

Open Geospatial Consortium Inc.

Date: 2008-08-20

Reference number of this OGC
®
 project document: OGC 08-007r1

Version: 1.0.0

Category: OpenGIS
®
 Encoding Standard

Editors: Gerhard Gröger, Thomas H. Kolbe, Angela Czerwinski, Claus Nagel

OpenGIS
®
 City Geography Markup Language (CityGML)

Encoding Standard

Copyright © 2008 Open Geospatial Consortium, Inc.

To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Document type: OpenGIS
®
 Standard

Document subtype: Encoding

Document stage: Final

Document language: English

OGC 08-007r1

ii Copyright © 2008 Open Geospatial Consortium, Inc.

(Page intentionally left blank)

 OGC 08-007r1

Copyright © 2008 Open Geospatial Consortium, Inc. iii

Contents

i. Preface ... ix

ii. Submitting organizations ... ix

iii. Submission contact points ... ix

iv. Participants in development ... x

v. Revision history ... x

vi. Changes to the OGC
®
 Abstract Specification ... xi

vii. Acknowledgments .. xi

Foreword ... xiii

0 Introduction ... xv

0.1 Motivation .. xv

0.2 Historical background .. xv

1 Scope ... 1

2 Conformance ... 2

3 Normative references .. 2

4 Conventions ... 3

4.1 Abbreviated terms .. 3

4.2 UML Notation .. 4

4.3 XML namespaces and namespace prefixes ... 5

4.4 XML -Schema ... 6

5 Overview of CityGML .. 7

6 General characteristics of CityGML ... 9

6.1 Modularisation ... 9

6.2 Multi -scale modelling (5 levels of detail, LOD) .. 9

6.3 Coherent semantical-geometrical modelling ... 10

6.4 Closure surfaces ... 10

6.5 Terrain Intersection Curve (TIC) ... 11

6.6 Dictionaries and external code lists for enumerative attributes 12

6.7 External references ... 12

6.8 City object groups .. 12

6.9 Appearances ... 13

6.10 Prototypic objects / scene graph concepts ... 13

6.11 Generic city objects and attributes ... 13

6.12 Application Domain Extensions (ADE) .. 14

7 Modularisation .. 15

OGC 08-007r1

iv Copyright © 2008 Open Geospatial Consortium, Inc.

7.1 CityGML core and extension modules .. 16

7.2 CityGML profiles ... 20

8 Spatial model ... 23

8.1 Geometric-topological model .. 23

8.2 Implicit geometries, prototypic objects, scene graph concepts 26

8.2.1 External code lists .. 27

8.2.2 Example CityGML datasets ... 27

8.2.3 Conformance requirements .. 28

9 Appearance model ... 29

9.1 Relation between appearances, features and geometry 30

9.2 Appearance and SurfaceData ... 31

9.3 Material .. 32

9.4 Texture and texture mapping ... 32

9.5 Related concepts .. 38

9.6 Conformance requirements .. 39

9.7 Material model of previous CityGML versions [deprecated] 40

9.7.1 Textured surfaces ... 41

9.7.2 Conformance requirements .. 42

10 Thematic model ... 43

10.1 CityGML Core ... 44

10.1.1 Base elements ... 46

10.1.2 Generalisation relation ... 47

10.1.3 External references ... 47

10.1.4 Address information ... 48

10.1.5 External code lists .. 49

10.1.6 Conformance requirements .. 50

10.2 Digital Terrain Model (DTM) .. 51

10.2.1 Relief feature and relief component ... 52

10.2.2 TIN relief .. 53

10.2.3 Raster relief .. 54

10.2.4 Mass point relief ... 54

10.2.5 Breakline relief ... 54

10.2.6 Conformance requirements .. 55

10.3 Building model ... 56

10.3.1 Building and building part.. 58

10.3.2 Boundary surfaces .. 62

10.3.3 Outer building installations .. 65

10.3.4 Openings .. 65

10.3.5 Building interior ... 66

10.3.6 Modelling building storeys using CityObjectGroups ... 68

10.3.7 External code lists .. 68

 OGC 08-007r1

Copyright © 2008 Open Geospatial Consortium, Inc. v

10.3.8 Conformance requirements .. 69

10.4 Water bodies .. 72

10.4.1 Water body ... 74

10.4.2 Boundary surfaces .. 74

10.4.3 External code lists .. 76

10.4.4 Conformance requirements .. 76

10.5 Transportation objects .. 77

10.5.1 Transportation complex.. 80

10.5.2 Subclasses of transportation complexes ... 81

10.5.3 Subdivisions of transportation complexes .. 82

10.5.4 External code lists .. 83

10.5.5 Conformance requirements .. 83

10.6 Vegetation objects .. 85

10.6.1 Vegetation object ... 87

10.6.2 Solitary vegetation objects ... 87

10.6.3 Plant cover objects ... 88

10.6.4 External code lists .. 88

10.6.5 Example CityGML dataset ... 88

10.6.6 Conformance requirements .. 89

10.7 City furniture .. 90

10.7.1 City furniture object ... 91

10.7.2 External code lists .. 92

10.7.3 Example CityGML dataset ... 92

10.7.4 Conformance requirements .. 93

10.8 Land use ... 94

10.8.1 Land use object .. 95

10.8.2 External code lists .. 95

10.8.3 Conformance requirements .. 95

10.9 City object groups .. 96

10.9.1 City object group .. 96

10.9.2 Conformance requirements .. 97

10.10 Generic city objects and attributes ... 98

10.10.1 Generic city object ... 99

10.10.2 Generic attributes ... 99

10.10.3 Conformance requirements .. 100

10.11 Application Domain Extensions (ADE) .. 102

10.11.1 Technical principle of ADEs .. 102

10.11.2 Example ADE .. 103

10.12 Definition of code lists ... 107

Annex A (normative) XML Schema definition .. 109

A.1 CityGML Core module .. 109

A.2 Appearance module ... 113

OGC 08-007r1

vi Copyright © 2008 Open Geospatial Consortium, Inc.

A.3 Building module ... 118

A.4 CityFurniture module ... 127

A.5 CityObjectGroup module ... 128

A.6 Generics module .. 129

A.7 LandUse module .. 131

A.8 Relief module ... 132

A.9 Transportation module ... 135

A.10 Vegetation module ... 139

A.11 WaterBody module .. 141

A.12 TexturedSurface module [deprecated] ... 144

A.13 Schematron rules on referential integrity ... 146

Annex B (normative) Abstract test suite for CityGML instance documents 147

B.1 Test cases for mandatory conformance requirements 147

B.1.1 Valid CityGML instance document ... 147

B.1.2 Valid CityGML profile .. 147

B.1.3 Conformance classes related to CityGML modules ... 148

B.1.4 Spatial geometry objects .. 148

B.1.5 Spatial topology relations ... 148

B.1.6 Address objects .. 148

B.2 Conformance classes related to CityGML modules 149

B.2.1 CityGML Core module .. 149

B.2.2 Appearance module .. 149

B.2.3 Building module ... 150

B.2.4 CityFurniture module ... 150

B.2.5 CityObjectGroup module ... 151

B.2.6 Generics module... 151

B.2.7 LandUse module .. 152

B.2.8 Relief module ... 153

B.2.9 Transportation module ... 153

B.2.10 Vegetation module ... 154

B.2.11 WaterBody module .. 154

B.2.12 TexturedSurface module [deprecated] ... 155

Annex C (informative) External code lists ... 157

C.1 Building .. 159

C.2 City furniture .. 166

C.3 Land use ... 167

C.4 MimeType .. 168

C.5 Vegetation .. 169

C.6 Transportation .. 171

C.7 Water body ... 174

 OGC 08-007r1

Copyright © 2008 Open Geospatial Consortium, Inc. vii

Annex D (informative) Overview of employed GML3 geometry classes 177

Annex E (informative) Overview of the assignment of features to LODs 179

Annex F (informative) Example CityGML datasets ... 187

F.1 Example of a CityGML dataset for a building in LOD1 and LOD2 187

F.2 Example of a CityGML dataset for a building in LOD3 193

F.3 Example of a CityGML dataset illustrating the appearance model 196

F.4 Example of a CityGML dataset illustrating the use of texture coordinates for

complex surfaces with holes .. 202

Annex G (informative) Example ADE for Noise Immission Simulation 205

G.1 CityGML Noise ADE .. 208

G.2 Example dataset ... 213

Bibliography ... 217

OGC 08-007r1

viii Copyright © 2008 Open Geospatial Consortium, Inc.

 OGC 08-007r1

Copyright © 2008 Open Geospatial Consortium, Inc. ix

i. Preface and Acknowledgements

This is the official CityGML logo. For current news on CityGML and information

about ongoing projects and fields of research in the area of CityGML see

http://www.citygml.org and http://www.citygmlwiki.org

CityGML is discussed and OGC work coordinated by the 3D Information Man-

agement (3DIM) Working Group of the OGC. It was implemented and evaluated

within the OpenGIS Web Services Testbed, Phase 4 (OWS-4) in the

CAD/GIS/BIM thread.

Version 1.0 of this standards document was prepared by the CityGML 1.0 Stan-

dards Working Group (SWG) of the OGC. Future discussion and development will

be lead by the 3DIM Working Group.

For further information see http://www.opengeospatial.org/projects/groups/3dimwg

CityGML continues to be developed by the members of the Special Interest Group

3D of the initiative Geodata Infrastructure North-Rhine Westphalia (GDI NRW).

For further information see http://www.gdi-nrw.org/

The preparation of the English document version and the European discussion has

been supported by the European Spatial Data Research Organization (EuroSDR;

formerly known as OEEPE) in an EuroSDR Commission III project.

For further information see http://www.eurosdr.net

ii. Submitting organizations

This Implementation Standard was submitted to the Open Geospatial Consortium Inc. by the members of the

CityGML 1.0 Standards Working Group of the OGC. Amongst others, this comprises the following organiza-

tions:

a) Autodesk, Inc. (primary submitter)

b) Bentley Systems, Inc. (primary submitter)

c) Technical University Berlin (submitter of technology)

d) Ordnance Survey, UK

e) University of Bonn, Germany

f) Hasso-Plattner-Institute for IT Systems Engineering, University of Potsdam

CityGML was originally developed by the Special Interest Group 3D (SIG 3D), 2002 ï 2008 - www.citygml.org.

iii. Submission contact points

All questions regarding this document should be directed to the editors or the contributors (including participants

in development, cf. clause iv):

Name Institution Email

Prof. Dr. Thomas H. Kolbe

Claus Nagel

Alexandra Stadler

Institute for Geodesy and Geoinformation Science,

Technical University Berlin

kolbe@igg.tu-berlin.de

nagel@igg.tu-berlin.de

stadler@igg.tu-berlin.de

http://www.citygml.org/
http://www.citygmlwiki.org/
http://www.opengeospatial.org/projects/groups/3dimwg
http://www.gdi-nrw.org/
http://www.eurosdr.net/

OGC 08-007r1

x Copyright © 2008 Open Geospatial Consortium, Inc.

Dr. Gerhard Gröger

Prof. Dr. Lutz Plümer

Angela Czerwinski

Dirk Dörschlag

Institute for Geodesy and Geoinformation, University of

Bonn

groeger@ikg.uni-bonn.de

pluemer@ikg.uni-bonn.de

czerwinski@ikg.uni-bonn.de

doerschlag@ikg.uni-bonn.de

Jim Farley Autodesk, Inc. jim.farley@autodesk.com

Alain Lapierre

Frank Steggink

Paul Scarponcini

Bentley Systems, Inc. alain.lapierre@bentley.com

frank.steggink@bentley.com

paul.scarponcini@bentley.com

Carsten Rönsdorf

Dave Capstick

Mark Pendlington

Ordnance Survey, Great Britain Carsten.Roensdorf@ordnancesurvey.co.uk

Dave.Capstick@ordnancesurvey.co.uk

Mark.Pendlington@ordnancesurvey.co.uk

Prof. Dr. Jürgen Döllner

Haik Lorenz

Hasso-Plattner-Institute for IT Systems Engineering,

University of Potsdam

juergen.doellner@hpi.uni-potsdam.de

haik.lorenz@hpi.uni-potsdam.de

iv. Participants in development

Name Institution Email

Ulrich Gruber,

Birgit Joemann

Sandra Schlüter

District Administration Recklinghausen, Cadastre

Department

ulrich.gruber@kreis-recklinghausen.de

birgit.joemann2@kreis-re.de

sandra.schlueter@kreis-re.de

Dr. Joachim Benner

Karl-Heinz Häfele

Dr. Klaus Leinemann

Institute for Applied Computer Science,

Helmholtz Research Center Karlsruhe

Joachim.Benner@iai.fzk.de

Karl-Heinz.Haefele@iai.fzk.de

Frank Bildstein Rheinmetall Defence Electronics bildstein.f@rheinmetall-de.com

Rüdiger Drees T-Systems Enterprise Services GmbH, Bonn, Germany Ruediger.Drees@t-systems.com

Andreas Kohlhaas GIStec GmbH (formerly) AKohlhaas@t-online.de

Frank Thiemann Institute for Cartography and Geoinformatics, University

of Hannover

Frank.Thiemann@ikg.uni-hannover.de

Martin Degen City of Dortmund

Cadastre Department

mdegen@stadtdo.de

Heinrich Geerling Architekturbüro Geerling Heinrich@geerling.de

Dr. Frank Knospe City of Essen

Cadastre and Mapping Department

frank.knospe@amt62.essen.de

Hardo Müller Snowflake Software Ltd., UK Hardo.Mueller@snowflakesoftware.co.uk

Martin Rechner rechner logistik mail@rec-log.de

Jörg Haist

Daniel Holweg

Fraunhofer Institute for Computer Graphics (IGD),

Darmstadt

joerg.haist@igd.fraunhofer.de

daniel.holweg@igd.fraunhofer.de

Prof. Dr. Peter A. Henning Faculty for Computer Science,

University of Applied Sciences, Karlsruhe

p.henning@fh-karlsruhe.de

Rolf Wegener

Stephan Heitmann

State Cadastre and Mapping Agency of

North-Rhine Westphalia

wegener@lverma.nrw.de

heitmann@lverma.nrw.de

Prof. Dr. Marc-O. Löwner Institute for Geodesy and Photogrammetry, Technical

University of Braunschweig

m-o.loewner@tu-bs.de

v. Revision history

Date Release Editor Description

2006-02-01 0.1.0 Czerwinski,

Kolbe, Gröger

Initialisation of the document.

2006-02-22 0.1.0 Gröger,

Gruber

Additions to UML diagrams.

2006-04-26 0.2.0 Kolbe, Gröger,

Czerwinski

Release of CityGML draft standard to EuroSDR.

2006-03-06 0.3.0 Kolbe, Gröger, Changes on property names, some attributes added. Release of

mailto:jim.farley@autodesk.com
mailto:alain.lapierre@bentley.com
mailto:frank.steggink@bentley.com
mailto:paul.scarponcini@bentley.com
javascript:void(0)

 OGC 08-007r1

Copyright © 2008 Open Geospatial Consortium, Inc. xi

Czerwinski CityGML standard document to OGC.

2007-05-30 0.4.0 Kolbe, Gröger,

Nagel, Lorenz,

Benner,

Czerwinski,

Gruber,

Schlüter,

Bildstein,

Drees, Löwner

Introduction of a new appearance model. Introduction of Application

Domain Extensions (ADE). Minor changes to the building model.

Minor changes to city object groups. The concept of TerrainIntersec-

tionCurves (TIC) added to CityFurniture. Adapation of external code

lists. Release of CityGML standard document to OGC.

2008-02-04 1.0.0 Kolbe, Gröger,

Nagel, Stadler,

Lorenz

Introduction of modularisation of the CityGML data model. Minor

changes to the appearance model. Minor changes to city object groups

and transportation objects. Encoding of external code lists changed to

GML 3.1.1 Simple Dictionary Profile. Revision of UML diagrams.

Release of draft CityGML standard document to CityGML 1.0 SWG.

2008-05-19 1.0.0 Kolbe, Gröger,

Nagel, Stadler,

Lorenz

Incorporation of changes and editorial corrections based on comments

and recommendations during the OGC RFC public comment phase

and corresponding actions agreed on by the CityGML 1.0 SWG. Final

release of draft CityGML standard document to CityGML 1.0 SWG.

2008-8-18 1.0.0 Carl Reed Prepare for posting as OGCÊ standard and make final edits.

vi. Changes to the OGC
®
 Abstract Specification

The OGC
®
 Abstract Specification does not require changes to accommodate this OGC

®
 standard.

vii. Acknowledgments

The SIG 3D wishes to thank the members of the CityGML 1.0 Standards Working Group and the 3D Informa-

tion Management (3DIM) Working Group of the OGC: Tim Case, Paul Cote, Jeffrey Bell, Chris Body, Greg

Buehler, David Burggraf, François Golay, John Herring, Jury Konga, Kai-Uwe Krause, Gavin Park, Richard

Pearsall, George Percivall, Clemens Portele, Mauro Salvemini, Scott Simmons, Alessandro Triglia, David

Wesloh, Tim Wilson, and Greg Yetman.

Further credits for careful reviewing and commenting of this document go to: Ludvig Emgard, Bettina Petzold,

Dave Capstick, Mark Pendlington, Alain Lapierre, and Frank Steggink.

OGC 08-007r1

xii Copyright © 2008 Open Geospatial Consortium, Inc.

 OGC 08-007r1

Copyright © 2008 Open Geospatial Consortium, Inc. xiii

Foreword

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent

rights. Open Geospatial Consortium Inc. shall not be held responsible for identifying any or all such patent

rights. However, to date, no such rights have been claimed or identified.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent

claims or other intellectual property rights of which they may be aware that might be infringed by any imple-

mentation of the standard set forth in this document, and to provide supporting documentation.

Significant changes from the previous CityGML version 0.4.0 (OGC document no. 07-062):

 Modularisation of the CityGML data model;

 Minor changes to the appearance model;

 Minor changes to city object groups;

 Minor changes to transportation objects; and

 Encoding of external code lists changed to GML 3.1.1 Simple Dictionary Profile.

With CityGML version 1.0.0, modularisation of the CityGML data model was introduced. The overall CityGML

data model is thematically decomposed into a CityGML core module and extension modules. Each module is

defined within its own globally unique XML namespace. Due to this modularisation approach, valid CityGML

0.4.0 instance documents are not valid CityGML 1.0.0 instance documents.

OGC 08-007r1

xiv Copyright © 2008 Open Geospatial Consortium, Inc.

 OGC 08-007r1

Copyright © 2008 Open Geospatial Consortium, Inc. xv

0 Introduction

0.1 Motivation

An increasing number of cities and companies are building virtual 3D city models for different application areas

like urban planning, mobile telecommunication, disaster management, 3D cadastre, tourism, vehicle and pedes-

trian navigation, facility management and environmental simulations. Furthermore, in the implementation of the

European Environmental Noise Directive (END, 2002/49/EC) 3D geoinformation and 3D city models play an

important role.

In recent years, most virtual 3D city models have been defined as purely graphical or geometrical models,

neglecting the semantic and topological aspects. Thus, these models could almost only be used for visualisation

purposes but not for thematic queries, analysis tasks, or spatial data mining. Since the limited reusability of

models inhibits the broader use of 3D city models, a more general modelling approach had to be taken in order to

satisfy the information needs of the various application fields.

CityGML is a common semantic information model for the representation of 3D urban objects that can be shared

over different applications. The latter capability is especially important with respect to the cost-effective sustain-

able maintenance of 3D city models, allowing the possibility of selling the same data to customers from different

application fields. The targeted application areas explicitly include city planning, architectural design, tourist and

leisure activities, environmental simulation, mobile telecommunication, disaster management, homeland secu-

rity, real estate management, vehicle and pedestrian navigation, and training simulators.

CityGML is designed as an open data model and XML-based format for the storage and exchange of virtual 3D

city models. It is implemented as an application schema of the Geography Markup Language 3 (GML3), the

extendible international standard for spatial data exchange and encoding issued by the Open Geospatial Consor-

tium (OGC) and the ISO TC211. CityGML is based on a number of standards from the ISO 191xx family, the

Open Geospatial Consortium, the W3C Consortium, the Web 3D Consortium, and OASIS.

CityGML defines the classes and relations for the most relevant topographic objects in cities and regional mod-

els with respect to their geometrical, topological, semantical, and appearance properties. ñCityò is broadly

defined to comprise not just built structures, but also elevation, vegetation, water bodies, ñcity furnitureò, and

more. Included are generalisation hierarchies between thematic classes, aggregations, relations between objects,

and spatial properties. CityGML is applicable for large areas and small regions and can represent the terrain and

3D objects in different levels of detail simultaneously. Since either simple, single scale models without topology

and few semantics or very complex multi-scale models with full topology and fine-grained semantical differen-

tiations can be represented, CityGML enables lossless information exchange between different GI systems and

users.

0.2 Historical background

CityGML has been developed since 2002 by the members of the Special Interest Group 3D (SIG 3D) of the

initiative Geodata Infrastructure North Rhine-Westphalia (GDI NRW) in Germany. The SIG 3D is an open

group consisting of more than 70 companies, municipalities, and research institutions from Germany, Great

Britain, Switzerland, and Austria working on the development and commercial exploitation of interoperable 3D

models and geovisualisation. Another result of the work from the SIG 3D is the proposition of the Web 3D

Service (W3DS), a 3D portrayal service that is also being discussed in the Open Geospatial Consortium (OGC

Doc. No. 05-019).

A subset of CityGML has been successfully implemented and evaluated in the project ñPilot 3Dò of the GDI

NRW in 2005. Participants came from all over Germany and demonstrated city planning scenarios and tourist

applications. Today, the official 3D city model of Berlin is based on the CityGML data model and employs

CityGML as the exchange format between database, editor, and presentation systems. Also the 3D city models of

Stuttgart, Bochum, Essen, Dortmund, Cologne, and Bonn are based on the CityGML model.

By the beginning of 2006, a CityGML project within EuroSDR (European Spatial Data Research) started focus-

ing on the European harmonisation of 3D city modelling. From June to December 2006, CityGML was em-

ployed and evaluated in the CAD/GIS/BIM thread of the OpenGIS Web Services Testbed #4 (OWS-4).

http://ec.europa.eu/environment/noise/home.htm
http://www.ikg.uni-bonn.de/sig3d
http://www.eurosdr.net/

OGC 08-007r1

xvi Copyright © 2008 Open Geospatial Consortium, Inc.

OpenGIS
®

Implementation Specification OGC 08-007r1

Copyright © 2008 Open Geospatial Consortium, Inc. 1

OpenGIS
®
 City Geography Markup Language (CityGML)

Encoding Standard

1 Scope

This document is an OpenGIS
®
 Encoding Standard for the representation, storage and exchange of virtual 3D

city and landscape models. CityGML is implemented as an application schema of the Geography Markup Lan-

guage version 3.1.1 (GML3).

CityGML models both complex and georeferenced 3D vector data along with the semantics associated with the

data. In contrast to other 3D vector formats, CityGML is based on a rich, general purpose information model in

addition to geometry and appearance information. For specific domain areas, CityGML also provides an exten-

sion mechanism to enrich the data with identifiable features under preservation of semantic interoperability.

Targeted application areas explicitly include urban and landscape planning; architectural design; tourist and

leisure activities; 3D cadastres; environmental simulations; mobile telecommunications; disaster management;

homeland security; vehicle and pedestrian navigation; training simulators and mobile robotics.

CityGML is considered a source format for 3D portraying. The semantic information contained in the model can

be used in the styling process which generates computer graphics represented e.g. as KML/COLLADA or X3D

files. The appropriate OGC Portrayal Web Service for this process is the OGC Web 3D Service (W3DS).

Features of CityGML:

 Geospatial information model (ontology) for urban landscapes based on the ISO 191xx family

 GML3 representation of 3D geometries, based on the ISO 19107 model

 Representation of object surface characteristics (e.g. textures, materials)

 Taxonomies and aggregations

o Digital Terrain Models as a combination of (including nested) triangulated irregular networks

(TINs), regular rasters, break and skeleton lines, mass points

o Sites (currently buildings; bridges and tunnels in the future)

o Vegetation (areas, volumes and solitary objects with vegetation classification)

o Water bodies (volumes, surfaces)

o Transportation facilities (both graph structures and 3D surface data)

o Land use (representation of areas of the earthôs surface dedicated to a specific land use)

o City furniture

o Generic city objects and attributes

o User-definable (recursive) grouping

 Multiscale model with 5 well-defined consecutive Levels of Detail (LOD):

o LOD0 ï regional, landscape

o LOD1 ï city, region

o LOD2 ï city districts, projects

o LOD3 ï architectural models (outside), landmarks

o LOD4 ï architectural models (interior)

 Multiple representations in different LODs simultaneously; generalisation relations between objects in

different LODs

 Optional topological connections between feature (sub)geometries

 Application Domain Extensions (ADE): Specific ñhooksò in the CityGML schema allow to define ap-

plication specific extensions, for example for noise pollution simulation, or to augment CityGML by

properties of the new National Building Information Model Standard (NBIMS) in the U.S.

OGC 08-007r1

2 Copyright © 2008 Open Geospatial Consortium, Inc.

2 Conformance

Conformace targets addressed by this International standard are CityGML instance documents only. Future

revisions of this International Standard may also address consumers or producers as conformance targets.

Clauses 8 to 10 of this International standard specify separate CityGML XML Schema definitions and normative

aspects, i.e. CityGML modules, which shall be used in CityGML instance documents in accordance with clause

7. Implementations are not required to support the full range of capabilities provided by the universe of all

CityGML modules. Valid partial implementations are supported following the rules and guidelines for CityGML

profiles in chapter 7.2.

CityGML instance documents claiming conformance to this International Standard shall:

a) conform to the rules and requirements specified in clauses 7 to 10;

b) pass all relevant test cases of the abstract test suite in annex B.1;

c) satisfy all relevant conformance classes of the abstract test suite related to CityGML modules in annex

B.2.

3 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provi-

sions of this part of OGC 08-007r1. For dated references, subsequent amendments to, or revisions of, any of

these publications do not apply. However, parties to agreements based on this part of OGC 08-007r1 are encour-

aged to investigate the possibility of applying the most recent editions of the normative documents indicated

below. For undated references, the latest edition of the normative document referred to applies.

The following documents are indispensable for the application of the CityGML standard. The geometry model of

GML 3.1.1 is used except for some added concepts like implicit geometries (see chapter 8.2). The appearance

model (see chapter 9) draws concepts from both X3D and COLLADA. Addresses are represented using the

OASIS extensible Address Language xAL.

ISO 8601:2004, Data elements and interchange formats ï Information interchange ï Representation of dates

and times

ISO/TS 19103:2005, Geographic Information ï Conceptual Schema Language

ISO 19105:2000, Geographic information ï Conformance and testing

ISO 19107:2003, Geographic Information ï Spatial Schema

ISO 19109:2005, Geographic Information ï Rules for Application Schemas

ISO 19111:2003, Geographic information ï Spatial referencing by coordinates

ISO 19115:2003, Geographic Information ï Metadata

ISO 19123:2005, Geographic Information ï Coverages

ISO/TS 19139:2007, Geographic Information ï Metadata ï XML schema implementation

ISO/IEC 19775:2004, X3D Abstract Specification

OpenGIS
®

 Abstract Specification Topic 0, Overview, OGC document 04-084

OpenGIS
®

 Abstract Specification Topic 5, The OpenGIS Feature, OGC document 99-105r2

OpenGIS
®

 Abstract Specification Topic 8, Relations between Features, OGC document 99-108r2

OpenGIS
®

 Abstract Specification Topic 10, Feature Collections, OGC document 99-110

OpenGIS
®

 Geography Markup Language Implementation Specification, Version 3.1.1, OGC document 03-105r1

OpenGIS
®

 GML 3.1.1 Simple Dictionary Profile, Version 1.0.0, OGC document 05-099r2

IETF RFC 2045 & 2046, Multipurpose Internet Mail Extensions (MIME). (November 1996)

IETF RFC 2396, Uniform Resource Identifiers (URI): Generic Syntax. (August 1998)

W3C XLink, XML Linking Language (XLink) Version 1.0. W3C Recommendation (27 June 2001)

 OGC 08-007r1

Copyright © 2008 Open Geospatial Consortium, Inc. 3

W3C XMLName, Namespaces in XML. W3C Recommendation (14 January 1999)

W3C XMLSchema-1, XML Schema Part 1: Structures. W3C Recommendation (2 May 2001)

W3C XMLSchema-2, XML Schema Part 2: Datatypes. W3C Recommendation (2 May 2001)

W3C XPointer, XML Pointer Language (XPointer) Version 1.0. W3C Working Draft (16 August 2002)

W3C XML Base, XML Base, W3C Recommendation (27 June 2001)

W3C XML, Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation (6 October 2000)

OASIS (Organization for the Advancement of Structured Information Standards): extensible Address Language

(xAL v2.0).

Khronos Group Inc.: COLLADA ï Digital Asset Schema Release 1.4.1

The Schematron Assertion Language 1.5. Rick Jelliffe 2002-10-01

4 Conventions

4.1 Abbreviated terms

The following abbreviated terms are used in this document:

2D Two Dimensional

3D Three Dimensional

AEC Architecture, Engineering, Construction

ALKIS German National Standard for Cadastral Information

ATKIS German National Standard for Topographic and Cartographic Information

B-Rep Boundary Representation

CAD Computer Aided Design

COLLADA Collaborative Design Activity

CSG Constructive Solid Geometry

DTM Digital Terrain Model

DXF Drawing Exchange Format

EuroSDR European Spatial Data Research Organisation

ESRI Environmental Systems Research Institute

FM Facility Management

GDF Geographic Data Files

GDI NRW Geodata Infrastructure North-Rhine Westphalia

GML Geography Markup Language

IAI International Alliance for Interoperability

IETF Internet Engineering Task Force

IFC Industry Foundation Classes

ISO International Organization for Standardisation

LOD Level of Detail

NBIMS National Building Information Model Standard

OASIS Organisation for the Advancement of Structured Information Standards

OGC Open Geospatial Consortium

OSCRE Open Standards Consortium for Real Estate

SIG 3D Special Interest Group 3D of the GDI NRW

TC211 ISO Technical Committee 211

OGC 08-007r1

4 Copyright © 2008 Open Geospatial Consortium, Inc.

TIC Terrain Intersection Curve

TIN Triangulated Irregular Network

UML Unified Modeling Language

URI Uniform Resource Identifier

VRML Virtual Reality Modeling Language

W3C World Wide Web Consortium

W3DS OGC Web 3D Service

WFS OGC Web Feature Service

X3D Open Standards XML-enabled 3D file format of the Web 3D Consortium

XML Extensible Markup Language

xAL OASIS extensible Address Language

4.2 UML Notation

The CityGML standard is presented in this document in diagrams using the Unified Modeling Language (UML)

static structure diagram (see Booch et al. 1997). The UML notations used in this standard are described in the

diagram below (Fig. 1).

Fig. 1: UML notation (see ISO TS 19103, Geographic information - Conceptual schema language).

According to GML3 all associations between model elements in CityGML are uni-directional. Thus, associa-

tions in CityGML are navigable in only one direction. The direction of navigation is depicted by an arrowhead.

In general, the context an element takes within the association is indicated by its role. The role is displayed near

the target of the association. If the graphical representation is ambiguous though, the position of the role has to

be drawn to the element the association points to.

The following stereotypes are used:

<<Geometry>> represents the geometry of an object. The geometry is an identifiable and distinguishable object

that is derived from the abstract GML type AbstractGeometryType.

 OGC 08-007r1

Copyright © 2008 Open Geospatial Consortium, Inc. 5

<<Feature>> represents a thematic feature according to the definition in ISO 19109. A feature is an identifiable

and distinguishable object that is derived from the abstract GML type AbstractFeatureType.

<<Object>> represents an identifiable and distinguishable object that is derived from the abstract GML type

AbstractGMLType.

<<CodeList>> enumerates the valid attribute values.

<<ExternalCodeList>> enumerates the valid attributes values. In contrast to CodeList, the values are not given

inline the schema but are provided within an external dictionary file. External code lists are encoded using

GML 3.1.1 Simple Dictionary Profile (see chapter 6.6).

<<Union>> is a list of attributes. The semantics are that only one of the attributes can be present at any time.

<<PrimitiveType>> is used for representations supported by a primitive type in the implementation.

<<DataType>> is used as a descriptor of a set of values that lack identity. Data types include primitive prede-

fined types and user-definable types. A DataType is thus a class with few or no operations whose primary

purpose is to hold the abstract state of another class for transmittal, storage, encoding or persistent storage.

<<Leaf>> is used within UML package diagrams to indicate model elements that can have no further subtypes.

<<XSDSchema>> is used within UML package diagrams to denote the root element of an XSD Schema contain-

ing all the definitions for a particular namespace. All the package contents or component classes are placed

within the one schema.

<<ApplicationSchema>> is used within UML package diagrams to denote an XML Schema definition funda-

mentally dependent on the concepts of another independent Standard within the XML Schema metalan-

guage. For example, ApplicationSchema indicates extensions of GML consistent with the GML ñrules for

application schemasò.

4.3 XML namespaces and namespace prefixes

The CityGML data model is thematically decomposed into a core module and thematic extension modules. All

modules including the core are specified by their own XML schema file, each defining a globally unique XML

namespace. The extension modules are based on the core module and, thus, contain (by reference) the CityGML

core schema.

Within this document the module namespaces are associated with recommended prefixes. These prefixes are

consistently used within the normative parts of this specification, for all UML diagrams and example CityGML

instance documents. The CityGML core and extension modules along with their XML namespace identifiers and

recommended namespace prefixes are listed in Tab. 1.

CityGML module Namespace identifier Namespace prefix

CityGML Core http://www.opengis.net/citygml/1.0 core

Appearance http://www.opengis.net/citygml/appearance/1.0 app

Building http://www.opengis.net/citygml/building/1.0 bldg

CityFurniture http://www.opengis.net/citygml/cityfurniture/1.0 frn

CityObjectGroup http://www.opengis.net/citygml/cityobjectgroup/1.0 grp

Generics http://www.opengis.net/citygml/generics/1.0 gen

LandUse http://www.opengis.net/citygml/landuse/1.0 luse

Relief http://www.opengis.net/citygml/relief/1.0 dem

Transportation http://www.opengis.net/citygml/transportation/1.0 tran

Vegetation http://www.opengis.net/citygml/vegetation/1.0 veg

WaterBody http://www.opengis.net/citygml/waterbody/1.0 wtr

TexturedSurface [deprecated] http://www.opengis.net/citygml/texturedsurface/1.0 tex

Tab. 1: List of CityGML modules, their associated XML namespace identifiers, and example namespace prefixes.

OGC 08-007r1

6 Copyright © 2008 Open Geospatial Consortium, Inc.

Further XML Schema definitions relevant to this standard are shown in Tab. 2 along with the corresponding

XML namespace identifiers and namespace prefixes consistently used within this document.

XML Schema definition Namespace identifier Namespace prefix

Geography Markup Language

version 3.1.1 (from OGC)

http://www.opengis.net/gml gml

Extensible Address Language

version 2.0 (from OASIS)

urn:oasis:names:tc:ciq:xsdschema:xAL:2.0 xAL

Schematron Assertion Lan-

guage version 1.5

http://www.ascc.net/xml/schematron sch

Tab. 2: List of XML Schema definitions, their associated XML namespace identifiers, and example namespace prefixes used within this

document.

4.4 XML-Schema

The normative parts of the standard use the W3C XML schema language to describe the grammar of conformant

CityGML data instances. XML schema is a rich language with many capabilities. While a reader who is unfamil-

iar with an XML schema may be able to follow the description in a general fashion, this standard is not intended

to serve as an introduction to XML schema. In order to have a full understanding of this candidate standard, it is

necessary for the reader to have a reasonable knowledge of XML schema.

 OGC 08-007r1

Copyright © 2008 Open Geospatial Consortium, Inc. 7

5 Overview of CityGML

CityGML is an open data model and XML-based format for the storage and exchange of virtual 3D city models.

It is an application schema for the Geography Markup Language version 3.1.1 (GML3), the extendible interna-

tional standard for spatial data exchange issued by the Open Geospatial Consortium (OGC) and the ISO TC211.

The aim of the development of CityGML is to reach a common definition of the basic entities, attributes, and

relations of a 3D city model. This is especially important with respect to the cost-effective sustainable mainte-

nance of 3D city models, allowing the reuse of the same data in different application fields.

CityGML not only represents the graphical appearance of city models but specifically addresses the representa-

tion of the semantic and thematic properties, taxonomies and aggregations. CityGML includes a geometry model

and a thematic model. The geometry model allows for the consistent and homogeneous definition of geometrical

and topological properties of spatial objects within 3D city models (chapter 8). The base class of all objects is

CityObject which is a subclass of the GML class Feature. All objects inherit the properties from CityObject.

The thematic model of CityGML employs the geometry model for different thematic fields like Digital Terrain

Models, sites (i.e. buildings; future extensions of CityGML will also include explicit models for bridges and

tunnels), vegetation (solitary objects and also areal and volumetric biotopes), water bodies, transportation facili-

ties, and city furniture (chapter 10). Further objects, which are not explicitly modelled yet, can be represented

using the concept of generic objects and attributes (chapter 6.11). In addition, extensions to the CityGML data

model applying to specific application fields can be realised using the Application Domain Extensions (ADE)

(chapter 6.12). Spatial objects of equal shape which appear many times at different positions like e.g. trees, can

also be modelled as prototypes and used multiple times in the city model (chapter 8.2). A grouping concept

allows the combination of single 3D objects, e.g. buildings to a building complex (chapter 6.8). Objects which

are not geometrically modelled by closed solids can be virtually sealed in order to compute their volume (e.g.

pedestrian underpasses, tunnels, or airplane hangars). They can be closed using ClosureSurfaces (chapter 6.4).

The concept of the TerrainIntersectionCurve is introduced to integrate 3D objects with the Digital Terrain Model

at their correct positions in order to prevent e.g. buildings from floating over or sinking into the terrain (chapter

6.5).

CityGML differentiates five consecutive Levels of Detail (LOD), where objects become more detailed with

increasing LOD regarding both their geometry and thematic differentiation (chapter 6.2). CityGML files can -

but do not have to - contain multiple representations (and geometries) for each object in different LOD simulta-

neously. Generalisation relations allow the explicit representation of aggregated objects over different scales.

In addition to spatial properties, CityGML features can be assigned appearances. Appearances are not limited to

visual data but represent arbitrary observable properties of the featureôs surface such as infrared radiation, noise

pollution, or earthquake-induced structural stress (chapter 9).

Furthermore, objects can have external references to corresponding objects in external datasets (chapter 6.7).

Enumerative object attributes are restricted to external code lists and values defined in external, redefinable

dictionaries (chapter 6.6).

OGC 08-007r1

8 Copyright © 2008 Open Geospatial Consortium, Inc.

 OGC 08-007r1

Copyright © 2008 Open Geospatial Consortium, Inc. 9

6 General characteristics of CityGML

6.1 Modularisation

The CityGML data model consists of class definitions for the most important types of objects within virtual 3D

city models. These classes have been identified to be either required or important in many different application

areas. However, implementations are not required to support the overall CityGML data model in order to be

conformant to the standard, but may employ a subset of constructs according to their specific information needs.

For this purpose, modularisation is applied to the CityGML data model (cf. chapter 7).

The CityGML data model is thematically decomposed into a core module and thematic extension modules. The

core module comprises the basic concepts and components of the CityGML data model and, thus, must be

implemented by any conformant system. Based on the core module, each extension covers a specific thematic

field of virtual 3D city models. CityGML introduces the following eleven thematic extension modules: Appear-

ance, Building, CityFurniture, CityObjectGroup, Generics, LandUse, Relief, Transportation, Vegetation, Water-

Body, and TexturedSurface [deprecated].

CityGML compliant implementations may support any combination of extension modules in conjunction with

the core module. Such combinations of modules are called CityGML profiles. Therefore, CityGML profiles

allow for valid partial implementations of the overall CityGML data model.

6.2 Multi -scale modelling (5 levels of detail, LOD)

CityGML supports different Levels of Detail (LOD). LODs are required to reflect independent data collection

processes with differing application requirements. Further, LODs facilitate efficient visualisation and data

analysis (see Fig. 2). In a CityGML dataset, the same object may be represented in different LOD simultane-

ously, enabling the analysis and visualisation of the same object with regard to different degrees of resolution.

Furthermore, two CityGML data sets containing the same object in different LOD may be combined and inte-

grated. However, it will be within the responsibility of the user or application to make sure objects in different

LOD refer to the same real-world object.

The coarsest level LOD0 is essentially a two and a half dimensional Digital Terrain Model, over which an aerial

image or a map may be draped. LOD1 is the well-known blocks model comprising prismatic buildings with flat

roofs. In contrast, a building in LOD2 has differentiated roof structures and thematically differentiated surfaces.

Vegetation objects may also be represented. LOD3 denotes architectural models with detailed wall and roof

structures, balconies, bays and projections. High-resolution textures can be mapped onto these structures. In

addition, detailed vegetation and transportation objects are components of a LOD3 model. LOD4 completes a

LOD3 model by adding interior structures for 3D objects. For example, buildings are composed of rooms,

interior doors, stairs, and furniture.

LOD0 LOD1 LOD2

LOD3 LOD4

Fig. 2: The five levels of detail (LOD) defined by CityGML (source: IGG Uni Bonn)

OGC 08-007r1

10 Copyright © 2008 Open Geospatial Consortium, Inc.

LODs are also characterised by differing accuracies and minimal dimensions of objects (Tab. 3). The accuracy

requirements given in this standard are debatable and should be considered as discussion proposals. Accuracy is

described as standard deviation of the absolute 3D point coordinates. Relative 3D point accuracy will be added

in a future version of CityGML and it is typically much higher than the absolute accuracy. In LOD1, the posi-

tional and height accuracy of points must be 5m or less, while all objects with a footprint of at least 6m by 6m

have to be considered. The positional and height accuracy of LOD2 must be 2m or better. In this LOD, all

objects with a footprint of at least 4m × 4m have to be considered. Both types of accuracies in LOD3 are 0.5m,

and the minimal footprint is 2m × 2m. Finally, the positional and height accuracy of LOD4 must be 0.2m or less.

By means of these figures, the classification in five LOD may be used to assess the quality of 3D city model

datasets. The LOD categorisation makes datasets comparable and provides support for their integration.

 LOD0 LOD1 LOD2 LOD3 LOD4

Model scale description regional,
landscape

city, region city districts,
projects

architectural
models (out-

side), landmark

architectural
models (interior)

Class of accuracy lowest low middle high very high

Absolute 3D point accuracy (position /
height)

lower than
LOD1

5/5m 2/2m 0.5/0.5m 0.2/0.2m

Generalisation maximal

generalisation
(classification

of land use)

object blocks as

generalised
features;

> 6*6m/3m

objects as

generalised
features;

> 4*4m/2m

object as real

features;
> 2*2m/1m

constructive

elements and
openings are

represented

Building installations - - - representative

exterior effects

real object form

Roof form/structure no flat roof type and

orientation

real object form real object form

Roof overhanging parts - - n.a. n.a. Yes

CityFurniture - important objects prototypes real object form real object form

SolitaryVegetationObject - important objects prototypes,
higher 6m

prototypes,
higher 2m

prototypes, real
object form

PlantCover - >50*50m >5*5m < LOD2 <LOD2

é

to be continued for the other feature

themes

Tab. 3: LOD 0-4 of CityGML with its accuracy requirements (source: Albert et al. 2003).

Whereas in CityGML each object can have a different representation for every LOD, often different objects from

the same LOD will be generalised to be represented by an aggregate object in a lower LOD. CityGML supports

the aggregation / decomposition by providing an explicit generalisation association between any CityObjects

(further details see UML diagram in chapter 10.1).

6.3 Coherent semantical-geometrical modelling

One of the most important design principles for CityGML is the coherent modelling of semantics and geometri-

cal/topological properties. At the semantic level, real-world entities are represented by features, such as build-

ings, walls, windows, or rooms. The description also includes attributes, relations and aggregation hierarchies

(part-whole-relations) between features. Thus the part-of-relationship between features can be derived at the

semantic level only, without considering geometry. However, at the spatial level, geometry objects are assigned

to features representing their spatial location and extent. So the model consists of two hierarchies: the semantic

and the geometrical in which the corresponding objects are linked by relationships (cf. Stadler & Kolbe 2007).

The advantage of this approach is that it can be navigated in both hierarchies and between both hierarchies

arbitrarily, for answering thematic and/or geometrical queries or performing analyses.

If both hierarchies exist for a specific object, they must be coherent (i.e. it must be ensured that they match and

fit together). For example, if a wall of a building has two windows and a door on the semantic level, then the

geometry representing the wall must contain also the geometry parts of both windows and the door.

6.4 Closure surfaces

Objects, which are not modelled by a volumetric geometry, must be virtually closed in order to compute their

volume (e.g. pedestrian underpasses or airplane hangars). They can be sealed using ClosureSurfaces. Closure-

 OGC 08-007r1

Copyright © 2008 Open Geospatial Consortium, Inc. 11

Surfaces are special surfaces, which are taken into account, when needed to compute volumes and are neglected,

when they are irrelevant or not appropriate, for example in visualisations.

The concept of ClosureSurfaces is also employed to model the entrances of subsurface objects. Those objects

like tunnels or pedestrian underpasses have to be modelled as closed solids in order to compute their volume, for

example in flood simulations. The entrances to subsurface objects also have to be sealed to avoid holes in the

digital terrain model (see Fig. 3). However, in close-range visualisations the entrance must be treated as open.

Thus, ClosureSurfaces are an adequate way to model those entrances.

Fig. 3: Closure surfaces to seal open structures. Passages are subsurface objects (left). The entrance is sealed by a virtual
ClosureSurface, which is both part of the DTM and the subsurface object (right) (graphic: IGG Uni Bonn).

6.5 Terrain Intersection Curve (TIC)

A crucial issue in city modelling is the integration of 3D objects and the terrain. Problems arise if 3D objects

float over or sink into the terrain. This is particularly the case if terrains and 3D objects in different LOD are

combined, or if they come from different providers (Kolbe and Gröger 2003). To overcome this problem, the

TerrainIntersectionCurve (TIC) of a 3D object is introduced. These curves denote the exact position, where the

terrain touches the 3D object (see Fig. 4). TICs can be applied to buildings and building parts (cf. chapter 10.3),

city furniture objects (cf. chapter 10.7), and generic city objects (cf. chapter 10.10). If, for example, a building

has a courtyard, the TIC consists of two closed rings: one ring representing the courtyard boundary, and one

which describes the building's outer boundary. This information can be used to integrate the building and a

terrain by ópulling upô or ópulling downô the surrounding terrain to fit the TerrainIntersectionCurve. The DTM

may be locally warped to fit the TIC. By this means, the TIC also ensures the correct positioning of textures or

the matching of object textures with the DTM. Since the intersection with the terrain may differ depending on

the LOD, a 3D object may have different TerrainIntersectionCurves for all LOD.

Fig. 4: TerrainIntersectionCurve for a building (left, black) and a tunnel object (right, white). The tunnelôs hollow space is sealed by a
triangulated ClosureSurface (graphic: IGG Uni Bonn).

OGC 08-007r1

12 Copyright © 2008 Open Geospatial Consortium, Inc.

6.6 Dictionaries and external code lists for enumerative attributes

Attributes, which are used to classify objects, often have values that are restricted to a number of discrete values.

An example is the attribute roof type, whose attribute values typically are saddle back roof, hip roof, semi-hip

roof, flat roof, pent roof, or tent roof. If such an attribute is typed as string, misspellings or different names for

the same notion obstruct interoperability. In CityGML such classifying of attributes is specified as External-

CodeLists and implemented by simple dictionaries defined in the GML 3.1.1 Simple Dictionary Profile (cf.

Whiteside 2005). Such a structure enumerates all possible values of the attribute in an external file, ensuring that

the same name is used for the same notion. In addition, the translation of attribute values into other languages is

facilitated.

Simple dictionaries and external code lists may be extended or redefined by users. They can have references to

existing models. For example, room codes defined by the Open Standards Consortium for Real Estate (OSCRE)

can be referenced instead of CityGMLôs predefined values. Likewise, classifications of buildings and building

parts introduced by the National Building Information Model Standard (NBIMS) can be used alternatively.

6.7 External references

3D objects are often derived from or have relations to objects in other databases or data sets. For example, a 3D

building model may have been constructed from a two-dimensional footprint in a cadastre data set, or may be

derived from an architectural model (Fig. 5). The reference of a 3D object to its corresponding object in an

external data set is essential, if an update must be propagated or if additional data is required, for example the

name and address of a buildingôs owner in a cadastral information system or information on antennas and doors

in a facility management system. In order to supply such information, each CityObject may have External

References to corresponding objects in external data sets (for the UML diagram see Fig. 20; and for XML

schema definition see annex A.1). Such a reference denotes the external information system and the unique

identifier of the object in this system. Both are specified as a Uniform Resource Identifier (URI), which is a

generic format for references to any kind of resources on the internet. The generic concept of external references

allows for any CityObject an arbitrary number of links to corresponding objects in external information systems

(e.g. ALKIS, ATKIS, OS MasterMap
®
, GDF, etc.).

Fig. 5: External references (graphic: IGG Uni Bonn).

6.8 City object groups

The grouping concept of CityGML allows for the aggregation of arbitrary city objects according to user-defined

criteria, and to represent and transfer these aggregations as part of a city model (for the UML diagram see

chapter 10.9; XML schema definition see annex A.5). A group may be assigned one or more names and may be

further classified by specific attributes, for example, "escape route from room no. 43 in house no. 1212 in a fire

scenario" as a name and "escape route" as type. Each member of the group can optionally be assigned a role

name, which specifies the role this particular member plays in the group. This role name may, for example,

describe the sequence number of this object in an escape route, or in the case of a building complex, denote the

main building.

A group may contain other groups as members, allowing nested grouping of arbitrary depth. The grouping

concept is delivered by the thematic extension module CityObjectGroup of CityGML (cf. chapter 10.9).

 OGC 08-007r1

Copyright © 2008 Open Geospatial Consortium, Inc. 13

6.9 Appearances

Information about a surfaceôs appearance, i.e. observable properties of the surface, is considered an integral part

of virtual 3D city models in addition to semantics and geometry. Appearance relates to any surface-based theme,

e.g. infrared radiation or noise pollution, not just visual properties. Consequently, data provided by appearances

can be used as input for both presentation of and analysis in virtual 3D city models.

CityGML supports feature appearances for an arbitrary number of themes per city model. Each LOD of a feature

can have an individual appearance. Appearances can represent ï among others ï textures and georeferenced

textures. CityGMLôs appearance model is packaged within its own extension module Appearance (cf. chapter 9).

6.10 Prototypic objects / scene graph concepts

In CityGML objects of equal shape like trees and other vegetation objects, traffic lights and traffic signs can be

represented as prototypes which are instantiated multiple times at different locations (Fig. 6). The geometry of

prototypes is defined in local coordinate systems. Every instance is represented by a reference to the prototype, a

base point in the world coordinate reference system and a transformation matrix that facilitates scaling, rotation,

and translation of the prototype. The principle is adopted from the concept of scene graphs used in computer

graphics standards like VRML and X3D. As the GML3 geometry model does not provide support for scene

graph concepts, it is implemented as an extension to the GML3 geometry model (for further description see

chapter 8.2).

Fig. 6: Examples of prototypic shapes (source: Rheinmetall Defence Electronics).

6.11 Generic city objects and attributes

CityGML is being designed as a universal topographic information model that defines object types and attributes

which are useful for a broad range of applications. In practical applications the objects within specific 3D city

models will most likely contain attributes which are not explicitly modelled in CityGML. Moreover, there might

be 3D objects which are not covered by the thematic classes of CityGML. CityGML provides two different

concepts to support the exchange of such data: 1) generic objects and attributes, and 2) Application Domain

Extensions (see chapter 6.12).

The concept of generic objects and attributes allows for the extension of CityGML applications during runtime,

i.e. any CityObject may be augmented by additional attributes, whose names, data types, and values can be

provided by a running application without any change of the CityGML XML schema. Similarly, features not

represented by the predefined thematic classes of the CityGML data model may be modelled and exchanged

using generic objects. The generic extensions of CityGML are provided by the thematic extension module

Generics (cf. chapter 10.10).

OGC 08-007r1

14 Copyright © 2008 Open Geospatial Consortium, Inc.

The current version of CityGML does not include explicit thematic models for bridges, tunnels, and walls. They

will be added in a future version. In the meantime, these objects may be stored or exchanged using generic

objects and attributes.

6.12 Application Domain Extensions (ADE)

Application Domain Extensions (ADE) specify additions to the CityGML data model. Such additions comprise

the introduction of new properties to existing CityGML classes like e.g. the number of habitants of a building or

the definition of new object types. The difference between ADEs and generic objects and attributes is, that an

ADE has to be defined in an extra XML schema definition file with its own namespace. This file has to explicitly

import the XML Schema definition of the extended CityGML modules.

The advantage of this approach is that the extension is formally specified. Extended CityGML instance docu-

ments can be validated against the CityGML and the respective ADE schema. ADEs can be defined (and even

standardised) by information communities which are interested in specific application fields. More than one

ADE can be actively used in the same dataset (further description cf. chapter 10.11).

ADEs may be defined for one or even several CityGML modules providing a high flexibility in adding addi-

tional information to the CityGML data model. Thus, the ADE mechanism is orthogonally aligned with the

modularisation approach of CityGML. Consequently, there is no separate extension module for ADEs.

Recently, a first ADE for noise pollution simulation has been developed, which is employed in the simulation of

environmental noise dispersion according to the Environmental Noise Directive of the European Commission

(2002/49/EC). Annex G shows and explains the CityGML Noise ADE as an example.

 OGC 08-007r1

Copyright © 2008 Open Geospatial Consortium, Inc. 15

7 Modularisation

CityGML is a rich standard both on the thematic and geometric-topological level of its data model. On its the-

matic level CityGML defines classes and relations for the most relevant topographic objects in cities and re-

gional models comprising built structures, elevation, vegetation, water bodies, ñcity furnitureò, and more. In

addition to geometry and appearance content these thematic components allow to employ virtual 3D city models

for sophisticated analysis tasks in different application domains like simulations, urban data mining, facility

management, and thematic inquiries.

CityGML is to be seen as a framework giving geospatial 3D data enough space to grow in geometrical, topologi-

cal and semantically aspects over its lifetime. Thus, geometry and semantics of city objects may be flexibly

structured covering purely geometric datasets up to complex geometric-topologically sound and spatio-

semantically coherent data. By this means, CityGML defines a single object model and data exchange format

applicable to consecutive process steps of 3D city modelling from geometry acquisition, data qualification and

refinement to preparation of data for specific end-user applications, allowing for iterative data enrichment and

lossless information exchange.

According to this idea of a framework, applications are not required to support all thematic fields of CityGML in

order to be compliant to the standard, but may employ a subset of constructs corresponding to specific relevant

requirements of an application domain or process step. The use of logical subsets of CityGML limits the com-

plexity of the overall data model and explicitly allows for valid partial implementations. As for version 1.0 of the

CityGML standard, possible subsets of the data model are defined and embraced by so called CityGML modules.

A CityGML module is an aggregate of normative aspects that must all be implemented as a whole by a confor-

mant system. CityGML consists of a core module and thematic extension modules.

The CityGML core module defines the basic concepts and components of the CityGML data model. It is to be

seen as the universal lower bound of the overall CityGML data model and a dependency of all thematic exten-

sion modules. Thus, the core module is unique and must be implemented by any conformant system. Based on

the CityGML core module, each extension module contains a logically separate thematic component of the

CityGML data model. The extensions to the core are derived by vertically slicing the overall CityGML data

model. Since the core module is contained (by reference) in each extension module, its general concepts and

components are universal to all extension modules. The following eleven thematic extension modules are intro-

duced by version 1.0 of the CityGML standard. They are directly related to clauses of this document each cover-

ing the corresponding thematic field of CityGML:

 Appearance (cf. clause 9),

 Building (cf. clause 10.3),

 CityFurniture (cf. clause 10.7),

 CityObjectGroup (cf. clause 10.9),

 Generics (cf. clause 10.10),

 LandUse (cf. clause 10.8),

 Relief (cf. clause 10.2),

 Transportation (cf. clause 10.5),

 Vegetation (cf. clause 10.6),

 WaterBody (cf. clause 10.4), and

 TexturedSurface [deprecated] (cf. clause 9.7).

The thematic decomposition of the CityGML data model allows for implementations to support any combination

of extension modules in conjunction with the core module in order to be CityGML conformant. Thus, the exten-

sion modules may be arbitrarily combined according to the information needs of an application or application

domain. A combination of modules is called a CityGML profile. The union of all modules is defined as the

CityGML base profile. The base profile is unique at any given time and forms the upper bound of the overall

CityGML data model. Any other CityGML profile must be a valid subset of the base profile. By following the

OGC 08-007r1

16 Copyright © 2008 Open Geospatial Consortium, Inc.

concept of CityGML modules and profiles, valid partial implementations of the CityGML data model may be

realised in a well-defined way.

As for future development, each CityGML module may be further developed independently from other modules

by expert groups and information communities. Resulting proposals and changes to modules may be introduced

into future revisions of the CityGML standard without affecting the validity of other modules. Furthermore,

thematic components not covered by the current CityGML data model may be added to future revisions of the

standard by additional thematic extension modules. These additional extensions may establish dependency

relations to any other existing CityGML module but shall at least be dependent on the CityGML core module.

Consequently, the CityGML base profile may vary over time as new extensions are added. However, if a specific

application has information needs to be modelled and exchanged which are beyond the scope of the CityGML

data model, this application data can also be incorporated within the existing modules using CityGMLôs Applica-

tion Domain Extension mechanism (cf. clause 10.11) or by employing the concepts of generic city objects and

attributes (cf. chapter 10.10).

The introduced modularisation approach supports CityGMLôs versatility as a data modelling framework and

exchange format addressing various application domains and different steps of 3D city modelling. For sake of

clarity, applications should announce the level of conformance to the CityGML standard by declaring the em-

ployed CityGML profile. Since the core module is part of all profiles, this should be realised by enumerating the

implemented thematic extension modules. For example, if an implementation supports the Building module, the

Relief module, and the Vegetation module in addition to the core, this should be announced by ñCityGML

[Building, Relief, Vegetation]ò. In case the base profile is supported, this should be indicated by ñCityGML

[full]ò.

7.1 CityGML core and extension modules

Each CityGML module is specified by its own XML Schema definition file and is defined within an individual

and globally unique XML target namespace. According to dependency relations between modules, each module

may, in addition, import namespaces associated to such related CityGML modules. However, a single name-

space shall not be directly included in two modules. Thus, all elements belonging to one module are associated

to the moduleôs namespace only. By this means, module elements are guaranteed to be properly separated and

distinguishable in CityGML instance documents.

Compared to previous CityGML versions, the aforementioned namespace conventions introduce an extra level

of complexity to data files as there is no single CityGML namespace any more. In contrast, components of

different CityGML modules and, thus, of different namespaces may be arbitrarily mixed within the same

CityGML instance document. Furthermore, an application might have to parse instance documents containing

elements of modules which are not employed by the application itself. These parsing problems though can easily

be overcome by non-ñschema-awareò applications, i.e. applications that do not parse and interpret GML applica-

tion schemas in a generic way. Elements from different namespaces than those declared by the applicationôs

employed CityGML profile could be skipped. Comparable observations have to be made when using CityGMLôs

Application Domain Extension mechanism (cf. clause 10.11).

As for version 1.0 of the CityGML standard, there are no two thematic extension modules related by depend-

ency. Thus, all extension modules are truly independent from each other and may be separately supported by

implementations. However, the CityGML core module is a dependency for any extension module. This means

that the XML schema file of the core module is imported by each XML schema file defining an extension.

The dependency relations between CityGMLôs modules are illustrated in Fig. 7 using an UML package diagram.

Each module is represented by a package. The package names correspond to the module names. A dashed arrow

in the figure indicates that the schema at the tail of the arrow depends upon the schema at the head of the arrow.

For CityGML modules, a dependency occurs where one schema <import>s another schema and accordingly the

corresponding XML namespace. For example, the extension module Building imports the schema of the

CityGML Core module. A short description of each module is given in Tab. 4.

 OGC 08-007r1

Copyright © 2008 Open Geospatial Consortium, Inc. 17

Fig. 7: UML package diagram illustrating the separate modules of CityGML and their schema dependencies. Each extension module
(indicated by the leaf packages) further imports the GML 3.1.1 schema definition in order to represent spatial properties of its thematic

classes. For readability reasons, the corresponding dependencies have been omitted.

Module name CityGML Core

XML namespace identifier http://www.opengis.net/citygml/1.0

XML Schema file cityGMLBase.xsd

Recommended namespace

prefix

core

Module description The CityGML Core module defines the basic components of the CityGML data

model. Primarily, this comprises abstract base classes from which all thematic

classes are (transitively) derived. But also non-abstract content common to

more than one extension module, for example basic data types, is defined

within the core module.

The core module itself imports the XML schema definition files of GML

version 3.1.1 and the OASIS extensible Address Language xAL.

Module name Appearance

XML namespace identifier http://www.opengis.net/citygml/appearance/1.0

XML Schema file appearance.xsd

Recommended namespace

prefix

app

Module description The Appearance module provides the means to model appearances of

CityGML features, i.e. observable properties of the featureôs surface. Appear-

ance data may be stored for each city object. Therefore, the abstract base class

_CityObject defined within the core module is augmented by an additional

property using CityGMLôs Application Domain Extension mechanism. Thus,

the Appearance module has a deliberate impact on all thematic extension

modules.

OGC 08-007r1

18 Copyright © 2008 Open Geospatial Consortium, Inc.

Module name Building

XML namespace identifier http://www.opengis.net/citygml/building/1.0

XML Schema file building.xsd

Recommended namespace

prefix

bldg

Module description The Building module allows for the representation of thematic and spatial

aspects of buildings, building parts, building installations, and interior building

structures in four levels of detail (LOD 1 ï 4).

Module name CityFurniture

XML namespace identifier http://www.opengis.net/citygml/cityfurniture/1.0

XML Schema file cityFurniture.xsd

Recommended namespace

prefix

frn

Module description The CityFurniture module is used to represent city furniture objects in cities.

City furniture objects are immovable objects like lanterns, traffic signs, adver-

tising columns, benches, or bus stops that can be found in traffic areas, residen-

tial areas, on squares, or in built-up areas.

Module name CityObjectGroup

XML namespace identifier http://www.opengis.net/citygml/cityobjectgroup/1.0

XML Schema file cityObjectGroup.xsd

Recommended namespace

prefix

grp

Module description The CityObjectGroup module provides a grouping concept for CityGML.

Arbitrary city objects may be aggregated in groups according to user-defined

criteria to represent and transfer these aggregations as part of the city model. A

group may be further classified by specific attributes.

Module name Generics

XML namespace identifier http://www.opengis.net/citygml/generics/1.0

XML Schema file generics.xsd

Recommended namespace

prefix

gen

Module description The Generics module provides generic extensions to the CityGML data model

that may be used to model and exchange additional attributes and features not

covered by the predefined thematic classes of CityGML. However, generic

extensions shall only be used if appropriate thematic classes or attributes are

not provided by any other CityGML module.

In order to represent generic attributes, the Generics module augments the

abstract base class _CityObject defined within the core module by an addi-

tional property using CityGMLôs Application Domain Extension mechanism.

Thus, the Generics module has a deliberate impact on all thematic extension

modules.

 OGC 08-007r1

Copyright © 2008 Open Geospatial Consortium, Inc. 19

Module name LandUse

XML namespace identifier http://www.opengis.net/citygml/landuse/1.0

XML Schema file landUse.xsd

Recommended namespace

prefix

luse

Module description The LandUse module allows for the representation of areas of the earthôs

surface dedicated to a specific land use.

Module name Relief

XML namespace identifier http://www.opengis.net/citygml/relief/1.0

XML Schema file relief.xsd

Recommended namespace

prefix

dem

Module description The Relief module allows for the representation of the terrain in a city model.

CityGML supports terrain representations in different levels of detail, reflect-

ing different accuracies or resolutions. The terrain may be specified as a

regular raster or grid, as a TIN, by break lines, and by mass points.

Module name Transportation

XML namespace identifier http://www.opengis.net/citygml/transportation/1.0

XML Schema file transportation.xsd

Recommended namespace

prefix

tran

Module description The Transportation module is used to represent the transportation features

within a city, for example roads, tracks, railways, or squares. Transportation

features may be represented as a linear network or by geometrically describing

their 3D surfaces.

Module name Vegetation

XML namespace identifier http://www.opengis.net/citygml/vegetation/1.0

XML Schema file vegetation.xsd

Recommended namespace

prefix

veg

Module description The Vegetation module provides thematic classes to represent vegetation

objects. CityGMLôs vegetation model distinguishes between solitary vegeta-

tion objects like trees, and vegetation areas which represent biotopes like

forests or other plant communities.

OGC 08-007r1

20 Copyright © 2008 Open Geospatial Consortium, Inc.

Module name WaterBody

XML namespace identifier http://www.opengis.net/citygml/waterbody/1.0

XML Schema file waterBody.xsd

Recommended namespace

prefix

wtr

Module description The WaterBody module represents the thematic aspects and 3D geometry of

rivers, canals, lakes, and basins. It does, however, not inherit any hydrological

or other dynamic aspects so far.

Module name TexturedSurface [deprecated]

XML namespace identifier http://www.opengis.net/citygml/texturedsurface/1.0

XML Schema file texturedSurface.xsd

Recommended namespace

prefix

tex

Module description The TexturedSurface module allows for assigning visual appearance properties

(color, shininess, transparency) and textures to 3D surfaces. Due to inherent

limitations of its modelling approach this module has been marked deprecated

and is expected to be removed in future CityGML versions. Appearance

information provided by this module can be converted to CityGMLôs Appear-

ance module without information loss. Thus, the use of the TexturedSurface

module is strongly discouraged.

Tab. 4: Overview of CityGMLôs core and thematic extensions modules.

7.2 CityGML profiles

A CityGML profile is a combination of thematic extension modules in conjunction with the core module of

CityGML. Each CityGML instance document shall employ the CityGML profile appropriate to the provided

data. In general, two approaches to employ a CityGML profile within an instance document can be differenti-

ated:

1. CityGML profile definition embedded inline the CityGML instance document

A CityGML profile can be bound to an instance document using the schemaLocation attribute defined

in the XML Schema instance namespace, http://www.w3.org/2001/XMLSchema-instance (commonly

associated with the prefix xsi). The xsi:schemaLocation attribute provides a way to locate the XML

Schema definition for namespaces defined in an XML instance document. Its value is a whitespace-

delimited list of pairs of Uniform Resource Identifiers (URIs) where each pair consists of a namespace

followed by the location of that namespaceôs XML Schema definition, which is typically a .xsd file.

By this means, the namespaces of the respective CityGML modules shall be defined within a CityGML

instance document. The xsi:schemaLocation attribute then shall be used to provide the location to the

respective XML Schema definition of each module. An example instance document following this first

approach can be found in annex F.1.

2. CityGML profile definition provided by a separate XML Schema definition file

The CityGML profile may also be specified by its own XML Schema file. This schema file shall com-

bine the appropriate CityGML modules by importing the corresponding XML Schema definitions. For

this purpose, the import element defined in the XML Schema namespace shall be used,

http://www.w3.org/2001/XMLSchema (commonly associated with the prefix xs). For the xs:import

element, the namespace of the imported CityGML module along with the location of the namespaceôs

XML Schema definition have to be declared. In order to apply a CityGML profile to an instance docu-

ment, the profileôs schema has to be bound to the instance document using the xsi:schemaLocation at-

tribute. The XML Schema file of the CityGML profile shall not contain any further content.

 OGC 08-007r1

Copyright © 2008 Open Geospatial Consortium, Inc. 21

The targetNamespace of the profileôs schema shall differ from the namespaces of the imported

CityGML modules. The namespace associated with the profile should be in control of the originator of

the instance document and must be given as a previously unused and globally unique URI. The profileôs

XML Schema file must be available (or accessible on the internet) to everybody parsing the associated

CityGML instance document.

The second approach is illustrated by the following example XML Schema definition for the base profile of

CityGML. Since the base profile is the union of all CityGML modules, the corresponding XML Schema defini-

tion imports each and every CityGML module. By this means, all components of the CityGML data model are

available in and may be exchanged by instance documents referencing this example base profile. The schema

definition file is shipped with the CityGML schema package and is accessible by the name CityGML.xsd.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns="http://www.citygml.org/citygml/profiles/base/1.0" xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.citygml.org/citygml/profiles/base/1.0" elementFormDefault="qualified"

attributeFormDefault="unqualified">

 <xs:import namespace="http://www.opengis.net/citygml/appearance/1.0"
 schemaLocation="http://www.citygml.org/citygml/appearance/1.0/appearance.xsd"/>

 <xs:import namespace="http://www.opengis.net/citygml/building/1.0"

 schemaLocation="http://www.citygml.org/citygml/building/1.0/building.xsd"/>
 <xs:import namespace="http://www.opengis.net/citygml/cityfurniture/1.0"

 schemaLocation="http://www.citygml.org/citygml/cityfurniture/1.0/cityFurniture.xsd"/>

 <xs:import namespace="http://www.opengis.net/citygml/cityobjectgroup/1.0"
 schemaLocation="http://www.citygml.org/citygml/cityobjectgroup/1.0/cityObjectGroup.xsd"/>

 <xs:import namespace="http://www.opengis.net/citygml/generics/1.0"

 schemaLocation="http://www.citygml.org/citygml/generics/1.0/generics.xsd"/>
 <xs:import namespace="http://www.opengis.net/citygml/landuse/1.0"

 schemaLocation="http://www.citygml.org/citygml/landuse/1.0/landUse.xsd"/>

 <xs:import namespace="http://www.opengis.net/citygml/relief/1.0"
 schemaLocation="http://www.citygml.org/citygml/relief/1.0/relief.xsd"/>

 <xs:import namespace="http://www.opengis.net/citygml/transportation/1.0"

 schemaLocation="http://www.citygml.org/citygml/transportation/1.0/transportation.xsd"/>

 <xs:import namespace="http://www.opengis.net/citygml/vegetation/1.0"

 schemaLocation="http://www.citygml.org/citygml/vegetation/1.0/vegetation.xsd"/>

 <xs:import namespace="http://www.opengis.net/citygml/waterbody/1.0"
 schemaLocation="http://www.citygml.org/citygml/waterbody/1.0/waterBody.xsd"/>

 <xs:import namespace="http://www.opengis.net/citygml/texturedsurface/1.0"

 schemaLocation= http://www.citygml.org/citygml/texturedsurface/1.0/texturedSurface.xsd"/>
</xs:schema>

The following excerpt of a CityGML dataset exemplifies how to apply the base profile schema CityGML.xsd to a

CityGML instance document. The dataset contains two building objects and a city object group. The base profile

defined by CityGML.xsd is referenced using the xsi:schemaLocation attribute of the root element. Thus, all

CityGML modules are employed by the instance document and no further references to CityGML modules are

necessary.

<?xml version="1.0" encoding="UTF-8"?>

<core:CityModel xmlns="http://www.citygml.org/citygml/profiles/base/1.0"

 xmlns:core="http://www.opengis.net/citygml/1.0"
 xmlns:bldg="http://www.opengis.net/citygml/building/1.0"

 xmlns:grp="http://www.opengis.net/citygml/cityobjectgroup/1.0"

 xmlns:gml="http://www.opengis.net/gml"
 xmlns:xAL="urn:oasis:names:tc:ciq:xsdschema:xAL:2.0"

 xmlns:xlink="http://www.w3.org/1999/xlink"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.citygml.org/citygml/profiles/base/1.0 http://www.citygml.org/citygml/profiles/base/1.0/CityGML.xsd">

 <core:cityObjectMember>

 <bldg:Building gml:id="Build0815">
 <core:externalReference>

 <core:informationSystem>http://www.adv-online.de</core:informationSystem>
 <core:externalObject>

 <core:uri>urn:adv:oid:DEHE123400007001</core:uri>

 </core:externalObject>
 </core:externalReference>

 <bldg:function>1000</bldg:function>

 <bldg:yearOfConstruction>1985</bldg:yearOfConstruction>
 <bldg:roofType>1030</bldg:roofType>

 <bldg:measuredHeight uom="#m">8.0</bldg:measuredHeight>

 <bldg:storeysAboveGround>2</bldg:storeysAboveGround>

OGC 08-007r1

22 Copyright © 2008 Open Geospatial Consortium, Inc.

 <bldg:storeyHeightsAboveGround uom="#m">2.5 2.5</bldg:storeyHeightsAboveGround>

 <bldg:lod2Solid> ... </bldg:lod2Solid>

 </bldg:Building>
 </core:cityObjectMember>

 <core:cityObjectMember>

 <bldg:Building gml:id="Build0817">
 é

 </bldg:Building>

 </core:cityObjectMember>
 <core:cityObjectMember>

 <grp:CityObjectGroup gml:id="Complex113">

 <gml:name>Hotel complex 'Scenic View'</gml:name>
 <grp:function>building group</grp:function>

 <grp:groupMember role="main building" xlink:href="#Build0817"/>

 <grp:groupMember xlink:href="#Build0815"/>
 </grp:CityObjectGroup>

 </core:cityObjectMember>

</core:CityModel>

 OGC 08-007r1

Copyright © 2008 Open Geospatial Consortium, Inc. 23

8 Spatial model

Spatial properties of CityGML features are represented by objects of GML3ôs geometry model. This model is

based on the standard ISO 19107 óSpatial Schemaô (Herring 2001), representing 3D geometry according to the

well-known Boundary Representation (B-Rep, cf. Foley et al. 1995). CityGML actually uses only a subset of the

GML3 geometry package, defining a profile of GML3. This subset is depicted in Fig. 8 and Fig. 9. Furthermore,

GML3ôs explicit Boundary Representation is extended by scene graph concepts, which allow the representation

of the geometry of features with the same shape implicitly and thus more space efficiently (chapter 8.2).

8.1 Geometric-topological model

The geometry model of GML 3 consists of primitives, which may be combined to form complexes, composite

geometries or aggregates. For each dimension, there is a geometrical primitive: a zero-dimensional object is a

Point, a one-dimensional a _Curve, a two-dimensional a _Surface, and a three-dimensional a _Solid (Fig. 8).

Each geometry can have its own coordinate reference system. A solid is bounded by surfaces and a surface by

curves. In CityGML, a curve is restricted to be a straight line, thus only the GML3 class LineString is used.

Surfaces in CityGML are represented by Polygons, which define a planar geometry, i.e. the boundary and all

interior points are required to be located in one single plane.

<<Geometry>>

gml::_GeometricPrimitive

<<Geometry>>

gml::_Solid

<<Geometry>>

gml::_Surface

<<Geometry>>

gml::_Curve

+position : gml::DirectPosition [1]

<<Geometry>>

gml::Point

<<Geometry>>

gml::CompositeSolid

<<Geometry>>

gml::Solid

<<Geometry>>

gml::CompositeSurface

<<Geometry>>

gml::TriangulatedSurface

<<Geometry>>

gml::Triangle+stopLines : gml::LineStringSegment [0..*]

+breakLines : gml::LineStringSegment [0..*]

+maxLength : gml::LengthType [1]

+controlPoint : gml::posList [1]

<<Geometry>>

gml::TIN

<<Geometry>>

gml::Polygon

+orientation : gml::SignType [0..1]

<<Geometry>>

gml::OrientableSurface

<<Geometry>>

gml::CompositeCurve

+position : gml::DirectPosition [2..*]

<<Geometry>>

gml::LineString

<<Geometry>>

gml::_Ring

+position : gml::DirectPosition [4..*]

<<Geometry>>

gml::LinearRing

<<Geometry>>

gml::Surface

<<Geometry>>

gml::_SurfacePatch

<<Geometry>>

gml::_Geometry

<<Geometry>>

gml::Rectangle

exterior

patches

1

1..*

*

exterior

trianglePatches

1

1

*

*

1

interior

exterior

0..1

*

0..*

1

interior

exterior

curveMember

0..1

1

*

1..*

*

*

baseSurface

1

solidMember

0..2

*

surfaceMember1..*

*

1..*

Visual Paradigm for UML Community Edition [not for commercial use] Visual Paradigm for UML Community Edition [not for commercial use]

Fig. 8: UML diagram of CityGMLôs geometry model (subset and profile of GML3): Primitives and Composites.

Combined geometries can be aggregates, complexes or composites of primitives (see illustration in Fig. 10). In

an Aggregate, the spatial relationship between components is not restricted. They may be disjoint, overlapping,

touching, or disconnected. GML3 provides a special aggregate for each dimension, a MultiPoint, a MultiCurve, a

MultiSurface or a MultiSolid (see Fig. 9). In contrast to aggregates, a Complex is topologically structured: its

parts must be disjoint, must not overlap and are allowed to touch, at most, at their boundaries or share parts of

their boundaries. A Composite is a special complex provided by GML3. It can only contain elements of the same

dimension. Its elements must be disjoint as well, but they must be topologically connected along their bounda-

ries. A Composite can be a CompositeSolid, a CompositeSurface, or CompositeCurve. (cf. Fig. 8).

OGC 08-007r1

24 Copyright © 2008 Open Geospatial Consortium, Inc.

<<Geometry>>

gml::_AbstractGeometricAggregate

<<Geometry>>

gml::MultiSolid

<<Geometry>>

gml::MultiSurface

<<Geometry>>

gml::MultiCurve

<<Geometry>>

gml::MultiPoint

<<Geometry>>

gml::_Solid

<<Geometry>>

gml::_Surface

<<Geometry>>

gml::_Curve

<<Geometry>>

gml::Point

<<Geometry>>

gml::MultiGeometry

<<Geometry>>

gml::GeometricComplex

<<Geometry>>

gml::_GeometricPrimitive

<<Geometry>>

gml::_Geometry

element

*

surfaceMember

1..*

*

*

geometryMember

*

*

solidMember

*

curveMember

*

*

pointMember

*

*

*

Visual Paradigm for UML Community Edition [not for commercial use] Visual Paradigm for UML Community Edition [not for commercial use]

Fig. 9: UML diagram of CityGMLôs geometry model: Complexes and Aggregates

An OrientableSurface is a surface with an explicit orientation, i.e. two sides, front and back, can be distin-

guished. This may be used to assign textures to specific sides of a surface, or to distinguish the exterior and the

interior side of a surface when bounding a solid. Please note, that Curves and Surfaces have a default orientation

in GML which results from the order of the defining points. Thus, an OrientableSurface only has to be used, if

the orientation of a given GML geometry has to be reversed.

TriangulatedSurfaces are special surfaces, which specify triangulated irregular networks often used to represent

the terrain. While a TriangulatedSurface is a composition of explicit Triangles, the subclass TIN is used to

represent a triangulation in an implicit way by a set of control points, defining the nodes of the triangles. The

triangulation may be reconstructed using standard triangulation methods (Delaunay triangulation). In addition,

break lines and stop lines define contour characteristics of the terrain.

MultiSurface GeometricComplex CompositeSurface

Fig. 10: Combined geometries.

The GML3 composite model realises a recursive aggregation schema for every primitive type of the correspond-

ing dimension. This aggregation schema allows the definition of nested aggregations (hierarchy of components).

For example, a building geometry (CompositeSolid) can be composed of the house geometry (CompositeSolid)

and the garage geometry (Solid), while the houseôs geometry is further decomposed into the roof geometry

(Solid) and the geometry of the house body (Solid).

CityGML provides the explicit modelling of topology, for example the sharing of geometry objects between

features or other geometries. One part of space is represented only once by a geometry object and is referenced

by all features or more complex geometries which are defined or bounded by this geometry object. Thus redun-

dancy is avoided and explicit topological relations between parts are maintained. Basically, there are three cases.

First, two features may be defined spatially by the same geometry. For example, if a path is both a transportation

feature and a vegetation feature, the surface geometry defining the path is referenced both by the transportation

object and by the vegetation object. Second, geometry may be shared between a feature and another geometry. A

geometry defining a wall of a building may be referenced twice: by the solid geometry defining the geometry of

the building, and by the wall feature. Third, two geometries may reference the same geometry, which is in the

boundary of both. For example, a building and an adjacent garage may be represented by two solids. The surface

describing the area where both solids touch may be represented only once and it is referenced by both solids. As

 OGC 08-007r1

Copyright © 2008 Open Geospatial Consortium, Inc. 25

it can be seen from Fig. 11, this requires partitioning of the respective surfaces. In general, Boundary Represen-

tation only considers visible surfaces. However, to make topological adjacency explicit and to allow the possibil-

ity of deletion of one part of a composed object without leaving holes in the remaining aggregate touching

elements are included. Whereas touching is allowed, permeation of objects is not in order to avoid the multiple

representation of the same space. However, the use of topology in CityGML is optional.

In order to implement topology, CityGML uses the XML concept of XLinks provided by GML. Each geometry

object that should be shared by different geometric aggregates or different thematic features is assigned an

unique identifier, which may be referenced by a GML geometry property using a href attribute. CityGML does

not deploy the built-in topology package of GML3, which provides separate topology objects accompanying the

geometry. This kind of topology is very complex and elaborate. Nevertheless, it lacks flexibility when data sets,

which might include or neglect topology, should be covered by the same data model. The XLink topology is

simple and flexible and nearly as powerful as the explicit GML3 topology model. However, a disadvantage of

the XLink topology is that navigation between topologically connected objects can only be performed in one

direction (from an aggregate to its components), not (immediately) bidirectional as it is the case for GMLôs built-

in topology. An example for CityGMLôs topology representation is given in the dataset listed in annex F.1.

Fig. 11: Recursive aggregation of objects and geometries in CityGML (graphic: IGG Uni Bonn).

The following excerpt of a CityGML example file defines a gml:Polygon with an id wallSurface4711, which is

part of the geometry property lod2Solid of a building. Another building being adjacent to the first building

references this polygon in its geometry property.

<bldg:Building>

 ...
 <bldg:lod2Solid>

 ...

 <gml:surfaceMember>
 <gml:Polygon gml:id="wallSurface4711">

 <gml:exterior>

 <gml:LinearRing>
 <gml:pos srsDimension="3">32.0 31.0 2.5</gml:pos>

 ...

 </gml:LinearRing>
 </gml:exterior>

 </gml:Polygon>
 </gml:surfaceMember>

 </bldg:lod2Solid>

 ...
</bldg:Building>

...

<bldg:Building>
 ...

 <bldg:lod2Solid>

 ...
 <gml:surfaceMember xlink:href="#wallSurface4711"/>

 ...

 </bldg:lod2Solid>
 ...

</bldg:Building>

OGC 08-007r1

26 Copyright © 2008 Open Geospatial Consortium, Inc.

8.2 Implicit geometries, prototypic objects, scene graph concepts

The concept of implicit geometries is an enhancement of the geometry model of GML3. It is, for example, used

in CityGMLôs vegetation model, for city furniture and generic objects (see chapters 10.6, 10.7 and 10.10).

Implicit geometries may be applied to features from different thematic fields of CityGML in order to geometri-

cally represent the features within a specific level of detail (LOD). Thus, each extension module may define

spatial properties providing implicit geometries for its thematic classes. For this reason, the concept of implicit

geometries is defined within the CityGML core module (cf. chapter 10.1). However, its description is drawn here

since implicit geometries are part of CityGMLôs spatial model. The UML diagram is depicted in Fig. 12. The

corresponding XML schema definition is provided in annex A.1.

An implicit geometry is a geometric object, where the shape is stored only once as a prototypical geometry, for

example a tree or other vegetation object, a traffic light or a traffic sign. This prototypic geometry object is re-

used or referenced many times, wherever the corresponding feature occurs in the 3D city model. Each occur-

rence is represented by a link to the prototypic shape geometry (in a local cartesian coordinate system), by a

transformation matrix that is multiplied with each 3D coordinate of the prototype, and by an anchor point denot-

ing the base point of the object in the world coordinate reference system. This reference point also defines the

CRS to which the world coordinates belong after the application of the transformation. In order to determine the

absolute coordinates of an implicit geometry, the anchor point coordinates have to be added to the matrix multi-

plication results. The transformation matrix accounts for the intended rotation, scaling, and local translation of

the prototype. It is a 4x4 matrix that is multiplied with the prototype coordinates using homogeneous coordi-

nates, i.e. (x,y,z,1). This way even a projection might be modelled by the transformation matrix.

+mimeType : MimeTypeType [0..1]

+transformationMatrix : TransformationMatrix4x4Type [0..1]

+libraryObject : xs::anyURI [0..1]

<<Object>>

ImplicitGeometry

<<Geometry>>

gml::_Geometry

<<Geometry>>

gml::Point

<<ExternalCodeList>>

MimeTypeType

+xs::double [16]

<<PrimitiveType>>

TransformationMatrix4x4Type

* 1

referencePoint

* 0..1

relativeGMLGeometry

Visual Paradigm for UML Community Edition [not for commercial use] Visual Paradigm for UML Community Edition [not for commercial use]

Fig. 12: UML diagram of ImplicitGeometries. Prefixes are used to indicate XML namespaces associated with model elements. Element

names without a prefix are defined within the CityGML Core module.

The reason for using the concept of implicit geometries in CityGML is space efficiency. Since the shape of, for

example, trees of the same species can be treated as identical, it would be inefficient to model the detailed

geometry of each of the large number of trees explicitly. The concept of implicit geometries is similar to the well

known concept of primitive instancing used for the representation of scene graphs in the field of computer

graphics (Foley et al. 1995).

The term implicit geometry refers to the principle that a geometry object with a complex shape can be simply

represented by a base point and a transformation, implicitly unfolding the objectôs shape at a specific location in

the world coordinate system.

The shape of an ImplicitGeometry can be represented in an external file with a proprietary format, e.g. a VRML

file, a DXF file, or a 3D Studio MAX file. The reference to the implicit geometry can be specified by an URI

pointing to a local or remote file, or even to an appropriate web service. Alternatively, the shape can be defined

by a GML3 geometry object. This has the advantage that it can be stored or exchanged inline within the

CityGML dataset. Typically, the shape of the geometry is defined in a local coordinate system where the origin

lies within or near to the objectôs extent. If the shape is referenced by an URI, also the MIME type of the denoted

object has to be specified (e.g. ñmodel/vrmlò for VRML models or ñmodel/x3d+xmlò for X3D models).

The implicit representation of 3D object geometry has some advantages compared to the explicit modelling,

which represents the objects using absolute world coordinates. It is more space-efficient, and thus more exten-

sive scenes can be stored or handled by a system. The visualisation is accelerated since 3D graphics cards sup-

port the scene graph concept. Furthermore, the usage of different shape versions of objects is facilitated, e.g.

different seasons, since only the library objects have to be exchanged (see example in Fig. 40).

 OGC 08-007r1

Copyright © 2008 Open Geospatial Consortium, Inc. 27

XML namespace

The XML namespace of the CityGML Core module defining the concept of implicit geometries is identified by

the Uniform Resource Identifier (URI) http://www.opengis.net/citygml/1.0. Within the XML Schema definition

of the core module, this URI is also used to identify the default namespace.

ImplicitGeometryType, Implic itRepresentationPropertyType

<xs:complexType name="ImplicitGeometryType">

 <xs:complexContent>
 <xs:extension base="gml:AbstractGMLType">

 <xs:sequence>

 <xs:element name="mimeType" type="MimeTypeType" minOccurs="0"/>
 <xs:element name="transformationMatrix" type="TransformationMatrix4x4Type" minOccurs="0"/>

 <xs:element name="libraryObject" type="xs:anyURI" minOccurs="0"/>

 <xs:element name="relativeGMLGeometry" type="gml:GeometryPropertyType" minOccurs="0"/>

 <xs:element name="referencePoint" type="gml:PointPropertyType"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- == -->
<xs:element name="ImplicitGeometry" type="ImplicitGeometryType" substitutionGroup="gml:_GML"/>

<!-- == -->

<xs:complexType name="ImplicitRepresentationPropertyType">
 <xs:complexContent>

 <xs:restriction base="gml:AssociationType">

 <xs:sequence minOccurs="0">
 <xs:element ref="ImplicitGeometry"/>

 </xs:sequence>

 </xs:restriction>
 </xs:complexContent>

</xs:complexType>

8.2.1 External code lists

The ImplicitGeometry model introduces the following types, whose valid values are explicitly enumerated in an

external code list (cf. chapter 6.6 and annex C.4):

 MimeTypeType

8.2.2 Example CityGML datasets

An example for an implicit geometry is given by the following city furniture object (cf. chapter 10.7), which is

represented by a geometry in LOD2:

<frn:CityFurniture>

 <frn:class>1000</frn:class> <!-- ñtrafficò; declared in external code list (CityFurnitureClassType) in annex C.2 -->
 <frn:function>1080</frn:function> <!-- ñtraffic lightò; declared in external code list (CityFurnitureFunctionType) in annex C.2 -->

 <frn:lod2ImplicitRepresentation>
 <core:ImplicitGeometry>

 <core:mimeType>model/vrml</core:mimeType>

 <core:libraryObject>
 http://www.some-3d-library.com/3D/furnitures/TrafficLight434.wrl

 </core:libraryObject>

 <core:referencePoint>
 <gml:Point srsName="urn:ogc:def:crs,crs:EPSG:6.12:31467,crs:EPSG:6.12:5783">

 <gml:pos srsDimension="3">5793898.77 3603845.54 44.8</gml:pos>

 </gml:Point>
 </core:referencePoint>

 </core:ImplicitGeometry>

 </frn:lod2ImplicitRepresentation>
</frn:CityFurniture>

The shape of the geometry of the traffic light (city furniture with class ñ1000ò and function ñ1080ò according to

the external code lists proposed in annex C.2) is defined by a VRML file which is specified by a URL. This

OGC 08-007r1

28 Copyright © 2008 Open Geospatial Consortium, Inc.

library object, which is defined in a local coordinate system, is transformed to its actual location by adding the

coordinates of the reference point.

The following clip of a CityGML file provides a more complex example for an implicit geometry:

<frn:CityFurniture>

 <frn:class>1000</frn:class> <!-- ñtrafficò; declared in external code list (CityFurnitureClassType) in annex C.2 -->

 <frn:function>1080</frn:function> <!-- ñtraffic lightò; declared in external code list (CityFurnitureFunctionType) in annex C.2 -->
 <frn:lod2ImplicitRepresentation>

 <core:ImplicitGeometry>

 <core:mimeType>model/vrml</core:mimeType>
 <core:transformationMatrix>

 0.866025 -0.5 0 0.7

 0.5 0.866025 0 0.8
 0 0 1 0

 0 0 0 1

 </core:transformationMatrix>

 <core:libraryObject>

 http://www.some-3d-library.com/3D/furnitures/TrafficLight434.wrl

 </core:libraryObject>
 <core:referencePoint>

 <gml:Point srsName="urn:ogc:def:crs,crs:EPSG:6.12:31467,crs:EPSG:6.12:5783">

 <gml:pos srsDimension="3">5793898.77 3603845.54 44.8</gml:pos>
 </gml:Point>

 </core:referencePoint>
 </core:ImplicitGeometry>

 </frn:lod2ImplicitRepresentation>

</frn:CityFurniture>

In addition to the first example, a transformation matrix is specified. It is a homogeneous matrix, serialized in a

row major fashion, i.e. the first four entries in the list denote the first row of the matrix, etc. The matrix combines

a translation by the vector (0.7, 0.8, 0) ï the origin of the local reference system is not the center of the object ï

and a rotation around the z-axis by 30 degrees (cos(30) = 0.866025 and sin(30) = 0.5). This rotation is necessary

to align the traffic light with respect to a road. The actual position of the traffic light is computed as follows:

1. each point of the VRML file (with homogeneous coordinates) is multiplied by the transformation

matrix;

2. for each resulting point, the reference point (5793898.77, 3603845.54, 44.8, 1)
T
 is added, yielding the

actual geometry of the city furniture.

8.2.3 Conformance requirements

Base requirements

1. In order to geometrically represent a feature using the concept of implicit geometries, the corresponding

thematic class of the feature shall define a spatial property of the type ImplicitRepresentationProper-

tyType. Thus, for all CityGML extension modules only the type ImplicitRepresentationPropertyType

shall be used for spatial properties providing implicit geometries.

2. If the shape of an implicit geometry is referenced by an URI using the libraryObject property (type:

xs:anyURI) of the element ImplicitGeometry, also the MIME type of the denoted object must be speci-

fied using the mimeType property (type: MimeTypeType).

Referential integrity

3. The type ImplicitRepresentationPropertyType may contain an ImplicitGeometry element inline or an

XLink reference to a remote ImplicitGeometry element using the XLink concept of GML 3.1.1. In the

latter case, the xlink:href attribute of the corresponding property of type ImplicitRepresentationProper-

tyType may only point to a remote ImplicitGeometry element (where remote ImplicitGeometry elements

are located in another document or elsewhere in the same document). Either the contained element or

the reference must be given, but neither both nor none.

 OGC 08-007r1

Copyright © 2008 Open Geospatial Consortium, Inc. 29

9 Appearance model

In addition to spatial properties, CityGML features have appearances ï observable properties of the featureôs

surface. Appearances are not limited to visual data but represent arbitrary categories called themes such as

infrared radiation, noise pollution, or earthquake-induced structural stress. Each LOD can have an individual

appearance for a specific theme. An appearance is composed of data for each surface geometry object, i.e.

surface data. A single surface geometry object may have surface data for multiple themes. Similarly, surface

data can be shared by multiple surface geometry objects (e.g. road paving). Finally, surface data values can

either be constant across a surface or depend on the exact location within the surface.

CityGMLôs appearance model is defined within the extension module Appearance (cf. chapter 7). The UML

diagram of the appearance model is illustrated in Fig. 13, for XML Schema definition see annex A.2.

Fig. 13: UML diagram of CityGMLôs appearance model. Prefixes are used to indicate XML namespaces associated with model elements.

Element names without a prefix are defined within the CityGML Appearance module.

OGC 08-007r1

30 Copyright © 2008 Open Geospatial Consortium, Inc.

In CityGMLôs appearance model, themes are represented by an identifier only. The appearance of a city model

for a given theme is defined by a set of Appearance objects referencing this theme. Thus, the Appearance objects

belonging to the same theme compose a virtual group. They may be included in different places within a

CityGML dataset. Furthermore a single CityGML dataset may contain several themes. An Appearance object

collects surface data relevant for a specific theme either for individual features or the whole city model in any

LOD. Surface data is represented by objects of class _SurfaceData and its descendents with each covering the

whole area of a surface geometry object. The relation between surface data and surface geometry objects is

expressed by an URI (Uniform Resource Identifier) link from a _SurfaceData object to an object of type

gml:AbstractSurfaceType or type gml:MultiSurface.

A constant surface property is modelled as material. A surface property, which depends on the location within

the surface, is modelled as texture. Each surface geometry object can have both a material and a texture per

theme and side. This allows for providing both a constant approximation and a complex measurement of a

surfaceôs property simultaneously. An application is responsible for choosing the appropriate property represen-

tation for its task (e.g. analysis or rendering). A specific mixing is not defined since this is beyond the scope of

CityGML. If a surface geometry object is to receive multiple textures or materials, each texture or material

requires a separate theme. The mixing of themes or their usage is not defined within CityGML and left to the

application.

XML namespace

The XML namespace of the CityGML Appearance module is identified by the Uniform Resource Identifier

(URI) http://www.opengis.net/citygml/appearance/1.0. Within the XML Schema definition of the Appearance

module, this URI is also used to identify the default namespace.

9.1 Relation between appearances, features and geometry

Despite the close relation between surface data and surface, surface data is stored separately in the feature to

preserve the original GML geometry model. Instead of surface data being an attribute of the respective target

surface geometry object, each surface data object maintains a set of URIs specifying the gml:ids of the target

surface geometry objects (of type gml:AbstractSurfaceType or gml:MultiSurface). In case of a composite or

aggregate target surface, the surface data object is assigned to all contained surfaces. Other target types such as

features, solids, or gml:AbstractSurfacePatchType (which includes gml:Triangle) are invalid, even though the

XML schema language cannot formally express constrains on URI target types. For the exact mapping function

of surface data values to a surface patch refer to the respective surface data type description.

The limitation of valid target types to gml:AbstractSurfaceType and gml:MultiSurface excluding gml:Abstract-

SurfacePatchType is based on the GML geometry model and its use in CityGML. In general, GML surfaces are

represented using subclasses of gml:AbstractSurfaceType. Such surfaces are required to be continuous. A

gml:MultiSurface does not need to fulfill this requirement and consequently is no gml:AbstractSurfaceType (cf.

8.1). Since captured real-world surfaces often cannot be guaranteed to be continuous, CityGML allows for

gml:MultiSurface to represent a featureôs boundary in various places as an alternative to a continuous surface. To

treat such surfaces similarly to a gml:CompositeSurface, surface data objects are allowed to link to gml:Multi-

Surface objects. The exclusion of gml:AbstractSurfacePatchType as valid target type results from its standard as

a root class without gml:AbstractGMLType being its parent class. Thus, a gml:AbstractSurfacePatchType (which

includes gml:Triangle and gml:Rectangle) cannot receive a gml:id and cannot be referenced.

Each surface geometry object can have per theme at most one active front-facing material, one active back-

facing material, one active front-facing texture, and one active back-facing texture. If multiple surface data

objects of the same category and theme are assigned to a surface geometry object, one is chosen to become

active. Multiple indirect assignments due to nested surface definitions are resolved by overwriting, e.g. the front-

facing material of a gml:Polygon becomes active by overwriting the front-facing material of the parental

gml:CompositeSurface. Multiple direct assignments, i.e. a surface geometry objectôs gml:id is referenced mul-

tiple times within a theme, are not allowed and are resolved implementation-dependently by choosing exactly

one of the conflicting surface data objects. Thus, multiple direct assignments within a theme need to be avoided.

Each CityObject feature can store surface data. Thus, surface data is arranged in the feature hierarchy of a

CityGML dataset. Surface data then links to its target surface using URIs. Even though the linking mechanism

permits arbitrary links across the feature hierarchy to another featureôs surface, it is recommended to follow the

 OGC 08-007r1

Copyright © 2008 Open Geospatial Consortium, Inc. 31

principle of locality: Surface data should be stored such that the linked surfaces only belong to the containing

CityObject feature and its children. ñGlobalò surface data should be stored with the city model. Adhering to the

locality principle also ensures that CityObjects retrieved from a WFS will contain the respective appearance

information.

9.2 Appearance and SurfaceData

The feature class Appearance defines a container for surface data objects. It provides the theme that all contained

surface data objects are related to. All appearance objects with the same theme in a CityGML file are considered

a group. Surface data objects are stored in the surfaceDataMember property. They can be used in multiple

themes simultaneously as remote properties.

The feature class _SurfaceData is the base class for materials and textures. Its only element is the boolean flag

isFront, which determines the side a surface data object applies to. Please note, that all classes of the appearance

model support CityGMLôs ADE mechanism (cf. chapters 6.12 and 10.11). The hooks for application specific

extensions are realized by the elements ñ_GenericApplicationPropertyOféò.

AppearanceType, AppearancePropertyType

<xs:complexType name="AppearanceType">

 <xs:complexContent>

 <xs:extension base="gml:AbstractFeatureType">
 <xs:sequence>

 <xs:element name="theme" type="xs:string" minOccurs="0"/>

 <xs:element name="surfaceDataMember" type="SurfaceDataPropertyType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="_GenericApplicationPropertyOfAppearance" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- === -->
<xs:element name="_GenericApplicationPropertyOfAppearance" type="xs:anyType" abstract="true"/>

<!-- === -->

<xs:complexType name="AppearancePropertyType">
 <xs:complexContent>

 <xs:extension base="gml:FeaturePropertyType">

 <xs:sequence minOccurs="0">
 <xs:element name="Appearance" type="AppearanceType"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

appearanceMember, appearance

<xs:element name="appearanceMember" type="AppearancePropertyType" substitutionGroup="gml:featureMember"/>

<!-- === -->

<xs:element name="appearance" type="AppearancePropertyType" substitutionGroup="core:_GenericApplicationPropertyOfCityObject"/>

The definition of appearanceMember allows for an arbitrary or even mixed sequence of CityObject features and

Appearance features within a CityModel feature collection (cf. chapter 10.1).

In order to store appearance information within a single CityObject feature, the corresponding abstract class

_CityObject of the core module is augmented by the property element apperance. The additional property

appearance is injected into _CityObject using CityGMLôs Application Domain Extension mechanism (cf.

chapter 10.11). By this means, each thematic subclass of _CityObject inherits this property. Thus, the Appear-

ance module has a deliberate impact on each extension module defining thematic subclasses of _CityObject.

AbstractSurfaceDataType, _SurfaceData, SurfaceDataPropertyType

<xs:complexType name="AbstractSurfaceDataType">

 <xs:complexContent>
 <xs:extension base="gml:AbstractFeatureType">

OGC 08-007r1

32 Copyright © 2008 Open Geospatial Consortium, Inc.

 <xs:sequence>
 <xs:element name="isFront" type="xs:boolean" default="true" minOccurs="0"/>

 <xs:element ref="_GenericApplicationPropertyOfSurfaceData" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:extension>

 </xs:complexContent>

</xs:complexType>
<!-- === -->

<xs:element name="_SurfaceData" type="AbstractSurfaceDataType" abstract="true" substitutionGroup="gml:_Feature"/>

<!-- === -->
<xs:element name="_GenericApplicationPropertyOfSurfaceData" type="xs:anyType" abstract="true"/>

<!-- === -->

<xs:complexType name="SurfaceDataPropertyType">
 <xs:sequence minOccurs="0">

 <xs:element ref="_SurfaceData" minOccurs="0"/>
 </xs:sequence>

 <xs:attributeGroup ref="gml:AssociationAttributeGroup"/>

</xs:complexType>

9.3 Material

Materials define light reflection properties being constant for a whole surface geometry object. The definition of

the class X3DMaterial is adopted from the X3D and COLLADA specification (cf. X3D, COLLADA specifica-

tion). diffuseColor defines the color of diffusely reflected light. specularColor defines the color of a directed

reflection. emissiveColor is the color of light generated by the surface. All colors use RGB values with red,

green, and blue between 0 and 1. Transparency is defined separately using the transparency element where 0

stands for fully opaque and 1 for fully transparent. ambientIntensity defines the minimum percentage of diffuse-

Color that is visible regardless of light sources. shininess controls the sharpness of the specular highlight. 0

produces a soft glow while 1 results in a sharp highlight. isSmooth gives a hint for normal interpolation. If this

boolean flag is set to true, vertex normals should be used for shading (Gouraud shading). Otherwise, normals

should be constant for a surface patch (flat shading).

Target surfaces are specified using target elements. Each element contains the URI of one target surface geome-

try object (of type gml:AbstractSurfaceType or gml:MultiSurface).

X3DMaterialType, X3DMaterial

<xs:complexType name="X3DMaterialType">

 <xs:complexContent>
 <xs:extension base="AbstractSurfaceDataType">

 <xs:sequence>

 <xs:element name="ambientIntensity" type="core:doubleBetween0and1" default="0.2" minOccurs="0"/>
 <xs:element name="diffuseColor" type="Color" default="0.8 0.8 0.8" minOccurs="0"/>

 <xs:element name="emissiveColor" type="Color" default="0.0 0.0 0.0" minOccurs="0"/>

 <xs:element name="specularColor" type="Color" default="1.0 1.0 1.0" minOccurs="0"/>
 <xs:element name="shininess" type="core:doubleBetween0and1" default="0.2" minOccurs="0"/>

 <xs:element name="transparency" type="core:doubleBetween0and1" default="0.0" minOccurs="0"/>

 <xs:element name="isSmooth" type="xs:boolean" default="false" minOccurs="0"/>
 <xs:element name="target" type="xs:anyURI" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element ref="_GenericApplicationPropertyOfX3DMaterial" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:extension>

 </xs:complexContent>
</xs:complexType>

<!-- === -->

<xs:element name="X3DMaterial" type="X3DMaterialType" substitutionGroup="_SurfaceData"/>
<!-- === -->

<xs:element name="_GenericApplicationPropertyOfX3DMaterial" type="xs:anyType" abstract="true"/>

9.4 Texture and texture mapping

The abstract base class for textures is _Texture. Textures in CityGML are always raster-based 2D textures. The

raster image is specified by imageURI using a URI and can be an arbitrary image data resource, even a prefor-

matted request for a web service. The image data format can be defined using standard MIME types in the

mimeType element.

 OGC 08-007r1

Copyright © 2008 Open Geospatial Consortium, Inc. 33

Textures can be qualified by the attribute textureType. The textureType differentiates between textures, which

are specific for a certain object (specific) and prototypic textures being typical for that object surface (typical).

Textures may also be classified as unknown.

The specification of texture wrapping is adopted from the COLLADA standard. Texture wrapping is required

when accessing a texture outside the underlying image raster. wrapMode can have one of five values (Fig. 14

illustrates the effect of these wrap modes):

1. none ï the resulting color is fully transparent

2. wrap ï the texture is repeated

3. mirror ï the texture is repeated and mirrored

4. clamp ï the texture is clamped to its edges

5. border ï the resulting color is specified by the borderColor element (RGBA)

In wrap mode mirror, the texture image is repeated both in horizontal and in vertical direction to fill the texture

space similar to wrap mode wrap. Unlike wrap, each repetition results from flipping the previous texture part

along the repetition direction. This behaviour removes the edge correspondence constraint for wrapped textures

and always results in a seamless texture.

Fig. 14: A texture (a) applied to a facade using different wrap modes: (b) none, (c) wrap, (d) mirror, (e) clamp and (f) border. The border

color is red. The numbers denote texture coordinates (image: Hasso-Plattner-Institute).

AbstractTextureType, _Texture, WrapModeType, TextureTypeType

<xs:complexType name="AbstractTextureType">

 <xs:complexContent>
 <xs:extension base="AbstractSurfaceDataType">

 <xs:sequence>

 <xs:element name="imageURI" type="xs:anyURI"/>
 <xs:element name="mimeType" type="core:MimeTypeType" minOccurs="0"/>

 <xs:element name="textureType" type="TextureTypeType" minOccurs="0"/>

 <xs:element name="wrapMode" type="WrapModeType" minOccurs="0"/>
 <xs:element name="borderColor" type="ColorPlusOpacity" minOccurs="0"/>

 <xs:element ref="_GenericApplicationPropertyOfTexture" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:extension>

 </xs:complexContent>

</xs:complexType>
<!-- === -->

<xs:element name="_Texture" type="AbstractTextureType" abstract="true" substitutionGroup="_SurfaceData"/>

<!-- === -->
<xs:element name="_GenericApplicationPropertyOfTexture" type="xs:anyType" abstract="true"/>

<!-- === -->

<xs:simpleType name="WrapModeType">
 <xs:restriction base="xs:string">

 <xs:enumeration value="none"/>

 <xs:enumeration value="wrap"/>
 <xs:enumeration value="mirror"/>

 <xs:enumeration value="clamp"/>
 <xs:enumeration value="border"/>

 </xs:restriction>

</xs:simpleType>
<!-- === -->

<xs:simpleType name="TextureTypeType">

 <xs:restriction base="xs:string">
 <xs:enumeration value="specific"/>

 <xs:enumeration value="typical"/>

 <xs:enumeration value="unknown"/>

OGC 08-007r1

34 Copyright © 2008 Open Geospatial Consortium, Inc.

 </xs:restriction>
</xs:simpleType>

_Texture is further specialised according to the texture parameterisation, i.e. the mapping function from a loca-

tion on the surface to a location in the texture image. CityGML uses the notion of texture space, where the

texture image always occupies the region [0,1]² regardless of the actual image size or aspect ratio. The lower left

image corner is located at the origin. The mapping function must be known for each surface geometry object to

receive texture.

Fig. 15: A georeferenced texture applied to ground and roof surfaces (source: Senate of Berlin, Hasso-Plattner-Institute).

The class GeoreferencedTexture describes a texture that uses a planimetric projection. Consequently, it does not

make sense to texture vertical surfaces using a GeoreferencedTexture. Such a texture has a unique mapping

function which is usually provided with the image file (e.g. georeferenced TIFF) or as a separate ESRI world

file. The search order for an external georeference is determined by the boolean flag preferWorldFile. If this flag

is set to true (its default value), a world file is looked for first and only if it is not found the georeference from

the image data is used. If preferWorldFile is false, the world file is used only if no georeference from the image

data is available.

Alternatively, CityGML allows for inline specification of a georeference similar to a world file. This internal

georeference specification always takes precedence over any external georeference. referencePoint defines the

location of the center of the upper left image pixel in world space and corresponds to values 5 and 6 in an ESRI

world file. Since GeoreferencedTexture uses a planimetric projection, referencePoint is two-dimensional. orien-

tation defines the rotation and scaling of the image in form of a 2x2 matrix (a list of 4 doubles in row-major

order corresponding to values 1, 3, 2, and 4 in an ESRI world file). The CRS of this transformation is identical to

the referencePointôs CRS. A planimetric point in that CRS is transformed to a point in texture

space using the formula:

with M denoting orientation, PR denoting referencePoint., w the imageôs width in pixels, and h the imageôs

height in pixels.

If neither an internal nor an external georeference is given the GeoreferencedTexture is invalid. Each target

surface geometry object is specified by an URI in a target element. All target surface geometry objects share the

mapping function defined by the georeference. No other mapping function is allowed. Please note, that the

gml:boundedBy property inherited from gml:AbstractFeatureType could be set to the bounding box of valid

image data to allow for spatial queries. Fig. 15 shows a georeferenced texture applied to the ground and all roof

surfaces.

