License Manager Specification

Infrastructure Project

License Manager Specification

Infrastructure Project

Version 0.9.7

Table of Contents

License Manager Specification
1
Infrastructure Project
1
Table of Contents
2
License Manager Project
4
Introduction:
4
Background on Creative Commons:
4
Review of Creative Commons Licensing Implementation:
5
License Manager Objectives:
6
Objective 1:
6
Objective 2:
6
Objective 3:
6
Objective 4:
7
Objective 5:
7
Objective 6:
7
Objective 7:
7
Use Cases:
7
License Manager Concepts:
7
License Manager System Architecture:
7
Purpose of the License Manager:
8
Purpose of the Injector:
8
Purpose of the CCSL:
9
License Manager Application Architecture:
9
LM and components overview:
10
License Manager (LM) is a combination of several major components:
11
Service Registry:
11
License Registry:
11
External API and Pass-thru Methods:
11
Creative Commons Style License (CCSL) is a combination of several components:
11
Licensing Metadata
11
Provider Metadata
11
Licensing API
11
Injector API
12
Processes:
14
COM to License Manager
14
LM Generate License
14
LM Insert License
15
LM Remove License
15
LM Retrieve Registry Information
16
LM Validate License
16
LM View License
17
Process Diagram:
17
Tracking of Non Injectable Resource Licenses:
18
Appendix A
22
Use Cases:
22
COM External Application-Service Insertion of Chosen License
22
COM External Application-Service Remove License
23
COM External Application-Service Validate License
23
COM External Application-Service View License
24
COM External GUI Insertion of Chosen License
25
COM External GUI Remove License
26
COM External GUI Validate License
26
COM External GUI View License
27
External Application-Service Insertion of Chosen License
28
External Application-Service Remove License
29
External Application-Service Validate License
29
External Application-Service View License
30
External GUI Generate License
30
External GUI Insertion of Chosen License
31
External GUI Remove License
32
External GUI Validate License
32
External GUI View License
33

License Manager Project

Introduction:

License Manager Project was conceived after a review of the current Creative Commons Licensing framework (http://creativecommons.org/). The project aims to improve on the existing implementation of the framework by abstracting to support other licenses based on the original Creative Commons concept. Abstracted license types are termed “Creative Commons Style Licenses (CCSL)” and they adhere to the same requirements as current Creative Commons Licenses:

· full text of the License is available via the Internet

· methods exist to generate the License

· a versioning methodology is in place

· license icons are available

Background on Creative Commons:

Creative Commons is an internationally recognised information licensing system that makes it easier and cheaper for people to use and distribute copyright material over the Internet. By attaching a Creative Commons License to their work, the creator is able to make their material more freely available than it would be under default copyright law. There is no requirement to to hire a lawyer or give up their copyright entirely. This creates a pool of material that can be legally used by ordinary people without having to request permission from the author. It does this by providing a set of free and voluntary licenses that creators can use to describe how others can use their material in the digital environment. A creator can be anyone who has a product they wish to share and distribute via the Internet. Creative Commons Licenses are characterised by easily recognised symbols which gives a clear and immediate understanding to the recipient of the permissions the author has granted. This is underpinned by robust and legally valid arrangements. Creative Commons Licenses are given effect online through a subset of digital rights management referred to as ‘Electronic Rights Management’. The Electronic Rights Management metadata is used to ‘tag’ a file or data stream allowing people and computer programs, such as search engines, to identify the License attached to the information. The metadata includes a link to a web page which describes the License in more detail.

The key terms of the core suite of Creative Commons Licenses are: Attribution, NonCommercial, NoDerivatives and ShareAlike. The following tables describes the License uses and permissions available under each of the Creative Commons License types, and the various combinations for Licenses.

Symbol
License type
License use and permissions

[image: image1.png]

Attribution

(BY)
the user (licensee) must attribute the author and/or licensor in the manner s/he requires

[image: image2.png]

NonCommercial

(NC)
the user (licensee) may copy, display and distribute the work but not use the work in a manner primarily directed toward commercial advantage or private monetary compensation

[image: image3.png]

NoDerivatives

(ND)
the user (licensee) may only make verbatim copies of the work, but may not adapt or change it

[image: image4.png]

ShareAlike

(SA)
the user (licensee) may only make derivative works if s/he licenses them under the same Creative Commons license terms

Review of Creative Commons Licensing Implementation:

The current implementation for producing, inserting, removing and viewing licenses has been poorly engineered. The issues identified are:

1. Text Licenses are provided from the Creative Commons website via a form. The resulting license is then left to the user to insert into the document.
Issue 1: the text license that is currently provided by CC is designed for HTML pages and is not a suitable format for most other document types.

Issue 2: if a user was to copy and paste the generated text into HTML page, errors would be generated as the HTML formatting is incorrect ie not well formed. It is left up to the user to decide where the license is to be inserted. If the user is inexperienced, the license may not be visible, or may generate further problems with the HTML page the license text is inserted into.

2. Creative Commons License web service (RESTFUL) can be called over the Internet to generate a Creative Commons License as a returned object.
Issue: the current implementation of the web service is currently not able to pass through most corporate firewalls. The clients provided do not supply domain level authentication to the firewall.

3. There are many different implementations of software to place a license into a specified file format.
Issue: the interfaces for the injection of the licenses are different for most current implementations. This means that users have to learn different interfaces for each piece of software the user requires for various file formats. It also means developers do not have a common application programming interface (API) for the purpose of automating the process in business workflows.

4. Provisioning of the license is for the most current available license for the applicable jurisdiction.
Issue: Corporations are slow to change the licensing of their products and services. The current implementation does not allow for organisations or individuals to choose the version of the Creative Commons License they wish to insert into their products and services.

5. The various implementations of the software to insert licenses into a specific file format are created with a range of languages such as Python, Perl, Javascript, Jython, VBScript and a host of others.
Issue: Software in corporate environments is tightly controlled. It is unlikely organisations will adopt a solution that requires support for a large number of different languages.

6. The method of insertion of CCSL can vary for specific file formats and data streams.

 Issue: The quality of documentation for insertion/validation of CCSL into various file formats is very inconsistent. The insertion of a CCSL into a PDF format is a good example. In this case the Creative Commons wiki states that the field in the XMP document must have several fields placed in the XMP metadata. However, the XMP license downloaded from the Creative Commons website does not follow this guideline.

7. The current Creative Commons service does not provide for the insertion of the service into an existing workflow.

Issue: Organisations require automation of insertion of licenses into existing workflows. The lack of versioning of the licenses and problems around firewalls is likely to prevent organisations from embedding the service into their workflows.

Corporations and individuals may support the principles behind the Creative Commons movement, but existing tools do not suit their implementation.

License Manager Objectives:

The License Manager (LM) was conceived to address issues detailed above as well as other issues not recognised during the review. Such issues may inhibit the adoption of Creative Commons by organisations and individuals.

Objective 1:

Provide a generic API for retrieval, generation, insertion, viewing, validation and removal of CCSLs.

Objective 2:

Provide a means to create CCSLs from specific CC versions.

Objective 3:

Provide a generic API for the implementation of license insertion software (termed “injector”).

Objective 4:

Provide a means for commonly used programming languages to use the LM within organisation workflow systems. Provide a graphical user interface (GUI) so the LM can be used as an independent component.

Objective 5:

Provide a Component Object Model (COM) wrapper for the LM that will allow access to the LM from any language that is capable of accessing a COM interface.

Objective 6:

Provide examples of GUI using various languages (Java, .Net, Python and others) as reference implementations.

Objective 7:

Provide an interface that can be used by workflows to enable SOA (Service Oriented Architecture) enablement of organisational workflows.

Use Cases:

Use cases have been discussed with potential users of the LM. These organisations are ABS, OESR, Dart Project, Arrow Project, OAK Law Project and Queensland University of Technology.

The Use Cases can be found in Appendix A.

License Manager Concepts:

The concept of the License Manager Project is to provide a set of consistent interfaces that developers can use to implement license injectors. This allows for 3rd party providers of injectors and CCSLs to contribute new functionality to the framework without modifying the base system. It also provides a mechanism for current providers of license injector software to “wrap” their software in a consistent format.

License Manager System Architecture:

Conceptually, one could think of the LM as a set of envelopes that developers and business people can store their CCSLs and injectors. The injectors and CCSL will require replacement and/or amendmend on a regular basis. Changes to injectors and CCSL must not cause the core system to be modified ie it should not require a recompile of the original code base. Open Services Gateway Initiative (OSGI) or Service Provider Interface (SPI) can be used to achieve this objective. The following high level diagram shows the various components that make up the architecture of the LM.

[image: image5.wmf]License Manager

CCSL

Injectors

Purpose of the License Manager:

The License Manager provides a central point for applications such as GUIs and applications to query the availability of CCSLs and injectors. The LM provides methods for injection/removal/validation/retrieval of a license for a file or data service. LM uses Service Provider Interface (SPI) to locate new injectors and licenses found in the LM repository directory. SPI is a standard for defining services that are found in Java Archive (JAR) files. This requires that the JAR file meets specific requirements for implementation. These requirements are detailed in the LM Developer Manual.

A COM (Component Object Model Technologies http://www.microsoft.com/com/default.mspx) wrapper is placed around the LM exposing the internal methods via a COM interface, with the following implementation points :

· registration point for the CCSLs and injectors that are found in the repository

· listing of CCSLs registered

· listing of injectors registered

· retrieval of a license to an application or GUI

· registration services

· pass thru method for License Generation

· pass thru method for License Viewing

· pass thru method for License Validation

· pass thru method for License Removal

· pass thru method for License Insertion

Purpose of the Injector:

An injector is an interface that is implemented so that a selected license can be inserted into a file or data service. It also provides a mechanism for the introduction of new injectors with methods for :

· License Viewing

· License Validation

· License Removal

· License Insertion

An injector is specific to an existing service type or file type. An injector has the knowledge of how to insert, validate, retrieve and remove a CCSL license for a targeted resource. The LM will pass a metadata class to the injector that the injector will know how to handle. This is key to the concept of the CCSL as the metadata tags are interpreted based on injector design. The license passed to the injector does not have to be generated by the LM. Any valid CCSL passed to the injector as a string will be accepted.

Purpose of the CCSL:

The CCSL provides the metadata and methods for the generation of a license class that can be passed back to the LM. It will also provide a mechanism for the introduction of new CCSLs. The Creative Commons Web Service call to the Creative Commons Website will return a standard Creative Commons License. This CCSL is mandatory for the completion of the project. It will be necessary to implement this CCSL with the ability to provide domain-level authentication to corporate firewalls including concrete implementation for license generation.

CCSL Classes will send license metadata back to the calling application in the form of HTML, XML or RDF text. This can be used for GUI display or possible insertion.

Classes that store the metadata for the CCSLs will need to be secure. Organisations will not want to provide licenses that can be tampered with. It is suggested that licenses be distributed in signed jar files to mitigate this risk.

License Manager Application Architecture:

Java has been chosen as the LM development environment. The choice was based on making LM available on as many platforms as possible. A COM interface will be provided for Microsoft .Net users. Service Provider Interface (SPI) has been selected to manage replacement and extension of injectors and CCSLs. SPI was chosen because it has proven to work on multiple operating systems and the Java Virtual Machine. SPI also provides a simple implementation design and smaller footprint than the more complex OSGI.

The SPI specification is a component of the JAR Specification. The specification requires that:

· a property file be located inside of the JAR file in the “META-INF/services” directory

· the name of the property file be the same for all JAR files of the SPI instance

The CCSL and injector files will be located in a directory under the install directory of the License Manager. This directory will be where the software retrieves and adds licenses and injectors from the SPI. The CCSL and injectors are to be in a standard JAR file format. The JAR file requires the “licensemanager.properties” file to be in the “META-INF\services” directory.

The LM, the Service and License Provider have corresponding functions of managing the injectors and CCSLs.

The Service Providers that will be included in this version of the LM are the following:

Service Provider Name
File Format Support
Description
Attribute Display

LicenseServiceProvider_XML
XML documents
W3C XML Documents
Attributes and watermark

LicenseServiceProvider_HTML
HTML documents
W3C HTML 3.x Documents
Attributes and watermark

LicenseServiceProvider_RDF
RDF documents
W3C RDF Documents
Attributes and watermark

User Requested Service Providers
File Format Support
Description

DOC documents
MS Word 2003
Attributes

XLS documents
MS Excel 2003
Attributes

PDF documents
Adobe Acrobat versions
Attributes

The License Providers that will be provided in this version of the LM are the following:

License Provider Name
License Supported
Description

LicenseProvider20by
v. 2.0 Creative Commons By License
Local CCSL License

LicenseProvider20bysa
v. 2.0 Creative Commons By Share Alike License
Local CCSL License

LicenseProviderCC
Current version of Creative Commons License from CC website

LM and components overview:

[image: image6.wmf]License Manager

CCSL

Injectors

Service

Registry

License

Registry

External

API

Pass-

thru

Methods

Licensing

Metadata

Provider

Metadata

Licensing

API

Injector

Metadata

Provider

Metadata

Injector

API

License Manager (LM) is a combination of several major components:

Service Registry:

The service registry provides methods for the registering, refreshing and de-registration of Service Providers. The actual service provider classes are not loaded into memory until they are required. When needed, a classloader will load the class and pass a handle back to the calling application for the class to use the methods and fields that are exposed by the class.

License Registry:

The license registry provides methods for the registering, refreshing and de-registration of License Providers. The actual license provider classes are not loaded into memory until they are required. When needed, a classloader will load the class and pass a handle back to the calling application for the class to use the methods and fields that are exposed by the class.

External API and Pass-thru Methods:

These are the entry points to the LM. They provide methods to access the back-end functionality of the LM, CCSLs and injectors. The external API uses the pass-thru methods to control the flow of application processing.

Creative Commons Style License (CCSL) is a combination of several components:

Licensing Metadata

setLicenseLongName("Creative Commons - Share-Alike v2.0");

setLicenseShortName("Creative Commons - bysa v2.0");

setLogoURI("http://creativecommons.org/images/public/somerights20.gif");

setLegalCode("http://creativecommons.org/licenses/sa/2.0/legalcode/");

setLogoURI("http://creativecommons.org/licenses/sa/2.0/");

setReproduction(true);

setDistribution(true);

setDerivatives(true);

setCommercialUse(false);

setNotice(true);

setAttribution(false);

setShareAlike(true);

Provider Metadata

String theClassName = Licensebysa20.class.getPackage() + "." + Licensebysa20.class.getSimpleName();

System.out.println(theClassName.replaceFirst("package ", ""));

ProviderInformation newProvider = new ProviderInformation("Provider Organization",

"Contact officer", "Contact Office Email", theClassName, "Creative Commons Style", "", getLicenseLongName());

Licensing API

Function Summary LicensePROVIDER

getAttributionName(): String
Method getRDFLicense Retrieves the RDF License for the respective l...

getAttributionURL(): String
Method getRDFLicense Retrieves the RDF License for the respective l...

getCCSL(String): String
Method getRDFLicense Retrieves the RDF License for the respective l...

getDeprecatededOn(): String
Method getRDFLicense Retrieves the RDF License for the respective l...

getHTMLLicense(String): String
Method getHTMLLicense Retrieves the HTML License for the respective...

getJurisdiction(): String
Method getRDFLicense Retrieves the RDF License for the respective l...

getLegalCode(): String
Method getRDFLicense Retrieves the RDF License for the respective l...

getLicenseLongName(): String
Method getRDFLicense Retrieves the RDF License for the respective l...

getLicenses(String): String
Method getLicenses Retrieves the XML License for the respective lic...

getLicenseShortName(): String
Method getRDFLicense Retrieves the RDF License for the respective l...

getLogoURI(): String
Method getRDFLicense Retrieves the RDF License for the respective l...

getNonLegalCode(): String
Method getRDFLicense Retrieves the RDF License for the respective l...

getProviderInformation(): ProviderInformationInterface
Method getProviderInformation Retrieves information regarding the p...

getproviderInformation(): ProviderInformationInterface
Method getRDFLicense Retrieves the RDF License for the respective l...

getRDFLicense(String): String
Method getRDFLicense Retrieves the RDF License for the respective l...

getTitle(): String
Method getRDFLicense Retrieves the RDF License for the respective l...

getVersion(): String
Method getRDFLicense Retrieves the RDF License for the respective l...

Injector API

Function Summary SERVICEPROVIDER

doLicenseInsertion(Document, String): Document
Method doLicenseInsertion This method takes the provided License docum...

doLicenseInsertion(URL, String): URL
Method doLicenseInsertion This method takes the provided License docum...

doLicenseInsertion(File, String): File
Method doLicenseInsertion This method takes the provided License docum...

doLicenseInsertion(InputStream, String): InputStream
Method doLicenseInsertion This method takes the provided License docum...

doLicenseRemoval(Document): Document
Method doLicenseRemoval This method removes a validated License from t...

doLicenseRemoval(InputStream): InputStream
Method doLicenseRemoval This method removes a validated License from t...

doLicenseRemoval(File): File
Method doLicenseRemoval This method removes a validated License from t...

doLicenseRemoval(URL): URL
Method doLicenseRemoval This method removes a validated License from t...

doLicenseValidation(URL): boolean
Method doLicenseValidation This method returns a boolean true if the ...

doLicenseValidation(File): boolean
Method doLicenseValidation This method returns a boolean true if the ...

doLicenseValidation(Document): boolean
Method doLicenseValidation This method returns a boolean true if the ...

doLicenseValidation(InputStream): boolean
Method doLicenseValidation This method returns a boolean true if the ...

doLicenseViewing(Document): String
Method doLicenseViewing This method returns a string from the specifie...

doLicenseViewing(URL): String
Method doLicenseViewing This method returns a string from the specifie...

doLicenseViewing(File): String
Method doLicenseViewing This method returns a string from the specifie...

doLicenseViewing(InputStream): String
Method doLicenseViewing This method returns a string from the specifie...

Processes:

COM to License Manager

Provides the COM interface for the LM. This will expose the main methods of the LM to other applications that have the capability to access and use COM objects.

[image: image7.emf]COM Manager

LM COM Interface

LM

COM External

Application-Se

rvice Insertion

of Chosen

License

COM External

Application-Se

rvice Remove

License

COM External

Application-Se

rvice Validate

License

COM External

Application-Se

rvice View

License

COM External

GUI Generate

License

COM External

GUI Insertion of

Chosen

License

COM External

GUI Remove

License

COM External

GUI Validate

License

COM External

GUI View

License

LM Generate License

Generates a CCLS that is passed back as a either HTML, RDF, XML or a Java class.

[image: image8.emf]LM

CCSL Generate License

LM Error Licence Generation

External

Application-Se

rvice Insertion

of Chosen

License

External GUI

Insertion of

Chosen

License

External GUI

Generate

License

LM Insert License

Insert the selected CCSL into the targeted resource.

[image: image9.emf]LM

Injector License Insertion

LM Error License Insertiion

Chosen License is

passed as well as

reference to resource

External GUI

Insertion of

Chosen

License

LM Remove License

Removes a CCSL from the targeted resource

[image: image10.emf]LM

Injector License Remove

LM Error License Removal

External

Application-Se

rvice Remove

License

External GUI

Remove

License

LM Retrieve Registry Information

Returns to the calling application a listing of all the registered CCSLs and injectors that have been found in the repository.

[image: image11.emf]LM

LM Get Available Injectors

LM Error Licence Generation

LM Error Registry Retrieval

External GUI Insertion of Chosen

License

Retrieve the available CCSLs

and Injectors

LM Validate License

Validates that a license is currently inserted into the targeted resource and that the license is inserted appropriately.

[image: image12.emf]LM

Injector License Validation

LM Error Licence Generation

External GUI

Generate

License

Validate if a license exist and

in place correctly

LM View License

Retrieves the license from the targeted resource.

[image: image13.emf]LM

Injector License View

LM Error View License

External GUI

View License

Process Diagram:

[image: image14.emf]LM Insert

License

LM Retrieve

Registry

Information

LM Retrieve

Registry

Information

LM Validate

License

LM Generate

License

LM View

License

COM to

License

Manager

Tracking of Non Injectable Resource Licenses:

In some cases injectors will not be available for various types of resources. A mechanism is required to link resources to a license, and the resource to users that have accepted the license and have accessed the resource.

There are a number of options for how this can be achieved. However, at this time no specification has been agreed on.

Creative Commons Web Service License Provider:

The “licenseccservice-x-x” Licensing Service calls the Creative Commons Web Service to retrieve a license. It will return the latest license that is available from the Creative Commons Website for the selected jurisdiction. The call is made without passing authentication. If you are located behind a firewall or proxy that requires authentication, you will need to configure the service to pass authentication. This is done by modifying the “CCServiceProxy.properties” that is located in the LicenseManager install directory. The following are the contents of the “CCServiceProxy.properties” file with an explanation of the individual properties.

LicenseCCService.OSUserName=JDoe

LicenseCCService.OSUserPassword=foo

LicenseCCService.WebSiteUserName=

LicenseCCService.WebSiteUserPassword=

LicenseCCService.DomainPassword=foo

LicenseCCService.PACFileLocation=

LicenseCCService.ProxyHostName=

LicenseCCService.DomainName=MyDomain

Parameters and usage:

· LicenseCCService.OSUserName The user name you would normally log onto your Operating System with, or is required by your firewall or proxy server.

· LicenseCCService.OSUserPassword The password associated with the LicenseCCService.OSUserName.

· LicenseCCService.WebSiteUserName (optional) Used only when connecting to a website that requires user name and password. This is the user name for the website.

· LicenseCCService.WebSiteUserPassword (optional) Used only when connecting to a website that requires user name and password. This is the password for the website.

· LicenseCCService.DomainPassword The password for the network domain. This is usually the same as the LicenseCCService.OSUserPassword.

· LicenseCCService.PACFileLocation Automatic Proxy Configuration is a proxy mode where the proxy configuration is described in a PAC (.pac) file using JavaScript. The file is maintained by the network administrator and requires no user updating (hence the term "automatic"). As a browser user, you only need a URL provided by your system or network administrator.

· LicenseCCService.ProxyHostName The name of the proxy server.

· LicenseCCService.DomainName The name of the network domain that the computer has been connected to.

The following URL has detailed explanations of the possible HTTP errors that might be returned by the service (http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html).

If a user experiences a “403” error this usually indicates that the proxy server requires domain level authentication. The user should set-up the “CCServiceProxy.properties” to provide authentication on the web service call. If the error persists, then it is possible that the user will need to add the website URL ("http://api.creativecommons.org/rest/license/standard/issue") to the corporate white list for allowable websites.

Extending the Creative Commons Licensing Framework:

The Creative Commons Framework for licensing provides a good basis for a web-based extensible framework. The licenses provided by the framework are formatted using Resource Description Framework (RDF) language. By using RDF, the basic license format can be extended by adding new tags. This enables the license to be readily accessible by machines as well as users. The example below shows the full basic Creative Commons By 2.0 license in RDF.

<?xml version="1.0" encoding="UTF-8"?>

<result>

<license-uri>http://creativecommons.org/licenses/by/2.0/</license-uri>

<license-name>Creative Commons - by v2.0</license-name>

<rdf>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns="http://web.resource.org/cc/" xmlns:dc="http://purl.org/dc/elements/1.1/">

<Work xmlns="" rdf:about="">

<license rdf:resource="http://creativecommons.org/licenses/by/2.0/"/>

</Work>

<License xmlns="" rdf:resource="Creative Commons - Attribution v2.0">

<permits rdf:resource="http://web.resource.org/cc/Reproduction"/>

<permits rdf:resource="http://web.resource.org/cc/Distribution"/>

<requires rdf:resource="http://web.resource.org/cc/Notice"/>

<requires rdf:resource="http://web.resource.org/cc/Attribution"/>

<permits rdf:resource="http://web.resource.org/cc/DerivativeWorks"/>

</License>

</rdf:RDF>

</rdf>

<licenserdf>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns="http://web.resource.org/cc/" xmlns:dc="http://purl.org/dc/elements/1.1/">

<License xmlns="" rdf:resource="Creative Commons - Attribution v2.0">

<permits rdf:resource="http://web.resource.org/cc/Reproduction"/>

<permits rdf:resource="http://web.resource.org/cc/Distribution"/>

<requires rdf:resource="http://web.resource.org/cc/Notice"/>

<requires rdf:resource="http://web.resource.org/cc/Attribution"/>

<permits rdf:resource="http://web.resource.org/cc/DerivativeWorks"/>

</License>

</rdf:RDF>

</licenserdf>

</result>

The basic license needs to be maintained for backward compatibility and maintains the integrity of the license. Taking this as the base, communities of interest have the ability to extend the license tags to provide further permissions and restrictions as necessary. This type of license is referred to as a “Creative Commons Style License” (CCSL). A community that extends the license can create a new name for the license and is required to provide a URI that defines the restriction or permissions as the “http://web.resource.org/cc/DerivativeWorks” URI from the Creative Commons RDF license currently does. This allows the community to add as many restrictions or permissions as is required while maintaining the integrity of the base Creative Commons license. Licenses that are based around the XML standard can be readily converted to various other license specifications such as ORDL and REL, which provides greater flexibility for using the license in other applications, file formats and services.

With the introduction of a CCSL it is necessary to provide a location for the insertion of the license into various file formats and services. The XMP standard (Exchange Message Protocol found at http://www.adobe.com/devnet/xmp/pdfs/xmp_specification.pdf (Adobe) provides a standard for the insertion of license metadata into many file formats. This standard is recognised for the flexibility that it provides for the insertion of metadata in to various file formats and provides the location for the license metadata to be inserted. Services are more complex to manage. Depending of the service style being implemented, the specifications for the location of licensing metadata is generally not clearly defined. The WS* specification for SOAP web services provides a location in the SOAP envelope for the insertion of a license. With REpresentational State Transfer (REST defined at http://java.sun.com/developer/technicalArticles/WebServices/restful/) services there is no standard location for the insertion of a license. These services are usually based on an XML Schema and are validated against the specific schema prior to execution of the service. This mandates that if a license is to be inserted into a RESTful web service the schema will have to be modified to allow for a location for the license to be inserted. The change to the schema might well be “License” node. If this is added to the schema, associated attributes will allow an application to identify the type of license that has been inserted an the name space of the license. The following is an example of a possible “License” node.

<license type=”” xmlns=""/>

In the case of a Creative Commons license, the following would be an example of the implementation of the license node.

<license type=”CCSL” xmlns="http://web.resource.org/cc/">

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns="http://web.resource.org/cc/" xmlns:dc="http://purl.org/dc/elements/1.1/">

<Work xmlns="" rdf:about="">

<license rdf:resource="http://creativecommons.org/licenses/by/2.0/"/>

</Work>

<License xmlns="" rdf:resource="Creative Commons - Attribution v2.0">

<permits rdf:resource="http://web.resource.org/cc/Reproduction"/>

<permits rdf:resource="http://web.resource.org/cc/Distribution"/>

<requires rdf:resource="http://web.resource.org/cc/Notice"/>

<requires rdf:resource="http://web.resource.org/cc/Attribution"/>

<permits rdf:resource="http://web.resource.org/cc/DerivativeWorks"/>

</License>

</rdf:RDF>

</license>

The mechanism for the insertion of a CCSL is currently up to the implementor of the software. The License Manager has been developed to provide an insertion framework for CCSL. The licenses have been intentionally separated from the mechanism of insertion. This allows the mechanism for inserting the license (injection) to provide functionality for basic Creative Commons License insertion as well as for the insertion of the license extensions that a community may have created.

The geospatial community, for example, has a GeoDRM specification for OGC services. The specification is difficult to implement as a license itself, with no way for humans or machines to read the information easily. By extending the OGC schemas to include a “License” node, the geospatial community could use a ORDL, REL, Creative Commons or CCSL as the implementation method.

Appendix A

Use Cases:

COM External Application-Service Insertion of Chosen License

[image: image15.emf]External Application

LM Validate

License

LM Insert

License

Process Area

Diagram

LM Generate

License

COM to

License

Manager

«uses» «uses»

«uses» «uses»

«instantiate» «instantiate»

«uses» «uses»

COM External Application-Service Remove License

[image: image16.emf]External Application

LM Validate

License

LM Remove

License

Process Area

Diagram

COM to

License

Manager

«uses» «uses»

«instantiate» «instantiate»

«uses» «uses»

COM External Application-Service Validate License

[image: image17.emf]External Application

LM Validate

License

Process Area

Diagram

COM to

License

Manager

«uses» «uses»

«instantiate» «instantiate»

COM External Application-Service View License

[image: image18.emf]External Application

External GUI

Validate

License

LM View

License

COM to

License

Manager

Process Area

Diagram

«uses» «uses»

«instantiate» «instantiate»

COM External GUI Generate License

[image: image19.emf]External Application

GUI

Process Area

Diagram

LM Generate

License

COM to

License

Manager

«instantiate» «instantiate»

«uses» «uses»

COM External GUI Insertion of Chosen License

[image: image20.emf]External Application

GUI

LM Retrieve

Registry

Information

LM Validate

License

LM Generate

License

LM Insert

License

COM to

License

Manager

Process Area

Diagram

«uses» «uses»

«uses» «uses»

«uses» «uses»

«uses» «uses»

«instantiate» «instantiate»

«uses» «uses»

«uses» «uses»

COM External GUI Remove License

[image: image21.emf]External Application

GUI

LM Validate

License

LM Remove

License

Process Area

Diagram

COM to

License

Manager

«uses» «uses»

«uses» «uses»

«instantiate» «instantiate»

COM External GUI Validate License

[image: image22.emf]External Application

GUI

LM Validate

License

Process Area

Diagram

COM to

License

Manager

«uses» «uses»

«instantiate» «instantiate»

COM External GUI View License

[image: image23.emf]External Application

GUI

LM Validate

License

LM View

License

Process Area

Diagram

COM to

License

Manager

«uses» «uses»

«uses» «uses»

«instantiate» «instantiate»

External Application-Service Insertion of Chosen License

[image: image24.emf]External Application

LM Validate

License

LM Insert

License

Process Area

Diagram

LM Generate

License

«instantiate» «instantiate»

«uses» «uses»

«uses» «uses»

External Application-Service Remove License

[image: image25.emf]External Application

LM Validate

License

LM Remove

License

Process Area

Diagram

«instantiate» «instantiate»

«uses» «uses»

External Application-Service Validate License

[image: image26.emf]External Application

LM Validate

License

Process Area

Diagram

«instantiate» «instantiate»

External Application-Service View License

[image: image27.emf]External Application

External GUI

Validate

License

LM View

License

Process Area

Diagram

«instantiate» «instantiate»

«uses» «uses»

External GUI Generate License

[image: image28.emf]External Application

GUI

Process Area

Diagram

LM Generate

License

«instantiate» «instantiate»

External GUI Insertion of Chosen License

[image: image29.emf]External Application

GUI

LM Retrieve

Registry

Information

LM Validate

License

LM Generate

License

LM Insert

License

Process Area

Diagram

initiator initiator

«uses» «uses»

«uses» «uses»

«uses» «uses»

External GUI Remove License

[image: image30.emf]External Application

GUI

LM Validate

License

LM Remove

License

Process Area

Diagram

«uses» «uses»

«instantiate» «instantiate»

External GUI Validate License

[image: image31.emf]External Application

GUI

LM Validate

License

Process Area

Diagram

«instantiate» «instantiate»

External GUI View License

[image: image32.emf]External Application

GUI

LM Validate

License

LM View

License

Process Area

Diagram

«instantiate» «instantiate»

«uses» «uses»

-4-

_127118532.unknown

_127458504.unknown

