OGC Discussion Paper

Open Geospatial Consortium Inc.
Date: 2009-04-08

Reference number of this document: 08-122r2

Version: 0.6

Category: OpenGIS® Discussion Paper

Editors: Matthew Williams, Dan Cornford, Lucy Bastin & Edzer Pebesma

Uncertainty Markup Language (UnCertML)

Warning

This document is not an OGC Standard. This document is an OGC Discussion Paper and is
therefore not an official position of the 0GC membership. It is distributed for review and
comment. It is subject to change without notice and may not be referred to as an OGC Standard.
Further, an OGC Discussion Paper should not be referenced as required or mandatory
technology in procurements.

Document type: OpenGIS® Discussion Paper
Document subtype: Encoding
Document stage: Draft proposed version 0.6

Document language: English

1 08-122r1

OGC Discussion Paper

2 08-122r1

OGC Discussion Paper

Copyright
'Aston University, Birmingham, UK'

The companies and/or organizations listed above have granted the Open Geospatial
Consortium, Inc. (0GC) a nonexclusive, royalty-free, paid up, worldwide license to copy and

distribute this document and to modify this document and distribute copies of the modified
version.

3 08-122r1

OGC Discussion Paper

Forward

Attention is drawn to the possibility that some of the elements of this document may be the
subject of patent rights. The Open Geospatial Consortium Inc. shall not be held responsible
for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

4 08-122r1

OGC Discussion Paper

1 Table of Contents

P2 01 1o Yo L U o) o 00T POV 8
3 SCOPE ettt AR AR AR AR AR AR AR AR 9
4 NOTMALIVE TEIETEIICES ..ourvueerieeereesreisnesse st es bbb bbb bbbt s 11
LT 00117755 3t () o U OO PP TP 11
5.1 Symbols (and abbreviated tEIMNS) ... sessssesssesssees s ssssssessssessesssesssessssesass 11
5.2 UML NOTATION cocurteueerieeereesseeseessessesssessessesssesesssesssessesssesssessessesssesssssssesssssesssesssssssssssssesssesssssessasssesasssssssnes 11
5.3 Definitions of terms as used within this dOCUMENToccereeerreereereerreereereree e 12

6 CONCEPLUAL MOUEILS .urvreerireriesessssssssssssssss s sssssssssss s sssss st sessss s s ssss st s sssssssssssssasssssssssssnns 13
6.1 BaSE TYPES weueereerereeretieressessesessesesses s s s ses s ss s RS e e 13
6.1.1 ADSTTACLUNCETTAINLY w.ouveeereereceeeesseessseseessesssess et seesssesssses st ssssss s s sssessssssssssseses 13
6.1.2 D i) 4 =1 1= ST 14

6.2 REALISATIONS ccuuvuetrreeereseesse s s s s bR et 14
6.3 SEATESTICS couvtvueureesrerreeusereessee et ess e s e st s bt s R s RS AR R bR s R 15
6.3.1 SUMMATY STALISTICS ..vveeerercesieer e ss s s s s snans 17
6.3.2 StAtISTICSRECOTA. ...ttt s n s 18
6.3.3 Y ¥ L0 R 61 N i | PP 19

LT S 130 o1 010 o) o 3PP 19
6.4.1 DISTIIDULION ettt ettt ettt s et e s bbb s 19
6.4.2 DiIStITDULIONATTAY e s sssssssssssssssssssssss s s s s sssssssssssssssssssssssssssssssssess 20
6.4.3 MIXEUTEMOAEL...ocereeretreeeieeeeeeeet et s s es et s s s s s 21
6.4.4 Multivariate DiStriDULION. ..o sss s 21

7 Relation to exXiSting [SO StANAArdS......courenreureeurienseuseinserseesssesessssisesseesss s sssssessss s ssssssessssssssssssssanes 21
7.1 ISO 19115: METAALA c.veerreereeeereersersessseesseesssssssesssses s sssess s sss s e ssssssssssans 22

5 08-122r1

OGC Discussion Paper

7.2 IS0 19114: Quality evaluation ProCeAUIES...... s seesseesssessssesseesans 23
7.3 [SO 19138: Data QUAlILY MEASUTEScccurereereesrereeseeses e sseessessessesssesssssss s esssssssssssssessssssans 23
74 IS0 19118: ENCOMING...oiurririerirnniriensetreesesssssssssesssssessessssssssssssssssssssssesssessssssssssssssssssssssasessssssssssssssses 24
7.5 IS0 191191 SEIVICES . .ruureueereeurereesseessessesssessesssesssessesssesssssssssesssessssssssssssesssesssssssssssssesssessssssessasssesasssssssnes 24

8 XML ENcoding and EXaMPLES ... erenriueeeensesseissessesssssessssssssssssssssesssessssssssssssasssessssssessssssssasssssanes 25
S T80 N =T 1L TSF: U o) o U PPN 25
8.2 R] 2= 1] (PP 26
8.2.1 Statistics, Quantiles, Probabilities & MOMENLS.......cccvcveverrineensinssrserssnsesseseressessessssseseens 27
8.2.2 Y =L B 0 (Y N i ST 29
8.2.3 StAtiSTICSRECOTT .o s s e 30

8.3 DISTITDULIONS .ovuctieeeeeeseeecs s es e es s s s s n s 31
8.3.1 DISTIIDULION ettt ettt s s e s 31
8.3.2 DiIStIIDULIONATTAY ..o ssss s ssss s s s s ssssssssssessessssssssens 32
8.3.3 MIXEUTEMOAEL....ucereeretreereieeseeset et see s es st e s bbb e s 33
8.3.4 Multivariate DiStriDULION. ...t snans 34

8.4 IS0 19138 data QUAlItY MEASUIES...cceuremeereerrerrersress s ssesssessseesssessessesssesssesssesssssssssssssssssssassssssssaees 35

O UNCEItML BESt PTACHICE ..ottt ssssssesessessessessessesssssssss st st s s s sssssssssssssssssssssssssssssssssssnss 37
9.1 I =) o= ool 0 =T ot DD PO PO TSSOV 37
9.2 SENSOT NOISE MOUEL ...t s bbbt st 38
0.3 INterpOolation RESUILS ...t eeseese s sess e s s s s s s 39
9.4 DiSCrete ProbDabilities ... ssssss s ssssssssssssssssssssssssssssssssssssssasees 40
9.5 Probabilistic Weather FOTE@CAST ...t essesses s ssssse s ssssssssssesasees 40
0.6 MUItIVATIALE STATISTICS. ciuriueeureereeereisseseesee st sse e s ssse e s s bbb st 41
10 UncertML XML SCheMAta. ..ot sesssesses s ssssse st sssssesssssssssssssesssesssssssases 48
101 UNCEITMLXSA coeuieeeeeceureesesseesssessessessesssessessessss s sss e ss s st s s s s a bbb bbb 48
10.2 DASETYPES. XSO euriieerienreereessereesseeses s ees s ses e s s seese bR s R R s s R b 48
10.3 StALISTICS.XSA crvreuirirrereereeseie e s b ses s s s bbb s s bR bt 49
10.4 TEAlISALIONS.XSA ..eueeriereereersereesreeses s ees e ses s ss s sessse s s s R s R e 56

6 08-122r1

OGC Discussion Paper

10.5 distributions.xsd

08-122r1

OGC Discussion Paper

2 Introduction

Most data contains uncertainty, arising from sources which include measurement error,
observation operator error, processing/modelling errors, or corruption. Processing this
uncertain data (typically through models, which can introduce their own errors), propagates the
uncertainty, often unpredictably. The ability to optimally utilise data requires a description of
its uncertainty which is as complete and detailed as possible, and in the geospatial context, this
characterisation and quantification is particularly crucial when data is used for spatial decision
making. Thus there is a well-recognised need for GIS frameworks which can handle and
‘understand’ incomplete knowledge in data inputs, in decision rules and in the geometries and
attributes modelled. A substantial literature exists on mechanisms for representing and
encoding geospatial uncertainty and its propagation. However, no framework yet exists to
describe and communicate uncertainty (either in GI data or more generally) in an interoperable
manner.

UncertML is an XML schema for describing uncertain information, which is capable of
describing a range of uncertain quantities. Its descriptive capabilities range from summaries,
such as simple statistics (e.g. the mean and variance of an observation), to more complex
representations such as parametric distributions at each point of a regular grid, or even jointly
over the entire grid.

The ISO/IEC guide to the expression of uncertainty in measurement (GUM) outlines the
importance of quantifying uncertainty by stating that it is “obligatory that some quantitative
indication of the quality of the result be given so that those who use it can assess its reliability”
when discussing observations. The guide goes on to state that it is necessary to have a readily
implemented and generally accepted procedure for characterizing the quality of a result of a
measurement; however, it does not outline a mechanism for describing this information via an
exchangeable medium. The GUM guide aspires to provide a worldwide consensus on the
evaluation and expression of uncertainty in measurement, not dissimilar to the International
System of Units. With the development of the UncertML standard and accompanying dictionary
(http://dictionary.uncertml.org) a small step has been taken toward this vision.

Recent developments for sensor observation modeling within the Open Geospatial Consortium
(e.g. the Observations & Measurements standard) have opened opportunities for interoperable,
sensor-derived datasets to be exchanged over the Internet. As this Sensor-Web community
grows, an increasing volume of data will become available and require processing, and much of
this data will be used for decision support. However, rational decision-making using incomplete
knowledge (i.e. sensor measurements) is only possible if we can quantify the uncertainty
inherent in those measurements, and the uncertainty that is introduced or increased by
subsequent processing. To be truly valuable in the context of ‘discoverable’ Web Services and
datasets (for example, within automatic online risk management chains), this uncertainty must
be represented in an interoperable manner. Currently, within the Sensor-Web framework no
formal method of quantifying complex uncertainties (e.g. probabilistic representations) exists.

8 08-122r1

OGC Discussion Paper

Figure 1 illustrates the importance of both quantifying and communicating uncertainty. The
scenario is a 1D interpolation of sensor data from two distinct sensor types. One sensor model
has Gaussian noise while the other has exponential noise. The graph on the left displays the
result of an interpolation (performed, in this example, by a Web Processing Service) when the
uncertainty is not explicitly quantified. In such a scenario the noise is assumed to be Gaussian
for all observations. The prediction is particularly poor in the mid-section where the
observations shown as plusses are actually subject to exponential noise, as opposed to the
assumed Gaussian noise. When the uncertainty is fully described (in this case using UncertML)
the interpolation algorithm is able to process this information and thus produce a more
informed prediction, as depicted in the right-hand graph. In addition, fully quantified and
characterized estimates of uncertainty can be returned as part of the interpolation result, in a
format which can be automatically parsed and ‘understood’ by, for example, a Web Service
application in a processing chain.

0 0.5 1 0 0.5 1
[Error bars © Observations with Gaussian noise
— = = Underlying function + Observations with exponential noise
Prediction

Figure 1: Without specific error information on individual measurements, an automated Bayesian
interpolation algorithm is forced to assume Gaussian noise on all measurements, and thus achieves a bad
estimate of the true environmental state. When observation-specific error characteristics are supplied via
UncertML, the performance of the automated interpolator is much improved.

3 Scope

The Uncertainty Markup Language (UncertML) is an XML encoding for the transport and
storage of information about uncertain quantities, with emphasis on quantitative
representations based on probability theory.

This document describes the XML schema syntax and conventions that allow an interoperable
description of uncertain data, which we define to be random quantities, in a variety of ways
including:

e probability distributions including both uni- and multi-variate distributions and mixture
models;

e statistics, including means, (co-)variances, standard deviations and quantiles;

o realisations or sampled data.

9 08-122r1

OGC Discussion Paper

These three categories, illustrated in Figure 2, cover the full range of representations which one
might commonly use for random quantities. The most precise description of a random quantity
is in terms of its probability distribution, which is appropriate where the distributional form of
that random quantity is known. Where a strong parametric form for the distribution is not
appropriate, a more flexible semi-parametric mixture model may be used. A weaker, but often
more realistic, option which is still useful and is widely employed, is to represent a random
quantity in terms of its statistics. We allow for a range of statistics types, ranging from moments
(e.g. mean and variance) to histogram and quantile based representations. Finally we also allow
for fully non-parametric representations in terms of samples / realisations from the given
distribution, such as might arise from a Bayesian Markov chain Monte Carlo analysis.

All types are designed to allow encoding of both uni- and multi-variate uncertainty, and can thus
be used for specification of marginal and joint distributions. Both continuous and discrete
random quantities are catered for.

There is a clear separation of concerns in the design of UncertML, in that it is not designed
to address issues covered in other schemata. For example, there is no notion of units of
measure in UncertML - the intention is that UncertML is used with other schema, and
essentially replaces primitive value types in scalar and vector form. Illustrative examples later
in this document will show how UncertML can be flexibly and easily combined with other XML
schemata. In the context of this discussion, Geography Markup Language, SWE Common and
Observations & Measurements are used to illustrate its application, but the design of UncertML
means that it could as easily be used to describe uncertainty in datasets from other fields of
research; for example, genetics, economics or linguistics.

UncertML is, at present, restricted to probabilistic representations of uncertainty in random
quantities, and does not address concepts such as fuzzy sets, random processes or belief
functions.

«Leaf»
baseTypes

+ AbstractUncertainty
+ Parameter

)
""""""" «import> «import» «import>

«leaf» «Leaf» «leaf»

Statistics Distributions Realisations

+ AnyStatistic + AnyDistribution + Realisations

+ DiscreteProbability + Distribution

+ Moment + DistributionArray

+ Praobability + MixtureModel

+ Quantile + MuftivariateDistribution

+ Statistic + ParameterArray

+ StatisticArray

+ StatisticsRecord

Figure 2: An overview of the UncertML package dependencies.

10 08-122r1

OGC Discussion Paper

4 Normative references
ISO 19138: Geographic information - Data quality measures
ISO/IEC GUIDE 98-3: Uncertainty of measurement - Part 3: Guide to the expression of
uncertainty in measurement (GUM:1995)
Geography Markup Language
Observations & Measurements
Sensor Model Language (SensorML)
Sensor Web Enablement Common (SWE Common)
W3C XLink, XML Linking Language (XLink) Version 1.0. W3C Recommendation (27
June 2001)
W3C XML, Extensible Markup Language (XML) 1.0 (Second Edition), W3C
Recommendation (6 October 2000)
W3C XML Namespaces, Namespaces in XML. W3C Recommendation (14 January 1999)
W3C XML Schema Part 1, XML Schema Part 1: Structures. W3C Recommendation (2
May 2001)
W3C XML Schema Part 2, XML Schema Part 2: Datatypes. W3C Recommendation (2
May 2001)

5 Conventions

5.1 Symbols (and abbreviated terms)

GML Geography Markup Language
SWE Sensor Web Enablement

UML Unified Modelling Language
UncertML Uncertainty Markup Language
URI Uniform Resource Identifier
XML eXtensible Markup Language

5.2 UML Notation

The diagrams that appear in this document are presented using the Unified Modelling Language
(UML) static structure diagram. The UML notations used in this document are described in the
diagram below.

11 08-122r1

OGC Discussion Paper

As=ociation between classes

.
Clas= §1 ——fsocitionHome Clas= &
role-1 rok-2

Association Cardina lity

] 1+
Clazs anlyore Class Ore or mare
= —_—
o7 | Oass | o mere Class Speciic number
0.1 Clazs Optional (2 &ro or one
Aqggreqgation between classes Clag= Inheritanc e (subtyping of classes)
a e Superdass
I I | I I |
'3'2': mpenent | | komponent | Fpmpgnent Sihrdasz #1] | Subelass 87 Zubdasz#n

Figure 3: UML Notation.

In this document, the following three stereotypes of UML classes are used:

a) <<DataType>>is a set of properties that lack identity (independent existence and the
possibility of side effects). A DataType is a class with no operations whose primary
purpose is to hold the information.

b) <<Union>>is a set of properties. Semantic constraints ensure that only one of the
properties may be present at any time.

c) <<Abstract>>isan abstract object type (the stereotype is used in addition to
formatting the class name in italics).

In this document the following standard data types are used:

a) Double - a double precision floating point number
b) Integer - an integer number

5.3 Definitions of terms as used within this document

‘Domain point’: a uniquely-identifiable sampling location within a set, which will often, but not
always, be distinguished by its location in space and/or time.

‘Random quantity’: a quantitative result that is not known with certainty. We do not debate the
philosophical or technical questions that this might introduce here.

‘Random variable’: a random quantity that is attached to a specific variable or outcome, that is
has units of measure and often a real physical interpretation. Note again this is not the precise
mathematical definition.

12 08-122r1

OGC Discussion Paper

‘Realisation’: one of many possible values derived by sampling or simulation from a probability
density function.

6 Conceptual Models

This section provides a detailed conceptual model for all types in UncertML. Diagrams depicting
all types and their properties are provided in UML notation (outlined in Section 5.2).

6.1 Base Types
Base types are types common to all UncertML types. Currently two such types exist in UncertML
- the AbstractUncertainty type and the Parameter type discussed below.

6.1.1 AbstractUncertainty
The AbstractUncertainty type provides a root for the substitutability chain in UncertML -
all common uncertainty types extend this base type and inherit any common properties.

whbstracts
AbstractUncertainty

+ definition anyURID 1]

Figure 4: AbstractUncertainty type is the head of the UncertML substitutability chain.

Figure 4 displays the AbstractUncertainty type with a single property, definition. The
definition property provides a link, through the use of URIs, from any uncertainty type (for
example, ‘distribution’) to a definition describing the uncertainty type of interest (for example,
‘Gaussian’).

UncertML follows a ‘soft-typed’ design pattern which promotes the use of generically named
elements with links to dictionary definitions to provide semantics. This approach is far more
flexible than the more traditional 'strong-typed’ design which has a unique element for each
type (or feature) within the application domain. However, crucial to the use of a weak-typed
design is the implementation of a dictionary describing the concepts referenced from within the
schema. We are currently developing a dictionary, in parallel with the UncertML schemata,
which describes the most common statistics, distributions & other related concepts, using
mathematical formulae where appropriate.

The design and implementation of this dictionary is fundamental to the successful adoption and
use of UncertML. Based loosely around the structure of the data quality measures outlined in
[SO 19138, the definitions are encoded according to the GML dictionary schema. Included
within the definition for each statistic, distribution and all other concepts are the following
pieces of information:

e Name(s)

e Definition

e Description

e Measure type (integer, measure etc)
e Measure structure (list, matrix etc)

13 08-122r1

OGC Discussion Paper

The root of the dictionary is located at http://dictionary.uncertml.org and follows a pseudo-
RESTful design pattern. All statistics are located at ‘/statistics’ with the name of the statistic
following - e.g. the definition of the statistic ‘mean’ would be located at the following URL:
http://dictionary.uncertml.org/statistics/mean. If the specified statistic has any parameters,
these can be found at: http://dictionary.uncertml.org/statistics/<statistic name>/parameters.
Individual parameter information can be located at the following:
http://dictionary.uncertml.org/statistics/<statistic name>/parameters/<parameter name>.
The same structure is applied to all parametric distributions, with the word ‘distributions’
substituted for ‘statistics’.

An XSLT stylesheet exists to allow a ‘human-readable’ view of the entire dictionary and allows
easy navigation through the various statistics and distributions.

6.1.2 Parameter
The second base type in UncertML is the Parameter, this type is common to all parametric
distributions and certain statistics.

«DataType»
Parameter

+ definition: anyURI
+ value: simpleType

Figure 5: The Parameter type is common to distributions and certain statistics.

Displayed in Figure 5, the Parameter type contains two properties: definition and value.
The definition of a Parameter is identical to that of the AbstractUncertaintyType
and references a dictionary definition of a particular statistic (or distribution) parameter. The
value of a Parameter contains any simple XML type, typically an integer or double value.

6.2 Realisations

In some situations, a user may not be able to simply represent the uncertainties of the data they
are working with. In such a situation, a sample from the random quantity might be provided,
allowing uncertainty to be described implicitly. However, when using this approach, a
sufficiently large sample is required to deduce the uncertainties inherent in the data, which
means that efficient encapsulation of large data volumes is an important issue for UncertML.
The following sections discuss the Real isations type available within UncertML for
describing a sample of data through a series of realisations.

14 08-122r1

OGC Discussion Paper

«DataTypes
Realisations

samplinghethod: anyUR
realisedFrom: anyUJRI
realisationCount int
elementCount int
encoding BlockEncoding
valles: double [0 7]

+ + + + + 4

Figure 6: Structure of a Realisations type in UncertML.

Extending the AbstractUncertainty type discussed in Section 6.1.1 provides a
definition property. In this instance the UR], if required, should resolve to a definition of the
concept of a realisation. Two optional properties are included to provide greater information
about any particular set of realisations. The real isedFrom property is a URI that links to a
definition of the distribution from which the realisations are generated, where this can be
provided. The second property, sampl ingMethod, is a URI resolving to the definition of the
particular method that was used to sample the realisations. The real isationCount contains
the number of realisations in each sample; this information is useful when describing multiple
random quantities at multiple domain points. ‘Domain point’ here refers to a unique sampling
location in a simulation series, which will often, but not always, be distinguished by its location
in space and/or time.

As with all other array types in UncertML, the Real isations type is based around the SWE
Common DataArray type (1). However, as the Real isations type can only describe a series
of realisations, the e lementType property of the DataArray is not used. The
elementCount property is used to indicate the total number of values contained within the
array. In cases where a dataset describes a single variable at a single domain point, this value
will be the same as the real isationsCount property. When describing multiple variables
and/or or multiple domain points, the size of the e lementCount will be the product of the
number of variables, number of domain points and the number of individual realisations. More
information about how to decode the information within the array may be found in Section 8.

The last two properties are directly inherited from the SWE Common encoding schema, which
provides an efficient and flexible solution to encoding data arrays. Loosely speaking, the format
of the data (binary, ASCII, XML etc) is described in the encoding property and the values
property contains the data which relates to the elementType; i.e. the actual values realised
through sampling. More information about the SWE Common encoding schema can be found in
(1) and example encodings are detailed in Section 8.

Aggregate types within UncertML, whether they be arrays or records, do not extend the
AbstractUncertainty type, as they are merely perceived as ‘containers’ for uncertainty
types with each individual constituent containing its own definition.

6.3 Statistics

This section discusses the extensive range of options available in UncertML for describing
‘summary statistics’. Such statistics are used to provide a summary of a random quantity,

15 08-122r1

OGC Discussion Paper

ranging from measures of centrality (mean, mode, median, etc) through measures of dispersion
(range, standard deviation, variance etc.) to higher order moments, such as skewness and
kurtosis. While certain statistics (e.g. mean, mode) do not provide any information about
uncertainty in isolation, they are often used in conjunction with other statistics (e.g. variance,
standard deviation) to provide a concise summary, and there is considerable value in the
explicit information that a given value represents the mean, rather than some other statistic
such as the mode, or even a single realisation.

16 08-122r1

OGC Discussion Paper

6.3.1 Summary Statistics
AbstractUncertainty «DataType»
«DataType» +parameters baseTypes::
Statistic Parameter
+ value: simpleType 0.7 |+ deﬁmﬂon:anyURl
+ degreesOfFreedom: int + value: simpleType
«DataTypex» «DataType» «DataType» «DataType»
Quantile Moment DiscreteProbability Probability
+ level: double [D.1] + order: int + category: Any + gt double [0.1]
+ |t double [0.1]
+ eq double[0.1]
+ ge: double [0.1]
+ le: double [0..1]
«DataType» «Union» «DataTypex»
StatisticArray Any Statistic StatisticsRecord
+ elementCount: int + Statistic: Statistic + field: AnyStatistic [0.7]
+ elementType: AnyStatistic | [+ Quantile: Guantile
+ encoding: BlockEncoding | [+ DiscreteProbability: DiscreteProbability
+ values: double [0.7] + Probability: Probability
+ StatisticArray: StatisticArray
+ StatisticsRecord: StatisticsRecord
+ Moment: Moment

Figure 7: UncertML provides a suite of data types for describing various statistics including quantiles,
probabilities and general statistics such as mean and variance.

Figure 7 displays the entire collection of types available within UncertML for describing
statistics. The Statistic type is the simplest method of describing a statistic. Extending the
AbstractUncertainty type provides a definition property which in this instance
should resolve to a definition of the particular statistic, e.g. mean, variance, mode etc. Every
Statistic type has avalue property containing the actual value of the statistic, which is
encoded as any simple XML type but would typically be an integer or double. When using
statistics to describe a dataset it is often valuable to know the effective degrees of freedom, in
order to assess the power and appropriate uses of the statistics. The base Statistic type in
UncertML provides an optional attribute, degreesOfFreedom, which may be used for this
purpose. This generic and concise concept of a statistic allows most statistics to be encoded, but
for certain statistics more information is required. In such cases the Statistic type contains
one or more Parameter types (Section 6.1.2), each with a definition and value.

While the Statistic type is capable of describing all common statistics, we feel that certain
statistics are used so frequently as to warrant their own type. One such example is a quantile.
When working with quantiles, a user needs to know which quantile is being referred to.
UncertML therefore provides a specific Quanti le type which extends the Statistic type
and provides an additional property, level. Within UncertML we specify the particular
quantile by its level. For example, the 0.3 quantile (the value of the random quantity below

17 08-122r1

OGC Discussion Paper

which a proportion of 0.3 of the probability mass, which always sums to 1.0, lies) has a level
property of value 0.3.

Another frequently-used statistic is the probability value, used to frame questions such as:
“What is the probability that the water level at a specific location will exceed 25m?”, “What is
the probability that the temperature will fall below 24° Celsius?”, “What is the probability that
this tree is an Oak tree?”. For such instances UncertML provides two further types,
DiscreteProbability and Probabi lity, which both extend the Statistic type.
DiscreteProbabi lity is used to describe the probability that a variable falls within a
certain enumerated class, as in the third example above. The addition of a category property
provides the ability to specify any data type as a class but will typically be realised as a string; in
the example above the category would be “Oak”.

Probabi l ity may be used to describe the probability that a variable exceeds (or does not
exceed) a certain threshold. Such thresholds are defined through the use of the gt (greater
than), 1t (less than), eq (equal to), ge (greater than or equal to) and le (less than or equal to)
properties, which may be used either individually or in combination. The value property of
both the DiscreteProbabi lity and Probabi l 1ty types always contains a value restricted
to fall between 0.0 and 1.0, in contrast to the other statistic types, which contain a value in the
relevant scale of the random quantity.

The final statistic available within UncertML is the Moment type. A random quantity is often
described by a collection of its (centered) moments. A Moment extends the Statistic type by
adding an order property which contains the order of the moment as an integer; for example
‘3’ for the 3rd order centered moment often referred to as the skewness.

From this point, when referring to ‘statistics’ we mean the generic Statistic type as well as
all children (Quantile, DiscreteProbability, Probability and Moment).

6.3.2 StatisticsRecord

Grouping of statistics provides a mechanism by which a random quantity can be summarised in
terms of its centrality and dispersion or other attributes, UncertML provides the
StatisticsRecord type for such use cases. As with all ‘record’ types within UncertML, the
StatisticsRecord is closely modelled on the SWE Common DataRecord type (1).

A DataRecord type in SWE Common, and therefore a StatisticsRecord type in UncertML,
consists of a number of Field properties. Each field of a StatisticsRecord may be any
type that belongs to the AnyStatistic union: Statistic, Quantile, Moment,
DiscreteProbability, Probability, StatisticsArray or StatisticsRecord. A
combination of general statistics in a StatisticsRecord provides a clearly-structured set of
summary statistics for a given variable. The ability to construct complex structures such as
records of arrays and records of records allows users to construct complex representations of
uncertainty with relative ease.

18 08-122r1

OGC Discussion Paper

6.3.3 StatisticsArray

Arrays of statistics are useful when describing a variable at several domain points, or several
variables at a given domain point. The StatisticsArray type in UncertML, closely modelled
on the DataArray of SWE Common, provides such a mechanism. The e lementType property
of a StatisticsArray may be any type from within the AnyStatistic union, allowing
multiple summaries to be encoded flexibly as arrays of single statistics, or an array of
StatisticsRecords. More complex structures, such as two dimensional arrays, are also
possible. Exploiting the efficiency of the SWE Common encoding schema means that complex
structures can be encoded in the best possible manner.

6.4 Distributions

When the uncertainties of a data set are better understood, it may be desirable to describe them
through the use of probability distributions. The types contained within this section of
UncertML are specifically designed to allow a concise parametric or semi-parametric
encapsulation of all distributions without sacrificing the simplicity of UncertML.

«DataType» AbstractUncertainty
baseTypes:: +parameters «DataType»
Parameter 0" Distribution

+ definition: anyURI
+ wvalue: simpleType

«DataType»
ParameterArray
— AbstractUncertainty
+ elementCount: int +parameters
+ elementType: Parameter - _ «DataType»
+ encoding: BlockEncoding 0. Multivariate Distribution
+ values: double [0.7]
«DataType» «DataType»
MixtureModel DistributionArray
+ weights: double [0._7] + elementCount: int
+ distributions: AnyDistribution [0_7] + elementType: AnyDistribution
+ encoding: BlockEncoding
+ values: double [0.7]
«Union»

AnyDistribution

Distribution: Distribution

DistributionArray: DistributionArray
MixtureModel: MixtureModel
MultivariateDistribution: MultivariateDistribution

+ o+ + +

Figure 8: Parametric distributions in UncertML are encoded using one of the types above.

6.4.1 Distribution

For the simplest case (describing the probability distribution of a single variable), UncertML
provides the Distribution type. Like all uncertainty types in UncertML, the Distribution
type extends AbstractUncertainty, inheriting the definition property. In the case of
distributions, this definition may contain both a textual description, and a complex
mathematical description of the distribution (for example cumulative distribution function and

19 08-122r1

OGC Discussion Paper

probability density function). It is important to note that the Distribution type is not a
mechanism for completely describing a probability distribution in terms of its functions,
parameters and how they relate to each other; it should be thought of as a mechanism for
describing an instance of a distribution which is defined elsewhere. As previously stated, a
dictionary containing definitions of common distributions is currently under development.

Complementing the definition property is a parameters property which contains a
number of Parameter types. Each Parameter of a distribution is not considered to be an
uncertainty type in itself, but it contains a definition property which can be used to specify
this particular parameter. Each Parameter also has a value property holding the actual value
of that parameter. We may extend this in the future to allow more complex conditional
distributions to be encoded.

The fact that complex mathematical functions are not embedded within the
Distribution type has allowed a simple solution to encoding distributions.
It can be argued that allowing functions to be described in-line, for example
using content MathML, could act as an interoperable mechanism for
automatically exchanging any distributions. However, we feel that in any
context where users are working with previously unknown distributions, it will
be necessary to spend time developing the required mathematics for
processing these distributions. This obviates the need for a completely
interoperable solution in this instance. Once an application is able to process a
specific distribution all that is required to proceed with processing is a
definition of that distribution. Examples of how various distributions may be
encoded are detailed in Section8.

The parsing and manipulation of distributions based on their definition can be
a complex procedure, yet the majority of data users and analysts work with a
small number of distributions (for example Gaussian, Poisson, exponential &
log-normal).

6.4.2 DistributionArray

When describing the marginal distributions of several variables at a given domain point, or a
univariate, marginal distribution over several domain points, the need for an array emerges.
The DistributionArray type provided by UncertML is similar to the StatisticsArray.
However, in this instance the e lementType property is realised as any type from the
AnyDistribution union. Typically, this will be a simple Distribution type; however, the
mechanism for describing arrays of arrays, and arrays of Mul tivariateDistributions, is
also available. The rest of the properties remain the same as in the StatisticsArray, with
one subtle difference. Distributions often have numerous parameters that help describe them
(e.g. a Gaussian distribution has both a location (centrality) and a scale (variance) parameter).
In this instance the Distribution contained within the elementType property acts as a
form of ‘record’. Therefore, when interpreting distributions which have been encoded within
the values property, care should be taken to clearly understand which set of values refers to

20 08-122r1

OGC Discussion Paper

which parameter. The examples of DistributionArrays in Section 8 demonstrate how one
may encode such a scenario, using a logical ordering of values to clarify their meaning.

6.4.3 MixtureModel

AMixtureModel is a specialised form of record. Typically, when describing a variable using a
mixture of distributions, a specific weight is assigned to each distribution specifying the relative
influence of that distribution in the mixture. This constraint meant that a simple
‘DistributionRecord’ type would not have been sufficient, so a dedicated MixtureModel was
designed.

The distributions property is equivalent to the fields property of a standard record type
which may contain a type from the AnyDistribution union. The addition of aweights
property allows a weight (double) to be assigned to each distribution within the
distributions property. It should be noted that when constructing MixtureModels of
DistributionArrays or MultivariateDistributions care should be taken to ensure
that there is a value for each individual distribution within the distributions property. In
addition, though the sum of all values within the we ights property should equal 1.0, this is not
enforced within UncertML and it is the responsibility of the user to ensure such constraints are
met.

Examples of MixtureModel's may be found in Section 7.

6.4.4 MultivariateDistribution

The final, and perhaps most complex, type provided in UncertML is the
MultivariateDistribution type. Typical use cases for a multivariate (joint) distribution
are when two variables are correlated, or a single variable is spatially correlated. As each of
these scenarios requires the inclusion of a covariance matrix, the DistributionArray is not
sufficient to describe the structure of the uncertainty.

AMultivariateDistribution is similar to the Distribution type, containing both a
definition and parameters property. However, a significant difference is that the
parameters property of a MultivariateDistribution now contains a number of
ParameterArrays rather than Parameter types, due to the fact that multivariate
distributions, by definition, always deal with arrays of parameters.

The ParameterArray type is similar to all other array types within UncertML, consisting of an
elementType, elementCount, encoding and values properties. The elementType
property contains a Parameter type which provides a definition property. The values
property then contains all values for that given parameter. A collection of such arrays allows the
description of complex joint distributions in an efficient manner. Examples of how to use the
MultivariateDistribution type are detailed in Section 8.

7 Relation to existing ISO standards

UncertML is not intended to be a solely geospatial standard, since the fundamental principle of
UncertML (interoperable representation of probabilistic uncertainty) appeals to a wider set of
application domains. A conscious effort has been made to separate concerns and to ensure that

21 08-122r1

OGC Discussion Paper

UncertML is complete with respect to its remit: the probabilistic representation of uncertainty.
Probabilistic representation is pertinent to many applications, and provides significant benefits
in terms of a well defined theoretical basis for propagating and working with uncertainty.
However, while we believe that UncertML has wide applicability, we feel that the largest
potential application of, and our motivation for developing, UncertML lies within the Sensor
Web; hence the submission of this document for discussion within the OGC.

This section briefly summarises our perceptions of the relationship of UncertML to existing
standards, while later examples address the specific relevance of UncertML to these standards
in practice. For example, section 8.4 shows the encoding of specific data quality measures from
ISO 19138.

7.1 1SO 19115: Metadata

It appears that there are two ways of thinking when it comes to uncertainty and metadata -
those who say that uncertainty is in fact data about data and those who say that the data itselfis
uncertain and thus the uncertainty is the actual data and not metadata. We would argue that
both cases are applicable in different situations. For instance, when you have an observation,
the result (or observed value), of this observation is considered the data. Any uncertainty in this
observed value (e.g., measurement bias) can be considered metadata. However, when you
consider a process, such as interpolation, the output of that process is itself uncertain - in this
instance, the 'data’ you are actually interested in is inherently uncertain.

With that in mind, the concepts that are discussed in ISO 19115 would suggest that UncertML is
actually a realisation of the DQ_QuantitativeResult element, although in UncertML we have
chosen not to include units of measure. Comparing UncertML to a DQ_QuantitativeResult in this
manner may suggest that we consider uncertainty to be metadata, and this is certainly a domain
where UncertML might be used. We have deliberately extended the definition in the
DQ_QuantitativeResult section to allow very explicit but flexible representation of the
uncertainty in the various types supported by UncertML. As noted in Section 3, and illustrated in
Section 9, units of measure are not included in UncertML, but are intended to be represented by
existing schemas which will fully describe the phenomena to which the uncertainty pertains,
while using UncertML to efficiently describe that uncertainty.

A DQ_QuantitativeResult contains the following properties:

Property Nature
valueType[O. .1]: RecordType
valueUnit : UnitOfMeasure
errorStatistic[0..1]: CharacterString
Value [1..7*]: Record

This information can be encoded using UncertML by delegating the ‘valueUnit’ to a ‘wrapper’
which could also encode measurement-specific information such as location and sensor
characteristics. The uncertainty would be represented by an UncertML type in which the nature
of the statistic is given by a URI, rather than the errorStatistic String used here. In Example 25,
we show how a RandomVariable can be used in this way to wrap an UncertML type.

An alternative option would be to supply an UncertML type as the actual value of the
DQ_QuantitativeResult, allowing the representation of qualified estimates for metrics which are

22 08-122r1

OGC Discussion Paper

more usually supplied as a single value for a dataset. For example, traditionally a
DQ_QuantitativeResult would be used to represent the fact that the value of
‘TopologicalConsistency’ (ISO 19138) for a polygon dataset is ‘75%’. UncertML allows us to
record a more informative representation of this estimate, which is likely to be uncertain and to
have been derived from a set of samples. This set of sample consistencies is also highly unlikely
to have a symmetrical Gaussian distribution, given the 0-100 bounded nature of the
measurement scale. UncertML can represent the variability of the samples without over-
simplifying their distribution; for example, (a) by encoding a histogram/set of quantiles
recording the full range of consistency values recorded; or (b) by recording an exceedance
probability which tells us that, based on our evidence, there is a 99% chance that the
"TopologicalConsistency' exceeds 72%; or (c) by recording the raw sample values, representing
the variation across the dataset. In those cases where the value of a data quality metric
genuinely is certain, UncertML also offers benefits: encoding a value as a Dirac (delta)
distribution conveys the fact that there is a strong and certain belief in the value.

7.2 1SO 19114: Quality evaluation procedures

UncertML fits with this standard in the same way as with ISO 19115 - via the DQ_QualityResult
(realised as the subclass DQ_QuantitativeResult). ISO 19114 draws a strong distinction between
the different types of data quality measures (e.g., thematic, positional or temporal). This is a
topic that we do not address in UncertML; our thinking is that all these uncertainties can be
described using the same basic UncertML types, within elements which deal with the context of
the uncertainty in another schema. Thus the semantic description of, for example, how a
‘vertical measurement error’ differs from a ‘percentage of incorrectly-classified pixels’ would be
the responsibility of elements specifically designed to describe these phenomena, while the
statistical representation of uncertainty would be performed by UncertML. We feel that there is
a fundamental difference between the conceptual approach of UncertML and this ISO standard,
since while this standard looks at the different ways to describe the quality of a data set,
UncertML looks at how the results of these measures can be encoded concisely.

7.3 1SO 19138: Data quality measures

ISO 19138 defines an extensive list of data quality measures that may be applied to datasets, but
looks at describing these measures, rather than offering standard-specific means of actually
representing those measures. It could be argued that UncertML should be capable of encoding
all of the listed data quality measures, however, we are not convinced that this is within the
scope of UncertML. Such a function might belong in a broader "DQML" - which would make
extensive use of the types in UncertML.

There are a few terms that they use in this standard that we also use. ‘Random variables’ is one
such concept which is shared, (though within this discussion document we refer to the values
themselves as ‘random quantities’ while ‘random variable’ refers to a more detailed
measurement record complete with units of measure). ISO 19138 relies on three assumptions
when using random variables which seem rather restrictive in our view. These are:

1) Uncertainties are homogeneous for all observed values
2) The observed values are not correlated

3) The observed values are normally distributed

23 08-122r1

OGC Discussion Paper

UncertML addresses these issues as follows:

1) UncertML provides the flexibility to encode individual and global measures of uncertainty for
a dataset, rather than using a single statistic. This is quite essential for the applications we are
considering; for example in a heterogeneous sensor network it is quite likely that different
instruments, and deployments of those instruments, may generate very different observational
errors / uncertainties. It is also true that the result of a processing method (for example an
interpolation operation) would produce different uncertainties at each location within the
interpolation domain.

2) This assumption seems contradictory, since the standard later discusses the possibility of
describing 2 or 3 random variables using a covariance matrix. UncertML has been developed as
part of the INTAMAP project which deals with interpolation. As a consequence, handling
multiple correlated variables is a necessity for UncertML and we cannot make the same
assumption as made in the document. Indeed the creation of the flexibility to model / represent
correlated random variables was not taken lightly, and had the potential to greatly complicate
the schema. It seems natural to us that one should be able to represent correlated random
quantities.

3) Many of the uncertainties in this document’s examples are assumed to be normally
distributed - however, the flexibility of UncertML means that a user is not limited to using a
normal distribution and may in fact describe a variable using any probability distribution. We
anticipate that this will become increasingly important in the future as users better understand
and model the uncertainty in their data. For example the results of many processing
applications are likely to result in non-Gaussian distributions over their outputs, even when the
inputs have an approximately Gaussian distribution. Also for many sensor types, for example
most used in remote sensing, Gaussian errors are the exception, not the norm.

7.4 1S0 19118: Encoding

ISO 19118 specifies how encoding rules should be defined for interchange of geographical data
within the ISO 19100 group of standards. UncertML has been designed with a careful eye to
compliance with these recommendations; in particular, we have been careful to ensure that
there is no obstacle to the use of UncertML within the ISO 19100 context; for example as a
component in a GML application schema.

7.5 1S0O 19119: Services

ISO 19119 defines and classifies architectures for geographic services, with particular focus on
how platform-neutral services may be achieved. Since UncertML was originally developed
within the context of Web Processing Services and service chaining (the INTAMAP project), a
high priority in its design has been the provision of features to allow automated processing and
‘understanding’ of complex uncertainty data. The communication of uncertainty in the inputs
and outputs of geographic services can only become more important as these services are used
to process increasing quantities of online data and to inform decision-making. Our priority has
been to ensure that UncertML would be usable within any geographic service which is correctly
specified according to ISO 19119, and not just within the limited experimental context of our
research. ISO 19119 states that ‘a service specification shall include relevant information

24 08-122r1

OGC Discussion Paper

models from the appropriate geographic information standards in the !SO 19100 series’. While
UncertML is not an accepted standard in this group, we have ensured that its taxonomy is
suitable for inclusion in such a service specification.

8 XML Encoding and Examples

The following section provides a series of XML instance examples to illustrate how UncertML
may be utilised in practice.

All models discussed in the previous section are encoded as a set of XML schemata. When using
UncertML, instance documents conforming to the rules set out in these schemata shall be
created. All types within UncertML are concrete types that may be used without the
development of an additional application schema.

The normative reference of UncertML is provided in the schemata in Section 10. All elements
within the UncertML schemata belong to the http://www.uncertml.org namespace. However, the
use of namespaces within this section has been omitted for brevity. Any element using the
prefix un belongs to the UncertML namespace.

The UncertML schemata also utilise two external schemata:

e Geography Markup Language (GML), version 3.1.1, http://www.opengis.net/gml
e Sensor Web Enablement Common (SWE), version 1.0, http://www.opengis.net/swe/1.0

Elements prefixed with either swe or gml belong to the SWE Common or GML schemata
respectively.

The rules used to encode the UncertML models into XML schemata are similar to those outlined
in GML (2). UncertML uses the concept that there are ‘Objects’ that have ‘properties’ which may
themselves be realised as ‘Objects’. According to these rules ‘Objects’ are realised as XML
elements and are named using UpperCamelCase and ‘properties’ are named using
lowerCamelCase. XML types are named in UpperCamelCase and end with the word “Type’.

Most properties and elements in the models above are encoded as elements in XML. However,
several properties are realised as XML attributes where deemed necessary.

8.1 Realisations

Realisations exist for situations where no a priori knowledge of the distribution is available, or
where complex processing of data, such as Monte Carlo analysis, is required. Typically, a data
sample made up of realisations will contain hundreds or thousands of values and an efficient
encoding is required.

25 08-122r1

OGC Discussion Paper

<un:Realisations definition="http://dictionary.uncertml_org/realisation”
samplingMethod=""http://dictionary.uncertml.org/realisations/sampling_met
hods/direct”
realisedFrom="http://dictionary.uncertml _.org/distributions/gaussian'>
<un:realisationsCount>100</un:realisationsCount>
<un:elementCount>100</un:elementCount>
<swe:encoding>
<swe:TextBlock decimalSeparator=""_." blockSeparator=
tokenSeparator=","/>
</swe:encoding>
<swe:values>
<I-- [100 space separated values] -->
</swe:values>
</un:Realisations>

Example 1: A set of realisations may be encoded using the Realisations type.

Example 1 shows how a set of 100 sample realisation values can be encoded. The
realisationsCount property tells us that 100 realisations were generated, and in
combination with the e lementCount (also 100) it is possible to deduce that these realisations
must refer to a single variable, at one domain point. However, information of this type is not
intended to be extracted from the UncertML, as it would typically be encoded in a higher level
wrapper representing the domain points and phenomena sampled (as shown in the later
Example 22).

The three URIs present in this example provide information about this particular realisation.
The definition property resolves to a description about the notion of a realisation,

real isedFrom resolves to a definition of a Gaussian distribution (from which this sample is
realised) and the sampl ingMethod resolves to a description of a direct sampling technique.
Resolving these URIs gives the user a complete picture of the true meaning of these realisations
when combined with the values property.

For this example, and all subsequent examples, we have chosen to use the TextBlock
encoding as this best illustrates the examples. For more information about the other forms of
encoding available via the SWE Common EncodedValuesGroup we refer to the SWE
Common specification (1).

The TextBlock contains three properties. The decimalSeparator defines a single
character that represents a decimal place, blockSeparator represents the character that
separates each new element in the values block and tokenSeparator separates individual
items within an element. In the above example there is only a single value within each element -
the actual realisation itself - therefore the need for a token separator is removed. In later
sections we demonstrate how the tokenSeparator may be used to encode complex elements,
e.g. distributions.

8.2 Statistics

Statistics may be used to provide a concise summary of a particular variable. Section 8.2.1 gives
several examples of simple statistics, quantiles and probabilities. Section 8.2.3 provides an
example of how to group several statistics to form a customised summary of a variable, and goes
on to demonstrate how one may encode complex structures such as histograms. Finally, Section

26 08-122r1

OGC Discussion Paper

8.2.2 demonstrates how statistics and records can be encoded in an array to represent a set of
statistics at several domain points (in this case, spatial locations).

8.2.1 Statistics, Quantiles, Probabilities & Moments

Due to the soft-typed approach of UncertML all simple statistics will appear identical in
structure. What separates a ‘mean’ from a ‘median’ is the URI (and definition upon resolving) of
the definition property. This is demonstrated in Example 2 and Example 3, where almost
identical Statistic elements point to different definition URIs, maintaining a concise, yet
flexible solution. Assuming the existence of a dictionary containing definitions of the most
common statistics, only the URI is needed in order for an application to ‘understand’ how to
process the data.

<un:Statistic

definition="http://dictionary.uncertml .org/statistics/mode'>
<un:value>34._.67</un:value>

</un:Statistic>

Example 2: The Statistic type is used for encoding basic statistics such as mean and variance. A URI is used to
provide the necessary semantics.

<un:Statistic
definition="http://dictionary.uncertml .org/statistics/standard_deviation
>
<un:value>12.08</un:value>
</un:Statistic>

Example 3: A standard deviation encoded in UncertML.

A whole host of statistics may be encoded in a similar fashion to the examples above, including
mean, variance & median. However, certain statistics require slightly more detail. One such
example is a quantile (Example 4).

<un:Statistic
definition="http://dictionary.uncertml .org/statistics/quantile”
level="0.95">
<un:value>34._34</un:value>
</un:Statistic>

Example 4: A Quantile extends the base Statistic type adding an additional level property which specifies the
particular quantile of interest.

When dealing with quantiles, it is crucial to understand the particular quantile of interest, and
this information is encoded in the level property. In the example above (Example 4) the 0.95
level quantile has a value of 34.34.

27 08-122r1

OGC Discussion Paper

<un:Moment

definition="http://dictionary.uncertml .org/statistics/centred_moment'>
<un:value>34._.5</un:value>
<un:order>2</un:order>

</un:Moment>

Example 5: A Moment extends the base Statistic type but contains an additional order property.

Similar to the quantile example is the Moment (Example 5). When working with moments a
user must know the moment order for meaningful processing. In Example 5 the 2nd order
centred moment, or variance, is being described.

Another set of statistics requiring more information is probabilities, both discrete and
continuous. A discrete probability requires an association to a particular class. An example of
how one may encode a discrete probability in UncertML can be seen in Example 6.

<un:DiscreteProbability
definition="http://dictionary.uncertml .org/discrete_probability'>
<un:value>0.25</un:value>
<un:category
definition="http://www.mydomain.com/trees/list'">0ak</un:category>
</un:DiscreteProbability>

Example 6:The DiscreteProbability type should be used for quantifying variables which can be catagorised
into discrete values..

The value of the category property may be of any type, but the typical use case would be to
use a string (as demonstrated above). It should be noted that the value property of all
probabilities represents a ‘probability’ in the range of 0.0 - 1.0, in contrast to other statistic

types.

The final example of a statistic is a continuous probability (Example 7).

<un:Probability definition="http://dictionary.uncertml._org/probability'>
<un:value>0.25</un:value>
<un:gt>35.6</un:gt>

</un:Probability>

Example 7: A continuous probability adds one or more properties to specify the thresholds that a variable
may or may not exceed.

Continuous probabilities see the addition of five properties: gt (greater than), 1t (less than),
e((equal to), ge (greater than or equal to) and le (less than or equal to). Using these
properties individually, or in combination, allows a user to specify thresholds of importance for
a particular variable. Examples include: “What is the probability that a variable exceeds a given
value?” Or, “what is the probability that a variable falls between an upper and lower bound?”
Utilising the upper and lower bounds of several Probabi 1 i ty types in combination with the
grouping of the StatisticsRecord type allows the user to construct a histogram (Example
11).

28 08-122r1

OGC Discussion Paper

8.2.2 StatisticsArray

Large numbers of statistics can be efficiently handled using the StatisticsArray type. This
aggregate type utilises the SWE Common EncodedValuesGroup to provide a suite of
encoding options to suit a variety of needs.

In its simplest form, a StatisticsArray can provide a collection of instances of a single
statistic, as in Example 8 below.

<un:StatisticsArray>
<un:elementType>
<un:Statistic
definition="http://dictionary.uncertml .org/statistics/mean' />
</un:elementType>
<un:elementCount>5</un:elementCount>
<swe:encoding>
<swe:TextBlock decimalSeparator="_" blockSeparator=
tokenSeparator="","/>
</swe:encoding>
<swe:values>46.76 25.75 57.432 12.42 53.64</swe:values>
</un:-StatisticsArrav>

Example 8: A StatisticsArray is used to group numerous identical statistics into an efficient structure.

When one wishes to encode a series of summary statistics (i.e. mean & standard deviation) a
combination of the StatisticsArray and StatisticsRecord must be used. An example
of such a scenario can be seen in Example 9 below.

<un:StatisticsArray>
<un:elementType>
<un:StatisticsRecord>
<un:field>
<un:Statistic
definition="http://dictionary.uncertml . org/statistics/mean" />
</un:field>
<un:field>
<un:Statistic
definition="http://dictionary.uncertml .org/statistics/standard_deviation
[1] />
</un:field>
</un:StatisticsRecord>
</un:elementType>
<un:elementCount>5</un:elementCount>
<swe:encoding>
<swe:TextBlock decimalSeparator="_" blockSeparator=
tokenSeparator="","/>
</swe:encoding>
<swe:values>
34.64,67.86 45.65,78.41 56.7,45.75 29.86,56.74 45.65,76.43
</swe:values>
</un:StatisticsArray>

Example 9: A StatisticsArray can be used in conjunction with the StatisticsRecord type to provide 'summary
statistic' groups.

29 08-122r1

OGC Discussion Paper

When using a record inside an array, the tokenSeparator separates each individual item
within the record. Dissecting the values block in Example 9, a user can deduce that the values
are in the following order: Mean, Standard Deviation.

8.2.3 StatisticsRecord

The previous section included an example of a StatisticsRecord inside a
StatisticsArray, but sometimes only a single group of statistics may be required. An
example of a single StatisticsRecord may be seen in Example 10, demonstrating how the
mean, variance and the probability that a variable exceeds a certain threshold can be
meaningfully grouped into a single structure.

<un:StatisticsRecord>
<un:field>
<un:Statistic
definition="http://dictionary.uncertml .org/statistics/mean'>
<un:value>34.5</un:value>
</un:Statistic>
</un:field>
<un:field>
<un:Statistic
definition="http://dictionary.uncertml .org/statistics/variance'>
<un:value>2.34</un:value>
</un:Statistic>
</un:field>
<un:field>
<un:Probability>
<un:value>0.12</un:value>
<un:gt>45_.6</un:gt>
</un:Probability>
</un:field>
</un:StatisticsRecord>

Example 10: StatisticsRecords allow individual statistics to be grouped into a meaningful structure,
summarising a variable at a single domain point.

Grouping statistics in this fashion allows complex structures to be formed. One such example is
given in Example 11, which illustrates how a histogram can be constructed by grouping several
Probability typesinto a StatisticsRecord.

30 08-122r1

OGC Discussion Paper

<un:StatisticsRecord>
<un:field>
<un:Probability
definition="http://dictionary.uncertml _.org/statistics/probability'>
<un:value>0.24</un:value>
<un: 1t>30</un: It>
<un:ge>10</un:ge>
</un:Probability>
</un:field>
<un:field>
<un:Probability
definition="http://dictionary.uncertml _org/statistics/probability'>
<un:value>0.57</un:value>
<un:1t>50</un:It>
<un:ge>30</un:ge>
</un:Probability>
</un:field>
<un:field>
<un:Probability
definition="http://dictionary.uncertml _.org/statistics/probability'>
<un:value>0.19</un:value>
<un:1t>80</un:Iit>
<un:ge>50</un:ge>
</un:Probability>
</un:field>
</un:StatisticsRecord>

Example 11: StatisticsRecord can be used to form complex structures such as histograms. In this example,
only a few bins are encoded, for brevity.

8.3 Distributions

The final subset of UncertML is concerned with the encoding of probability distributions. A
range of options are available, including single distributions, arrays of distributions, joint
distributions and mixture models. In Section 8.3.1 we demonstrate how some of the more
common distributions may be encoded. Section 8.3.2 examines how to encode an array of
distributions in the DistributionArray type. Sections 8.3.3 - 8.3.4 look at the more complex
encodings of mixture models and multivariate distributions respectively.

8.3.1 Distribution

ADistribution type in UncertML may be thought of as a ‘record’ type. However, rather than
having an unbounded number of ‘fields’ it has ‘parameters’. The decision to extract all
mathematical functions from the encoding of a distribution has enabled complex notions, such
as ‘Gaussian distribution’ to be easily encoded in a simple structure, as shown in Example 12.

31 08-122r1

OGC Discussion Paper

<un:Distribution
definition="http://dictionary.uncertml _org/distributions/gaussian'>
<un:parameters>
<un:Parameter
definition="http://dictionary.uncertml _.org/distributions/gaussian/mean' >
<un:value>34_564</un:value>
</un:Parameter>
<un:Parameter
definition="http://dictionary.uncertml _.org/distributions/gaussian/varian
ce''>
<un:value>7.45</un:value>
</un:Parameter>
</un:parameters>
</un:Distribution>

Example 12: A Gaussian distribution is simple to encode in UncertML.

Generating a weak-typed framework such as this allows any distribution to be encoded in one
generic ‘distribution’ type. Provided that any processing applications understand which
distribution is being described (by resolving the URIs) then there is no need to include functions
inline.

This generic feature is demonstrated in the example below (Example 13), which encodes an
exponential distribution.

<un:Distribution
definition="http://dictionary.uncertml.org/distributions/exponential'>
<un:parameters>
<un:Parameter
definition="http://dictionary.uncertml .org/distributions/exponential/rat
e''>
<un:value>34._.564</un:value>
</un:Parameter>
</un:parameters>
</un:Distribution>

Example 13: An Exponential distribution encoded in UncertML

8.3.2 DistributionArray

As with statistics, a situation may arise where a user wishes to encode multiple marginal
distributions in an efficient structure. The DistributionArray type included in UncertML is
similar in structure to a StatisticsArray that contains a StatisticsRecord.

32 08-122r1

OGC Discussion Paper

<un:DistributionArray>
<un:elementType>
<un:Distribution
definition="http://dictionary.uncertml _.org/distributions/gaussian'>
<un:parameters>
<un:Parameter
definition="http://dictionary.uncertml .org/distributions/gaussian/mean'/
>
<un:Parameter
definition="http://dictionary.uncertml _.org/distributions/gaussian/varian
ce'/>
</un:parameters>
</un:Distribution>
</un:elementType>
<un:elementCount>5</un:elementCount>
<swe:encoding>
<swe:TextBlock decimalSeparator="_" blockSeparator=" "
tokenSeparator="","/>
</swe:encoding>
<swe:values>
35.2,56.75
31.2,65.31
28.2,54.23
35.6,45.21
41.5,85.24
</swe:values>
</un:DistributionArray>

Example 14: A DistributionArray containing several Gaussian distributions. The values block contains 5
‘mean,variance ‘ tuples, one for each Gaussian distribution.

In the example above, you can see that each parameter of the distribution (mean & variance) is
separated by the tokenSeparator. Each individual distribution is then separated by the
blockSeparator giving the following pattern: Mean,Var iance Mean,Variance etc..

8.3.3 MixtureModel

Mixture models are distributions that are convex combinations of other, weighted, distributions.
Semantically, a MixtureModel is not very dissimilar to any other record type in UncertML.
There are a number of constituent fields (distributions) that make up a larger structure.
However, the addition of a weights property allows you to assign a relative weight, or
influence, to each constituent part. Certain guidelines should be followed when using
MixtureModels to ensure interoperability. These are as follows:

e There should be a corresponding weight for each constituent distribution within the
distributions property

o Each weight should be a value between 0.0 - 1.0 inclusive (but this is not enforced).

e The sum of all weights should equal 1.0 (though again, this is not enforced).

Below is an example of a MixtureModel (Example 15) consisting of multiple Gaussian
distributions and adhering to the above rules.

33 08-122r1

OGC Discussion Paper

<un:MixtureModel>
<un:weights>0.24 0.76</un:weights>
<un:distributions>
<un:Distribution
definition="http://dictionary.uncertml _.org/distributions/gaussian'>
<un:parameters>
<un:Parameter
definition="http://dictionary.uncertml .org/distributions/gaussian/mean"' >
<un:value>34.564</un:value>
</un:Parameter>
<un:Parameter
definition="http://dictionary.uncertml .org/distributions/gaussian/varian
ce'>
<un:value>67.45</un:value>
</un:Parameter>
</un:parameters>
</un:Distribution>
<un:Distribution
definition="http://dictionary.uncertml _.org/distributions/gaussian'>
<un:parameters>
<un:Parameter
definition="http://dictionary.uncertml .org/distributions/gaussian/mean''>
<un:value>21.564</un:value>
</un:Parameter>
<un:Parameter
definition="http://dictionary.uncertml.org/distributions/gaussian/varian
ce'>
<un:value>34._.45</un:value>
</un:Parameter>
</un:parameters>
</un:Distribution>
</un:distributions>
</un:MixtureModel>

Example 15: A MixtureModel includes a number of 'weights' that corresponds to the number of constituent
distributions.

Combining distributions and weights in this fashion allows the construction of complex mixture
models. The ability to include DistributionArrays into the distributions property
allows a user to create large mixture models efficiently. Care should be taken when working
with large mixture models to ensure adherence to the above rules.

8.3.4 MultivariateDistribution

The final type in the distributions subset of UncertML is the Mul tivariateDistribution
This type is required when there is correlation between variables, or a variable varies over a
spatial-temporal domain. Much like a Distribution type,aMultivariateDistribution
consists of a definition and parameters properties. However, instead of each parameter
having a single value, it now consists of multiple values, depending upon either the number of
variables or the extent of the domain. The notion of a multivariate distribution is complex, but
the example in Example 16 demonstrates the relative ease with which a multivariate Gaussian
distribution may be encoded

34 08-122r1

OGC Discussion Paper

<un:MultivariateDistribution
definition="http://dictionary.uncertml._org/distributions/multivariate_ga
ussian'>
<un:parameters>
<un:ParameterArray>
<un:elementType>
<un:Parameter
definition="http://dictionary.uncertml .org/distributions/multivariate _ga
ussian/mean*' />
</un:elementType>
<un:elementCount>5</un:elementCount>
<swe:encoding>
<swe:TextBlock decimalSeparator="_" blockSeparator=" "
tokenSeparator="","/>
</swe:encoding>
<swe:values>
45_.42 53.12 12.53 64.21 55.22
</swe:values>
</un:ParameterArray>
<un:ParameterArray>
<un:elementType>
<un:Parameter
definition="http://dictionary.uncertml .org/distributions/multivariate_ga
ussian/covariance'/>
</un:elementType>
<un:elementCount>25</un:elementCount>
<swe:encoding>
<swe:TextBlock decimalSeparator="_" blockSeparator=" "
tokenSeparator="","/>
</swe:encoding>
<swe:values>
2.71828 000 O
02.71828 0 0 0
00 2.71828 0 0O
000 2.71828 0
0000 2.71828
</swe:values>
</un:ParameterArray>
</un:parameters>
</un:MultivariateDistribution>

Example 16: MultivariateDistributions may be used to describe a variable that varies over space or time as
well as the correlation between multiple variables.

The first ParameterArray contains a vector of mean values whose dimensions depend upon
the number of variables, and the size of the spatial or temporal domain. The second
ParameterArray contains the covariance matrix, which will contain the appropriate number
of covariance values. Utilising the SWE Common EncodedValuesGroup will ensure that the
most efficient encoding of covariances is achieved in applications with large numbers of domain
points, since these matrices can become exceedingly large under normal use.

8.4 IS0 19138 data quality measures

The ISO 19138 specification outlines a list of commonly used data quality reporting measures
for the data quality subelements identified in ISO 19113. This section provides several examples
of how UncertML can be used to encode these data quality measures in XML.

35 08-122r1

OGC Discussion Paper

<un:Statistic
definition="http://dictionary.uncertml .org/statistics/Mean_value_of posi
tional_uncertainties" degreesOfFreedom="228">
<un:value xsi:type="xs:double'>24_21</un:value>
</un:Statistic>

Example 17: Mean value of positional uncertainties (ISO 19138 Table D.29)

Example 17 demonstrates how the statistic ‘mean value of positional uncertainties’ may be
encoded using UncertML. The example is identical to previous statistic examples with only the
definition URL differentiating it. With the addition of a Parameter, Example 18
demonstrates how the ‘mean value of positional uncertainties’ can be extended to exclude
outliers. In the example, the emax parameter is used to specify the definition of what an outlier is
in this particular context, and its threshold nature and value type is therefore also specified
within the dictionary.

<un:Statistic
definition="http://dictionary.uncertml _.org/statistics/Mean_value_of posi
tional_uncertainties_excluding outliers'>
<un:parameters>
<un:Parameter
definition="http://dictionary.uncertml _.org/statistics/Mean_value_of posi
tional_uncertainties_excluding _outliers/parameters/e_max"'>
<un:value xsi:type="xs:double'">25.12</un:value>
</un:Parameter>
</un:parameters>
<un:value xsi:type="xs:double'>23_45</un:value>
</un:Statistic>

Example 18: Mean value of positional uncertainties excluding outliers (ISO 19138 Table D.30)

The inclusion of data quality elements from the ISO 19138 specification, such as ‘data quality
value type’ and ‘data quality value structure’, within the dictionary allows more complex
statistics, such as a covariance matrix (Example 19), to be encoded.

<un:Statistic
definition="http://dictionary.uncertml _.org/statistics/Covariance_matrix"
>
<un:value xsi:type="'xs:base64Binary">
Mi43MTgyOCAw I DAgMCAW I DAgMi43MTgyOCAw I DAgGMCAwW I DAgMi43MTgyOCAw I DAgMC
AwlDAgMi43MTgyOCAw I DAgMCAW I DAgMi43MTgyOA==
</un:value>
</un:Statistic>

Example 19: Covariance matrix (ISO 19138 Table D.33)

Example 19 also demonstrates the ability of a statistic value to contain any simple XML type;
in this instance the covariance matrix is encoded in base 64.

Example 20 is an extract from the statistics dictionary that describes the concept and structure
of a covariance matrix. The dataQual ityValueType property states that it is of type
‘Measures’, and the dataQual ityValueStructure defines it as ‘matrix’. With this
knowledge it is possible to deduce what the statistic value property contains.

36 08-122r1

OGC Discussion Paper

<un:StatisticDefinition gml:id="Covariance_matrix'>

<gml :description>

The covariance matrix generalises the concept of variance from one to
n dimensions, i.e. from scalar-valued random quantities to vector-valued
random quantities (tuples or scalar random quantities).

</gml:description>

<gml :name>Covariance matrix</gml:name>

<gml :name>variance-covariance matrix</gml:name>

<un:definition>

A symmetrical square matrix with variances or point coordinates on
the main diagonal and covariances between these coordinates as off-
diagonal elements

</un:definition>

<un:dataQual ityValueType>Measures</un:dataQual ityValueType>

<un:dataQualityValueStructure>matrix</un:dataQualityValueStructure>
</un:StatisticDefinition>

Example 20: Dictionary extract for the description of a covariance matrix

Another example of how the dataQual ityValueType and

dataQual ityValueStructure properties within the definitions are used can be seen in
Example 21. The uncertainty ellipse, as defined in ISO 19138, does not contain a single value,
rather a list (a, b, @) of values. Including this information within the dictionary definition allows
the base Statistic type to encode a multitude of different statistics, including the uncertainty
ellipse, within the same structure.

<un:Statistic
definition="http://dictionary.uncertml .org/statistics/Uncertainty_ellips
e'>

<un:value xsi:type='"xs:string'>21.14, 12.42, 125.12</un:value>
</un:Statistic>

Example 21: Uncertainty ellipse (ISO 19138 Table D.52

9 UncertML Best Practice

In this section we present a series of use cases that demonstrate how we feel UncertML should
be used within a variety of domains. In particular we propose a RandomVariable type to
encode information on units of measure and other properties, as a helper to UncertML. This
could be included in the SWE standard in the future to augment the swe :Quantity type. The
examples are intended to suggest how we think UncertML should be used within a range of
scenarios. We hope that the examples show that we have achieved our primary goal of making
UncertML usable within a very wide range of situations, with minimal dependencies.

9.1 3 tier architecture

This document concentrates on how to encode and implement uncertain information into
existing standards. It does not instruct on how to encode supporting information such as units
of measure and spatial domains. In geospatial contexts, it is anticipated that UncertML may be
used in a 3-tier architecture as demonstrated in Figure 9, with each supporting layer in this
architecture adding an extra level of detail. Delegating appropriate responsibilities to
supporting schemata decouples UncertML from any one existing standard and ensures that it
may be integrated into a wide range of domains.

37 08-122r1

OGC Discussion Paper

«Abstracts

GIRandomVariable RandomVariable baseTypes::

S — e | AbstractUncertaint,
+ domain. Gh_Ohbject + uom: UnitOfMeasure — 4
+ definition; anylURI[0D..1]

Figure 9: UncertML does not provide a mechanism for describing units of measure, geospatial domains or any
other such properties. The removal of such constraints allows UncertML to be utilised in a variety of different
domains.

Given the wide applicability of UncertML, this tiered arrangement may consist of as many levels
as are necessary to clearly characterise a measurement, using the most appropriate schemata
for that problem domain.

9.2 Sensor Noise Model

Example 22 demonstrates how to encode a sensor noise model in an Observations &
Measurements (0O&M) document. The ‘sa’ and ‘gml’ namespaces are used, in keeping with
common practice, to encode the results of a measurement sampled by the sensor in question,
and the point location of the sensor.

The result property contains a temperature measurement of 19.4° Celsius. However, the
resultQual ity property indicates (through the use of an encapsulated UncertML
Distribution) that this temperature has an associated variance of 3.6 around the measured
value with no bias, as indicated by the mean value of 0.0. An assumption is made that the units
of measure within UncertML are the same as those specified within the result property
(degrees Celsius). Units of measure are discussed later when we propose a random variable

type.

38 08-122r1

OGC Discussion Paper

<om:Observation>
<om:samplingTime>
<gml :Timelnstant>
<gml :timePosition>2008-07-07T13:59</gml :timePosition>
</gml:Timelnstant>
</om:samplingTime>
<om:procedure
xlink:href="http://www.mydomain.com/sensor_models/temperature'/>
<om:resultQuality>
<un:Distribution
definition="http://dictionary.uncertml.org/distributions/gaussian'>
<un:parameters>
<un:Parameter
definition="http://dictionary.uncertml _.org/distributions/gaussian/parame
ters/mean’'>
<un:value>0.0</un:value>
</un:Parameter>
<un:Parameter
definition="http://dictionary.uncertml _org/distributions/gaussian/parame
ters/variance'>
<un:value>3.6</un:value>
</un:Parameter>
</un:parameters>
</un:Distribution>
</om:resultQuality>
<om:observedProperty xlink:href="urn:x-
ogc:def:phenomenon:0GC:AirTemperature' />
<om:featureOfinterest>
<sa:SamplingPoint>
<sa:sampledFeature
xlink:href="http://www._.mydomain.com/sampling_stations/ws-04231"/>
<sa:position>
<gml :Point>
<gml :pos srsName="urn:x-ogc:def:crs:EPSG:4326">
52.4773635864 -1.89538836479
</gml :pos>
</gml:Point>
</sa:position>
</sa:SamplingPoint>
</om:featureOfinterest>
<om:result xsi:type="gml:MeasureType"
uom=""urn:ogc:def:uom:0GC:degC'">19.4</om:result>
</om:Observation>

Example 22: UncertML can be used to encode a noise model for a particular sensor in conjunction with the
O&M standard.

9.3 Interpolation Results

The following example (Example 23) illustrates the encoding of results from a commonly used
interpolation process. Since interpolation is essentially a method of prediction, there are
uncertainties inherent within the results generated. Example 23 displays the encoding of typical
output from a spatial interpolation process such as kriging where values have been predicted,
along with associated uncertainties, to a regular grid of points.

This example uses the GML RectifiedGrid type to encode a 2x3 grid - the spatial domain of
the interpolation. Within the range is the result of the interpolation; a StatisticsArray.
This example demonstrates a series of six marginal (uncorrelated) mean and variance values.

39 08-122r1

OGC Discussion Paper

The RandomVariable type is an example of one of the many supporting schemata which may
be used to wrap and present UncertML, ensuring that numerical uncertainty information is
cleanly separated from metadata such as units of measure and spatio-temporal domain
descriptions. This clear division of scope allows UncertML to be used in a wide variety of data
representation contexts, and embedded within many existing application-specific XML
schemata. The careful reader will spot that there is considerable duplication in the example: the
rv:domainPointCount is designed to identify the number of points at which the random
variable is represented; clearly this can be derived from the domain set, but the
RandomVariable is designed such that it could be used independently of a spatial context,
where the number of points might be an important item to provide. This information is again
duplicated in the un:elementCount - again, with the rationale that UncertML might be used
outside the RandomVariable type. This illustrative example includes all three values,
however, since they are envisaged to be optional outside UncertML this sort of duplication
would be unlikely in practice.

9.4 Discrete Probabilities

The use case in Example 24 demonstrates the results of a Monte Carlo simulation of rabies in
Finland, whose results have been categorised into two classes. Such an encoding could easily be
wrapped in an observation supplying other information, e.g. the feature of interest &
observation time.

The results of the simulation show that there is an 87% chance that the disease dies out within
5 years and only a 13% chance it will survive for longer. Using discrete probabilities in this way
provides a quick summary overview of a situation, rather than requiring a user to process the
individual realisations.

9.5 Probabilistic Weather Forecast

This use case consists of a histogram of predicted temperature values generated from an
ensemble weather forecasting system. The example is encoded as an observation in the 0&M
schema. However, in contrast to the first use case, this example uses UncertML as the result
property and the resultQual ity property is left empty. This is because in this case the
result, being predicted from a model, is inherently uncertain, whereas in the observation case,
an actual measurement was being represented, in combination with associated quality
information about the likely sampling errors.

From the example in Example 25 you can see that there are 5 bins: 18.0-20.0, 20.0-22.0, 22.0-
24.0 & 24.0-26.0. Each bin has a different associated probability: 0.07, 0.22, 0.41, 0.21 & 0.09
respectively. An application could use this data in several ways; a typical use would be to
produce a graphical display of the histogram. The resul t of this observation is wrapped in a
RandomQuantity type, demonstrating how one may use UncertML with a supporting schema
to encode a random variable. The structure of the RandomVar iable type mimics the SWE
Quantity type, adding a definition of the phenomenon (variable), its units of measure and the
actual value. The difference between a RandomVariable and a normal Quantity is that the
RandomVariable may have any UncertML type as its value - providing the necessary
quantification of uncertainty.

40 08-122r1

OGC Discussion Paper

9.6 Multivariate Statistics

This section gives three examples of how UncertML may be used to describe multivariate
statistics either through realisations, statistics or distributions.

Consider the scenario of a complex micro-climate simulation model (for example within a
building) which simulates temperature and pressure on a staggered grid. Stochastic forcing
from the simulated external weather means the results of the model are also stochastic. In
Example 26, 100 realisations have been generated from this simulation and encoded using
UncertML.

As already noted, UncertML is an XML language designed for describing uncertainty, and certain
attributes commonly associated with uncertainty (e.g. units of measure) are not encoded within
the UncertML specification. Such attributes are expected to be encoded by other supporting
schemata. In this example we have included a JointRandomVariable type to provide
information such as the phenomena being described, their units of measure and the number of
domain points at which they are measured, which in this case are required for decoding.
Providing this information allows multivariate realisations to be encoded in a single

Real isations type. The values within the array are ordered according to the following rules.

e Individual realisations are encoded for every domain point
e Individual realisations are grouped by phenomenon
e The order of domain points refer to some ‘domain’ that is described in another schema

We note that this goes a little against the desire to explicitly define everything inside XML tags,
however for the usage scenarios we have in mind, which might involve very large data sets, we
believe that the use of encoding is well justified. We also endeavoured to separate responsibility
in UncertML to keep it as clean and clear as possible.

Example 27 uses various types within the Statistics schema to encode the mean values of,
and covariance within and between, annual mean temperature and rainfall, observed over 50
years instances. Note the covariance encodes both the internal relationship between the
temperature and rainfall, and their joint structure.

The JointRandomVariable type is syntactically identical to that used in the previous
example. However, the random variables are now described by their mean values and a
corresponding covariance matrix, describing the correlation between them.

The use of a covariance matrix is often seen when two (or more) variables are jointly
distributed. Decoding the covariance matrix is done in row major format at present, although a
dedicated type might be employed to encode the covariance more compactly in the future.
Example 28 demonstrates an interpolation where the results are correlated spatially, and where
users can provide a joint distribution to fully represent the characteristics of the interpolated
result and its uncertainty.

The multivariate example uses a smaller domain (2x2 grid) which provides a set of four mean
values and a covariance matrix of size sixteen (four by four).

It should be noted that the supporting elements in these examples are for illustration only and
are not part of the UncertML specification.

41 08-122r1

OGC Discussion Paper

<InterpolationResult>
<domain>
<gml :RectifiedGrid dimension="2">
<gml:limits>
<gml :GridEnvelope>
<gml:low>0 0</gml:low>
<gml:high>2 3</gml:high>
</gml :GridEnvelope>
</gml:limits>
<gml :axisName>x</gml : axisName>
<gml :axisName>y</gml :axisName>
<gml:origin>
<gml :Point>
<gml :pos srsName=""urn:x-
ogc:def:crs:EPSG:4326''>52.4773635864 -1.89538836479</gml :pos>
</gml:Point>
</gml:origin>
<gml :offsetVector srsName="'urn:x-
ogc:def:crs:EPSG:4326">0.1453232 0</gml:offsetVector>
<gml :offsetVector srsName="urn:x-ogc:def:crs:EPSG:4326">0
0.1453232</gml :offsetVector>
</gml:RectifiedCGrid>
</domain>
<range>
<rv:RandomVariable>
<rv:phenomena>
<rv:Phenomenon definition=""urn:x-
ogc:def:phenomenon:0GC:AirTemperature''>
<rv:uom href="urn:ogc:def:uom:0GC:degC"/>
<rv:domainPointCount>6</rv:domainPointCount>
</rv:Phenomenon>
</rv:phenomena>
<rv:representation>
<un:StatisticsArray>
<un:elementType>
<un:StatisticsRecord>
<un:field>
<un:Statistic
definition="http://dictionary.uncertml .org/statistics/mean'/>
</un:field>
<un:field>
<un:Statistic
definition="http://dictionary.uncertml .org/statistics/variance'/>
</un:field>
</un:StatisticsRecord>
</un:elementType>
<un:elementCount>6</un:elementCount>
<swe:encoding>
<swe:TextBlock decimalSeparator="." blockSeparator=
tokenSeparator="","/>
</swe:encoding>
<swe:values>
21.3,4.4
19.6,4.8
18.3,5.9
22.1,4.9
20.5,6.1
19.8,8.3
</swe:values>
</un:StatisticsArray>
</rv:representation>
</rv:RandomVariable>
</range>
</InterpolationResult>

Example 23: UncertML is used to describe the result of an interpolation.

OGC Discussion Paper

<un:StatisticsRecord>
<un:field>
<un:DiscreteProbability
definition="http://dictionary.uncertml _org/discrete_probability'>
<un:value>0.87</un:value>
<un:category
definition="http://www.mydomain.com/finland/rabies_classification'>Disea
se dies out within 5 years</un:category>
</un:DiscreteProbability>
</un:field>
<un:field>
<un:DiscreteProbability
definition="http://dictionary.uncertml.org/discrete_probability'>
<un:value>0.13</un:value>
<un:category
definition="http://www.mydomain.com/finland/rabies_classification'>Disea
se survives more than 5 years</un:category>
</un:DiscreteProbability>
</un:field>
</un:StatisticsRecord>

Example 24: DiscreteProbabi l i tys can be used to concisely describe the outcome of a simulation.

<om:Observation>
<om:samplingTime>
<gml :Timelnstant>
<gml :timePosition>2008-07-29T12:00</gml :timePosition>
</gml:Timelnstant>
</om:samplingTime>
<om:procedure
xlink:href="http://www._mydomain.com/model/myEnsembleModel .xml"'/>
<om:observedProperty xlink:href="urn:x-
ogc:def:phenomenon:0GC:AirTemperature'/>
<om:featureOfinterest>
<sa:SamplingPoint>
<sa:sampledFeature
xlink:href="http://www._.mydomain.com/sampling_stations/ws-04236"/>
<sa:position>
<gml :Point>
<gml :pos srsName="urn:x-ogc:def:crs:EPSG:4326">
52.1 2.5
</gml :pos>
</gml:Point>
</sa:position>
</sa:SamplingPoint>
</om:featureOfinterest>
<om:result>
<rv:RandomVariable>
<rv:phenomena>
<rv:Phenomenon
definition="ogc:def:phenomenon:0GC:AirTemperature'>
<rv:uom xlink:href="urn:ogc:def:uom:0GC:degC"/>
<rv:domainPointCount>1</rv:domainPointCount>
<rv:representation>
<un:StatisticsRecord>
<un:field>
<un:Probability
definition="http://dictionary.uncertml _org/statistics/probability'>
<un:value>0.07</un:value>
<un:1t>18.0</un:1t>

43 08-122r1

OGC Discussion Paper

<un:ge>16.0</un:ge>
</un:Probability>
</un:field>
<un:field>
<un:Probability
definition="http://dictionary.uncertml _org/statistics/probability'>
<un:value>0.22</un:value>
<un:1t>20.0</un:1t>
<un:ge>18.0</un:ge>
</un:Probability>
</un:field>
<un:field>
<un:Probability
definition="http://dictionary.uncertml _org/statistics/probability'>
<un:value>0.41</un:value>
<un:1t>22.0</un:1t>
<un:ge>20.0</un:ge>
</un:Probability>
</un:field>
<un:field>
<un:Probability
definition="http://dictionary.uncertml.org/statistics/probability'>
<un:value>0.21</un:value>
<un:1t>24_.0</un:1t>
<un:ge>22.0</un:ge>
</un:Probability>
</un:field>
<un:field>
<un:Probability
definition="http://dictionary.uncertml _org/statistics/probability'>
<un:value>0.09</un:value>
<un:1t>26.0</un:I1t>
<un:ge>24.0</un:ge>
</un:Probability>
</un:field>
</un:StatisticsRecord>
</rv:representation>
</rv:Phenomenon>
</rv:phenomena>
</rv:RandomVariable>
</om:result>
</om:Observation>

Example 25: UncertML can be used within the result property of an Observation as well as the resultQuality
property.

44 08-122r1

OGC Discussion Paper

<rv:JointRandomVariable>
<rv:phenomena>
<rv:Phenomenon definition="urn:x-
ogc:def:phenomenon:0GC:AirTemperature''>
<rv:uom xlink:href="urn:ogc:def:uom:0GC:degC"/>
<rv:domainPointCount>4</rv:domainPointCount>
</rv:Phenomenon>
<rv:Phenomenon definition="urn:x-ogc:def:phenomenon:0GC:Pressure'>
<rv:uom xlink:href="urn:ogc:def:uom:0GC:kPa"/>
<rv:domainPointCount>7</rv:domainPointCount>
</rv:Phenomenon>
</rv:phenomena>
<rv:representation>
<un:Realisations
definition="http://dictionary.uncertml._org/realisation”
sampl ingMethod=""http://dictionary.uncertml.org/sampling_methods/MCMC"
realisedFrom="http://dictionary.uncertml _org/distribtuions/gaussian'>
<un:numberReal isations>100</un:numberReal isations>
<un:elementCount>1100</un:elementCount>
<swe:encoding>
<swe:TextBlock decimalSeparator="_" blockSeparator=
tokenSeparator=","/>
</swe:encoding>
<swe:values>
<l-- Realisation 1 -->
[4 Temperature Realisations + 7 Pressure Realisations]
<l-- Realisation 2 -->
[4 Temperature Realisations + 7 Pressure Realisations]
<l-- Realisation 3 -->
[4 Temperature Realisations + 7 Pressure Realisations]

<l-- Realisation 98 -->
[4 Temperature Realisations + 7 Pressure Realisations]
<l-- Realisation 99 -->
[4 Temperature Realisations + 7 Pressure Realisations]
<l-- Realisation 100 -->
[4 Temperature Realisations + 7 Pressure Realisations]
</swe:values>
</un:Realisations>
</rv:representation>
</rv:JointRandomVariable>

Example 26: Realisations used to describe the correlation between two phenomena.

45 08-122r1

OGC Discussion Paper

<rv:JointRandomVariable>
<rv:phenomena>
<rv:Phenomenon definition="urn:x-ogc:def:phenomenon:0GC:Rainfall'>
<rv:uom xlink:href="urn:ogc:def:uom:0GC:mm"/>

<rv:domainPointCount>50</rv:domainPointCount>
</rv:Phenomenon>

<rv:Phenomenon definition="urn:x-
ogc:def:phenomenon:0GC:AirTemperature'>
<rv:uom xlink:href="urn:ogc:def:uom:0GC:degF"/>
<rv:domainPointCount>50</rv:domainPointCount>
</rv:Phenomenon>
</rv:phenomena>
<rv:representation>
<un:StatisticsArray>
<un:elementCount>100</un:elementCount>
<un:elementType>
<Statistic
definition="http://dictionary.uncertml _org/statistics/mean'/>
</un:elementType>
<swe:encoding decimalSeperator="." tupleSeperator=" "'
blockSeperator=","/>
<swe:values>
<l-- [50 Mean Rainfall] -->
<l-- [50 Mean Temperature] -->
</swe:values>
</un:StatisticsArray>
<un:StatisticsArray>
<un:elementCount>10000</un:elementCount>
<un:elementType>
<un:Statistic
definition="http://dictionary.uncertml.org/statistics/covariance"/>
</un:elementType>
<swe:encoding decimalSeperator="_" tupleSeperator=" "'
blockSeperator=","/>
<swe:values>
<I-- [10000 *“Covariance® Values] -->
</swe:values>
</un:StatisticsArray>
</rv:representation>
</rv:JointRandomVariable>

Example 27: A StatisticsArray is used to describe the mean values of two phenomena and a covariance
matrix summarising the relationships between them.

<InterpolationResult>
<domain>
<gml :RectifiedGrid dimension="2">
<gml:limits>
<gml :GridEnvelope>
<gml:lTow>0 O</gml:low>
<gml :high>2 2</gml:high>
</gml :GridEnvelope>
</gml:limits>
<gml :axisName>x</gml :axisName>
<gml :axisName>y</gml : axisName>
<gml:origin>
<gml :Point>

<gml:pos srsName="urn:x-ogc:def:crs:EPSG:4326">52.4773635864
-1.89538836479</gml :pos>

46 08-122r1

OGC Discussion Paper

</gml:Point>
</gml:origin>
<gml :offsetVector srsName="urn:x-ogc:def:crs:EPSG:4326'">0.1453232
0</gml :offsetVector>
<gml :offsetVector srsName="urn:x-ogc:def:crs:EPSG:4326">0
0.1453232</gml :offsetVector>
</gml:RectifiedGrid>
</domain>
<range>
<rv:JointRandomVariable>
<rv:phenomena>
<rv:Phenomenon definition="urn:x-
ogc:def:phenomenon:0GC:AirTemperature'>
<rv:uom href="urn:ogc:def:uom:0GC:degC"/>
<rv:domainPointCount>4</rv:domainPointCount>
</rv:Phenomenon>
</rv:phenomena>
<rv:representation>
<un:MultivariateDistribution
definition="http://dictionary.uncertml _org/distributions/multivariate_gauss
ian''>
<un:parameters>
<un:ParameterArray>
<un:elementType>
<un:Parameter
definition="http://dictionary.uncertml.org/distributions/multivariate_gauss
ian/parameters/mean' />
</un:elementType>
<un:elementCount>4</un:elementCount>
<swe:encoding>
<swe:TextBlock decimalSeparator="_"
blockSeparator=" " tokenSeparator=","/>
</swe:encoding>
<swe:values>
21.3 19.6 22.1 20.5
</swe:values>
</un:ParameterArray>
<un:ParameterArray>
<un:elementType>
<un:Parameter
definition="http://dictionary.uncertml.org/distributions/multivariate_gauss
ian/parameters/covariance'/>
</un:elementType>
<un:elementCount>16</un:elementCount>
<swe:encoding>
<swe:TextBlock decimalSeparator="_"
blockSeparator=" " tokenSeparator=","/>
</swe:encoding>
<swe:values>
4.4 3.3 3.1 1.7 3.3
4.8 3.7 2.9 3.1 3.7
4.9 3.91.72.9 3.9
6.1
</swe:values>
</un:ParameterArray>
</un:parameters>
</un:MultivariateDistribution>
</rv:representation>
</rv:JointRandomVariable>
</range>

47 08-122r1

OGC Discussion Paper

</InterpolationResult>
Example 28: UncertML is used to describe the result of an interpolation as a joint distribution.

10 UncertML XML Schemata

10.1 UncertML.xsd

<schema xmlns="http://www.w3.0rg/2001/XMLSchema""
xmIns:gml="http://www.opengis.net/gml"™ xmIns:un="http://www.uncertml.org
xmIns:swe="http://www.opengis.net/swe/1.0_.1"
targetNamespace="http://www.uncertml_org"” elementFormDefault=""qualified”
attributeFormDefault="unqualified">

<annotation>

<documentation>[WARN-A001] - No package description in UML

model</documentation>

</annotation>

<import namespace="http://www.opengis.net/gml"
schemalLocation="http://schemas.opengis.net/gml/3.1.1/base/gml .xsd"/>

<import namespace="http://www.opengis.net/swe/1.0.1"
schemalLocation=""http://schemas.opengis.net/sweCommon/1.0.1/swe.xsd"/>

<include schemalLocation="realisations.xsd"/>

<include schemalLocation="baseTypes.xsd"/>

<include schemalLocation="statistics.xsd"/>

<include schemalLocation="distributions.xsd"/>
</schema>

10.2 baseTypes.xsd

<schema xmlns="http://www._w3.0rg/2001/XMLSchema""
xmInszgml=""http://www.opengis.net/gml” xmlns:un="http://www.uncertml.org
targetNamespace="http://www.uncertml._.org" elementFormDefault=""qualified"
attributeFormDefault="unqualified">

<l-- ====== Abstract Uncertainty ==
< ! _—— S ——————————————— ——>
<complexType name="AbstractUncertaintyType' abstract="true'>
<annotation>
<documentation>

Base type for UncertML - contains a single attribute definition
that is used to provide semantics to every concrete uncertainty instance.
The definition attribute may be any URI and it is anticipated that this URI
will refer to an entry in a dictionary

</documentation>

</annotation>
<attribute name="definition" type="anyURI" use="optional'>
<annotation>
<documentation>
The definition is a URI that resloves to an entry in a
dictionary to provide semantics to an uncertainty type
</documentation>
</annotation>
</attribute>
</complexType>
<V . -2
<element name="AbstractUncertainty' type="un:AbstractUncertaintyType"
abstract=""true">
<annotation>
<documentation>

48 08-122r1

OGC Discussion Paper

Base type for UncertML. All types that may be used to represent
uncertainty substitute for this type

</documentation>
</annotation>
</element>
<V .. -——>
<complexType name="AbstractUncertaintyPropertyType'>
<sequence>
<element ref="un:AbstractUncertainty'/>
</sequence>
</complexType>
<l-—- ====== Parameter ======-->
<!—— S —————— ——>
<element name="Parameter' type="un:ParameterType">
<annotation>

<documentation>A parameter can belong to a distribution or
statistic</documentation>
</annotation>
</element>
<complexType name="'ParameterType''>
<sequence>
<element name="value' type="anySimpleType' minOccurs="0">
<annotation>
<documentation>
The value property contains the actual value of a particular
parameter
</documentation>
</annotation>
</element>
</sequence>
<attribute name="definition"” type="anyURI">
<annotation>
<documentation>
The definition is a URI that resloves to an entry in a
dictionary to provide semantics to an uncertainty type
</documentation>
</annotation>
</attribute>

</complexType>
<V .. -—>
<complexType name="ParameterPropertyType'>
<sequence>
<element ref="un:Parameter"” maxOccurs=""unbounded"/>
</sequence>
</complexType>
<!—— S —————— ——>
<!—— S ———————————————— ——>

</schema>

10.3 statistics.xsd

<schema xmlns="http://www._w3.0rg/2001/XMLSchema""
xmIns:zgml=""http://www.opengis.net/gml" xmlns:un="http://www.uncertml.org"
xmIns:swe="http://www.opengis.net/swe/1.0"
targetNamespace="http://www.uncertml.org"” elementFormDefault=""qualified"
attributeFormDefault="unqualified">
<!—— S —————— ——>
<I-- bring in other schemas-->

49 08-122r1

OGC Discussion Paper

<include schemalLocation="baseTypes.xsd"/>

<import namespace="http://www.opengis.net/gml"
schemalLocation=""http://schemas.opengis.net/gml/3.1_1/base/gml .xsd"/>

<import namespace="http://www.opengis.net/swe/1.0"
schemalLocation=""http://schemas.opengis.net/sweCommon/1.0.0/aggregateTypes.x
sd'/>

<l-—- e e e e e e et et Y
<l—— ====== StatistiCc ======-->
<l s e e e e e 3

<element name="'Statistic" type="un:StatisticType"
substitutionGroup="un:AbstractUncertainty'>
<annotation>
<documentation>
A Statistic is a generic type that allows the description of most
statistics including mean, variance, standard deviation, mode etc

</documentation>
</annotation>
</element>
<V ... -2
<complexType name="'StatisticType''>
<complexContent>
<extension base="un:AbstractUncertaintyType">
<sequence>
<element name="parameters”™ minOccurs="0">
<annotation>

<documentation>A Statistic may have several
parameters</documentation>
</annotation>
<complexType>
<seguence>
<element ref="un:Parameter" maxOccurs="‘unbounded"/>
</sequence>
</complexType>
</element>
<element name="'value' type="‘anySimpleType" minOccurs="0">
<annotation>
<documentation>
The value of a statistic varies with the type of
statistic.

When referring to a Statistic or Quantile the value
represents the value of that variable and is in the same units of measure
as specified by the variable.

Probability and DiscreteProbabilty types are different
in that the value of these types represents a probability (from 0.0 - 1.0
inclusive) and as such they do not have units of measure.

It is important that this distinction is understood
when working with Statistics

</documentation>
</annotation>
</element>
</sequence>
<attribute name="degreesOfFreedom' type="int">
<annotation>

<documentation>The degrees of freedom is the number of
independent pieces of information that go into the estimation of a
parameter, or statistic</documentation>
</annotation>

50 08-122r1

OGC Discussion Paper

</attribute>
</extension>
</complexContent>
</complexType>
<V e .
<complexType name="'StatisticPropertyType''>
<sequence>
<element ref="un:Statistic"/>
</sequence>
</complexType>

<l—- —====o Probability oo >

<element name="Probability"” type="un:ProbabilityType"
substitutionGroup="un:Statistic'>
<annotation>
<documentation>

A Probability is a specific type of statistic that may require
several properties to specify bounds, e.g. the probability of a variable

being greater than 34 and less than 56 is 0.23

</documentation>
</annotation>
</element>
<V . -2
<complexType name="ProbabilityType">
<complexContent>
<extension base="un:StatisticType">
<group ref="un:ProbabilityGroup"/>
</extension>
</complexContent>
</complexType>
<V .. -—>
<complexType name="ProbabilityPropertyType'>
<sequence>
<element ref="un:Probability"/>
</sequence>
</complexType>
<!—— S ——
<l—— ====== Moment ======-->
<!—— S ————————

<element name=""Moment' type="'un:MomentType"
substitutionGroup="un:Statistic'>
<annotation>
<documentation>
A Moment is used to describe a random quantity.
defined as a moment or a centred moment
</documentation>
</annotation>
</element>
<V e .
<complexType name="MomentType''>
<complexContent>
<extension base="un:StatisticType">
<seguence>
<element name="order' type="int'>
<annotation>
<documentation>

It may be

The order of the moment. E.g. 1st moment, 2nd

moment. . .
</documentation>
</annotation>

51 08-122r1

OGC Discussion Paper

</element>
</sequence>
</extension>
</complexContent>
</complexType>
<complexType name="MomentPropertyType''>
<sequence>
<element ref="un:Moment"/>
</sequence>
</complexType>

<element name="DiscreteProbability"” type="un:DiscreteProbabilityType"
substitutionGroup="un:Statistic'>
<annotation>
<documentation>
A DiscreteProbability is a more specific type of statistic that
requires a discrete category to be provided
</documentation>
</annotation>
</element>
<V . -2
<complexType name="DiscreteProbabilityType’'>
<complexContent>
<extension base="un:StatisticType">
<sequence>
<element name="category' minOccurs="0">
<annotation>
<documentation>
The category of a DiscreteProbability may be any type
but typically this will be a string representing a particular category
within a set. E.g. the probability that the NO2 levels in the United
Kingdom are high
</documentation>
</annotation>
<complexType>
<complexContent>
<extension base="anyType'>
<attribute name="definition" type="anyURI"/>
</extension>
</complexContent>
</complexType>
</element>
</sequence>
</extension>
</complexContent>
</complexType>
<V ... -2
<complexType name="DiscreteProbabilityPropertyType''>
<seguence>
<element ref="un:DiscreteProbability"/>
</sequence>
</complexType>

<l—- —====o Quantile oo >
<element name="Quantile" type="un:QuantileType"
substitutionGroup="un:Statistic'>
<annotation>

52 08-122r1

OGC Discussion Paper

<documentation>
A Quantile is a more specific type of statistic that requires a
level property be supplied to specify the particular quantile of iInterest,
e.g- 0.05 or 0.95
</documentation>
</annotation>
</element>
<V ..
<complexType name="QuantileType'>
<complexContent>
<extension base="un:StatisticType">
<attribute name="level" use="optional'>
<annotation>
<documentation>
The level attribute specifies the quantile of interest.
This is a number that ranges from 0.0 -- 1.0 inclusive
</documentation>
</annotation>
<simpleType>
<restriction base="double">
<minlnclusive value="0.0"/>
<maxInclusive value="1.0"/>
</restriction>
</simpleType>
</attribute>
</extension>
</complexContent>
</complexType>
<complexType name="QuantilePropertyType'>
<seguence>
<element ref="un:Quantile"/>
</sequence>
</complexType>
< ! —_—— e ————————————— ——>

<element name="StatisticsRecord"” type="‘un:StatisticsRecordType"
substitutionGroup="un:AbstractUncertainty">
<annotation>
<documentation>
A StatisticsRecord groups several statistics together to form a
set of statistics that may provide a summary of a particular variable
</documentation>
</annotation>
</element>
<V .. -—>
<complexType name="StatisticsRecordType'>
<complexContent>
<extension base="un:AbstractUncertaintyType">
<seguence>
<element name=""field" type="'un:AnyStatisticPropertyType"
minOccurs="0" maxOccurs="unbounded"">
<annotation>
<documentation>
Each field represents another Statistic. It may be any
statistic from within the AnyStatistic union. This may be a StatisticsArray
or another StatisticsRecord
</documentation>
</annotation>
</element>

53 08-122r1

OGC Discussion Paper

</sequence>
</extension>
</complexContent>
</complexType>
<V e .
<complexType name="'StatisticsRecordPropertyType'>
<sequence>
<element ref="un:StatisticsRecord"/>
</sequence>
</complexType>

<element name="StatisticsArray" type="un:StatisticsArrayType"
substitutionGroup="un:AbstractUncertainty">
<annotation>
<documentation>
A StatisticsArray encodes numerous values for a particular
statistic (or group of statistics) in an efficient encoding block
</documentation>
</annotation>
</element>
<V ..
<complexType name="StatisticsArrayType">
<complexContent>
<extension base="un:AbstractUncertaintyType">
<seguence>
<element name="elementType"
type="un:AnyStatisticPropertyType'>
<annotation>
<documentation>
The elementType defines the type of statistic encoded
within the values property. This may be any statistic from the AnyStatistic
union so you can have arrays of records and even arrays of arrays
</documentation>
</annotation>
</element>
<element name="elementCount™ type="integer'>
<annotation>
<documentation>
The elementCount property is an integer value that
contains the number of elements in the array

</documentation>
</annotation>
</element>
<group ref="swe:EncodedValuesGroup'/>
</sequence>
</extension>
</complexContent>
</complexType>
<V .. -——>
<complexType name="'StatisticsArrayPropertyType">
<sequence>
<element ref="un:StatisticsArray'/>
</sequence>
</complexType>
< ! —_— S ——————— ——>
<group name="AnyStatistic">
<annotation>
<documentation>

54 08-122r1

OGC Discussion Paper

A union type that provides a choice between any statistic - used
in StatisticsRecord and StatisticsArray
</documentation>
</annotation>
<choice>
<element ref="un:StatisticsRecord"/>
<element ref="un:StatisticsArray'/>
<element ref="un:Statistic'/>

</choice>
</group>
< ! — e ———————————————— ——>

<complexType name="AnyStatisticPropertyType">
<sequence minOccurs="0"">
<group ref="un:AnyStatistic"/>

</sequence>

<attributeGroup ref="gml:AssociationAttributeGroup'/>
</complexType>
< ! _— S ———————— ——>
< ! —_——] ————————————————— ——>
<group name="'ProbabilityGroup'>

<annotation>

<documentation>Group for probabilities containing greater than,
less than, equal to, greater than or equal to and less than or equal to.
All are optional and may be used in combination to create upper and lower
bounds
</documentation>
</annotation>
<sequence>
<element name="'gt" type="double" minOccurs="0">
<annotation>
<documentation>
The probability that a random quantity is greater than this
number. The acutal probability is contained within the value
property</documentation>

</annotation>
</element>
<element name="1t" type="double"™ minOccurs="0">
<annotation>
<documentation>

The probability that a random quantity is less than this
number. The actual probability is contained within the value
property</documentation>

</annotation>
</element>
<element name="eq" type="double" minOccurs="0">
<annotation>
<documentation>

The probability that a random quantity is equal to this number.
The actual probability is contained within the value property
</documentation>
</annotation>
</element>
<element name="'ge"™ type="double" minOccurs="0">
<annotation>
<documentation>
The probability that a random quantity is greater than or equal
to this number. The actual probability is contained within the value
property</documentation>
</annotation>
</element>

55 08-122r1

OGC Discussion Paper

<element name="le" type="double" minOccurs="0">
<annotation>
<documentation>
The probability that a random quantity is less than or equal to
this number. The actual probability is contained within the value
property</documentation>

</annotation>
</element>
</sequence>
</group>
<!—— e —————— ——>
</schema>

10.4 realisations.xsd

<schema xmlns="http://www.w3.0rg/2001/XMLSchema""
xmIns:gml="http://www.opengis.net/gml" xmlns:un="http://www.uncertml.org"
xmIns:swe="http://www.opengis.net/swe/1.0"
targetNamespace="http://www.uncertml_org"” elementFormDefault="qualified"
attributeFormDefault="unqualified">

<!—— e ————————————————— ——>

<I-- bring in other schemas-->

<include schemalLocation="baseTypes.xsd"/>

<import namespace="http://www.opengis.net/swe/1.0"
schemalLocation="http://schemas.opengis.net/sweCommon/1.0.0/aggregateTypes.x
sd"/>

<l-- ====== Realisations types ======-->

<element name="Realisations' type="un:RealisationsType"
substitutionGroup="un:AbstractUncertainty'>

<annotation>
<documentation>
A Realisations is used to group numerous samples into an efficient
encoding
</documentation>
</annotation>
</element>
<V .. -——>
<complexType name="RealisationsType">
<complexContent>
<extension base="un:AbstractUncertaintyType">
<sequence>
<element name="'realisationsCount" type="int">
<annotation>

<documentation>realisationsCount specifies the number
of realisations for any given phenomena at any given domain
point</documentation>
</annotation>
</element>
<element name="elementCount”™ type="integer'>
<annotation>
<documentation>
elementCount is an integer value that specifies the
number of realistaions contained within the values property
</documentation>
</annotation>
</element>

56 08-122r1

OGC Discussion Paper

<group ref="swe:EncodedValuesGroup'/>
</sequence>
<attribute name="samplingMethod" type="anyURI'/>
<attribute name="realisedFrom” type="anyURI"/>
</extension>
</complexContent>
</complexType>
<V . -2
<complexType name="RealisationsPropertyType">
<seguence>
<element ref="un:Realisations'/>
</sequence>
</complexType>
<!—— oo
<!—— s S
<group name="AnyRealisation''>
<choice>
<element ref="un:Realisations'/>
</choice>
</group>

</schema>

10.5 distributions.xsd

<schema xmlns="http://www.w3.0rg/2001/XMLSchema""
xmIns:gml="http://www.opengis.net/gml" xmlns:un="http://www.uncertml.org"
xmIns:swe="http://www.opengis.net/swe/1.0"
targetNamespace="http://www.uncertml_org"” elementFormDefault="qualified"
attributeFormDefault="unqualified">

<!__ s s S

<I-- bring in the other schemas-->

<include schemalLocation="baseTypes.xsd"/>

<import namespace="http://www.opengis.net/gml"
schemalLocation="http://schemas.opengis.net/gml/3.1.1/base/gml .xsd"/>

<import namespace="http://www.opengis.net/swe/1.0"
schemalLocation=""http://schemas.opengis.net/sweCommon/1.0.0/aggregateTypes.x
sd"/>

<l-- ====== Distribution ======-->

<element name="Distribution” type="un:DistributionType
substitutionGroup="un:AbstractUncertainty">
<annotation>
<documentation>
A Distribution is used to represent any parameteric distribution.
The definition attribute links to a dictionary that provides details about
the cumulative distribution function.
</documentation>
</annotation>
</element>

<complexType name="DistributionType"'>
<complexContent>
<extension base="un:AbstractUncertaintyType">
<sequence>
<element name="parameters” type="un:ParameterPropertyType"
minOccurs="0">

57 08-122r1

OGC Discussion Paper

<annotation>
<documentation>
Most distributions contain 1 or more parameters that
define a specific instance of that distribution

</documentation>
</annotation>
</element>
</sequence>
</extension>
</complexContent>
</complexType>
<V .. -—>
<complexType name="DistributionPropertyType">
<sequence>
<element ref="un:Distribution'/>
</sequence>
</complexType>
< ! — S ——————— ——>
<l-- ====== MultivariateDistribution ======-->
< ! — s ————————————————— ——>

<element name="MultivariateDistribution”
type="un:MultivariateDistributionType"
substitutionGroup="un:AbstractUncertainty">
<annotation>
<documentation>
A MultivariateDistribution is used for joint distributions.
ParameterArrays are utilised to encode the numerous parameter values
</documentation>
</annotation>
</element>
<V—— ..
<complexType name="MultivariateDistributionType'>
<complexContent>
<extension base="un:AbstractUncertaintyType">
<seguence>
<element name="parameters"
type=""un:ParameterArrayPropertyType"™ minOccurs="0">
<annotation>
<documentation>
The parameters property of a MultivariateDistribution
contains multiple arrays of parameters. In the instance of a multivariate
Gaussian distribution this would be an array of mean values and an array of
covariance values
</documentation>
</annotation>
</element>
</sequence>
</extension>
</complexContent>
</complexType>
<complexType name="MultivariateDistributionPropertyType'>
<sequence>
<element ref="un:MultivariateDistribution'/>
</sequence>
</complexType>

<element name="ParameterArray' type="'un:ParameterArrayType''>
<annotation>

58 08-122r1

OGC Discussion Paper

<documentation>
A ParameterArray is used by MultivariateDistributions and contains
an efficient encoding for numerous values of the same parameter
</documentation>
</annotation>
</element>
<complexType name="ParameterArrayType'>
<sequence>
<element name="elementType" type="'un:ParameterPropertyType'>
<annotation>
<documentation>
The elementType contains a Parameter type that defines the
parameter that is encoded within the values property
</documentation>
</annotation>
</element>
<element name="elementCount™ type="integer'>
<annotation>
<documentation>
The elementCount property is an integer value that defines
the number of elements within the values property

</documentation>
</annotation>
</element>
<group ref="swe:EncodedValuesGroup'/>
</sequence>
</complexType>
<V . -——>
<complexType name="'ParameterArrayPropertyType'>
<seguence>
<element ref="un:ParameterArray" maxOccurs="unbounded'/>
</sequence>
</complexType>
<l-- ====== MixtureModel ======-->

<element name="MixtureModel" type="un:MixtureModelType"
substitutionGroup="un:AbstractUncertainty">
<annotation>
<documentation>
A MixtureModel is like a collection of multiple distributions with
each one having a relative influence on the variable
</documentation>
</annotation>
</element>
<V .. -—>
<complexType name="MixtureModelType">
<complexContent>
<extension base="un:AbstractUncertaintyType">
<seguence>
<element name="'weights" type="gml:doubleList"” minOccurs="0">
<annotation>
<documentation>
The weights property contains a list of double values
that represent the relative weights of each distribution instance. There
should be the same number of values within the weights property as there
are distributions within the distributions property. Extra care should be
taken when working with multivariate distributions
</documentation>
</annotation>

59 08-122r1

OGC Discussion Paper

</element>
<element name="distributions"
type="un:AnyDistributionPropertyType'” minOccurs="0">
<annotation>
<documentation>
The distributions property contains 1 or more
distribution types from the AnyDistribution union which includes
Distributions, MultivariateDistributions and DistributionArrays
</documentation>
</annotation>
</element>
</sequence>
</extension>
</complexContent>
</complexType>
<V .. -——>
<complexType name="MixtureModelPropertyType">
<sequence>
<element ref="un:MixtureModel'/>
</sequence>
</complexType>

<element name="DistributionArray" type="un:DistributionArrayType"
substitutionGroup="un:AbstractUncertainty">
<annotation>
<documentation>
A DistributionArray is used to encode multiple distributions of
the same type
</documentation>
</annotation>
</element>
<V . -2
<complexType name="DistributionArrayType'>
<complexContent>
<extension base="un:AbstractUncertaintyType">
<sequence>
<element name="elementType"
type="un:AnyDistributionPropertyType'>
<annotation>
<documentation>
The elementType property contains the distribution
that is encoded within the values property. The distribution within this
property is taken from the AnyDistribution union and can be a Distribution,
MultivariateDistribution or another DistributionArray
</documentation>
</annotation>
</element>
<element name="elementCount™ type="integer'>
<annotation>
<documentation>
The elementCount property is an integer value that
represents the number of elements within the values property

</documentation>
</annotation>
</element>
<group ref="swe:EncodedValuesGroup'/>
</sequence>
</extension>
</complexContent>

60 08-122r1

OGC Discussion Paper

</complexType>
<V .. -—>
<complexType name="DistributionArrayPropertyType">
<sequence>
<element ref="un:DistributionArray"/>
</sequence>
</complexType>
<!—— e S
<!—— oo S
<group name="AnyDistribution'>
<annotation>
<documentation>
The AnyDistribution union is used by the DistributionArray and
MixtureModel types
</documentation>
</annotation>
<choice>
<element ref="un:MultivariateDistribution"/>
<element ref="un:Distribution’/>
<element ref="un:DistributionArray"/>
<element ref="un:MixtureModel'/>

</choice>
</group>
<!—— e ———————— ——>
<!—— e ————————————— ——>

<complexType name="AnyDistributionPropertyType">
<sequence maxOccurs=""unbounded">
<group ref="un:AnyDistribution"/>

</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup'/>
</complexType>
<!—— S ————— ——>
</schema>

61 08-122r1

	2 0BIntroduction
	3 1BScope
	4 2BNormative references
	5 3BConventions
	5.1 9B Symbols (and abbreviated terms)
	5.2 10BUML Notation
	5.3 11BDefinitions of terms as used within this document

	6 4BConceptual Models
	6.1 12BBase Types
	6.1.1 36BAbstractUncertainty
	6.1.2 37BParameter

	6.2 13BRealisations
	6.3 14BStatistics
	6.3.1 38BSummary Statistics
	6.3.2 39BStatisticsRecord
	6.3.3 40BStatisticsArray

	6.4 15B Distributions
	6.4.1 41BDistribution
	6.4.2 42BDistributionArray
	6.4.3 43BMixtureModel
	6.4.4 44B MultivariateDistribution

	7 5BRelation to existing ISO standards
	7.1 16BISO 19115: Metadata
	7.2 17BISO 19114: Quality evaluation procedures
	7.3 18BISO 19138: Data quality measures
	7.4 19BISO 19118: Encoding
	7.5 20BISO 19119: Services

	8 6BXML Encoding and Examples
	8.1 21BRealisations
	8.2 22BStatistics
	8.2.1 45BStatistics, Quantiles, Probabilities & Moments
	8.2.2 46B StatisticsArray
	8.2.3 47BStatisticsRecord

	8.3 23BDistributions
	8.3.1 48BDistribution
	8.3.2 49BDistributionArray
	8.3.3 50BMixtureModel
	8.3.4 51BMultivariateDistribution

	8.4 24BISO 19138 data quality measures

	9 7BUncertML Best Practice
	9.1 25B 3 tier architecture
	9.2 26BSensor Noise Model
	9.3 27BInterpolation Results
	9.4 28BDiscrete Probabilities
	9.5 29BProbabilistic Weather Forecast
	9.6 30BMultivariate Statistics

	10 8BUncertML XML Schemata
	10.1 31BUncertML.xsd
	10.2 32BbaseTypes.xsd
	10.3 33Bstatistics.xsd
	10.4 34Brealisations.xsd
	10.5 35Bdistributions.xsd

