

Overall Presentation

Dynamic Visual Networks

Contract 034307

Co-funded by:

In-situ video monitoring

Dyvine context :

- European Commission FP 6 (2002 2006)
- Thematic priority/domain: IST
- Objective: improving risk management
- Duration: 2 years
- T0: 01/09/06

Design of a surveillance network based on visual sensors.

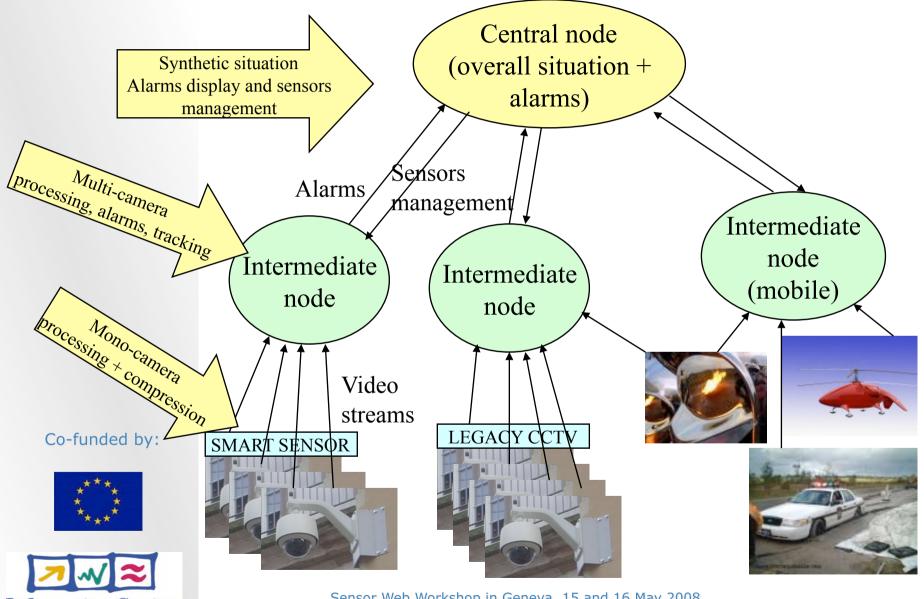
Monitor any kind of area threatened by natural or industrial disaster.

Provide end-users with a global situation awareness with large coverage and still detailed view.

Design of a surveillance network based on visual sensors

- 1. Generic architecture dealing with a large number of visual sensors of various types. Incorporate legacy systems;
- 2. Robust to potentially hostile environments, reconfigurable in case of network connection loss;
- 3. Use of the necessary communication means to integrate the largest possible forest of sensors;
- Co-funded by:

4. Information fusion to provide a human operator with the most comprehensive synthetic situation picture.

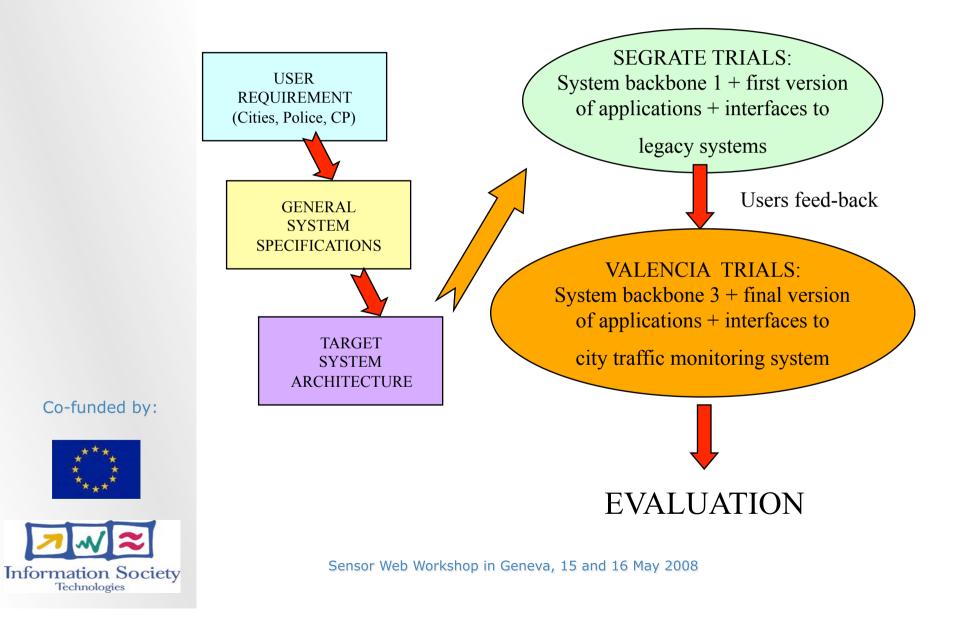


Consortium

Participant n°	Participant name	Participant short name	Country	Participant Role
1	EADS Defence and Security Systems S.A.S	EADS	FR	СО
2	EADS CRC	CRC	GE	CR
3	MARTEC	MART	FR	CR
4	REALVIZ	REAL	FR	CR
5	Commissariat à l'Energie Atomique	CEA	FR	CR
6	Katholieke Universiteit Leuven	KUL	BE	CR
7	Surrey University	US	UK	CR
8	Universidad Politécnica de Valencia	UPV	SP 🍝	CR
9	WHITEBALANCE	WHB	GE	CR
10	Ecole Polytechnique Fédérale de Lausanne	EPFL	СН 🕂	CR
11	City of Segrate	SEGR	IT	USER
12	City of Miraflores	MIRAF	PE	USER

General design and levels

DYVINE


Challenges

- Data fusion
 - Alarms extraction, summary, presentation ...
- Computer vision
 - Detection, tracking, localization ...
- Network
 - Ad hoc network, wireless, reconfiguration ...
- Communication
 - Compression, QoS ...
- Legal aspects
 - Privacy ...

Information Society Technologies

Step by step development

YVINE

2 scenarios for DYVINE:

- 1. Segrate (intermediary) :
 - Truck on fire, causing a heavy traffic jam in the city
- 2. Valencia (final) :
 - Day-to-day ops, Vigilance, Urban disaster, Crisis management

Co-funded by:

Scenarios established in full interaction with the users. DYVINE uses the existing network of cameras of Segrate and Valencia and adds news cameras (fixed or mobile) where needed.

Trials in Segrate 1/3

Co-funded by:

Mobile sensor in a car

Trials in Segrate 2/3

Co-funded by:

Multi-camera sensor for panoramic video

Trials in Segrate 3/3

Co-funded by:

User interface with data fusion

Conclusion

DYVINE

- A surveillance network based on visual sensors;
- Three-layer architecture for improved data fusion;
- Legacy sensors integration;
- Flexible network architecture;
- Intelligent events summary for global situation awareness.

Thank you for your attention

Co-funded by:

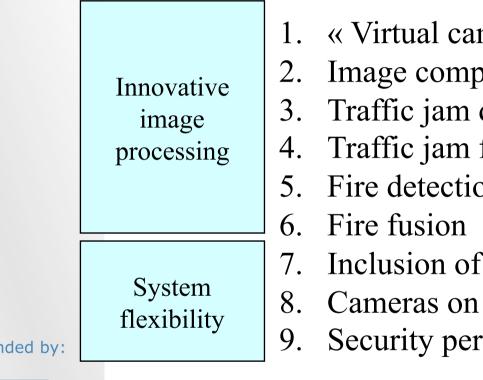
http://www.dyvine.eu

Implementation (1/2)

The project will be implemented in 6 major phases:

- Scenarios and user requirements definition and analysis (T0 to T0+3);
- 2. System design process (T0+3 to T0+6). The output will be the generic architecture of DYVINE;
- 3. System components development, (T0+3 to T0+19) :
 - 1. Gateways to integrate the ground sensors;
 - 2. Gateways to integrate the mobile/airborne sensors;
 - 3. Wireless communications solutions to link the sensors to the system backbone;
 - 4. Data storage(s);
 - 5. Software modules for the exploitation and fusion of sensors data (image quality-compression module, identification and alarms modules, multi-sensor fusion and tracking module, sensors management module, situation awareness module).

- 4. System backbone integration :
 - A first version of the components, will be integrated into the platform at T0
 +13 to identify and correct where necessary possible technical problems;
 - Final integration will be performed between T0+16 and T0 + 20.
- 5. Legal and standardisation issues. These tasks will interact with the technical tasks by :
 - defining the constraints and recommendations that the system will have to take into account and
 - giving a feed-back of the technical tasks in terms of system characteristics and performances to analyse if additional laws, specifications or standards should be proposed.



- 6. Tests in operational-like conditions for performances and exploitation validation :
 - After initial integration (T0+14): intermediary trials in Segrate (Nov. 2007);
 - Real in-the-field trials after the final system integration (T0+21): These trials will take place in Valencia (Spain) and will be supported by the existing video sensors networks of the city.

Trials in Segrate: the phases

- « Virtual camera »
- Image compression
- Traffic jam detection
- Traffic jam fusion
- Fire detection
- Inclusion of mobile cameras/cars
- Cameras on helmets with geo-location
- Security perimeter monitoring

