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Preface 

This Engineering Report (ER) is a deliverable for the Open Geospatial Consortium 
(OGC) Interoperability Program Open Web Service (OWS) Testbed phase 6 (OWS-6). 

This work was supported by the European Commission through the OSIRIS project, an 
Integrated Project, contract number 033475, Information Society and Media DG of the 
European Commission within the RTD activities of the Thematic Priority Information 
Society Technologies. 

This work was supported by the European Commission through the GENESIS project, an 
Integrated Project, contract number 223996. 

Suggested additions, changes, and comments on this draft report are welcome and 
encouraged. Such suggestions may be submitted by email message or by making 
suggested changes in an edited copy of this document. 

The changes made in this document version, relative to the previous version, are tracked 
by Microsoft Word, and can be viewed if desired. If you choose to submit suggested 
changes by editing this document, please first accept all the current changes, and then 
make your suggested changes with change tracking on. 

Forward 

Attention is drawn to the possibility that some of the elements of this document may be 
the subject of patent rights. The Open Geospatial Consortium Inc. shall not be held 
responsible for identifying any or all such patent rights. 

Recipients of this document are requested to submit, with their comments, notification of 
any relevant patent claims or other intellectual property rights of which they may be 
aware that might be infringed by any implementation of the standard set forth in this 
document, and to provide supporting documentation. 
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OWS-6 Testbed 

OWS testbeds are part of OGC's Interoperability Program, a global, hands-on and 
collaborative prototyping program designed to rapidly develop, test and deliver 
Engineering Reports and Chnage Requests into the OGC Specification Program, where 
they are formalized for public release. In OGC's Interoperability Initiatives, international 
teams of technology providers work together to solve specific geoprocessing 
interoperability problems posed by the Initiative's sponsoring organizations. OGC 
Interoperability Initiatives include test beds, pilot projects, interoperability experiments 
and interoperability support services - all designed to encourage rapid development, 
testing, validation and adoption of OGC standards. 

In April 2008, the OGC issued a call for sponsors for an OGC Web Services, Phase 6 
(OWS-6) Testbed activity. The activity completed in June 2009. There is a series of on-
line demonstrations available here: 
http://www.opengeospatial.org/pub/www/ows6/index.html 

The OWS-6 sponsors are organizations seeking open standards for their interoperability 
requirements. After analyzing their requirements, the OGC Interoperability Team 
recommended to the sponsors that the content of the OWS-6 initiative be organized 
around the following threads: 

1. Sensor Web Enablement (SWE) 

2. Geo Processing Workflow (GPW) 

3. Aeronautical Information Management (AIM) 

4. Decision Support Services (DSS) 

5. Compliance Testing (CITE) 

The OWS-6 sponsoring organizations were: 

• U.S. National Geospatial-Intelligence Agency (NGA) 

• Joint Program Executive Office for Chemical and Biological Defense (JPEO-
CBD) 

• GeoConnections - Natural Resources Canada 

• U.S. Federal Aviation Agency (FAA) 

• EUROCONTROL 

• EADS Defence and Communications Systems 

• US Geological Survey  

• Lockheed Martin 
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• BAE Systems 

• ERDAS, Inc. 
 

The OWS-6 participating organizations were: 

52North, AM Consult, Carbon Project, Charles Roswell, Compusult, con terra, 
CubeWerx, ESRI, FedEx, Galdos, Geomatys, GIS.FCU, Taiwan, GMU CSISS, Hitachi 
Ltd., Hitachi Advanced Systems Corp, Hitachi Software Engineering Co., Ltd., iGSI, 
GmbH, interactive instruments, lat/lon, GmbH, LISAsoft, Luciad, Lufthansa, NOAA 
MDL, Northrop Grumman TASC, OSS Nokalva, PCAvionics, Snowflake, Spot 
Image/ESA/Spacebel, STFC, UK, UAB CREAF, Univ Bonn Karto, Univ Bonn IGG, 
Univ Bunderswehr, Univ Muenster IfGI, Vightel, Yumetech. 
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OGC® OWS-6 SWE Information Model Engineering Report 

1 Introduction 

1.1 Scope 

This OGC® document is an OGC Engineering Report for the “Harmonization of SWE 
Information Models” activity within the OWS-6 SWE thread. 

The document discusses relations between OGC standards SensorML, SWE Common 
and GML and investigates solutions for increased synergy between these standards. This 
activity also created UML models of the data types used in SWE and GML. 

This report shows how UncertML can be integrated into different SWE encodings, 
namely SWE Common and Observations and Measurements. 

This report further discusses the integration of MathML and EML into the SWE 
environment with an emphasis on SensorML processes and processing. 

This document does not discuss the SWE information model related aspects of catalog 
entries for sensor services and discovery. This topic is covered in a separate Engineering 
Report. 

1.2 Document contributor contact points 

All questions regarding this document should be directed to the editor or the contributors: 

Name Organization 
Thomas Everding Institute for Geoinformatics, University of Muenster 
Charles Rosswell Individual 
Matthew Williams Aston University, Birmingham 
Edzer Pebesma Institute for Geoinformatics, University of Muenster 
Jan Dürrfeld Institute for Geoinformatics, University of Muenster 
Dan Cornford Aston University, Birmingham 
Lucy Bastin Aston University, Birmingham 
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1.3 Revision history 

Date Release Editor Primary clauses 
modified 

Description 

23.10.2008 0.0.0 TE all Initial draft 
20.03.2009 0.0.2 TE 6 and 7 Second draft 
17.04.2009 1.0.0 TE all release version 
10.07.2009 0.3.0 Carl Reed Various Prepare for public release 
 

1.4 Future work 

Try to realize the recommendations as described in chapter 6 for the harmonization of 
SWE Common and GML in future versions of these standards. 

The work regarding the integration of UncertML into SWE should be extended towards 
the integration into the whole OGC standards suite. As the next step it is recommended to 
investigate the integration of UncertML in coverages and the Web Coverage Service. 

2 References 

The following documents are referenced in this document. For dated references, 
subsequent amendments to, or revisions of, any of these publications do not apply. For 
undated references, the latest edition of the normative document referred to applies. 

ISO 19103:2005, Conceptual Schema Language. 

ISO 19107:2003, Spatial Schema 

ISO 19108:2002, Temporal Schema 

ISO 19109:2005, Rules for Application Schema 

ISO 19111:2007, Spatial Referencing by Coordinates 

ISO 19115:203, Metadata 

ISO 19118:2005, Encoding 

ISO 19123:2005, Coverage Geometry and Functions 

ISO 19136:2007, Geography Markup Language (GML) 

ISO 19139:2007, Metadata – XML Schema Implementation 

OGC 04-095, OpenGIS® Filter Encoding Implementation Specification 

OGC 06-121r3, OpenGIS® Web Services Common Specification 
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OGC 07-000, OpenGIS® Sensor Model Language (SensorML) Implementation 
Specification   

OGC 07-036, OpenGIS® Geography Markup Language (GML) Encoding Standard 

OGC 08-132, Event Pattern Markup Language (EML) 

W3C Recommendation 21 October 2003, Mathematical Markup Language (MathML) 
Version 2.0 (Second Edition) 

W3C Working Draft 17 November 2008, Mathematical Markup Language (MathML) 
Version 3.0 

3 Terms and definitions 

For the purposes of this report, the definitions specified in Clause 4 of the OWS Common 
Implementation Specification [OGC 06-121r3] shall apply. In addition, the following 
terms and definitions apply. 

3.1  
event 
Anything that happens or is contemplated as happening at an instant or over an interval of 
time. 

NOTE: The term event may also be used for event objects. The current meaning depends on the 
context. 

3.2  
event object 
An object that represents, encodes, or records an event, generally for the purpose of 
computer processing. 

3.3  
event pattern language 
event processing language 
A high level computer language for defining the behavior of event processing agents. 

3.4  
event processing 
Computing that performs operations on events, including reading, creating, transforming 
and deleting events. 

3.5  
feature 
An abstraction of real world phenomena. 
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3.6  
observation 
An act of observing a property or phenomenon, with the goal of producing an estimate of 
the value of the property. 

3.7  
phenomenon 
A physical property that can be observed and measured, such as temperature, gravity, 
chemical concentration, orientation, number-of-individuals. 

A characteristic of one or more feature types, the value for which must be estimated by 
application of some procedure in an observation. 

3.8  
process 
A process that takes one or more inputs, and based on parameters and methodologies, 
generates one or more outputs. 

3.9  
sensor 
An entity capable of observing a phenomenon and returning an observed value.  

4 Conventions 

4.1 Abbreviated terms 

CEP   Complex Event Processing 

EML   Event Pattern Markup Language 

ER    OGC Interoperability Program Engineering Report 

ESP   Event Stream Processing 

GML   Geography Markup Language 

GPS   Global Positioning System 

GUM   Guide to the Expression of Uncertainty in Measurement 

IEC    International Electrotechnical Commission 

ISO    International Organization for Standardization 

ISO/TC211  ISO Technical Committee 211 

ISO/TS   ISO Technical Specification 

MathML  Mathematical Markup Language 
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MC    Monte Carlo 

NO2   Nitrogen Dioxide 

O&M   Observations and Measurements 

OGC   Open Geospatial Consortium 

OWS-6   OGC Web Services, Phase 6 

PM10   Particulate Matter 10 

RELAX NG Regular Language Description for XML New Generation 

SAS   Sensor Alert Service 

SensorML  Sensor Model Language 

SOS   Sensor Observation Service 

SPS   Sensor Planning Service 

SWE   Sensor Web Enablement 

TML   Transducer Markup Language 

UML   Unified Modeling Language 

UncertML  Uncertainty Markup Language 

URL   Uniform Resource Locator 

UTC   Coordinated Universal Time 

W3C   World Wide Web Consortium 

WNS   Web Notifications Service 

XML   Extensible Markup Language 

 

4.2 UML notation 

Some diagrams that appear in this document are presented using the Unified Modeling 
Language (UML) static structure diagram, as described in subclause 5.2 of [OGC 06-
121r3]. 
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5 SWE Information Model Harmonization overview 

In chapter 6 of this Engineering Report (ER), solutions for synergy between SensorML 
and GML are investigated. The goal is to gain a better understanding of interoperability 
issues between SWE and GML. Therefore UML models were used or developed.  

In the following chapter it is described how UncertML can be used in SWE and how it 
can be integrated into the SWE encodings. 

Chapter 8 discusses different additional markup languages and their usage in SWE. These 
languages are mainly MathML for the representation of mathematical terms and EML for 
the description of complex event processing. 

6 Harmonization of SWE information models  

6.1 Introduction 

6.1.1 Goal 

The goal of this task is to develop or make use of existing UML models and application 
schemas to gain a better understanding of interoperability issues between SWE and 
GML. The Statement of Work identifies SensorML, GML, UncertML, and MathML as 
standards of interest in this context. 

6.1.2 Sensor Model Language 

Sensor Model Language (SensorML) provides general models and XML encodings for 
describing sensors and observation processing. It has evolved in OGC as a member of the 
SWE family of standards (Table 1). 

Table 1 - Sensor Web Enablement (SWE) Standards 

Sensor Model Language (SensorML) 

Observations and Measurements (O&M) 

Transducer Markup Language (TML) 

Sensor Observation Service (SOS) 

Sensor Planning Service (SPS) 

Sensor Alert Service (SAS) 

Web Notification Service(WNS) 
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Although SensorML serves as a component of the SWE framework, it does not depend 
upon other SWE components and may be used independently of those components. The 
current Version 1.0 of SensorML (Document 07-000) specifies a number of elements 
used by other components of the SWE family, which are therefore grouped under the 
heading of SWE Common. This section of the document is currently being revised and 
spun off as a separate standard (SWE Common 2.0).  

6.1.3 Geography Markup Language 

Geography Markup Language (GML) is an XML grammar written in XML Schema for 
the description of application schemas and the interchange of geographic information. 
GML has been developed by OGC beginning in 1999. It was submitted to ISO/TC211 in 
2001 for revision and publication as an ISO International Standard under the cooperative 
agreement between OGC and ISO/TC211. OGC GML Version 3.2.1 is identical to ISO 
19136:2007. A consequence of the revision done under the auspices of ISO TC211 is that 
GML Version 3.2.1 has been harmonized with and depends upon a number of other 
geographic information standards developed within ISO/TC211 (Table 2), some of which 
have been adopted as OGC Abstract Specification Topics. With the exceptions of ISO 
19118 and ISO 19139, these are abstract standards; i.e., they are platform and processing 
language independent. GML is effectively an XML implementation of the abstract 
concepts specified in these International Standards.   

Table 2 - GML Dependencies on other ISO/TC211 Standards 

Standard Number Title OGC Abstract Specification 
Topic Number 

ISO/TS 19103: 2005 Conceptual Schema Language  

ISO 19107:2003 Spatial schema 1 

ISO 19108:2002 Temporal schema  

ISO 19109:2005 Rules for application schema  

ISO 19111:2007 Spatial referencing by coordinates 2 

ISO 19115:2003 Metadata 11 

ISO 19118:2005 Encoding  

ISO 19123:2005 Coverage geometry and functions 6 

ISO 19139:2007 Metadata – XML schema 
implementation 
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6.1.4 Issues 

6.1.4.1 Target for harmonization 

The domains of SensorML and GML are, in fact, quite different. SensorML is focused on 
the description of sensors and of the processes applied to sensor observations. GML is 
focused on the description of geographic features and their characteristics. The 
intersection between these two domains is to be found not in SensorML per se, but in 
SWE Common.   

Since GML, as noted above, is dependent upon a number of other ISO/TC211 standards, 
harmonization with GML necessarily requires harmonization with the suite of 
ISO/TC211 standards. The analysis described below, therefore, involves a search for 
those concepts that are shared by both SWE Common and the ISO/TC211 standards. 

6.1.4.2 Archictectural differences 

There is a fundamental difference in the structure of GML as compared to SWE 
Common. 

As an implementation of the ISO/TC211 abstract standards, GML follows a database 
organization paradigm that involves a top-down view of the data. A feature description 
includes a list of its attributes; an attribute description includes a characterization of the 
data type of its values; a value is ultimately no more than string or a number. 

SWE Common, on the other hand, follows a value tagging paradigm or bottom-up view 
of the data, whereby a value carries information about its data type as well as information 
about the phenomenon it represents. 

This difference has a major impact on the degree to which harmonization can be 
accomplished. 

6.1.4.3 Platform independent models  

ISO 19119, which has been adopted by OGC as Abstract Specification Topic 12, requires 
each service specification to contain a platform independent UML model of the service, 
in addition to specifications of one or more platform dependent implementations. OGC is 
moving toward a policy of requiring this of all OGC standards. Thus, one of the 
principles applied to this harmonization activity is that the SWE Common specification 
currently in development will contain a platform independent UML model.   

One aspect of platform independence is the use of language independent data types such 
as those specified in ISO/IEC 11404 and represented as UML classes in ISO/TS 19103. 
Given its historic connection to the XML implementation specified in SensorML, the 
current version of SWE Common uses a number of data types specified in the XML 
Schema specification.  
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6.2 Class level mapping between GML and SWE Common 

6.2.1 Introduction 

There are three areas where GML and SWE Common seem to have equivalent classes: 
the classes of the GML valueObjects package are similar to many of the SWE Simple 
Data Types and Aggregate Data Types; the temporal classes from ISO 19108 that are 
implemented in GML resemble temporal classes specified in SWE Common; finally, the 
position classes from ISO 19107 that are implemented in GML are equivalent to parts of 
the position classes specified in SWE Common. Each of these groups is treated in a 
separate subclause below.   

6.2.2 valueObjects and simple data types  

Classes from the valueObjects package of GML seem to match many of the Simple Data 
Types and Generic Data Aggregates of SWE Common (07-000 Figures 8.1 and 8.2). 
These SWE Common data types are reused throughout SWE Common and SensorML. 
Table 3 lists the leaf classes from the GML valueObjects package and the classes in SWE 
Common that seem to be equivalent. 

Table 3 - Leaf Classes from GML valueObjects Package and SWE Common Equivalents 

GML 3.2.1 (ISO 19136) SWE Common 1.0 
BooleanValue Boolean 
Category Category 
Count Count 
Quantity Quantity 
CountExtent CountRange 
QuantityExtent QuantityRange 
CategoryList tokenList 
CountList doubleList 
QuantityList doubleList 
ValueArray DataArray 
Value DataValue 

It should be noted that doubleList and tokenList are not specified as UML classes in 07-
000, although they are used as data types in Figure 8.1; tokenList is specified as a 
simpleType in the basicTypes.xsd schema of Annex B.2.   

Although these classes can be aligned at the class name level, there are a number of 
significant differences in both properties and relationships. Compare Figure 1 to Figure 2 
and Figure 3 to Figure 4. 

The most obvious difference is in attribution. The simple GML value objects (Figure 3) 
have a only a mandatory value attribute, while the SWE Common simple data types 
(Figure 2) have up to eleven attributes (Table 4); all, including value, are optional. The 
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difference seems to reflect a fundamental difference in approach between GML and 
SensorML. GML follows the typical ISO/TC211 pattern in which feature types and their 
properties are described quite specifically. The description of attribute type includes the 
data type of its value, usually a simple value type. The attributes of the SensorML 
AbstractProcess class, on the other hand, are very generic. Each of their values is a 
description of a more specific property possibly including its value. The differences rule 
out any possibility of harmonizing by simple substitution of classes from one standard 
into the other. 

class Package Content

AbstractDataComponent

+ name:  string [0..*]
+ description:  string [0..1]
+ definition:  anyURI [0..1]
+ fixed:  boolean [0..1]

Quantity

+ constraint:  AllowedValues [0..1]
+ quality:  Quality [0..1]
+ uom:  UomIdentifier [0..1]
+ value:  double [0..1]

Count

+ constraint:  AllowedValues [0..1]
+ quality:  Quality [0..1]
+ value:  integer [0..1]

Category

+ constraint:  AllowedValues [0..1]
+ quality:  Quality [0..1]
+ codeSapce:  CodeSpace [0..1]
+ value:  token [0..1]

Boolea n

+ quality:  Quality [0..1]
+ value:  boolean [0..1]

QuantityRange

+ constaint:  AllowedValues [0..1]
+ quality:  Quality [0..1]
+ uom:  UomIdentifier [0..1]
+ value:  doublePair [0..1]

CountRange

+ constraint:  AllowedValues [0..1]
+ quality:  Quality [0..1]
+ value:  integer [0..1]

SimpleComponentAttributeGroup

+ axisID:  ID [0..1]
+ referenceFrame:  anyURI [0..1]

 

Figure 1 - SWE Common Simple Data Types equivalent to GML valueObject classes 

yright © 2009 Open Geospatial Consortium, Inc. 
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class Analogy to SensorML Simple Data Types

AbstractObject

«type»
AbstractValue

«type»
AbstractScalarValue

«type»
BooleanValue

{leaf}

+ value:  booleanOrNilReason

«type»
Category

{leaf}

+ value:  CodeOrNilReason

«type»
Count

{leaf}

+ value:  integerOrNilReason

«type»
CountEx tent

{leaf}

+ value:  integerOrNilReasonList

«type»
Quantity

{leaf}

+ value:  MeasureOrNilReason

«type»
QuantityEx tent

{leaf}

+ value:  MeasureOrNilReasonList

 

Figure 2 - GML valueObjects Equivalent to SWE Common Simple Data Types 

Table 4 - Attributes of SWE Common Simple Data Types 

 B
oolean 

C
ategory 

C
ount 

C
ount 

R
ange 

Q
uantity 

Q
uantity 

R
ange 

Text 

Tim
e 

Tim
e R

ange 

name X X X X X X X X X 
description X X X X X X X X X 
definition X X X X X X X X X 

fixed X X X X X X X X X 
axialID X X X X X X    

referenceFrame X X X X X X    
constraint  X X X X X  X X 

quality X X X X X X  X X 
uom     X X  X X 
value X X X X X X X X X 

codeSpace  X        
localFrame        X X 

referenceFrame        X X 
referenceTime        X X 

Comparison of Figure 3 and Figure 4 reveals the same problem. Although the 
ValueArray and Value classes of GML superficially resemble the DataArray and 
DataValue classes of SWE Common, their attribution is quite different. 

yright © 2009 Open Geospatial Consortium, Inc.  11
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class Data Agregates

AbstractDataArray

+ elementCount:  integer

DataArray

+ elementCount:  AnyData
+ encoding:  BlockEncoding
+ values:  DataValue

DataValue

+ recordCount:  positiveInteger

Simple Data Types::
AbstractDataComponent

+ name:  string [0..*]
+ description:  string [0..1]
+ definition:  anyURI [0..1]
+ fixed:  boolean [0..1]

 

Figure 3 - SWE Common Data Aggregates equivalent to GML valueObjects 

 

class Analogy to SWE Common generic data aggregates

«type»
CompositeValue

AbstractObject

«type»
AbstractValue

«Union»
Value

{root,leaf}

+ abstractValue:  AbstractValue
+ gm_Object:  GM_Object
+ tm_Object:  TM_Object

«type»
ValueArray

{leaf}

+ uom [0..1]:  UnitOfMeasure
+ codeSpace [0..1]:  NameSpace

0..*

+valueComponent 0..*

 

Figure 4 - GML valueObjects Classes Equivalent to SWE Common Generic Data Aggregates 
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In addition to differences in the numbers and names of attributes, there are differences in 
the basic data types used for attribute values.  

Other differences are structural. SWE Common specifies atomic data types, ranges, and 
aggregate data types all as direct subclasses of AbstractDataComponent and uses the 
<<Union>> classes AnyNumerical, AnyScalar, and AnyRange to point to related groups 
of these data types. GML does not use the <<Union>> stereotype. It classes its atomic 
data types under the intermediate subclass AbstractScalarValue and its equivalents to the 
aggregate data types under the intermediate subclass CompositeValue. GML does not 
provide an equivalent to AnyRange. 

The GML valueObjects package includes a set of list data types grouped under the 
intermediate subclass AbstractScalarValueList. Each of these specifies a list of values of 
one of the atomic data types. SWE Common does not specify list data types at this level, 
but does use doubleList, tokenList, and timePositionList as data types of attributes in its 
allowed values classes. As noted above, none of these are modeled as UML classes in 07-
000, although tokenList is specified in the basicTypes.xsd schema of Annex B.2 and 
TimePositionListType is specified in the temporalAggregatges.xsd schema of Annex B.9. 

There are two possibilities for partial harmonization between the GML valueObjects and 
the SWE Common Simple Data Types. One is to adopt a set of common basic data types. 
Under the concept of developing a platform independent model, these should be 
conceptual (language independent) data types. This is discussed in subclause 6.3. The 
other possibility is to consider subclassing of SWE simple data types from the 
valueObjects of GML 3.2. This would require SWE Common to adopt the GML concept 
of requiring a value or a reason for not providing a value. 

6.2.3 Temporal data types 

SWE Common specifies several classes for time values (Figure 5). There is already some 
harmonization with the ISO/TC211 standards, but more can be achieved. 

Note: The discussion of harmonization in this chapter is generally based on SWE 
Common 1.0 (Document 07-000) as specified by the Statement of Work. However, 
modeling of time in SWE Common 1.0 suffers from a number of errors and omissions 
that have been corrected during the development of SWE Common 2.0. This subclause 
therefore considers the temporal data types specified in the January 2009 UML model for 
SWE Common 2.0. 

The referenceTime attribute of AbstractTimeComponent does not appear to be necessary. 
ISO 8601 date and time values are referenced to the Gregorian calendar and Coordinated 
Universal Time (UTC), for which reference times are specified. If dates and times are 
provided in this format, it is not necessary to provide an additional reference time. Each 
of the subclasses of the TM_ReferenceSystem class that is used as the data type for the 
referenceFrame and localFrame attributes carries an attribute to provide a reference to 
Gregorian calendar and UTC. 
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The two <<Union>> classes TimePosition and TimeISO8601 are equivalent to the ISO 
19108 classes TM_Position and TM_TemporalPosition (Figure 6). The <<Union>> class 
TM_Position supports all the options of TimeISO8601 with an option for alternative 
methods of identifying temporal position. The TM_Coordinate subclass of 
TM_TemporalPosition supports the byReal option of TimePosition, although it allows 
the value to be any Number rather than restricting it to Real. The other subclasses of 
TM_TemporalPosition allow referencing temporal position to an ordinal system such as 
the geologic time scale, or to a calendar/time system other than the Gregorian calendar 
and UTC. TM_Position and the subclasses of TM_TemporalPosition have been 
implemented in GML 3.2. 

class SWE 2 Time

AbstractTimeComponent

«Property»
+ referenceTime:  TimeISO8601 [0..1]
+ referenceFrame:  TM_ReferenceSystem [0..1]
+ localFrame:  TM_ReferenceSystem [0..1]
+ uom:  UomIdentifier [0..1]
+ quality:  Quality [0..1]

«DataType»
TimeConstraint

«Property»
+ id:  ID [0..1]
+ enumeration:  TimeList [0..1]
+ interval:  TimePair [0..1]
+ significantFigures:  Integer [0..1]

«DataType»
Time

«Property»
+ value:  TimePosition [0..1]

«DataType»
TimeRange

«Property»
+ value:  TimePair [0..1]

«Union»
TimeISO8601

«Property»
+ byDate:  Date [0..1]
+ byTime:  Time [0..1]
+ byDateTime:  DateTime [0..1]
+ byIndeterminateValue:  TM_IndeterminateValue [0..1]

«Union»
TimePosition

«Property»
+ byReal:  Real [0..1]
+ byTimeISO8601:  TimeISO8601 [0..1]

TimePair

«Property»
+ item:  TimePosition [2]

TimeList

«Property»
+ item:  TimePosition [1..*]

 

Figure 5 - Temporal data types from SWE Common 

yright © 2009 Open Geospatial Consortium, Inc. 
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class ISO 19108 Time Data Types

«Union»
TM_Position

+ anyOther:  TM_TemporalPosition
+ date8601:  Date
+ time8601:  Time
+ dateTime8601:  DateTime

TM_TemporalPosition

+ indeterminatePosition:  TM_IndeterminateValue [0..1]

«DataType»
TM_Coordinate

«DataType»
TM_CalDate

«DataType»
TM_ClockTime

«DataType»
TM_OrdinalEra

«DataType»
TM_DateAndTime

 

Figure 6 - Temporal data types from ISO 19108 

Using TM_Position and TM_TemporalPosition in place of TimePosition and 
TimeISO8601 results in replacing TimePosition as the data type of the ‘value’ attribute of 
the SWE Common Time class and the ‘item’ attributes of TimePair and TimeList with 
TM_Position.   

This report recommends that the SWE Common temporal classes shown in Figure 5 be 
replaced with the modified classes show in Figure 7 that make use of the two classes 
TM_Position and TM_TemporalPosition from ISO 19108. 
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class New Time Data Types

AbstractTimeComponent

«Property»
+ referenceFrame:  TM_ReferenceSystem [0..1]
+ localFrame:  TM_ReferenceSystem [0..1]
+ uom:  UomIdentifier [0..1]
+ quality:  Quality [0..1]

AbstractTimeComponent
Time

«Property»
+ value:  TM_Position [0..1]

AbstractTimeComponent
TimeConstraint

«Property»
+ id:  ID [0..1]
+ enumeration:  TimeList [0..1]
+ interval:  TimePair [0..1]
+ significantFigures:  Integer [0..1]

AbstractTimeComponent
TimeRange

«Property»
+ value:  TimePair [0..1]

TimeList

«Property»
+ item:  TM_Position [1..*]

TimePair

«Property»
+ item:  TM_Position [2]

 

Figure 7 - Modified temporal data types for SWE Common 

 

6.2.4 Positional data types 

The positional data types specified in the UML model of SWE Common (Figure 8) are 
similar to two of the data types specified in ISO 19107:2003 (Figure 9) and implemented 
in GML 3.2. However, the SWE Common Position class has a much broader scope than 
the DirectPosition class of ISO 19107. DirectPosition identifies only spatial or temporal 
position relative to a coordinate reference system. Position includes an additional 
capability to identify temporal position in ISO 8601 format, as well as the capability to 
carry a number of position-related characteristics of an object that occupies a spatio-
temporal position. Two elements of Position can be harmonized with GML. First, the 
data type of the ‘time’ attribute could be changed from Time as specified in SWE 
Common to TM_Position as specified in ISO 19108. TM_Position does not carry the 
descriptive attributes that Time inherits from AbstractDataComponent, but, given the fact 
that Position does carry these attributes, there does not seem to be a need for the value of 
its ‘time’ attribute to carry them as well. Likewise, the data type of the ‘location’ attribute 
could be changed from Vector as specified in SWE Common to DirectPosition specified 
in ISO 19107. DirectPosition, like TM_Position, does not carry the descriptive attributes 
that Vector inherits from AbstractDataComponent, but, given the fact that Position does 
carry these attributes, there does not seem to be a need for the value of its ‘location’ 
attribute to carry them as well. 

yright © 2009 Open Geospatial Consortium, Inc. 
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class SWE Position Data Types 

AbstractVector

+ localFrame:  anyURI [0..1]
+ referenceFrame:  anyURI [0..1]

AbstractDataRecord

AbstractDataComponent

+ name:  string [0..*]
+ description:  string [0..1]
+ definition:  anyURI [0..1]
+ fixed:  boolean [0..1]

Vector

+ coordinate:  anyNumerical [1..*]

Env elope

+ lowerCorner:  Vector
+ upperCorner:  Vector

Position

+ time:  Time [0..1]
+ location:  Vector [0..1]
+ velocity:  Vector [0..1]
+ acceleration:  Vector [0..1]
+ orientation:  VectorOrSquareMatrix [0..1]
+ angularVelocity:  VectorOrSquareMatrix [0..1]
+ angularAcceleration:  VectorOrSquareMatrix [0..1]
+ state:  VectorOrSquareMatrix [0..1]

 

Figure 8 - Positional data types from SWE Common 
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class ISO 19107 Position Data Types

«DataType»
DirectPosition

+ coordinate:  Sequence<Number>
+/ dimension:  Integer

SC_ CRS

«DataType»
GM_Env elope

+ upperCorner:  DirectPosition
+ lowerCorner:  DirectPosition

+coordinateReferenceSystem 0..1

+directPosition 0..*

 

Figure 9 - Positional data types from ISO 19107 

The Envelope data type specified in SWE Common 1.0 is like GM_Envelope of ISO 
19107, except that the data type of its attributes upperCorner and lowerCorner is Vector 
rather than DirectPosition. It is understood that Envelope has been deleted from the draft 
of SWE Common 2.0 on the grounds that there is no requirement for it. If a requirement 
is found in the future, SWE Common should use GM_Envelope, which is implemented 
by the gml:Envelope specified in GML 3.2. 

6.3 Mapping of SWE Common basic data types to ISO/TC211 data types 

6.3.1 Introduction 

Examination of the basic data types of the attributes specified in the UML model for 
SWE Common reveals that several of them are conceptual data types drawn from the 
ISO/TC211 standards and that many of the remainder are mappable or potentially 
mappable to conceptual data types specified in the ISO TC211 standards. Such mapping 
is the subject of this section of this report. 

The data types under consideration fall into two groups: data types that are identical to 
conceptual data types from the ISO/TC211 standards and may have been drawn from 
those standards (6.3.2) and data types from the XML Schema specification that are 
obvious implementations of ISO/TC211 conceptual data types (6.3.3). 

The first column of the tables below contains the names of mappable data types from 
version 1.0 of the SWE Common specification included in document 07-000. The second 
column in each row lists the classes and attributes of the UML models that use that data 
type. Column 3 of these tables identifies the ISO/TC211 conceptual data type to which 
the SWE Common data type is or could be mapped. 

yright © 2009 Open Geospatial Consortium, Inc. 
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6.3.2 Data types from ISO/TC211 standards 

Six of the data types used in the UML model of SWE Common 1.0 are identical in name 
and description to conceptual data types specified in ISO/TC211 standards (Table 5). 

Table 5 - Data types in ISO/TC211 standards 

Data Type Class/Attribute where used TC211 Source 
Any TypedValue.value ISO 19103 
CharacterString ConstrainedPhenomenon.otherConst

raint 
PhenomenonSeries.otherConstraint 

ISO 19103 

ScopedName TypedValue.property ISO 19103 
TM_Duration TM_Grid.offset 

TM_Grid.duration 
TM_IntervalGrid.windowDuration 

ISO 19108 

TM_Position TM_Instant.position ISO 19108 
UomIdentifier Quantity.uom 

Time.uom 
QuantityRange.uom 
TimeRange.uom 

ISO 191361 

Notes: 
1. UomIdentifier is specified in the GML “Xlinks and basic types” 

schema, but is not in the UML package “basicTypes.”
 

6.3.3 Data types from XML Schema 

Nine of the data types used in the UML model of SWE Common 1.0 appear to be 
primitive or derived data types from the XML Schema specification. All of these can be 
mapped to conceptual data types specified in the ISO/TC211 standards (Table 6). 

Table 6 - Data types from XML Schema 

Data Type Class/Attribute where used TC211 Equivalent 
anyURI AbstractDataComponent.definition 

SimpleComponentAttributeGroup.referen
ceFrame 
TRSAttributeGroup.localFrame 
TRSAttributeGroup.referenceFrame 
TRSAttributeGroup.referenceTime 
AbstractVector.localFrame 
AbstractVector.referenceFrame 
Abstractmatrix.referenceFrame 
AbstractMatrix. localFrame 
MultiplexedStreamFormat.type 
Block.encryption 
Block.compression 
Component.encryption 

ISO 19136  
URI? 

boolean AbstractDataComponent.fixed 
Boolean.value 

19103 
Boolean 

dateTime Time.value ISO 19103 
DateTime1 
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double Quantity.value ISO 19103 
Real 

ID AllowedValues.id 
AllowedTokens.id 
AllowedTimes.id 
AbstractEncoding.ID 

ISO 19115 
MD_Identifier 

integer Count.value 
abstractDataArray.elementCount 
TM_GridEnvelope.high 
TW_GridEnvelope.low 
CompoundPhenomenon.dimension 

ISO 19103 
Integer 

positiveInteger DataValue.recordCount 
BinaryBlock.byteLength 
Block.byteLength 
Block.paddingBits-before 
Block.paddingBites-after 
Component.significantBits 
Component.bitLength 
Component.paddingBits-before 
Component.paddingBit-after 

ISO 19103 
Integer 

string AbstractDataComponent.name 
AbstractdataComponent.description 
Text.value 
MultiplexedStreamFormat.version 

19103 
CharacterString 

token Category.value 
SimpleComponentAttributeGroup.axisID 
GeolocationArea.name 
TextBlock.tokenSeparator 
TextBlock.tupleSeparator 
TextBlock.decimalSeparator 
Block.ref 
Component.ref 

ISO 19103 
ScopedName 

Notes: 
1. Both XML dateTime and ISO 19103 DateTime are based on ISO 8601 

representation of Gregorian Calendar & UTC with time zone offsets. This is a 
string representation, not a number. 

Note that the XML implementation data type ‘string’ is currently used four times in the 
UML model although its ISO/TC211 conceptual equivalent ‘CharacterString’ is used 
twice. In all cases, the ISO/TC211 conceptual data types should be used in the UML 
model rather than the XML implementation data types, which should be used only in the 
XML schemas. 

6.4 Conclusion 

This chapter has identified issues involved in the harmonization of GML with SWE 
Common. It includes recommendations for limited harmonization of GML valueObjects 
with SWE Common Simple Data Types, for harmonization of Temporal Data Types of 
the two specifications, and for harmonization of spatial position elements of the two 
specifications. 
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7 Using UncertML in SWE 

This section explains why UncertML is useful to express error information in sensor data. 
UncertML is generic, and can be used to describe any form of uncertainty which can be 
represented within a probabilistic framework. In the sensor context, two sources of error 
can be distinguished: positional errors (i.e. uncertainty in the location of the sensor) and 
attribute error (i.e. uncertainty in the measured/sensed value). Positional errors are 
commonly characterized using probability distributions, via indices such as the Root 
Mean Squared Error, which summarizes the locational errors observed at a set of sample 
sites, assuming a symmetrical Gaussian distribution of spatial uncertainty. Attribute 
errors are also commonly represented in terms of variation around the ‘truth’, by error 
bars which represent significance or tolerance limits. Since UncertML represents 
Gaussian distributions using the standard parameters of mean and variance, it can be 
straightforwardly employed to convey these familiar error measures. However, it can also 
be used to represent subtler and more complex forms of error, such as biased, skewed and 
bounded distributions, and error which varies in space or time, or otherwise across a 
dataset. These ‘non-standard’ uncertainty measures may be represented as user-defined 
distributions, histograms, covariance matrices or even (for stochastic modeling purposes) 
as a set of raw data samples, or realizations from a hypothetical distribution. Specific 
uncertainty measures (e.g., ‘Attribute value uncertainty at 95 percent significance level’) 
may also be defined by users through data dictionaries, and some examples of these 
statistics may be seen at http://dictionary.uncertml.org/statistics.As a self-contained and 
specific language for representing pure numerical uncertainty, UncertML can be 
combined with other XML schemata which convey spatial, physical or other information 
about the measurement and the instrument. It is in this context that we envisage 
UncertML combining with SWE, to expand the current quality element available in 
SWE. 

7.1 Individual observations 

When a sensor senses a phenomenon, there will inevitably be a difference between the 
true value of that phenomenon, and the reported value from that sensor. One reason for 
this disparity is limited precision in the instrument; for example, a temperature could be 
reported as 12.1 whereas the real temperature is 12.083151298. The operation of the 
measurement device itself may influence accuracy, and this effect will not always be 
consistent – for example, the sensor may have a self-effect, may generate heat over the 
course of operation or may adapt slowly. Experimental calibration or factory 
specifications can give detailed information on expected sensor error for the various 
ranges of the measured phenomenon. This is highly valuable information, especially 
when we consider how errors propagate as sensor data is combined and further processed 
for decision-making applications., Whether this information on sensor error is reported  
routinely, or supplied only on requested, it should be as rich and representative as 
possible.. 

For many simple devices, (e.g. temperature sensors) errors may be relatively small and 
the need to quantify these errors does not seem compelling unless the context calls for 
great precision. However, when we extend the interpretation of what “sensed data” is to 
highly-manipulated datasets, the errors can become substantial. Satellite imagery, for 
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example, may be recalibrated and classified to generate estimated coverages showing 
total column NO2 or soil moisture. Similarly, complex models may be applied to 
spatially-distributed networks of sensor measurements, combining them with the sensor 
data such as meteorological sources, to generate, for example, estimates of PM10 or 
interpolated gamma dose rates. In these contexts, input sensor error must be tackled and 
communicated openly and clearly, in order to gauge the reliability of the outputs and 
make properly-informed decisions. 

7.1.1 Full description of uncertainty 

Ideally, it would be possible to characterize the uncertainty of a sensor’s measurements 
fully by specifying a pattern with strict numerical parameters: for example: “the mean 
value is 12.1, the standard deviation is 1, and the error distribution is normal”. If we 
assume that the fit of the observed uncertainty to a normal distribution was indeed close, 
then this information enables many useful predictions to be made; for example, ‘what is 
the probability that, given a certain real value, the value of the sensor measurement will 
exceed a certain threshold, or fall within a certain range?’ More importantly, we can 
begin to address issues such as sensitivity and specificity, for example by considering the 
likelihood of false negatives (a radiation sensor reports a tolerable value, but the real 
value exceeds the danger level). Commonly-used distributions (e.g. Poisson and 
Gaussian) are embedded within UncertML via a dictionary which defines their 
parameters and their formulae. For example, a normal (Gaussian) distribution is defined 
by two parameters: mean and variance – knowing these values and the nature of the 
distribution allows the sort of inference described above about the meaning of observed 
values. The normal distribution is commonly used to represent uncertainty in 
environmental data, since its symmetrical shape approximates many observed patterns, 
and non-normal data can often be easily transformed to satisfactorily fit a normal 
distribution. For this reason, it is one of the distributions which is already defined in the 
UncertML dictionary. However, uncertainty in many measured values (rainfall, for 
example) will be bounded, non-normal or non-negative. UncertML therefore has been 
designed to be extensible in that it allows users to characterize their own distributions, 
either by creating a dictionary entry which defined the mathematical characteristics of the 
distribution, or by using a histogram to represent its specific shape. 

7.1.2 Description by sampling 

In many contexts, one is not certain how exactly error is distributed, but one is able to 
provide a sample from it, e.g. by giving 100 alternative values for a particular point in 
space and/or time. These 100 numbers might be real samples, or could be realizations 
output from a Monte Carlo experiment, e.g. ensemble weather forecasts. While this 
description is not complete, if the sample is large enough, one can derive valuable 
information experimentally about the underlying pattern. Even for small samples, the 
range is of interest in addition to the mean value. UncertML has elements specifically 
designed to store and represent such sets of samples or realizations, and as with all 
UncertML types, these can be embedded within other XML objects which convey full 
information about the spatial, temporal and physical context. 
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7.2 Collections of observations and dependent errors 

7.2.1 Partial description by a number of samples 

As mentioned in 7.1.2, the output from a large MC experiment could provide spatially-
distributed sets of samples of the field “sensed”. From an analysis of these samples, it 
should be possible to identify spatial structure, autocorrelation and dependency in the 
errors observed, and to make useful predictions about the likely error in novel locations. 

7.2.2 Full description by a multivariate Gaussian distribution 

One multivariate distribution that can easily be parameterized is the Gaussian 
distribution; its parameters are the mean vector (mean values for all sensor locations) and 
covariance matrix. The covariance matrix is the matrix with all variances of sensors and 
all covariances of pairs of sensors. If the number of sensors is large (1000) then the 
number of covariances is equal to the number of pairs (roughly 1000 x 1000/2). Storing 
this matrix may become prohibitive for problems of a certain size, but UncertML allows 
you to do so. 

7.3 Positional error: a GPS example 

Listing 1 shows one conceivable example using UncertML for positional errors is the 
description of a position measured by a GPS Sensor.  

Listing 1 - Exemplary use of UncertML in O&M 

<?xml version="1.0" encoding="UTF-8"?> 
<om:ObservationCollection 
xmlns:om="http://www.opengis.net/om/1.0" 
xmlns:gml="http://www.opengis.net/gml" 
xmlns:un="http://www.uncertml.org" 
xmlns:xlink="http://www.w3.org/1999/xlink" 
xmlns:sa="http://www.opengis.net/sampling/1.0" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://www.opengis.net/om/1.0 
http://schemas.opengis.net/om/1.0.0/observation.xsd 
http://www.uncertml.org 
http://schemas.uncertml.org/1.0.0/UncertML.xsd 
http://www.opengis.net/sampling/1.0 
http://schemas.opengis.net/sampling/1.0.0/sampling.xsd"> 
 <om:member> 
  <om:Observation gml:id="OBSERVATION1"> 
   <om:samplingTime/> 
   <om:procedure/> 
   <om:resultQuality> 
    <un:Statistic definition =" 
http://dictionary.uncertml.org/statistics/covariance_matrix"> 
     <un:value>9.2 2.7 2.7 9.2</un:value> 
    </un:Statistic > 
   </om:resultQuality> 
   <om:observedProperty><!--...--></om:observedProperty> 
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   <om:featureOfInterest><!--...--></om:featureOfInterest> 
   <om:result> 
    <gml:Point> 
     <gml:pos>51.9408968 7.6095461</gml:pos> 
    </gml:Point> 
   </om:result> 
  </om:Observation> 
 </om:member> 
 <om:member> 
  <om:Observation gml:id="OBSERVATION2"> 
   <om:samplingTime/> 
   <om:procedure/> 
   <om:resultQuality> 
    <un:Statistic definition =" 
http://dictionary.uncertml.org/statistics/covariance_matrix"> 
     <un:value >9.4 2.8 2.8 9.4</un:value> 
    </un:Statistic > 
   </om:resultQuality> 
   <om:observedProperty><!--...--></om:observedProperty> 
   <om:featureOfInterest><!--...--></om:featureOfInterest> 
   <om:result> 
    <gml:Point> 
     <gml:pos>51.9408968 7.6095461</gml:pos> 
    </gml:Point> 
   </om:result> 
  </om:Observation> 
 </om:member> 
</om:ObservationCollection> 
 

7.4 Integration in the SWE information models 

UncertML concentrates on how to encode and implement uncertain information into 
existing standards. It does not instruct on how to encode supporting information such as 
units of measure and spatial domains. In geospatial contexts, it is anticipated that 
UncertML may be used in a 3-tier architecture as demonstrated in Figure 10, with each 
supporting layer in this architecture adding an extra level of detail. Delegating 
appropriate responsibilities to supporting schemata decouples UncertML from any one 
existing standard and ensures that it may be integrated into a wide range of domains. 

 

Figure 10 - UncertML in a 3-tier architecture 

yright © 2009 Open Geospatial Consortium, Inc. 
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UncertML does not provide a mechanism for describing units of measure, geospatial 
domains or any other such properties. The removal of such constraints allows UncertML 
to be utilized in a variety of different domains. 

Given the wide applicability of UncertML, this tiered arrangement may consist of as 
many levels as are necessary to clearly characterize a measurement, using the most 
appropriate schemata for that problem domain. Sections 7.4.1- 7.4.2 discuss how 
UncertML may be integrated into existing SWE standards. 

7.4.1 Integration into SWE Common & SensorML 

The SWE Common standard provides a neat framework for describing primitive data 
types, aggregations of these data types and related semantics. Each of the ‘simple data 
types’ within SWE Common (Quantity, Count, Boolean etc) contain a property for 
attaching quality information. However, there is no defined mechanism for quantifying 
the quality. With a simple extension it would be possible to allow UncertML to reside 
within the SWE Common quality property. 

Listing 2 – UncertML used within the quality property of the SWE Common simple data type 
“Quantity” 

<swe:Quantity definition="urn:ogc:def:phenomenon:Temperature"> 
 <swe:uom>Cel</swe:uom> 
 <swe:quality> 
  <un:Statistic definition="standard_deviation"> 
   <un:value>3.4</un:value> 
  </un:Statistic> 
 </swe:quality> 
 <swe:value>12.6</swe:value> 
</swe:Quantity> 

The example in Listing 2 describes a temperature quantity of 12.6 degrees Celsius with a 
standard deviation of 3.4. While this typical use case of UncertML within SWE Common 
provides some description of uncertainty, a more complete description is often necessary. 
In such circumstances it is useful to regard quantities as ‘random’, i.e. the value is not 
known with certainty. Extending SWE Common to allow for the addition of a 
‘RandomQuantity’ whose value property is any UncertML type allows a variable to be 
described completely by its parametric distribution (Listing 3). 
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Listing 3 - Extending SWE Common to add a RandomQuantity type whose value is any UncertML 

<swe:RandomQuantity 
definition="urn:ogc:def:phenomenon:Temperature"> 
 <swe:uom>Cel</swe:uom> 
 <swe:value> 
  <un:Distribution definition="gaussian_distribution"> 
   <un:parameters> 
    <un:Parameter definition="mean"> 
     <un:value>12.6</un:value> 
    </un:Parameter> 
    <un:Parameter definition="variance"> 
     <un:value>11.56</un:value> 
    </un:Parameter> 
   </un:parameters> 
  </un:Distribution> 
 </swe:value> 
</swe:RandomQuantity>  

SensorML uses the SWE Common data types as inputs and outputs of process methods. 
Extending SWE Common to allow UncertML to be integrated, automatically propagates 
the benefits to SensorML. 

7.4.2 Integration into O&M 

Listing 4 demonstrates how to encode a sensor noise model in an Observations & 
Measurements (O&M) document. The ‘sa’ and ‘gml’ namespaces are used, in keeping 
with common practice, to encode the results of a measurement sampled by the sensor in 
question, and the point location of the sensor. 

Listing 4 - UncertML used to encode a noise model for a particular sensor in conjunction with the 
O&M standard 

<om:Observation> 
   <om:samplingTime> 
      <gml:TimeInstant> 
         <gml:timePosition>2008-07-07T13:59</gml:timePosition> 
      </gml:TimeInstant> 
   </om:samplingTime> 
   <om:procedure 
xlink:href="http://www.mydomain.com/sensor_models/temperature"/> 
   <om:resultQuality> 
      <un:Distribution 
definition="http://dictionary.uncertml.org/distributions/gaussian
"> 
         <un:parameters> 
            <un:Parameter 
definition="http://dictionary.uncertml.org/distributions/gaussian
/parameters/mean"> 
               <un:value>0.0</un:value> 
            </un:Parameter> 
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            <un:Parameter 
definition="http://dictionary.uncertml.org/distributions/gaussian
/parameters/variance"> 
               <un:value>3.6</un:value> 
            </un:Parameter> 
         </un:parameters> 
      </un:Distribution> 
   </om:resultQuality> 
   <om:observedProperty xlink:href="urn:x-
ogc:def:phenomenon:OGC:AirTemperature"/> 
   <om:featureOfInterest> 
      <sa:SamplingPoint> 
         <sa:sampledFeature 
xlink:href="http://www.mydomain.com/sampling_stations/ws-04231"/> 
         <sa:position> 
            <gml:Point> 
               <gml:pos srsName="urn:ogc:def:crs:EPSG:4326"> 
                  -1.89538836479 52.4773635864 
               </gml:pos> 
            </gml:Point> 
         </sa:position> 
      </sa:SamplingPoint> 
   </om:featureOfInterest> 
   <om:result xsi:type="gml:MeasureType" 
uom="urn:ogc:def:uom:OGC:degC">19.4</om:result> 
</om:Observation> 

The result property contains a temperature measurement of 19.4° Celsius. However, the 
resultQuality property indicates (through the use of an encapsulated UncertML 
Distribution) that this temperature has an associated variance of 3.6 around the measured 
value with no bias, as indicated by the mean value of 0.0. An assumption is made that the 
units of measure within UncertML are the same as those specified within the result 
property (degrees Celsius). The Observations & Measurements schema accommodates 
any XML type inside the resultQuality-property, therefore, no extensions to the standard 
are necessary to allow the use of UncertML. 

7.5 UncertML and MathML 

UncertML seeks to provide a simple mechanism for describing complex concepts such as 
parametric distributions. In order to achieve this goal a decision was made to exclude any 
mathematical functions from within the uncertainty data types (Statistic, Distribution etc). 
Instead these mathematical functions are described within the UncertML dictionary using 
presentation MathML (Figure 11). It can be argued that allowing functions to be 
described in-line, using content MathML, could act as an interoperable mechanism for 
automatically exchanging any distribution or statistic. However, in a context where users 
are working with previously unknown distributions or statistics, it would be necessary to 
spend time developing the required mathematics for processing, negating the need for 
content MathML. Delegating the description of these functions into an accompanying 
dictionary is in line with the vision of the ISO/IEC guide to the expression of uncertainty 
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in measurement (GUM), in which they facilitate the need for a worldwide consensus on 
the evaluation and expression of uncertainty in measurement, not dissimilar to the 
International System of Units.  

 

Figure 11 - Example of presentation MathML within the UncertML dictionary 

 

8 Integration of other Markup Languages in SensorML 

This chapter discusses how different markup languages can be integrated into SensorML 
for the description of sensor process methods. In SensorML every sensor is described as a 
process. These processes are divided in physical and non-physical processes where the 
former have a relation to space and time. 

All of these process descriptions contain of parts for the description of process inputs, 
outputs, parameters and methods. The method part is where different markup languages 
can be integrated and is encoded as a ProcessMethodType (see Figure 12). Besides 
standard GML attributes and metadata it contains sections for rules, algorithms and 
implementations. 

The rules for a method can be encoded using RELAX NG or Schematron. They can for 
instance be utilized to constrain the inputs of a process to a specific set. The 
implementation section points to implementations of the given process. This may be a 
SensorML process chain or program code in source or binary form. The algorithm 
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description of a process may contain a MathML document as a link or embedded. All of 
these sections may contain a textual description. 

 

Figure 12 - SensorML ProcessMethodType 

 

8.1 Integration of MathML 

The Mathematical Markup Language (MathML) is an XML application developed by the 
World Wide Web Consortium (W3C). It is available in the version 2.0 (Second Edition) 
whereas version 3.0 is under progress. MathML can be used to describe mathematical 
terms and enables the visualization, exchange and automated execution.  

The specification describes two markups which can be used separate or in a combined 
form. The first one is the presentation markup (see Listing 5). It is used to “describe the 
layout structure of mathematical notation” [W3C 2003]. Therefore about 30 possible 
XML elements are defined. The semantics of these elements are defined for rendering 
and visualization of mathematical terms. If the presentation markup is used it is therefore 
difficult to interpret and process them. The following listing gives an example of the 
following formula in presentation markup: 

8.1/)32( −= TfTc            (Transformation from °F to °C) 
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Listing 5 - MathML Presentation Markup example 

<math xmlns="http://www.w3.org/1998/Math/MathML"> 
 <mrow> 
  <msub> 
   <mi>T</mi> 
   <mi>C</mi> 
  </msub> 
  <mo stretchy="false">=</mo> 
  <mfrac> 
   <mrow> 
    <msub> 
     <mi>T</mi> 
     <mi>F</mi> 
    </msub> 
    <mo stretchy="false">−</mo> 
    <mn>32</mn> 
   </mrow> 
   <mn>1.8</mn> 
  </mfrac> 
 </mrow> 
</math> 

The content markup of MathML is used to describe the “underlying structure” of a 
mathematical expression. It provides an encoding with clearly defined semantics for each 
of the about 120 elements. Hence automated interpreting and processing is easier and less 
error-prone. The drawback of this is that not every term can be represented.  

The following areas are supported to some degree [W3C 2003]: 

− Arithmetic, algebra, logic and relations 

− Calculus and vector calculus 

− Set theory 

− Sequences and series 

− Elementary classical functions 

− Statistics 

− Linear algebra 

8.1.1 MathML in SensorML 

In a SensorML sensor (or process) description MathML can be used to describe the 
mathematic background. It can be used to give information about a calculation that takes 
place inside of a sensor (for instance mapping of a measured voltage to a temperature 
value) or to define further processing instructions that can be applied when needed. In the 
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latter it is necessary, that the provided mathematics can be interpreted and executed 
automatically. Therefore only the content markup of MathML is allowed for integration 
in SensorML [OGC 07-000]. 

Figure 13 shows the element that shall be used to integrate MathML documents in 
SensorML process descriptions: 

 

Figure 13 - MathML element in SensorML process methods 

Besides the embedded MathML document a processor has to know how to map the 
inputs, outputs and parameters of the SensorML process to the mathematical expression. 
Input, output and parameter descriptions in SensorML provide a name field which shall 
be used for the mapping (see Figure 14). This name shall also be used for the variables in 
the MathML document that are related to process inputs or parameters.  

 

Figure 14 - Name field in SensorML input descriptions 

In order to use the names of the process outputs as well for the connection between 
SensorML and MathML a function has to be defined for every output. Such an 
assignment of a value (or calculation result) to a variable cannot be done easily with 
MathML because it aims on encoding mathematic terms and not on algorithms using 
mathematics. The equals-operator for instance is only used for comparison.  
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The definition of functions in MathML is done by the use of the declare- and lambda-
operators. The first parameter of the declare-operator is the name of the function to 
declare. In the case of the MathML integration in SensorML this could be the name of the 
process output. The second declare parameter is a lambda operator defining the function 
itself. 

The lambda part takes two groups of parameters. At first all variables (for instance names 
of the process inputs and parameters) are listed following by an apply block describing 
the calculation. Listing 6 shows the MathML content markup version of Listing 5: 

Listing 6 - MathML Content Markup example 

<math xmlns="http://www.w3.org/1998/Math/MathML"> 
 <declare type=“function”> 
  <ci>Tc</ci> 
  <lambda> 
   <bvar><ci>Tf</ci></bvar> 
   <apply> 
    <divide/> 
    <apply> 
     <minus/> 
     <ci>Tf</ci> 
     <cn>32</cn> 
    </apply> 
    <cn>1.8</cn> 
   </apply> 
  </lambda> 
 </declare> 
</math> 

In detail the MathML document consists of a single math-block. Inside of it a function is 
declared (<declare type=“function”>). The output operator is defined as the first 
parameter (<ci>Tc</ci>) followed by a lambda block. This block at first lists all input 
variables (here only <bvar><ci>Tf</ci></bvar> for the temperature measured in 
°Fahrenheit) and an apply block defining how the results are calculated. 

A disadvantage of this solution is that a declaration does not mean the same as an 
assignment. Once a declaration is made it is valid forever (in its declaration scope), while 
values could be reassigned. This means that it is possible to emulate declarations via 
assignments, but not the other way around. 

The way described above is valid for version 2.0 of MathML (October 21st, 2003). In the 
meantime there is work on version 3.0 ongoing and available as a draft specification 
(dated on November 17th, 2008). In terms of the integration of MathML in SensorML 
version 3.0 contains one major change: the declare element is deprecated. Because of that 
it should not be used or introduced as standard practice. 

To obtain this another possible way to encode assignments in MathML has to be used. 
This is to define a new assignment operator via the csymbol element which is available in 
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version 2.0 as well as 3.0 of MathML [W3C 2003, W3C 2008]. Listing 7 gives an 
example how the previous formula can be encoded. 

Listing 7 - MathML example using the csymbol element 

<math xmlns="http://www.w3.org/1998/Math/MathML"> 
 <apply> 
  <csymbol definitionURL=”TBD”>assign</csymbol> 
  <ci>Tc</ci> 
  <apply> 
   <divide/> 
   <apply> 
    <minus/> 
    <ci>Tf</ci> 
    <cn>32</cn> 
   </apply> 
   <cn>1.8</cn> 
  </apply> 
 </apply> 
</math> 

Note that the csymbol element contains a definitionURL attribute that is used to point to a 
definition of the newly defined operator. This URL could point to a public available 
version of this document or any other public available document containing the following 
section (8.1.2). 

8.1.2 Definition of an assignment operator for MathML 

The operator is encoded using the csymbol element of MathML. The value of the 
definitionURL attribute has to point to a public available document containing this 
definition. The value of the csymbol element itself is “assign”. 

The first following element shall be a ci element defining the variable where a value is 
assigned to. 

The second following element shall be an apply element containing a mathematical 
expression that is used to calculate a result value that is assigned to the prior given 
variable. 

8.1.3 Execution of MathML 

The execution of MathML is a large task. There are many operators with multiple 
parameters to interpret. Although there are programs and program libraries to solve 
MathML expressions, not all of them cover the full extent. Therefore a service that is 
capable of executing SensorML processes with embedded MathML should provide a 
kind of MathML capabilities. These would announce the supported operators rather like 
the filter capabilities of the OGC filter encoding [OGC 04-095]. 
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8.1.4 Comparison of MathML and other options for process descriptions 

There are several different ways to describe and define the method that is performed by a 
process. In this clause some of them are discussed and compared with a focus on the 
representation of mathematical expressions. 

In addition to MathML there are other possibilities given in SensorML. Thus, process 
method descriptions may contain textual descriptions, SensorML process chains, source, 
or compiled binary code and rules described using RELAX NG or Schematron. 
Furthermore one could think of including mathematical expressions as a simple character 
string or to utilize other (markup) languages like Formula 3 used in the S@ny project1 or 
EML (see clause 8.2). 

Textual descriptions can be the easiest way to provide information to a human reader if 
they are well written. They do not provide useful information to machines because it is 
nearly impossible to parse their content. 

SensorML process chains can also be used to describe process methods. But they again 
contain process methods that finally rely on other techniques to define mathematical 
expressions or algorithms. 

Compiled binary code can be used to provide implementations of the process method that 
can be read and executed by a machine. Human beings are in most cases not able to read 
and understand binary code. If the implementation is provided as source code it is at least 
possible for experts to read and understand it. If the code cannot be executed by an 
interpreter it has to be compiled before execution which can be too complex for an 
application. In both cases it is necessary that the framework for the execution is known to 
the developer in advance. 

RELAX NG and Schematron can be included into SensorML process methods to define 
restrictions to the process instead of describing the method itself. They can for instance 
be used in addition to compiled binary code to verify that the inputs and outputs of the 
process are correctly described for the given implementation. 

Using character strings one can define mathematical expressions in a similar manner as 
one does it using a pen and paper. Simple expressions can be easily written and read by 
humans and they are also readable and executable by machines. When describing more 
complex expressions, this can become more difficult for various reasons. First it is 
difficult to write constructs in one row that usually take multiple rows like matrices. This 
is the same for operators with a complex representation like the sigma sign. It is possible 
to encode these constructs in character strings but it results in a worse readable 
representation. Also the semantics of all allowed constructs have to be clearly defined. 
But due to cultural differences in the representation of mathematical this also comes with 
a reduced readability at least for members of some cultures. Furthermore some 
abbreviations in common use with mathematical expressions can cause problems such as 

 

1 http://www.sany-ip.eu/  
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juxtaposition in multiplication. In addition a string based mathematical expression can in 
SensorML only be integrated as a textual description without a kind of a schema 
definition or other rule definition. 

Formula 3 is more a time sequence algebra than an encoding for mathematical 
expressions. Though it is possible to encode such expressions via Formula 3 it comes 
with a lot overhead for this purpose. It is recommended to use mainly in a time sequence 
domain. 

The content markup of MathML as introduced earlier can be used to encode a large set of 
mathematical expressions. The semantics are clear for each such expression and it is 
possible to read and execute them by machines. It is also human readable to some degree. 
This can be improved when using a renderer software and if necessary a combination 
with the presentation markup of MathML. In this case the cultural context of the 
rendering of mathematical expressions could also be respected. The major disadvantage 
of MathML is that it can be complex even for simple expressions. 

It is recommended to use the content markup of MathML or compiled binary code if the 
expressions have to be executed. Use MathML if possible to describe the process 
methods that should be read or may be reused complete or in parts. Here the focus is on 
clearly defined process methods. Use compiled code for problems that cannot be solved 
with MathML or where MathML is too complex. Add precise textual descriptions in 
these cases. Here the focus is on easy executable process methods using a known 
framework. Special languages like Formula 3 or EML can be used for special purposes 
like calculations on time sequences or complex event processing. 

If the focus is on readability MathML, string based expressions (if unambiguous), textual 
descriptions or a combination of them can be used. Meaningful textual descriptions 
should always be used. 

8.2 Integration of EML 

Besides MathML there can be use of integrating other markup languages for the 
description of process methods. One of them is the Event Pattern Markup Language 
(EML). It is used to define patterns to perform Complex Event Processing (CEP) and 
Event Stream Processing (ESP). These techniques can be useful when dealing with large 
amounts of input data to detect patterns and derive information of higher value. 

The main obstacle for embedding EML patterns into SensorML is that there is no element 
where to put it right now. One solution could be to introduce a new element to 
SensorML. On the other hand there is an element for MathML descriptions of process 
methods. This element accepts any content so it can be used for EML as well. In order to 
prevent confusion with EML patterns found in the MathML element it should be 
renamed. This element could then be used to embed process method description in 
whatever (markup) language is most suitable. There also would not be the need to add a 
new element for further markup languages. This matter is committed in a change request 
to the SensorML standards working group (document number OGC 08-192r1). 
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To map inputs and outputs to EML patterns the names can be utilized just like when 
using MathML. Dynamic parameters are not supported in the current version of the EML 
and should therefore not be used. Another possibility is to handle parameters as 
additional inputs to the process. Methods to access properties of data collections in EML 
processes are described in the EML specification. [OGC 08-132] 
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