODP viewpoints to the needs of the SensorSA has

been carried out and is summarised in Table 3-1:

- The second column of Table 3-1 provides the original definitions of the viewpoints

as given in the OpenGIS® Reference Model using the terms of the OpenGIS®

glossary.

- The third column of Table 3-1 indicates the mapping of the viewpoints to the

SensorSA needs using the terms as defined in the SensorSA glossary (see section

2.3).

Note: In order to highlight the fact that, as in RM-OA (2007), the SensorSA

deployment will have the nature of a loosely-coupled distributed system based on

networked services rather than a distributed application based on computational

objects, the “computational viewpoint” is referred to as “service viewpoint” in the

SensorSA.

- The fourth column of Table 3-1 provides examples of what will be defined in the

respective viewpoint.

2. It is applied on a small scale to the description of the sensor model in section 5. Here,

the SensorSA understanding of a sensor is considered from the perspective of the five

RM-ODP viewpoints. By this approach the multi-fold facets of the term sensor may be

captured.

Note: Without further qualification, the usage of viewpoint names always refers to

the viewpoint description of the SensorSA according to its interpretation in Table 3-1. In this

case, the viewpoint name is always capitalised. As an example, Service Viewpoint means a

reference to section 8 of this document.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 27 of 233

View-

point

Name

Definition according

to ISO/IEC 10746

Definition

according to the

OpenGIS®

Reference Model

Mapping to the

design process of the

SensorSA

Examples

E
n

te
rp

ri
se

Concerned with the

purpose, scope and

policies governing the

activities of the

specified system within

the organization of

which it is a part.

Focuses on the

purpose, scope and

policies for that

system.

Reflects the analysis phase

in terms of the system and

the user requirements as

well as the technology

assessment. Includes rules

that govern actors and

groups of actors, and their

roles.

Business context

GMES.

Use case definition

for a fusion service

according to the

needs of a pilot

scenario.

In
fo

rm
at

io
n

Concerned with the

kinds of information

handled by the system

and constraints on the

use and interpretation

of that information.

Focuses on the

semantics of

information and

information

processing.

Specifies the modelling

approach of all categories

of information the

SensorSA deals with

including their thematic,

spatial, and temporal

characteristics as well as

their meta-information.

Information objects

specified in UML

class diagrams and

referred to by the

specification of the

fusion service (e.g.

as parameter types).

C
o

m
p

u
ta

ti
o

n
al

Concerned with the

functional

decomposition of the

system into a set of

objects that interact at

interfaces – enabling

system distribution.

Captures component

and interface details

without regard to

distribution.

Referred to as “Service

Viewpoint”

Specifies the SensorSA

Interface and Service

Types that aim at

improving the syntactic

and semantic inter-

operability between

services, source systems

and applications.

Specification of the

externally visible

behaviour of a

service type, e.g.

UML specification

of the interface

types of the fusion

service.

T
ec

h
n

o
lo

g
y

Concerned with the

choice of technology to

support system

distribution.

Focuses on the choice

of technology.

Specifies the technological

choices for the platform,

its characteristics and its

operational issues.

Specification of the

platform “Web

Services” including

a Sensor ML

profile.

Physical

characteristics of

sensors and sensor

networks.

E
n

g
in

ee
ri

n
g

Concerned with the

infrastructure required

to support system

distribution.

Focuses on the

mechanisms and

functions required to

support distributed

interaction between

objects in the system.

Specifies the mapping of

the SensorSA service

specifications and

information models to the

chosen platform.

Considers the charac-

teristics and principles for

service networks.

Specifies policies and

service interaction

patterns.

Provision of the

service

implementation

specification, incl.

mapping of the

UML specification

to WSDL.

Decisions on access

control and

discovery policies.

Communication

behaviour of sensor

networks.

Table 3-1: Mapping of the RM-ODP Viewpoints to the SensorSA

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 28 of 233

4. Enterprise Viewpoint

4.1. Architectural Requirements

The architectural and iterative design approach as described in (RM-OA, 2007) is taken as the

basis for the specification of the SensorSA. The architectural principles that have guided the

specification of the ORCHESTRA Architecture have been adapted and assessed specifically

for service networks that include access to sensors and sensor-related information. The result

is presented in the following sections.

4.1.1 Rigorous Definition and Use of Concepts and Standards

The SensorSA shall make rigorous use of proven concepts and standards in order to decrease

dependence on vendor-specific solutions, help ensure the openness of a sensor service

network and support the evolutionary development process of the SensorSA.

Note: The SensorSA relies on the standard series “OGC Sensor Web Enablement

(SWE)” (Botts et al, 2006) as the starting point to refine the access and the management of

sensor-related information.

4.1.2 Loosely Coupled Components

The components involved in a sensor service network shall be loosely coupled, where loose

coupling implies the use of mediation to permit existing components to be interconnected

without changes.

Note: In this stringency, this architectural principle is restricted to the acquisition,

application and user domains of a sensor service network (see section 6.1) as its application in

the sensor domain may not be possible due to the predominance of proprietary solutions.

Furthermore, performance and dependability requirements may necessitate a sensor network

with fixed communication relationships and tight coupling of the sensor components.

4.1.3 Technology Independence

The SensorSA shall be independent of technologies, their cycles and their changes as far as

practically feasible. It must be possible to accommodate changes in technology (e.g. lifecycle

of middleware technology) without changing the SensorSA itself. The SensorSA shall be

independent of specific implementation technologies (e.g. middleware, programming

language, operating system). In general and if possible, the SensorSA shall not be influenced

by or deal with limitations of specific implementation technologies. However, the SensorSA

shall be explicitly designed such that it may deal with technical limitations of specific

implementation technologies in the sensor domain (see section 6.1).

Note: Limitations of existing sensor networks must be taken into account in the

SensorSA. At a minimum the characteristics of the sensor-to-sensor protocols must be

considered in the meta-information (e.g. dependability, quality of service, performance). This

will be assessed in future versions of this document in more detail.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 29 of 233

4.1.4 Evolutionary Development - Design for Change

The SensorSA shall be designed to evolve, i.e. it shall be possible to develop and deploy the

system in an evolutionary way. The SensorSA shall be able to cope with changes of user

requirements, system requirements, organisational structures, information flows and

information types in the source systems.

4.1.5 Component Architecture Independence

The SensorSA shall be designed such that a service network and source systems (i.e. existing

information systems, sensors and sensor networks) are architecturally decoupled. This means

that the SensorSA shall not impose any architectural patterns on source systems for the

purpose of having them collaborate in a service network, and no source system shall impose

architectural patterns on a SensorSA.

Note: This architectural principle relies on the RM-OA definition of a source system as

being a “container of unstructured, semi-structured or structured data and/or a provider of

functions in terms of services. The source systems are of a very heterogeneous nature and

contain information in a variety of types and formats”. In the context of a sensor service

network, a source system may also be a sensor or a sensor network to be integrated in a

service network. Important here is that a source system is seen as a black box, i.e. no

assumptions about its inner structure are made when designing a service network.

4.1.6 Generic Infrastructure

The SensorSA services shall be independent of the application domain. This means that the

SensorSA services shall be designed in such a flexible and adaptable way that the SensorSA

services can be used across different thematic domains and in different organisational

contexts, and that the update of integrated components (e.g. sensors, applications, systems,

ontologies) causes little or ideally no changes to the users of the SensorSA services.

4.2. Relationship to the ORCHESTRA Architecture

The architectural heritage of the SensorSA is the ORCHESTRA Architecture specified in

(RM-OA, 2007) as an “open architecture that comprises the combined generic and platform-

neutral specification of the information and service viewpoint as part of the ORCHESTRA

Reference Model” (RM-OA). Consequently, the SensorSA builds upon the components of the

ORCHESTRA Architecture which comprise:

- Rules and guidance about how to specify information and service models in the

context of international standards. In the RM-OA, these rules are formally specified in

an ORCHESTRA Meta-model
2
 for information and for services.

2
 The ORCHESTRA Meta-model is an extension of the ISO/OGC-defined General Feature Model. It consists of

a set of UML classes stereotyped as <MetaClass> and associated textual rules that provide guidance on how

application schemas and services have to be specified in UML, i.e. on a platform-neutral abstract level. It

encompasses two parts: one for the specification of information models in the form of application schemas, and

one for the specification of interface and service types.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 30 of 233

- Basic re-usable specification units for information models (e.g. pre-defined feature

types
3
) and service models (e.g. re-usable interfaces).

- Textual and document templates that guide the specification of services.

- A series of textual descriptions and formal specifications of generic services (so-called

ORCHESTRA Architecture Services or, in short, architecture services) that are

application- and technology independent.

It is the objective of the SANY project to re-use and apply these components in the

context of the SensorSA to the extent that they fulfil the requirements of building service

networks
4
 based on sensor information and higher-level sensor information processing.

Thus, there are two cases:

1. The SensorSA contributes to the architectural level in the sense that it specifies new

architectural concepts or new architecture services, or it refines existing architecture

services.

2. The SensorSA specifies new application-oriented services (in the RM-OA categorised

as ORCHESTRA Thematic Services or, in short, thematic services) that typically

require the call of underlying architecture service operations. In this case the

SensorSA defines a so-called ORCHESTRA Application Architecture
5
.

In both cases, the SensorSA uses the templates and the rules of the RM-OA in order to

specify the refined and the new components.

4.3. Requirements of GMES

The GMES initiative was launched in 1998 and adopted by the ESA
6
 and EU councils in

2001. It started with an initial exploratory period from 2001 to 2003. It was followed by a

concrete implementation period that started in 2004 and ended in 2008. This phase is now

followed by a validation phase of the first three fast-track services (Emergency Response,

Land Monitoring, and Marine services).

As illustrated in Figure 4-1 GMES consists of four major components:

- The space component providing earth observation satellite data.

3
 In accordance with ISO and OGC, the RM-OA defines a feature as an “Abstraction of a real world

phenomenon” (ISO 19101). Note, however, that the ORCHESTRA understanding of a “real world” explicitly

comprises hypothetical worlds. Features may but need not contain geospatial properties.

4
 In analogy to (RM-OA, 2007) a service network here is defined to be set of networked hardware components

and service instances that interact in order to serve the objectives of applications. Thus, the basic units within a

service network for the provision of functions are the service instances, i.e. executing manifestations of software

components that offer their functionality in terms of services.

5
 The RM-OA defines an ORCHESTRA Application Architecture to be an “instantiation of the ORCHESTRA

Architecture by inclusion of those thematic aspects that fulfil the purpose and objectives of a given application.”

The concepts for such an application stem from a particular application domain (e.g. a risk management

application).

6
 European Space Agency

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 31 of 233

- The in-situ component providing ground and airborne data as well as socio-economic

data.

- The data integration and information management component providing access to and

processing of the above space and in-situ data.

- The high level user services component allowing for monitoring of the various aspects

of our environment.

Figure 4-1: Major GMES Components

The final report for the GMES initial period (GMES FR, 2004) provides the following

key architectural requirements on pages 25-26:

―For GMES to become a success, the architecture needs to facilitate the integration of

standalone data and information elements. It should allow to the selection and aggregation of

information from heterogeneous sources and should provide the capability to translate data

and information between the various sources in real time. This applies as much to the

incorporation of socio-economic data and information, as well as products derived from the

space and in situ observing networks.

GMES must therefore provide a structured framework for data integration and

information management, i.e., a European shared information capacity. The following key

architectural and user-oriented requirements will therefore drive the implementation of

GMES:

- Openness, based on agreed open standards, facilitating seamless communication and

interoperability, i.e. the ability of different devices or systems (usually from different

vendors) to work together, as well as enabling user service autonomy;

- Federated architecture, enabling systems to grow and evolve;

- Simplicity of architecture (e.g. modularity of components), to break the complexity

barrier, systems must be made easier to design, administer and use;

- Self-configuration, programmability, scalability (e.g. to handle various levels of

operational load and external conditions);

- Dependability, i.e. the system's resilience to security threats or breakdown;

- User-friendliness of services and interfaces, e.g. in the handling of user request

services, access control, workflow management, delivery management, visualisation,

data extraction (e.g. ―multilinguality‖), multiuser sessions, administration;

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 32 of 233

- Data security, protection of provider and user data against alteration, theft and

misuse;

- Quality of service;

- Ubiquity of access, including global reach.‖

In a reflection paper on Data Integration and Information Management Capacity

(GMES, 2005), prepared by DG-INFSO in close collaboration with ESA and JRC and IST

Integrated Projects of the 6
th

 Framework Programme, the following provisional and non-

exhaustive list of functional requirements is given:

―1. Selection of information from heterogeneous sources

a. Publishing

b. Discovery (data/information and services)

c. Catalogue (search, browse, etc.)

d. Tasking

e. Ordering

f. Access to data

g. Data/information Mining

 2. Aggregation of information from heterogeneous sources

a. Data/information fusion

b. Map overlay

 3. Translation of data and information between various sources in real time

a. Geo-referencing and re-projection

b. Feature translation

c. Semantic interoperability

d. Multilingual

e. Data formatting

f. Data generalisation

 4. Others

a. User management and Security (including Terms and Conditions to access

GMES Services)

b. Service level agreement

c. Quality (for metadata
7
, data and services)‖

7
 As this text is cited from (GMES, 2005), the term “metadata” is used here whereas in the SANY Service

Architecture the term meta-information is used in order to indicate that it is understood as interpreted data for a

specific purpose (e.g. discovery).

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 33 of 233

The same reflection paper suggests that the approach needed to create an efficient data

integration and information management component is to use a “system of systems” design as

explained below:

―The GMES information and services infrastructure goes well beyond a simple

exchange of data. It addresses the need to integrate business and workflow processes which

span across boundaries, be they political, administrative or thematic. It addresses the main

issues of heterogeneity and fragmentation of the information: ―heterogeneity‖ meaning that

the same information is often represented differently, ―fragmentation‖ meaning that needed

information is spread over multiple locations.

The approach is to seamlessly integrate existing systems into a ―system of systems‖

perspective. System of systems is an emerging design and development method of complex

systems build from large scale component systems. The subsystems that comprise the system

of systems are generally built by different organisations, having different goals, are very often

built to different quality standards, and are managed independently.

Reusing existing legacy systems in a dependable fashion without the need for extensive

re-engineering is a key problem currently faced by industry. System of systems can be seen as

new systems linking data, services and workflows to produce new data, new services together

with metadata (information about the information products generated
8
).

This approach, which was a research topic in the last decade, is now becoming

sufficiently mature. In the short term, robust system architectures will be developed and tested

allowing the exchange of data and services that are well identified: This is the syntactic

interoperability phase. In the longer term, we expect to achieve significant semantic

interoperability, which will allow cross-system search for data and services. It could be

dubbed the ―GMES Google‖ since it will work for data and services in the way web search

engine works for web pages.

A number of non technical obstacles should however be addressed to eventually reduce

the complexity of the implementation, such as trusted electronic billing principles between

data providers and services providers to partly overcome the hurdles created by different

data policies. Mechanism should also be agreed upon to manage access privilege across

institutional borders in a practical, transparent and secure way.

This approach will allow sharing and efficient management of information that is

consistent across organisations, borders and thematic domains such as from land use and

mapping to risk management and security.‖

The suggested system of systems approach is still regarded today as the best approach

as indicated in the following excerpt of the report of Joint Operability Workshop held in April

2007 (JOW, 2007):

 ―There was broad agreement that any proposed solution for a single information space

for the environment must allow for multiple architectures and hence be a ―system of

systems‖. Further comments on this topic included:

8
 In the SANY Service Architecture called “meta-information”.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 34 of 233

- Hierarchical architecture is required to cope with services at various levels: EO

ground segment services, GMES core services, GMES downstream services etc.

- SOA is well suited for deployment of system of systems.

- Significant investments have been made already by ESA, ECMWF
9
 etc. Therefore it is

unrealistic that everybody will adopt a single architecture. This leads to a system of

interoperable systems which may be based (internally) on heterogeneous technologies.

- An exhaustive list of use cases is unfeasible – the number of possibilities is too large

and is changing rapidly. Thus, a flexible architecture is needed which also leads to the

concept of a system of systems. The fully top-down approach and pan-European

architecture that was anticipated as recently as five years ago appear now to not be

feasible. The concept is being replaced by pan-European interoperability in a system

of systems-like architecture.

- Many systems are legacy systems in this field as satellites have a relatively short life

and scientific advances in EO are rapid. It is totally unfeasible to convert all existing

data so they all have the same data and metadata formats. Any viable solution must be

based on fully utilising legacy systems. Harmonised, ―on the fly‖ access to legacy

datasets is required.

- Access to data from heterogeneous missions must be seamless and transparent.‖

Information ManagementInformation Management

Data
Integr
ation

Data
Integr
ation

Data
Integr
ation

Data
Integr
ation

SpaceSpace

In situ

Data
Integr
ation

Data
Integr
ation

Static Geospatial

GMES ServiceGMES Service UsersUsers

User
Management

User
Management

SecuritySecurity

Service
Support

Service
Support

Semantic
Interoperability
Multilingualism

Semantic
Interoperability
Multilingualism

INSPIRE
Implementing Rules

Protocols defined in ESA
Heterogeneous Missions Accessibility

S@NY Project

e.g. WMS from
OGC

Service Oriented Architecture
OASIS, W3C, …

Figure 4-2: Basic Conceptual Representation of GMES

The reflection paper mentioned above on Data Integration and Information Management

Capacity (GMES, 2005) provides the following basic conceptual representation of the four

components of GMES (Figure 4.3, which was slightly enhanced to show projects and

standards related to interfaces).

9
 European Centre for Medium range Weather Forecasting

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 35 of 233

The role of the SANY project is to define an open architecture that addresses all types

of in-situ sensor networks so that in-situ data can be integrated with space data to form a Data

Integration and Information Management component/layer that will enable user access and

sharing of environmental information.

Figure 4-3 depicts the vision of the ESA Earth Observation Ground Segment Program

Board showing the GMES architectural aspects related to the space ground segments.

Figure 4-3: Ground Segment Program Board Vision GMES

As suggested in this figure, the Data Access Integration Layer could be extended to

include the access to in-situ data which would provide a common infrastructure on which

GMES services could be built.

As recommended in the following extract of the reflection paper on Data Integration

and Information Management Capacity (GMES, 2005), the technology of choice to be used to

implement the GMES architecture is SOA:

“The underline architecture for ensuring interoperable GMES services is the Service

Oriented Architecture (SOA).

Modern architectural designs are based on a less tightly coupled collaboration of

distributed services. For this, the term SOA is becoming widely used, but there is not a lot of

precision in the way that it is used. The World Wide Web Consortium (W3C) for example

refers to SOA as 'A set of components which can be invoked, and whose interface descriptions

can be published and discovered'. This is broad definition highlights a key aspect of an SOA:

components (e.g. functionalities) can be discovered and invoked dynamically. Thus this type

of architectures is a motion away from ―hard wiring‖ of business processes, which makes

change to new circumstances very difficult. SOAs are thus inherently more flexible and

adaptable than most approaches.

A service-oriented architecture is also proposed for the following reasons:

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 36 of 233

- A SOA represents business functionality as implementation- and vendor neutral and

standards-based shared services.

- Existing legacy systems can be extended with service interfaces, and in that way

become part of a SOA.

- By means of the inherent service discovery and access flexibility (see above), a SOA

enables GMES/INSPIRE service providers to be more agile and to respond more

quickly to changing business needs and evolving requirements.

- A set of common generic services can provide standard, domain-independent

functionality (for discovery, search, navigation, data access, authorisation etc.) which

only needs to be implemented once.

- Sharing of services — no need to ―re-invent the wheel‖

- Loose coupling — ability to update applications with minimal effect on services that

invoke them

- Location transparency — ability to re-host applications with minimal effect on

services that invoke them

GMES applications built on top of a joint, adopted infrastructure will be interoperable

and much easier to integrate into multi-purpose, cross-application operations.”

As a consequence, the SensorSA shall adopt a service-oriented architecture based on

open standards in order to contribute to an emerging GMES infrastructure which demands

flexibility, stability, and durability while preventing vendor lock-in.

There are a number of projects, both concluded and ongoing, that are providing major

contributions in terms of architectures suitable for the GMES infrastructure, for example the

FP6 Integrated Projects OASIS, ORCHESTRA, and WIN on the EC side and HMA on the

ESA side. All of these projects use the ISO RM-ODP methodology which is also adopted by

the OGC Reference Model (OGC 03-040).

4.4. Requirements of GEOSS

The purpose of the Global Earth Observation System of Systems (GEOSS) is to build on and

add value to existing earth observation systems to achieve comprehensive, coordinated, and

sustained observations of the whole planet. It is a “system of systems” that will facilitate the

sharing of observations and derived products obtained by the cooperating earth observation

systems for the benefit of a broad range of user communities around the globe.

GEOSS is being developed by the Group on Earth Observations (GEO) which includes

73 Governments and the European Commission. In addition, 51 intergovernmental,

international, and regional organizations with a mandate in Earth observation or related issues

have been recognized as participating organizations (status: June 2008, source:

http://earthobservations.org/about_geo.shtml). GEO has established a GEOSS 10-Year

Implementation Plan (GEOSS 1000R, 2005) that was adopted at the 3
rd

 Earth Observation

Summit in Brussels in February 2005.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 37 of 233

GEOSS addresses the requirements of users in the following nine societal benefit areas

as briefly summarised below:

- Disasters: Reducing loss of life and property from natural and human-induced

disasters

- Health: Understanding environmental factors affecting human health and well-being

- Energy: Improving management of energy resources

- Climate: Understanding, assessing, predicting, mitigating, and adapting to climate

variability and change.

- Water: Improving water resource management through better understanding of the

water cycle

- Weather: Improving weather information, forecasting, and warning

- Ecosystems: Improving the management and protection of terrestrial, coastal, and

marine ecosystems

- Agriculture: Supporting sustainable agriculture and combating desertification

- Biodiversity: Understanding, monitoring, and conserving biodiversity

GEOSS is a federated system which is assembled from components contributed by

GEO members and participating organisations. These components are basically used to

acquire observations, to process observation data into products, and to exchange/disseminate

these observations and products.

One of the key aspects of GEOSS is therefore the interoperability between the various

and numerous components which should be based on open international standards.

The architecture of GEOSS is being defined under the supervision of the Architecture

and Data Committee (ADC) which has provided high level strategic and tactical guidelines

for the implementation of GEOSS. One of the tasks on the first two-year work plan of the

ADC was to conduct a GEOSS Architecture Implementation Pilot to test and validate

architectural aspects of GEOSS. The first phase of the AIP has been successfully conducted in

2007 with 75 registered services. A second phase is currently in progress and should be

completed by end of May 2009.

The Architecture Implementation Pilot specification adopts the structure of the RM-

ODP viewpoints. The computational viewpoint proposes a service-oriented architecture

(SOA) approach in which components/services interact through well defined interfaces based

on open standards. The services are further organized into three tiers: a lower tier providing

access to various types of data, a middle tier providing business processes acting on these

data, and a top tier providing user interfaces for users consuming the data.

The engineering viewpoint further identifies component types consistent with the

enterprise and computational viewpoints as shown in Figure 4-4.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 38 of 233

Figure 4-4: GEOSS Architecture – Engineering Viewpoint (GEOSS AIP CFP, 2008)

The results of the Architecture Implementation Pilot (Phase 1) are documented in the

GEOSS Core Architecture Implementation Report (GEOSS CAIR, 2007) that was issued in

November 2007. The Core Architecture is composed of the following components: GEO Web

Portal, GEOSS Registries, and GEOSS Clearinghouse.

As highlighted in this report and illustrated in Figure 4-5, the GEOSS interoperability

process follows a publish-find-bind pattern supported by several registries where components,

services, and standards are registered. The role of the Standards and Interoperability Forum

(SIF) is to facilitate the establishment of interoperability arrangements (standards or special).

The GEOSS Core Architecture Implementation Report provides a list of candidate

interoperability arrangement standards for services and encodings. Most of these services and

encodings refer to OGC specifications including some SWE services. Other services and

encodings refer to OASIS specifications such as UDDI, WS-Notification, and BPEL.

The above services are also listed in section 4.2 of Annex B of the Call for Participation

document (GEOSS AIP CFR, 2008) for the Phase 2 Architecture Implementation Pilot that

was issued in June 2008.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 39 of 233

GEOSS Component and Service
Registries

GEO Portal

Standards and
Interoperability

Forum

Users

GEOSS Standards and
Interoperability R egistry

Standards Special

Arrangements

Components
Registry

Services
Registry

GEOSS Clearinghouse

Community
Catalogs

GEOSS
Contributor

Components &
Services

Figure 4-5: GEOSS Interoperability Process (from GEOSS CAIR, 2007)

The architectural requirements of GEOSS are in many ways similar to the architectural

requirements encountered in GMES and INSPIRE (e.g. system of systems). As a matter of

fact, as documented in The First 100 Steps to GEOSS document (GEOSS 100S, 2007), both

GMES and INSPIRE are expected to provide important EU contributions to GEOSS. The

document also highlights the contribution that some FP6 and FP7 EU projects, including

ORCHESTRA and SANY, could make in support of building GEOSS.

4.5. Requirements of Sensor Networks

This section summarizes several common sensor network scenarios of (Watson/Kunz, 2007)

and addresses the issues of network topology, communication, and information flow and

processing. The specific requirements form the overall design approaches implemented within

SANY. A sensor network is hereby understood as a collection of sensors and processing

nodes in which information on properties observed by the sensors may be transferred and

processed. A sensor network may be of an ad hoc nature. In this case communication links

and/or nodes are not continually available or might change dynamically. An ad hoc sensor

network is often, but not necessarily, based on wireless communication between nodes with

limited resources (energy supply, processing power). It may include mobile sensors belonging

to the network for a limited time or intermittently.

The different scenarios mainly distinguish stationary and mobile as well as wireless and

wired sensors. These aspects are described in Table 4-1. They determine the adequacy of

communication patterns and information flows.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 40 of 233

No Scenario Topology Communication Information flow Graphic

1 Sensors and data logger

with fixed locations

Wired sensor networks

with sensor nodes, data

logger and central

computer systems

Sensor localization

information provided

externally

Sensor nodes

communicate with data

logger

No intra-sensor node

communication

Wired connections;

high bandwidth

Sensor nodes report

observation to data logger

Data logger provides

necessary meta-information

Data logger reports to central

computing system

2 Mobile sensors and fixed

or mobile data logger

Mobile sensors with

onboard GPS or other

localization option

Data logger mobile or

fixed

Wireless link between

sensor node and data

logger

Energy restrictions;

bandwidth limitations

Data transmission energy-

optimized

Pre-processing/transfer ratio

important

3 Mobile sensors moving

in different sensor

networks

Sensor nodes migrate

across networks

boundaries

Sensor nodes adapt to

data loggers

dynamically

Central computing system

needs to merge data from

mobile sensors

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 41 of 233

4 Mobile sensor cluster on

vehicles (e.g. on ships) -

block data transfer on

demand

Sensor nodes and data

loggers mounted on

mobile platforms

Platform devices not

permanently connected

to central computing

system

Massive transfer in

short time periods

required

Pre-processing important

5 Mobile earth observation

sensors (satellite,

airborne)

Remotely observing

sensors

Localization mainly

calculated

Direct link between

sensor and ground

segment

Several providers may

provide access to data

Raw data repository often not

accessible

6 Mobile sensors with

their own IP address

Sensors directly

connected to the Internet

Sensor node

unambiguously identified

by IP address

Permanent access via

Internet

Direct data flow between

sensor and Internet node

Security settings by sensor

owner

Table 4-1: Overview about Sensor Network Topologies

Copyright © 2007-2009 SANY Consortium Page 42 of 233

4.6. User Requirements

4.6.1 Overview

This section summarizes the use cases of the application processes originally defined by the

SANY application subprojects addressing different application domains:

- Air Pollution Risks

- Management of plant pollution

- Sophisticated data control to detect suspicious data

- Conduct impact study

- Merging data of different types

- Odour measurements by field inspection and impact surveillance by real-time

modelling

- Marine Risks

- Oil Spill Trajectory Forecast Scenario

- Bathing Microbial Risk and Beach Management Scenario

- Short Term Ship Collision Risk Management Scenario

- Long Term Ship Collision Risk Management Scenario

- Geo Hazards

- Monitoring of the area around a tunnel construction

- Sensor Network Management

- Settlement Monitoring

- Landslide Monitoring

- Risk Zone Mapping

- Rainfall Influence on Landslides

An analysis of the use cases has led to a set of requirements that have been grouped into

functional blocks as described in the following sub-sections. The specific sensor network

requirements are described in the SANY deliverable “Sensor Scenarios and Requirements”

(Watson and Kunz, 2007) with references to the pertinent application processes and the use

cases.

The requirements within the blocks are summarised below. Here, the term “SANY

system” stands for the entirety of a sensor service network including its architecture and its

hardware and software components.

Note: The SensorSA only covers a subset of these requirements. The coverage and the

tracing of the requirements is documented in (Schimak and Watson (eds.), 2008).

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 43 of 233

4.6.2 Sensor Network

- Plug & measure type of operation is required. As a requirement it is understood

as the degree of capability to add a new sensor node to a sensor and sensor service

network without a manual re-configuration of the sensor network or sensor node.

- Dependability is required to provide data access and management services, in order to

cope with the dynamic availability of possibly redundant sensor data sources,

especially in the case of mobile sensors.

- Sensor Network management. Of particular interest here is the localisation of sensor

nodes, e.g. for the planning and management of their deployment or the configuration

of the measurement frequency in order to optimise network and battery load.

- Deployment of mobile ad hoc sensor clusters. Especially in the case of biological

and chemical hazards, the responsible administration authority needs to measure air

pollution or water quality in order to quickly assess the risk situation. However, in the

affected area appropriate sensors are often absent.

- Self-validation of sensor nodes with regard to residual battery life and measurement

capability (need for re-calibration or maintenance) is important for the assessment of

node deployment and data quality.

- Battery life optimisation through selective data transmission is a necessary

management capability to access the battery information via an interface to sensor

nodes with self-diagnosis. It shall support the capability to automatically select

alternative transmission routes for data transmission and/or the frequency of data

transmissions, if the residual battery level of a sensor is too low.

4.6.3 Data and Information

- Data sources do not only include sensors and databases of archived data, but also data

obtained from a laboratory analysis of samples, or data entered manually by humans.

Data sources may also be results of fusion services.

- Spatial and temporal information. The SANY system shall be capable of

associating the measurement with its spatial (sensor location; feature of interest) and

temporal (measurement time; interpretation; reporting times) context.

- Data type. The SANY system shall operate with different data types (e.g. fields,

coverages) associated with such measurement data as:

- a single sensor measurement observation represented by a single value and unit

located at a fixed location and detected at a particular time (time, date and

year). The observation shall distinguish sampling time and result time.

- a series of sensor measurement observations represented by a time series of

triples {value and unit, feature of interest, time}. The time representation may

be either absolute time (time, date and year) or a relative time representation

(e.g. every day at midday starting from a certain date)

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 44 of 233

- Geographic objects of several types. The SANY system shall be capable of handling

geographic objects of several types (e.g. the types specified by the ISO 19107 and ISO

19123 such as MultiPoint, MultiLineString, MultiPolygon, LineStrings, Polygons,

MultiCurve, MultiSurface).

- 3D fields. The SANY system shall be capable of representing and processing three-

dimensional measurement data of an observed property (e.g. wind velocity, water

current etc.)

- Images (e. g. IR/UV, SLAR, INSAR). As an example, such image data may be

delivered by an earth observation sensor mounted on an aircraft or on a satellite with a

certain spatial resolution.

- Maps. The SANY system shall be capable of handling a wide spectrum of maps

(topography, roads, land usage etc).

4.6.4 Data Quality

- Data quality. To assess the quality (e.g. the measurement uncertainty) of delivered

measured data some information about certain quality details (e.g. accuracy, tolerance,

resolution, drift) has to be available. The SANY system shall be capable of accessing

and using this sensor information.

- Sensor level spatial and temporal uncertainty. The SANY system shall be able to

describe data quality levels depending on:

- different available sensor data sources selected in an area of interest,

- estimated data uncertainties (e. g. an interpolated temperature result at a given

location depends on the distance to available sensors and on topological

conditions), and

- the time period and frequency of measurement observations (limited, for

example, by a certain availability frequency of EO satellite images of an area).

- Certification of data and its propagation. The SANY system shall be capable of

supporting the process of formally certifying data quality, e.g. by instructing a

certified laboratory per email regarding an investigation of new microbial sampling at

a specific beach.

- Associate data quality with measurement context (validation). The SANY system

shall be capable of associating and storing data quality together with measurement

context as meta-information, such as the spatial or temporal context. It shall be

capable of visualizing this quality meta-information in its spatial and temporal context,

e.g. in order to support and optimise the deployment of sensors.

4.6.5 Security

- Authorized Access. The provision of sensor data implies a large investment in

equipment and in supporting services. Therefore sensor data normally cannot be

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 45 of 233

offered free of charge. Access control is the underlying mechanism for all use cases

that require conditional data access like licensing and billing. The SANY system shall

provide several security related services that facilitate the enforcement of access

control policies:

- Authentication (verification of user identities, support for multiple

authentication mechanisms)

- Authorisation (support of roles, authorisation for services, authorisation on the

data level, etc)

- User Management (storage and management of user profiles)

- Data Integrity. Another security topic is protection of measurement data against

manipulation. In order to ensure data integrity cryptographic measures like digital

signatures may be necessary at different operational levels (e.g. during transmission,

storage in databases etc.).

- Flexible security architecture. The overall security architecture shall be able to

integrate security measures without changes to the architecture as security

requirements depend heavily on concrete use case requirements. For example, it may

be a security problem to allow certain users of the SANY system to track sensor data

over a period of time (e.g. a shipping company does not want competitors to know the

exact routes of their ships).

4.6.6 Processing and Fusion

- Interfaces for data processing services development. The SANY system shall

provide general data processing services such as merging data and extracting relevant

data for reports. In addition, the SANY system shall be capable of handling meta-

information. This includes the storage of intermediate information to assure that

overall services (and service chains) can execute with acceptable speed.

- Image analysis and feature extraction. The SANY system shall be capable of

processing images and extracting features (e.g. such as a road or a watercourse).

- Homogenisation of spatial and temporal measurement resolution The SANY

system shall be capable of handling and adjusting different temporal and/or spatial

resolutions of sensor data, e.g. through data interpolation and aggregation.

Furthermore, the SANY system shall cope with missing values in data series.

- Fusion of measurements of same phenomenon. The SANY system shall be capable

of processing and merging measurements of the same phenomenon using different

sensor equipment. The information about the source shall be stored in meta-

information. The different data, possibly generated by the equipment at different

times, shall be processed using a fusion service.

- Library of algorithms as (statistical) processing services. The SANY architecture

shall provide a mechanism for defining re-usable processing services, e.g. for data

interpolation and data fusion.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 46 of 233

- Workflow. The SANY system shall be capable of processing service chaining by

workflows. The output results of a model service may be connected to the input of

another subsequent process.

- Visualisation. In many use cases several services of visualisation are described, e.g.

maps or diagrams. The SANY system shall offer flexible means to visualise data in

different styles.

4.6.7 Events, Alerts and Alarms

- Threshold surpass detection. The SANY system shall be capable of detecting

threshold surpassing. For instance in the field of air quality measurement, excess

pollution of the environment can be asserted if sensor measurement data have reached

defined thresholds.

- Alert algorithms. Typically, an alert will result if a combination of observed variables

is no longer in a defined region (the event of variables departing from this region).

Alerts cause application level procedures and/or workflows to be executed as a

reaction to the event.

- Interfaces for alarm management. Alarms involve communication procedures with

the emergency management agencies or the public to warn about an imminent hazard

and to initiate emergency procedures (such as evacuation).

Note: Although used here in the requirements section, the term “alarm” is not used in

the SensorSA as a distinguished architectural term. It is considered to be a special type

of an alert (see section 6.3.3).

- Tracing. Tracing requirements address the need to document what information

sources were used as a basis for the decisions taken and the decision making process

itself. The purpose is to be able to provide a retrospective justification of decisions

made, which may later be contested by parties seriously affected.

- Models. The SANY system shall provide in general

- a model service catalogue, where all available services may be selected by the

user

- an execution management service handling input/output and, optionally if

expedient for performance reasons, data by reference

- the capability of using the output of models and fusion algorithms as sensor

values without changing the system.

- In addition to basic support for models and model wrapping (to integrate the models

into the SANY service network), the following model-specific functionality is

required:

- Gathering of applicable source impact models

- Domain skills compilation

- Library of models as processes

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 47 of 233

- Library of geo-statistical analysis as processes

- Predictive models for adaptive sampling

- Spill advection & dispersion modelling

- Forecasting risks (water quality, bathing water, beach closed)

- Modelling long-term degradation of ecosystems

- Improved soil models

4.6.8 Decision Support

- Providing supporting information for decisions. The types of decisions to be taken

imply requirements on the modelling, fusion and visualization of information as well

as on auxiliary methods to compute utility functions and to undertake multi-criteria

analysis.

4.6.9 User Management

- User Registration. The registration of a “new” user has to be supported, and the user

account shall be verified by an administrator (accept/decline).

- User Administration. The administration of user accounts, including the selection,

creation, deletion as well as the update of user related information, shall be supported.

This includes management of user profiles (sets of attributes related to identities). A

list of predefined profile attributes shall be established.

- Policy Administration. Permission assignment and removal on the user, group and

role levels shall be supported. Various types of access restriction (permission types)

shall be provided.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 48 of 233

5. Sensor Model

5.1. Overview

The SANY Sensor Model is best described using a number of different views and is part of a

general strategy to make use of abstract information models in order to optimize usability and

flexibility for complex systems. Again, as for the design process of the SensorSA, the five

viewpoints defined in the ISO RM-ODP are used (see section 3). The following discussion

starts with the Technology Viewpoint, illustrating the view of a hardware manufacturer, and

then reflects a “Sensor” from the Enterprise, Engineering, Service and Informational

Viewpoints. The Sensor Model also encompasses definitions of the terms sensor network and

sensor service network.

Note 1: In this discussion, the thing observed by sensors is called an “observed

property” in line with the OGC Observations and Measurements model (Cox, 2007). An

observed property identifies or describes the phenomenon for which the observation result

provides an estimate of its value. Based on this definition, SANY defines a sensor to be an

entity that provides information about an observed property at its output. A sensor uses a

combination of physical, chemical or biological means in order to estimate the underlying

observed property. Note that, basically, these means could be applied by electronic devices or

by humans. In the former case, at the end of the measuring chain electronic devices produce

signals to be processed. In the latter case, humans enter the observation results in a data

acquisition system as a basis for further processing.

Note 2: The core of the Sensor Model described herein was submitted to OGC and is

now part of the OGC Sensor Web Enablement Architecture, OGC Engineering Report 06-

021r2 (Simonis, 2008).

5.2. Technology Viewpoint of a Sensor

From a technical point of view, we consider a sensor to be a device that responds to a

(physical) stimulus in a distinctive manner, e.g. by producing a signal. This means that a

sensor device converts the stimulus into an analogue or digital representation, the latter being

of more interest within the IT domain. In contrast, an “actuator” transforms a signal into an

action that has some sort of effect on the physical domain, i.e. the actuator produces a

stimulus that can be observed by a sensor (note that actuators are not within the scope of

SANY.) Figure 5-1 illustrates this definition.

Figure 5-1: Sensor and actuator model (derived from (Ricker/Havens, 2005))

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 49 of 233

The following sections provide a more detailed discussion on sensors and distinguish

between simple and complex forms of sensors and sensor systems.

5.2.1 Simple Form of a Sensor

The sensor observes an environmental property which may be a biological, chemical or

physical property in the environment of a sensor, at a specific point in time (t0) at a specific

location (spRef), i.e. within a temporal and spatial context. Note that the location of the

sensor might be different from the location of the observed property. This is the case for all

remote-observing sensors, e.g. cameras, radar, etc. For an in-situ observing sensor, locations

of sensor and observed property are identical, i.e. the sensor observers a property in its direct

vicinity. The simple form of a sensor provides information on a single observed property.

Figure 5-2 shows the model of this situation.

Figure 5-2: Model of a simple form of a Sensor

The observed property is usually converted to a different internal representation, usually

electrical or mechanical, by the sensor. Any internal representation of the observed property is

called a signal. Within the sensor any kind of signal processing may take place. Signal

processing typically includes linearization, calculations based on calibration coefficients,

conversions to different representations and any calculations to prepare the sensor data for

output. The signal may also be transferred over longer distances.

Note: This transfer is not restricted to a signal transmission over a communication

network but could also be a human carrying a chemical probe (e.g. a water probe from a river)

to a laboratory.

The path from signal observation to the output of signal processing takes time and may

also be distributed across several locations. However, the temporal context (t0) and the spatial

context (spRef) of the signal observation must be preserved. As an example, consider the

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 50 of 233

water probe mentioned above: It is imperative to preserve the time and the location at which

the probe has been taken. Depending on the application context, the time and location of the

examination of the chemical probe in the laboratory might be an essential part of the probe

data, or it may be considered as additional meta-information.

Finally, the observed property is accessible at the output of the sensor in a machine

processable representation. The output provides information about the time (t0) and spatial

context (spRef) during observation, though those parameters are usually provided in the form

of meta-information and not as part of the observation result. Due to the delay, t, produced

by the sensor during the observation, the information at the output of the sensor cannot be

accessed before t0+ t. This t can take any range from nanoseconds to several weeks or

months.

Different sensors may provide different representations of the same observed property.

They may differ in the units, the quality of the representation, the observation method or the

internal signal processing that was used. The estimate of the value of the observed property

may be a single value, a range of values, a choice between worst and best value, a sequence of

values or a multi-dimensional array of values representing, for example, a picture. It may

contain values for each point in spatial/temporal context or it may be a statistical

representation in space or time. The description of the representation as well as all other

observation related information has to be provided as sensor meta-information at the sensor

output to be used by an application. A sensor may internally store representations of an older

temporal context (history) or spatial context.

In addition to its output, a sensor may provide an interface to perform the management

of the sensor itself. For instance, this interface may be used to tag the sensor with a name, to

configure the internal signal processing, or to monitor the behaviour of a device.

5.2.2 Complex form of a Sensor

If an observed property cannot be observed with available sensor technology of simple form,

it is possible to build a complex form of a sensor using several simple forms. This composite

model is illustrated in Figure 5-3.

The information about the observed properties of the individual components of the

complex form may be processed by any method of information processing (e.g. in fusion

blocks). The output of the complex form of a sensor represents an observed property as

defined by the sensor operator. This means that the linkage of the output of the complex form

of a sensor to the output to the simple forms of a sensor is transparent. Still, even the complex

form has to provide some information about the temporal and spatial context of its output

data.

Note: Those contexts might be of different scales. A complex form of a sensor might

provide forecast information for the next multi-week period in a large area, whereas the

simple forms provides observations only at single points in time and space.

Thus, the resulting temporal context of complex forms of sensors is a function of the

temporal contexts of the individual observed properties, represented in Figure 5-3 as f(t0, t1).

The same may be true for the spatial context, in Figure 5-3 represented as spRef = f(spRef1,

spRef2). The function should be provided as part of the meta-information, including

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 51 of 233

information about all processing steps at the output interface as well as on the management

interface.

Figure 5-3: Model of a complex form of a Sensor

Depending on the application context, this complex form of a sensor may itself be

aggregated into another complex form. In this case, the internal structure is a black box to the

application.

5.2.3 Sensor System

Several sensors may be combined within a sensor system (see Figure 5-4) that allows the

management of the system holding the sensors in addition to the management of each

individual sensor separately. This is done through the management interface of the sensor

system.

The key characteristic of a sensor system is its singular output and management

interfaces that reflect its organisational unit. The organisational unit varies in type and nature.

Having a sensor system doesn‟t necessarily mean that the individual parts of the system

do not provide individual interfaces. In addition, each part of a sensor system might be

unravelled into sub-systems or individual sensors with individual interfaces as well. The key

characteristic of the system remains its single output- and management interface,

independently of any kind of interface provided in addition.. Examples for sensor systems are

satellites (whereas the physical structure of the satellite is a platform, not a sensor) with a

number of remote-observing devices, weather stations with sensors for wind speed,

temperature, and humidity, ground water observation systems used for surveillance of the

environment around a chemical plant or a system of surface water observation points ordered

on the surface and in the depth of a water body.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 52 of 233

Figure 5-4: Model of a Sensor System

In contrast to a complex form of a sensor, the sensor system allows direct addressing of

its individual parts as well as addressing of the sensor system as a unit. A complex form of a

sensor provides only the management of the whole entity. Individual parts are not

directly addressable. The difference affects the management interface, but has no influence on

the response behaviour of both, complex form of a sensor as well as sensor system. Both

might provide data that traces back to individual parts.

5.3. Enterprise Viewpoint of a Sensor

The enterprise viewpoint analyses the business context and the system and user requirements

for environmental monitoring in terms of functionality, information demand and quality. It

identifies the environmental phenomena that have to be observed with their temporal and

spatial resolution and reflects this need with the types of sensors and models that are

available. This activity may encompass a cost-benefit analysis if there are several options and

offers of service providers. Furthermore, from the set of requirements basic patterns of sensor

topologies are abstracted (see section 4.5). As listed in Table 4-1, a distinction has to be

maintained between sensors and corresponding data loggers that are spatially fixed, i.e. bound

to a given location, and mobile sensors such as cameras on aircrafts or satellites.

5.4. Engineering Viewpoint of a Sensor

Roughly speaking, the engineering viewpoint links components to a communication network.

The network might be the Internet or any other open communication network. The

components themselves implement purposes, functions, and content as described in the

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 53 of 233

service and information viewpoint below. Thus, the sensor model is extended with a network

node component (e.g. an Internet node) as illustrated in Figure 5-5.

The SensorSA defines the resulting sensor network as a collection of sensors and

optional processing nodes, in which information on properties observed by the sensors may be

transferred and processed.

Internet nodes might be either connecting a single sensor (a) or a whole sensor network

(c) to the communication network. Further on, a sensor system might even integrate all

necessary components to act as one single network node, i.e. the sensor system is addressable

and accessible within the communication network (b).

Figure 5-5: Sensors connected to a Communication Network (here: Internet node)

Depending on the available addressing options (see section 5.2.3), the sensor network

appears to users as either a sensor system or a complex form of a sensor. This is the design

decision of the sensor network engineer.

Let SN = {S1, S2,…,Sn} be a sensor network with n 0 indicating the number of

sensors in SN. There are the following properties of a sensor network with respect to

membership of sensors.

- The membership of a sensor to a sensor network is time-dependent, i.e., sensors may

join and leave sensor networks, or formally: SN1 (t1) SN1 (t2) ≠ Ø with t1 ≠ t2.

- Sensor networks may overlap, i.e., a sensor may be member in more than one sensor

network at a given time t, or formally: SN1(t) SN2(t) ≠ Ø.

- Sensors may be moving, i.e. they may change their position. As a consequence of the

movement of the sensor it may leave one sensor network SN1 and join another sensor

network SN2, or formally: Si SN1 (t1) Si SN2 (t2) with t1 ≠ t2. The SensorSA

refers to these sensors as roaming sensors. An example is a sensor node in a wireless

sensor network that leaves the reachability zone of a data logger and gets into the

reachability zone of another data logger.

5.5. Service Viewpoint of a Sensor

The service viewpoint is concerned with the functional decomposition of a sensor or a sensor

system into a set of services that interact at interfaces. The transfer of this software modelling

perspective into a more functional perspective of the sensor model leads to an even more

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 54 of 233

complex view. There are two perspectives for the service viewpoint: an internal perspective

and an external perspective.

The internal perspective ignores the communication part for a moment and has a closer

look at the physical device called a sensor by converting the black box sensor into a white box

(see Figure 5-6).

Figure 5-6: Service Viewpoint of a Sensor (internal perspective)

The sensor responds to the physical stimulus “temperature” with the generation of a

certain voltage observed in Volts. Afterwards, the voltage gets converted into a digital

representation of degrees Kelvin.

The external perspective represents the view of a software developer or a designer that

aims at integrating a sensor into a network of services. From this perspective, a sensor may be

seen as a component in a service network with two major logical interfaces:

- Information: an interface to access the information that represents the properties

observed by the sensor (see the information viewpoint of a sensor described in section

5.6), and

- Management: an interface that enables the configuration and monitoring of the internal

behaviour of the sensor (see the internal perspective) as well as the discovery of the

sensor resources that are made accessible through the observation access interface.

Both logical interfaces have been illustrated before in Figure 5-2, Figure 5-3 and Figure

5-4. Technically, the SensorSA maps these logical interfaces upon the interface and service

types of the OGC Sensor Web Enablement initiative. An example of an information access

interface is the OGC Sensor Observation Service as described in section 8.2. An example of a

management interface to a sensor is the OGC Sensor Planning Service as described in section

8.2.3.

From the service viewpoint, it often makes sense to consider a simulation model as a

sensor, because a model can provide data for times in the past or future analogous to a sensor

device. This view is, for example, found in (Botts, 2005) and (Cox, 2007). The main reason

for this very broad usage of the term “sensor” results from research and standardization

efforts within the domain of service-oriented architectures. As long as sufficient meta-

information comes along with the data (e.g. how the data were produced, quality etc.), it does

not make any difference for the client whether a physical device or a simulation models

produced the data. This approach has the advantage that generic sensor applications may be

built that retrieve their data from physical sensors (usually past observation results) in the

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 55 of 233

same way as from simulation or predictive models (i.e. calculated future observation results in

the case of predictive models).

Services instances that provide access to sensor data are usually composed in so-called

sensor service networks. The Sensor Model defines a service network as a set of service

instances that interact in order to serve the objectives of applications (definition derived from

RM-OA (2007)). Sensor service networks are variants of service networks that are compliant

to the specifications of the SensorSA.

Let SSVN = {SV1, SV2,…,SVm} be a sensor service network with m 0 indicating the

number of services in a SSVN. In analogy to the membership of sensors to sensor networks,

there are the following properties of a sensor service network with respect to the membership

of service instances.

- The membership of a service instances to a sensor service network is time-dependent,

i.e., service instances may join and leave sensor services networks, or formally:

SSVN1 (t1) SSVN1 (t2) ≠ Ø with t1 ≠ t2.

- Sensor service networks may overlap, i.e., a service instance may be member in more

than one sensor service network at a given time t, or formally:

SSVN1(t) SSVN2(t) ≠ Ø.

- Sensor service networks may be re-configured, i.e. a service instance SVi may be

removed from one sensor service network SSVN1 and assigned to another sensor

service network SSVN2, or formally: SVi SN1 (t1) SVi SN2 (t2) with t1 ≠ t2.

The physical grouping of sensors into sensor networks and the logical grouping of service

instances into sensor service networks is illustrated in Figure 5-7.

Figure 5-7: Sensor Networks and Sensor Service Networks

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 56 of 233

5.6. Information Viewpoint of a Sensor

The information viewpoint is concerned with the semantics of information and information

processing. Thus, it discusses a sensor in regard to the semantics behind a sensor or a sensor

system. The abstraction from the physical device described in the technology viewpoint

becomes appropriate. Basically, SANY adopts here the OGC Observations and Measurements

model as specified in (Cox, 2007) and described in section 7.2.

We speak of a sensor as a source that produces a value, within a well-defined value

space, of an observed property which may represent a physical, biological or chemical

environmental phenomenon. Sensors and sensor systems as well as simulation models fulfil

this definition. If the semantics do not differentiate between data produced based on a

physical stimulus or any other data, the distinction between model and sensor disappears.

The information viewpoint concentrates on the data that are provided in the form of

observation results abstracting from the source of the observation data. These observation

results have to follow the sensor data information model, i.e. the results have to reflect all

aspects of the underlying viewpoints. In addition to the observation results, information about

the observation procedure, spatial-temporal context, and organizational characteristics has to

be provided. Such information is considered to be meta-information for the purpose of

interpretation and further processing of the observation results (see section 6.3).

In order to identify and describe sensor networks the following information elements

may be necessary:

- human-readable name and unique identifier of a sensor network

- status of the sensor network

- observation-related attributes, e.g. observed properties, features of interest

- topology of the sensor network (e.g. ring, star, bus,...)

- communication means of the sensor network (e.g. Zigbee)

- administrative attributes of the sensor network (e.g. provider, ownership)

- statement about how the membership of sensors in a sensor network is defined.

Membership statements may be formulated explicitly, by defining a list of sensors, or

implicitly, by providing a logical expression on attributes. Implicit membership

statements may be based upon administrative attributes (example: “all sensors

operated by the German Meteorological Service”), or based upon spatial-temporal

conditions (example: “all air monitoring stations in Rome available in January 2009”).

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 57 of 233

6. Major Concepts of the Sensor Service Architecture

6.1. Overview

Before starting the detailed specification of the individual viewpoints of the SensorSA, the

following major concepts of the SensorSA are described in order to facilitate the

understanding of the subsequent specifications:

- functional domains of the SensorSA

- models of interactions including request/reply and event-based models

- resources and their identification

- approach for meta-information including handling of data quality

- management including resource discovery, sensor planning and sensor and sensor

service monitoring

- security model with a focus on access control

Concrete concepts, e.g. interaction patterns between service instances and policies for

service networks, are specified in the Engineering Viewpoint in section 10.

6.2. Functional Domains

Services in the SensorSA are designed to support applications that serve the needs of users.

They may call other services if this is required to fulfil the functions offered at their

interfaces. In this case, a service may itself be a client to another service. In an extended

situation, chains of service operation calls may be defined in order to realise more complex

functionality. In a service network every service instance may call operations of any other

service.

The call of an operation of a service requires that the client know the name and the

address of the operation. This knowledge may be acquired from some mediating instance in a

discovery phase (e.g. a catalogue service, see below), however, it may also be acquired by

other means (e.g. entered by a human or pre-configured).

Although there is no prescribed hierarchy of services, services may be grouped into

functional domains for which they are basically designed. The SensorSA distinguishes

between the following functional domains as illustrated in Figure 6-1:

- Sensor Domain

Services in the sensor domain cope with the configuration and management of

individual sensors and their organisation into sensor networks. Further examples are

services that support the interaction among the sensors themselves, e.g. a take-over

service in case of an impending sensor battery failure. Note that services in this

domain that will be part of the SensorSA shall be abstractions from the proprietary

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 58 of 233

mechanisms and protocols of sensor networks. Proprietary mechanisms are part of an

Implementation Architecture and are outside the scope of the present document.

Figure 6-1: Functional Domains of the SensorSA

- Acquisition Domain

Services in the acquisition domain deal with access to observations gathered by

sensors. This includes other components in a sensor network (e.g. a database or a

model) that may offer their information in the same way (i.e. as observations) as

sensors do (see the discussion about the Sensor Model in section 5). They explicitly

deal with the gathering and management of information coming from the source

system of type “sensor”. The information acquisition process may be organised in a

hierarchical fashion by means of intermediate sensor service instances (e.g. using data

loggers).

- Mediation and Processing Domain

Services in the mediation and processing domain are not specific to the SensorSA.

They are specified independently of the fact that the information may stem from the

source system of type “sensor”. They mediate the access from the application domain

(see below) to the underlying information sources. They provide generic or thematic

processing capabilities such as fusion of information (from sensors and other

information sources), management of models or access to model results. In addition,

service support for the discovery of sensors, data and services, naming resolution or

service chaining are grouped in the mediation and processing domain.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 59 of 233

- Application Domain

Based on services of the acquisition and processing domain, services in the application

domain support the rendering of information in the form of maps, diagrams and

reports such that they may be presented to the user in the user domain.

- User Domain

The functionality of the user domain is to support the interface to the end user.

Functions in this domain are formally outside the scope of the SensorSA. Thus, the

SensorSA does not specify dedicated services to support the user interface. However,

when building concrete systems and applications, such functionality is essential. This

functionality has to be specified in a dedicated implementation architecture that also

may take proprietary components and products into account.

At the user domain layer, the user usually is provided with a graphical user interface

that simplifies the operation of a sensor service application that is run on the application

domain layer. For example, instead of typing commands into a console window or running

shell scripts, the user uses forms, control bars, or joysticks to control the application. The

communication taking place between the form and the sensor is opaque to the user. The form-

providing application may communicate directly with the sensor or with any of the layers

below. Similarly, every lower layer may communicate directly with the sensor or with any

other lower layer. To the user, it appears as a direct communication with the sensor, although

multiple intermediate steps might be involved. The following figure illustrates the various

communication paths.

Figure 6-2: Communication paths between the user and the sensor

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 60 of 233

6.3. Models of Interaction

6.3.1 Overview

The SensorSA uses the taxonomy proposed in (Muehl/Fiege/Pietzuch, 2006) in order to

characterise the interaction models between the service components in a sensor service

network. The taxonomy is based upon the way interdependencies between the service

components are established (see Figure 6-3).

Figure 6-3: Taxonomy of Interaction Models (Muehl/Fiege/Pietzuch, 2006)

It is expressed by two attributes: the initiator attribute, which describes whether the

consumer or the provider initiates an interaction, and the addressee attributes, which describes

whether the addressee of the interaction is known (i.e. directly addressed) or unknown (i.e.

indirectly addressed).The SensorSA currently supports the following interaction models:

- request/reply interaction model (see section 6.3.2)

- event-based interaction model (see section 6.3.3)

Note: These are interaction models between the logical service components without

making assumptions about the underlying infrastructural means (e.g. communication

protocols) to implement these interaction models. Furthermore, both interaction models

may be applied to implement the two logical interface types that are distinguished in the

service viewpoint of the sensor model (see section 5.5): the information and the

management interface.

6.3.2 Request/Reply Interaction Model

In the request/reply interaction model the initiator is the consumer (also called client) that

requests data or functionality from the provider (also called server). The initiator either

expects data to be returned or it relies on a specific task to be done. The consumer knows the

provider in the sense that it may directly address the provider. The address may have been

acquired through pre-knowledge (configuration) or by means of resource discovery (see

section 10.2).

The request/reply interaction model is applied in most of the services and interfaces

specified in the Service Viewpoint in section 7.

Note: In cases where the addresses of the providers are not known,

(Muehl/Fiege/Pietzuch, 2006) talk about the anonymous request/reply interaction model. This

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 61 of 233

interaction model may be applied in the sensor domain of the SensorSA functional domains

(see Figure 6-1) and implemented by broadcast or multicast communication protocols in

sensor networks. However, these communication protocols are conceptually out of the scope

of the SensorSA., because, as explained in section 2.1, the SensorSA specification is

independent of the specifics of a particular service platform.

6.3.3 Event-based Interaction Model

The event-based interaction model represents the basic form of interaction for cases in which

timely delivery of observed actions is important but needs to be flexible. It is usually applied

in event-driven processing systems (as defined in section 6.4.5). Flexibility and adaptability

are among the key characteristics of event-driven processing systems, because event

generators don‟t call any specific type of event receivers. Indeed, they don‟t even need to

know them.

Events will be more fully defined in section 6.4, but the event-based interaction model

relies on two basic concepts:

- an event that describes any happening of interest (i.e. anything that happens, or is

contemplated as happening), and

- a notification, that transports the reified happening of interest.

In the event-based interaction model the initiator is the provider of the data, i.e. the

producer of notifications. The essential characteristic of this interaction model is that

producers do not need to know any consumers. Thus the addressing scheme is indirect, which

means that the notifications are not addressed to any specific set of recipients but instead are

mediated by a broker component which offers a notification service. A consumer may express

its interest in notifications by subscribing to the notification service.

 The SensorSA provides the means and mechanisms to define, generate, distribute,

receive, and process events. Three causes of events are observed most frequently:

1. Events based on singular observations made by a single sensor,

2. Events based on aggregated observations made by one or multiple sensors, and

3. Events related to the operation of the sensor network or the sensor services.

The first type of event occurs if a sensor detects something that matches a previously

defined event condition. The occurrence may take place in the environment of the sensor or

internally. Examples are a temperature value that exceeds a threshold, the detection of hotspot

pixels in a remote sensing image, or low battery power of a sensor.

The second type of event occurs if non-atomic conditions occur, e.g. both temperature

and wind speed observation result values exceed thresholds. Events may be based on

conditions that remain for a well-defined number of time intervals, e.g. temperature exceeds a

threshold for n time intervals continuously (also known as time series analysis based events).

In a common example, one event is produced when e.g. the temperature exceeds a threshold

the first time. A second but different event is produced if the temperature again falls below the

threshold. In this case the two different events follow a state change in the sensor.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 62 of 233

The third type of event occurs when some state has changed in the sensor or service

network configuration (e.g. addition of a new sensor or sensor service instance) or some

unforeseen behaviour has been detected. The latter situation usually results in an exception on

the software level. If deemed essential by the software engineer, such exceptions may be

escalated to other components in the form of events.

In the context of the SensorSA, all event types are handled equally. The event type is

transparent to the receiver of an event notification. It is created by the event observer and

published or transferred to notification consumers.

Still, the SensorSA addresses a very heterogeneous environment with sensors and

services provided by a number of institutions and organisations. The event-based architectural

style of the SensorSA defined below takes these aspects into account.

6.4. Event-based Architectural Style

SensorSA defines different architectural styles that could be applied to the Sensor Web. The

goal is to harmonize the various styles in order to facilitate a successful integration of

different approaches in a single application. In the following, we define the Event-based

Architectural Style. It is based on the existence of events that get communicated between

various components within the Sensor Web.

Note: The SensorSA Event-based Architectural Style was developed in close

cooperation with the Sensor Web Enablement Team of OGC to ensure a sustainable solution

beyond the lifetime of the project SANY. The goal was to develop a general Event-based

architectural style to be applied to Sensor Web applications. The results of this activity are

published as OGC Engineering Report (Everding and Echterhoff (Eds.), 2009). With over 150

pages in length, this report goes beyond the scope of the SensorSA core document. Thus, we

make do with an excerpt of the main findings at this stage and refer to the publicly available

OGC report.

6.4.1 Event Definition

The ISO 19100 series of standards, which are, as leading standards in the geospatial IT

domain, of overall importance to the SensorSA, provide two definitions of the term “event”.

Common to both definitions is the reference to an “action”. It is therefore in line with the

rather philosophic definitions such as the one provided by the Oxford English Dictionary,

which defines an event as “something that happens or is thought of as happening”. In terms of

our application domain, this leads to the rather problematic situation that the event is equated

with the action itself, thus the event becomes an abstract, non-computable thing:

- ISO 19136: An event is “an action that occurs at an instant or over an interval of

time.”

- ISO 19108: An event is “an action that occurs in an instant", an instant being "a zero-

dimensional geometric primitive representing position in time”

Common to both terms is the reference to an action that occurs. The relation to a time

instant versus a time interval manifests the crucial difference. According to ISO 19108, only

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 63 of 233

those actions qualify as events, that postulate changes, e.g. “it started raining at 20:00hrs

CET”. Observations like “it rains” or “it rained from 2AM to 4PM” don‟t qualify as events

consequently. The definition in ISO 19136 is more relaxed. Here, both “it started raining at

20:00hrs CET” as well as “it rained from 2AM to 4PM” do qualify as events, only “it rains”

does not. The latter would be called a “state” in ISO 19136.

In SensorSA, we adopt the definition of Luckham and Schulte (Eds.) (2008) and

combine it with the definition of ISO 19136 in order to be consistent with ISO TC 211

nomenclature. Thus the term event is defined as follows:

- An event is anything that happens or is contemplated as happening at an instant or

over an interval of time.

This definition emphasizes the fact that an event has a strong temporal aspect and may

represent anything that happens in the real world but can as well be simulated or happen in

software. The term happening encompasses action, occurrence and situation of interest, state

change etc. which all represent something that happens.

To ensure better alignment with the domain of interest, i.e. information and

communication technologies, we introduce further the term event object:

- An event object represents, encodes, or records an event, generally for the purpose of

computer processing,

Thus, not the happening itself, but a record that signifies the happening is considered to

be an event object. The happening of interest is sometimes referred to as action or activity.

This action remains an action until something observes it and generates an event object that

reifies it. We emphasise that event processing literature often does not distinguish between an

activity that takes place and an object that represents that activity for the purpose of computer

processing. This causes an overloading of the word “event”, which takes both meanings.

An event can be generated at any time during an observation. Given the sensor model as

described in 5.2, an event can be produced at any stage during the observation process, i.e.

from or after the first observation of an environmental property throughout all processing

steps until the final observation is delivered as output of the sensor or sensing system. The

event time will be assigned by the observation provider and equals the sampling time of the

observation. The event model, which will be described in the next section, will elaborate the

temporal aspects of events.

6.4.2 Event Model

6.4.2.1 Overview

Not every happening that might be of interest will be modelled as an event. It is up to the

domain experts to make decisions about the event itself, its properties, associations, and its

relationships to other events. The various levels of freedom need to be represented in the

event model.

Events might but don't need necessarily be modelled as features, according to OGC

Abstract Specification 5 and in accordance with ISO 19101 and the General Feature Model

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 64 of 233

(GFM) defined in ISO 19109. Here, features are entities that have a set of properties defining

their characteristics. All events have one characteristic in common: The time the happening of

interest took place. Some happenings last for a period of time, e.g. a sandstorm. SensorSA

adopts the definition by Allen and Ferguson that events are temporally anti-homogeneous

(Allen & Ferguson 1994). Thus, an event that happened over an interval of time did not

happen during that interval, because the event would not have been completed yet. The event

time equals the time of completion of the interval. This aspect needs to be considered for the

modelling of event types.

Further on, the event model shall allow multiple events generated for a single happening

of interest. Those events might represent different aspects of the happening, with only the

time being shared across them. We will elaborate the lifetime of events in more detail in the

following sections, before the event model aspects inheritance, constraints, properties and

associations will be discussed in more detail. Before we address the lifetime of an event, we

define further:

- A notification is a message that transports one or more events. The notification might

be identical to the event object, if a single event object gets transported without any

further packaging into a message container.

Note 1: An alert is a notification. The terms notification and alert are used synonymously

throughout this document.

Note 2: Some use cases describe the dispatch of “alarms”. The SensorSA specification

does not differentiate types of event notifications. Thus, an “alarm” is simply an event

notification and shall not be used in architectural discussions, as its semantics differ

considerably across applications. The term is better used in its verb-form, e.g. “…a

notification will be sent to alarm the user…”.

6.4.2.2 Event Properties

SensorSA follows the General Feature Model defined in ISO 19109 to define the property

types operations, attributes, and association roles of the feature type 'event type'. However, the

SensorSA uses the RDF terminology, as defined by the W3C (W3C, 2004) because it doesn't

differentiate between attribute and association roles, but calls both property types 'properties',

which is more appropriate for the event model:

- Operations

SensorSA defines a single mandatory operation to retrieve the event time:

getEventTime. It returns a time instant or time interval. An event type might encode

the time when the happening took place as a property, or the time gets computed on

the fly once the getEventTime operation is called. Event types may provide additional

optional operations.

- Fixed and Dynamic Properties

Event objects have fixed and dynamic properties. Fixed properties cannot be modified

once the value has been set. An example of a fixed property is the temporal or spatio-

temporal characteristic of the event object. Event objects cannot be modified after

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 65 of 233

their release, but need to be superseded by updated new event objects, i.e. after

release, all properties are fixed.

Nevertheless, there are some event objects that refer to the same logical happening,

but differentiate in their property settings. An example would be a

"lastEarthquakeEvent" object. This event object always refers to the last earthquake,

thus some properties, such as epicentre or magnitude change from event object to

event object. Here, every new event object represents an update of all earlier event

objects, i.e. though the properties are fixed of each object, they seem to be

dynamically changing.

- Temporal Properties

Each event object may store a temporal property of type time instant or time interval

to represent the time when the happening took place. Still, following the lazy loading

pattern, the time might get computed in time when the getEventTime operation is

called.

Event objects might provide any additional temporal property, such as 'event creation

time', 'event detection time' etc. To support distributed systems, each event object shall

reference the temporal reference frame and clock to support proper event sequencing.

Event object may represent happenings in the past, ongoing, or (simulated) in the

future.

- Spatial and Location Properties

Event objects may provide information on spatial extents related to the happening.

Those properties may be of any geometry type and representation, i.e. vector or

coverage based. A location identifier may be used instead of a geometry type.

- Thematic Properties

Any domain expert is free to add as many thematic properties as necessary.

The formal definition of the event information model is provided in the Information

Viewpoint in section 7.5

6.4.2.3 Event Lifetime

Temporal aspects of events have attracted considerable interest as a research topic over the

past few years (Allen 1995). The core focus was on representing temporal aspects in

geographic information systems and spatio-temporal data models. SensorSA doesn‟t

contribute to this still ongoing discussion, but defines an event model that acknowledges the

temporal aspect of events reifying actions in their respective environment as well as their

causal catenation. SensorSA introduces a three-phases event lifecycle, with creation, update,

and deprecation phase of an event.

- Creation of Events

The Sensor Web requires events to be generated from a number of components and

logical entities. Among those components are resource-constrained devices, such as

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 66 of 233

battery-powered sensors, temporarily unavailable components, such as human

observers, and high-reliance systems such as emergency warning systems.

Basically, event creation is a two-step process. First, the action that is signified by the

event needs to be observed; and second the observation must be transformed to a

structure that can be processed within IT systems.

SensorSA doesn‟t apply any restrictions on the observation process, i.e. the activity

can be observed by a sensor, a human, a piece of software that supervises another

piece of soft- or hardware, event processing systems that generate events based on

other events, or any other entity that is enabled to execute observations. The second

step is the transformation of the observation to something that can be dealt with within

IT systems, i.e. an event object that reifies the observed happening.

- Update of Events

Once generated, events can be updated to allow modifying the event content. The

update of an event may have major effects on events further down the causal chain of

related events. Causal chains and updating of events will be further elaborated in

6.4.2.6.

- Deprecation of Events

Events shall not be cancelled, i.e. an event exists and continues to be valid until

declared void or deprecated. SensorSA calls this approach the Reliant Event Model.

The rationale behind this approach can be found in the ambiguous semantics of the

term cancellation. Cancelling an event could mean that the signified action never

happened (e.g. false observation by sensing device), that it had happened but is not

valid any longer (e.g. a “fire event” after the fire was extinguished), or that it was once

true but was modified based on additional observations (e.g. reclassification of a storm

once more observation data were received).

The validity of events shall be reflected in the event content model. Events are valid

until they become explicitly deprecated.

6.4.2.4 Event Verbosity Levels

SensorSA differentiates three verbosity levels. Depending on the verbosity level,

applications produce different amounts of events.

0. First event is generated when a pre-defined condition is matched. No further event is

generated until a pre-defined condition is left, e.g. intrusion detected, observed value

above threshold.

1. First event is generated when a pre-defined condition is matched; subsequent events

get generated every time the observed value(s) change(s) and the pre-defined

condition is still true.

2. Every observation that matches a pre-defined condition generates event, i.e. first event

is generated when pre-defined condition is matched; subsequent events get generated

every time at sample intervals as long as the pre-defined condition holds true.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 67 of 233

Figure 6-4 illustrates the different verbosity levels for different phenomena.

Figure 6-4: Event generation verbosity levels of type binary (upper row)

and nominal (lower row)

Figure 6-4 illustrates the two extremes of binary and nominal scales. Other scales, such as

ordinal or interval, work analogously.

The upper row illustrates events generated by an intrusion detection system. This binary

system knows only two stati, i.e. “intrusion detected” or “no intrusion detected”. The lower

row represents a temperature sensor. The y-axis represents the temperature value and is of

type nominal scale. The sampling rate of both systems is identical. In both rows, the x-axis

represents time, the y-axis observed value(s). The bold black line represents the current value.

The sampling rate is indicated with vertical black lines. Generated events are labelled with a

red “E” above the sampling lines. We see that the number of generated events is considerably

higher for the temperature observation system than for the intrusion detection system, because

the temperature may change its value above or below the threshold, whereas the intrusion

detection system only knows two statuses.

6.4.2.5 Form of Events

Complex Event Processing, or CEP, is one of the major concepts of event processing. It deals

with the task of processing multiple events with the goal of identifying the meaningful events

within event clouds.

One of the key aspects of Complex Event Processing applications is the aggregation of

event objects and the derivation of new information, reified as new events or event objects,

respectively. SensorSA adopts to a large extent the concept developed by Luckham and

Schulte (2008). According to them, an event, which is neither an abstraction nor a

composition of other events, is a Simple Event. Whenever an event is an abstraction of other

events, it is called a Complex Event (see also the specification of the vent information model

in section 7.5). Complex events can but do not have to list the member events of which they

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 68 of 233

provide an abstraction. Furthermore, whenever an event is generated as a result of applying a

well-defined procedure to one or more other events, we refer to a Derived Event.

The verbosity of events is an essential criterion in event messaging systems. It is the

information model that defines the power of notification messages, i.e. which amount of

information a notification may provide. In some cases a notification may only indicate that

something of interest has happened, but no details - then clients would have to pull the

additional information from a service; in other cases the notification itself might already

contain all relevant information so that no additional service-request is needed.

6.4.2.6 Roles in Event Relationships

Events may have relationships to other features and thus also to other events. The specific

relationships between events are domain dependent. However, some roles serve a general

purpose and are thus defined in SensorSA. We can identify relationship roles for related

events in general (see Table 6-1) and for events that are members of a complex event (see

Table 6-2).

Role Identifier Meaning

supersedes The target event is superseded by the source event. This means that the target

event is deprecated.

revokes The target feature is revoked which means that the target event object should

be considered as not having been issued.

caused The source event caused the instantiation of the target event. More specifically,

the source event is (one of) the reason(s) why the target event was instantiated.

Table 6-1: Roles implemented by a related event

Role Identifier Meaning

causedBy The source event was caused by the target event. More specifically, the target

event is (one of) the reason(s) why the source event was instantiated.

Table 6-2: Member Event - defined values of the role property in an

EventEventRelationship

Superseding an event object with another is the preferred way to implement changes

applied to an event object. Let us explain this in more detail. Any modification of an event

object can always be critical for other applications. When transmitting an encoded

representation of an event object to other systems, what they get is only a snapshot if the

event object has modifiable / dynamic properties. Computations that are based upon this

snapshot will need to be repeated when a change to an event object is made later on. In the

worst case this would lead to a rollback of the whole computation, possibly involving a

rollback on other systems as well. This situation is unavoidable and applies to all systems that

base their computations upon given information. At least we can make it easier for event

processing systems to detect a change of a previously received event object by implementing

such a change in a new event object that has a relationship to the original event with the role

supersedes.

If it is recognized that an event was wrongly detected, initialized and distributed or the

event object released on mistake, then this "happening of recognizing the failure" can be

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 69 of 233

represented by a new event and an event object be distributed which relates to the wrong

event, which shall be revoked.

How an application reacts when receiving an event that either supersedes or revokes is

up to the application and not defined here.

Whenever an event is detected based upon the information contained in other events

then there exists a causal relationship between the detected event and the base events. A base

event caused the detected event (maybe multiple other events). From the perspective of the

detected event, it was causedBy one or more other events. The set of member events that

caused a complex event is sometimes referred to as the causal vector of that event.

6.4.3 Event-Driven Processing System

6.4.3.1 Overview

Event-driven processing systems are applying the event-based architectural style as described

above, i.e. they are centred on an asynchronous “push”-based communication model. They

emphasise the basic idea of sense and respond: Sensors observe the current situation and alert

receivers upon specific actions. Using techniques such as Complex Event Processing (CEP), it

becomes possible to extract the information value of multiple events and data streams and

alert/notify interested parties with minimum delay. Due to the permanent sensing, event-

driven processing systems adapt perfectly to a continuously changing environment. Events get

detected when they appear. The influence of pre-planned schedules is minimized.

Any event-driven processing system consists at least of two components, (1) a sensor

sensing the event and emitting the notification, and (2) a consumer receiving this notification.

In more complex scenarios, the consumer can act as a sensor itself, emitting new notifications

in turn of received ones. Furthermore, any event processing systems supports the following

three features (Chandy and Schulte, 2007):

1. Notifications are sent from the producer to a consumer using asynchronous messaging.

The emission of notifications is triggered by the producer, not the consumer.

2. Consumers process event notifications as soon as possible to ensure timely end-to-end

processes.

3. Notifications don‟t specify the operation that a consumer must perform upon receiving

the notification. As the logic what to do with the notification remains in the consumer,

developers can change their response systems without touching the producer. The

logical coupling is minimized.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 70 of 233

6.4.3.2 Event Processing Role Model

The SensorSA uses a role-based concept to differentiate the various participants involved in

the event-driven processing systems
10

. Some of those roles can be implemented as services

and will therefore be discussed under the service viewpoint (see section 8).

 The SensorSA event role concept defines the following roles (Figure 6-5):

Figure 6-5: Event Processing Role Model

- Receivers do receive notifications from a priori known publishers. This simplest type

of notification sink does not allow registering additional publishers. It does, however,

support registering itself at new publishers. Example: A component that accepts only

incoming notifications from known publishers, e.g. to make data persistent in a

database.

- Publishers do publish notifications. Publishers don't offer subscription-interfaces.

Example: Simple sensor without any interface exposed other than what is necessary to

send notifications.

- Routers receive events and publish them again, i.e. they forward events from

registered Publishers to registered Receivers. Example: A gateway that forwards data

received over a thin wire from a sensor to a bunch of Internet clients. The Router is

derived from Receiver and Publisher, i.e. it doesn't provide any interface to register

new publishers, nor does it support subscriptions. Example: A component that receives

notifications from a-priori known publishers and publishes them to a-priori known

Receivers.

- Consumer consumes notifications and provides an interface that allows publishers to

register with this Consumer. The Consumer then accepts notifications sent by the

newly registered publisher. Consumers inherit the capability to subscribe with

arbitrary Publishers from Receivers. Example: A service that accepts additional

sensors to register themselves as publishers.

10

 The concept described herein is based on the OGC Engineering Report OGC 09-032 (Everding and Echterhoff

(Eds.), 2009), but varies slightly, as it describes a later stage of discussion.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 71 of 233

- Producers do publish data and offer subscription interfaces to clients. Example:

Sensor that supports subscription and sends notifications.

- Broker: A Broker combines the roles of Consumers and Producers. Example: OGC

Sensor Alert Service: it consumes data from sensors (therefore it is a Consumer) and

offers pub/sub to clients (therefore it is a Producer).

The various roles result on the implementation of interfaces as described in section

6.4.3.3. In concrete implementations, the various components will certainly be called

differently and may provide additional capabilities, as they will be based on specifications and

definitions given elsewhere. Nevertheless, the role concept provides a guideline that helps

distinguishing explicit behaviour of components. The following Figure 6-6 illustrates the core

capabilities of the various roles.

Figure 6-6: Event Processing Interaction Models

Blue dots represent actors taking on the roles of a publisher or producer, green dots

represent consumers or receivers, and purple dots represent router and broker. The first row

differentiates the different capabilities of receivers and consumers in case a publisher intends

to send event notifications. The second row reverses the perspective: both receiver and

consumer can subscribe with producers.

Row three and four illustrate the different capabilities of routers and brokers. Whereas

the first behaves as a simple forwarder of information, the broker allows publishers to register

and consumers to subscribe to the events its offers.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 72 of 233

Naturally, all components can be included arbitrary chains. The following figure

illustrates a realistic scenario. Here, a wireless sensor is connected to a gateway that forwards

events generated by the sensor to other Internet nodes. Due to the limited capacities of the

sensor, it is preconfigured to send all events to a dedicated event sink (Internet Gateway). The

Internet Gateway doesn‟t provide any additional capabilities other than forwarding the events

to a broker. Such a chain of components is often used to match dedicated security

requirements. An additional router subscribes to the offerings of the broker. This router serves

as an intermediate to the client. The router may only act as a protocol transducer, i.e. events

received using Internet protocols might get forwarded using automated phone calls.

Figure 6-7: Event Processing Chain

Principally, brokers and router serve as mediators between event sources and event

sinks and don‟t provide any further event processing capabilities. Though, both may

implement further processing capabilities. The OGC Sensor Alert Service (see section 8.2.4)

is an example of such a broker: Sensors register with the service and publish events or simple

observations. The SAS instance acts as a complex event processor and analyzes all incoming

data. Based on its internal settings, the service generates other types of events then it receives.

An example is a blizzard warning services. The service receives data streams and events

reporting various weather parameters. Based on the actual constellation of the various

parameters in time and space, it then generates events of type “Blizzard”. The generation of

those new event types might be transparent or opaque to subscribers.

6.4.3.3 Event Role Interfaces

The components described in the Event Role Model (section 6.4.3.2) are differentiated by

their functionalities. The SensorSA organises these functionalities in four orthogonal

interfaces as illustrated in Figure 6-8. These interfaces can be implemented by components in

order to take on a specific role within a distributed event-driven processing system.

Note: These interfaces are specified in section 8.5 of the SensorSA Service

Viewpoint in an abstract, i.e. platform-independent form.

Figure 6-8 illustrates the four interfaces and the provided functionalities using UML

notation. The interfaces relevant to publishers/producers are shaded in blue; those relevant to

receivers/consumers are shaded in purple. All possible implementations are shaded in light

yellow.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 73 of 233

Figure 6-8: Event Processing Interfaces

6.4.4 Exemplary Event Types

The following list of event types has been identified as being of major importance for

SensorSA applications
11

:

- Sensor Available: generated by a sensor or sensor system when a new sensor is

connected to the sensor network. In general, it‟s useful for “Plug and Measure”

scenarios, especially for event triggered catalogue harvesting

- Sensor Unavailable: Generated by a sensor or sensor system when an existing sensor

is unavailable, e.g. disconnected from the sensor network. It may be used for event

triggered catalogue harvesting and “Plug and Measure”.

- Sensor Timeout: Generated by a sensor or sensor system when a sensor has not

responded since a defined period of time.

- Sensor Properties Changed: Generated by a sensor or sensor system when sensor

properties change (e.g. recalibration, location change in the case of mobile sensors).

11

 This is a non-exhaustive list without any claim of completeness or lack of redundancy.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 74 of 233

- New Sensor Data: Generated by a sensor or sensor system when the sensor acquires

new data, e.g. new data is inserted into a Sensor Observation Service.

- Service Trigger: Generated by a service orchestration environment in order to trigger

other services, e.g. in service chains.

- Service Created/Deleted: Generated by a service in case of creation or deletion of a

service. It may be used to trigger the harvesting of service capabilities.

- Service Capabilities Updated: Generated by a service when the capabilities of a

service have been changed. It may be used to trigger the harvesting of service

capabilities.

- Threshold Exceeded: Generated when a value has exceeded a given threshold. It may

be used in environmental monitoring applications.

- Sensor Battery Low: Generated when the remaining power of a sensor energy supply

system (e.g. a battery) has fallen under a given level.

6.5. Resources and their Identification

6.5.1 Resources

In general, the SensorSA denotes by the term “resource” anything that‟s important enough to

be referenced as a thing itself (Richardson/Ruby 2007). Examples of resources in the

SensorSA may be sensors, functions (possibly provided by means of services), data objects

(possibly but not necessarily modelled as feature types), views upon data objects or

descriptions of data objects or services (capabilities).

The SensorSA focuses on a service-centric computing paradigm and puts the services

and their interfaces into the foreground. However, these services access and manipulate

underlying resources with quite complex schemas (e.g. the elements of the observation and

measurement model described in section 7.2). Typically, these resources provide views

(subsets) upon data sources driven by the needs of the user. The effects of the service

operations heavily depend on the meaning and the status of the underlying resources that are

selected by the caller of an operation when setting the operation parameters. An alternate

paradigm would be to focus upon these resources and their representations when defining a

service platform. This approach is followed by the resource-oriented architecture (ROA)

realised by so-called RESTful Web services (Richardson/Ruby 2007).

The SensorSA aims at conceptually linking a service-oriented and a resource-oriented

view upon a sensor service network in order to gain flexibility. This approach follows the

architectural principles of “technology independence”(see section 4.1.3) and “component

architecture independence” (see section 4.1.5).

The concept “resource” is covered in the SensorSA by considering the following

aspects:

- The identification of resources is defined below in sections 6.5.2 to 6.5.3.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 75 of 233

- A resource model that links basic concepts of a ROA to the concepts “service” and

“interface” is defined in the Information Viewpoint in section 7.6.3.

- A SANY RESTful Web Service platform is defined in the Technology Viewpoint in

section 9.2.3.

6.5.2 URN Namespace for SANY Resources

Interoperability in sensor network applications depends to a very large extent on a mutual

agreement about identifiers of resource types and their underlying semantics. The SensorSA

distinguishes between the identifier itself and its semantics:

- The identifier scheme shall be based on Uniform Resource Names (URN) to

unambiguously reference location-independent identifiers.

- The semantics of an identified resource are provided when URNs are resolved. As a

minimum, the semantics shall be provided in the form of free text descriptions.

Optionally, the semantic description may be enriched and made more concrete by

references to taxonomies or ontological concepts.

Basically, resources used in the SensorSA are identified in the “Uniform Resource

Name (URN) Namespace for the Open Geospatial Consortium (OGC)” (RFC 5165) which is

structured as follows:

urn:ogc:{OGCresource}:{ResourceSpecificString}

For resources that are defined in the scope of the SANY Sensor Model (see section 5) or

for the purpose of SANY applications, the sub-tree of the OGC resource type “def” as defined

by the URN resolver of the OGC Naming Authority (http://www.opengeospatial.org/ogcna)

shall be used. The resulting naming scheme for SANY URNs is:

urn:ogc:def:objectType:authority:[version]:code

with the following definitions:

- "objectType" denotes concepts in the form of a controlled list currently defined in

table 3 of OGC 06-023r1. In particular, the SensorSA shall use object types that are

related to the Sensor Model such as

 “phenomenon” (observable property definition) or

 “uom” (unit of measure definition).

 In addition, the term "eventType" shall be used to denote events (e.g. "sensor

available", or "threshold exceeded"). The event URN usually comes with a

related phenomenon URN. For instance, the URN urn:ogc:def:eventType:

SANY:2009.03:occurrence is related to urn:ogc:def:phenomenon:SANY:

2009.03:earthquake.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 76 of 233

- "authority" denotes organisations (e.g. standardisation organisations such as ISO or

OGC, but also projects such as SANY) that define the resource identifiers. It is a

controlled list defined as follows:

authority := EDCS | EPSG | OGC | SI | UCUM | SANY

Note: This list is an extension of table 1 of OGC 06-023r1 by adding the authority

“SANY”.

- "version" denotes the version of the resource identifier definition as defined by the

authority.

Note 1: For the authority OGC the version is optional (as stated in section 7.2 of

OGC 06-023r1): ―The ―version‖ part of these URNs can be omitted when the

referenced definition does not have a version, and the referenced definition is not

specific to an authority version. When included, the ―version‖ shall be recorded in the

format specified by the authority. The version format is sometimes ―N.N.N‖ or ―N.N‖,

where each ―N‖ stands for an integer. If no other version identification is provided by

the authority, a year or other date can be used. No "v" or other version prefix shall be

included.‖

Note 2: For the authority SANY the version is mandatory when defining a URN

and it shall be provided in the format “N.N”, where each “N” stands for an integer.

When referring to a URN and the version number is missing, the resource that is

associated with the highest version number shall be taken by default.

- "code" denotes a human-readable name that identifies the resource.

Note: URN namespaces (for OGC and for SANY) must not be confused with XML

namespaces used in schema documents of the eXtensible Markup Language (XML).

According to the W3C Recommendation “Namespaces in XML 1.0”

(http://www.w3.org/TR/xml-names), “XML namespaces provide a simple method for

qualifying element and attribute names used in XML documents by associating them with

namespaces identified by URI references”.

6.5.3 Naming principles

Section 6.5.2 described how resources are identified in a global scope in form of an URN. To

guarantee globally unique identifiers it is necessary to set up policies to generate and

administer such identifiers. Such a naming policy must take into account that resources (in

particular sensor nodes) in sensor networks have been manufactured by different vendors

and/or are operated by independent authorities, all with their own, possibly proprietary,

resource identification scheme. Thus, global uniqueness of resource identifiers cannot be

assumed to have already been achieved in the sensor domain (see section 6.2). The only

solution is to restrict the scope of such resource identifiers to the sensor network in which

they have been uniquely defined. It is then the task of the acquisition domain (e.g. an instance

of a sensor observation service) to guarantee global uniqueness with respect to other services

in the acquisition or other domains.

The following situation highlights the need for this approach: If more than one service

instance provides access to the same set of resource instances and if it is necessary for an

http://www.w3.org/TR/xml-names

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 77 of 233

application to treat them as one instance (e.g. one instance of a sensor), the identifiers of the

resource instances shall be globally unique in order to enable the correlation of the resource

instances at a higher level. This is illustrated in Figure 6-9 where one resource instance may

be accessed through two resource providers A and B. Here, the resource providers are

abstractions of the service instances that provide access to the resources.

Figure 6-9: Naming requirements for resources

A resource may be defined as composite resource, i.e. its identity relies on the identity

of other resources. In this case the identifier of a (composite) resource is defined by a

composition of the identifiers of its defining characteristics (attributes). Its global uniqueness

is then dependent on the global uniqueness of the identifier of its composing identifiers.

An important example is the resource observation. According to the Observation and

Measurement model (see section 7.2) the identifier of an observation is defined as a tuple

consisting of the identifier of the feature of interest, the observed property, the procedure (see

the definition of these terms in section 7.2) and the time of occurrence.

Section 4.5 distinguishes between several topologies of sensor service networks.

Looking at them from the perspective of how to identify the resources involved, the

topologies differ in the relationship between the resource providers and the resources

themselves as well as in the cardinalities of this relationship. This has consequences for the

requirements about local or global resource identifiers.

As an illustrating example let‟s consider a service instance acting as a resource provider

to access a sensor (e.g. an instance of the Sensor Observation Service (SOS), see section

8.2.2). The sensor is specified as a procedure which provides observations according to the

SOS information model described in section 7.3.

Note: The method by which a resource (here: a sensor) registers itself to its resource

provider (here: the SOS instance) is outside the scope of the SensorSA because it is specific to

a given sensor network solution.

Two particular relationships are distinguished:

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 78 of 233

1. The relationship between a procedure and SOS instances

There is a single SOS instance that acts as a resource provider to a given procedure. In

this case the scope of the procedure is the SOS instance, i.e. there is a 1:1 relationship

between a procedure and an SOS instance. Thus, the identifier of the procedure needs

only to be unique within that SOS instance. However, depending on the sensor

network topology, the procedure may also be connected to other service instances

(SOS instances or instances of other service types) at the same or at different times.

Examples are mobile sensors that connect to different (stationary) SOS instances from

time to time. In this case more than one service instance acts as a resource provider for

this procedure, i.e. there is a 1:n relationship between a procedure and a service

instance.

Table 6-3 shows the minimum requirements for the scope of the identifiers that result

from the different cardinalities between a resource provider (here: SOS instance) and a

procedure as a function of the sensor network topologies. A “local” scope of the

procedure identifier means that the uniqueness of the identifier is only guaranteed in

the context of the SOS instance that acts as a resource provider to access the

procedures.

Sensor Network Topologies Cardinality

SOS Instance :

Procedure

Scope of

Procedure

Identifier

Sensors and data logger with fixed locations 1:n local

Mobile sensors and fixed or mobile data logger n:n global

Mobile sensors moving in different sub networks n:n global

Mobile sensor cluster on vehicles (e.g. on ships) - block

data transfer on demand

1:n local

Mobile earth observation sensors (satellite, airborne) 1:n local

Mobile sensors with their own IP address n:n global

Table 6-3: Procedure Identifiers in different Sensor Network Topologies

2. The relationship between an SOS instance and the observations.

More than one SOS instance may provide access to the same set of observations. Each

SOS instance may access different but possibly overlapping subsets of observations.

Thus, basically, there may be a either a 1:n or an m:n relationship between SOS

instances and observations. Note that for this relationship the cardinality of this

relationship is not a function of the sensor network topologies. As a consequence, the

demand for a local or a global scope for the observation identifier is as follows:

 In case of a 1:n relationship, the scope of an observation identifier may be local

(i.e. only unique in the scope of the SOS instance).

 In case of an m:n relationship, the scope of an observation identifier shall be

global.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 79 of 233

6.6. Management

6.6.1 Overview

The management aspects of the SensorSA are discussed in a three-dimensional space as

illustrated in Figure 6-10.

Figure 6-10: Management Space in the Sensor Service Architecture

The first dimension corresponds to the “management functions”. These are grouped

according to a non-orthogonal classification into functional areas of the ISO system

management reference model (ISO/IEC 7498-4):

- Fault management traps and handles faults occurring in managed entities.

- Configuration management modifies the configuration of the manageable components.

- Accounting management tracks resource usage according to different criteria.

- Performance management measures system performance for resource optimisation.

- Security management configures multi-level secure processing domains, detects and

traps security violations.

The second dimension is dedicated to the “manageable components” to which the

management functions are applied. These are sensors (in the broader sense as defined in the

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 80 of 233

SANY sensor model in section 5), sensor networks, service instances, service networks and

application components whose meanings are defined the SANY glossary (see section 2.4).

The third dimension constitutes the different life-cycle phases that a SANY sensor and

sensor service network may follow. These are design, installation, normal daily operation and

maintenance phases where the configuration changes with respect to component failures or

system evolution.

The SensorSA does not support all management functions applied to all manageable

components in all phases of the life-cycle. Table 6-4 summarises the management aspects that

are covered in V1 of the SensorSA and provides references to the sections where the concepts

and the policies (as part of the Engineering Viewpoint) are described.

Management

aspect

supports

functional

area

applied to

components

supported

life-cycle

phases

concepts

described

in section

policies

described

in section

registration

and discovery

configuration sensor

sensor network

service instance

service network

installation

operation

maintenance

6.6.3 10.2

sensor

planning

configuration sensor operation 6.6.4 10.4

monitoring fault

configuration

accounting

performance

sensor

service instance

operation 6.6.2 10.3

access control security sensor

sensor network

service instance
application
component

installation

operation

maintenance

6.8 10.5

Table 6-4: Management Aspects covered in the SensorSA

6.6.2 Management Architecture

The basic architectural decision taken for the management aspects “monitoring” and “sensor

planning” in the SensorSA is that the concepts, models and services of the OGC Sensor Web

Enablement (SWE) initiative, in particular the Observations and Measurement model (see

section 7.2) and the major OGC SWE services, are applied to the management of manageable

components themselves.

This approach may be applied to the management of service instances in all functional

domains. However:

- The focus of the SANY project is on sensor service networks.

- In the functional domains above the sensor and acquisition domain there is a

conceptual overlap with other standard management architectures such as ISO

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 81 of 233

Common Management Information Services and Protocol (CMIS/CMIP) and IETF

Simple Network Management Protocol (SNMP) for the Internet community.

Consequently, the SensorSA management approach only applies to the manageable

components sensor, sensor networks and service instance of the sensor and acquisition

domain. Gateways to other management standards may be developed but are currently out of

scope of the SensorSA.

As a consequence, the central concept of this approach is the “sensor” as defined in the

sensor model (see section 5). By looking at the sensor model from the management

perspective it can be seen that the sensor exposes its management capabilities through a

dedicated management interface (see section 5.5) in order to enable the configuration and

monitoring of the internal behaviour of the sensor

Within a sensor network a variety of sensors exist that provide different types of

functionality and data to the sensor client. These sensors might rely on their own proprietary

management technology. Thus the management of a sensor network containing tens or even

hundreds of sensors would be a very difficult and expensive task in the absence of a

standardised management interface.

When addressing the general problem of sensor integration, the management aspect has

to be considered, especially when dealing with topics such as sensor monitoring and

configuration. Standardised management interfaces and protocols (i.e. the schema of

management information and rules about how to exchange it) across all sensors have the

following advantages:

- The sensor network management task is simplified by eliminating the plethora of

management applications that a service network manager has to use. Instead a single

but generic management client is imaginable.

- The integration of a sensor into a service network is reduced mainly to the

implementation of the management interface.

The sensor management information, i.e. the management view upon the sensor, must

be accessible through a sensor management endpoint. The implementation behind a

management endpoint has to be capable of retrieving and manipulating the management

information related to the sensor.

Following the terms of ISO (ISO 7498-4) and the IETF management architectures, this

set of management information is called a Management Information Base (MIB).

Note: In the SensorSA, a MIB is conceptually equivalent to meta-information for the

purpose of monitoring (see section 6.7.5). Thus, it is basically specified as an application

schema following the rules of the (RM-OA, 2007). More specifically, the SensorSA models

monitoring information as observations according to the OGC Observation and Measurement

model (see section 7.2), and configuration information as tasking parameters according to the

sensor planning approach (see section 6.6.4).

When specifying a sensor-related MIB, three management views can be distinguished:

sensor management, sensor service management and sensor network management. From the

sensor model perspective the sensor services and the sensor system may also qualify as

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 82 of 233

sensors, i.e. they may be modelled as sensors. The CPU temperature, CPU load, file system

and network usage are examples of infrastructure management information belonging to the

sensor system and modelled as observed properties.

6.6.3 Resource Discovery

6.6.3.1 Introduction

Discovery is the act of locating a machine-processable description of a resource that may have

been previously unknown and that meets certain functional, informational or qualitative

criteria. Applied to a SANY Sensor Service Network it is the process of searching for

information and services (both together referred to as resources). It involves matching a set of

functional and other criteria with a set of resource descriptions. The search is based on meta-

information (see section 6.3) whose schema has been designed for this purpose. It is directed

at a store of meta-information, populated by entries that represent the resources of a SANY

Sensor Service Network. In general, the externally visible functionality of such a meta-

information store is provided by means of a discovery service. According to the Web Services

Architecture (W3C, 2004), a discovery service is used to publish and search for descriptions

meeting certain functional or semantic criteria.

Resource discovery in SANY realises the publish-find-bind pattern (OGC 03-040) as

illustrated in Figure 6-11. This basic pattern supports the dynamic binding between resource

providers and requestors because sites and applications may frequently change in a distributed

sensor service environment.

There are three essential roles:

- Resource provider: publishes resources to a broker and delivers resources to resource

requestors. Note that resource providers are usually software components that

represent the resources as a kind of resource surrogate.

- Resource requestor: performs resource discovery operations on the resource broker

to find the resource providers and to get the information it needs to bind to the

resource provider. Using the bind information as address it then accesses the resource

providers for provision of the desired resource.

- Resource broker: helps resource providers and resource requestors to find each other.

Resource brokers provide a functional interface to an underlying meta-information

store. In geospatial service environments such as a SANY Sensor Service Network,

resource brokers are usually called (geospatial) catalogues (ISO 19119). The SANY

catalogue service is described in section 8.2.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 83 of 233

 Figure 6-11: Publish-Find-Bind Pattern

The publication of resources of the resource provider to the resource broker may follow

either a push or a pull paradigm. In a push paradigm the meta-information entries are created,

updated and deleted by actively calling corresponding operations of the catalogue service. In

this case, the resource providers act in a client role. In a pull paradigm, the resource broker

acts in a client role and retrieves meta-information (e.g. the capabilities documents of resource

providers) by calling corresponding operations of the resource providers. The SANY

catalogue service supports both paradigms.

The following outlines what spectrum of resource types need support for discovery in a

sensor service network. Discovery policies, typical catalogue queries and the service

interaction patterns that realise the typical queries are presented in section 10.2

6.6.3.2 Resource and Catalogue Types

The discovery process is designed such that it may discover resources of any type that are

possibly available in a geospatial resource network. However, this specification focuses

particularly on the resource types that are specific to a SANY Sensor Service Network. The

main resources to be discovered follow the concepts that are defined by the information

model about Observations and Measurements (see section 7.2). This model also describes the

relations between the different types of resources.

The discoverable resource types are

- feature of interest (FOI) that represents the observation target,

- observed property of a FOI that describe the phenomenon to be observed,

- procedure which encompasses sensors but also algorithms or simulations,

- observation about the phenomenon that has been generated by the procedure.

- service types and instances which deal with the resources listed above. Examples are

services to obtain observations (Sensor Observation Service, see section 8.2.2) and

services to influence the way the measurement is taken (Sensor Planning service, see

section 8.2.3), and

- sensor networks as a container for a set of interconnected sensors (procedures).

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 84 of 233

It is important to distinguish between a resource type and an individual physical

instance of a resource. A user may query for all observations processed by a specific method.

In this case the user references a resource type. The user may also be interested in all

observations that are provided by a specific physical sensor. In the latter case the user

references a physical instance of a resource.

Usually, there is no direct access to physical sensors in a SANY Sensor Service

Network. Instead, resource providers (usually service instances) act as surrogates for physical

sensors. It is important to note that more than one service instance may contain different

views of the same instance of a resource (e.g. a sensor or an observation). Each service

provides meta-information about itself and the resources it handles. For example a Sensor

Observation Service provides meta-information about its own instance (e.g. service provider)

but also on the FOI, the observable properties and the procedure used.

A catalogue, i.e. an instance of the Catalogue Service (see section 8.2), acts as the

primary resource broker in discovery models. Table 6-5 shows several types of catalogues

depending on the set of meta-information about resources types that are stored in the

catalogue. Note that the term sensor in this table is used according to the SANY sensor model,

including physical devices but also simulation models as defined in section 5.

The meta-information schema is described in detail in section 7.6.3 as part of the

Information Viewpoint of the SensorSA.

Catalogue

Type

Description

Full Catalogue catalogue containing information about all defined resources types

Feature Type

Catalogue

catalogue containing definition of the feature types, feature attributes

and feature associations occurring in one or more sets of geographic

data, together with any feature operation that may be applied (see (ISO

19110:2005), but referred to there as a feature catalogue)

Property Type

Catalogue

catalogue containing definition of the property types including at least

their identifiers, their names and human-readable descriptions

(possibly in multiple languages), semantics, synonyms and default

units

Sensor Type

Catalogue

catalogue containing definition of the sensor types including their

classification scheme, their names and human-readable descriptions

(possibly in multiple languages) and references to property types made

available by a sensor of this type

Sensor Catalogue catalogue containing information about instances of sensor types

available in a SANY Sensor Service Network.

Service Catalogue catalogue containing information about instances of service types

available in a SANY Sensor Service Network.

Table 6-5: Catalogue Types in a SensorSA

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 85 of 233

6.6.4 Sensor Planning

6.6.4.1 Introduction

The term sensor planning is used in this architecture specification in a very broad way and

covers the aspects of sensor configuration (sensor tasking), sensor tasking feasibility analysis

as well as updating and modifying sensor tasking instructions at runtime.

Note 1: The term “sensor planning” is used as it is the standard term defined by OGC,

although the term “sensor tasking” would be more appropriate.

Note 2: The term “sensor” is used according to the sensor model described in section 5,

i.e. it includes simple forms of physical sensors, complex forms of physical sensors as well as

models and all sorts of combinations. Additionally, sensor planning allows the tasking of

actuators.

Note 3: Although actuators are not in the focus of the current SANY Sensor Service

Architecture, they are mentioned at this stage as they play a major role in context of tasking.

Sensors are usually mounted on some form of platform. Often the tasking addresses the

platform (which is an actuator) rather than the sensor itself if, for example, the “sensor” is

sent to a new location.

The goal of sensor planning is to hide the complexity of the sensor from the user. The

same operation shall be provided to the user to task a buoy observing wave heights

somewhere in the ocean, a simulation model calculating the weather for the next day, or a

simple A plus B operation. The user shall only be confronted with a list of parameters that

they might set (so called tasking parameters). All other complexity shall be hidden.

Sensor Planning takes place in each of the functional domains identified in section 6.2.

However, the same interface type is used to provide a façade to the tasking of each specific

domain layer. This means that the sensor planning interface shielding the sensor domain

differs from the interface shielding the mediation and processing domain only by its tasking

parameters, not by the interface itself. The general information model, encoding, and

operations remain the same.

As an interface to the sensor domain, sensor planning allows (re-)configuration and

managing of individual sensors, e.g. changing the sampling frequency. Sensor planning of the

acquisition domain allows the tasking of individual missions. An example would be the

tasking of a set of sensors that observe a specific area: a satellite with a mounted radar sensor,

another satellite with electro-optical-sensors as well as some in-situ observations on ground

are triggered to produce a complex data set of the area of interest. Sensor planning on the

mediation and processing domain allows the integration of processing steps. Here, sensor

planning may act as a process orchestration and chaining engine. A user might provide a set

of interface locators that will be used to build a processing chain on the fly. The application

domain as well as the user domain usually aggregate various sensor planning services and

provide interfaces to the users. A user will be provided with a form that allows easy entry of

tasking parameter data. These data are then sent to a sensor planning service on the

application domain to execute necessary actions.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 86 of 233

6.6.4.2 Sensor Planning Information

The communication between a Sensor Planning Service and a client consists of the following

information items:

- Meta-information about the service

The service shall be self-describing (section 7.7.2.)

- Meta-information about tasked sensors

The service shall provide all information about the sensors that will be tasked by the

service (e.g. type of sensor, location, accuracy etc.)

- Tasking parameters

The service shall describe the kinds of parameters required to submit a tasking request.

Those parameters might be in direct relation to the sensor, e.g. the looking angle in

degrees for a frame camera, or they are more abstract parameters, e.g. the different

modes “normal”, “severe”, or “fatal” for an observation campaign. The tasking

parameter has to be semantically defined, though the executed actions might be

transparent to the user of the service. The client provides values of the required

parameters in order to start the tasking or check the feasibility of a potential tasking

request.

- Status information of tasking requests

The service shall describe if a tasking request is still in queue, currently executed, idle

etc.

- Status information of feasibility requests

Analogous to the status information of tasking requests, the service shall be able to

report the status of a feasibility check.

6.6.4.3 Service Planning Functions

In the following the major functional requirements of a service that realises sensor planning

are listed from an abstract point of view.

- Sensor Description

The service shall be able to describe the sensor itself. The sensor and the tasking

parameters are different aspects. Therefore, the sensor description shall focus on the

sensor itself rather than on the description of the tasking parameters of the sensor. The

sensor description primarily serves the purpose of identifying the service instance as

an instance that provides access to a specific sensor with its features. This information

can be stored in registries or catalogues to foster discovery.

- Description of tasking parameters

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 87 of 233

The service shall be able to describe the tasking parameters of the sensor. The

description shall follow design and encoding rules in order to allow usage of

previously unknown sensors. The level of detail of those rules defines the level of

interoperability, as only very strict rules allow tasking of new sensors fully

automatically, i.e. without human intervention.

- Feasibility Analysis

The service shall be able to test a tasking request for feasibility. This allows the user to

determine if and under what conditions a tasking would be feasible before submitting

a potentially expensive tasking request. The service itself shall provide detailed

responses, indicating the feasibility itself as well as potential alternatives.

- Submission of tasking requests

The service shall be able to accept tasking commands. The tasking instructions shall

follow the definitions provided by the service in its asset tasking description.

- Update of submitted requests

The service shall allow the user to update any submitted request, either feasibility test

or concrete tasking command. Additionally, the service itself shall be able to request

update information from the client. This situation occurs when the tasking had been

stopped and additional information becomes necessary in order to proceed with the

tasking.

- Cancellation of submitted requests

The service shall allow the cancellation of previously submitted feasibility test

requests or tasking requests. It is the responsibility of the service to bring the tasked

asset back into a safe position. This should be transparent to the user.

- Status description

The service shall provide information about the current status of a submitted feasibility

test or tasking request. The response sent by the service shall contain all available

information about the current status of a request. As this information depends to a

large extent on the concrete application, the service shall be able to describe the

parameters of the status report in its self-description or as part of other request

responses.

- Description of Result Access Mechanisms

The service shall be able to provide information about how to access potential data that

are produced in response to a tasking instruction.

In the SensorSA, Sensor Planning activities are based on the Sensor Planning Service

(SPS) as specified by the Open Geospatial Consortium (OGC 07-014r3) and described in

section 8.2.3.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 88 of 233

6.7. Meta-information Approach

6.7.1 Introduction

The approach to describing meta-information within the SANY Architecture is based on the

ORCHESTRA meta-information approach, as described in Annex A3 of (RM-OA, 2007).

According to this approach a conceptual meta-information model, which is a human

understandable representation of the meta-information needed, has to be developed for a

given purpose. Based on the user requirements (see section 4.6), the following purposes for

meta-information have been identified:

- Data and Service Integration

- Interpretation

- Discovery

- Monitoring

- Authentication and authorisation

- User profiling

- Quality control / management

6.7.2 Data and Service Integration

For the purpose of service integration a service has to provide meta-information that describes

the service. This meta-information comprises the structure of the implemented interfaces, the

descriptions of the operations that can be performed including the descriptions of the

parameter and return types, the location of a service instance (e.g. its URL) or additional

characteristics of the service (e.g. costs) that enable service selection.

For the purpose of data integration a service has to expose meta-information regarding

the data it provides describing the structure, the location (where can it be accessed), geo-

spatial information, quality and precision information, measurement unit, measured

phenomenon, and the measurement and processing (e.g. filtering) procedure, among other

information.

6.7.3 Interpretation

Meta-information is needed for the explanation and understanding of resources (data and

services). Resource descriptions shall contain explicit semantic descriptions or pointers to

vocabularies (dictionaries) in order to ensure the self-description of services and data and their

semantically correct integration.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 89 of 233

6.7.4 Discovery

Meta-information is extensively used for resource discovery and is described in detail in

section 6.6.3. The conceptual meta-information model is defined in section 7.6.3.

Typical examples of meta-information necessary for the support of the search

functionality are keyword-lists, spatial-temporal information and bounding areas. Examples of

meta-information for the purpose of navigation are descriptions of the content and structure of

catalogue content.

The discovery of services requires a specific meta-information model and dedicated

query languages to access the meta-information entries. Meta-information may be

semantically annotated in order to increase the quality and the recall of the discovery process.

Note: For automatic service discovery meta-information based on semantic service

descriptions (e.g. OWL-S or WSMO) could be provided. However, as there is not yet a

generally accepted standard, semantic service specifications will not be considered in the

scope of the SANY project.

6.7.5 Monitoring

According to section 6.6.2 monitoring is applied to the manageable components “sensor” and

“service”. Meta-information for the purpose of monitoring includes status, actual load, usage

statistics (e.g. amount, quality, resolution and time span of downloaded data, used processing

time), execution traces, etc. This meta-information is especially useful as input for composite

services (e.g. services resulting from service orchestration) that rely on the data provided by

other services. Furthermore, accounting applications that audit the usage of resources (e.g. as

a pre-requisite for billing) rely on such monitoring information. Meta-information concerning

accounting is a combination of the principal and some measure (quota) for resource usage.

6.7.6 Authentication and Authorisation

Authentication and authorisation rely on meta-information necessary for controlling the

access to services and enforcing access control policies (see section 6.8.2).

Typical meta-information for the purpose of authentication includes the identifier of the

principal that uniquely identifies the subject.

For the purpose of authorisation, meta-information necessary to enable restriction of the

usage of resources on a per-principal basis have to exist. An authorisation process is used to

decide whether a principal is allowed to access a certain resource or not. This type of meta-

information is directly related to the services implementing the authorisation paradigm and is

of minimal or no relevance for anything else. A specific set of meta-information makes up the

authorisation context that is used by an authorisation service to decide on the authorisation for

a given request before allowing access to the requested service operations.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 90 of 233

6.7.7 Quality control and management

Quality control and management is concerned with meta-information needed to enhance

quality of information and services as well as to increase trust in information, data and

services. Quality control and management is needed when certain criteria need to be fulfilled

by data and/or services. The SensorSA currently focuses on the following quality aspects of

data:

- Information about the measurement and data preparation process, e.g. measurement

principle, calibration, spatial and temporal resolution

- Uncertainty of measurements or model calculations, e.g. absolute and relative errors of

measurement data or computational errors of data processing services.

- Quality assurance of measurements, e.g. information about whether the measurements

have been validated by machines or by humans.

Each of these aspects is more or less relevant for a given application scenario. Often this

level of detail is not necessary in order to classify the quality of data. The SensorSA allows an

application designer to use the parts that are specifically relevant to their application.

6.7.7.1 The measurement process

The process used to take measurements obviously has a big influence on the quality of the

gathered observations. Since for most applications this information is important when

processing the observations, information about the measurement process has to be provided

together with the observations. Examples of things that influence the measurement process

can be:

- Environmental conditions when taking the measurement

- Type, manufacturer, model, etc of the measurement device

- Operating parameters of the measurement device

- Status of the measurement device (error conditions, etc)

- Calibration processes applied to the measurement device

- Amount of processing that has been applied to the data (whether raw or filtered data)

Although this information is very important, it is very dissimilar in different application

domains. Even within application domains (e.g. air quality) differences exist because of

different legal regulations in different countries, for example. Thus only a generic data model

can be specified to describe the measurement process. The SensorSA uses the schema defined

by the OGC SensorML specification (Botts, 2005) for the description of measurement

processes. Furthermore, information that is specific to each measurement shall be encoded

using the Observations & Measurement schema defined in (Cox, 2007) and described in

section 7.2.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 91 of 233

6.7.7.2 Uncertainty

All data in SensorSA has an associated uncertainty depending on the available meta-

information on how the data was observed (measured) or derived from other data sources. We

first address measurement uncertainty and then uncertainty of general data.

Following ISO GUM 1993, Barry N. Taylor and Chris E. Kuyatt (1994) and UKAS

(2007), measurement uncertainties may be classified into two categories:

- Type A: uncertainty arising from a random effect; evaluated by statistical methods

- Type B: uncertainty arising from a systematic effect, evaluated by other methods

A common way of evaluating a type A uncertainty is to compute the standard deviation

of the mean of a series of independent observations. A second common technique is an

analysis of variance (ANOVA) and random effects in data in dependence of experimental

parameters.

Type B uncertainty is evaluated using scientific judgement. A typical cause is

measurement bias due to the calibration of the measurement instrument or its behaviour in

given environmental conditions (e.g. temperature, air pressure), or over time (deterioration of

instrument, measurement drift). It is evaluated based on information about the instrument and

environment. The measurement values may be corrected to compensate for known systematic

effects.

Note the distinction between the terms error of a measurement and uncertainty. Error is

the difference between the measured value and the (in general unknown) „true value‟ of the

measured property. Uncertainty is a quantified description of the doubt about the

measurement result. The error of a measurement may be small, even though the uncertainty is

large.

In SensorSA data arises not only from sensor measurements and observations, but also

from data processing with specific services, e.g. a kriging algorithm to generate a spatial

coverage from a set of measurement points, or a time series analysis to produce a temporal

interpolation. The results of such data processing steps are themselves uncertain, on the one

hand due to the uncertainty of the input data, on the other hand due to the probabilistic or

approximate nature of the processing itself.

Uncertainty of data is typically expressed with one of the following

- Probability density function, e.g. a normal distribution with known mean and variance.

The data value would then lie within one standard deviation of the mean with

probability 68% and within two standard deviations with probability 95%.

- Intervals (the data value lies in [a,b]). This does not a-priori assume a uniform

distribution on this interval; this would however be the case if the distribution of

maximum entropy were chosen. An important special case is when then the

measurement instrument can assert that the data value is below or above a given

threshold, but can provide no further information.

- Statistics such as standard deviation and moments, or quantiles (the data value lies in

[a,b] with probability 95%).

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 92 of 233

Within the SensorSA, the uncertainty of data sets is described using the UncertML

(Williams et al, 2007). UncertML, which was developed within the INTAMAP project
12

,

allows the information modeller to describe the uncertainty of a specific data set in an

interchangeable way using an XML document conforming to the UncertML schema. This

XML document can be embedded in a SensorML document to express information about the

uncertainty of some process. In addition, UncertML can also be embedded in an Observation

& Measurement document (Cox, 2007) to express the uncertainty of a specific sensor

observation.

6.7.7.3 Quality assurance

In some application domains, observations sampled by a sensor have to be quality controlled

by some automatic or manual process before they can be further processed. Mostly depending

on legal regulations, these quality assurance procedures are often specific to an application

domain and/or to some organisational unit (e.g. a country). Thus, similar to information about

the measurement process, this information has to be described using some generic data model.

Again, the OGC SensorML specification and the OGC Observation & Measurement

specification provide mechanisms to describe such information. Depending on the granularity

of the information it can be described in a SensorML document if it applies to the

measurement process as a whole, or in an Observation & Measurement document (Cox, 2007)

if it is specific to a measurement value.

6.8. Security

6.8.1 Introduction

Security aspects are an integral part of the SensorSA as most of the measures that aim at

achieving a certain level of security have, at least to some extent, effects on applications and

their interactions. Following (SOA-RA, 2008), ―security is one aspect of confidence – the

confidence in the integrity, reliability, and confidentiality of a system‖, here sensor networks

and sensor service networks.

The provision of an overall model for all aspects of security is out of the scope of the

current SensorSA specification. In the SensorSA the focus lies on the regulation of arbitrary

access to resources through a service interface (see section 6.5.1). The security model as part

of SensorSA does not distinguish between accidental actions or malicious intent of a user to

compromise the access to a resource. However, it does not provide dedicated means to

respond to the following potential security threats of a malicious user as listed in the OASIS

Reference Architecture for Service-oriented Architecture (SOA-RA, 2008)

- Message alteration: an attacker is able to modify the content (or even the order) of

messages that are exchanged without the legitimate participants being aware of it.

- Message interception: an attacker is able to intercept and understand messages

exchanged between participants.

12

 See the INTAMAP Web site at http://www.intamap.org/

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 93 of 233

- Man in the middle: an attacker attempts to convince each participant that they are their

correspondent; whereas in fact they are not.

- Spoofing: an attacker convinces a participant that they are really someone else –

someone that the participant would normally trust.

- Denial of service attack: an attacker attempts to prevent legitimate users from making

use of the service.

- Replay attack: an attacker captures the message traffic during a legitimate interaction

and then replays part of it to the target.

- False Repudiation: a malicious user completes a normal transaction and then later

attempts to deny that the transaction occurred.

There are known counter measures using security concepts for each of the listed threats

that can be taken on different levels of a protocol stack. However, in a sensor (service)

network, this may require physical protection of hardware (deployed sensors), intrusion

detection in source systems or protection against eavesdropping of communication channels,

application and situation-dependent actions. This is outside the scope of the SensorSA.

However, all key security concepts listed in ISO/IEC 27002 to counter the different threats

aspects like confidentiality, integrity, availability, authentication, authorisation and non-

repudiation (see the definition of these concepts in the glossary in section 2.4.2) need access

control as a basic mechanism to regulate access to resources in the first place.

Many security measures in a sensor (service) network are dependent on the sensor

service and sensor network topology. Additionally, specific threats require specific counter

measures that in most cases cannot be handled on an abstract architectural level only. As a

consequence, the SensorSA specification focuses on those concepts that can be defined

independently of the underlying use case specific security requirements. Platform-specific

security concepts have to be specified as part of the implementation architecture (see Figure

2-1).

To summarise, the SensorSA security model focuses on resource protection based upon

a flexible access control pattern. It provides a solution that can serve as the foundation of most

other security concepts and adjunct topics like protection against malicious system

interaction, licensing and digital rights management.

6.8.2 Access Control

Access control is understood as the ability to permit or deny the use of a particular resource

by a particular entity. In general, access control mechanisms ensure that only authorised

entities may access resources using well defined methods that comply with the security policy

of the system.

The way access control is performed in the SensorSA is described as follows:

1. An abstract access control pattern is introduced in Figure 6-12. It is the basis for all

use cases that require access control, including licensing and the management and

enforcement of digital rights.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 94 of 233

2. Access control tasks that underpin the access control pattern are described. These tasks

comprise Profile Management, Identity Management, Authentication, Authorisation

Policy Enforcement and Policy Management.

3. The access control architecture comprises the supporting access control services (see

section 8.3) and the underlying access control information model (see section 7.4).

The SensorSA realises access control according to an abstract access control pattern.

This pattern has been introduced as a data-flow diagram in the OASIS standard of the

eXtensible Access Control Markup Language (XACML) (OASIS 2005) and applied, among

other places, in the OGC Geospatial Digital Rights Management Reference Model (OGC 06-

004r4). An extended version of the pattern is illustrated in Figure 6-12. It seizes on general

ideas of policies as the basic mechanism to support the governance of service-oriented

architectures. In (SOA-RM, 2006) a policy is defined as “the representation of a constraint or

condition on the use, deployment, or description of an owned entity as defined by any

participant”.

The abstract access control pattern explains a controlled call of a service operation

request. It assumes that the rules that express the constraints and conditions defining “who

may access which resource using which action” are recorded in an access control policy

statement of the service. The access control pattern uses the following components:

- The Subject is the requestor of the service operation. It represents the acting entity

(e.g. user).

- The Identity Provider (IdP) issues a ticket as proof of successful provision of a

subject‟s credentials.

- The Authentication Provider (AP) has the task of verifying issued tickets.

- The Policy Enforcement Point (PEP) receives a service operation request, enforces the

access control policy of the service and forwards the service operation request to the

protected service.

- The Policy Decision Point (PDP) responds to an authorisation request with an

authorisation decision.

- The Policy Information Point (PIP) holds the services policy information.

- The Policy Administration Point (PAP) provides an interface to perform

administrative tasks on policy level.

Note 1: This pattern also applies to event-based systems as long as the exchange of

events is handled through notification services as discussed in section 6.3.3.

Note 2: In OASIS and related work the term PDP is used for the actual software

implementation of the concept “PDP” as defined in the SensorSA.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 95 of 233

service request r + t à

ß service response p

AP

Subject ServicePEP

PIP

PAP

PDP

IdP

r à

authentication

request for t
authentication

response

authorisation

decision

authorisation request

for (r,t)

request policy

for (r,t)
policy

t

ß

ß

ß

ß

ß

ß

request ticket t

ß

ß

ß p

Figure 6-12: Abstract Access Control Pattern

6.8.3 Access Control Tasks

The major tasks of access control comprise

- Profile Management (section 6.8.3.1),

- Identity Management (section 6.8.3.2),

- Authentication (section 6.8.3.3),

- Authorisation (section 6.8.3.4)

- Policy Enforcement (section 6.8.3.5) and

- Policy Management (section 6.8.3.6)

In the SensorSA, these tasks are supported by a set of services that are designed for an

evolving heterogeneous environment and offer a high level of flexibility. Each of these tasks

is defined in the following sub-sections. Their position in the abstract access control pattern is

illustrated in Figure 6-13.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 96 of 233

AP

Subject ServicePEP

PIP

PAP

PDP

IdP

ß

Identity

Management &

Authentication

Policy
Management

Policy

Enforcement &

AuthorisationPP

Profile
Management

Figure 6-13: Abstract Access Control- Pattern and Access Control Tasks

6.8.3.1 Profile Management

Profile management is an essential basis of a sound security architecture. The major objective

of profile management in the SensorSA context is to map a real world user to a representation

in a sensor service network (user registration). This representation is called a profile. A profile

represents an acting entity which may be a human user or software component like a service.

In order to support multiple authentication mechanisms simultaneously and to keep

authorisation irrelevant information out of the access control mechanism, profiles and their

identities (aka principals) are separated. The concept of an identity constitutes the key entity

on which an authorisation decision is mounted, regardless of the underlying access control

mechanism. In contrast to that, a profile provides information on the real world entity. The

relation between profiles and identities is reflected in the profile and identity model specified

in section 7.4.

The main functions covered by Profile Management are the creation, update and

deletion of instances of profiles and related information in particular references to identities.

6.8.3.2 Identity Management

An identity is the core information required to realize access control. To interlink access rules

and acting entities (subjects), access rules refer to identities and associated properties

(attributes), issued by an identity provider and verified by an authentication provider.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 97 of 233

The main functions covered by Identity Management are

- management of identity related information e.g. credential management, identity

attribute management, and

- definition and management of identity groups.

6.8.3.3 Authentication

According to (SOA-RA, 2008), authentication concerns the identity of the participants in an

exchange. Authentication refers to the means by which one participant can be assured of the

identity of other participants.

When applied to the SensorSA profile and identity model as introduced in section 7.4,

the participants are profiles of real world entities that are represented by their identities.

Authentication in the SensorSA is the process of verifying the identity of a certain profile.

During the authentication process an entity proves that it is allowed to act with the

corresponding identity. This proof normally depends on the acting entity‟s credentials that can

be, for example, what somebody has (e.g. key, smart card), what somebody knows (e.g.

password), what somebody is (e.g. biometrical data), the place somebody resides (e.g. a

certain computer) or the skills of somebody (e.g. a handmade signature). The SensorSA uses

the term ticket to denote the result of an authentication process.

Note: Synonymous terms for ticket are assertion (e.g. in the context of SAML, see

section 7.4.6.1), session (as a temporarily valid ticket) or token.

The issuer of an assertion acts as delegate for all service providers accepting assertions

from this authentication authority. In this way an acting entity is not forced to present its

credentials (e.g. a secret) at each service call and authentication can be done centrally.

Assertions can be verified and are used for all actions that require proof of identity. In

general, an assertion encompasses all identity related information that is required to perform

an authorized request. Moreover assertions may contain information about the authentication

provider, expiry date, etc.

The main function covered by Authentication is the verification of identity related

information

6.8.3.4 Authorisation

According to (SOA-RA, 2008), authorisation concerns the legitimacy of an interaction.

Authorisation refers to the means by which an owner of a resource may be assured that the

information and actions that are exchanged are either explicitly or implicitly approved.

 When applied to the SensorSA access control information model (section 7.4),

authorisation is the process of determining whether an identity is allowed to have specified

types of access to a particular resource. This is done by evaluating applicable access control

information mainly consisting of an authorisation request and a policy. This information is

used by the authorisation service to determine an authorisation decision. Usually,

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 98 of 233

authorisation is carried out on the basis of successfully authenticated identities that are part of

an authorisation request.

6.8.3.5 Policy Enforcement

Policies or access rules can be expressed in many ways from simple access control lists to

complex statements in policy languages like the OASIS eXtensible Access Control Markup

Language (XACML) (OASIS 2005). The actual application of access rules is performed

through the combination of Authentication (section 6.8.3.3) and Authorisation (section

6.8.3.4) and the actual enforcement of access control decisions.

6.8.3.6 Policy Management

Access control tasks include the provision of means to manage access rules.

The main functions covered by Policy Management are

- creation, update and deletion of instances of policies,

- definition and management of policy templates for certain frequently used access

control patterns, and

- distribution of policy templates.

6.8.4 Access Control Service Architecture

As illustrated in Figure 6-13, access control in the SensorSA is accomplished through the

interaction of services, each of which fulfils one or more of the access control tasks described

above:

- The Profile Management Service (see section 8.3.2) manages profiles and their

relations to identities.

- The Identity Management & Authentication Service (see section 8.3.3) is responsible

for the management of identities, their authentication and the management of

credentials. An instance of the Identity Management & Authentication Service acts as

both authentication provider (AP) and identity provider (IdP).

- The Policy Management and Authorisation Service (see section 8.3.4) supports the

management of policies, acting as policy administration point (PAP) as well as policy

information point (PIP). Moreover, as an instance of the authorisation service interface

it acts as policy decision point (PDP)

- The Policy Enforcement Service (see section 8.3.5) handles the necessary interaction

(authentication & authorisation) to obtain the required access control decision and is

independent of the controlled service (generic).

- The Service Proxy mimics the controlled service and delegates the service request to

the Policy Enforcement Service.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 99 of 233

Identity

Management &

Authentication

Policy
Management

Policy

Enforcement &

Authorisation

Profile
Management

Identity Management

& Authentication

Service

Profile Management

Service

Service Proxy

Policy Enforcement

Service

Policy Management &

Authorisation Service

Figure 6-9: Abstract Access Control- Tasks & Services

In addition to the access control service infrastructure, the profile and identity model

(see section 7.4) as one vital part of the underlying information model, plays a key role in the

access control service architecture and enables the separation of concerns. As an example, the

support of different authentication methods, without compromising the whole service

architecture, is made possible due to the decoupling of profiles and identities as well as the

management of identities in different instances of the Identity Management and

Authentication Service, each possibly supporting a different authentication method.

Based on the Abstract Access control Pattern (section Figure 6-12) the workflow

involving relevant services can provide non intrusive access control (i.e. realisation with a

minimal impact on existing software components) for all services specified in the SensorSA

service viewpoint (see section 8.3). Implementation options for non intrusive security on

service and data level are described in section 10.5.1.

6.9. Conceptual Building blocks for “Plug-and-Measure”

The SensorSA aims at supporting a plug-and-measure type of operation. Plug & measure

hereby refers to the degree of capability to add a new sensor to a sensor network, register it in

a sensor service network and access its observations through sensor services in all functional

domains of a sensor service network without additional manual intervention. Together with

self-healing and self-configuration characteristics of sensor networks, plug-and-measure is an

application of the re-configuration capability of a sensor network that has effects upon all

functional domains of a sensor service network as defined in section 6.2. Version 1 of the

SensorSA offers the following basic conceptual building blocks in order to support dynamic

reconfiguration of sensor networks and sensor service networks:

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 100 of 233

- naming principles for resources (see section 6.5.3),

- automatic discovery of resources based on a modular meta-information schema (see

section 6.6.3),

- monitoring of sensors and service instances that access sensors (see section 6.6.2) to

detect sensor failures,

- transactional interface to the Sensor Observation Service (see section 8.2.2) to enable

the registration of a sensor with the SOS and to insert observations,

- sensor planning capabilities to influence the behaviour and the configuration of

sensors (see section 6.6.4), and

- inclusion of events and their processing in the sensor service architecture (see section

6.4).

Section 10.12 explains the use of these building blocks and specifies typical plug-and-

measure scenarios based on the SensorSA capabilities.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 101 of 233

7. Information Viewpoint

7.1. Overview

The Information Viewpoint of specifies rules and guidelines about how to define SensorSA

(meta-)information models. These provide the structure of the information that is being

accessed and exchanged in a service network. Principal guidance is given by the meta-model

for information defined in (RM-OA, 2007) as an extension of the ISO 19109 General Feature

Model (GFM).

The following sections define the information model that is specifically defined to be

used for the services of the OGC Sensor Web Enablement initiative. These services are

described in the Service Viewpoint in section 7.

7.2. Information Model for Observations & Measurements (O&M)

The SensorSA basically adopts the specification of the Observations and Measurements

(O&M) model as defined in (Cox, 2007). This information model is of core relevance for the

access and interpretation of the data provided through the Sensor Observation Service. It

defines an observation as “an act associated with a discrete time instant or period through

which a number, term or other symbol is assigned to a phenomenon”.

The phenomenon is a property of an identifiable object, which is the feature of interest

of the observation. The observation uses a procedure, which is often an instrument or sensor

but may be a process chain, human observer, algorithm, computation or simulator. The key

idea is that the observation result is an estimate of the value of some property of the feature of

interest, and the other observation properties provide context or meta-information to support

evaluation, interpretation and use of the result.

The model for O&M describes the semantics of the observation and its related feature of

interest from a user view point. In contrast, sensor-oriented models emphasise a process or

data provider viewpoint. The O&M model is illustrated in Figure 7-1. It defines pre-defined

feature types and their relationships, thus extending the ISO 19109 General Feature Model

(GFM).

Note: The SANY Information Viewpoint also supports further extensions of the GFM

as specified in the meta-model for information of (RM-OA, 2007).

The key concept of the O&M model is the pre-defined feature type observation and its

related feature type process. These pre-defined feature types are to be used as building blocks

of project-specific application schemas. An observation has the following characteristics:

- An observation is modelled as a feature type whose instances are created at a specific

time point or time period, the samplingTime. An observation may have been processed

after sampling. The resultTime reflects the time when the result of the observation was

produced. Observations may be members of ObservationCollections.

- The key properties of an observation (modelled as association roles in Figure 7-1) are

its featureOfInterest, observedProperty, procedure and result:

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 102 of 233

- The featureOfInterest (FOI) is a feature of any type (ISO 19109, ISO 19101),

which is a representation of the observation target, being the real-world object

regarding which the observation is made

- The observedProperty identifies or describes the phenomenon for which the

observation result provides an estimated value. It must be a property associated

with the type of the feature of interest.

- The procedure is the description of a process used to generate the result. It must

be suitable for the observed property.

- The result contains the value generated by the procedure.

Note: The schema of the result data is not determined by the O&M model.

The SensorSA recommends a self-describing schema, e.g. by using the definitions

of the SWECommon specification.

- As further properties, an observation may have meta-information, e.g. the responsible

actor for the observation and an indication of the event-specific quality.

«FeatureType»

Observ ation

+ metadata: MD_Metadata [0..1]

+ samplingTime: TM_Object

+ resultTime: TM_Object [0..1]

+ resultQuality: DQ_Element [0..1]

+ parameter: Any [0..*]

constraints

{observedProperty must be member or component

of member of featureOfInterest}

{procedure must be suitable for observedProperty}

{result type must be suitable for observedProperty}

«FeatureType»

Process

«FeatureType»

AnyFeature

«type»

Any

{n}

PropertyType

«metaclass»

GF_FeatureType

{n}

+ definition: CharacterString

+ isAbstract: Boolean = false

+ typeName: LocalName [0..1]

«metaclass»

GF_PropertyType

{n}

+ definition: CharacterString

+ memberName: LocalName

«FeatureType»

Observ ationCollection

member

1..*

generatedObservation

0..*

procedure1

propertyValueProvider

0..*

featureOfInterest
1

result

observedProperty

1

«instanceOf»

1

carrierOfCharacteristics 0..*

«instanceOf»

Figure 7-1: Information Model Observation &Measurement from OGC 07-022

7.3. Information Model of the Sensor Observation Service

The information model that underpins the Sensor Observation Service (SOS) (see its

description in section 8.2.2) follows the concepts of the O&M Model previously described in

section 7.2. The resulting SOS information model is illustrated in Figure 7-2.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 103 of 233

The SOS collects observations in a concept called observation offering. An observation

offering is specified by instances of the related O&M concepts observation, observed

properties (which points to a phenomenon), procedure and feature of interest. Observations

and procedures can be part of more than one offering. Further properties of an observation

offering are its name, the temporal context (time period) and the spatial context (region). The

spatial context of the offering is usually defined as a bounding box which includes all

locations where observations are taken.

The O&M concept of a procedure abstracts from the source that produces the value of

an observation. This may involve a sensor as a technical device (see the technology viewpoint

of the SANY Sensor Model in section 5.2), an analytical procedure, a simulation or other

numerical processes.

The following describes how the SOS operations use the concepts of the SOS

information model.

The getCapabilities operation is used to discover the observations provided by an SOS

and returns the service capabilities. Detailed information is included about all available

observation offerings. This comprises the observed properties, procedures and feature of

interest included in the offering where

- A procedure is used to produce an estimate for an observed property.

- A phenomenon and the related unit of measurement are defined by a URI (Universal

Resource Identifier).

Note: Details of the phenomenon and the unit may be defined in a dictionary.

- The feature of interest is a single feature instance or a collection of feature instances

that represent the object on which the observations are made. The feature of interest

may have a location property that is expressed in GML.

Note: Different GML feature types are allowed. All such features are expected

to include the optional boundedBy element with a GML envelope if the

location is known.

 Notes:

1. In Figure 7-2, the associations used to resolve the getCapabilites request are

shown in green.

2. The getCapabilities operation does not return information on the relationship

between a sensor and its measured phenomena or between a procedure (sensor)

and the related feature of interest.

The SOS operation getFeatureOfInterest is used to obtain detailed information (such as

the location) of features of interest, as in all other operations the feature of interest is only

referenced by its identifier.

The consumer of an SOS uses the getObservation operation to retrieve observation data

for an observation offering as instances of the concept observation defined by the O&M

specification (see section 7.2.):

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 104 of 233

- An observation is an event and contains an eventTime that describes the time at which

the observation has been taken. An observation is also related to the procedure that

estimated the value.

- It is bound to the feature of interest which describes the feature for which the

observation was taken.

- An observation captures one or more observed properties. The observations can also

be requested for a set of observed properties or a set of procedures within the

observation offering.

- An observation from a procedure only contains observed properties which are

included in the output section in the corresponding SensorML document. The output

section of SensorML describes the observed properties of the sensor that has produced

the observation values.

- The user can further restrict the amount of data returned by using temporal or spatial

filters. The allowed filter types are reported by the getCapabilities operation.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 105 of 233

class Sos

Observ ation Offering

Name:

region:

TimePeriod:

observ ed

Property

Feature of Interest

location: GML

Name:

Procedure

SOS

getCapabilities()

describeSensor()

GetObservation()

Observ ation

Time:

SensorML

Output

Input

Identification

Classification

Location

this can be a single or

composite property

*

Feauture

where

observation

was taken

1

1..*

output is

1..*

1..*
procedure

is bound to

1

1..*1

1..*

1..*

*

1..*

is described by

1..*1..*

*

1

1..*

1..*

*

1

Figure 7-2: Information Model of the Sensor Observation Service

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 106 of 233

7.4. Access Control Information Model

In the following information model for the realisation of access control is presented with a

reference to the corresponding OASIS standards.

7.4.1 Model for Subject Related Information

In the description of the SensorSA access control concepts in section 6.8.2 a Subject has

been introduced as the requestor of a service operation who represents the acting entity, whereas

an acting entity may be a user or a software component, e.g. a service instance. The profile and

identity model defines the basic concepts related to a subject that support the tasks of the access

control pattern introduced in section 6.8 and related services as described in section 8.3. The

following elements of a subject-related information model are defined:

- Profile

- Identity

- Group

- Role

- Policy

7.4.2 Profiles and Identities

A profile is the abstract representation of a subject, i.e., it is characterised by a set of attributes

that describe a subject. The profile information comprises associated identities and may therefore

serve as container of logical pointers to identities. The definition of a complete profile schema is

out of the scope of the SensorSA information model for access control as it is application

dependent. For instance, a profile attribute could be the social security number to be able to

identify the real word user behind the subject, or it could contain the phone number to contact a

responsible person or the signature of a software agent. The definition of profile attributes is a

application design decision.

In order to perform an authorised action (e.g. a service request) a subject represented by his

profile has to provide a proof of authenticity so that a service provider can decide whether the

requested action is in line with the service provider‟s access policy. A subject may present

different identities, possibly authenticated with different authentication mechanisms, for different

actions. Thus, a single profile may have multiple identities .By decoupling profiles from

identities, on the one hand information not relevant for authorisation decisions can be kept away

from the access control mechanisms, and on the other hand requirements like single sign-on

(SSO) can be easily supported. The separation of profiles and their associated identities reflects

the real life situation in which a single subject (i.e. a single profile) may have an arbitrary

number of identities for particular purposes. A subject may authenticate one or more of its

profile‟s identities and thus accumulate access rights in disparate security domains (systems,

networks and organisation).

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 107 of 233

Profiles are managed (created, deleted, etc.) using an instance of the Profile Management

Service (see section 8.3.2). Profile attributes are used to store arbitrary profile related

information (e.g. first name, last name, address, e-mail).

Identities are managed (created, deleted, etc.) using an instance of the Identity

Management and Authentication Service (see section 8.3.3)

. Identity attributes are used to store information that can be the basis for an authorisation

decision. The Identity Management and Authentication Service acts as an identity provider. The

manner in which identity information is managed is up to the particular identity provider as

different authentication mechanisms (e.g. public key/secret infrastructures or login/password)

require different identity related information. In this way the task “profile management” (see

section 6.8.3.1) can act independently of the methods applied in the task “authentication” (see

section 6.8.3.3) and vice-versa.

cd Profile and Identity

Identity

+ active: boolean

+ id: integer

+ origin: string

Profile

+ attributes: ProfileAttributesType

+ id: integer

+ origin: string

0..*

1

Figure 7-3: Profiles and Identities

7.4.3 Groups

A group is modelled as a special type of identity that is composed of a set of identities.

Group attributes are used to hold common properties of its members‟ identities. An identity that

is a member of a group automatically inherits all identity attributes of that group as after login all

related group identities are included in the SAML assertion (session information). Thus, groups

facilitate administrative operations which need to be applied to a number of identities of a single

Identity Management and Authentication Service instance.

 A group can be treated as an ordinary identity by an instance of the Policy Management

and Authorisation Service (see section 8.3.4). Therefore, writing policies for groups does not

differ from writing policies for any other identity. Management of groups is done according to

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 108 of 233

the management of identities in instances of the Identity Management and Authentication

Service (see section 8.3.3).

cd GroupIdentity

IdentityType

AttributedIdentity

+ attributes: IdentityAttributesType

GroupIdentity

+ groupname: string

Identity

+ active: boolean

+ id: integer

+ origin: string

1..*

0..*

Figure 7-4: Groups are special Identities

Groups can only be defined on the level of a single Identity Management and

Authentication Service instance, since the concrete representation of identities, and thus groups,

may vary from instance to instance. To allow cross domain Identity Management and

Authentication, and thus cross security domain enforcement of access rights, the concept of roles

is used.

7.4.4 Roles

A role is an abstract concept (e.g. “administrator”) that corresponds to a related policy. The

usage of roles is a powerful yet simple way to facilitate large-scale authorisation management of

complex systems. The general concept is applied in most databases and operating systems. Roles

can reduce administration effort significantly, especially when similar access restrictions have to

be enforced for many users of different organisations.

As suggested by (OASIS 2004) in SensorSA “roles are expressed as XACML Subject

Attributes”, apart from the fact that SensorSA does not predefine policies or sets of policies that

narrow down the concept of roles to a fixed set of permissions. In our approach a role is

modelled as a special identity attribute named “role”. If a mutual semantic agreement on the

common role attribute exists among different security domains the role concept allows the

enforcement of access rights across all security domains regardless of individual identity

representations or domain specific identity attributes.

In contrast to groups no distinct interface for the management of roles is provided by

SensorSA at the moment.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 109 of 233

7.4.5 Policies

Policies contain sets of rules to express access restrictions for particular resources. At the

conceptual stage no assumption about the policy language, namely „how‟ a policy is encoded,

are made. The resource side basis of every access control decision is in the SensorSA policies.

7.4.6 Assertion and Policy Encoding

In SensorSA the access control mechanisms rely on the usage of OASIS Security Standards.

- SAML (Security Assertion Markup Language) is used to encode identities and related

information in a SAML Assertion.

- XACML (eXtensible Access Control Markup Language) is used to define access rules,

for the above mentioned identities.

7.4.6.1 SAML (Security Assertion Markup Language)

SAML is a language to encode security related information. In SensorSA SAML is used to

encode Identity related information. SAMLS is summarised by (OASIS 2006b) as follows:

―SAML consists of building-block components (…) The components primarily permit

transfer of identity, authentication, attribute, and authorization information between autonomous

organizations that have an established trust relationship. The core SAML specification defines

the structure and content of both assertions and protocol messages used to transfer this

information.

SAML assertions carry statements about a principal that an asserting party claims to be

true. The valid structure and contents of an assertion are defined by the SAML assertion XML

schema. Assertions are usually created by an asserting party based on a request of some sort

from a relying party, although under certain circumstances, the assertions can be delivered to a

relying party in an unsolicited manner. SAML protocol messages are used to make the SAML-

defined requests and return appropriate responses. The structure and contents of these messages

are defined by the SAML-defined protocol XML schema.

The means by which lower-level communication or messaging protocols (such as HTTP or

SOAP) are used to transport SAML protocol messages between participants is defined by the

SAML bindings. Next, SAML profiles are defined to satisfy a particular business use case, for

example the Web Browser SSO profile. Profiles typically define constraints on the contents of

SAML assertions, protocols, and bindings in order to solve the business use case in an

interoperable fashion.‖

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 110 of 233

Figure 7-5: Basic SAML concepts (OASIS 2006b)

In SensorSA SAML core (assertions and protocol) is used exclusively or in other words no

bindings or profiles have been defined. The use of SAML in the context of the access control

services is further described in section 10.5.4.

7.4.6.2 XACML (eXtensible Access Control Markup Language)

―XACML is language for expressing access control policies. The language is used to standardise

the process of access control management. Access control management consists of some or all of

the following steps: writing, reviewing, testing, approving, issuing, combining, analysing,

modifying, withdrawing, retrieving and enforcing of policies‖ (OASIS 2005). XACML delivers

a language to encapsulate security rules in policies in a standardised manner. If the same

mechanisms of access control are used throughout the components of an information

infrastructure, it is possible to manage the enforcement of policies in a consistent and to some

extent interoperable way. In the SensorSA XACML and extensions like GeoXACML can be

used as a common access control language.

The following paragraph describes XACML‟s basic elements and establishes a connection

between the concepts described in section 7.4 and XACML. Furthermore, it provides an

overview of the GeoXACML extensions.

7.4.6.2.1. XACML Basic Concepts

The following paragraphs are slightly modified extractions from the eXtensible Access

Control Markup Language (XACML) standard (OASIS 2005) intended to give an overview of

the XACML components and principles.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 111 of 233

- Rule

A rule is the most elementary unit of a policy. A rule can be evaluated on the basis of its

contents and the request. The main components of a rule are a target, an effect and a

condition.

- Rule target

The target defines the set of resources, subjects, actions and environment to which the

rule is intended to apply (it is possible to further refine the applicability by the target with

conditions (see OASIS 2005). An XACML PDP verifies that the matches defined by the

target are satisfied by the subject, resource, action and environment attributes in the

request context, e.g. role. In summary, targets are used to determine which rules match

the given request.

 Where subjects and their attributes are used to encode the identities and related

attributes like‟ role‟ described in section 7.4.4 .

- Effect

The effect of a rule indicates the rule-writer's intended consequence of a "True"

evaluation for this particular rule. Two values are allowed: "Permit" and "Deny".

- Policy

A policy is a container for rules and other information, e.g. a general policy target or a

particular rule combining algorithm to support different matching policies for an

authorisation request.

- PDP functionality

After receiving a request the PDP matches the request against the policies to determine

the policies to be considered, where matching simply means the evaluation of the target,

which comprises functions on the attributes of the elements subject, resource, action and

environment as described in the paragraph Rule. In case one of the targets matches, the

effect is either “Permit” or “Deny”. It is possible that there is more than one matching

rule, in this case the defined combining algorithm is used to provide an authorisation

decision, e.g. if the combining algorithm is “Deny-overrides” then one occurrence of a

“Deny” overwrites all occurrences of “Permit”.

7.4.6.2.2. GeoXACML: The geospatial extension of XACML

Geospatial eXtensible Access Control Markup Language (GeoXACML) is an OGC

Implementation Standard and “defines an extension to XACML for spatial data types and spatial

authorisation decision functions. Those data types and functions can be used to define additional

spatial constraints for XACML based policies.” (OGC 07-026r2)

It makes use of existing XACML extension points to be fully compatible to the XACML

standard. This means that a “GeoPDP” is not only able to evaluate GeoXACML decision queries

but standard XACML queries as well.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 112 of 233

―GeoXACML extends XACML by only one new data type that is named

―urn:ogc:def:dataType:geoxacml:1.0:geometry‖.‖ (OGC 07-026r2) It contains geometric data

types described in (OGC 06-103r3). There are also two extensions to the GeoXACML

implementation specification that define GML encoding for GML version 2 (OGC 07-098r1)

and 3 (OGC 07-099r1).

The XACML extension point for data types is illustrated in the XML fragment. As the

DataType attribute is of type anyURI the additional geometry data type can be used.

Figure 7-5: AttributeValue extension point of XACML

Figure 7-6: AttributeDesignatorType extension point of XACML

Figure 7-7: AttributeSelectorType extension point of XACML

There are 34 new functions of two different conformance classes defined by GeoXACML,

nineteen functions of conformance class BASIC and fifteen of conformance class STANDARD.

The different functions cover several aspects of geographic evaluation:

- Topological functions (conformance class BASIC)

- Bag functions (conformance class BASIC)

- Set functions (conformance class BASIC)

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 113 of 233

- Geometric functions (conformance class STANDARD)

- Conversion functions (conformance class BASIC)

A “GeoPDP” has to implement all functions of conformance class BASIC to be considered

a BASIC GeoXACML conformant PDP implementation. A STANDARD conformant PDP

implementation has to implement all functions of conformance class STANDARD in addition to

all functions of conformance class BASIC.

The XACML extension point for function types is shown in the following figure. As the

FunctionId attribute is of type anyURI any additional function may simply be used. GeoXACML

does not define any additional or changed XSD schema elements to XACML to stay XACML

conformant.

Figure 7-8: Function type extension point of XACML

7.5. Event Information Model

With respect to the OGC baseline, an event is a feature. SensorSA provides a cross-domain

application schema for events, called event information model. Although each domain needs to

build their own, well-adapted event model, a cross-domain application schema serves as a

common denominator or kind of crystallization point for further extensions.

The event model is organized in a package stereotyped <<ApplicationSchema>>. It has

dependencies on a number of packages from the ISO 19100 Harmonized Model, as shown in

Figure 7-9.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 114 of 233

Figure 7-9: Event model dependencies on packages from the ISO 19100 Harmonized model

Only one sub-package currently exists in the event model (see Figure 7-10).

Figure 7-10: Event model package structure

This package will be explained in the following.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 115 of 233

Figure 7-11: Event type and specializations

Note: The class named "AbstractFeature" represents the set of all classes with stereotype

<<FeatureType>>. In an implementation a concrete class representing a feature type from a

domain of discourse will substitute this abstract class. This class is implemented in GML by the

element gml:AbstractFeature.

An Event is a feature. It has a required property containing the time when the event

happened. The eventTime is modelled as a TM_Primitive from ISO 19108. As such, the value

may be a temporal geometry primitive (instant or interval) or a temporal topology primitive

(node or edge). The Event class realizes the getEventTime operation from the EventTimeProvider

interface, which provides access to the value of the eventTime property.

Note: in ISO 19136, a feature is modelled as a gml:AbstractFeature which contains a

boundedBy property that can only describe a spatial or spatio-temporal boundary, but not a pure

temporal one. In the case of events, the temporal aspect is of primary interest. This also applies

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 116 of 233

to non-geospatial features, which contain complex temporal properties. Thus, the boundedBy

property of gml:AbstractFeature should be modified to support both spatial, temporal and spatio-

temporal bounding / extent information.

An event may be related to other features. One to many role properties characterize each

EventFeatureRelationship. This primarily supports use cases in which an event object is

exchanged between multiple domains where the relationship target may incorporate a different

association role and thus may have a different semantic as property of the event.

Example: an earthquake event may have a relationship to a street feature, indicating that

the earthquake affected the street and that it actually destroyed the street. Similarly, a hurricane

event may have a relationship to a butterfly, indicating that the hurricane was causedBy the

butterfly and that the hurricane blewAway the butterfly.

An event may also be related to other events via an EventEventRelationship. This type

inherits from EventFeatureRelationship and thus has AbstractFeature as target property.

However, a constraint is added to the EventEventRelationship, which requires the target to

realize the EventTimeProvider interface. This allows us to establish relationships to features that

can be considered as events, regardless of whether they derive from the Event type defined in

this application schema or not.

For further relationships between an Event and another feature/event, we refer to the OGC

engineering report OGC 09-032, as mentioned at the beginning of this chapter.

Specializations of the Event type – which itself is neither an abstraction nor a composition

of other events (it may nevertheless be related to other events) and thus represents a simple event

– can be a ComplexEvent or a DerivedEvent.

An abstraction or aggregation of multiple events - its members - is called a ComplexEvent.

The relationship to a member event is modelled through the EventEventRelationship. A

ComplexEvent does not necessarily have member events. This situation will likely be the case

when it is known that an event happened and that it was caused by other events but that these

'causing' events cannot be determined at the moment. The ComplexEvent will then be an

abstraction of the happening caused by these unknown events.

This also implies that the event time of a ComplexEvent is - like for a simple Event -

assigned by the entity that creates the event object. It can but does not have to be related to the

event times of member events.

Note: Because the event time is a genuine property of an event, it shall not be modified

in an event object. This also applies to complex events. Therefore, if the event time of a

ComplexEvent object was computed (at creation time) based upon - for example - the temporal

bounding box of the member events that were available and if later the set of members is

modified then the event time of the original event object shall not be modified. Instead a new

(complex) event object should be created which encompasses the modified set of member events

and the new event time. This new event may for example have a relationship to the old event

with a role of supersedes. Otherwise, if a modification of the member set has no implications

upon the event time, then a new event object is not necessary.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 117 of 233

If a well-defined procedure was used to detect an event based upon (the existence or absence of)

one or more other events, the resulting event is called DerivedEvent. The procedure may be any

process or algorithm that is capable of detecting an event based upon the (existence or absence

of) information in member events. A DerivedEvent therefore has at least one member. The event

time of a derived event is determined by its procedure.

7.6. Resource Model

7.6.1 Introduction

As motivated in section 6.4, the SensorSA defines a conceptual link between a service-

oriented and a resource-oriented view upon a sensor service network. In this section a resource

model is defined as a technology-independent basic information model of a Resource-Oriented

Architecture (ROA). Possible applications of the resource model in the context of a sensor

service network are described in section 7.6.3 after the specification of the ROA concepts.

The term ROA denotes the architectural concepts and the set of rules that aim at accessing

and manipulating uniquely identified resources based on a uniform interface. The SensorSA

understands ROA itself as a technology-independent concept, although it is usually discussed

together with its realisation in a Web environment, i.e. based on the basic technologies of the

World Wide Web. (Ruby/Richardson, 2007) describe ROA as a “way of turning a problem into a

RESTful web service: an arrangement of URIs, HTTP and XML that works like the rest of the

Web”.

This section describes the major ROA concepts as an extension to the meta-model for

information and services defined in (RM-OA, 2007). This enables the specification of resource

models as application schemas in an information viewpoint specification of a SensorSA.

7.6.2 ROA Concepts

The basic concepts of an ROA are abstracted from the specification of RESTful Web Services

according to (Ruby/Richardson, 2007). These are:

- resource

- resource name

- resource representation

- resource links

These ROA concepts are modelled as feature types and types according to (RM-OA,

2007). The basic resource model is shown in Figure 7-12. Furthermore, one of the major

characteristics of a ROA is the access to the resource and the manipulation of its state through a

uniform interface. The modelling of uniform interface is defined in section 7.6.2.4.

Note: The resource model has been submitted to OGC as OGC 07-156r1 (Usländer,

2008).

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 118 of 233

Figure 7-12: Resource Model

7.6.2.1 Resource

A resource is anything that‟s important enough to be referenced as a thing itself. A resource is

understood as a specialisation of a feature type and has the following properties:

- definition: Human-readable description of the purpose of the resource.

- namedAs: Name of the resource. It is modelled by the type ResourceName (see section

7.6.2.3)

- supports: Provides a list of those methods of the uniform interface that are supported by

the resource (see section 7.6.2.4).

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 119 of 233

- providesView (optional): list of feature instances that provides the underlying data of the

resource.

- linkedTo: list of zero or more resource types to which representations of this resource

types may be potentially linked. This link is further described by the association class

ResourceLink (see section 7.6.2.4).

- representedBy: List of identifiers of possible representations of this resource. One

resource may have one or more possible representations. This property is modelled by the

type ResourceRepresentation (see section 7.6.2.2).

- defaultRepr: identifier of the default representation of the resource.

7.6.2.2 Resource representation

The representation of a resource comprises any useful information about the current state of a

resource. A resource may have (and usually has) several representations. It has the following

properties:

- id: unique identification of the resource representation.

- definition: Human-readable description of the purpose of the resource representation.

- format: MIME-type format in which the information is presented to the client.

- representation: Information that is returned to the client when the representation is

retrieved.

- supports: Provides a list of those methods of the uniform interface that are supported by

the resource (see section 7.6.2.4).

- linkedTo: identifier of zero or more resource representations to which may be navigated

from the resource representation.

7.6.2.3 Resource name

The resource name denotes the resource. It shall indicate the intended purpose of the resource to

a human user. It has to be distinguished from the identifier of the representations of the resources

which also provide an address (a path) by which to access the resource (see section 7.6.2.2). It

has the following properties:

- name: Provides the name of the resource.

- id-scheme: Defines the ways how identifiers for representations of the resource may be

built.

Note: The resource model just assumes that the identifiers are built hierarchically. The

namespace attribute ns-id (see below) shall define the scope of the identifier such that all

identifiers of representations are unique.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 120 of 233

- ns-id (optional): Defines the namespace for the identifiers of the representations of the

resource. It may but need not be the same as the name of the resource.

Note: When mapping to a service platform, the relationship between the identifier of the

resource and the identifiers(s) of its representations has to be defined. This is done in an

identifier scheme and has to be defined as part of the Engineering Viewpoint of the system‟s

design. In the case of RESTful Web Services, a typical identifier scheme is to combine the ns-id

into one hierarchical URI such that the start of the URI denotes the resource name and the rest

denotes the identifier. The boundary between the start and the rest is specific to the resource.

7.6.2.4 Resource link

The possibility to link a representation of a resource to other representations of the same or a

different resource is one of the key features of a resource-oriented architecture. It is modelled by

the association class ResourceLink. A resource link is a directed link that determines the

navigation direction between the corresponding representations.

It has the following properties:

- definition (optional): Human-readable description of the purpose of the link.

7.6.2.5 Uniform Interface

The uniform interface is an instance of the meta-class OMM_InterfaceType of the service meta-

model of (RM-OA, 2007). As illustrated in Figure 7-13, it requires that the following operations

be defined for a given platform. Examples for HTTP 1.1 as the mandatory transport protocol of

the SANY service platforms (see section 9.2) are given in brackets:

- createResource (cR): create a new resource (e.g. HTTP PUT to a new resource

representation, HTTP POST to an existing resource representation)

- getResource (gR): retrieve a representation of a resource (e.g. HTTP GET)

- deleteResource (dR): delete an existing resource (e.g. HTTP DELETE)

- updateResource (uR): modify an existing resource (e.g. HTTP PUT to an existing

representation)

The following operations are to be optionally provided:

- getResourceCapabilities (gC): check which methods are supported by a particular

resource (e.g. HTTP OPTIONS)

- getResourceMetadata (gM): retrieve the descriptive information about a representation

(e.g. HTTP HEAD)

- createSubordinateResource (cS): create a resource representation in the context (e.g.

namespace) of a given resource representation (e.g. HTTP POST)

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 121 of 233

- appendToResourceState (aS): create additional information about the state of a resource

(e.g. HTTP POST).

Figure 7-13: Model of the Uniform Interface

7.6.2.6 Resource Method

The resource method defines a method that is supported by a resource and its possible mapping

to an operation of another interface type. It has the following properties:

- opName: Method that is supported by the uniform interface (see section 7.6.2.4)

- definition (optional): Human readable description of the meaning of the method for the

resource.

- opSpecificIF (optional): name of an operation of another specific interface (other than the

uniform interface) that is semantically equivalent to this resource method. This property

is essential when the uniform interface is defined in addition to an existing interface of a

given service type.

Example: The getResourceRepresentation operation of the resource type “observation” is

semantically equivalent to the getObservation operation of the interface Core Operation

Profile of the Sensor Observation Service (see section 8.2.2).

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 122 of 233

7.6.3 Relationship between Resources, Services and Features

The conceptual relationships between resources, services and features cannot be described

without having a purpose of the resource modelling in mind. Figure 7-14 illustrates possible

relationships derived from the basic assumption of the RM-OA that a service provides one or

more interfaces, and each interface consists of one or more operations. Operations access

underlying data in a read and write mode.

The left-hand side of Figure 7-14 shows the traditional approach of OGC services

accessing underlying data whose structure is modelled as an ISO/OGC application schema. The

right-hand side shows a complementary resource-modelling approach. Here, operations are

modelled together with their underlying data in form of resources and their representations.

Figure 7-14: Services, features and resources and possible relationships

There are two possible purposes and applications for this modelling approach:

- The capabilities of a service may be specified in a resource-oriented way. Typically, the

resulting resource model mirrors the basic elements of the underlying application schema

of a service. As an example section 10.2.5 of the Engineering Viewpoint specifies an

resource model for the Sensor Observation Service (SOS) (see section 8.2.2). Here the

SOS capabilities are interpreted as resources that reflect the basic O&M concepts such as

offerings, features of interest, observation collections or observed properties. They may

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 123 of 233

be used by client application as navigational means for discovery of and the access to the

observations provided by the SOS.

- An extended approach is to provide a RESTful service as an alternate interface based on

a resource model on top of a service instance (or by combining several service instances).

Such a RESTful service would then provide a selected view (typically just a subset) upon

the capabilities and operations of the underlying service. This approach has been

implemented for the as a prototype in the SANY project.

The modelling of resources according to this resource model may serve the following

purposes in the context of a sensor service network:

- It may provide a modelling bridge between the Information and the Service Viewpoint in

a system design. The modelling of services in terms of the resources and their

representations which they provide to a client may facilitate the understanding of the

functionality of the service to a system designer.

- When specifying a resource-oriented view upon a service in addition to its “specific”

interface and operations, the system designer gains flexibility in mapping the abstract

service specification to an implementation specification. For example, the system

designer may then map it to the SANY W3C Web Service platform (see section 9.2.1), to

a SANY OGC Web Service platform (see section 9.2.2), or to a RESTful Web Service

platform (see section 9.2.3).

- The provision of a resource-oriented view upon a service may facilitate the discovery of

the service as the notion of resources may be closer to the “universe of discourse” of the

user as it‟s the case for the signatures of specific services. Having this application in

mind, the resource application schema should then be stored as meta-information entries

in catalogue systems.

7.7. Meta-information Schema for Discovery

7.7.1 Overview

The discovery of resources is an important consideration in a sensor service network. Several

kinds of resources need to be discovered. It is possible to distinguish between two main resource

types which can be described by a meta-information document:

- services, describing meta-information about available service instances

- data, describing meta-information about available datasets

It is possible to directly search for meta-information describing these two main resource

types in common OGC catalogues. This structure was also used in the default ORCHESTRA

meta-information schema. The schema provides general elements for the description of the

above resource types. It is possible to directly re-use this meta-information schema for SANY to

create meta-information documents describing resources in the Application Domain of SANY.

However, several extensions of the meta-information schema are needed for the discovery of

resources of the Mediation & Processing, Acquisition and Sensor Domains. The meta-

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 124 of 233

information schema was especially extended to address the need for sensor observation specific

discovery. To achieve this, the O&M model (see section 7.2) was taken into account.

The following text and UML diagrams are describing the structure and contents of the

resulting application schema for meta-information (AS-MI). All meta-information types are

prefixed with “MI” for meta-information. The AS-MI contains classes for the two main resource

types:

- MI_Service for the description of services

- MI_Data for the description of data

To address the need for sensor observation specific discovery the data resource type was

refined into several subtypes derived from MI_Data. The following types are reflecting the

structure of the O&M model:

- feature of interests (FOI) resource types can be described with

MI_Data_FeatureOfInterest,

- procedure resource types can be described with MI_Data_Procedure, and

- observed property resource types can be described with MI_Data_ObservedProperty.

Besides these O&M related types the AS-MI defines a resource type for the description of

sensor networks (MI_Data_SensorNetwork). Figure 7-15 provides an illustrative overview of the

available resource types. Each resource type is described by means of several mandatory and

optional sections. The mandatory sections for each resource type are listed in the comment boxes

that are attached to each resource type box.

Figure 7-15: Meta-information resource types

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 125 of 233

The meta-information schema provides the possibility to create relationships between

different resource types. It is possible to link services to a specific data type via the

MI_DataConnector. The data connector can be restricted to specific time-intervals. This ensures

that observations can be discovered by time constraints. Conversely, it is also possible to create

links between data resource types and services realised by the MI_ServiceConnector.

Figure 7-16 shows the dependencies between the different resource types.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 126 of 233

Figure 7-16: Dependencies between Resource Types

7.7.2 Generic Meta-information Sections

Each meta-information document describing one resource type consists of several sections. All

defined sections are summarised in Figure 7-17. All sections are derived from the class

MI_SectionContentBase.

A particular role is played by the MI_TableOfContents section. It defines the contents of

the meta-information document and is mandatory for all resource types (see Figure 7-18). Each

meta-information section is described by its name and a description. The combination of all

sections described in the table of contents sections builds the meta-information document.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 127 of 233

cd AS-MI-Sections

«Type»

AS-MI Metainformation::MI_MetaMetainformation

+ dateStamp: Date

+ metainformationResponsible: MI_ResponsibleParty

+ language: CharacterString

«Type»

AS-MI Core::

MI_CoreElements

«Type»

AS-MI Discov ery::

MI_Discov eryBasic

«Type»

AS-MI Serv ice Inv ocation::

MI_Serv ice_Inv ocationBasic

+ operation: MI_Operation [1..*]

+ platform: CharacterString

«Type»

AS-MI Serv ice Monitorable::MI_Serv ice_Monitorable

+ monitorableCapabil ities: MI_MonitorableCapabil ities

«Type»

AS-MI Sections::

MI_SectionContentBase

«Type»

AS-MI Sections::MI_Section

+ name: CharacterString

+ sectionContent: MI_SectionContentBase

+ sectionSchema: CharacterString

«Type»

AS-MI Table of Contents::

MI_TableOfContents

«Type»

AS-MI FeatureOfInterest::

MI_OM_FeatureOfInterest

«Type»

AS-MI Procedure::

MI_OM_Procedure

«Type»

AS-MI Observ edProperty::

MI_OM_Observ edProperty

«Type»

AS-MI Sensor Network::

MI_SensorNetwork

«Type»

AS-MI Client::

MI_ClientDescription

+ clients: MI_Client [1..*]

«Type»

AS-MI Serv ice Specific Example::

MI_ExampleServ iceCapabilities

1

Figure 7-17: Defined Meta-information Sections

cd AS-MI-TOC

«Type»

AS-MI Table of Contents::MI_SectionContentToc

+ name: CharacterString

+ sectionDescription: LocalisedCharacterString [0..*]

«Type»

AS-MI Table of Contents::

MI_TableOfContents

+ section: MI_SectionContentToc [1..*]

«Type»

AS-MI Sections::

MI_SectionContentBase

Figure 7-18: Table of Contents Section

Another important section is the section describing the common core elements

(MI_CoreElements) of the resource. It contains basic information like the ID of the resource, the

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 128 of 233

name of the resource, a description of the resource and basic access to the resource via a URL

(see Figure 7-19).

Catalogue entries may be time-dependent, i.e. they are only valid for given point or period

of time. This may be required for validation and processing purposes. Examples are:

- A service instance or a procedure may no longer be operational (for example, because the

underlying sensor is no longer accessible).

- A service may provide access to different procedures at different times. This permits the

deployment of several possibly redundant sensors that are used together to provide an

aggregate measurement. From the perspective of the resource requestor, they are

accessible together by means of a single proxy, i.e. a single service instance.

As a consequence, the meta-information entries of the catalogue contain information about

the temporal validity of meta-information entries. It is possible to search for a catalogue entry

filtered with the queryables StartDate and EndDate, which correspond to the time interval of the

entry (see the validation interval as defined in the mandatory core section in Figure 7-19).

cd AS-MI-CoreElements

«Type»

MI_CoreElements

+ description: CharacterString

+ documentation: OA_URI

+ id: CharacterString [0..1]

+ language: CharacterString

+ name: CharacterString

+ validationInterval: MI_ValidationInterval

+ url: OA_URI [0..1]

«Type»

MI_SectionContentBase

«Type»

MI_ValidationInterv al

+ startDate: Date

+ endDate: Date [0..1]

1

Figure 7-19: Core Meta-information Elements

Figure 7-17 shows all available sections of the meta-information schema including the

centrals sections “table of contents” and the sections about the core elements. The sections that

deliver the meta-information that is needed for sensor observation-specific discovery are

described as follows:

- The discovery basic section (MI_DiscoveryBasic) is described below.

- The meta-meta-information section (MI_MetaMetainformation) describes meta-

information about the meta-information entries themselves. This section includes a

timestamp of the last update of the meta-information document in the catalogue.

- The service monitorable section (MI_Service_Monitorable) is a section which can be

provided for the description of monitorable services.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 129 of 233

- The service invocation section (MI_Service_InvocationBasic) is a section which can be

provided for the description of service invocation details. It contains elements to define

the access to the service. Access URLs are given together with operation names and input

and output parameters of the available operations.

- The client description section (MI_ClientDescription) is a section which can be provided

for the description of the clients of services. It contains access information about clients

for the described service resource.

- The service specific section (MI_ExampleServiceCapabilities) is a placeholder for a

section describing the specific capabilities of a service. The contents of these sections are

usually described in the specification of the described service. An example for the SOS

service is given below.

- The procedure section (MI_OM_Procedure) is described below.

- The feature of interest section (MI_OM_FeatureOfInterest) is described below.

- The observed property section (MI_OM_ObservedProperty) is described below.

- The sensor network section (MI_SensorNetwork) is described below.

- The SensorML section (MI_SensorML) is described below.

cd AS-MI-Discov eryBasic

«Type»

MI_Discov eryBasic

+ freeKeywords: MI_FreeKeywords

+ spatialReference: MI_SpatialReference [0..1]

+ providerInfo: MI_WhitePageInfo [0..1]

+ yellowPageInfo: MI_YellowPageInfo [0..1]

+ conformity: CharacterString [0..1]

+ constraints: CharacterString [0..*]

+ lineage: CharacterString [0..1]

+ time: MI_TemporalReference [0..1]

+ format: CharacterString [0..1]

«Type»

MI_FreeKeywords

- keyword: MI_Keywords [1..*]

«Type»

MI_YellowPageInfo

+ business: MI_BusinessClassification [1..*]

«Type»

MI_BusinessClassification

+ topicCategory: CharacterString

«Type»

MI_Keywords

+ keywords: CharacterString [1..*]

«Type»

MI_WhitePageInfo

+ providerName: CharacterString

+ providerSite: OA_URI [0..1]

+ providerIcon: OA_URI [0..1]

+ responsibleParty: MI_ResponsibleParty

«Type»

MI_SpatialReference

+ envelope: GM_Envelope [0..1]

+ place: CharacterString

+ point: GM_Point [0..1]

«Type»

MI_SectionContentBase

SWE common provides

an EnvelopeType and a

PositionType. For a

specific implementation

this can be used as

GM_Envelope and

GM_Point.

«Type»

MI_ResponsibleParty

+ responsibleParty: CI_ResponsibleParty

«Type»

MI_TemporalReference

+ instant: DateTime

+ period: TimePeriod [0..1]

SWE common provides a timePair for

describing intervals. But since

MI_TemporalReference is not only

used for O&M types, but also for other

services and data, the defined

MI_TemporalReference was used.

0..1

0..1

0..1

1

0..1

1

0..1

1

Figure 7-20: Common Meta-information Elements

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 130 of 233

The optional section MI_Discovery_Basic further details common information that may be

useful for the description of the meta-information about different kinds of resources (see Figure

7-20). It includes spatial references to define the location of the described resource.

The discovery basic section also contains a temporal reference. It is possible to define a

time stamp or a time interval. The defined temporal types of SWE common are not used, because

the meta-information schema and especially the discovery basic section is common and not

exclusively tied to the description of sensor observation meta-information. However, for the

implementation of a specific catalogue containing O&M resources the usage of SWE common

types for spatial and temporal reference is possible. The discovery basic section also defines free

keywords to be used as matching constraints in catalogue search operations as well as white page

information containing detailed contact information about the resource provider and yellow page

information for the classification of the meta-information document. The white page information

part uses well known types defined by ISO19115.

7.7.3 Meta-information Sections Related to Observation Discovery

The sections MI_OM_FeatureOfInterest, MI_OM_ObservedProperty and

MI_OM_Procedure represent the O&M model types. These sections can be used to define meta-

information that describes observations (see Figure 7-21, Figure 7-23 and Figure 7-22). For the

description of the meta-information of observations there is no need for a complete mapping of

the O&M elements. Instead a well defined list of available types describing the O&M types is

needed. The feature of interest section is mandatory for the creation of a meta-information

document of the resource type feature of interest. It includes a feature of interest type defined

with a URN, which shall be defined in a list of available features of interest and a spatial

reference which provides information about the location of the feature of interest.

class AS-MI-OM-FeatureOfInterest

«type»

AS-MI FeatureOfInterest::MI_OM_FeatureOfInterest

+ spatialReference: MI_SpatialReference [0..1]

+ featureOfInterestType: OA_URN [1..*]

+ feautreOfInterestId: CharacterString

«type»

AS-MI Sections::

MI_SectionContentBase

Figure 7-21: Feature of Interest Section

 The procedure section is mandatory for the creation of a meta-information document of

the resource type procedure. It includes a procedure type defined via a URN, which shall be

defined in a list of available procedures. Like the feature of interest section it is also possible to

define an area of interest of the procedure via the spatial reference attribute. Additionally the

procedure section contains information about the procedure input, procedure output, accuracy,

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 131 of 233

process and responsible party which describes the meta-information for information fusion

processes of procedures (see section 10.6.3).

class AS-MI-OM-Procedure

«type»

AS-MI Procedure::MI_OM_Procedure

+ procedureType: OA_URN

+ spatialReference: MI_SpatialReference [0..1]

+ procedureInput: MI_OM_ObservedProperty

+ responsibleParty: MI_ResponsibleParty

+ accuracy: DQ_ Element [0..1]

+ process: OA_URN [0..*]

+ procedureOutput: MI_OM_ObservedProperty

+ procedureId: CharacterString

«type»

AS-MI Sections::

MI_SectionContentBase

Figure 7-22: Procedure Section

The observed property section is mandatory for the creation of the resource type observed

property. It includes an observed property type defined via a URN, which shall be defined in a

list of available observed properties (see section 6.5.2). Additionally the section contains a

placeholder for a more detailed description of the observed properties. This element can be used

if there is a need for a registry containing observed properties.

Figure 7-23: Observed Property Section

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 132 of 233

The section MI_SensorML (see Figure 7-24) provides the possibility to include a

SensorML document that contains detailed information about a procedure (which, according to

the O&M model, represents a sensor (see section 7.2). Using this section the creation of a

catalogue as sensor registry is possible.

cd AS-MI-SensorML

«Type»

AS-MI SensorML::

MI_SensorML

+ sensorML: SensorML

«Type»

AS-MI Sections::

MI_SectionContentBase

Figure 7-24: SensorML Section

For each service type there is a need to define a section that defines the specific capabilities

of a service. As an example the section MI_SOS_Capabilities defines the capabilities of an SOS

service (see Figure 7-25). The same structure shall be used for the creation of specific sections

for other services.

Figure 7-25: Example Section describing Specific Capabilities of a Service

Instances of the OGC Sensor Observation Service (SOS) (see section 8.2.2) provide

offerings as a means to combine observations that share common characteristics. For each

offering a bounding box and a time interval is provided. This principle is currently under

discussion in the OGC Sensor Web Enablement Working Group. Therefore the section

describing the SOS capabilities in the meta-information schema assumes an SOS having a single

offering and provides a single time interval and bounding box. The MI_SOS_Capabilities type

will be adapted to the result of the ongoing discussion.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 133 of 233

It is also possible to include original OGC capabilities in a meta-information document. An

example including the capabilities of an SOS is defined in the section

MI_OGC_SOS_Capabilities (see Figure 7-26)

cd AS-MI-OGCSOSCapabilities

«Type»

AS-MI Sections::

MI_SectionContentBase

«Type»

AS-MI OGC SOS Capabilities::

MI_OGC_SOS_Capabilities

+ sosCapabilities: Capabilities

Figure 7-26: Example Section including original OGC SOS Capabilities

There is a placeholder in the section MI_SensorNetwork to define meta-information about

sensor networks (see section 5.4). From the modelling point of view, a sensor network is at

present simply represented by a container of a set of sensors.

class AS-MI-SensorNetwork

«type»

AS-MI Sensor Network::MI_SensorNetwork

+ procedureConnector: MI_ProcedureConnector

«type»

AS-MI Sections::

MI_SectionContentBase

«type»

AS-MI Sensor Network::MI_ProcedureConnector

+ connectorType: MI_ConnectorEnumeration

constraints

{connectorType is restricted to dataProcedure}

«enumeration»

AS-MI::MI_ConnectorEnumeration

 dataFeatureOfInterest

 dataPro cedure

 service

 dataObservedProperty

 dataSensorNetwork

 da ta

1

0..*

Figure 7-27: Sensor Network Section

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 134 of 233

The sections described above can be used for the discovery of different resource types in a

catalogue. For the discovery of sensor observations there is a need for links between the different

resource types. Figure 7-28 shows the MI_Service section that describes common meta-

information about a service. Using a so-called data connector, resources information about

services may be connected to different data resource types such as features of interest,

procedures or observed properties. As a consequence, a query for services may include search

criteria for these resources. The following describes an example workflow for the discovery of

SOSs providing observations yielded by a specific procedure:

1. Search in the catalogue for the specific procedure type. The catalogue will return a

MI_Data_Procedure type document.

2. Search in the catalogue for SOSs which are connected to the MI_Data_Procedure

type document. The MI_Data_Procedure instance is identified via its ID. The

catalogue will return MI_Service documents describing SOSs which use the

specific procedure type.

3. The MI_Service document provides access information about the SOS. The access

to the observations of the procedures is achieved via the means of the SOS.

Figure 7-28: Service Description Section

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 135 of 233

Figure 7-29 shows the OA_MI_Data section that describes a data resource. In analogy to

the section about services, resource information of type service can be connected to data.

class AS-MI-Data

«type»

AS-MI Data::MI_DataDescription

+ serviceConnector: MI_ServiceConnector [0..*]

+ dataType: CharacterString [1..*]

«type»

AS-MI Sections::

MI_SectionContentBase

«enumeration»

AS-MI::MI_ConnectorEnumeration

 dataFeatureOfInterest

 dataPro cedure

 service

 dataObservedProperty

 dataSensorNetwork

 da ta

«type»

AS-MI Data::MI_Serv iceConnector

+ connectorType: MI_ConnectorEnumeration

constraints

{connectorType is restricted to service}

1

0..*

Figure 7-29: Data Description Section

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 136 of 233

8. Service Viewpoint

8.1. Overview

The service viewpoint of the SensorSA specifies the interface and service types that aim at

improving the syntactic and semantic interoperability between services, source systems and

applications. These interface and service types principally cover all of the functional domains as

illustrated in Figure 6-1 and described in section 6.2.

The services are described according to the service description framework of the (RM-OA,

2007) and are structured as follows:

- Section 8.2 focuses on the services of the acquisition domain on the basis of the services

of the OGC Sensor Web Enablement initiative.

- Section 8.3 focuses on the services that support the abstract access control pattern as

introduced in section 6.8.2.

- Section 8.4 provides the descriptions of the remaining architecture services of the

mediation, processing and application domain.

Note: Services of the sensor domain are out of scope of the current version of the

SensorSA. The user domain is not specified on an abstract level in the SensorSA. Instead,

implementations of user-oriented services in a Web-based environment may be found in the

Service Support Environment (ESA SSE, 2007).

8.2. Services of the OGC Sensor Web Enablement

8.2.1 Overview

Service and

Interface Type

Name

Overview Description Reference

Sensor

Observation

Service

Provides access to observations from sensors and sensor

systems that is consistent for all sensor systems including

remote, in-situ, fixed and mobile sensors.

section 8.2.2

Sensor Planning

Service

Provides an interface to task any kind of sensor to retrieve

collection assets.

section 8.2.3

Sensor Alert

Service

Provides means to register for and receive sensor alert

messages.

section 8.2.4

Web Notification

Service

Provides means by which a client may conduct

asynchronous dialogues with one or more other services

using a range of communication protocols.

section 8.2.5

Table 8-1: Sensor Web Enablement Services

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 137 of 233

8.2.2 Sensor Observation Service

Name Sensor Observation Service

Standard

Specifications

OGC 06-009r4 Sensor Observation Service OpenGIS® Implementation

Specification

Description The goal of the Sensor Observation Service (SOS) is to provide access to

observations from sensors and sensor systems in a standard way that is

consistent for all sensor systems including remote, in-situ, fixed and mobile

sensors. An SOS organizes collections of related sensor system observations

into Observation Offerings. The SOS leverages the Observation and

Measurements (O&M) specification for modelling sensor observations and

the TransducerML and SensorML specifications for modelling sensors and

sensor systems. The approach that has been taken in the development of SOS,

and the SWE specifications on which it depends, is to carefully model

sensors, sensor systems, and observations in such a way that the model covers

all varieties of sensors and supports the requirements of all users of sensor

data. SOS leverages the standard properties of these two data types (sensors

and observations) to provide specialized operation signatures for observation

data.

The Sensor Observation Service provides its functionality through the

following interfaces:

 ServiceCapabilities: Provides information about both common and

specific capabilities.

 CoreOperationProfile: Provides the basic functionality to retrieve

observations.

 TransactionOperationProfile: Provides functionality to register a

Sensor with the SOS and to insert Observations

 EnhancedOperationsProfile: Provides FOI centred operations as well

as convenience operations

Interface ServiceCapabilities

getCapabilities Informs the client about both common and specific capabilities of a Service

Observation Service instance.

Interface CoreOperationProfile

describeSensor Requests detailed meta-information about a sensor and delivers a document

describing the sensor system.

getObservation Retrieves observation data structured according to the Observation and

Measurement specification.

Interface TransactionOperationProfile (Optional)

registerSensor Registers a new sensor system with the SOS as part of the transactional

profile. The response to a registerSensor request contains an

AssignedSensorId which is the identifier assigned by the SOS to designate the

new sensor.

insert

Observation

Inserts new observations for a sensor system.

Interface EnhancedOperationsProfile (Optional)

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 138 of 233

getObservation

ById

(optional)

Returns an observation based on an identifier.

getResult

(optional)

Obtains sensor data in a repetitive fashion from the same set of sensors

without having to send and receive requests and responses that largely contain

the same data except for a new timestamp.

getFeature

OfInterest

(optional)

Returns detailed information (such as location) about one or more features.

These features are typically used in the Sensor Observation Service to

identify the geographical location where observations are being made.

getFeature

OfInterestTime

(optional)

Returns the time periods for which the SOS will return data for a given

advertised feature of interest. Delivers a GML time primitive which lists one

or more time periods for which observations from that feature of interest are

available.

describe

FeatureType

(optional)

Returns the XML schema for the specified GML feature advertised in

GetCapabilities. This may be used to obtain a description of the type of an

observation feature-of-interest.

describe

Observation

Type(optional)

Returns the XML schema that describes the Observation type that is returned

for a particular phenomenon.

describe

ResultModel

(optional)

Returns the schema for the result element that will be returned when the client

asks for the given result model by the given ResultName.

Example usage A sensor data consumer is interested in obtaining sensor observations from

one or more sensors. The consumer would perform service discovery using

service capabilities information, usually via a catalogue service, in order to

find SOS service instances that can provide the desired sensor observations.

After initial discovery the consumer could directly obtain observations from

services or could perform additional discovery at the service level or get

sensor meta-information before obtaining sensor observations. Service-level

discovery involves invoking the GetCapabilities operation to return

information about the offerings that are available from each service. Detailed

sensor meta-information can be obtained after extracting the sensor system

identifiers out of each observation offering by invoking the DescribeSensor

operation.

Comments This service description is abstracted from the OGC 06-009r4 Sensor

Observation Service OpenGIS® Implementation Specification.

Table 8-2 : Description of the Sensor Observation Service

8.2.3 Sensor Planning Service

Name Sensor Planning Service

Standard

Specifications

OGC 07-014, OpenGIS® Sensor Planning Service Implementation

Specification

Description The Sensor Planning Service (SPS) provides a standard interface to task any

kind of sensor to retrieve collection assets. It is a service by which a client

can determine collection feasibility for a desired set of collection requests for

one or more sensors/platforms, or a client may submit collection requests

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 139 of 233

directly to these sensors/platforms. Not only must different kinds of assets

with differing capabilities be supported, but so must different kinds of request

processing systems, which may or may not provide access to the different

stages of planning, scheduling, tasking, collection, processing, archiving, and

distribution of requests and the resulting observation data and information

that is the result of the requests. The SPS is designed to be flexible enough to

handle such a wide variety of configurations.

The Sensor Planning Service provides its functionality through the following

interfaces:

 ServiceCapabilities: Provides information about both common and

specific capabilities.

 SensorTasking: Provides as set of operations to task sensors.

Interface ServiceCapabilities

getCapabilities Informs the client about both common and specific capabilities of a Service

Planning Service instance.

Interface SensorTasking

describe

Tasking

Requests the information needed in order to prepare an assignment request

targeted at the assets that are supported by the SPS and selected by the client.

The server will return information about all parameters that have to be set by

the client to perform a submit operation.

getFeasibility

(optional)

Provides feedback to a client about the feasibility of a tasking request.

Dependent on the asset type covered by the SPS, the SPS server action may

be as simple as checking that the request parameters are valid and are

consistent with certain business rules, or it may be a complex operation that

calculates the availability of the asset to perform a specific task at the defined

location, time, orientation, calibration etc.

submit Submits the assignment request. Depending on the covered asset, it may

perform a simple modification of the asset or start a complex mission.

getStatus

(optional)

Requests information about the current status of the requested task.

update

(optional)

Updates a previously submitted task.

cancel

(optional)

Cancels a previously submitted task.

describeResult

Access

Retrieves information about how and where data that were produced by the

asset can be accessed. The server response may contain links to any kind of

data accessing OGC Web services such as SOS, WMS or WFS.

Example usage Imagine a user who wants to get an overview of the current situation in a

specific building. This building is what we call the area of interest (AOI). The

first step would be to call up a catalogue to provide descriptions of all sensors

that have an area of service (AOS) which overlaps with the AOI.

However, a catalogue may only contain high-level information about the

observable properties, locations and contact information. It might be

necessary to call a Sensor Observation Service to retrieve the SensorML

descriptions for the sensors found. In this example, one of the descriptions

provides information about a video camera located inside the building.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 140 of 233

Now the user wants to find out more about the service. Note that a single SPS

instance might be a façade covering hundreds of sensors with even more

tasking parameters. The user sends a getCapabilities request to the SPS

instance. The response shows that the service supports all SPS operations and

offers only one taskable sensor. Before the user moves forward in tasking the

sensor they want to find out whether they can access the sensor data.

Note: The SPS is an interface to task an asset or asset system. It is not an

interface to access the observed data produced by it. Observed data can be

made accessible by a number of services. In most cases it might be a Sensor

Observation Service, but TML Data Streaming Service, Web Feature Service,

Web Coverage Service, or Web Map Service are other options.

Comments This service description is abstracted from the OpenGIS® Sensor Planning

Service Implementation Specification

Table 8-3: Description of the Sensor Planning Service

8.2.4 Sensor Alert Service

Name Sensor Alert Service

Standard

Specifications

OGC 06-028r4, OpenGIS® Sensor Alert Service Implementation

Specification

Description The Sensor Alert Service (SAS) provides the means to register for and

receive sensor alert messages. The service supports both pre-defined and

custom alerts and covers the process of alert publication, subscription, and

notification. More specifically, the SAS defines an interface that allows nodes

to advertise and publish observational data or alerts and corresponding meta-

information. It allows clients to subscribe for these data – or any other data

that are produced by the SAS based on incoming messages from sensors –

within specific thresholds. Observational data sent from a sensor are referred

to in this specification as sensor data. These sensor data might be a single

observation result, a complex observation result or even an alert. The SAS

sends alerts if conditions are matched, supports the integration of new sensors

and uses XMPP (Extensible Messaging and Presence Protocol) to send

messages.

The Sensor Alert Service provides its functionality through the following

interfaces:

 ServiceCapabilities: Provides information about both common and

specific capabilities.

 SensorAlert: interface allowing nodes to advertise and publish

observational data or alerts plus corresponding meta-information. It

allows clients to subscribe for data produced by the SAS based on

incoming messages from sensors – within specific thresholds

Interface ServiceCapabilities

getCapabilities Informs the client about both common and specific capabilities of a Service

Alert Service instance.

Interface SensorAlert

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 141 of 233

getSupported

Operations

(optional)

Delivers a document that describes the interface in terms of the operations

that are supported by the service instance. A typical format may be a WSDL

document in a W3C Web Service platform environment
1
.

advertise

(optional)

Allows producers to advertise the type of information published.

cancel

Advertisement

(optional)

Cancels an advertisement.

renewAdvertise

ment

(optional)

Renews an advertisement when the advertisement set by the SAS has expired.

subscribe Allows consumers to subscribe to alerts.

cancel

Subscription

Cancel a subscription.

renew

Subscription

Renews a subscription.

describeAlert Delivers a template of the alert message structure.

describeSensor Requests information about a sensor, encoded in SensorML.

Example usage Figure 8-1illustrates a high level view of the SAS and the protocols used at

the different steps.

SAS
ClientSensor

last-mile-mode

WNS or other

gateway

XMPP
MUC MUC

Advertise: HTTP

(renew & cancel)

GetCapabilities: HTTP

Subscribe: HTTP

(renew & cancel)

join & publish: XMPP

alert: XMPP

join: XMPP

alert:

various

DescribeAlert: HTTP

DescribeSensor: HTTP

Figure 8-1: Overview about the Sensor Alert Service (Simonis, 2006)

Comments This service description is abstracted from the OpenGIS® Sensor Alert

Service Implementation Specification.

Table 8-4: Description of the Sensor Alert Service

1
 In OGC 06-028r4, the corresponding operation is called “getWSDL”.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 142 of 233

8.2.5 Web Notification Service

Name Web Notification Service

Standard

Specifications

OGC 06-095r1, OpenGIS® Web Notification Service Discussion Paper

Description The Web Notification Service (WNS) is a service by which a client may

conduct asynchronous dialogues (message interchanges) with one or more

other services using a range of communication protocols. This service is

useful when many collaborating services are required to satisfy a client

request, and/or when significant delays are involved in satisfying the request

and data have to be pushed to receivers using various protocols.

The “way-of-notification” palette may include e-mail, http-call (as HTTP

POST: in case of sophisticated clients that act as web services themselves),

SMS, Instant Message, phone call, letter or fax. A WNS has to provide at

least one of the described notification mechanisms.

The Web Notification Service provides its functionality through the following

interfaces:

 ServiceCapabilities: Provides information about both common and

specific capabilities.

 WebNotification: Performs functions to send notifications to

registered users and deal with responses.

Interface ServiceCapabilities

getCapabilities Requests the description about the capabilities of a service. In the particular

case of a Web Notification Service, the response of a getCapabilities request

is general information about the service itself, specific information about the

available notification protocols, and mandatory operational parameters. The

following questions have to be answered in the capabilities:

• What notification protocols are supported?

• Which parameters are mandatory for registering?

• What kinds of response protocols are supported?

Interface WebNotification

getWSDL This operation allows a client to request and receive the WSDL definition of

the server interface.

register Registers users to receive further notification. The user address and the

communicationProtocol have to be provided. The WNS must provide a

UserID.

unregister Allows a user to unregister from that service instance

updateSingle

User

Registration

This operation allows a client to update a previous registration by providing a

new communication endpoint (e.g. an email address or a telephone

number).

opdateMulti

User

Registration

This operation allows a client to update a previous MultiUserRegistration by

adding or deleting individual group members.

doNotification Initiates the notification of a user.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 143 of 233

getMessage This operation allows a client to retrieve a message which has not been

delivered by the WNS because of restrictions set by the chosen transport

protocol. If notification via SMS or phone call is desired then the WNS will

forward the contents of the ShortMessage element of the DoNotification

request together with a unique ID assigned to that message (for later retrieval

of the complete message via the GetMessage operation).

Example usage Observations that require preceding collection feasibility studies, complex

control and management activities, or intermediate and/or subsequent user

notifications are not conducive to synchronous operations, but instead favour

asynchronous operations. For these cases, especially when a Sensor Planning

Service comes into play, asynchronous communications need to be supported.

For example, in a request for a satellite image, the user submits a collection

feasibility request through a Sensor Planning Service and then subsequently

requests collection of the desired observations. For this case, if any

procedures are finished, interrupted, delayed, timed out, or cancelled, the user

must be notified.

If the feasibility request returns a positive response, the user would then

request the observations. The requested data will probably not be ready for

immediate retrieval; there will likely be a delay. It is also possible that the

service would not be able to provide an exact retrieval date-time. Thus, a

notification mechanism becomes necessary. The communication is never

initiated by the Web Notification Service. This service acts as a message

transducer exclusively.

Comments This service description is abstracted from the OpenGIS® Web Notification

Service Discussion Paper.

Table 8-5: Description of the Web Notification Service

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 144 of 233

8.3. Access Control Services

8.3.1 Overview

Service and

Interface Type

Name

Overview Description Reference

Profile Management

Service

Creates and maintains (user) profiles and their

associations to identities.

section

8.3.2

Identity

Management- and

Authentication

Service

Creates and maintains identities. Supports the

management of groups (of identities) as a special kind of

identity. Proves the genuineness of identities using a set

of given credentials and issues session information (IdP).

section

8.3.3

Policy Management-

and Authorisation

Service

Acts as an external policy decision point (PDP) and

policy administration point (PAP). The service provides

a decision on whether some identity (e.g. a user or a

service) is authorised to access a certain resource. Allows

the management (create, update, delete) of XACML

policies.

section

8.3.4

Policy Enforcement

Service

A dedicated policy enforcement point (PEP) that handles

authentication and sends authorisation requests to the

PDP for non-security enabled web services.

section

8.3.5

Table 8-6: Access Control Services

Note: The abstract access control pattern specified in section 6.8.2 introduces the

concept of a Policy Enforcement Point as the entity that enforces an access control policy. The

SensorSA introduces a “Policy Enforcement Service” to handle policy enforcement as mainly a

coordination of the authentication and authorisation request tasks. A Service Proxy (Service Side

Façade) in conjunction with a Policy Enforcement Service should be used if the Policy

Enforcement task should be performed in a non intrusive manner. This implementation pattern is

described in section 10.5.1.1.

8.3.2 Profile Management Service

Name Profile Management Service

Standard

Specifications

The following RFC has been used as a template to define profile attributes in

the SANY implementation of the Profile Management Service:

 IETF RFC 2251-RFC2256 Lightweight Directory Access Protocol

(LDAP) (v3)

 IETF RFC 2256 - A Summary of the X.500(96) User Schema for use with

LDAPv3

Description The Profile Management Service is used to create and maintain profiles. In

general, profiles (of users, services, etc.) represent entities that need to be

authenticated. They are not authenticated themselves but rather represent a

point of contact and management feature for authentication and authorisation

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 145 of 233

purposes. A profile is decoupled from authentication. This decoupling is done

by separating identities from profiles. An identity of a profile is defined in an

Identity Management Interface instance. Management of profiles includes the

association to identities as well as storage of profile attributes. Profile

attributes can be arbitrary key / value-list pairs and are currently defined by

an LDAP schema

The Profile Management Service provides its functionality through the

following interfaces:

 ServiceCapabilities

 ProfileManagement.

Interface ServiceCapabilities

getCapabilities Informs the client about both common and specific capabilities of a Profile

Management Service instance, e.g. the supported LDAP schemas.

Interface ProfileManagementInterface

createProfile Creates a profile.

deleteProfile Deletes a profile including the deletion of all associations to identities and

profile attributes.

updateProfile Updates a profile. Can be used to change profile related information, e.g.

profile attributes.

addIdentityTo

Profile
Associates an existing identity to an existing profile.

removeIdentity

FromProfile
Removes a previously assigned identity from a profile.

getProfiles Enumerates all profiles of the current service instance. Accepts a query

parameter to narrow the list of returned profiles.

Example usage The Profile Management Service provides the functionality to register and

update user profiles. The result of a successful registration is a profile entry in

the Profile Management information base. Moreover, the Profile Management

Service‟s information base contains information about the profile‟s identities

whereas authentication of associated identities and the provision of session

information is provided by an Authentication Interface instance.

Comments The Profile Management Service replaces the former User Management

Service described in the RM-OA (2007).

Table 8-7: Description of the Profile Management Service

8.3.3 Identity Management and Authentication Service

Name Identity Management and Authentication Service

Standard

Specifications

The Authentication Interface uses the following standard for the encoding of

session information:

 OASIS Security Assertion Markup Language (SAML) v2

Description Identities and their attributes are managed (created, deleted, etc.) using an

Identity Management Interface instance. The Identity Management Interface

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 146 of 233

acts as an identity provider (IdP). The manner in which identity information is

managed is up to the particular identity provider as different authentication

mechanisms (e.g. asymmetric public key/secret infrastructure or

login/password) require different identity related information. In this way

Identity Management can be independent of authentication methods. Please

note that the association between profiles and identities is performed using an

instance of the Profile Management Service. In this way authentication

remains independent of Profile Management tasks related to identities.

The Authentication Interface verifies genuineness of identities using a given

set of credentials. The authentication mechanism, which means the way

authentication is performed, is up to the service implementation. The kind of

credentials an Authentication Interface needs as well as the way they are

passed is specific to the authentication mechanism used. The present

specification of the Identity Management and Authentication Service supports

a username / password authentication mechanism.

A SAML ticket (session information) returned after a successful

authentication can be used to invoke services demanding authenticated

identities.

The Identity Management and Authentication Service provides its

functionality through the following interfaces:

 ServiceCapabilities

 Authentication.

 IdentityManagement

Interface ServiceCapabilities

getCapabilities Informs the client about both common and specific capabilities of an Identity

Management and Authentication Service instance.

Interface Authentication

login Performs a login using the credentials and identity (e.g. username / password)

supported by this Authentication Interface instance. Returns a SAML ticket

that contains the authenticated identity and related attributes and possibly a

set of authenticated group identities that is associated to the authenticated

identity. Note: a SAML ticket serves as a asserted and temporarily valid

record of a subject‟s identity including identity properties (e.g. age) that can

serve as a basis for an authorisation decision.

verifySession

Information

Verifies the SAML ticket (session information) previously issued by the same

Authentication Interface instance. Returns a status value indicating the

validity of the SAML assertion stated in the SAML ticket.

Interface IdentityManagement

addIdentity Creates an identity. The identity‟s representation is specific to the supported

authentication mechanism. The present specification of the Identity

Management and Authentication Service supports UserNamePassword

Identities apart from the obligatory GroupIdentities.

delete

Identity
Deletes an existing identity. Deletion of identities implies the need to update

the corresponding Profile Management Service instance as well as any policy

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 147 of 233

referring to it.

update

Identity

Updates an existing identity. The identity to be updated as well as information

to be changed, e.g. a new username, additional or modified attributes, shall be

provided as input.

add

Credentials

Adds credentials to a certain identity. Credentials are specific to the

authentication mechanism used. For a username/password authentication the

credential is a password.

update

Credentials
Updates credentials (e.g. password) for a certain identity (e.g. username).

deactivate

Identity

Deactivates an identity without removing it. The identity, e.g. username to be

deactivated and additional information, e.g. a time period for deactivation,

shall be provided as input.

activate

Identity

Activates an existing, formerly deactivated identity. The identity, e.g.

username to be activated and additional information, e.g. a point of time for

activation, shall be provided as input.

getIdentities Executes a query and returns Identities that match the query conditions. The

query language depends on the different implementations of the service

instance.

addItentityTo

Group

Associates an existing group with an existing idnetity. The identity must

reside in the same Identity Management Interface instance.

removeIdentity

FromGroup

Removes the association between a given identity and a given group. The

removed identity is not deleted.

Example usage Multiple instances of Identity Management and Authentication Services may

coexist in a network and each organisation may maintain their own instance

of the Identity Management and Authentication Service. This favours cross-

organisational sign-on or single-sign-on (SSO) since identities represent only

the identity of a (user) profile and one profile may refer to multiple identities,

each registered at different instances.

Comments The Identity Management and Authentication Service replaces the former

Authentication Service described in the RM-OA (2007).

Table 8-8: Description of the Identity Management and Authentication Service

8.3.4 Policy Management and Authorisation Service

Name Policy Management and Authorisation Service

Standard

Specifications
The following standards are used for the definition of policies and

authorisation request and responses:

 OASIS Security Assertion Markup Language (SAML) v2.0

 OASIS eXtensible Access Control Markup Language (XACML) TC v2.0

 OASIS SAML 2.0 profile of XACML v2.0

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 148 of 233

Description The Authorisation Interface evaluates an authorisation request of a policy

enforcement point (PEP) and returns the authorisation decision. The

authorisation decision is based on an XACML authorisation request passed

from the PEP or a security-enabled service. The authorisation request

comprises the authenticated identities of the service requestor including all

identity attributes relevant for an authorisation decision as well as specific

environment attributes, for example individual state variables of the service.

The Policy Management Interface is responsible for the management of

access policies and thus plays the role of a policy information point (PIP) and

policy administration point (PAP). Access policies can be expressed in the

XACML access control policy language.

The Policy Management and Authorisation Service provides its functionality

through the following interfaces:

 ServiceCapabilities

 Authorisation

 PolicyManagement

Interface ServiceCapabilities

getCapabilities Informs the client about common and specific capabilities of a Policy

Management and Authorisation Service instance.

Interface Authorisation

authorise This operation uses the SAML 2.0 profile of XACML 2.0 to request an

authorisation decision. The authorisation decision is currently provided as a

compliance value indicating how to treat the request (e.g. permit or deny).

Interface Policy Management

createPolicy
Creates a new policy.

deletePolicy Deletes an existing policy.

getPolicy Retrieves a policy identified by a unique ID.

getPolicies Retrieves a sequence of policies maintained by the Policy Management

Interface instance..

updatePolicy Updates an existing policy.

Example usage Access policies can be expressed in the XACML access control policy

language. XACML allows the definition of very flexible policies that can be

evaluated against any kind of environment attributes. Such environment

attributes may be derived from boundary conditions of a service request as

well as from the underlying data source. By defining an appropriate policy for

e.g. a WMS and a SOS the Policy Management and Authorisation Service

may restrict access to a certain layer or offering.

Comments The Policy Management and Authorisation Service replaces the former

Authorisation Service described in the RM-OA (2007).

Table 8-9: Description of the Policy Management and Authorisation Service

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 149 of 233

8.3.5 Policy Enforcement Service

Name Policy Enforcement Service

Standard

Specifications
The following standards are by the Policy Enforcement Service:

 OASIS Security Assertion Markup Language (SAML) v2.0

 OASIS SAML 2.0 profile of XACML v2.0

Description The Policy Enforcement Service is a dedicated policy enforcement point

(PEP) that handles the necessary interaction with Authorisation Service and

Authentication Service. The PEP comprises the service independent part of a

proxy solution for non-security enabled web services and thus is one

important component of non-intrusive web service security for services

compliant with the SANY W3C Web Services Platform (section 9.2.1). It

enables both security-enabled and non-security-enabled clients to access a

proxied web service via the same interface.

The PEP always works in conjunction with a service specific proxy and/or a

service specific client facade.

As suggested in OASIS WS-Security standards, the optional security

information encoded in SAML is provided in the SOAP header while the

actual service request in the SOAP body remains unchanged.

The Policy Enforcement Service provides its functionality through the

following interfaces:

 ServiceCapabilities

 PEP

Interface ServiceCapabilities

getCapabilities Informs the client about both common and specific capabilities of a Policy

Enforcement Service instance.

Interface PEP

doRequest This operation performs a service request and enforces access restrictions by

calling a service that implements the Authorisation Interface. In general

doRequest is called by a proxy and/or client facade..

Example usage The Policy Enforcement Service is designed to interact with the

Authentication and the Policy Management and Authorisation Service. It

verifies the genuineness of the security information by calling the Identity

Management and Authentication Service and then delegating the evaluation

of the access policies to an external policy decision point (PDP), the Policy

Management and Authorisation Service.

Comments none

Table 8-10: Description of the Policy Enforcement Service

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 150 of 233

8.4. Services of the Mediation, Processing and Application Domain

In the following, an overview is given of those architecture services of the SensorSA that belong

to the mediation and processing as well as the application domain. See Table 8-11 for the list of

ORCHESTRA architecture services as specified in (RM-OA, 2007) that could immediately be

applied in a SANY Service Network. Their abstract specifications are available under (ORCH-

AbstrServ, 2007), and their implementation specifications are found under (ORCH-ImplServ,

2007).

Note: For better readability and self-containment of the present document, some of these

services are additionally described in the present SensorSA. This is especially the case when

their description has been extended or tailored to the SANY purposes or if the service type is

used in the description of a service interaction pattern in section 10.

Service and

Interface Type

Name

Overview Description Reference

Basic Interfaces Interface types enabling a common architectural approach

for all ORCHESTRA Services:

 self-description of service instances (capabilities)

 synchronous and asynchronous interactions

 transactional support

Furthermore:

 predefined exception types

RM-OA,

2007

Catalogue

Service

Ability to publish, query and retrieve descriptive

information (meta-information) for resources (i.e. data and

services) of any type.

The SANY Catalogue Service is an extension of the

ORCHESTRA Catalogue Service and is described in

section 8.2.

section 8.4.1

Document

Access

Service

Supports access to documents of any type (textual

documents, images). A document is referenced by a

document descriptor which is considered to be a specific

kind of a feature type.

RM-OA,

2007

Feature Access

Service

Selection, creation, update and deletion of feature instances

and feature types
1
 available in a service network.

Features provided are instances of a certain feature type

defined in an ORCHESTRA Application Schema. Interface

may be re-used by more specific access services using

interface inheritance.

RM-OA,

2007

Map and

Diagram

Service

Enables geographic clients to interactively visualise geogra-

phic and statistical data.

Transforms geographic data (vector or raster) and/or

numerical tabular data into a graphical representation using

symbolization rules. The main output of this service is an

section 8.4.3

1
 As in (RM-OA, 2007), SANY adopts the ISO 19101 definition of a feature as being an “abstraction of a real world

phenomenon” but explicitly subsumes hypothetical worlds under the term “real world”, too. Thus, for instance, a

“model” may also be understood to be a feature type.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 151 of 233

image document which may be a map, a diagram or a

thematic map (visualization of the spatial distribution of

one or more statistical data themes).

Ontology Access

Interface

Supports the storage, retrieval, and deletion of ontologies as

well as providing a high-level view on ontologies.

As an optional Knowledge Base interface, it provides

operations to query and update models contained in a

knowledge base

RM-OA,

2007

Name Service Encapsulates the implemented naming policy for service

instances in a service network, e.g. creates globally unique

service instance names using a defined naming policy.

Important if several service networks across different

platforms are to be interconnected.

RM-OA,

2007

Processing

Service

Describes a common interface for services offering

processing operations on spatial (vector as well as raster)

and non-spatial data. Examples of processing operations are

statistical or geospatial calculations, image processing and

analysis or, in general, computer algebra operations.

section 8.4.2

Schema

Mapping Service

Provides functionality for the mapping of features from a

source into a target schema.

RM-OA,

2007

Service

Monitoring

Service

Provides an overview about service instances currently

registered within service network, e.g.

1. Actual status (e.g. running, stopped, offline)

2. Statistical information (e.g. average availability,

response times)

RM-OA,

2007

Table 8-11: Architecture Service applicable for a Sensor Service Network

8.4.1 Catalogue Service

Name Catalogue Service

Standard

Specifications

The Catalogue Service has been derived from the approach to the handling of

meta-information in SensorSA (see section 6.3). Thus, the following series

of catalogue standards and specifications has been considered, but the goal

has not been to specify a service that is exactly compliant to one of these

services.

 OASIS UDDI Version 3.0.2 Specification

(http://uddi.org/pubs/uddi_v3.htm)

 OGC 06-079r2 EO Application Profile for CSW 2.0 (Status: Pending)

 OGC 06-131r1 EO Products Extension Package for ebRIM (ISO/TS

15000-3) Profile of CSW 2.0 (Status: Discussion Paper)

 OGC 07-006r1 OpenGIS® Catalogue Service Implementation

Specification V2.0.2

 OGC 07-038r1 OGC™ Cataloguing of ISO Metadata (CIM) using the

ebRIM profile of CS-W (Status: Discussion Paper)

http://uddi.org/pubs/uddi_v3.htm
http://portal.opengeospatial.org/files/?artifact_id=5929&version=2
http://portal.opengeospatial.org/files/?artifact_id=5929&version=2

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 152 of 233

 OGC 07-045 OpenGIS® Catalogue Service Specification 2.0.3 ISO

Metadata Application Profile (Status: Implementation Specification final)

 OGC 07-110r1 OpenGIS® Web Registry Service – ebRIM profile of

CSW V1.1.0 (Status: pending)

 ORCHESTRA Catalogue Service – Abstract Specification V1.1

(http://www.eu-orchestra.org/docs/OA-Specs/

Catalogue_Service_Specification_v1.1-BRGM-IITB.pdf)

However, the functionality of these specifications for basic search and

publication is supported by the Catalogue service such that it may be mapped

onto corresponding service implementations. In addition, the Catalogue

Service provides the following interfaces:

 A Semantic Interface for semantic extensions

 A Catalogue Management Interface for the management of cascaded

catalogues

The Catalogue Service does not define a meta-information schema by itself.

The intention of the SANY Catalogue Service is to provide a flexible service

type which can be adapted to the particular purposes of the application

environment.

Description The Catalogue Service supports the ability to publish, query and retrieve

descriptive information (meta-information) for resources (i.e. data and

services), meta-information about sensors and source systems and instances

of feature types and defined extensions (e.g. observations, document

descriptors, schema descriptors).

The Catalogue Service is not tied to a particular schema of a meta-

information standard (e.g. ISO 19115); instead it supports application

schemas for meta-information (AS-MI) that are designed according to the

rules of the ORCHESTRA meta-model (RM-OA, 2007). Because it is

independent from any specific meta-information standard the catalogue can

be used to store meta-information about services and data according to the

meta-information schema used in the catalogue. Therefore a catalogue

instance can be used as a data catalogue, service registry or both if multiple

meta-information types are used in the catalogue instance. The multi-

linguality of the catalogue is dependent on the multilingual capabilities of the

meta-information schema used inside the catalogue.

Meta-information entries in catalogues represent resource characteristics that

can be queried and presented for evaluation and further processing by both

humans and software. The Catalogue Service supports the discovery of

registered resources within an information community and returns binding

information that allows a user to locate and access the resource (e.g. a URI).

The Catalogue Service provides its functionality through the following

interfaces:

 ServiceCapabilities: Provides information about both common and

specific capabilities.

https://portal.opengeospatial.org/files/?artifact_id=7048
https://portal.opengeospatial.org/files/?artifact_id=7048
http://www.eu-orchestra.org/docs/OA

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 153 of 233

 CatalogueSearchInterface: The interface for search provides a means

for searching for information in the catalogue. The client asks the

catalogue capabilities for the available catalogue entry types. Each

entry type is associated with a meta-information type and its

corresponding query languages. With this information the client can

query the catalogue entry type with the appropriate query language.

 SemanticInterface: The semantic interface contains all operations that

work on the basis of ontologies in order to improve the query and

result assessment phase of a search.

 CataloguePublicationInterface: The interface for publication is

responsible for including, updating and deleting meta-information in

the catalogue. It is pushing information into the catalogue. It provides

operations for filling the catalogue. The needed meta-information

could be created with some kind of meta-information editor, in which

the user is specifying the meta-information about resources to be

registered in the catalogue, or it could be collected through the

collection interface.

 CatalogueCollectionInterface: The collection interface provides

operations which are helpful for the automatic update of catalogue

content, in contrast to the publication interface which just fills the

catalogue with provided content. It is pulling meta-information into

the catalogue. The operations in this interface should be able to be

triggered from the outside of the catalogue and it should be possible to

define a periodic update from the catalogue content.

 CatalogueManagementInterface: The management interface provides

operations for the management of the underlying catalogue services of

a cascading catalogue scenario.

Interface ServiceCapabilities

getCapabilities Informs the requestor about both common and specific capabilities of a

Catalogue Service instance. Examples include information about query

languages, whether or not the catalogue service instance is the main

catalogue of a service network (the “OSN Catalogue” as introduced in (RM-

OA, 2007), and the meta-information types used in the Catalogue Service

instance.

Interface CatalogueSearchInterface

search Returns a list of identifiers and some corresponding meta-information

attributes of discovered catalogue entries, given a request expressed in a

particular query language. In a cascaded environment it is possible to specify

a list of catalogues in the request to forward the search only to specific

underlying catalogues.

getMeta

Information

Returns the entire associated meta-information instance, given some

identifiers of catalogue entries managed by the catalogue as returned by a

previous search operation call.

getQuery

Domain

Returns the domain of values that are applicable to a property of the meta-

information type and queryable elements of the catalogue. This is used by

catalogue clients. Using this operation by giving the parameters of interest,

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 154 of 233

the client shall be provided told which values (e.g. list of values, range of

values) are allowed for meta-information properties and queryable elements.

getMeta

Information

Type

Returns the associated meta-information type, given a list of catalogue entry

types managed by the catalogue.

Interface SemanticInterface

improveQuery Returns semantically connected keywords (e.g. parents, children or related

concepts in an ontology) related to a given search request. This operation

enables interactive or automatic query expansion.

activate

Ontology

Activates a specific ontology known by the catalogue to be used in the

semantic extension (e.g for improveQuery or the ranking of search results).

Available ontologies shall be provided by the getCapabilities operation and

uploading of ontologies shall be managed via operations of the Ontology

Access Interface (RM-OA, 2007).

Interface CataloguePublicationInterface

createMeta

Information

Pushes information into the catalogue. The task of this operation is to insert

catalogue content into the catalogue. The operation receives the meta-

information to be stored and returns information about the update of the

catalogue.

setMeta

Information

Updates the catalogue content. The operation receives the meta-information

types to be stored and returns information about the update of the catalogue.

deleteMeta

Information

Deletes catalogue content from the catalogue. The input is a constraint to

identify the catalogue content which is to be deleted. The operation returns

information about the update of the catalogue.

Interface CatalogueCollectionInterface

collectMeta

Information

Pulls meta-information into the catalogue. The operation receives one

reference of a source of meta-information and a catalogue entry type. This

catalogue entry type is the type in which the meta-information is going to be

stored in the catalogue. The operation returns information about the update

of the catalogue.

collectMeta

Information

Periodic

(optional)

Receives one reference of a source of meta-information, the catalogue entry

type and the time interval between two collections and a date to stop the

collect. The catalogue entry type is the type in which the meta-information is

going to be stored into the catalogue. The operation is processed periodically

according to the given intervals and stores the resulting meta-information in

the catalogue.

Interface CatalogueManagementInterface

setCatalogue Publishes a new underlying catalogue to the list of available catalogues of

the cascaded catalogue. A list of available underlying catalogues shall be

provided via the getCapabilities operation.

getCatalogue Returns information about a specific underlying catalogue.

delete

Catalogue

Deletes an underlying catalogue from the list of available catalogues

activate

Catalogue

Activates or deactivates a specific underlying catalogue for the cascaded

search of the cascaded catalogue.

Example

usage
A possible usage scenario of the catalogue is the use of a catalogue for

discovering maps and displaying them in a map viewer. The following steps

need to be accomplished for this scenario:

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 155 of 233

1. The catalogue needs to be initialized with meta-information about the

maps and a service capable of displaying the maps. The meta-

information can be written into the catalogue using operation

createMetaInformation.

2. The user performs a search for available maps on the catalogue using the

search and getMetaInformation operations.

3. The user performs a search for an available map viewer, again using the

search and getMetaInformation operations.

4. The user displays the maps in the map viewer, using the retrieved meta-

information about the maps and the map viewer.

Comments The abstract specification leaves the question of the meta-information

creation open. It could be created by the user with the help of a meta-

information editor or automatically either within the catalogue inside

collectMetaInformation or with the usage of other means and services inside

collectMetaInformation. The support of multi-linguality depends on the

meta-information schema used in the catalogue.

Meta-Information about data and services inside the scope of a service

network will be described with the help of the service capabilities.

Table 8-12: Description of the Catalogue Service

8.4.2 Processing Service

Name Processing Service

Standard

Specifications
 OGC 05-007r7 Web Processing Service (WPS), version 1.0.0 (OGC

Standard) including the WPS Corrigendum OGC 08-091r1

Instantiations and examples of how to use the Processing Service in a

geospatial application domain may be found in:

 ORCHESTRA Application Architecture (ORCHESTRA Deliverable

D4.1.2)

Description The Processing Service describes a common interface for services

offering processing operations on spatial (vector as well as raster) and

non-spatial data. Examples of processing operations are statistical or

geospatial calculations, image processing and analysis or, in general,

computer algebra operations.

The Processing Service provides mechanisms to identify the data required

by the calculation, initiate the calculation, and manage the output so that it

can be accessed by the client. It is also possible that the client cancels the

process if its output is not needed any longer.

The client can also choose to be notified about the status of a process

execution via a Web Notification Service. This removes the burden of

constant polling by the client to achieve the same level of information.

The Processing Service provides the functionality through the following

interface:

 ServiceCapabilities: Informs the client about both common and

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 156 of 233

specific capabilities of the Processing Service.

 ProcessingService: provides the means to invoke and cancel a

process as well as retrieving information about the current process

status.

Interface ServiceCapabilities

getCapabilities Informs the requestor about both common and specific capabilities of a

Processing Service instance. Examples of specific capabilities are types

and versions of procedures and algorithms supported by the processing

service.

Interface ProcessingService

describeProcess Requests and receives detailed information about one or more processing

operation(s) that can be executed by an execute operation, including the

input parameters and formats, and the outputs.

execute Executes a specified processing operation implemented by the Processing

Service, using provided input parameter values. The process can be

executed synchronously or asynchronously. In the case of the latter the

client can be notified through a WNS about the completion of the process.

The processed values can then be retrieved at the specified location.

getStatus Retrieves information about the current status of a process. Such

information includes the progress of an executing process and also the

URL where the output of the process can be retrieved by the client after it

has finished,

cancel The Cancel operation allows a client to cease the execution of the

specified process.

Example Usage An instance of a Processing Service may offer „local‟ and „zonal‟

operations that are performed on coverage features. The local operations

cover the arithmetic binary operators and a reclassify operation based on

local values. The zonal operators cover a spatial aggregation function and

a reclassification, both based on a zone feature.

Another example is the support for processing chains for the purpose of

information fusion as explained in section 10.9.

Comments This service description is abstracted from the OGC Web Processing

Service Specification.

The Processing Service as described here is a kind of template. It is highly

generic and is the service of choice in the SensorSA for encapsulating

general purpose processing such as fusion and models. This means that

the semantics of the Processing Service, i.e. the meaning of the processing

when calling the execute operation, shall be specialised in a further

specification and an associated information model.

The original OGC processing service is enhanced with two operations

(getStatus, cancel) which give the client more control over a process that

is executed.

Table 8-13: Description of the Processing Service

8.4.3 Map and Diagram Service

Name Map and Diagram Service

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 157 of 233

Standard

Specifications

The Map and Diagram Service is a functional extension of the

following standards:

 ISO 19128:2005 - Geographic information -- Web Map Server

Interface

 OGC 06-042 Web Map Service (WMS) Implementation

Specification V1.3.0

The extensions refer to the generation of diagrams, legends, and the

detailed layer descriptions that are needed for fine-grained user-styling,

and the management of layers and styles. Data sent to the Map and

Diagram Service may be structured according to:

 ISO 19136 Geographic information -- Geography Markup

Language (GML)

An alternative data source may be a feature store that provides feature

instances according to:

 OGC 04-094 Web Feature Service (WFS) Implementation

Specification) V1.1

The following standards are used for the symbology definition:

 OGC 02-070 Styled Layer Descriptor (SLD) Implementation

Specification V1.0

 OGC 04-095 Filter Encoding Implementation Specification V1.1

These are extended with symbolizers for diagrams.

Description The Map and Diagram Service is a service that dynamically portrays

geographic and statistical data using style definitions and symbolisation

rules. Its main task is to produce maps and diagrams from geographic

data (vector or raster) and/or statistical data (e.g. census data or results

of a statistical analysis) as digital image files suitable for display on a

computer screen. This service is able to create maps and diagrams

based not only on data hosted on the server, but also on data provided

by external services (e.g. by a Feature Access Service) or directly

included in the request message as GML (sent as an optional part of the

Styled Layer Descriptor (SLD)). In addition, the Map and Diagram

Service is able to create maps and diagrams based on data provided by

an offering of the Sensor Observation Service (see section 8.2.2).

The main output of this service is an image document. The image

document can be a map (visualization of geographic information and

spatially referenced data), a diagram (visualization of statistical data) or

a legend of a portrayed layer. Optionally, this service offers the

possibility of querying information about the features portrayed in an

image document or getting a comprehensive layer description

(including count, minimum, maximum, sum, mean, standard deviation,

and histogram for every attribute when appropriate). The output of

these operations is an information document containing the requested

information (when available).

http://portal.opengeospatial.org/files/?artifact_id=14416
http://portal.opengeospatial.org/files/?artifact_id=14416
https://portal.opengeospatial.org/files/?artifact_id=1188
https://portal.opengeospatial.org/files/?artifact_id=1188

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 158 of 233

The maps and diagrams represent a visualisation of the data. These

data are generally rendered in a pictorial format such as PNG

(recommended as default format), GIF or JPEG. Portrayal in vector-

based graphical elements as Scalable Vector Graphics (SVG) or Web

Computer Graphics Metafile (WebCGM) is also allowed if it is

acceptable for the service provider. However, it is usually preferred

that the original data cannot be reconstructed from the portrayal.

The Map and Diagram Service provides its functionality through the

following interfaces:

 ServiceCapabilities: Provides information about both common

and specific capabilities.

 MapDiagram: Allows a client to request and receive maps,

diagrams and, optionally, information about the visualized

features according to specifications, as well as to both put data

and styles on the server for visualization and to remove them.

Interface ServiceCapabilities

getCapabilities Informs the requestor about both common and specific capabilities of a

Map and Diagram Service.

Interface MapDiagram

getMap

Returns a map of spatially referenced geographic and thematic

information as an image document with the characteristics specified by

the client application. The characteristics of the output image are

specified by the outputAttributes parameter (image format, width,

height, transparency, etc.) as well as the mapAttributes parameter (list

of layers and their corresponding styles, coordinate reference system,

global bounding box). Optionally, the map parameters can be provided

using an SLD document.

getDiagram

Returns a diagrammatic representation of numerical data as an image

document with the characteristics specified by the client application.

The characteristics of the output image are specified by the

outputAttributes parameter (image format, width, height, transparency,

etc.) as well as the diagramAttributes parameter (list of tabular data

layers and their corresponding styles – diagram type, diagram

characteristics). Optionally, the diagram parameters can be provided

using an SLD document. This operation expects that the data to be

rendered are in tabular format.

getLayerDescription

Returns a layer description document containing schema information

for a layer: attribute names, types, units, statistical information when

applicable (like value ranges, max, min etc.). This information is

needed by clients in order to create their own styles and symbolization

rules based on attribute values.

getLayerLegend

Returns a legend symbol (corresponding to a layer) as an image

document with the characteristics specified by the client application.

The characteristics of the output image are specified by the

outputAttributes parameter (image format, width, height, transparency,

etc.) as well as the styledLayer parameter (name of the layer for which

the legend should be generated and its corresponding styles). If the

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 159 of 233

styles corresponding to the layer are not available on the server, then

the styles have to be defined and sent again by the client (optionally,

also as a SLD document).

getFeatureInfo

Returns information about the features rendered in a certain point of a

map or diagram layer as a document. The request must specify the

attributes of the query point (x and y coordinates of the point in the

image coordinate system, the layer name, and the number of features

for which is expected to receive information) as well as a copy of the

request that generated the image.

getStyle

Returns the style of a hosted layer. The operation confirms the success

of the request by returning a Boolean “TRUE”.

Example

Usage

A requestor accessing this service wants to create a map that shows the

spatial distribution of information provided through a SANY sensor

service network. As a map background the requestor wants to have the

shaded relief, the road network, the hydrological network, and the

urban areas. The measurements coming from sensors are to be

displayed either as a diagram layer with bar charts or to be interpolated

and classified within a choropleth.

For this purpose the necessary background layers are either hosted on

the server or are accessible by means of a Feature Access Service/OGC

Web Map Service or OGC Web Feature Service. The requestor now

invokes a getMap operation by passing a styled layer descriptor

document which defines the location of the data (for sensor data an

appropriate SOS offering) and the symbolization corresponding for

each layer. The response of the service will be a map provided in the

requested format.

Comments It is beyond of the scope of this service to provide a human interface

like the geographic viewer in human interaction services. Other map

service instances, a geographic viewer or even a web browser could act

as a client to this service.

Table 8-14: Description of the Map and Diagram Service

8.5. Event Based Interaction Services

This section gives an overview of the SensorSA services that enable event-based interaction

between sensors, services, and clients. They rely upon the base and the brokered variant of the

OASIS WS-Notification standards, see sections 8.5.1 and 8.5.2. Table 8-15 provides a

comparison between these OASIS standards and the functionalities of the OGC Sensor Alert

Service as described in section 8.2.4.

In addition, the SensorSA supports the OGC Web Notification Service (WNS) as presented

in section 8.2.5. In contrast to the OASIS WS-Notification and the OGC SAS the WNS is a

simple protocol transducer. The WNS supports the registration of identities (including their

name, e-mail address, phone or fax number, etc.) and their notification by means of the notify

operation (which is an HTTP-based message). The notify operation uses the notification means

that is associated to the identity, i.e. it may send e-mails, short message services, facsimiles and

so on. Note that the OGC WNS may be used in combination with both the OGC SAS and the

OASIS WS-N in order to abstract from the concrete notification mechanism.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 160 of 233

Criteria OASIS WS-

Notification

OGC Sensor Alert

Service

Publish interaction Yes No

Subscribe-Publish interaction Yes Yes

Register-Publish interaction

(Advertise-Publish)

Yes Yes

Brokered interaction Yes Yes

Transport SOAP XMPP / HTTP

Hierarchical organisation of event

types

Yes No

Event Filtering Based on topic (type)

only

Yes / complex based on

notification content (eg.

spatial)

Provides description of the

notification payload

Not by the means of the

specification

Yes

Information model and schema for

the payload

No Yes

Table 8-15: Comparison between OASIS WS-Notification and the

OGC Sensor Alert Service

8.5.1 Interfaces of WS-Base Notification Specification

Name WS-BaseNotification

Standard

Specifications

OASIS Web Services Base Notification 1.3 (WS-BaseNotification)

Committee Specification, 31 July 2006. http://docs.oasis-

open.org/wsn/wsn-ws_base_notification-1.3-spec-cs-01.pdf

Description OASIS describes the WS-BaseNotification as follows:

“The WS-Notification family of specifications defines a standard Web

services approach to notification. The WS-BaseNotification

specification is the base specification on which all the other

specifications in the family depend. It defines the normative Web

services interfaces for two of the important roles in the notification

pattern, namely the NotificationProducer and NotificationConsumer

roles. This specification includes standard message exchanges to be

implemented by service providers that wish to act in these roles, along

with operational requirements expected of them.

In the Notification pattern a Web service, or other entity, disseminates

information to a set of other Web services, without having to have prior

knowledge of these other Web services.

This specification defines a role called the NotificationProducer. A

NotificationProducer is capable of producing a set of Notification

messages. A NotificationProducer accepts incoming Subscribe requests.

Each Subscribe request contains a reference to a NotificationConsumer

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 161 of 233

and identifies the subset of the Notifications the NotificationProducer

should produce. This subset can be described by identifying one or

more boolean filters, including filtering by Topic, as described in [WS-

Topics]. The NotificationProducer agrees to produce Notification

Messages as requested in the Subscribe request, or returns a fault if the

subscription cannot be handled.

In addition to the message exchanges described in this specification, a

NotificationProducer may also support the required message exchanges

defined in the [WS-ResourceProperties] specification and may support

the optional message exchanges defined in the WS-ResourceProperties

specification. In such a case, this specification defines several resource

properties which MUST conform to the schema defined in the WS-

BaseNotification specification.”

Interfaces of the WS-BaseNotification specification:

 NotificationConsumer: Enables reception of notifications

produced by a NotificationProducer as a result of a subscription.

 NotificationProducer: Enables production of notifications to

those NotificationConsumers that have subscribed based on

occurring events and on the supplied parameters during

subscription.

 PullPoint: Supports destruction of PullPoint resources and

retrieval of notifications from a PullPoint resource.

 CreatePullPoint: Manages creation of PullPoint resources.

 SubscriptionManager: Manages renewal and cancelation of

Notification subscriptions.

 PausableSubscriptionManager: Enables pausing and resuming

production of notifications for a given subscription.

Interface NotificationConsumer

Notify This action is implemented by the consumer and invoked by the

producer (produces Notification message) when publishing

Notifications.

Interface NotificationProducer

Subscribe

Used by the notification subscriber to register its interest to receive a

subset of the notifications that the producer can publish.

GetCurrentMessage Upon invocation of this operation the NotificationProducer returns the

last published Notification on a given topic.

Interface PullPoint

GetMessages

The PullPoint interface supports the NotificationConsumer interface in

order to allow accumulation of Notifications by enabling the

NotificationProducer to send notifications to the PullPoint. The

GetMessages operation enables the requestors to retrieve (or pull)

Notification Messages from the PullPoint.

DestroyPullPoint Invoked by a requestor in order to destroy an existing PullPoint.

Interface CreatePullPoint

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 162 of 233

CreatePullPoint This operation is invoked by a requestor on an endpoint supporting the

PullPoint interface in order to create a new PullPoint resource.

Interface SubscriptionManager

Renew The Renew operation is used to modify lifetime of an existing

Subscription.

Unsubscribe This operation is invoked by a requestor in order to terminate an

existing Subscription.

Interface PausableSubscriptionManager

PauseSubscription This operation is invoked in order to temporarily pause the production

of notifications for a given Subscription.

ResumeSubscription This operation is the counterpart of the PauseSubscription operation

being issued in order to resume the production of notifications for a

given Subscription.

Example

Usage

Event based automatic catalogue harvesting can be realised by

implementing the NotificationProducer and NotificationConsumer

interfaces. Given the dynamic aspects of an existing sensor network, the

Catalogue responsible for the discovery of resources must be able to

react to changes in the sensor network (e.g. new sensor connected to the

network). This can be realised by a service of the sensor network

implementing the NotificationProducer interface and providing

subscriptions to notifications concerning new sensors. Following the

Catalogue has to implement the NotificationConsumer interface and

subscribe to these notifications. Based on the received Notifications the

catalogue service can start harvesting for information concerning the

sensor network and updating its contents.

Comments It is beyond the scope of this specification to describe an information

model for or taxonomy for events. It relies on the WS-Topics

specification that enables the definition of event/notification types and

categories that a consumer can subscribe to.

Notification producer might support the message patterns defined by

the WS-ResourceProprieties specification.

Table 8-16: Description of WS-BaseNotification Service

8.5.2 Interfaces of WS-Brokered Notification Specification

Name WS-BrokeredNotification

Standard

Specifications

Web Services Brokered Notification 1.3 (WS-BrokeredNotification)

OASIS Standard, 1 October 2006. http://docs.oasis-open.org/wsn/wsn-

ws_brokered_notification-1.3-spec-os.pdf

Description OASIS describes the WS-BrokeredNotification as follows:

“The Event-driven, or Notification-based, interaction pattern is a

commonly used pattern for inter-object communications. Examples

exist in many domains, for example, in publish/subscribe systems or in

system and device management domains. Message brokers are involved

in many of these systems, such as the ones provided by Message

Oriented Middleware vendors.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 163 of 233

This specification defines the Web services interface for the

NotificationBroker. A NotificationBroker is an intermediary between

message Publishers and message Subscribers. A NotificationBroker

decouples NotificationProducers and Notification Consumers and can

provide advanced messaging features such as demand-based publishing

and load-balancing. A NotificationBroker also allows publication of

messages from entities that are not themselves service providers. This is

very similar to a traditional Message Oriented Middleware model. The

NotificationBroker interface includes standard message exchanges to be

implemented by NotificationBroker service providers along with

operational requirements expected of service providers and requestors

that participate in brokered notifications.

In addition to the message exchanges described in this specification, a

NotificationBroker my also support the required message exchanges

defined in the WS-ResourceProperties specification and may support

the optional message exchanges defined in the WS-ResourceProperties

specification.” Interfaces of the WS-BrokeredNotification specification:

 NotificationBroker: Enables the implementing service to act as a

middleware between Publishers and Subscribers of Notifications.

A service implementing this interface must implement the

following interfaces from the WS-BaseNotification specification:

NotificaitonConsumer, NotificationProducer. It may also

implement the CreatePullPoint interface. In addition the

following interfaces must be implemented.

 RegisterPublisher: Handles the publisher registration.

 PublisherRegistrationManager: Handles the termination of a

Publisher registration (unregistration).

Interface RegisterPublisher

RegisterPublisher This action is implemented by the broker in order to allow for to

Publishers to advertise on their ability to publish Notifications on a set

of Topics.

Interface PublisherRegistrationManager

DestroyRegistration

Used to destroy the PublisherRegistration resource thus effectively

terminating the publishing of Topics from a Publisher. Additionally the

PublisherRegistrationManager may also support the required message

exchanges defined in the WS-ResourceProperties specification.

Example

Usage

A NotificationProducer registers with a Broker and by doing so the

Broker exposes the Topics that the Publisher is able to provide. Upon

successful registration a NotificationConsumer can subscribes to the

Broker to receive notifications on a given Topic. The Broker mediates

this subscription by subscribing for Notifications at the

NotificationProducer and forwarding the received Notifications to the

NotificationConsumer.

Comments

Table 8-17: Description of WS-BrokeredNotification Service

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 164 of 233

9. Technology Viewpoint

The Technology Viewpoint of the SensorSA specifies the technological choices of the concrete

service platform and its operational issues. To accommodate the requirements of Sensor

Networks as introduced in section 4.5 the SensorSA refines the guidelines and requirements for

platform specifications as defined in the Technology Viewpoint of the ORCHESTRA Reference

Model (RM-OA, 2007). These guidelines comprise:

- a general approach for how to specify a service platform (see section 9.1),

- the specification of the SANY service platform

- a description of how access control mechanisms are being implemented (section 9.3.1),

- an agreement on data formats (see section 9.3.2), and

- optionally a set of restrictions to be observed for a particular platform.

9.1. Properties of a Service Platform

As a general guideline, the specification of a service platform shall be conformant to the OASIS

Reference Model for Service Oriented Architecture 1.0 (SOA-RM, 2006). This implies that the

platform is being described according to the SOA-RM by the following predefined platform

properties:

- Platform Name

Name of the platform and if applicable the exact version number of the platform

specification.

In the case of a standard platform, a reference shall be provided.

- Reference Model

If the platform specification is based on a specific reference model, the name and the

exact version number of the reference model shall be provided.

- Interface Language

Specification of the formal machine-processable language used to define SOA-RM

Service Interfaces. In the case of a standard language, a reference shall be provided.

- Execution Context

Specification of the SOA-RM Execution Context. The Execution context is an agreement

between service providers and consumers. It contains information that can include

preferred protocols, semantics, policies and other conditions and assumptions that

describe how a service can and may be used. This includes, for example, the specification

of the transport and the security layer, the format of the messages exchanged between

service providers and consumers, etc. In the case of a standard SOA-RM Execution

Context, a reference shall be provided.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 165 of 233

- Schema Language

Specification of the schema language used to define SOA-RM Information Models.

- Schema Mapping

Specification of how to map the abstract level (UML) to the schema language used for

this particular platform.

- Information Model Constraints

Specification of the constraints on the SOA-RM Information Model, especially the

constraints on the message format which is required to accomplish the SOA-RM Action

model.

9.2. The SensorSA Service Platform

The SensorSA service platform has to consider multi-platform aspects like disparate protocol

bindings and request and response schemas, without either jeopardizing service interoperability

or putting an unnecessary burden on client and service developers. This is achieved by separating

the platform specification into a core mandatory part and one or more extended optional parts as

illustrated in Figure 9-1.

Figure 9-1: Structure of the SensorSA Service Platform

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 166 of 233

The core mandatory part specifies only the transport protocol and the common interface

description language. The actual protocol binding and the request-response schemas are selected

by a separate platform specification. This core part in conjunction with a respective platform

specification is obligatory for the specification and development of SensorSA services.

The extended part may specify a different combination of protocol bindings and request-

response schemas and should also use the common interface description language. Furthermore,

it should provide a formal mapping to other protocol bindings and request-response schemas in

order to make a protocol transformation possible, ideally automatically. This multi-platform

approach will facilitate the reuse and integration of existing software components and the

evaluation of other service paradigms.

The different platforms currently taken into consideration are based on the following

service paradigms:

- W3C Web Services (section 9.2.1)

- OGC Web Services (section 9.2.2)

- RESTful Web Services (section 9.2.3)

This leads to the following possible options regarding the request and response schema and

the protocol bindings. The transport protocol is always HTTP, as defined in the core mandatory

part of the platform specifications.

Topic Options

Transport HTTP

Request KVP (Key Value Pair)

 XML (plain XML or SOAP Messages)

Response HTML

 XML (plain XML or SOAP Messages)

 Binary (any MIME Type)

Protocol binding HTTP GET, POST, PUT and DELETE

 SOAP (HTTP POST)

Table 9-1: Options for the SensorSA Service Platform

Although not all permutations of protocol bindings and request and response types are

suitable (e.g. HTTP GET and SOAP), it should be obvious that the development of services and

clients which support all of the possible options by default is highly impractical. In consequence,

a recommendation for a default platform shall be given, which has to define the most reasonable

combination of protocol binding and request and response schema.

Considering the different options in terms of interoperability and keeping in mind the

desire for automatic protocol transformation the default platform for the specification of

SensorSA services shall be based on the W3C Web Services Architecture. For compatibility

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 167 of 233

reasons, extensions to existing OGC SWE services shall be specified according to the OGC Web

Services Platform.

9.2.1 Specification of the SensorSA W3C Web Services Platform

The SensorSA W3C Web Services Platform is an instance of the W3C Web Services

Architecture (W3C, 2004). It comprises of a well-defined selection of standards and

specifications related to and defined by the W3C Web Services Architecture. It allows the

specification of W3C Web Services in relation to the requirements of the SensorSA.

W3C Web Services offer the following options regarding the transport protocol, the

request and response schema and the protocol bindings:

Topic Options

Transport HTTP

Request XML (SOAP Message)

Response XML (SOAP Message)

Protocol binding SOAP (HTTP POST)

Table 9-2: Options for the SensorSA W3C Web Service Platform

Since the KVP encoding used by OGC Web Services and also to a certain extent by

RESTful Web Services may be encoded in XML and wrapped by a SOAP message, the

SensorSA W3C Web Services Platform is the premier choice for the obligatory core platform.

The SensorSA W3C Web Services Platform is characterized by the following SOA-RM

properties:

- Platform Name

The name of the platform is “SensorSA W3C Web Services Platform” following the Web

Service infrastructure as defined by the W3C specifications (W3C, 2004).

- Reference Model

The SensorSA W3C Web Services Platform is based on the W3C Web Services

Architecture (W3C, 2004).

- Interface Language

The formal language that is used to define the SOA-RM Service Interfaces is the Web

Service Description Language (WSDL), Version 1.1 (W3C, 2001).

Note: If required and supported by the tools used, WSDL 2.0 (W3C, 2007) may also be

used.

- Execution Context

The execution context of the SensorSA W3C Web Services Platform is defined by the

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 168 of 233

following properties:

 Transport Protocol and Message Format:

SOAP 1.2 HTTP binding as defined in SOAP Part 1: Message Framework,

Version 1.2 (W3C, 2003) and Hypertext Transfer Protocol (HTTP), Version 1.1

(W3C, 2006). The message style that shall be used is document/literal non-

wrapped since it is the most widely accepted and interoperable message style.

 Security

The common security aspects of the different SensorSA Service Platforms are

discussed in section 9.3.1. The following aspects, however, are specific to the

SensorSA W3C Web Services Platform:

Session Information: The transport of session information may be accomplished

by using platform specific mechanisms, such as the inclusion of a session key in

the SOAP header.

Encryption: Optional encryption of SOAP messages shall be accomplished by

Web Services Security: 4 SOAP Message Security 1.1 (OASIS, 2006).

- Schema Language

The general schema language used to define the SOA-RM Information Models is the

eXtensible Markup Language (XML) 1.0 (XML, 2006). Section 9.3.2 will list further

XML-based schema and modelling languages.

- Information Model Constraints

There are currently no immediate constraints on information models themselves.

9.2.2 Specification of the SensorSA OGC Web Services Platform

The SensorSA OGC Web Services Platform is specified on the basis of the OpenGIS® Web

Service Common Implementation Specification (OGC, 2007). The OGC Common Specification

“specifies many of the aspects that are, or should be, common to all or multiple OGC Web

Service (OWS) interface Implementation Specifications” (OGC, 2007). The SensorSA OGC

Web Services Platform adopts the most general aspects of the OWS Common Specification and

extends it by SensorSA specific aspects to ensure compatibility with existing OGC Web Services

and facilitate the specification of new SensorSA services.

OGC Web Services offer the following options regarding the transport protocol, the

request and response schema and the protocol bindings:

Topic Options

Transport HTTP

Request KVP (Key Value Pair)

 XML (plain XM)

Response HTML

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 169 of 233

 XML (plain XML)

 Binary (any MIME Type)

Protocol binding HTTP GET and POST

Table 9-3: Options for the SensorSA OGC Web Service Platform

The SensorSA OGC Web Services Platform is characterized by the following properties:

- Platform Name

The name of the platform is “SensorSA OGC Web Services Platform”.

- Reference Model

The SensorSA OGC Web Services Platform is based on the OpenGIS® Web Service

Common Implementation Specification (OGC, 2007).

- Interface Language

The formal language that is used to define the SOA-RM Service Interfaces is the Web

Service Description Language (WSDL), Version 1.1 (W3C, 2001).

Note: If required and supported by the tools used, WSDL 2.0 (W3C, 2007) may also be

used.

- Execution Context

The execution context of the SensorSA OGC Web Services Platform is defined by the

following properties:

 Transport Protocol and Message Format:

Operations are invoked by HTTP requests. In the case of HTTP POST the

requests are XML-encoded, whereas in the case of HTTP KVP encoding of

parameters shall be used. The response shall be either an XML document or a

binary document (e.g. an image). In any case the format of the response has to

be made transparent to the requestor, for example in the interface description or

in a capabilities document of the service. An XML response shall be described

by a corresponding XML-Schema, and a binary response by a MIME-Type (e.g.

image/png). The complete rules are defined in the chapter entitled “Operation

request and response encoding” of the OGC Common Implementation

Specification (OGC, 2007).

 Security

The common security aspects of the different SensorSA Service Platforms are

discussed in section 9.3.1. The following aspects, however, are specific to the

SensorSA OGC Web Services Platform:

Encryption: Optional transport-layer encryption of HTTP requests and responses

shall be accomplished by SSL 3.0 (Netscape, 1996).

- Schema Language

The general schema language used to define the SOA-RM Information Models is the

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 170 of 233

eXtensible Markup Language (XML) 1.0 (XML, 2006). Section 9.3.2 will list further

XML-based schema and modelling languages.

- Information Model Constraints

There are currently no immediate constraints on information models themselves.

9.2.3 Specification of the SensorSA RESTful Web Services Platform

The SensorSA RESTful Web Services Platform is based on architectural principles introduced in

Architectural Styles and the Design of Network-based Software Architectures (Fielding, T.R.,

2000). Although similar to the SensorSA OGC Web Services Platform it further defines several

constraints on the specification of service interfaces.

RESTful Web Services offer the following options regarding the transport protocol, the

request and response schema, and the protocol bindings:

Topic Options

Transport HTTP

Request KVP (Key Value Pair)

 XML (plain XM)

Response HTML

 XML (plain XML)

 Binary (any MIME Type)

Protocol binding HTTP OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE

and CONNECT

Table 9-4: Options for the SensorSA RESTful Web Service Platform

The SensorSA RESTful Web Services Platform is characterized by the following

properties:

- Platform Name

The name of the platform is “SensorSA RESTful Web Services Platform”.

- Reference Model

The SensorSA RESTful Web Services Platform is based on the architectural principles

introduced in Architectural Styles and the Design of Network-based Software

Architectures (Fielding, T.R., 2000)

- Interface Language

The formal language that may used to define the SOA-RM Service Interfaces is either the

resource model as defined in section 7.6 or the Web Application Description Language

(WADL) (Hadley, M. J., 2006) which has been specifically developed for the description

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 171 of 233

of RESTful Web Services.

- Execution Context

The execution context of the SensorSA RESTful Web Services Platform is defined by the

following properties:

 Transport Protocol and Message Format:

The HTTP POST, GET, PUT and DELETE methods are used to perform

generic create, read, update and delete (CRUD) operations on resources.

Resources are addressed and uniquely identified using uniform resource

identifiers (URI). A POST, PUT or UPDATE request is typically XML-

encoded. In the case of a HTTP GET or DELETE request KVP encoding of

parameters shall be used. The response shall either be an HTML, XML or binary

document (for example an image) or a string representing the URI of the

resource upon which the operation has been performed. For example, in the case

of a PUT request the URI of a newly created resource shall be returned. In any

case the format of the response has to be made transparent to the requestor, for

example with an interface description or in the capabilities document of the

service. An XML response shall be described by a corresponding XML-Schema

(e.g. the SensorML schema), a binary response by a MIME-Type (e.g.

image/png).

 Security

The common security aspects of the different SensorSA Service Platforms are

discussed in section 9.3.1. The following aspects, however, are specific to the

SensorSA W3C Web Services Platform:

Encryption: Optional transport-layer encryption of HTTP requests and responses

shall be accomplished by SSL 3.0 (Netscape, 1996).

- Schema Language

The general schema language used to define the SOA-RM Information Models is the

eXtensible Markup Language (XML) 1.0 (XML, 2006). Section 9.3.2 will list further

XML-based schema and modelling languages.

- Information Model Constraints

There are currently no immediate constraints on information models themselves.

9.3. Specification of Further Platform Properties

9.3.1 Selection of User Management, Authentication and Authorisation
Mechanisms

This topic comprises the specification of how security and access control mechanisms are

intrinsically supported by the platform. The current draft of the SensorSA security model implies

that there could be a co-existence of different access control solutions. The platform

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 172 of 233

specification has to define whether the use of disparate implementations of security services and

disparate communication channels for security related information are permitted.

9.3.2 Agreement on Data Formats and Application Schemas

This topic comprises the agreement on the usage of specific data formats (e.g. non-GML

representation of coverages). There are currently no extensions required.

.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 173 of 233

10. Engineering Viewpoint

10.1. Overview

Based on the major concepts of the SensorSA, the specification of information models and

services in the Information and Service Viewpoint of a SensorSA, the following sections provide

definitions of policies for the set-up and operation of sensor service networks.

Policies are defined for the following aspects:

- resource discovery (see section 10.2)

- sensor and service monitoring (see section 10.3)

- sensor planning (see section 10.4)

- access control (see section 10.5)

- processing of quality information (see section 10.6)

- handling of large data sets (see section 10.7)

- cascading sensor observation services (see section 10.8)

- processing and fusion support (see section 10.9)

- integration of mobile sensors (see section 10.10)

- event handling (see section 10.11)

- plug-and-measure support (see section 10.12)

Here, the SensorSA follows the basic idea of the (RM-OA, 2007) to consider qualifying

characteristics of a service network in terms of policies.

10.2. Resource Discovery Policy

10.2.1 Introduction

The process of resource discovery may be carried out in multiple ways. However, for a given

service network it has to be specified in detail in order to enable interoperability.

If not otherwise specified, a sensor service network is qualified as a “mediated service

network” and follows the policy of a “centralised discovery”. According to (RM-OA, 2007) this

means that there shall be a distinguished instance of a catalogue service (in the following simply

called the “SANY Catalogue” or simply “the catalogue”) that serves as the discovery entry point

to a sensor service network. The meta-information schema of the SANY catalogue is specified in

section 7.6.3.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 174 of 233

In the following, the service interactions for resource discovery (i.e. querying of the

catalogue and underlying services) and for resource registration (i.e. creating and updating of

catalogue entries) are specified in more detail as illustrative examples.

10.2.2 Query Models

The queries may be executed in one step or may be broken down into several queries. The first

query is always sent to the SANY Catalogue. The sequence of queries may follow one of the

following two basic query models:

- query chaining

In the case of query chaining, queries are executed in different steps that are controlled by

the resource requestor. Each step reduces the result set of possible resources. Between

two steps the resource requester may process the result of the previous step and decide

how to continue with the next step. The result from the previous query is typically passed

as an argument (a condition) for the next query. The queries in the different steps may be

sent to the resource brokers of the same type (homogeneous queries) or to resource

brokers of different types (heterogeneous query). Typically a service has the role of a

resource provider for the previous step and acts as a resource broker for the next step.

Example: The first query returns a set of SOS instances, and the next step uses the meta-

information of the SOS by calling getCapabilities to query for resources within the SOS.

Note: Query chaining may be implemented for a predefined application purpose using

service chaining if no user interaction is needed.

- query cascading

In the case of query cascading queries are broken down into sub-queries that are

individually sent to one or more other resource brokers of the same or of different types,

after which the results are assembled into one result set. In contrast to query chaining,

query cascading is transparent to the resource requester. Instead of having all meta-

information available to process a query, the resource broker relies on meta-information

entries of additional resource brokers

10.2.3 Typical resource discovery policies

Resource discovery in the SensorSA is supported by a combined usage of the SANY Catalogue

that provides the interfaces of the Catalogue Service (see section 8.2) and instances of other

SANY service types, especially the Sensor Observation Service (SOS) (see section 8.2.2) if

observation and related observation attributes have to be discovered. Depending on the search

target the following typical query types may be distinguished from a user‟s point of view:

- search for “features of interest (FOI)”

o all FOI with a specific set of observable properties in a specific area

- search for “observations”

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 175 of 233

o all observations related to FOI

o all observations for specific observable properties in a specific area and time

range

o all observations for specific observable properties in a specific area and time

range produced by a call of procedures

o all observations whose attributes fulfil specific conditions (for example quality)

- search for “procedures”

o all procedures (e.g. sensor types, models) in a specific area

o all procedures that have specific properties described by their SensorML

document

- search for “services”

o all services that deal with a procedure

As examples, the following sequence diagrams show the typical chain of service operation calls

for two selected query types:

1. The search target for the first sequence is an observation according to the Observation &

Measurements model (see section 7.2). To keep this example simple it is assumed that

the user wants to find observations without using procedure information as selection

criteria.

2. The second sequence shows how to discover procedures. The user wants to discover a

procedure that is similar or identical to a known procedure.

10.2.3.1 Discovery of Observations

The first sequence diagram (Figure 10-1) shows how a user may discover observations and

retrieve their attribute values. It is divided into three parts:

1. The user starts to discover a Feature of Interest (FOI) within an area by sending a search

request to the catalogue using a bounding box as a spatial condition. Additional

conditions, such as the type of the FOI may be added here. The catalogue returns a list of

feature instances that fulfil the search conditions. This list contains the IDs of the feature

instances together with a set of core attributes (e.g. according to the Dublin core schema).

If additional attributes are required, the user can retrieve the complete meta-information

entry that is available in the catalogue by issuing a getMetaInformation operation request

for a selected FOI instance. Finally, the user decides which FOI(s) they want to move

further along in the discovery process.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 176 of 233

Figure 10-1: Discovery of Observations

2. The user continues by searching in the catalogue for the SOS instance that provides

observations for the selected FOI(s). Typically they add one or more observable

properties and a time range, for which the SOS should provide observations as an

additional condition. The user sends a search request to the catalogue to find an SOS

service instance and retrieves a list of SOS instances that meet the search conditions.

Again the user can get additional meta-information about the services instances by

issuing a getMetaInformation operation request to the catalogue. If the meta-information

entry of the catalogue doesn‟t contain the full set of capabilities provided by an SOS

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 177 of 233

instance or if the catalogue information is not sufficiently current for the user‟s purpose,

they may retrieve the capabilities directly from the SOS instance by issuing a

getCapabilities operation request to the SOS instance. The capabilities document of the

SOS instance usually provides more detailed information about the service such as

possible result models and the procedures used to get the values of an observation. Based

on this information the user now selects one or more SOS instances from which they

want to get observations.

3. The user gets the observations by issuing a getObservation operation request to the SOS

instance. It is important to note that the user does not get the observations from the

catalogue. The user finally decides which observations will be used in the application.

Possible criteria for this decision are contained in the attributes of the observation, such

as quality attributes.

Depending on prior knowledge the user may skip parts of the sequence. As an example, the

user may directly start with step 2, the search for an SOS instance, without having previously

searched an FOI in step 1. In this case the user may replace the ID of the FOI with a condition

for the spatial context in the search SOS request to the catalogue.

10.2.3.2 Discovery of Procedures

The sequence diagram in Figure 10-2 explains the discovery of procedures. For this scenario, it

is assumed that the user is already using a selected SOS instance to get observations. Now, the

user wants to find procedures that are similar or identical to the one that produces the value for

an observation. The user then decides to configure this procedure using the Sensor Planning

Service (SPS) (see section 8.2.3).

This scenario may be realised as follows:

1. The user gets detailed information about the procedures available in a given SOS service

instance by invoking getCapabilites in order to get the information about the involved

procedures. By means of the describeSensor operation of the SOS the user then retrieves

information about the procedure, here in the form of SensorML documents. These

documents may then be parsed in order to retrieve the required information subset.

2. The user provides parts of this information as search condition to the catalogue to retrieve

a list of (similar or identical) procedures that are known by the catalogue. Examples are

the type of the procedure (e.g. image-delivering sensors), the types of the output values

produced by the procedure, or a spatial condition (e.g. all sensors located within a circle

of 10km of the currently used sensor).

3. After having selected one or more procedures the user searches for an instance of the

Sensor Planning Service in the catalogue and finally uses this service to configure the

procedure by calling the describeTasking and submit operations of the selected SPS.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 178 of 233

Figure 10-2: Discovery of Procedures

10.2.4 Harvesting of SOS Capabilities

This section describes how meta-information can be automatically created from domain specific

resources and stored into a SensorSA catalogue. This procedure is usually called harvesting. As

an example, the Austrian Federal Environment Agency (Umweltbundesamt) needs to provide

INSPIRE-compliant meta-information for their air quality data resources in accordance with the

CAFE Directive (CAFÉ, 2008). This data is provided via an Sensor Observation Service (SOS)

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 179 of 233

(section 8.2.2). The goal is to reuse the capabilities provided by the SOS for the creation and

publication of INSPIRE related meta-information and store them in an OGC Catalogue Services

supporting the ISO 19115 and ISO19119 metadata schema in order to fulfill the INSPIRE duties.

Such a catalogue service is, for instance, embedded into the prototypical INSPIRE geo-portal
1
.

Besides the INSPIRE requirements there is the need for additional meta-information

elements:

- CAFE is concerned with air quality data. For a CAFE meta-information document,

specific validation information is needed, such that users of the meta-information can

precisely decide to which level they can trust the resource data. The means CAFE

requires additional information regarding data quality, including quality assurance levels

and completeness of measurements. The required validation information exceeds the

basic description dictated by INSPIRE.

- The SensorSA formulates the need for the realization of information discovery in the

sensor related domain as SensorSA users search for services, sensors, features of interest

and observable properties. To support these specific requirements the SensorSA has

extended the INSPIRE and ISO 19115/19119 meta-information schemata as described in

section 7.7.

In the following it is described how the meta-information elements of the SOS services that

may be retrieved through the operations GetCapabilities and DescribeSensor can be mapped to

INSPIRE metadata resources:

- The SOS service itself can be described in a metadata document describing a service.

- Data provided by the Umweltbundesamt via the SOS needs to be described in metadata

documents describing datasets. Each offering of the SOS is interpreted as a single dataset.

- Common resource information like title, abstract and resource location can be found in

the capabilities of the SOS.

- The Geographic location and temporal extent can be provided in the descriptions of the

SOS offerings in the capabilities of the SOS.

- Access constraints can be provided in the SOS capabilities.

- A responsible party can be described in the SOS capabilities.

- Quality and validity information can be described via the means of SensorML and

therefore included into responses of the DescribeSensor operation.

The gathered metadata is used to create ISO 19115 (for datasets) or ISO 19119 (for

services) documents, following the INSPIRE Technical Guidelines. ISO 19115 and ISO 19119

contain some mandatory metadata elements, which are not mandatory for INSPIRE. These

elements also need to be included into the resulting metadata documents. This results in metadata

documents conformant to both: INSPIRE and ISO.

1
 http://www.inspire-geoportal.eu

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 180 of 233

However, two issues remain when following this approach:

1. The SOS supports the provision of the above mentioned information, but many elements

are not mandatory for an SOS to be compliant to its specification. Thus, if an SOS shall

be used for the creation of INSPIRE related metadata, one must make sure that the

metadata required for INSPIRE is provided by the SOS.

2. Even if all possibilities in the current SOS schemas are used, some metadata required by

INSPIRE remains which is not provided by the SOS. Some of these metadata elements

are to be picked from fixed keyword lists provided by the INSPIRE Commission

Regulation. A schema was defined gathering all missing metadata elements. It is possible

and conformant to the current SOS specification to include links into the GetCapabilities

response of a SOS. A link to an online resource can be defined in the ServiceProvider

section of the capabilities
1
. This link can lead to an external document that is structured

according to the defined schema and containing the missing metadata elements.

Using the defined mapping and the additional information provided for gap-filling, it is

possible to create INSPIRE related metadata as well as SANY meta-information from SOS

resources. Figure 10-3 shows an implementation architecture and the interactions between the

system components for this harvesting task (Hilbring and Schleidt, 2009).

Figure 10-3: Creation and publication of INSPIRE and SANY related meta-information

The Catalogue Harvester calls the operations GetCapabilities and DescribeSensor of the

SOS and uses the retrieved information for the metadata mapping. For the creation of INSPIRE

related metadata the mapping described in the section “Mapping Solution” is used. The results

are metadata documents structured according to the ISO 19115 or ISO 19119 schemas. They can

1
 sos:Capabilities/ows:ServiceProvider/ows:ServiceContact/ows:ContactInfo/ows:OnlineResource

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 181 of 233

be included into an OGC Catalogue Service 2.0.2 supporting the ISO Metadata application

profile. This catalogue could be accessed directly from users or it could be included into a

cascading catalogue realized by the INSPIRE geo-portal.

The architecture also shows the integration with a SANY Catalogue Server according to

the SensorSA Catalogue Service (see section 8.4.1). A different mapping is performed in the

Catalogue Harvester to create the SANY metadata documents according to the SensorSA

Application Schema for Meta-information (AS-MI) schema (see section 7.7). These documents

can be published via the publication interface of the Catalogue Service.

10.2.5 Event-based Harvesting

The harvesting solution described above in section 10.2.4 requires that the update of the meta-

information is triggered by a management interface of the client accessing the Harvesting

component. This may not be sufficient as people using the management interface might lack of

knowledge about new developed services or changed data views in existing services. They need

to be informed about changes, such that they can adapt the configuration of the management

interface. This can lead to outdated meta-information in the catalogue. The alternative is to apply

the event-based architectural style as it has been introduced as a SensorSA concept in section

6.4.

An event-driven processing system must be configured. The client of the harvesting

component must provide a function which can be used for the subscription to the three event

types service created, service updated and service deleted. Figure 10-4 shows the subscription

phase:

Figure 10-4: Event-based Harvesting - Registration Phase

After this configuration the system is ready for receiving events:

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 182 of 233

1. An event must be created. Typically the service automatically sends an event if the

service has changed.

2. The notification broker receives the event and informs the interested party which

subscribed for this event type. In case of the harvesting, the client of the Harvesting

Component will be informed when services have been created, updated or deleted.

3. The client of the Harvesting Component will update the service configuration list and

performs the meta-information harvesting function

Figure 10-5 shows the operational phase. In this phase, all services contained in the service

configuration list are harvested according to a harvesting policy, e.g. periodically after a given

time period that may be set by the client of the harvesting component. The service configuration

list of the harvester has to be updated depending on the type of the event received. In case of a

“service creation” event, a new entry is added. In case of a “service deleted” event an entry is

deleted.

Figure 10-5: Event-based Harvesting - Operational Phase

10.2.6 SOS Resource Model

The resource model as specified in section 7.6 may be used to structure the discovery and the

access to information provided by the SensorSA services. As an example SOS resource types

(see section 8.2.2) are defined. These are oriented at the O&M model (section 7.2) and shown in

Figure 10-6.

For each resource type an example identifier scheme is given as a constraint. The

configuration of resource types in a resource type network is illustrated in Figure 10-6. The

directed links in Figure 10-7 represent the navigation possibilities between the representations of

these resource types. Selected resource types are described in more detail in subsequent sub-

sections. The following resource types are defined:

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 183 of 233

- SOS-instance: This resource type is a sub-type of the resource type ServiceInstance and

provides the description of the capabilities of an instance of the SOS. It provides access

to procedures (through a selection in a ProcedureList as a sub-type of a SelectionList) and

makes offerings which may be selected by means of an OfferingList as a further sub-type

of a SelectionList. An SOS-instance is access by the path ./sos followed by the URL and

the local id of the SOS-Instance.

- Procedure: This resource type reflects the O&M concept of a procedure. A procedure is

linked to an offering and bound to a FeatureOfInterest. A procedure is accessed by the

path {SOS-instance}/procedures followed by the name of the procedure.

- Offering: This resource type reflects the SOS concept of an observation offering. It

contains ObservedProperties to which may be navigated by means of a PropertyList as a

sub-type of a SelectionList It is linked to an ObservationCollection that delivers all

observations of all procedures in one resource representation. An offering is accessed by

the path {SOS-instance}/offerings followed by the name of the offering.

- ObservationCollection: This resource type reflects a collection of the O&M concept of an

observation. An observation collection is accessed either by the path

{ObservedProperty}/observations or by the path {Offering}/observations followed by the

name of the observation collection.

- FeatureOfInterest: This resource type reflects the O&M concept of a feature of interest.

It is linked to ObservedProperties. A feature of interest is accessed by the path

{Offering}/features followed by the name of the feature of interest.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 184 of 233

Figure 10-6: Resource types for the access to sensor observations

- ObservedProperty: This resource type reflects the O&M concept of an observed

property. An observed property is linked to an ObservationCollection that delivers

observations of this property for a given time period. An observed property is accessed

by the path {SOS-instance}/properties followed by the name of the feature of interest.

- SelectionList: This resource type is an auxiliary resource type that is used to select a

resource representation out of a list. In this example, it is used to select properties,

offerings, procedures and features of interest. The access path to a selection list is

dependent on the resource representation to be selected. For instance, for the selection of

features of interest, it is the path {Offering}/features.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 185 of 233

Figure 10-7: Resource type network for the access to sensor observations

Figure 10-8 shows an example of an SOS resource type network embedded in a Web-based

application that allows one to navigate. Representations of observations in terms of diagrams,

tables or maps may be retrieved by a direct URL or by navigating through the resource type

network.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 186 of 233

Figure 10-8: Example Representations of the SOS Resource Type “Observation Collection”

10.3. Policies for Sensor and Service Monitoring

Service monitoring is an important aspect of management which must be dealt with in a sensor

network. This includes simple checks of the life status of a sensor or service as well as more

complex monitoring of tasks such as average load or uptime. From the SANY point of view the

various monitoring aspects in a sensor network are considered to be observed properties. The

discrete monitoring results have a timestamp, can be associated to a featureOfInterest containing

the location of the monitored resource, and have a procedure describing the measurement

process.

Thus we can safely say that the information resulting from the monitoring process can be

modelled as an observation according to the OGC Observation and Measurement model (Cox,

2007). A simple example would be monitoring the CPU temperature of a measuring station

computer. Similarly event notifications can also be modelled as observations.

This view enables a harmonised integration of monitoring into the SensorSA. This

approach implies the use of the OGC Sensor Observation Service (see section 8.2.2) and Sensor

Alert Service (see section 8.2.4) for the configuration of the monitoring process, storage and

access to the observation data related to the monitored sensors.

Getting the observation data into the SOS is implementation specific, but two patterns can

be identified, as depicted in Figure 5-17.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 187 of 233

Figure 10-9: Monitoring SOS

In the first one the sensor directly pushes the status information to the Sensor Alert

Service. This implies that the sensor knows the location of the SAS and is configured to do so. In

the second and most usual pattern the Monitoring SAS polls, on demand or periodically, the

status information from the sensors. In both cases it is the responsibility of the SAS

implementation to write the observations to the Monitoring SOS.

In a sensor network used for environmental monitoring it is a common property that event

notifications will be generated whenever certain conditions exceed some defined thresholds.

Usually the most important task of the environmental monitoring application is to notify

someone (a decision maker) about the event. The SAS provides the functionality needed for the

configuration of event conditions and the underlying publish/subscribe notification mechanism.

The notification acknowledgement functionality is essential for a decision support system and is

part of the notification mechanism. The notification acknowledgements are necessary in order to

enforce the delivery of notifications and allow for policy based delivery of notifications. For

example, a notification policy might enforce resending an unacknowledged notification to a

recipient on a higher level in the decision making hierarchy.

In the SensorSA the notification functionality is accomplished by two types of services

which act in the backend of the SAS, depicted in Figure 10-3 as WNS/WS-N. The OGC Web

Notification Service (WNS) and OASIS WS-Notification (WS-N) communicate with the SAS

and serve as mediators between the SAS and the Management Client.

Coupled with the notification itself is the need for notification tracing, especially when

something goes wrong and the decisions and steps that have been taken need to be revised. As

stated in the beginning of this sub-chapter the event notifications and acknowledgements can be

modelled as observations based on the OGC Observation and Measurement specification. Such

notification tracing can simply be added to the service network by storing the messages in a

time-series data store. In the SensorSA the OGC Sensor Observation Service is used for this

purpose (Monitoring SOS).

Sensor monitoring is important in most measurement scenarios. In general there are a

multitude of sensor aspects that require monitoring in order to ensure the availability and

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 188 of 233

integrity of the measurement data. The more complex form of monitoring consists if there are

multiple sensors at the same time. An example is the video monitoring of a measurement station

in order to detect external factors that might affect the measurement process. Other monitoring

scenarios could involve sensor service degradation. The main limitation in scenarios involving

mobile sensor networks is the power supply (usually batteries) of each individual network node.

Depending on the network technology and geographic distribution of the nodes a failure of one

node might render the entire network unusable. In these cases a vital monitoring aspect is the

node residual power.

Based on this information a sensor network administrator can make management decisions.

Examples of such decisions include selection of network optimisation strategies (e.g. adjusting

the network routing policies or node reporting /sampling frequencies in order to reduce the

power consumption of individual nodes or entire network). In the later scenario a good indication

of the residual power of a node is the power supply voltage. On a conceptual level as described

in section 6.6.2 in the SensorSA Management Architecture this information constitutes the actual

observation data and should be handled the same way as any other observation coming from the

sensor (e.g. ambient air temperature or humidity). Therefore, the observation data about power

supply voltage shall be encoded as an observation according to the OGC Observation and

Measurement model (Cox, 2007). Consequently, the observation data can be stored and accessed

by means of an OGC Sensor Observation Service (see section 8.2.2). Additionally the Sensor

Alert Service (see section 8.2.4) can be used to define event conditions (and generate

notifications) about the observation data, e.g. to send an e-mail notification to the sensor network

administrator whenever a node battery voltage drops under a defined threshold.

10.4. Policies for Sensor Planning

Examples of sensor planning tasks in a sensor network include sensor configuration, sensor

calibration or the actual initiation of a measurement.

Whenever a measurement is triggered or prepared, the sensors involved must be

configured for the specific measurement (or measurement series). This can be achieved by the

Sensor Planning Service (SPS) as described in section 8.2.3. Although the same operation

(submit) is invoked for both planning and configuration the slight difference is the observation

response. For planning the response encompasses observation data whereas the result returned

upon configuration will contain the success status of the configuration step. One obvious

advantage is the possibility of planning configuration tasks.

In general, sensor planning includes different interaction models or patterns. Some sensors

allow synchronous interaction patterns, i.e. the service responds directly to incoming requests.

An example would be an instance of an SPS that provides a facade for a simple forecasting

model. This service, at least theoretically, could start unlimited parallel processes. Concurrent

users don‟t compete for limited resources and the service can report the successful execution of

the requested tasking right away.

Other sensors require asynchronous interaction patterns. This is the case if multiple users

have to share a limited resource and the execution of the tasking cannot be handled

instantaneously. An example would be a satellite that could at any moment in time observe a

single scene only. If this satellite is equipped with an optical sensor, the observation depends,

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 189 of 233

among other factors, on the cloud coverage. Thus, the tasking request might consume any

amount of time before being fully executed.

10.5. Policies for Access Control

The services performing the access control tasks (see section 8.3) cover major parts of the

abstract access control pattern as introduced in section 6.8.2. In the following some interaction

patterns and methods to use this Access Control Framework are presented.

10.5.1 Patterns for Non Intrusive Access Control

The stateless nature of SOAs causes that in principal no lasting connection between client and

service is established. Therefore, each service message has to include the application context.

This is one of a number of reasons why security measures, especially access control, have to be

positioned on the message level (Kanneganti and Chodavarapu, 2008). Note, however, that

established Internet security measures such as SSL (Secure Socket Layer) for the encryption on

transport layer may be used in addition.

One of the more challenging goals of SOA security is to minimize interference with the

actual service communication in order to relieve service designers and developers that are

experts for their particular domain from including security aspects in their work. This property is

called “Non Intrusive”.

Flavours of the “Non Intrusive” property in the SOA context are:

- The protected service remains untouched (specification and implementation).

- The body of the message that is derived from the interfaces of the service content is „not“

modified by security mechanisms.

- From the viewpoint of the client the interface to the secured service must be unchanged

so that it just depends on the access control policy on the server side if an operation is

permitted or not.

Measures towards a “Non Intrusive” access control architecture affect services as well as

service messages.

10.5.1.1 “Non intrusive” at service level

The abstract access control pattern explained in section 6.8.2 implies that a Policy Enforcement

Point exists for every security enabled service. One implementation pattern is a transparent

service proxy that shields an unsecured Web service and mimics the secured service. For

instance, in the SensorSA W3C Web Service platform (see section 9.2.1) this means that it

provides the “same” WSDL document as the underlying unsecured Web service.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 190 of 233

Figure 10-10: Non Intrusive “compatible” Approach

Note: See Figure 10-11 for definitions of m, m‟,r and r‟. WSDL A‟ equals WSDL A, apart

from the service endpoint.

A transparent service proxy is a software component that provides the same interfaces as an

underlying service but allows one to offer additional functionality that is transparent to the client.

Thus, the SensorSA does not consider it to be an actual service in the sense that it does not

provide operations of its own. Nevertheless, Table 10-1 provides the description of the

transparent service proxy in the same description style as the SensorSA services in section 8.3.

Name Service Proxy

Standard

Specifications

The following standards are used by the Service Proxy:

 OASIS Security Assertion Markup Language (SAML) v2.0

 OASIS SAML 2.0 profile of XACML v2.0

Description The Service Proxy “intercepts” service requests for the proxied service and

delegates the requests to the Policy Enforcement Service. The Service Proxy

can be automatically provided by a Proxy Generator. In contrast to the

entirely generic Policy Enforcement Service, in addition to the mimicked

service interface the Service Proxy may contain service specific elements.

As suggested in OASIS WS-Security standards, the optional security

information encoded in SAML is provided in the SOAP header while the

actual service request in the SOAP body remains unchanged.

Interface Proxy

The Proxy Interface does not define operations by itself but mimics the interface of an arbitrary

web service. A software component, the Proxy Generator, is used to automatically generate a

service specific Proxy.

Comments The Service Proxy is not to be confused with a firewall. The Service Proxy

does not contain any security mechanism on the transport layer level and does

not prevent a service requestor from accessing the proxied service.

Table 10-1: Description of Service Proxy

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 191 of 233

10.5.1.2 “Non Intrusive” at message level

A non intrusive realisation of access control aspects at message level requires that the actual

message body is not altered. Instead, there is meta-information dedicated to access control in the

message header. This approach ensures backwards compatibility in the sense that existing clients

need not to be changed.

Figure 10-11: Security Information in the SOAP Header

As shown in Figure 10-11 the SOAP protocol distinguishes between SOAP Body

containing the actual service message and a SOAP Header for “meta information”. Obviously,

the nature of the SOAP protocol therefore directly provides the means for “Non Intrusive” access

control on the message level.

10.5.2 Patterns for Access Control in Service Chains

From service- and information viewpoint, access control for service chains needs no particular

attention as service chains and their elements are perceived as services and therefore all

presented concepts already apply to them. However, the SensorSA Access Control Framework

leaves a high degree of freedom to the engineer with the task to design, set-up and deploy a

security domain using concepts and tools provided. To tackle security issues for service chains,

the engineering viewpoint perspective leaves several thinkable approaches induced by

application specific requirements (that could be even based on legal requirements).

Before a Service Chain Access Control design decision is made several questions may

affect the decision.

- Who may define the service chains policy?

o Who may define/edit/delete a service chain?

o Who may invoke a certain service chain?

- Who is in charge of the policies of the service chain‟s elements and how are these

policies managed?

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 192 of 233

- What is the level of trust that can be established between a service chain and its

elements?

- What is the authentication method for all services involved (chain & elements)?

For the following we assume that a service chain is encapsulated by service (e.g. a WPS),

that could be implemented as a BPEL process. In practice we find variations of two different

approaches.

10.5.2.1 Delegate (Anonymous) Service Chain

A Delegate Service Chain is considered to act on behalf of the subject invoking the service

chain. A Delegate Service Chain therefore does not necessarily possess an identity; instead

identity information of the invoking subject is presented to every service chain element. Thus,

the service requestor has to provide identity information that has the necessary privileges for

each element of the service chain.

Service 1 Service 3

Subject

Service Chain

Service 2

ID

ID ID ID

Figure 10-12: All elements accept identities (ID) from one IdP

In the case that all elements accept request from single IdP the overhead of maintaining the

various policies lies in the responsibility of the respective service provider.

In the case that all elements accept requests from different (possibly their own) IdPs the

overhead of acquiring the proper identities lies in the responsibility of the subject.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 193 of 233

Service 1 Service 3

Subject

Service Chain

Service 2

ID 2ID 1 ID 3

ID 1 ID 2 ID 3

Figure 10-13: All elements accept identities from different IdPs

10.5.2.2 Identifiable Service Chain

In this approach a Service Chain is considered a subject and therefore has its own set of identity

information. By using this pattern the service chain will not forward the service requestor‟s

identity. Instead, a dedicated service chain identity is presented on every request. This approach

is in line with the philosophy of the SensorSA Access Control Framework, however it implies a

somewhat higher level of trust between Service Chain Elements and the Service Chain as the

actual subject invoking the service chain may remain transparent to service.

Service 1 Service 3

Subject

Service Chain

SC ID

Service 2

ID

SC ID SC ID

Figure 10-14: All elements accept identities from one IdP (SC ID = service chain ID)

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 194 of 233

If all elements accept requests from a single IdP, the overhead of maintaining the various

policies lies in the responsibility of the service provider.

Service 1 Service 3

Subject

Service Chain

ID

Service 2

ID 1 ID 2 ID 3

Figure 10-15: All elements accept identities from different IdPs

In the case that all elements accept request from different (possibly their own) IdPs, the

overhead of acquiring the proper identities lies in the responsibility of the service chain.

10.5.2.3 Applicability for Ad Hoc Service chains

To enable on demand/ad-hoc adaptive service chaining (or composition) the approaches

presented can be directly used. The general problem here is that a subject has to be enabled to

obtain the proper identity information to gain access to the service chain (e.g. implemented as a

BPEL process) or all elements of the service chain respectively. The on-the-fly lookup of IdPs

and automatic registration and authentication however, is out of scope of the current version of

SensorSA and will be subject of future work.

10.5.2.4 Conclusion

As already mentioned the selection of an authentication approach for service chains is a design

decision that depends on the application requirements. With the SensorSA Access Control

Framework it is even possible to combine both approaches in a single use case, if for example a

Delegate Service Chain approach is necessary to support e.g. ad-hoc service chaining but for

legal reasons the service requestor identity has to be presented on an element service invocation

as well.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 195 of 233

10.5.3 Patterns for Access Control in a Multi-Protocol Environment

The presented access control approach includes the extensive usage of OASIS Security

standards. These standards have a focus on security enablement of SOAP messages and therefore

the implemented access control architecture components cannot be directly applied to services

with non SOAP bindings. As a matter of fact most OGC services and therefore a considerable

number of service implementations that are part of SensorSA do not provide a SOAP binding

yet. However, the available security service implementations are perfectly usable by utilising

protocol adapters where necessary.

SOAP

WMS Proxy

SOAP

SOS Proxy

Authorisation Service

Integrated

PEP

Dedicated

PEP

WMS

SOAP à HTTP

Translator

(xsd:String)

SOS

SOS

SOAP à HTTP

Translator

(xsd:String)

Client SOAP

+ Security Information

WMS

Authentication Service

Integrated PEP

Integrated

PDP

H
T

T
P

 P
O

S
T

H
T

T
P

 G
E

T

PEP Proxy

Figure 10-15: Access Control for HTTP based WMS & SOS

To use SensorSA security and access control mechanisms, service implementations with

bindings according to the SensorSA OGC Web Services Platform (see section 9.2.2) have to be

equipped with SOAP interfaces (protocol translators/adapters). To this end, a number of protocol

translators e.g. for WMS and SOS implementations is necessary as illustrated in Figure 10-9

10.5.4 Usage of SAML

SAML assertions issued by the Identity Management & Authentication Service contain the

following core elements:

- Assertion ID: unique session id generated when the assertion is issued

- Assertion IssueInstant: timestamp when the session was generated

- Issuer: contains the End Point Reference to the IdP that “issued” the assertion

- Subject NameID: contains a unique id of the identity that is managed by the issuing IdP

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 196 of 233

- Conditions: describes which conditions must be fulfilled so that the assertion can be

considered valid

- SubjectConfirmation: Information on how to identify and validate session information

- AuthnStatement: contains several information about the act of authentication, especially

which form of credentials were provided

- AttributeStatement: contains information about the identity‟s attributes

unique id of the assertion and
time the assertion was issued

URI of the identity provider
that issued the assertion

Figure 10-16: Example of a Subject NameID

unique id that identif ies the
subject (authenticated identity)

within the identity provider

random session key, also used to verify
the validity of the assertion

(currently via IDP operation verifySessionInformation)

issue- and expiration-time,
used to conf irm the validity

of the assertion

Figure 10-17: Example of a Subject Confirmation

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 197 of 233

Figure 10-18: Example of an Authentication Statement

attributes asserted with the
authenticated identity

Figure 10-19: Example of an AttributeStatement

Figure 10-20 indicates where SAML plays a role in relation to the abstract access control

pattern (see 6.7.2).

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 198 of 233

service request r + t à

ß service response p

AP

Subject ServicePEP

PIP

PAP

PDP

IdP

r à

authentication

response

request policy

for (r,t)
XACML

policy

ß

ß

ß

ß

ß

ß

ß
ß

ß p

samla = SAML assertion schema

samlp = SAML protocol schema

xacmlsp = SAML 2.0 profile of XACML

2.0 protocol schema

samlp:AuthnRequest

xacmlsp:

XACMLAuthzDecisionQuery
xacmlsp:

XACMLAuthzDecisionStatement

t

samlp:Response

(samla:Assertion[s])

verify samla:Assertion[s]

(authenticate t)

Figure 10-20: SAML in relation to the Access Control Pattern

10.5.5 Usage of XACML

This paragraph provides a simple example of how to use the basic XACML constructs described

in section 7.4.6.2.

10.5.5.1 Example SOS Policy

Translated to plain English the policy below specifies that for the service

SoapBindingsSOSv3WS01 only those XACML subjects which are members of the group SOS

User have read access. Further, the requested action must be getObservation. All of these

properties are mapped in XACML policies via attributes, which are basically key value pairs.

Due to this characteristic of XACML, it is possible to express arbitrary real world concepts as

properties, e.g. roles, groups, company branch or department. Because there is a lot of boilerplate

XML in the example code the interesting parts are marked in red boxes. For simplicity and better

comprehension the ... notation indicates that some parts of the policy document are omitted.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 199 of 233

Figure 10-21: Example of an SOS Policy

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 200 of 233

10.5.5.2 Example SOS Authorisation Request

As in the policy example before, in plain English the request below wants to access the resource

SoapBindingsSOSv3WS01. The requester is a member of the group SOS USER. Further, the

action element indicates that the requester would like to access the getObservation operation.

Figure 10-22: Example of an Authorisation Request for an SOS

10.5.5.3 Evaluation

Both the policy and the request form the decision basis of a XACML PDP for a particular

resource. There are only four possible PDP decisions:

- Permit

- Deny

- Indeterminate

- NotApplicable

“Permit” and “Deny” are already discussed in the previous paragraphs. The value

“Indeterminate” occurs if there is an exception during the evaluation of the request and no

regular decision can be made. The decision “NotApplicable” indicates that there are no policies

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 201 of 233

with a matching target/rule for the given request. In the example above an XACML PDP would

decide that the requester is permitted to access the resource SoapBindingsSOSv3WS01 because a

policy exists which addresses the resource in a target. Furthermore, the request has one subject

which possesses the group attribute with the required value SOS User and the action attribute

getObservation. Therefore the rule evaluates to the effect "Permit" and because of the fact that

there are no further rules which could evaluate to "Deny" the resulting decision of the PDP is

"Permit".

10.6. Processing of Quality Information

10.6.1 Attachment of quality information

The OGC Sensor Observation Service (see section 8.2.2) is used to access observation results.

Uncertainty and quality information is relevant at two different places within this service

specification:

- At the level of the observation process, uncertainty and quality information may be

included in the SensorML document returned by the describeSensor operation. All

required information about the observation process, the uncertainty of the observations as

a collection and the quality assurance processes applied may be included in this

document. Time dependent uncertainties, e.g. due to instrument deterioration, could be

expressed in SensorML. Client applications may, however, find it more convenient to

have the resulting uncertainty of observations expressed directly for individual

observations as in the next item.

- At the level of the individual observations, uncertainty and quality information may be

included in the Observation & Measurement documents as returned by the

getObservation operation. Again, the observation-specific information regarding the

observation process, the uncertainty of this observation value and the quality assurance

process that this observation value has undergone may be included here. Figure 10-23

shows an example of a getObservations result with an UncertML block quantifying the

uncertainty of the observations. A href in the result block definition provides the link

between the property observations and the associated uncertainty data. There is a tacit but

natural assumption that the order of the uncertainty information is the same as the

observation values. The XML file can be parsed by clients not able to evaluate the

uncertainty data.

A model based calculation usually makes several assumptions about the nature of the

physical process under study (e.g. ground water flow in a saturated, homogeneous aquifer with

uniform hydrological parameters). These assumptions shall be described in the associated

SensorML of the model procedure.

It is good engineering practice to always include quality and uncertainty information.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 202 of 233

Figure 10-23: UncertML block in a getObservations result

10.6.2 Multi-level measurement chains

When working with quality-assurance processes, data have different “levels” of quality control

information, as illustrated in Figure 10-24. For example, in the air quality domain the “raw data”

sampled from the sensor undergo some automatic quality assurance process (“QC level 1”). In a

second step, a manual quality control process is applied to the data (“QC level 2”). Sometimes a

user may be interested in some specific level of quality controlled data (e.g. raw data). Other

application scenarios require querying the “best available” data, which means that for each

measurement taken, the data point with the highest level of quality control should be returned.

Within an OGC Sensor Observation Service this can be handled using different offerings

with different procedures. The procedure describes the level of quality control that this specific

data set has undergone. For each level a procedure has to be defined, and, if required, one (or

more) additional procedure(s) defining the “best available” data can be defined.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 203 of 233

Data store

R
a

w
 d

a
ta

Q
C

 l
e

v
e

l
1

Q
C

 l
e

v
e

l
2

„
B

e
s

t
a

v
a

il
a

b
le

“

S
e

n
s

o
r

O
b

s
e

rv
a

ti
o

n
 S

e
rv

ic
e

Quality control operator End user

„Best available“

QC level 2

QC level 1

Raw data

Time

O
ff

e
ri

n
g

s

Figure 10-24: Example for a multi-level measurement chain in an SOS

10.6.3 Visualisation of Uncertainty Information

It is desirable to represent uncertainty with graphic variables on maps created with the Map

and Diagram Service (see section 8.4.3). Several promising techniques have been already

identified for the visualisation of uncertain information in static maps.

MacEachren (1992) promotes the use of transparency for uncertainty depiction based on a

metaphor of "fog" obscuring the view proportional with the amount of uncertainty. He also

includes additional modalities for uncertainty visualization such as colour saturation, crispness

(contour crispness and fill clarity) and degradation of the resolution of raster images. A similar

technique comes from Drecki (2002). He proposed an "opacity" display, where opaque objects

are the certain ones. The last identified technique comes from Hengl (2003). His work suggests

that uncertain data should appear increasingly white or “pale,” depending on the magnitude of

uncertainty. Whereas the first techniques apply mainly to coverages, the last two techniques

(opacity and colour bleaching) may prove to be especially important for the visualisation of

discrete geographical objects such as moving sensors.

Based on the techniques presented above, it should be possible to obtain map

representations that display the amount of uncertainty by varying transparency, varying colour,

transparency blending, colour bleaching, use of fill patterns and adjusting resolution of

geographic detail. Moreover, considering the specificity of sensor data as processed in sensor

service networks (which primarily consists of interpolated measurements and coverages), the

following three additional techniques have been investigated in the SANY project on a

conceptual level:

- perpendicular colour and transparency variation along contour lines

- varying contour widths, and

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 204 of 233

- use of graphic filters (e.g. blurring) as a generic mechanism for localised colour

manipulation.

Note: Currently, the SensorSA suggests that the use of colour, transparency and texture

are the best candidates for representing uncertain information for static maps in an efficient

manner. Therefore, these techniques will be further researched in the context of the Map and

Diagram Service. The other techniques will remain only as concepts due to the complexity of

implementing such graphically demanding techniques in the Map and Diagram Service.

10.6.4 Unit conversion

Unit conversion in a SANY sensor network can be handled in two ways:

1. Each service offers a (set of) unit(s) in which it is able to provide its values and/or

perform its operations. The clients can select one of the offered units (if multiple

are provided), and then must do all remaining unit conversions (if necessary) on

their own.

2. All of the functionality described in (1) above, plus a dedicated Processing Service

(see section 8.4.2) that can be used by client applications (and services acting as

clients) to perform unit conversions that they are not able to do on their own.

Note: Unit conversion is considered to be part of the pre- or post-processing steps in a

processing chain (see section 10.9.1.2).

10.7. Handling of large data sets

Data access in the SensorSA is provided mainly through instances of Sensor Observation

Services. Depending on the application scenario fairly large amounts of data may be needed and

thus handled by those services. When working with large amounts of data, the following

scenarios can be distinguished:

- Accessing a large block of data all at once

- Accessing a smaller piece of a large data set

10.7.1 Accessing large data blocks

The Sensor Observation Service (see section 8.2.2) and its accompanying Observation and

Measurement data model (see section 7.3) provide multiple mechanisms for transporting the

actual observation data in response to a request, specified in the responseMode parameter. While

some of them (e.g. inline) are only suitable for smaller sets of data, the observation data can also

be transported separately from the getObservation result (out-of-band), which in this case only

provides a description of the data and a pointer (e.g. an URL) to the data themselves.

The data themselves can be transported in any form and/or encoding that is suitable for the

specific application scenario. An example would be offering the data binary encoded with

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 205 of 233

NetCDF (http://www.unidata.ucar.edu/content/software/netcdf/index.html) and transported using

OPeNDAP (http://opendap.org/) as shown below (section 5.4 of Cox, 2007).

<?xml version="1.0" encoding="UTF-8"?>

<om:Observation gml:id="timeSeries1" ... references omitted ...>

 <gml:description>Observation test instance - time series</gml:description>

 <gml:name>Time series 1</gml:name>

 <om:samplingTime>

 <gml:TimePeriod gml:id="ts1t">

 <gml:beginPosition>2005-06-17T09:00:00+08:00</gml:beginPosition>

 <gml:endPosition>2005-06-21T09:00:00+08:00</gml:endPosition>

 </gml:TimePeriod>

 </om:samplingTime>

 <om:procedure xlink:href="urn:ogc:object:feature:Sensor:BOM:t_2a"/>

 <om:observedProperty

xlink:href="http://sweet.jpl.nasa.gov/ontology/property.owl#Temperature"/>

 <om:featureOfInterest xlink:role="urn:ogc:def:featureType:OGC:Station"

xlink:href="http://my.big.org/feature?type=station%26name=st1"/>

 <om:parameter>

 <swe:Quantity

definition="http://sweet.jpl.nasa.gov/ontology/property.owl#Elevation">

 <swe:uom xlink:href="urn:ogc:def:uom:UCUM:m"/>

 <swe:value>3.45</swe:value>

 </swe:Quantity>

 </om:parameter>

 <om:result xlink:href="http://www.flakey.org/opendap/378.cdf"/>

</om:Observation>

10.7.2 Accessing small pieces of a large data set

When a Sensor Observation Service is based on a large data set, clients can still choose to select

only pieces of that data set for each operation. However, using the current version of the Sensor

Observation Service specification, it is not easy for the client to determine or control the amount

of data that will be returned in response to a request. Information about the amount of data that a

sensor produces (or has produced) can be encoded in the description of the sensor (the SensorML

document returned in response to a describeSensor operation request), but this is implementation

specific and problems with interoperability of different applications may arise.

Because of this the Sensor Observation Service itself should support mechanisms for

efficiently accessing large data sets. There are different solution approaches:

- Allow the client to determine the amount of data a given request would produce in

advance.

- Allow the client to limit the amount of data that should be transferred in one response.

- Allow the client to select between alternative data transfer mechanisms and result models

(e.g. file transfer with files of a standard format) depending on statements of the server

about the amount of data to be transferred.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 206 of 233

10.8. Cascading Sensor Observation Services

Sensor Observation Services (SOS) as specified in section 8.2.2 can be used at many different

places in applications built according to the SensorSA. Cascading of sensor observation services

may sometimes be an effective approach for fulfilling certain requirements. When SOS instances

are cascaded, an SOS acts as the data source for an intermediate cascading SOS, which itself

provides a SOS interface to its clients. From an architectural point of view, a number of

scenarios of using a cascading SOS are of interest and thus described in the following.

10.8.1 Data flow optimization

While on a conceptual level data is directly accessible from the service provider or data source,

when engineering real-world applications some obstacles can hinder efficient direct usage of an

SOS by a client. Problems that may occur include:

- Network performance problems

- Limited resources on SOS servers

- Support of different versions or feature sets of the SOS protocol in the client and server

applications

To mitigate those negative effects without the need of changing servers and/or clients a

cascading SOS can be used as an intermediate service for optimizing the data flow from the

server to the client. Depending on the problem that should be solved the cascading SOS has to

provide different functions, which are described in the following.

For decoupling the data flow from the server to the client, caching can be implemented on

the intermediate SOS service. This reduces negative effects of limited network bandwidth,

unreliable network connections, unreliable servers, or limited performance of the original SOS

service.

When the implementation details of the SOS protocol (e.g. use of different SOS versions,)

impose a problem on the interoperability between a specific client and a server, the most

straightforward solution would be to change either the client or the server application (or both).

If that is not possible or feasible for economic or other reasons, an intermediate SOS service can

be used to translate between the unmodified client and server, and make interoperability between

these systems possible.

From a network point of view the intermediate SOS can be placed near the original SOS

server(s) or near the client(s) that are supposed to use it. The most effective location depends on

the issues that are about to be solved in this specific application scenario and thus cannot be

defined on a generic level.

10.8.2 Providing alternative views to data

When implementing applications according to the SensorSA situations may arise where using

the data directly in the form provided by the data source may not be feasible or possible.

Examples for such scenarios are:

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 207 of 233

- Different data providers may implement different data models for their Sensor

Observation Services because of differences in their requirements and/or intentions.

While this is still compliant with the SensorSA, it may impose an additional burden on

applications that have to use those different data sources.

- Data models used by organizations internally may not be feasible or appropriate for

publishing them or making them available for a specific purpose.

- Organisations may need to provide an aggregated view of data collected by different

providers, e.g. for implementing federated data pools

Cascading SOS can be used to facilitate cleaner and more robust implementation

architectures in these cases. The intermediate SOS server provides a single interface to all the

underlying data sources. This results in a clean distinction between the data access and

processing on the client side, and the aggregation, transformation and/or filtering of the data that

is necessary for a specific purpose in the intermediate SOS.

10.8.3 Data (pre-)processing

In a sensor network data processing occurs on various occasions. The classical use case is

pulling a data set from a service, processing it as required for the application scenario, and

probably storing the result somewhere. This use case is described in detail in section 10.9.

However, for some common, more lightweight data processing tasks the application scenario

could be optimized by processing the data on the fly when they are accessed.

In such a scenario a cascading SOS acts as a service providing access to derived data

without the need to first fetch all of the source data and applying the calculations. While not

feasible for all types of data processing operations (e.g. lengthy calculations), it simplifies

application architectures where it can be applied.

A typical scenario would be the calculation of mean values for time series data. While the

measured data may be available with, for example, half-hour mean values from the sensors, an

application may require daily mean values for its operation. This can be solved by using a

cascading SOS that calculates the daily mean values on the fly using the half-hour mean values

as the data source.

10.8.4 Multi-level sensor data storage

Some of the scenarios described in section 4.5 include SOS interfaces provided directly by the

sensors, or by data loggers connected to the sensors. These devices typically are physically

located in remote locations near the place where the observations are taken, and not in a typical

data centre environment. When applications (e.g. GUI clients, data processing applications)

would access theses devices directly, it would be very hard to meet requirements of those

applications regarding availability, fault tolerance, performance, etc. In addition, those devices

usually have tight constraints regarding storage space, which imposes problems for long time

storage of observations.

To remedy these problems a cascading SOS can be used as illustrated in Figure 10-25. It

fetches and stores the data provided by the sensors or data loggers, and all client applications

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 208 of 233

access this service instead of accessing the sensors directly. The cascading SOS can be located in

a data centre where it is much easier to meet availability and performance requirements. Long

term data storage is also easier to implement in that scenario.

Cascading SOS

User Application

Figure 10-25: Multi-level sensor data storage

10.8.5 Caching of data

In most of the previously described scenarios, caching of the data from the source SOS at

the cascading SOS is either a primary aspect or at least a “nice to have” feature. For this caching

process different approaches can be taken. Depending on the requirements of a specific

application every approach has its benefits and weaknesses, or may not be applicable at all. An

approach for caching can be broken down into a few different aspects of its operation, which are

described in the following.

The first distinction can be made on the source of the event that triggers the (re-)fetching of

the data from the source SOS:

- Data retrieval from the source SOS can be triggered by the request that the client makes

to the cascading SOS. At this moment, the cascading SOS has to decide whether the data

that is available in his cache is valid. If it is invalid, the data has to be updated by

reloading it from the source SOS

- The trigger of the (re-)fetching can be the source SOS itself. By using event-based

interaction patterns (see section 6.3.3), it can notify the cascading SOS of new or updated

data. The new data values can be included in the event notification itself, or the cascading

SOS may fetch data from the source SOS using conventional SOS operations in response

to the event.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 209 of 233

- The (re-)fetching of the data can be triggered by events not depending on either the

source or the client. An example would be a time schedule that controls when data is

fetched from source SOS servers.

Another classification can be made on how to determine if data in the cache is still current,

i.e. if the cache is still valid:

- The cascading SOS can query the source SOS if the data is still current. Currently the

SOS specification does not foresee operations or metadata to support this approach in a

generic way, but using the O&M and SOS specifications it can be realised if both the

source SOS and the cascading SOS agree on a common way of implementing it.

- The data in the source SOS can contain information if the data is current. Depending on

the granularity required, this can be either encoded in the SensorML description of a

procedure if it remains the same for all observations made using this procedure, or it can

be encoded using O&M together with the data values if each observation can have

different constraints to determine if it is still current.

- It may be determined at the level of a cascading SOS implementation. If the source SOS

does not support any information about how long its observations are current at all, it

may be possible (depending on the application scenario) to define this at the level of the

cascading SOS itself.

For updating data in its cache, a cascading SOS has to identify each observation. Since the

current O&M and SOS specifications do not provide a generic identifier that can be used for this

purpose, a work-around solution has to be implemented currently. The implementation approach

depends again on the application scenario. An example of such a solution would be to use an

artificial unique key to identify an observation, e.g. consisting of the result time, the sampling

time, the identifiers of the feature of interest, observed property and procedure. In many sensor

network scenarios this may be sufficient to identify an observation for caching purposes.

Another important aspect that has to be handled is the deletion of data. Although in many

scientific applications data is not deleted but instead archived and “logically” replaced by

“newer” values, there may be applications that require the ability to delete an observation. The

current SOS specification does not support this, and thus again work-around solutions have to be

implemented.

10.8.6 Event-based interaction in cascaded scenarios

The event-based architectural style as described in section 6.4 can also be applied to

cascaded scenarios. The client accesses the cascading SOS in the same way as any other SOS

service. All event-based interactions can thus be implemented in the same way. Similar to this,

the cascading SOS is a client to its source SOSes, which means it can also interact with them

using events as any other SOS client does.

Some of the approaches for the replication of data in a cascading SOS depend on the usage

of event-based interaction patterns, but also other types of events as described in the event

taxonomy (see section 6.4.4) are important when SOS services are cascaded.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 210 of 233

- Sensor Available Event: depending on the implementation of a cascading SOS it may

automatically include new sensors when they become available. In this case the

cascading SOS has to act on the “Sensor Available” event in the sensor network and add

the new sensor to it‟s configuration.

- Sensor Unavailable Event: some of the scenarios for cascading SOSes require that data in

the cascading SOS is still available even if the source SOS is no longer active.

- Sensor Properties Changed: this requires the cascading SOS to update it‟s metadata

accordingly

- New sensor data: depending on the replication strategy implemented in a cascading SOS

(as described before), this event may force an update of the data in the cache of a

cascading SOS.

10.9. Processing and Fusion Support

10.9.1 Processing Chains

10.9.1.1 Introduction

Processing in general and fusion in particular often follows a multi-step pattern. First the input

data to be processed or fused must be discovered using meta-information that characterises these

data and that is compatible with the processing algorithm to be used. Then the input data must be

fetched from different places using the appropriate access methods and protocols. Next, the

fetched input data must often be pre-processed to deal with unit and format conversion needed to

match the inputs expected by the processing algorithm. At this point, the processing per se can

be performed and outputs are produced. Those outputs must often be post-processed to again

deal with unit and format conversion before storing the processing results. Then, the converted

output data must be stored in various places using the appropriate access methods and protocols.

Finally, data rendering could be performed in preparation for (later) visualisation.

In the SensorSA, this multi-step processing pattern is supported by a service processing

chain. This processing chain is itself exposed as a service.

10.9.1.2 Processing Chain Service

Referring to the processing flow illustrated in Figure 10-26, the main process has three inputs

and two outputs. The input data are fetched from three Sensor Observation Servers (SOS) and

the processing results are stored in two SOS servers. All of the processing (i.e. pre-processing,

main processing, and post-processing) is performed by instances of the Processing Service (see

section 8.4.2).

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 211 of 233

Pre-

Processing

Data

Storing

Post-

Processing

Pre-

Processing

Data

Fetching

Data

Fetching

Data

Fetching

Pre-

Processing

Data

Processing

Post-

Processing

Data

Storing

SOS WPS WPS WPS SOS

n m

Pre-

Processing

Data

Storing

Post-

Processing

Pre-

Processing

Data

Fetching

Data

Fetching

Data

Fetching

Pre-

Processing

Data

Processing

Post-

Processing

Data

Storing

SOS WPS WPS WPS SOS

n m

Figure 10-26: Processing Flow

The multi-step processing pattern described above can be implemented by an instance of a

Processing Service (PS) called processing chain in Figure 10-27. To a client the processing chain

exhibits a PS interface (front-end interface). As a back-end interface it uses a number of other

services in order to execute the processing chain:

- The discovery of input data can be accomplished using a catalogue service (see section

8.2).

- The input data fetching and output data storing can be accomplished using a Sensor

Observation Service (see section 8.2.2), a Feature Access Service (see Table 8-11) or an

FTP service.

- The input data pre-processing and output data post-processing can be done using a

Processing Service (see section 8.4.2).

- Finally, the data rendering could be achieved using a Map and Diagram Service (see

section 8.4.2), e.g. for the generation of isolines/contours.

The processing chain is opaque (i.e. not modifiable by the user) and is likely to be

implemented using BPEL. Whenever possible, i.e. mainly for data pre-processing and data post-

processing, parallel execution is performed using the BPEL <flow> activity. This approach is

expected to cover a wide range of processing needs with only moderate modifications to the

BPEL source code.

All the inputs needed to access the individual services composing the chain must be

provided as input to the processing chain. Temporary storage (e.g. an FTP server) is needed in

order to store intermediate results that are passed (by reference) from one service to another. If

each PS instance has its own FTP server to store its outputs, then the number of data transfers

across the Internet can be reduced to its minimum (but cannot be eliminated). Nevertheless, the

PCS must provide its own FTP server to store the outputs of the Processing Services that do not

support stored outputs and to store its execute response which can be updated to provide process

execution status information (e.g. percentage completion). Storing the execute response is the

WPS mechanism to implement asynchronous process execution. To avoid running out of file

storage space, some form of garbage collection must be implemented on the FTP server of the

Processing Service instances underneath. For example, all output files older than a pre-defined

time (e.g. 1 day) could be removed on a regular basis.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 212 of 233

Figure 10-27: Processing Chain as an Instance of a Processing Service

10.9.1.3 Advanced Topics for Processing Chains

10.9.1.3.1. Continuous Feeding

One particular case of a processing chain arises when the input is a continuous flow of data (e.g.

temporal fusion). In this case, the data fetching step must be repeated on a regular basis and the

complete chain must be executed each time, producing new (incremental) results. This cyclic

execution of the processing steps can be handled by the processing chain itself but the cycle

period and stop condition (e.g. total number of cycles or total duration) must be provided in the

processing chain Execute request as additional input parameters.

The cyclic execution of the processing chain assumes that all the services in the chain are

able to operate incrementally i.e. using only the data fetched in the current processing cycle. It

also assumes that all the processing can be completed during the cycle period i.e. before a new

cycle begins.

However, there are cases where the main data processing step is stateful or simply requires

data that was acquired in previous cycles. The main data processing step may then have to be

designed to support incremental execution. This means that the service hosting this data

processing must be able to create, save, and restore the context (algorithm state, data cache, etc)

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 213 of 233

needed to relate successive executions. A context identifier must therefore be assigned by the

data processing service in the first cycle and be provided by the processing chain as an additional

parameter in the execute request of the following cycles. Also, in order to initiate the data

processing, the first cycle may require a much larger amount of data fetching (e.g. historical

data). Finally, it is up to the data processing service to decide if it must cache data provided in

previous processing cycles (e.g. for algorithm tuning or retraining).

Regarding the data fetching step, the SOS specification defines an optional GetResult

operation (see section 8.2.2) that could be of interest in this continuous feeding use case (if

supported by the SOS instances providing the data). It could be used in all processing cycles

except probably the first one.

10.9.1.3.2. Event-Triggered Processing

It could be of interest to trigger the execution of the processing chain upon reception of a

particular event. The processing chain is armed by the Execute operation but only really starts

when the event is actually received. Depending on the option chosen, once the execution is

complete the processing chain could automatically re-arm itself or require a new Execute

operation. The information needed to define the triggering event (e.g. topic) and the stop

condition (e.g. event count or event topic) must be provided in the processing chain Execute

request as additional input parameters.

Although it is easy to imagine such an event-triggered processing chain, it is actually not

straight forward to implement it. The natural and most efficient approach would be to have the

processing chain passively waiting for the event to be pushed by the event producer. This means

that the event must be addressed and delivered to a particular instance of the processing chain

which cannot be done without support from the BPEL environment hosting the processing chain.

The BPEL engine may support the invocation of an asynchronous service where the service is

able to call back the instance of the BPEL workflow that made the service invocation. In this

case, using WS-Addressing information in the SOAP header of the service request (e.g. ReplyTo

and MessageId elements) and of the call back request (e.g. RelatesTo element), the BPEL engine

is able to find the target workflow instance. However, if for example WS-Notification is used by

the processing chain to receive event notifications, the Notification Producer or Notification

Broker will not provide the correlation information needed by the BPEL engine to find the

particular instance of the processing chain.

A workable but less efficient approach would be to have the processing chain actively

polling for the availability of events and pull the event from a pull point as illustrated in the

figure below. The polling interval could be specified in the processing chain Execute request as

an additional input parameter.

The processing chain first requests the creation of a pull point from a PullPoint Factory.

Then, the processing chain subscribes to a Notification Producer or Notification Broker and

provides the topic(s) of interest as well as the end point reference of the newly crated pull point.

Next, the notifications generated by the Notification Producer or Notification Broker are pushed

to the pull point and can be retrieved (pulled) by the processing chain at polling time. By

specifying the number of notification messages in the GetMessages operation, the processing

chain may decided to pull one notification at a time (i.e. execute the complete processing chain

for each notification). Alternatively, by not specifying the number of notification messages in the

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 214 of 233

GetMessages operation, the processing chain may flush all the notification messages

accumulated by the pull point during the polling period.

PullPoint
Processing

Chain

Notification

Broker

3: Notify

2: Subscribe

5: Unsubscribe

PullPoint

Factory

1: CreatePullPoint

4: GetMessages

6: DestroyPullPoint
PullPoint

Processing

Chain

Notification

Broker

3: Notify

2: Subscribe

5: Unsubscribe

PullPoint

Factory

1: CreatePullPoint

4: GetMessages

6: DestroyPullPoint

Figure 10-28: Reception of Notifications by Processing Chain Instance

When the processing chain stop condition has been reached (e.g. event count or particular

event topic), the processing chain must unsubscribe to the Notification Producer or Notification

Broker and then destroy the pull point.

10.9.1.3.3. Discovery

Meta-information is needed to discover input data that can be used for a processing chain, i.e.

that are compatible with the processing algorithm used in the chain. Another approach could be

to discover the Web Processing Service (WPS) to call as part of the processing chain to match

available input data. This requires that appropriate meta-information about the Processing

service be available in some catalogue. One possible way of providing information about the

processing service is to describe it using SensorML (Botts, 2005).

The catalogue service (section 8.4.1) offers a broker mechanism that could be used to link

processes/tasks of fusion services to data sets. These links could be established manually or

automatically (during harvesting). The processing chain could use this mechanism to discover

(from service to data set or from data set to service) the compatibility between fusion services

and fusion data sets.

10.9.2 Uncertainty Handling in Processing Chains

The degree of uncertainty of the input data has a major influence on the reliability of the output

data. Thus, within a process chain, information about the uncertainty of the data at each position

in the chain has to be handled.

The propagation of uncertainty through the chain has to be estimated. If y=f(x1,..,xn) is a

multi-dimensional value (typically a state vector) computed as a function f of vectors x1,..,xn

(e.g. as an indirect measurement), then uncertainty in the input values leads to an uncertainty in

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 215 of 233

y. For linear functions f the variance of y can be calculated from the covariance matrix of the xi.

For non-linear functions it is estimated using a Taylor expansion of f (e.g. Barry N. Taylor and

Chris E. Kuyatt, 1994).

Another similar approach for which efficient algorithms exist for non-linear f is to use an

Unscented Kalman Filter to estimate the mean and covariance of y from the mean and

covariance of the input vectors (Wan, E. and Van Der Merwe, R. 2001). The distribution of the

input data is represented by a small number of so-called sigma particles and the processing

function f is applied to these particles to compute the propagated sigma particles. The mean and

covariance of the output y are weighted functions of the mean and covariance of the propagated

sigma particles.

For more complicated relationships – e.g. when y is the output of a model based

computation or algorithm – a specific sensitivity analysis will be required and the assumptions

made will have to be documented or referenced in SensorML for evaluation by an expert.

10.9.3 Combining Earth Observation and In-situ data

10.9.3.1 Introduction

Combining (fusing) Earth Observation (EO) data with in-situ data is attractive, especially when

they relate to the same phenomenon, because the two types of data present different but

complementary inherent properties. In-situ data is typically of high quality and temporally rich

(higher acquisition frequency) but spatially poor (limited number of sensors) whereas EO data is

typically spatially rich (images covering a wide area) but temporally poor (lower acquisition

frequency) and of lesser quality.

For example, in the geo-hazard domain (monitoring of soil and building displacements),

vertical displacements obtained through interferometry processing of Advanced Synthetic

Aperture Radar (ASAR) satellite images can be combined with vertical displacements measured

in-situ using theodolite based monitoring systems. In this case, the acquisition frequency of

in-situ displacement data is typically of once every 30 minutes as opposed to once every 35 days

for satellites images. The accuracy of the in-situ displacement data is typically of ± 1 mm versus

± 3 mm to ± 5 mm for EO derived displacement data. However, interferometry processing of

ASAR images may lead to an average density of about 500 points per Km
2
 (in urban areas) as

opposed to only about 150 per Km
2
 for in-situ monitoring stations.

EO

Data

Fused

Data

Data

Processing

In-situ

Data

SOS WPS or SPS SOS

EO

Data

Fused

Data

Data

Processing

In-situ

Data

SOS WPS or SPS SOS

Figure 10-29: Combining Earth Observation and In-situ Data

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 216 of 233

In the context of SensorSA, the combination of EO and in-situ data is best performed using

a Web Processing Service (WPS) (see section 8.4) or Sensor Planning Service (SPS) (see section

8.2.3) to access EO and in-situ data stored in Sensor Observation Services (SOS) and store the

processed (fused) results also in a SOS as illustrated in Figure 10-29.

10.9.3.2 Approach

The typical steps needed to deploy a SOS containing EO derived data are as follows:

1. First, EO images (EO data products) covering the area of interest and period of interest

have to be ordered/purchased from a satellite (or air-borne) image provider. These images

are in a certain format and are the result of instrument specific processing (performed by

the EO image provider) to reformat, time re-order, calibrate, and geo-locate the raw data.

2. The EO images are then submitted to thematic processing (manual or semi-automatic) to

extract the observations related to the desired phenomenon with the appropriate level of

quality.

3. Finally, these observations are stored in an SOS server along with the associated quality

meta-information and SensorML descriptions.

In the geo-hazard example considered above, high resolution ASAR images produced by

the ENVISAT satellite and covering the area of interest (e.g. city of Barcelona) can be purchased

from Spot Image. Using rather complex interferometry processing, ground displacements maps

(interferograms) can be generated by comparing all the images to one of those images chosen as

a reference and by making topographic adjustments using a digital elevation model (DEM).

Stable reflector points (permanent scatterers) presenting a good signal/noise ratio (reflectivity)

can then be extracted and their displacements can be stored (along with the associated quality

metada and SensorML description resulting from all the above processing) in a database that is

directly accessed by a SOS server.

The typical steps needed to deploy a SOS containing in-situ data are as follows:

- Acquire in-situ data in the area of interest for the period of interest and, after possible

sensor specific processing, store this data in a database along with its quality parameters.

This data is geo-located either directly or indirectly through the location of the sensors.

- Publish the in-situ data with the associated quality meta-information and SensorML

descriptions in a SOS server by accessing the acquisition database directly or by

feeding/inserting the data into the SOS data store.

In the geo-hazard example considered above, automated monitoring systems, combining a

theodolite (measuring angles) and a distance measuring device aiming at prismatic optical

targets attached to structures (e.g. buildings) to be monitored, can be used to measure the

movement (in X, Y, and Z directions) of the targets on a cyclic basis (e.g. every 30 minutes).

After filtering for night and day structure breathing and vibrations due to traffic, the acquired

target displacement data can be stored in a database along with the location of these targets.

This database can be accessed directly by a SOS server supporting two result models: one for

temporal coverages and one for spatial point coverages.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 217 of 233

Once the EO and in-situ data is available from SOS services, a WPS or SPS based data

processing (e.g. fusion) service can be used to implement the processing chain shown above in

Figure 10-29. The processing service will typically use the quality meta-information found in

both EO and in-situ SOS services to judiciously combine their observations and produce new

observations with better spatial and/or temporal coverage and quality. These new observations

can be stored in an SOS (could be one of the input SOS services) along with uncertainty

information which is essential for decision making.

In the geo-hazard example considered above, inverse distance interpolation (spatial

fusion) limited to a given radius (e.g. 30 m) can be applied to improve the accuracy of the EO

derived vertical displacement observations at the selected stable reflector points. Statistical

information (uncertainty) related to the interpolated displacements can also be generated and

published along with the updated observations in a Fused SOS server with the same structure as

the EO and in-situ SOS servers.

10.10. Integration of Mobile Sensors

Of the sensor network scenarios shown in Table 4-1 in section 4.5, all but one involve mobile

sensors:

no. 2. Mobile sensors and fixed or mobile data logger

no. 3. Mobile sensors moving in different service networks

no. 4. Mobile sensor cluster on vehicles (e.g. on ships) - block data transfer on demand

no. 5. Mobile earth observation sensors (satellite, airborne)

no. 6. Mobile sensors with their own IP address

For a mobile sensor the location of the sensor is time dependent. In addition, the associated

sampled feature and / or sampling point of a feature of interest are normally time dependent.

For scenarios 2-4, observation data is transferred from the sensor to a “data logger”. For

simplicity, it is assumed that each data logger has exactly one associated SOS instance where the

observations are published. The protocol between the sensors and data logger is proprietary and

outside the scope of SensorSA. The data logger shall register its SOS instance with a catalogue

service. The result of a SOS getCapabilities request to the data logger provides a list of sensors

associated with the data logger and for what sampling or result times observations are available.

The catalogue service can subsequently use describeSensor operations to acquire information

about the sensors associated with a data logger. The data logger may have no or only partial

knowledge about which sensors are still alive. A catalogue service may compile information as

to the location of sensors in order to support network management.

Scenario 3 differs from scenario 2 in that a sensor may transfer its observation data to

several different data loggers, and hence to several SOS instances. If the observations of a given

sensor relate to the same feature of interest, then there are two approaches to dealing with this in

applications requiring all data for this feature:

- A cascading SOS may be employed to merge the observations from the different SOS

instances of the data loggers. Thus applications may need to access only the cascading

SOS. This assumes that the cascading SOS has the necessary knowledge of relevant

underlying SOS instances.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 218 of 233

- A catalogue has knowledge about available observations for a feature of interest

including references to the pertinent SOS instances. A client application first queries the

catalogue for the SOS instances and subsequently the individual SOS instances with

getObservations.

A special case in scenario 3 arises when a sensor transfers the same observation data to

several data loggers – this may be done intentionally for reasons of redundancy and reliability, or

may happen by accident depending on the underlying protocols. A cascading SOS or client

application can detect and remove duplicate observations based on the combined reference to the

procedure (sensor), feature and sampling time.

Scenario 4 is actually a particular case of scenario 3, whereby the time required to make

observations available in an SOS instances can be considerably longer. This has consequences

for applications as they may need to wait for a certain period before data processing is started or

can be completed.

In scenarios 4-6 especially, the usage of a SPS is recommended to task the sensor

deployment and to obtain information about what observations are feasible and when they will

be available (cf. section 8.2.3).

In scenario 5, the mobile sensor platform may have its own integrated SOS instances, or it

may communicate with a base station where the SOS instance is located. There is an obvious

parallel to scenario 3 in that observations may become available at a later time.

In scenario 6, it is assumed that the sensor has its own SOS instance. Such sensors

therefore play a similar role in SensorSA as the data loggers described above.

10.11. Event Handling

OGC defines the Sensor Alert Service interface (see its description in section 8.2.4). The Sensor

Alert Service (SAS) is a service that combines the most important aspects described in sections

6.3.3 and 6.4. The SAS specification allows the setup of simple alert services that inform clients

about interesting events. Those simple services can then be chained to more complex scenarios.

Figure 10-30 illustrates such a possible SAS orchestration. Sensors publish observation data, and

SAS instances process the data, generating new alerts that will be used by SAS instances further

down the processing/orchestration chain. The events generated by the last SAS instances might

integrate data from various sources. The path back to the original sensors does not have to be

traceable. To make the functionality of SAS more transparent and to reflect the recent

requirements identified in SANY, this version of the architecture specification will focus on non-

orchestrated alert services.

Though providing most of the features of event-based interaction models (see section

6.3.3), the SAS is a Web Service interface specification. The notification transport is limited to

the eXtensible Messaging and Presence Protocol (XMPP), exclusively. SAS is not a fully

featured event system, though it supports a number of basic requirements. The OGC event

notification system consists of event producers, notification services, notification brokers that

match incoming data with event subscriptions, and notification consumers. The SAS implements

both the notification service as well as notification broker functionality. In combination with the

Web Notification Service (WNS) (see its description in section 8.2.5), OGC provides a system

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 219 of 233

that allows message delivery to any form of communication endpoint, but lacks a number of

security and maintenance features.

Figure 10-30: Event handling using OGC Sensor Alert Services

In the following, we will illustrate the principle modes of operation of SAS as used in

SANY. Events can be discovered at various levels, for example by sensors themselves, or during

processing of reported observation data by the Sensor Alert Service. The following figures

illustrate the various cases.

10.11.1 Definition and Subscription of Events

Initially, two scenarios must be differentiated, as illustrated in Figure 10-31 and Figure 10-32.

Figure 10-31 illustrates the simplest scenario. Sensors define events and advertise them to an

SAS instance. Those event-types will then be advertised by the SAS. Clients can subscribe to

those events exclusively. As an example, the sensor triggers events if the temperature exceeds

10°C. The clients can subscribe to “temperature exceeds 10°C” exclusively. Other commonly

used examples of predefined events are “battery low” or “observation failure”.

.

Figure 10-31: Clients subscribe to sensor-defined event types

Figure 10-13 illustrates the second scenario. Sensors don‟t define event-types, but

advertise observation data to the SAS. SAS will advertise these data to clients. Clients are now

free to define their own events based on the observation data. As an example, a sensor offers

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 220 of 233

temperature observations at a certain location in degree Celsius. The client may define an event

as an observation with a result greater than 20°Celsius.

Figure 10-32: Clients define events based on observation offerings by sensors or SAS

respectively

The next scenario, illustrated in Figure 10-33, describes a combination of the two base

types described above. Here, a single sensor or any number of sensors push data to the SAS

instance. Independently of the type of incoming data (either observation results or event

notifications), the SAS instance may define and advertise new event-types. Clients can then

register those event-types. The SAS will process all incoming data to detect the type of event it

advertises. An example would be an SAS that advertises “storm warning” events. The “storm

warnings” are detected based on data coming from a number of meteorological sensors.

Figure 10-33: SAS defines event types based on various incoming data sets. Clients

subscribe to those events

10.11.2 Generation and Dispatching of Alerts

Alerts are generated and dispatched either directly at the sensor (Figure 10-34), or based on

incoming observation data from the sensors at SAS (Figure 10-35).

Figure 10-34: Event detection and alert dispatching at sensor

The detection of events directly at the sensor requires sensors that allow the processing of

observation results. Often, sensors simply observe physical properties and report the observation

data to a SAS instance, as illustrated in Figure 10-35. This situation has the advantage that the

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 221 of 233

SAS does all processing of incoming data (leading to simpler sensors with less processing power

and corresponding energy consumption) and SAS can offer all data in an arbitrary format to

clients, e.g. mean values in an area where individual sensors don‟t even know of each other.

Figure 10-35: Event detection and alert dispatching by SAS

Figure 10-36 illustrates the flexibility of SAS. Even though events are detected at sensor

level and dispatched to SAS, it is up to the SAS provider to offer any other kind of alert. The

SAS alert might take other sensor data into account, or the SAS queries other services for

additional data and generates alerts based on provider-specific algorithms. Theoretically, the

alerts dispatched by an SAS instance can be based on any type of incoming data, internal

calculation, modelling etc.

Figure 10-36: Event detection at the sensor level with conversion of alerts at SAS

10.12. Plug-and-measure Support

“Plug and Measure” refers to the degree of capability to plug a sensor into an operating station

computer, begin measurements and access its observations through services without additional

manual intervention, e.g. a restart of the computer. Therefore, plug-and-measure functionality

must be embedded in all functional domains. When looking at the sensor scenarios described in

section 4.5 the necessity and advantages of the plug-and-measure functionality become obvious.

Within all scenarios, regardless of whether in-situ or mobile sensors are involved, the main

advantage is easy deployment and seamless integration of additional sensors in existing

networks. Independent of the sensor connection technology (wired or wireless) all of these

scenarios have a measurement station (central data acquisition point).

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 222 of 233

In the following, some of the major steps in supporting plug-and-measure functionality are

described. They are illustrated in Figure 10-37.

10.12.1 Sensor Plug In

The concepts and mechanisms described in the following concentrate on the deployment of a

new smart sensor in a sensor network controlled by a station computer, where “new smart

sensor” means a new instance of a sensor type initially unknown to (i.e. not registered with) the

measurement station. A smart sensor is considered to be a sensor that provides a certain amount

of processing and storage ability that can be connected to the station, meaning that both sensor

and station computer have to support the same communication technology (e.g. USB, ZigBee,

IEEE1451, CAN-BUS) and the necessary hardware and software layers have to exist in order to

enable simple byte stream communication between the two.

Figure 10-37: Plug-and-measure Component Interaction

Upon plug-in (connection on the hardware level) the application layer on the measurement

station has to become aware of the new sensor (e.g. through a notification mechanism).

Considering the rather large number of existing technologies at this level it is impossible to

provide a generic approach to how this should be accomplished. Two prominent patterns can be

identified though:

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 223 of 233

1. The “sensor triggered plug-and-measure” pattern implies that the station computer

passively listens for new sensors and is notified when a new sensor is connected. To

illustrate this consider the case of a USB sensor connecting to the USB subsystem of the

station. Upon connection the USB subsystem fires an interrupt that is propagated through

various software layers, eventually translated into a notification and caught by the station

computer sub-process handling new sensors.

2. The “station triggered plug-and-measure” pattern implies that the station actively polls

for new attached devices. This can easily be imagined for the case of simple bus

technologies like CAN-BUS.

10.12.2 Sensor recognition and connection establishment

To enable the station to communicate with the sensor, the sensor must be able to provide type

information. We make no assumptions here about how this is realised or about the format of the

sensor type information. For example, USB devices are providing complex meta-information

describing the device (e.g. device identifier, manufacturer name, interfaces etc.). The station

needs knowledge about the sensor type in order to be able to load and use the appropriate

software component that enables application layer level communication (byte stream) between

the station and sensor. As soon as application layer level communication is possible further

sensor information can be retrieved by an appropriate software component.

The sensor description can be stored on the sensor (much like the IEEE1451 TEDS) or on

a local or remote sensor description repository. The sensor description shall be encoded as a

SensorML (Botts, 2005) document and contain the information necessary to enable the station

computer to configure the sensor, initiate measurement tasks and retrieve observation data. The

information encompassed in a sensor description is dependent on the use-case and the specific

station computer and sensor implementation. Such information might include a description of the

software protocol by which the sensor and the station communicate. The protocol description can

be interpreted by a so called generic de-serializer component running on the station computer

and enabling packet based communication with the sensor over the existing byte stream.

Moreover, parts of the SensorML description are process descriptions. An example of a process

is the conversion from raw observation values into engineering units, taking into account sensor

calibration and decoration of observation data with units of measurement or annotation.

10.12.3 Sensor Adapters

Simple sensors with analogue inputs and outputs usually do not fulfil the abovementioned

requirements on interface, processing and storage. This kind of sensor requires a “Smart Sensor

Adapter” device that enables the plug and measure functionality. An example of such a device is

shown in Figure 10-38. It interfaces a simple sensor with analogue I/O (right side) with the

station computer (left side). It enables plug and measure capability by providing a digital

interface with the station computer (e.g. USB) and providing, on demand, a SensorML

description of the sensor. A composite of a simple sensor and a plug-and-measure adapter is

treated as an entity when described in SensorML. The SensorML description is initially

transferred to the adapter and deployed together with the sensor.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 224 of 233

Figure 10-38: Smart Sensor Adapter

10.12.4 Sensor Access through Service Interfaces

The SensorSA recommends to expose a new sensor through sensor planning (SPS), sensor

observation (SOS) and sensor alert service (SAS) interfaces as defined in the OGC Sensor Web

Enablement (see section 8.2). Every measurement starts by submitting a task via the SPS

interface. In order to be able to task a measurement the sensor must be registered with an SPS

instance. This means on one hand that the sensor must be assigned a unique ID within the scope

of the station. On the other hand two documents have to be provided and mapped to the sensor

ID: the sensor tasking description (an XML document returned upon invocation of SPS

DescribeTasking operation describing the parameters needed to task a specific sensor) and a

SensorML description of the sensor. Further, if the station exposes observation data through an

SOS interface the sensor description shall be also registered with the SOS instance.

10.12.5 Publish plug-and-measure related information

The information about the new sensor can also be propagated to other systems, for

example to a catalogue service. There are two main ways to accomplish this depending on the

interaction model that is being applied (see section 6.3). The first solution, applying the

request/reply interaction model, is to have the catalogue initiate harvesting of station capabilities

and discovery of new sensors. The second solution, applying an event-based interaction model,

is to arrange for the catalogue to subscribe to notifications from the station when new sensors are

registered. In more detail, this can be accomplished by implementing the SAS interface on the

station and offering notifications about events concerning new sensors, having the catalogue

acting as an SAS client and subscribing to these notifications. Depending on the implementation,

the notification might contain a new sensor description or just information that a sensor has been

added to the station. Depending of the notification‟s content, the catalogue might start a

harvesting process on the station or just propagate the new sensor information provided in the

notification.

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 225 of 233

11. References

The following references are used as background documents. They are categorised as normative

references (i.e. ISO Standards or respective drafts) or other technical or scientific documents and

books.

11.1. Normative references

ISO/IEC 7498-4:1989 Information processing systems -- Open Systems

Interconnection -- Basic Reference Model -- Part 4:

Management framework

ISO/IEC 10746-1:1998 Information technology - Open Distributed Processing –

Reference model

ISO/IEC 10746-2:1996 Information technology - Open Distributed Processing –

Foundations

ISO/IEC 18023:2006 Information technology -- SEDRIS

ISO 19101:2004 Geographic information -- Reference model

ISO/TS 19103:2005 Geographic information -- Conceptual schema language

ISO 19107:2004 Geographic information -- Spatial schema

ISO 19108:2004 Geographic information -- Temporal schema

ISO 19109:2005 Geographic information -- Rules for application schema

ISO 19111:2003 Geographic information -- Spatial referencing by

coordinates

ISO 19112:2003 Geographic information -- Spatial referencing by

geographic identifiers

ISO 19115:2004 Geographic Information -- Metadata

ISO 19119:2005 Geographic Information -- Services

ISO 19123:2005 Geographic Information -- Schema for coverage geometry

and functions

ISO 19136: 2007 Geographic Information -- Geography Markup Language

(GML)

ISO/IEC 27002:2005 Information technology -- Security techniques -- Code of

practice for information security management

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 226 of 233

11.2. Documents and Books

Allen, E., Edwards, G. and Bédard, Y. , 1995

Spatial Information Theory. A Theoretical Basis for GIS",

Springer Berlin / Heidelberg: Lecture Notes in Computer

Science, pp. 397-412, 1995.

Botts M., Percivall, G., Reed, C., Davidson, J., 2006

OGC White Paper: OGC® Sensor Web Enablement: Overview

And High Level Architecture. Version 2.0. OGC 06-050r2.

2006-07-19

Botts, M., 2005 Sensor Model Language Version 1.0.0. OGC Document 07-

000, http://portal.opengeospatial.org/files/?artifact_id=21273,

2007

CAFÉ, 2008 CAFE, Clean Air for Europe,

http://ec.europa.eu/environment/air/index_en.htm, http://eur-

lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:152:

0001:0044:EN:PDF, 2008.

Chandy, M., Schulte, R., 2007

'What is Event Driven Architecture (EDA) and Why Does it

Matter?', Technical report, California Institute of Technology

and Gartner Inc.

Cox, S., 2007 (Ed.) Observation & Measurements - Part 1: Observation Schema.

OGC Document 07-022r1, approved as OpenGIS

specification, http://portal.opengeospatial.org/files/

artifact_id=22466&version=2 , December 2007

Dictionary, 2004 Dictionary of the English Language, Fourth Edition. Houghton

Mifflin Company, 2004. 05 Feb. 2007 at Dictionary.com

Drecki, I, 2002 Visualisation of uncertainty in geographical data. In: Spatial

data quality. London: Taylor & Francis. pp. 140-159.

ESA SSE, 2007 Service Support Environment - Architecture, Model and

Standards. White Paper of the European Space Agency,

December 2004, http://earth.esa.int/rtd/Documents/

SSE_Whitepaper_2.pdf

Everding and Echterhoff (Eds.), 2009

Everding, T. and Echterhoff, J. (Eds.). OWS-6 SWE Event

Architecture Engineering Report, Version 1.0.0, OGC

Document No 09-032, 2009.

Fielding, T. R., 2000 Architectural Styles and the Design of Network-based

Software Architectures, Dissertation University of California,

Irvine, 2000. http://www.ics.uci.edu/~fielding/pubs/

dissertation/top.htm

http://portal.opengeospatial.org/files/?artifact_id=21273
http://ec.europa.eu/environment/air/index_en.htm
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:152:0001:0044:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:152:0001:0044:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:152:0001:0044:EN:PDF
http://portal.opengeospatial.org/files/%0bartifact_id=22466&version=1
http://portal.opengeospatial.org/files/%0bartifact_id=22466&version=1
http://earth.esa.int/rtd/Documents/%0bSSE_Whitepaper_2.pdf
http://earth.esa.int/rtd/Documents/%0bSSE_Whitepaper_2.pdf
http://earth.esa.int/rtd/Documents/%0bSSE_Whitepaper_2.pdf
http://www.ics.uci.edu/~fielding/pubs/%0bdissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/%0bdissertation/top.htm

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 227 of 233

GEOSS 1000R, 2005 GEOSS 10-Year Implementation Plan, Reference Document,

GEO 1000R / ESA SP-1284, February 2005, Editor: Bruce

Battrick, http://www.earthobservations.org/documents/10-

Year%20Plan%20Reference%20Document.pdf

GEOSS 100S, 2007 The First 100 Steps to GEOSS, 30 November 2007, Editor:

GEO Secretariat,http://www.earthobservations.org/documents/

the_first_100_steps_to_geoss.pdf

GEOSS CAIR, 2007 GEOSS Core Architecture Implementation Report, GEO

Architecture and Data Committee, 6 November 2007, Editors:

George Percivall & Ingo Simonis,

http://portal.opengeospatial.org/files/?artifact_id=24315

GEOSS AIP CFP, 2008 Architecture Implementation Pilot (AIP), Phase 2: IOC

Augmentation - Call for Participation (CFP), GEO Task Team

AR-07-02, 26 June 2008,

http://www.earthobservations.org/documents/aip/20080626_ge

o_aip2_call_for_participation.pdf

GMES FR, 2004 Global Monitoring for Environment and Security (GMES):

Final Report for the GMES Initial Period (2001-2003)

http://www.gmes.info/action_plan/index.html

GMES, 2005 GMES reflection paper on Data Integration and Information

Management Capacity, DG-INFSO, Draft 6, July 2005

Hadley, M. J., 2006 Web Application Description Language (WADL), Sun

Microsystems, https://wadl.dev.java.net/wadl20061109.pdf,

November 2006

Hengl, T. 2003 Visualisation of uncertainty using the HIS colour model:

Computations with colours. In: Proceedings of the 7th

International Conference on GeoComputation, Southampton,

United Kingdom.

Hilbring and Schleidt, 2009

 Hilbring, D. and Schleidt, K. Automatic creation of INSPIRE

related metadata from Sensor Web Enablement Services.

AGILE 2009 Pre-Conference Workshop “Challenges in

Geospatial Data Harmonization”, http://www.esdi-

humboldt.eu/events/agile2009.html#papers, 2009.

ISO GUM 1993 BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML. Guide to the

Expression of Uncertainty in Measurement. International

Organisation for Standardization, Geneva, Switzerland. ISBN

92-67-10188-9, First Edition 1993.

JOW, 2007 Joint Operability Workshop Report “Towards a single

information space for Environment in Europe”, Frascati, 3

April 2007

Kanneganti R. and Chodavarapu P., 2008

SOA Security, Manning Publications Co., 2008.

http://www.earthobservations.org/documents/10-Year%20Plan%20Reference%20Document.pdf
http://www.earthobservations.org/documents/10-Year%20Plan%20Reference%20Document.pdf
http://www.earthobservations.org/documents/%0bthe_first_100_steps_to_geoss.pdf
http://www.earthobservations.org/documents/%0bthe_first_100_steps_to_geoss.pdf
http://portal.opengeospatial.org/files/?artifact_id=24315
http://www.gmes.info/action_plan/index.html
https://wadl.dev.java.net/wadl20061109.pdf
http://www.esdi-humboldt.eu/events/agile2009.html#papers
http://www.esdi-humboldt.eu/events/agile2009.html#papers

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 228 of 233

Langran, G., 1992 Time in Geographic Information Systems, Taylor & Francis

Ltd., London.

Luckham and Schulte (Eds.), 2008

Luckham, D., Schulte, R. (Eds.). Event Processing Glossary -

Version 1.1. Event Processing Technical Society,

http://www.epts.com/component/option,com_docman/task,doc

_download/gid,66/Itemid,84/ . July 2008. Downloaded on July

5, 2009.

MacEachren, A., 1992 Visualizing uncertain information. In: Cartographic

Perspective, Number 13, Fall, pp. 10-19, 1992

Muehl, G., Fiege, L., Pietzuch, P.R., 2006

Distributed Event-Based Systems. Springer Verlag, Berlin.

ISBN-10: 3540326510. Juli 2006.

Naveen, S., Wagner, D., 2004

Security Considerations for IEEE 802.15.4 Networks,

University of California, Berkeley.http://www.cs.berkeley.edu/

~nks/papers/15.4-wise04.pdf

OASIS 2003 Assertions and Protocol for the OASIS Security Assertion

Markup Language (SAML) V1.1, http://www.oasis-

open.org/committees/download.php/3406/oasis-sstc-saml-core-

1.1.pdf, 2003

OASIS 2004 XACML Profile for Role Based Access Control (RBAC),

Committee Draft 01, 13 February 2004, http://docs.oasis-

open.org/xacml/cd-xacml-rbac-profile-01.pdf, 2004

OASIS 2005 eXtensible Access Control Markup Language (XACML)

Version 2.0, OASIS Standard, http://docs.oasis-open.org

/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf, 2005-

02-01

OASIS 2006 Web Services Security: SOAP Message Security 1.1 (WS-

Security 2004), OASIS Standard Specification,

http://www.oasis-open.org/committees/download.php/16790/

wss-v1.1-spec-os-SOAPMessageSecurity.pdf, 2006

OASIS 2006b Security Assertion Markup Language (SAML) V2.0 Technical

Overview Working Draft, http://www.oasis-

open.org/committees/download.php/20645/sstc-saml-tech-

overview-2%200-draft-10.pdf 10, 9 October 2006,

OGC 03-040 Open Geospatial Consortium Doc. No. 03-040. OGC

Reference Model, V0.1.2 , http://portal.OpenGIS.org/

files/?artifact_id=3836, 2003-03-04

OGC 06-023r1 Open Geospatial Consortium Doc. No. 06-023r1. Definition

identifier URNs in OGC namespace. OGC™ Best Practices

Paper, Version 1.0.0, Editor: Arliss Whiteside, 2006-08-08

http://www.epts.com/component/option,com_docman/task,doc_download/gid,66/Itemid,84/
http://www.epts.com/component/option,com_docman/task,doc_download/gid,66/Itemid,84/
http://www.cs.berkeley.edu/%0b~nks/papers/15.4-wise04.pdf
http://www.cs.berkeley.edu/%0b~nks/papers/15.4-wise04.pdf
http://www.oasis-open.org/committees/download.php/3406/oasis-sstc-saml-core-1.1.pdf
http://www.oasis-open.org/committees/download.php/3406/oasis-sstc-saml-core-1.1.pdf
http://www.oasis-open.org/committees/download.php/3406/oasis-sstc-saml-core-1.1.pdf
http://docs.oasis-open.org/xacml/cd-xacml-rbac-profile-01.pdf
http://docs.oasis-open.org/xacml/cd-xacml-rbac-profile-01.pdf
http://www.oasis-open.org/committees/download.php/16790/%0bwss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/%0bwss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://portal.opengis.org/files/?artifact_id=3836
http://portal.opengis.org/files/?artifact_id=3836

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 229 of 233

OGC 06-004r4 Vowles, G. (Ed.). Open Geospatial Consortium Abstract

Specification 06-004r4: The OpenGIS® Abstract Specification

Topic 18: Geospatial Digital Rights Management Reference

Model (GeoDRM RM). Version: 1.0.0. 2006-12-29

OGC 06-103r3 Open Geospatial Consortium Inc.(OGC 06-103r3): OpenGIS®

Implementation Specification for Geographic information –

Simple feature access – Part 1: Common architecture, Version:

1.2.0, Date: 2006-10-05,

http://portal.opengeospatial.org/files/?artifact_id=18241

OGC 07-026r2 Open Geospatial Consortium Inc. (OGC 07-026r2): Geospatial

eXtensible Access Control Markup Language (GeoXACML),

Version 1.0, Date: 2008-02-20,

http://portal.opengeospatial.org/files/?artifact_id=25218

OGC 07-098r1 Open Geospatial Consortium Inc. (OGC 07-098r1): Geospatial

eXtensible Access Control Markup Language (GeoXACML) –

Extension A – GML2 Encoding, Version 1.0, Date: 2007-11-

16, http://portal.opengeospatial.org/files/?artifact_id=25219

OGC 07-099r1 Open Geospatial Consortium Inc. (OGC 07-099r1): Geospatial

eXtensible Access Control Markup Language (GeoXACML) –

Extension B – GML3 Encoding, Version 1.0, Date: 2007-11-

16, http://portal.opengeospatial.org/files/?artifact_id=252120

OGC 08-009r1 Open Geospatial Consortium Inc. (OGC 08-009r1): OWS 5

SOAP/WSDL Common Engineering Report, Version 0.1.0,

Date: 2008-01-16,

http://portal.opengeospatial.org/files/?artifact_id=26521

OMG, 2008 Alert Management Service, Revised Submission. Answering

OMG RFP c4i/04-11-13. OMG document c4i/2008-02-01

ORCH-AbstrServ, 2007 WP3.4 OA Service Abstract Specifications. Deliverables

D3.4.x Integrated Project 511678 ORCHESTRA. Editor:

Environmental Informatics Group (EIG). http://www.eu-

orchestra.org/publications.shtml#OAspecs, October 2007

ORCH-ImplServ, 2007 WP3.6 OA Service Implementation Specifications.

Deliverables D3.6.x. Integrated Project 511678 ORCHESTRA.

Editor: Environmental Informatics Group (EIG).

http://www.eu-orchestra.org/publications.shtml#OAspecs,

October 2007

Ricker, S., Havens, J., 2005

Sensor Fusion. Theory and Application. Technical Report.

Unpublished Material.

Richardson, L., Ruby, S., 2007

RESTful Web Services. O‟Reilly Media, Inc.. ISBN-10: 0-

596-52926-0. 2007

http://portal.opengeospatial.org/files/?artifact_id=17802&version=2
http://portal.opengeospatial.org/files/?artifact_id=17802&version=2
http://portal.opengeospatial.org/files/?artifact_id=17802&version=2
http://portal.opengeospatial.org/files/?artifact_id=18241
http://portal.opengeospatial.org/files/?artifact_id=25218
http://portal.opengeospatial.org/files/?artifact_id=25219
http://portal.opengeospatial.org/files/?artifact_id=252120
http://www.eu-orchestra.org/publications.shtml#OAspecs
http://www.eu-orchestra.org/publications.shtml#OAspecs
http://www.eu-orchestra.org/publications.shtml#OAspecs

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 230 of 233

RM-OA, 2007 Usländer, T. (Ed.) Reference Model for the ORCHESTRA

Architecture Version 2 (Rev. 2.1). OGC Best Practices

Document 07-097. http://portal.opengeospatial.org/files/

?artifact_id=23286, October 2007

Schimak and Watson (eds.), 2008

Schimak, G. and Watson, K. (eds.). SANY Technical

Requirements. SANY deliverable D1.3.1.1, http://sany-ip.eu,

2008.

Simonis, I., 2007 (Ed.) OGC® Sensor Alert Service Implementation Specification

V0.9, OGC Engineering Specification (status: pending) 06-

028r5, http://portal.opengeospatial.org/files/?artifact_id=24780

&version=1, October 2007

Simonis, I., 2008 (Ed.) Sensor Web Enablement Architecture, OGC Engineering

report 06-021r2, http://portal.opengeospatial.org/files/

?artifact_id=27775&version=1, 2008.

SOA-RA, 2008 OASIS Reference Architecture for Service Oriented

Architecture Version 1.0 Public Review Draft 1, 23 April

2008 http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-pr-

01.pdf

SOA-RM, 2006 OASIS Reference Model for Service Oriented Architecture

1.0. Committee Specification 1, 2 August 2006.

http://www.oasis-open.org/committees/download.php/

19679/soa-rm-cs.pdf

Taylor, B.N. and Kuyatt, C.E., 1994

 NIST Technical Note 1297, 1994 Edition, Guidelines for

Evaluating and Expressing the Uncertainty of NIST

Measurement Results. Physics Laboratory of the National

Institute of Standards and Technology (U.S.),

http://physics.nist.gov/cuu/Uncertainty/bibliography.html

UKAS, 2007 M3003, The Expression of Uncertainty and Confidence in

Measurement, Edition 2, http://www.ukas.com/Library/

downloads/publications/M3003.pdf

Usländer, T., 2008 Integration of Resource-Oriented Architecture Concepts into

the OGC Reference Model, OGC Document 07-156r1

Wan, E. and Van Der Merwe, R. 2001

 Chapter 7: The unscented Kalman filter, in Kalman Filtering

and Neural Networks, pp. 221-280, Wiley.

Watson, K., Kunz, S., 2007 (Eds.)

SANY Project Deliverable D2.2.2 Sensor Scenarios and

Requirements Version 1.2, October 2007

WfXML-R, 2008 A RESTful Protocol for Run-Time Integration of Process

Engines, Draft 0.4, http://wfxml.googlegroups.com/

web/WfXML-R-0.4.pdf, 24 January 2008,

http://sany-ip.eu/
http://portal.opengeospatial.org/files/?artifact_id=24780%0b&version=1
http://portal.opengeospatial.org/files/?artifact_id=24780%0b&version=1
http://portal.opengeospatial.org/files/%0b?artifact_id=27775&version=1
http://portal.opengeospatial.org/files/%0b?artifact_id=27775&version=1
http://www.oasis-open.org/committees/download.php/%0b19679/soa-rm-cs.pdf
http://www.oasis-open.org/committees/download.php/%0b19679/soa-rm-cs.pdf
http://www.ukas.com/Library/%20downloads/publications/M3003.pdf
http://www.ukas.com/Library/%20downloads/publications/M3003.pdf
http://wfxml.googlegroups.com/%0bweb/WfXML-R-0.4.pdf
http://wfxml.googlegroups.com/%0bweb/WfXML-R-0.4.pdf

 SANY D2.3.4 Specification of the Sensor Service Architecture V3 (Doc.V3.1)

Copyright © 2007-2009 SANY Consortium Page 231 of 233

Williams, M., Cornford, D., Bastin, L., Pebesma, E., 2007

 Uncertainty Markup Language (UncertML) Discussion Paper:

Overview and High Level Architecture, Version 1.0.0, 18-08-

2008, European FP6 project INTAMAP,

http://www.intamap.org/pub/UncertML.pdf

Wilson, T., 2006 OWS-4 CSW ebRIM Modelling Guidelines IPR. Annex A:

OWS-4 Sensor Web Enablement Catalogue Resource Profile.

OGC Discussion Paper 06-155, 2007-03-12

W3C, 2001 Web Services Description Language (WSDL) 1.1, W3C Note

15, http://www.w3.org/TR/wsdl, March 2001

W3C, 2004 Web Services Architecture. W3C Working Group Note 11

February 2004. http://www.w3.org/TR/ws-arch/

W3C, 2007 Web Services Description Language (WSDL) 2.0, W3C Note

15, http://www.w3.org/TR/wsdl20/, June 2007

http://www.intamap.org/pub/UncertML.pdf
http://www.w3.org/TR/ws-arch/

	Open Geospatial Consortium Inc.
	Specification of the Sensor Service Architecture (SensorSA)
	Copyright notice
	Warning
	Copyright © 2009, SANY Consortium
	Preamble to the "Specification of the Sensor Service Architecture (SensorSA)"
	Executive Summary
	Introduction
	Purpose of this document
	Intended Audience
	Abbreviations and acronyms
	Glossary
	General Remark
	Terms and Definitions

	Architectural Framework
	Enterprise Viewpoint
	Architectural Requirements
	Rigorous Definition and Use of Concepts and Standards
	Loosely Coupled Components
	Technology Independence
	Evolutionary Development - Design for Change
	Component Architecture Independence
	Generic Infrastructure

	Relationship to the ORCHESTRA Architecture
	Requirements of GMES
	Requirements of GEOSS
	Requirements of Sensor Networks
	User Requirements
	Overview
	Sensor Network
	Data and Information
	Data Quality
	Security
	Processing and Fusion
	Events, Alerts and Alarms
	Decision Support
	User Management

	Sensor Model
	Overview
	Technology Viewpoint of a Sensor
	Simple Form of a Sensor
	Complex form of a Sensor
	Sensor System

	Enterprise Viewpoint of a Sensor
	Engineering Viewpoint of a Sensor
	Service Viewpoint of a Sensor
	Information Viewpoint of a Sensor

	Major Concepts of the Sensor Service Architecture
	Overview
	Functional Domains
	Models of Interaction
	Overview
	Request/Reply Interaction Model
	Event-based Interaction Model

	Event-based Architectural Style
	Event Definition
	Event Model
	Overview
	Event Properties
	Event Lifetime
	Event Verbosity Levels
	Form of Events
	Roles in Event Relationships

	Event-Driven Processing System
	Overview
	Event Processing Role Model
	Event Role Interfaces

	Exemplary Event Types

	Resources and their Identification
	Resources
	URN Namespace for SANY Resources
	Naming principles

	Management
	Overview
	Management Architecture
	Resource Discovery
	Introduction
	Resource and Catalogue Types

	Sensor Planning
	Introduction
	Sensor Planning Information
	Service Planning Functions

	Meta-information Approach
	Introduction
	Data and Service Integration
	Interpretation
	Discovery
	Monitoring
	Authentication and Authorisation
	Quality control and management
	The measurement process
	Uncertainty
	Quality assurance

	Security
	Introduction
	Access Control
	Access Control Tasks
	Profile Management
	Identity Management
	Authentication
	Authorisation
	Policy Enforcement
	Policy Management

	Access Control Service Architecture

	Conceptual Building blocks for “Plug-and-Measure”

	Information Viewpoint
	Overview
	Information Model for Observations & Measurements (O&M)
	Information Model of the Sensor Observation Service
	Access Control Information Model
	Model for Subject Related Information
	Profiles and Identities
	Groups
	Roles
	Policies
	Assertion and Policy Encoding
	SAML (Security Assertion Markup Language)
	XACML (eXtensible Access Control Markup Language)
	XACML Basic Concepts
	GeoXACML: The geospatial extension of XACML

	Event Information Model
	Resource Model
	Introduction
	ROA Concepts
	Resource
	Resource representation
	Resource name
	Resource link
	Uniform Interface
	Resource Method

	Relationship between Resources, Services and Features

	Meta-information Schema for Discovery
	Overview
	Generic Meta-information Sections
	Meta-information Sections Related to Observation Discovery

	Service Viewpoint
	Overview
	Services of the OGC Sensor Web Enablement
	Overview
	Sensor Observation Service
	Sensor Planning Service
	Sensor Alert Service
	Web Notification Service

	Access Control Services
	Overview
	Profile Management Service
	Identity Management and Authentication Service
	Policy Management and Authorisation Service
	Policy Enforcement Service

	Services of the Mediation, Processing and Application Domain
	Catalogue Service
	Processing Service
	Map and Diagram Service

	Event Based Interaction Services
	Interfaces of WS-Base Notification Specification
	Interfaces of WS-Brokered Notification Specification

	Technology Viewpoint
	Properties of a Service Platform
	The SensorSA Service Platform
	Specification of the SensorSA W3C Web Services Platform
	Specification of the SensorSA OGC Web Services Platform
	Specification of the SensorSA RESTful Web Services Platform

	Specification of Further Platform Properties
	Selection of User Management, Authentication and Authorisation Mechanisms
	Agreement on Data Formats and Application Schemas

	Engineering Viewpoint
	Overview
	Resource Discovery Policy
	Introduction
	Query Models
	Typical resource discovery policies
	Discovery of Observations
	Discovery of Procedures

	Harvesting of SOS Capabilities
	Event-based Harvesting
	SOS Resource Model

	Policies for Sensor and Service Monitoring
	Policies for Sensor Planning
	Policies for Access Control
	Patterns for Non Intrusive Access Control
	“Non intrusive” at service level
	“Non Intrusive” at message level

	Patterns for Access Control in Service Chains
	Delegate (Anonymous) Service Chain
	Identifiable Service Chain
	Applicability for Ad Hoc Service chains
	Conclusion

	Patterns for Access Control in a Multi-Protocol Environment
	Usage of SAML
	Usage of XACML
	Example SOS Policy
	Example SOS Authorisation Request
	Evaluation

	Processing of Quality Information
	Attachment of quality information
	Multi-level measurement chains
	Visualisation of Uncertainty Information
	Unit conversion

	Handling of large data sets
	Accessing large data blocks
	Accessing small pieces of a large data set

	Cascading Sensor Observation Services
	Data flow optimization
	Providing alternative views to data
	Data (pre-)processing
	Multi-level sensor data storage
	Caching of data
	Event-based interaction in cascaded scenarios

	Processing and Fusion Support
	Processing Chains
	Introduction
	Processing Chain Service
	Advanced Topics for Processing Chains
	Continuous Feeding
	Event-Triggered Processing
	Discovery

	Uncertainty Handling in Processing Chains
	Combining Earth Observation and In-situ data
	Introduction
	Approach

	Integration of Mobile Sensors
	Event Handling
	Definition and Subscription of Events
	Generation and Dispatching of Alerts

	Plug-and-measure Support
	Sensor Plug In
	Sensor recognition and connection establishment
	Sensor Adapters
	Sensor Access through Service Interfaces
	Publish plug-and-measure related information

	References
	Normative references
	Documents and Books

