Contents

Preface .. vi
i. Submitting organizations .. vi
ii. Document terms and definitions.. vi
iii. Document contributor contact points ... vi
iv. Revision history .. vii
v. Changes to the OpenGIS® Abstract Specification ... vii

Foreword .. viii

Introduction ... ix

1 Scope .. 1

2 Conformance .. 1

3 Normative references ... 1

4 Terms and definitions .. 1

5 Conventions .. 2
 5.1 Symbols (and abbreviated terms) .. 2
 5.2 UML notation ... 2
 5.3 XPath notation ... 3

6 Overview .. 4
 6.1 Overview of ebRIM ... 4
 6.2 Overview of CSW.ebRIM Extension Package ... 4
 6.2.1 Registry Package ... 5
 6.2.2 Object Types .. 6
 6.2.3 Association Types .. 7
 6.2.4 Slots ... 8
 6.2.5 Classification Schemes ... 10
 6.2.6 Stored Queries ... 10
 6.3 Overview of Example Domain Model ... 11

7 Mapping a Domain Specific Model to a CSW.ebRIM Extension Package ... 13
 7.1 Object Type Mapping .. 13
 7.1.1 Inheritance .. 14
 7.2 Attribute Mapping .. 15
 7.2.1 Map to Identifier .. 16
 7.2.2 Map to Name/Description ... 17
 7.2.3 Map to Classification ... 18
 7.2.4 Map to ExternalLink ... 19
4 Classifications...87
5 Stored Queries..87
Bibliography ...88
<table>
<thead>
<tr>
<th>Figures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 6-1: CSW.ebRIM Extension Packages</td>
<td>5</td>
</tr>
<tr>
<td>Figure 6-2: Example CRS domain model</td>
<td>11</td>
</tr>
<tr>
<td>Figure 7-1: OASIS Attribute Mapping Algorithm Flowchart</td>
<td>16</td>
</tr>
</tbody>
</table>
Preface

Suggested additions, changes, and comments on this draft report are welcome and encouraged. Such suggestions may be submitted by OGC portal message, email message, or by making suggested changes in an edited copy of this document.

The changes made in this document version, relative to the previous version, are tracked by Microsoft Word, and can be viewed if desired. If you choose to submit suggested changes by editing this document, please first accept all the current changes, and then make your suggested changes with change tracking on.

i. Submitting organizations

The following organizations submitted this document to the Open GIS Consortium Inc:

- Galdos Systems Inc.
- IONIC Software S.A.
- CubeWerx Inc.

ii. Document terms and definitions

This document uses the specification terms defined in Subclause 5.3 of [OGC 05-008], which is based on the ISO/IEC Directives, Part 2.

iii. Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

<table>
<thead>
<tr>
<th>Contact</th>
<th>Company</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tim Wilson (Editor)</td>
<td>Galdos Systems Inc.</td>
<td>Twilson [at] galdosinc.com</td>
</tr>
<tr>
<td>Leif Stainsby</td>
<td>Galdos Systems Inc.</td>
<td>Lstainsby [at] galdosinc.com</td>
</tr>
<tr>
<td>Ron Lake</td>
<td>Galdos Systems Inc.</td>
<td>Rlake [at] galdosinc.com</td>
</tr>
<tr>
<td>Panagiotis (Peter) A.</td>
<td>CubeWerx Inc.</td>
<td>Pvetano[at] cubewerx.com</td>
</tr>
</tbody>
</table>
iv. Revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Release</th>
<th>Editor</th>
<th>Primary clauses modified</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006-11-13</td>
<td>0.0.1</td>
<td>T. Wilson</td>
<td>All</td>
<td>Draft outline for review.</td>
</tr>
<tr>
<td>2006-12-21</td>
<td>0.0.2</td>
<td>T. Wilson</td>
<td>Annexes</td>
<td>Outline updated.</td>
</tr>
<tr>
<td>2007-01-12</td>
<td>0.0.3</td>
<td>T. Wilson</td>
<td>All</td>
<td>Outline updated; body completed; IONIC Annex added.</td>
</tr>
<tr>
<td>2007-01-12</td>
<td>0.0.4</td>
<td>T. Wilson</td>
<td>All except annexes.</td>
<td>Minor edits to document text.</td>
</tr>
<tr>
<td>2007-03-09</td>
<td>0.0.5</td>
<td>T. Wilson</td>
<td>All including annexes.</td>
<td>CubeWerx Annex B added; outlining updated.</td>
</tr>
<tr>
<td>2007-05-07</td>
<td>0.0.6</td>
<td>Carl Reed</td>
<td>Various</td>
<td>Get ready for posting as DP.</td>
</tr>
</tbody>
</table>

v. Changes to the OpenGIS® Abstract Specification

Not applicable.
Foreword

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The Open Geospatial Consortium Inc. shall not be held responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property rights of which they may be aware that might be infringed by any implementation of the specification set forth in this document, and to provide supporting documentation.

This document assumes familiarity with OASIS (Organization for the Advancement of Structured Information Standards) ebXML Registry Information Model [OASIS ebRIM], OGC Catalogue Services — ebRIM (ISO/TS 15000-3) profile of CSW [OGC 05-025r3], and OGC Catalogue Services for the Web [OGC 04-021r3] specifications. Readers are also encouraged to first read the OASIS ebRIM tutorials (listed in Bibliography) which inform the mapping guidance provided in this document.

This document is structured as follows:

- The main body provides general guidance for mapping domain models to ebRIM (ebXML Registry Information Model). It is authored by Galdos (Galdos Systems Inc.) and is based on their INdicio™ CSW.ebRIM registry product implementation and [OGC 05-025r3] specification development experience.

- Annex A summarizes the specific mapping of the Sensor Web Enablement (SWE) domain to ebRIM. It is authored by IONIC (IONIC Software S.A.) and is based on their OWS4 Catalog implementation experience.

- Annex B summarizes the specific mapping of the Feature Catalog domain to ebRIM. It is authored by CubeWerx (CubeWerx Inc.) and is based on their OWS4 Catalogue implementation experience.
Introduction

As more and more OGC members are implementing CSW.ebRIM registries, they are each faced with the recurring need to map between their domain specific information model to [OASIS ebRIM]. Currently this mapping is being done in an ad hoc manner. As such, this document provides guidance towards creating a standard methodology for mapping a geospatial domain information model to ebRIM. It also presents the results of mapping the specific SWE and Feature Catalog domain models to ebRIM for use within the OWS4 Catalog implementations.
OWS-4 CSW ebRIM Modelling Guidelines IPR

1 Scope
This OpenGIS® document assists the OGC community in mapping geospatial resources to ebRIM models or packages to facilitate resource discovery in an efficient and standard way.

2 Conformance
Not required for an IP IPR, DIPR, or Discussion Paper.

3 Normative references
The following normative documents contain provisions which, through reference in this text, constitute provisions of this document. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. For undated references, the latest edition of the normative document referred to applies.

- OGC 05-025r3, Catalogue Services — ebRIM (ISO/TS 15000-3) profile of CSW, Version 1.0.0 (October 2005).

4 Terms and definitions
For the purposes of this document, the definitions specified in Clause 4 of [OGC 05-008] and [OGC 05-025r3] shall apply.
5 Conventions

5.1 Symbols (and abbreviated terms)

API Application Program Interface
BP Basic Package
COM Component Object Model
CORBA Common Object Request Broker Architecture
COTS Commercial Off The Shelf
CRS Coordinate Reference System
CSW Catalogue Services for the Web
CSW.ebRIM ebRIM application profile of an OGC Catalogue service
DCE Distributed Computing Environment
DCP Distributed Computing Platform
DCOM Distributed Component Object Model
ebRIM ebXML Registry Information Model
EP Extension Package
GML Geography Markup Language
ISO International Organization for Standardization
OGC Open GIS Consortium
UML Unified Modeling Language
WFS Web Feature Service
XML eXtensible Markup Language

5.2 UML notation

Most diagrams that appear in this specification are presented using the Unified Modeling Language (UML) static structure diagram, as described in Subclause 5.2 of [OGC 05-008].
5.3 XPath notation

When discussing XML instances within examples XPath notation is used to identify particular element or attributes. For more information on XPath see http://www.w3.org/TR/xpath.
6 Overview

This chapter provides an overview of the requirements for modelling an application-specific domain model to a CSW.ebRIM extension package according to [OGC 05-025r3]. It also describes a simplified CRS domain model used to illustrate CSW.ebRIM modelling requirements and guidelines outlined in this document. This CRS domain model is used as the source information model while the CSW.ebRIM extension package is the target informational model for the mapping patterns defined by this document.

Note that the source model is described exclusively by UML and its concepts and terminology. Thus, the terms Object, Class, Attributes and Associations used when describing the source model are those defined by UML.

The information presented is informative and is not intended to replace the normative information defined by [OGC 05-025r3] and [OASIS ebRIM].

6.1 Overview of ebRIM

This document does not provide an overview of ebRIM. Instead the reader should consult the many useful OASIS tutorials that discuss mapping domain models to ebRIM (OASIS [1] and [2] listed in Bibliography) or the introduction to ebRIM provided in [OGC 05-025r3]. The reader may also refer to [OASIS ebRIM] if a deeper understanding of the ebRIM model is needed.

An important concept not always obvious to someone new to ebRIM is that a target ebRIM model is not expressed using typing or schemas. ebRIM is not a schema language like XML Schema that is used to define a domain application schema. Rather, the target model is but only XML instance(s) of the different ebRIM classes that themselves conform to the ebRIM XML schema.

6.2 Overview of CSW.ebRIM Extension Package

This section summarizes the CSW.ebRIM profile in terms of its requirements and implications when mapping a domain model to a CSW.ebRIM extension package. This extension package (and its member ebRIM artefacts) is the target of the mapping defined in this document. The reader should read [OGC 05-025r3] for the complete specification of a CSW.ebRIM-compliant registry as a whole.

[OGC 05-025r3] defines the CSW.ebRIM Basic Package (BP) that includes the normative OGC catalogue/registry constructs that must be supported by all CSW.ebRIM implementations. These constructs are modelled as ebRIM artefacts conforming to the [OASIS ebRIM] specification.

Section 6 of [OGC 05-025r3] provides a useful summary of extension packages and their role; they are a cohesive set of extensions that address the needs of a particular application domain or community of practice... [which] provide the principal means of
customizing the behaviour and content of a catalogue service. This infers that an extension package should be tailored for a specific purpose or domain.

For the purposes of this document an extension package is inclusive of its member ebRIM artefacts. In other words mapping to an extension package means mapping to individual ebRIM artefacts and grouping them together as a registry package.

The BP serves as the primary or underlying CSW.ebRIM extension package that supports the core OGC CSW.ebRIM registry model and operations. As CSW.ebRIM registries must implement the BP it is expected that the BP will therefore be employed or extended by further geospatial (e.g. CRS) extension packages, as shown in Figure 6-1:

![Figure 6-1: CSW.ebRIM Extension Packages](image)

The ebRIM artefacts employed by the BP to implement the CSW.ebRIM registry requirements are summarized in the following subsections.

6.2.1 Registry Package

OASIS [2] provides a useful summary of an ebRIM Registry Package: *RegistryObjects may be packaged or organized in a hierarchical structure using a familiar file and folder metaphor. RegistryPackage instances serve as folders while RegistryObject instances serve as files in this metaphor. A RegistryPackage instances groups logically related RegistryObject instances together as members of that RegistryPackage.*

The BP is itself an extension package that is mapped to a rim:RegistryPackage. This object logically groups all of the BP components together for easier loading and retrieval.

[OGC 05-025r3] defines an extension package as a particular case of a rim:RegistryPackage; that is, *extension* package members are registry objects that are subject to the following constraint: a member object may only be deleted if the package as a whole is deleted—this effectively treats an extension package as a composition. Note however that a CSW.ebRIM registry does not enforce the semantics of composition
associations. Specifically, deleting a container object does not automatically delete contained objects. As a consequence of the above, dependencies between extension packages (e.g. “uses”) must be modelled as aggregation associations.

6.2.2 Object Types

The concept of typing in ebRIM is analogous to classifying its nature. As per OASIS [2], every stored object within the registry has a defined “nature”, to say what it is and what it represents... To define this nature the registry provides some classification schemes with the idea that every contained object must have a corresponding value, the nature, within one of them... Precisely one classification scheme serves to define the nature of the registry object, the ObjectType classification scheme.

As the BP domain has concepts not found within the core ebRIM model, it declares the following new extrinsic object types as classification nodes within the ebRIM canonical ObjectType classification scheme:

<table>
<thead>
<tr>
<th>Object type ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*:ServiceProfile</td>
<td>Describes what the service does: its features and capabilities (from the OWL-S service ontology). Example: an OGC capabilities document</td>
</tr>
<tr>
<td>*:ServiceModel</td>
<td>Describes how the service works, including its essential computational characteristics and behaviours (from the OWL-S service ontology). Example: a WSDL interface description</td>
</tr>
<tr>
<td>*:ServiceGrounding</td>
<td>Describes how to access the service: the communications protocols and network endpoints (from the OWL-S service ontology). Example: a WSDL service description</td>
</tr>
<tr>
<td>*:Dataset</td>
<td>Description of a geographic data set (from ISO 19115).</td>
</tr>
<tr>
<td>*:Schema</td>
<td>A formal description of a conceptual model, expressed using a textual or graphical schema language (e.g., UML, XMI, XML Schema, RELAX NG, ASN.1).</td>
</tr>
<tr>
<td>*:Stylesheet</td>
<td>A set of rules for presenting or styling some information resource, typically expressed using a style language (e.g., XSLT, CSS).</td>
</tr>
<tr>
<td>*:Document</td>
<td>Documentation of any kind (e.g. specifications, manuals, reports, FAQs).</td>
</tr>
<tr>
<td>*:Annotation</td>
<td>Commentary intended to interpret, explain, or clarify some other resource or part thereof.</td>
</tr>
<tr>
<td>*:Image</td>
<td>A symbolic visual resource other than text (e.g., diagrams, photographs, drawings, maps, animations).</td>
</tr>
<tr>
<td>*:Rights</td>
<td>Information about the rights held in and over the resource. Typically, a Rights object embodies a rights management statement that stipulates conditions of use or distribution. Example: an ODRL or MPEG-21/REL statement</td>
</tr>
</tbody>
</table>
To support more powerful queries and greater interoperability between CSW.ebRIM registries, these BP object types should be subclassed (by extending the canonical ObjectType classification scheme) whenever specialized versions of them are required. For example, if a WMSCapabilitiesServiceProfile class was defined it should subclass the BP ServiceProfile object type.

The declaration of these extrinsic object types within the BP demonstrates required and/or useful patterns when mapping domain objects to ebRIM:

- A domain object type or class not already represented in ebRIM should be mapped to a new subclass of ebRIM rim:ExtrinsicObject.
- To define a subclass of rim:ExtrinsicObject you must add a new rim:ClassificationNode as a child or descendent of the canonical ExtrinsicObject rim:ClassificationNode in the canonical ObjectType classification scheme.

Further details on mapping domain classes to ebRIM are provided in Section 7.1.

6.2.3 Association Types

The BP declares the following association types within the ebRIM canonical AssociationType classification scheme:

<table>
<thead>
<tr>
<th>Association type ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*:OperatesOn</td>
<td>Associates a Service offer with a description of the data that the service operates on as input or output (from ISO 19119).</td>
</tr>
<tr>
<td>*:Presents</td>
<td>Associates a Service offer with a description of what the service does (from the OWL-S 1.1 service ontology).</td>
</tr>
<tr>
<td>*:Supports</td>
<td>Associates a Service offer with a description of how an agent can access the service using some communication protocol (from the OWL-S 1.1 service ontology).</td>
</tr>
<tr>
<td>*:DescribedBy</td>
<td>Associates a Service offer with a description of its computational characteristics and semantic content of requests (from the OWL-S 1.1 service ontology).</td>
</tr>
<tr>
<td>*:Annotates</td>
<td>Associates an annotation resource with the registry object that it explains or evaluates.</td>
</tr>
<tr>
<td>*:RepositoryItemFor</td>
<td>Associates a source ExternalLink (that refers to an item in an external repository) with a target ExtrinsicObject.</td>
</tr>
<tr>
<td>*:GraphicOverview</td>
<td>Associates a source Dataset with an Image that illustrates or summarizes the data (e.g., a browsing aid).</td>
</tr>
</tbody>
</table>

To support more powerful queries and greater interoperability between CSW.ebRIM registries, these BP association types should be subclassed (by extending the canonical AssociationType classification scheme) whenever specialized versions of them are required. For example, if an OperatesOnCoverage association was defined it should subclass the BP OperatesOn association type.
The declaration of these association types within the BP demonstrates required and/or useful patterns when mapping domain objects to ebRIM:

- A domain association type not already represented in ebRIM should be mapped to a new association type.

- To define a new association type you must add a new rim:ClassificationNode as a child or descendent of the canonical AssociationType classification scheme.

Further details on mapping domain associations to ebRIM are provided in Section 7.2.

6.2.4 Slots

The BP defines the following CSW DCMI metadata terms as slots within a ‘Slots’ classification scheme:

<table>
<thead>
<tr>
<th>Slot name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>http://purl.org/dc/elements/1.1/contributor</td>
<td>An entity responsible for making contributions to the content of the resource.</td>
</tr>
<tr>
<td>http://purl.org/dc/elements/1.1/coverage</td>
<td>The extent or scope of the content of the resource.</td>
</tr>
<tr>
<td>http://purl.org/dc/elements/1.1/creator</td>
<td>An entity primarily responsible for making the content of the resource.</td>
</tr>
<tr>
<td>http://purl.org/dc/elements/1.1/date</td>
<td>A date associated with an event in the life cycle of the resource.</td>
</tr>
<tr>
<td>http://purl.org/dc/elements/1.1/description</td>
<td>An account of the content of the resource.</td>
</tr>
<tr>
<td>http://purl.org/dc/elements/1.1/format</td>
<td>The physical or digital manifestation of the resource.</td>
</tr>
<tr>
<td>http://purl.org/dc/elements/1.1/identifier</td>
<td>An unambiguous reference to the resource within a given context.</td>
</tr>
<tr>
<td>http://purl.org/dc/elements/1.1/publisher</td>
<td>An entity responsible for making the resource available.</td>
</tr>
<tr>
<td>http://purl.org/dc/elements/1.1/rights</td>
<td>Information about rights held in and over the resource.</td>
</tr>
<tr>
<td>http://purl.org/dc/elements/1.1/source</td>
<td>A reference to a resource from which the present resource is derived.</td>
</tr>
<tr>
<td>http://purl.org/dc/elements/1.1/subject</td>
<td>The topic of the content of the resource.</td>
</tr>
<tr>
<td>http://purl.org/dc/elements/1.1/title</td>
<td>A name given to the resource.</td>
</tr>
<tr>
<td>http://purl.org/dc/elements/1.1/type</td>
<td>The nature or genre of the content of the resource.</td>
</tr>
</tbody>
</table>
http://purl.org/dc/terms/modified Date on which the resource was changed (refinement of date).

http://purl.org/dc/terms/spatial Spatial characteristics of the intellectual content of the resource (refinement of coverage).

http://purl.org/dc/terms/temporal Temporal characteristics of the intellectual content of the resource (refinement of coverage).

http://purl.org/dc/terms/valid Date (often a range) of validity of a resource (refinement of date).

[OGC 05-025r3] asserts the following recommendations or rules with respect to the use of these slots:

- When a BP slot is added to a registry object, its name must match the name of the corresponding classification node.
- They may all be applied to any registry object.
- For simple values the slotType property should reference either an XML Schema datatype or a classification scheme if the values are selected from a controlled vocabulary; for complex values slotType must reference a suitable type definition.

The BP also provides a mapping between a csw:record and ebRIM:

<table>
<thead>
<tr>
<th>CSW property name</th>
<th>ebRIM information item(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dc:identifier(^a)</td>
<td>rim:RegistryObject/@id</td>
</tr>
<tr>
<td></td>
<td>rim:RegistryObject/rim:ExternalIdentifier/@value</td>
</tr>
<tr>
<td>dc:type</td>
<td>rim:RegistryObject/@objectType</td>
</tr>
<tr>
<td>dc:title</td>
<td>rim:RegistryObject/rim:Name</td>
</tr>
<tr>
<td>dc:description</td>
<td>rim:RegistryObject/rim:Description</td>
</tr>
<tr>
<td>dc:subject(^b)</td>
<td>rim:RegistryObject/rim:Slot/rim:ValueList/rim:Value</td>
</tr>
<tr>
<td>dc:format</td>
<td>rim:ExtrinsicObject/@mimeType</td>
</tr>
<tr>
<td>ows:BoundingBox(^c)</td>
<td>rim:RegistryObject/rim:Slot</td>
</tr>
</tbody>
</table>

\(^a\) The first identifier (in document order) is taken as the principal identifier; remaining identifiers are considered to be external identifiers.

\(^b\) This accommodates keywords from uncontrolled vocabularies; multiple values give rise to multiple properties. The corresponding slot name is “http://purl.org/dc/elements/1.1/subject”. Note that formal classifications from ebRIM are not mapped.

\(^c\) The corresponding slot name is “http://www.opengis.net/gml/Envelope”.

This demonstrates the following useful pattern when mapping domain attributes to ebRIM:
A domain attribute should be mapped to an existing and suitable ebRIM information item if one exists. For example, the CSW property dc:description is mapped to rim:RegistryObject/rim:Description; dc:format to rim:ExtrinsicObject/@mimeType.

Further details on mapping domain attributes to ebRIM slots are provided in Section 7.2.6.

6.2.5 Classification Schemes

In addition to extending the ebRIM canonical ObjectType and AssociationType classification schemes, the BP adds the following new schemes:

- Services taxonomy (source: ISO 19119, Subclause 8.3)
- Slots (source: DCMI metadata terms)
- Country codes (source: ISO 3166-1)
- Geographical regions (source: UN Statistics Division)
- Feature codes (source: DIGEST v2.1, Part 4)

to allow classification of geospatial domain objects by such standard taxonomies.

6.2.6 Stored Queries

Stored queries are essentially parameterized, named queries that are included within an extension package to facilitate the discovery of the domain specific objects. The BP includes the following stored queries:

- findServices
- listExtensionPackages
- showStoredQueries
- getVersionHistory

The BP asserts the following rules or recommendations when defining stored queries:

- The supported method bindings must be described in the stored query definition (rim:AdhocQuery/rim:Description).
- The response must have either csw:GetRecordsResponse or rim:RegistryObjectList (if invoked using the GET method) as the document element.
• The id attribute specifies the stored query to execute; any parameters are passed in as child Slot elements.

• The value of the rim:QueryExpression/@queryLanguage attribute must refer to a node in the canonical query language scheme (which may be extended as needed to accommodate additional query languages).

• Formal query parameters are included as slots in the rim:AdhocQuery instance; parameter bindings in the query specification are indicated using $parameter-name expressions.

• Within a definition, the slotType attribute should specify the appropriate value space for actual parameters.

• The rim:ValueList element must be empty, unless a default value is declared.

Further details on ebRIM stored queries are provided in Section 7.4.

6.3 Overview of Example Domain Model

A simplified CRS domain model is employed within this document to illustrate the application of guidelines presented in this document. It is described using UML in Figure 6-2. For simplicity only those attributes and role names which will be discussed are shown.

Figure 6-2: Example CRS domain model

With regard to the attributes:
• informationSource has a string value describing the source of the original information for the datum.

• dataSource has a value from a controlled list of data publishers.

• revisionDate has a date value indicating the latest revision date for the datum.

• datumName has a string value supplying the common name.

• identifier has a URN value uniquely identifying the datum.

• remarks has a string value describing the datum.

• scope has a string value describing the suitable application of the datum.

As the design of any target ebRIM model is also a function of the uses that it must serve, for the purposes of this document it must support the following scenario:

• GML instances of GeodeticDatum, Ellipsoid and PrimeMeridian shall be stored as separate, opaque and individual XML files within the local repository. Note that the Datum class is abstract.

• Discovery use cases include searching for all Datum instances by any of its attributes except scope.

• Queries should be able to return any associated objects of an identified datum.

Finally, the following WGS84 GeodeticDatum instance (expressed as a GML object) is used to show concrete mappings between the example domain CRS model and target ebRIM model.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<GeodeticDatum gml:id="epsg6326"
 xmlns:gml="http://www.opengis.net/gml"
 xmlns:epsg="urn:x-ogp:spec:schema-xsd:EPSG:0.1:metadata"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns="http://www.opengis.net/gml">
 <metaDataProperty>
  <epsg:MetaData>
   <epsg:informationSource>NIMA TR8350.2 June 2004 revision.</epsg:informationSource>
   <epsg:dataSource>EPSG</epsg:dataSource>
   <epsg:revisionDate>2005-06-09</epsg:revisionDate>
  </epsg:MetaData>
 </metaDataProperty>
 <identifier codeSpace="EPSG">urn:x-ogp:def:datum:EPSG:6326</identifier>
 <datumName>World Geodetic System 1984</datumName>
 <remarks>The WGS 84 datum is widely used.</remarks>
</GeodeticDatum>
```
7 Mapping a Domain Specific Model to a CSW.ebRIM Extension Package

7.1 Object Type Mapping

There are several questions to initially consider when mapping domain objects to ebRIM:

1. Which domain objects will be stored explicitly within the repository? All object types for them require a mapping to an ebRIM registry object as there must be a unique, associated registry object for each and every unique repository item.

2. Are any domain objects a composition of child objects? The object types for such child objects do not necessarily require mapping to ebRIM if separate instances of them will not be stored explicitly within the repository.

3. Do any of the domain object types represent or serve as taxonomic values for other domain objects? If so they may be represented best as/within a rim:ClassificationScheme as opposed to a rim:ExtrinsicObject.

In the case of the example CRS model:

1. Instances of GeodeticDatum, Ellipsoid and PrimeMeridian will be stored as explicit repository resources (GML instances as files). They must therefore be represented in the target ebRIM model as a rim:ExtrinsicObject.

2. Instances of Metadata will not be stored as explicit repository items. Mapping this object type to the target ebRIM model is therefore not required nor useful. Note that the Metadata attributes may still be exposed as attributes of the parent GeodeticDatum object (see Section 7.2).

The following OASIS [1] mapping algorithm should be used to map those domain objects that will be represented as classes within ebRIM:

1. **Direct Class Mapping To Rim:** First determine if there is a class in ebRIM that closely matches the class in the source model. For example, if a domain Organization object maps closely to rim:Organization, then its use is preferred.

2. **Mapping To ExtrinsicObject Sub-Class:** If no class in ebRIM is a good match then define a new sub-class of ExtrinsicObject class in ebRIM and map the source class to the new subclass.

As stated in OASIS [1] and per [OASIS ebRIM], to define a sub-class of ExtrinsicObject you must extend the canonical ObjectType ClassificationScheme and add a new
ClassificationNode as a child or descendent of the canonical ClassificationNode for ExtrinsicObject in the ObjectType ClassificationScheme.

As per [OASIS ebRIM] the id value must be unique within the CSW.ebRIM registry and of type URN.

7.1.1 Inheritance

When specializing the ObjectType classification scheme it is recommended that type hierarchies be maintained wherever possible. This is done, as per OASIS [1], by defining a corresponding inheritance relationship among the ClassificationNodes defined when extending the ObjectType scheme.

For example, the GeodeticDatum class inherits from the abstract Datum class. Both concepts and the hierarchy between them are created in the ObjectType classification scheme:

```xml
<rim:ClassificationNode code="Datum"
  id="urn:x-ogp:csw-ebrim:def:epsg:ObjectType:Datum"
  parent='urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:ExtrinsicObject'>
  <rim:Name>
    <rim:LocalizedString xml:lang="en" value="Datum"/>
  </rim:Name>
</rim:ClassificationNode>

<rim:ClassificationNode code="GeodeticDatum"
  id="urn:x-ogp:csw-ebrim:def:epsg:ObjectType:GeodeticDatum"
  parent='urn:x-ogp:csw-ebrim:def:epsg:ObjectType:Datum'>
  <rim:Name>
    <rim:LocalizedString xml:lang="en" value="Geodetic Datum"/>
  </rim:Name>
</rim:ClassificationNode>
```

Note in the case of GeodeticDatum the parent attribute value is the id value for the Datum classification node, thereby establishing the hierarchy between these concepts. In addition, the Datum parent attribute value is the id value for the ExtrinsicObject classification node, since there is no existing concept of Datum within the canonical ObjectType classification scheme or its BP extensions.

The value of maintaining the Datum type hierarchy increases as the CRS model is expanded to include additional Datum subtypes, e.g. EngineeringDatum. It would then be possible to query and retrieve all concrete datum types by issuing a single query using the Datum parent objectType.

Once these classification nodes are submitted to a CSW.ebRIM registry, a rim:ExtrinsicObject within it could then be classified as a GeodeticDatum object. For example:
could describe the example WGS84 GeodeticDatum instance existing as a repository item.

7.2 Attribute Mapping

As with domain objects, there are several questions to initially consider when mapping domain attributes to ebRIM:

1. Which attributes are required by discovery use cases? These should generally be exposed in the ebRIM model to facilitate discovery in an efficient manner.

2. What is the minimum set of domain attributes that require exposure within ebRIM for discovery or other purposes? For example, ID, name, description, and geometry. As additional attributes can be easily added to ebRIM objects, it is recommended that only the minimum set be added or exposed initially, with any others added over time based on changing query requirements.

In the case of the example CRS model:

1. The attributes required by the discovery use cases are described in Overview of Example Domain Model.

2. As the domain scope attribute is not required for discovery use cases, it will not be exposed in the initial target ebRIM model. If over time its use for discovery was deemed helpful registry objects could be updated to expose this attribute.

Use of the following OASIS [1] mapping algorithm is recommended for mapping those domain attributes that will be mapped to ebRIM:
OASIS [1] can be consulted for detailed guidance on applying this algorithm. The following subsections demonstrate its use by applying it to the source CRS domain model. Patterns or rules asserted by the BP are also demonstrated.

7.2.1 Map to Identifier

While the GeodeticDatum/identifier property uniquely identifies the datum and is of type URN, its value is not of UUID format recommended by OASIS [1] as the preferred identifier scheme. In addition, there are often implementation reasons for not using the source object identifier as the rim:ExtrinsicObject identifier. As such, this property is not mapped to rim:ExtrinsicObject/@id.
In addition, while mapping it to `rim:ExtrinsicObject/@lid` has merit, most known CSW.ebRIM implementations have not yet implemented versioning for which lid is used. As such, it is likely prudent to reserve use of lid during early CSW.ebRIM adoption.

Therefore it is mapped to `rim:ExternalIdentifier` within the EPSG namespace:

```xml
<rim:ExtrinsicObject mimeType="application/xml" isOpaque="false"
   id="urn:anId"
   objectType="urn:x-ogc:def:ObjectType:GML:GeodeticDatum">
   <rim:ExternalIdentifier
      objectType="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:ExternalIdentifier"
      identificationScheme="urn:x-ogp:spec:EPSG:0.1:dataset"
      id="ext-id-001"
      value="urn:x-ogp:def:axis:EPSG:6326"
      registryObject="eoid-ext-id-001"/>
</rim:ExtrinsicObject>
```

7.2.2 Map to Name/Description

`GeodeticDatum/datumName` provides a common name for the datum and is of type string, therefore is best mapped to `rim:Name`.

`GeodeticDatum/remarks` provides a description for the datum, and therefore is best mapped to `rim:Description`.

For example:

```xml
<rim:ExtrinsicObject mimeType="application/xml" isOpaque="false"
   id="urn:anId"
   objectType="urn:x-ogp:cswebrim:def:epsg:ObjectType:GeodeticDatum">
   <rim:ExternalIdentifier
      objectType="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:ExternalIdentifier"
      identificationScheme="urn:x-ogp:spec:EPSG:0.1:dataset"
      id="ext-id-001"
      value="urn:x-ogp:def:axis:EPSG:6326"
      registryObject="eoid-ext-id-001"/>
   <rim:Name>
      <rim:LocalizedString xml:lang="en"
         value="World Geodetic System 1984"/>
   </rim:Name>
   <rim:Description>
      <rim:LocalizedString xml:lang="en"
         value="The WGS 84 datum is widely used."/>
   </rim:Description>
</rim:ExtrinsicObject>
```
7.2.3 Map to Classification

GeodeticDatum/ metaDataProperty/ epsg: MetaData/ epsg: dataSource has values from a controlled list of data suppliers. There are several options for mapping this property to ebRIM:

- establish a rim:ClassificationScheme and map dataSource to the rim:ClassificationNode created within said scheme representing its value.
- map the data supplier as rim: Organization object, and dataSource as a rim: Association to said object.
- map it to the existing BP http://purl.org/dc/elements/1.1/publisher Slot.

For demonstration purposes the first option is chosen, providing the following example:

Step 1: Define the Data Source ClassificationScheme which includes a ClassificationNode for each source of CRS data:

```xml
<rim:ClassificationScheme id="urn:x-ogp:def:ebrim:scheme:epsg:data-source"
 xmlns:rim="urn:oasis:names:tc:ebxml-regrep:xsd:rim:3.0"
 objectType="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:ClassificationScheme"
 isInternal="true"
 nodeType="UniqueCode">
 <rim:Name>
  <rim:LocalizedString value="Data Sources for CRS entities in the EPSG dataset"/>
 </rim:Name>
 <rim:ClassificationNode id="urn:x-ogp:def:ebrim:scheme:epsg:data-source:OGP"
  parent="urn:x-ogp:def:ebrim:scheme:epsg:data-source"
  objectType="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:ClassificationNode"
  code="OGP">
  <rim:Name>
   <rim:LocalizedString value="Oil &amp; Gas Producers (OGP)"/>
  </rim:Name>
 </rim:ClassificationNode>
 <rim:ClassificationNode id="urn:x-ogp:def:ebrim:scheme:epsg:data-source:OilCo1"
  parent="urn:x-ogp:def:ebrim:scheme:epsg:data-source"
  objectType="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:ClassificationNode"
  code="OilCo1">
  <rim:Name>
   <rim:LocalizedString value="Major Oil Company #1"/>
  </rim:Name>
 </rim:ClassificationNode>
```

Copyright © 2007 Open Geospatial Consortium. All Rights Reserved
Step 2: When adding a GeodeticDatum instance to the registry, create a Classification instance which refers to a ClassificationNode in the Data Source scheme defined in Step 1. For example:

```xml
<rim:Classification id="classification-001"
    classificationScheme="urn:x-ogp:def:ebrim:scheme:epsg:data-source"
    classifiedObject="{datum-instance-identifier}"/>
```

7.2.4 Map to ExternalLink

As there are no properties with URL values representing a link to an external resource, no properties are mapped to `rim:ExternalLink`.

7.2.5 Direct Attribute Mapping

Other than the earlier mappings to `rim:Name` and `rim:Description`, there are no suitable mappings between the source attributes to ebRIM attributes.

7.2.6 Mapping to Slot

In most cases specific domain attributes that require exposure within the target ebRIM model (for discovery purposes) will be mapped to Slots. They should be mapped to existing BP Slots as possible. In the case of the source CRS model, attributes are mapped to Slots as follows:

For example:
7.3 Association Mapping

OASIS [1] can be consulted for detailed guidance on mapping to associations. The following subsections demonstrate its use by applying it to the source CRS domain model. Patterns or rules asserted by the BP are also demonstrated.

As discussed in Section 6.2.3:

- A domain association not already represented in ebRIM should be mapped to a new subclass of ebRIM AssociationType.

- To define a new association type you must extend the canonical AssociationType ClassificationScheme and add a new ClassificationNode as a child or descendent of the AssociationType ClassificationScheme.

- To support more powerful queries and greater interoperability between CSW.ebRIM registries, the BP association types should be subclassed (by extending the canonical AssociationType classification scheme) whenever specialized versions of them are required.
For example:

- The Geodetic/uses association can be suitably mapped to the existing ebRIM ‘uses’ AssociationType.

- A new association type should be created for the Geodetic/usesEllipsoid association that extends the existing ebRIM ‘uses’ ClassificationNode in the canonical AssociationType classification scheme. Expressed as ebRIM this would appear as:

  ```xml
  <rim:ClassificationNode
    xmlns:rim="urn:oasis:names:tc:ebxml-regrep:xsd:rim:3.0"
    id="urn:x-opg:def:csw-ebrim:AssociationType:UsesEllipsoid"
    parent="urn:oasis:names:tc:ebxml-regrep:AssociationType:Uses"
    code="UsesEllipsoid">
    <rim:Name>
      <rim:LocalizedString charset="UTF-8" value="UsesEllipsoid"/>
    </rim:Name>
    <rim:Description>
      <rim:LocalizedString charset="UTF-8" value="Associates a Datum with an Ellipsoid"/>
    </rim:Description>
  </rim:ClassificationNode>
  
  An example of a Geodetic/uses association for WGS84 GeodeticDatum object is shown below:

  <!-- GeodeticDatum[6326] ==> Uses ==> Ellipsoid[7030] -->
  <rim:Association
    xmlns:rim="urn:oasis:names:tc:ebxml-regrep:xsd:rim:3.0"
    id="urn:uuid:14976e7a-253f-4221-956b-627617ae2d19"
    objectType="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:Association"
    associationType="urn:oasis:names:tc:ebxml-regrep:AssociationType:Uses"
    sourceObject="urn:x-opg:def:datum:EPSG:6326"
    targetObject="urn:x-opg:def:ellipsoid:EPSG:7030"/>
  
  7.4 Stored Queries

  As discussed in Section 6.2.6, stored queries are essentially parameterized, named queries that are included within an extension package to facilitate the discovery of the domain specific objects. They should be included whenever possible.

  A stored query maps to a rim:AdhocQuery object. The reader should consult [OGC 05-025r3] and [OASIS ebRIM] for guidance on creating, using and implementing stored queries.
For the example CRS domain, the following stored query expressed as a CSW.ebRIM query statement would retrieve Datums by name:

```xml
 id="urn:x-ogc:specification:csw-ebrim:Query:findDatumByName"
 objectType="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:AdhocQuery">
 <rim:Slot name="searchText" slotType="xsd:anyURI">
 <rim:ValueList/>
 </rim:Slot>
 <rim:Name>
 <rim:LocalizedString charset="UTF-8" xml:lang="en-US" value="findDatumByName"/>
 </rim:Name>
 <rim:Description>
 <rim:LocalizedString charset="UTF-8" xml:lang="en-US" value="Returns a list of Datum RegistryObjects, of any sub-type (i.e. GeodeticDatum, EngineeringDatum etc.). The REQUIRED parameter 'searchText' is the text used to match records."/>
 </rim:Description>
 <rim:QueryExpression
 queryLanguage="urn:x-ogc:specification:csw-ebrim:QueryLanguage:CSWQuery"
 xmlns:csw="http://www.opengis.net/cat/csw"
 xmlns:ogc="http://www.opengis.net/ogc">
 <csw:Query typeNames="ExtrinsicObject
 ClassificationNode=cn1,cn2">
 <csw:ElementSetName
 typeNames="ExtrinsicObject">full</csw:ElementSetName>
 <csw:Constraint version="1.1.0">
 <ogc:Filter>
 <ogc:And>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>/ExtrinsicObject/@objectType</ogc:PropertyName>
 <ogc:PropertyName>/$cn1/@id</ogc:PropertyName>
 </ogc:PropertyIsEqualTo>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>/$cn1/@parent</ogc:PropertyName>
 <ogc:PropertyName>/$cn2/@id</ogc:PropertyName>
 </ogc:PropertyIsEqualTo>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>/$cn2/@id</ogc:PropertyName>
 <ogc:Literal>urn:x-ogc:def:ObjectType:GML:Datum</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:And>
 <ogc:Or>
 <ogc:PropertyIsLike escapeChar='/' wildCard='*'
singleChar='?'>
 <ogc:PropertyName>/ExtrinsicObject/@objectType</ogc:PropertyName>
 </ogc:PropertyIsLike>
 </ogc:Or>
 </ogc:Filter>
 </csw:Constraint>
 </csw:Query>
 </rim:QueryExpression>
</rim:AdhocQuery>
```
7.5 Extension Package

As noted previously in Section 6.2, geospatial domain models should be modelled as extension packages that are mapped to a rim:RegistryPackage. This provides a useful means to insert, retrieve and otherwise manage all registry objects associated with the extension package.

To further simplify management of an extension package it is recommended that where a source extension package has a dependency on another target extension package the dependency should be explicitly identified. This can be easily modelled by instantiating a rim:Association of rim:Association.AssociationType = “uses” between the source and target extension packages. This dependency association must be an aggregation association. For example:

<!-- Illustration of ExtensionPackage dependency modelled as an Association: Example ExtensionPackage ==> Uses ==> BasicPackage -->
<rim:Association
    xmlns:rim="urn:oasis:names:tc:ebxml-regrep:xsd:rim:3.0"
    id="urn:uuid:0076222a-417d-4603-956b-325817bb2e18"
    objectType="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:Association"
    associationType="urn:oasis:names:tc:ebxml-regrep:AssociationType:Uses"
    sourceObject="urn:x-ogc:def:ext-pkg:example-01"
    targetObject="urn:x-ogc:specification:csw-ebrim:package:Basic"/>
Note that the extension package does not include any ebRIM registry objects related to actual domain objects stored as repository instances. Rather, it should include only those ebRIM artifacts necessary to support the inclusion of such instances. For the example domain model, this includes:

- Classification nodes that extend the canonical ObjectType and AssociationType classification schemes for the Datum and Geodetic Datum objects and the usesEllipsoid association.
- Classification scheme for the dataSource attribute.
- Association for the extension package dependency on the BP.
- Stored queries.

The result of mapping the example domain model to ebRIM is shown below.

<!--
Example Datum Extension Package
Note 1: the "Uses" association type is already defined in the CSW-ebRIM Basic Extension Package as: urn:oasis:names:tc:ebxml-regrep:AssociationType:Uses therefore, there is no need to define any association types this extension package.

Note 2: this example extension package is provided here wrapped in a CSW Transaction Insert statement in order that it may be directly submitted to a registry.
-->

<Transaction xmlns:rim="urn:oasis:names:tc:ebxml-regrep:xsd:rim:3.0" xmlns="http://www.opengis.net/cat/csw" service="CSW" version="2.0.1" verboseResponse="true">
  <Insert>
    <rim:RegistryPackage id="urn:x-ogc:def:ext-pkg:example-01" objectType="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:RegistryPackage">
      <rim:Name>
        <rim:LocalizedString xml:lang="en" value="Example Datum Extension Package"/>
      </rim:Name>
      <rim:VersionInfo versionName="1.0" comment="Last revised 2007-Jan-10"/>
    </rim:RegistryObjectList>
  </Insert>
</Transaction>
<!--
ObjectType ClassificationNodes (define new entity types)
-->
<rim:ClassificationNode code="Datum"
    id="urn:x-ogc:def:ObjectType:GML:Datum"
    parent="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:ExtrinsicObject">
    <rim:Name>
        <rim:LocalizedString xml:lang="en" value="Datum"/>
    </rim:Name>
</rim:ClassificationNode>

<!-- other Datum sub-types could be included here -->

<rim:ClassificationNode code="GeodeticDatum"
    id="urn:x-ogc:def:ObjectType:GML:GeodeticDatum"
    parent="urn:x-ogc:def:ObjectType:GML:Datum">
    <rim:Name>
        <rim:LocalizedString xml:lang="en" value="Geodetic Datum"/>
    </rim:Name>
</rim:ClassificationNode>

<rim:ClassificationNode code="Ellipsoid"
    id="urn:x-ogc:def:ObjectType:GML:Ellipsoid"
    parent="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:ExtrinsicObject">
    <rim:Name>
        <rim:LocalizedString xml:lang="en" value="Ellipsoid"/>
    </rim:Name>
</rim:ClassificationNode>

<rim:ClassificationNode code="PrimeMeridian"
    id="urn:x-ogc:def:ObjectType:GML:PrimeMeridian"
    parent="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:ExtrinsicObject">
    <rim:Name>
        <rim:LocalizedString xml:lang="en" value="Prime Meridian"/>
    </rim:Name>
</rim:ClassificationNode>
<rim:ClassificationNode id="urn:x-ogp:def:ebrim:scheme:epsg:data-source:OGP"
    parent="urn:x-ogp:def:ebrim:scheme:epsg:data-source"
    objectType="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:ClassificationNode"
    code="OGP">
    <rim:Name>
        <rim:LocalizedString value="Oil & Gas Producers (OGP)"/>
    </rim:Name>
</rim:ClassificationNode>

<rim:ClassificationNode id="urn:x-ogp:def:ebrim:scheme:epsg:data-source:OilCo1"
    parent="urn:x-ogp:def:ebrim:scheme:epsg:data-source"
    objectType="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:ClassificationNode"
    code="OilCo1">
    <rim:Name>
        <rim:LocalizedString charset="UTF-8" value="Oil Companies (OilCo1)"/>
    </rim:Name>
</rim:ClassificationNode>
<rim:ClassificationScheme>

<!-- ExtensionPackage dependency on BasicPackage -->
<rim:Association
xmlns:rim="urn:oasis:names:tc:ebxml-regrep:xsd:rim:3.0"
   id="urn:uuid:0076222a-417d-4603-956b-325817bb2e18"
   objectType="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:Association"
   regrep:AssociationType="urn:oasis:names:tc:ebxml-regrep:AssociationType:Uses"
   sourceObject="urn:x-ogc:def:ext-pkg:example-01"
   targetObject="urn:x-ogc:specification:csw-ebrim:package:Basic"/>

<!-- Stored queries for discovery purposes -->
   id="urn:x-ogc:specification:csw-ebrim:Query:findDatumByName"
   objectType="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:AdhocQuery">
   <rim:Slot name="searchText" slotType="xsd:anyURI">
     <rim:ValueList/>
   </rim:Slot>
   <rim:Name>
     <rim:LocalizedString charset="UTF-8" xml:lang="en-US" value="findDatumByName"/>
   </rim:Name>
</rim:AdhocQuery>
</rim:ClassificationScheme>

code="OilCo1">
<rim:Name>
   <rim:LocalizedString value="Major Oil Company #1"/>
</rim:Name>
</rim:ClassificationNode>
<rim:ClassificationNode id="urn:x-ogc:def:ebrim:scheme:epsg:data-source:OilCo2"
   objectType="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:ClassificationNode">
   <rim:Name>
     <rim:LocalizedString value="Major Oil Company #2"/>
   </rim:Name>
</rim:ClassificationNode>
</rim:ClassificationScheme>

<!-- Stored queries for discovery purposes -->
   id="urn:x-ogc:specification:csw-ebrim:Query:findDatumByName"
   objectType="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:AdhocQuery">
   <rim:Slot name="searchText" slotType="xsd:anyURI">
     <rim:ValueList/>
   </rim:Slot>
   <rim:Name>
     <rim:LocalizedString charset="UTF-8" xml:lang="en-US" value="findDatumByName"/>
   </rim:Name>
</rim:AdhocQuery>
</rim:ClassificationScheme>
Returns a list of Datum RegistryObjects, of any sub-type (i.e. GeodeticDatum, EngineeringDatum etc.). The REQUIRED parameter 'searchText' is the text used to match records.
8 Mapping Templates

OASIS [2] describes mapping templates (tables) that can be used by those new to ebRIM to help map source models to ebRIM. Examples of these tables are included in Annex C.
Annex A

1 OWS-4 Sensor Web Enablement Catalog Resource Profile

1.1 Background

OGC's Interoperability Program is a global, hands-on and collaborative prototyping program designed to rapidly develop, test and deliver proven candidate specifications into OGC's Specification Program, where they are formalized for public release. In OGC's Interoperability Initiatives, an international team of technology providers work together to solve specific geo-processing interoperability problems posed by the initiative's sponsoring organizations. OGC Interoperability Initiatives include test beds, pilot projects, interoperability experiments, and interoperability support services all designed to encourage rapid development, testing, validation and adoption of open, consensus based standards specifications.

In the Fall of 2005, the OGC issued a call for sponsors for an OGC OWS-4 Interoperability initiative testbed activity to advance OGC's open framework for interoperability in the geospatial industry. Three meetings were conducted with potential OWS-4 sponsors to review the OGC technical baseline, to discuss OWS 3 results, and to identify OWS 4 requirements. Sponsors have expressed keen interest in advancing standards for sensor webs, geospatial digital rights management, geospatial semantics and knowledge management. After analyzing the sponsors input, the OGC Interoperability Team recommended to the sponsors that the content of the OWS-4 initiative be organized around the following 7 threads:

3. Sensor Web Enablement (SWE)
4. Geo Processing Workflow (GPW)
5. Geo Decision Support (GeoDSS)
6. Geo-Digital Rights Management (GeoDRM)
7. CAD / GIS / BIM
8. OGC Location Services (OpenLS)
9. Compliance Testing (CITE)

The first one, the Sensor Web subtask, will continue to mature the existing set of SWE work items to enable the federation of sensors, platforms and management infrastructure into a single sensor enterprise. This enterprise will enable the discovery and tasking of sensors as well as the delivery of sensor measurements regardless of sensor type and controlling organization. The ultimate vision is of a sensor market place where users can

Copyright © 2007 Open Geospatial Consortium. All Rights Reserved
identify, evaluate, select and request a sensor collection regardless of sensor type, platform or owner.

1.2 Abstract
This document will describe the integration of a CSW ebRIM Catalogue in the OWS-4 SWE infrastructure. Since a lot of resources must be managed in the SWE context - like Services (i.e. SOS, SPS, SAS and WNS), metadata files (SensorML, TransducerML) or resources (GML dictionaries defining units of measures or phenomenons) – a CSW can be used to index all these informations and provide search and retrieval facilities to clients.

1.3 Related Information
1.3.1 Use Cases for Catalog Role in Managing SWE Resources
- Use cases
- Hot Spot Use cases
- Registry Role

1.3.2 Source Materials
1.3.2.1 General
- SweImplementations

1.3.2.2 Sensor Observation Service (SOS)
- SweIonicExperiment

1.3.2.3 Sensor Planning Service (SPS)

1.4 Sensor Observation Service Management
1.4.1 Material Description
Sensor Observation Service (SOS) is part of the OGC SWE group of specifications which provides an interface (through a OGC compliant webservice) for managing deployed sensors and retrieving sensor data.
1.4.2 Related Definitions

Concepts related to SOS are:

**Observation**: an event with a result which has a value describing some phenomenon,

**Observation Offering**: a logical grouping of observations offered by a service that are related in some way,

**Observed Value**: a value describing a natural phenomenon, which may use one of a variety of scales including nominal, ordinal ratio and interval.

**Sensor**: an entity capable of observing a phenomenon and returning an observed value.

A sensor can be an instrument or a living organism (e.g. a person).

Feature Of Interest

1.4.3 Mapping of source materials into ebRIM objects

Every SOS is represented in the CSW ebRIM catalogues by a structure of ebRIM objects. This structure is intended to highlight the most representative data of the webservice and to optimize most popular searches.

So the ebRIM structure must optimize this kind of typical searches from clients, or any combination of them:

Give me all SOS (or Observation Offerings) provided by this organization,

Give me all SOS (or Observation Offerings) providing observations of this phenomenon,

Give me all SOS (or Observation Offerings) providing observations within this bounding box,

Give me all SOS (or Observation Offerings) providing observations taken in this temporal interval,

Give me all SOS (or Observation Offerings) related to this keyword,

Give me all SOS (or Observation Offerings) provided by this organization and providing observations of this phenomenon, taken in this time interval within this bounding box...

The harvesting (the way a resource is pulled and indexed in the catalogue) of the SOS is based on the capabilities document. Like for others OGC webservices, the ServiceIdentification, ServiceProvider and OperationsMetadata parts are mapped to a structure including these ebRIM objects: Service, ServiceBinding, Associations, Organization, User and ExtrinsicObjects.

The following table defines the mapping between the ServiceIdentification section of the Capabilities and ebRIM objects.
Actually, the Service object is the main object, the entry point to the SOS in the Catalogue. It is classified to the SOS ClassificationNode of the OGC Services taxonomy.

The following table defines the mapping between the ServiceProvider section of the Capabilities and ebRIM objects:

<table>
<thead>
<tr>
<th>SOS Capabilities Element</th>
<th>EbRIM Element</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>/Capabilities/ServiceProvider/ProviderSite/@href</td>
<td>Service/Slot[@name=&quot;OnlineResource&quot;]/ValueList/Value[1]</td>
<td>URL</td>
</tr>
<tr>
<td>/Capabilities/ServiceProvider/ProviderName</td>
<td>Organization/Name/LocalizedString/@value (linked to the source Service object by a 'OffersService' Association)</td>
<td>String</td>
</tr>
<tr>
<td>/Capabilities/ServiceProvider/ServiceContact/IndividualName</td>
<td>User/PersonName (the primaryContact of the organization)</td>
<td>String</td>
</tr>
<tr>
<td>/Capabilities/ServiceProvider/ServiceContact/PositionName</td>
<td>User/Slot[@name=&quot;Position']/ValueList/Value[1]</td>
<td>String</td>
</tr>
<tr>
<td>/Capabilities/ServiceProvider/ServiceContact/ContactInfo/Phone/Voice</td>
<td>User/TelephoneNumber</td>
<td>String</td>
</tr>
<tr>
<td>/Capabilities/ServiceProvider/ServiceContact/ContactInfo/Address/DeliveryPoint</td>
<td>User/Address/@street</td>
<td>String</td>
</tr>
<tr>
<td>/Capabilities/ServiceProvider/ServiceContact/ContactInfo/Address/City</td>
<td>User/Address/@city</td>
<td>String</td>
</tr>
<tr>
<td>/Capabilities/ServiceProvider/ServiceContact/ContactInfo/Address/AdministrativeArea</td>
<td>User/Address/@stateOrProvince</td>
<td>String</td>
</tr>
<tr>
<td>/Capabilities/ServiceProvider/ServiceContact/ContactInfo/Address/PostalCode</td>
<td>User/Address/@postalCode</td>
<td>String</td>
</tr>
<tr>
<td>/Capabilities/ServiceProvider/ServiceContact/ContactInfo/Address/Country</td>
<td>User/Address/@country</td>
<td>String</td>
</tr>
<tr>
<td>/Capabilities/ServiceProvider/ServiceContact/ContactInfo/ElectronicMailAddress</td>
<td>User/EmailAddress/@address</td>
<td>String</td>
</tr>
</tbody>
</table>

The following table defines the mapping between the OperationsMetadata section of the Capabilities and ebRIM objects:

<table>
<thead>
<tr>
<th>SOS Capabilities Element</th>
<th>EbRIM Element</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>/Capabilities/OperationsMetadata/Operation[@name='GetCapabilities']/DCP/HTTP/GET/@href</td>
<td>ServiceBinding/@accessURI (linked to the Service object)</td>
<td>URL</td>
</tr>
<tr>
<td>/Capabilities/OperationsMetadata/Operation[@name]</td>
<td>ExtrinsicObject[@objectType='Service_Operation']/Name/LocalizedString/@value (linked to the source Service object by an 'Implements' Association)</td>
<td>String</td>
</tr>
</tbody>
</table>

Copyright © 2007 Open Geospatial Consortium. All Rights Reserved
The Contents section of the capabilities is obviously also mapped to an ebRIM structure. The Observation Offering list is transformed to a set of ExtrinsicObjects representing each Observation Offering and linked to the Service object by an Association.

These ExtrinsicObjects, representing each Observation Offering, keep a set of information like the name, procedures, observed properties, result formats and result models. They also keep spatial and temporal information. Each FeatureOfInterest is also modeled by an ExtrinsicObject linked to the Observation Offering ExtrinsicObject by an Association.

The following table defines the mapping between the Contents section of the Capabilities and ebRIM objects

<table>
<thead>
<tr>
<th>SOS Capabilities Element</th>
<th>EbRIM Element</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>/Capabilities/Contents/ObservationOfferingList/ObservationOffering/@id</td>
<td>ExtrinsicObject[@objectType='ObservationOffering']/Name/LocalizedString/@value (linked to the source Service object by a 'Contains' Association)</td>
<td>String</td>
</tr>
<tr>
<td>/Capabilities/Contents/ObservationOfferingList/ObservationOffering/name</td>
<td>ExtrinsicObject[@objectType='ObservationOffering']/Description/LocalizedString/@value</td>
<td>String</td>
</tr>
<tr>
<td>/Capabilities/Contents/ObservationOfferingList/ObservationOffering/boundedBy</td>
<td>ExtrinsicObject[@objectType='ObservationOffering']/Slot[@name='FootPrint']/ValueList/Value[1] (Transformed in EPSG:4326)</td>
<td>Geometry</td>
</tr>
<tr>
<td>/Capabilities/Contents/ObservationOfferingList/ObservationOffering/eventTime/TimePeriod/beginPosition</td>
<td>ExtrinsicObject[@objectType='ObservationOffering']/Slot[@name='BeginTime']/ValueList/Value[1]</td>
<td>ISO8601 Date</td>
</tr>
<tr>
<td>/Capabilities/Contents/ObservationOfferingList/ObservationOffering/eventTime/TimePeriod/endPosition</td>
<td>ExtrinsicObject[@objectType='ObservationOffering']/Slot[@name='EndTime']/ValueList/Value[1]</td>
<td>ISO8601 Date</td>
</tr>
<tr>
<td>/Capabilities/Contents/ObservationOfferingList/ObservationOffering/procedure/@href</td>
<td>ExtrinsicObject[@objectType='ObservationOffering']/Slot[@name='Procedures']/ValueList/Value[]</td>
<td>String</td>
</tr>
<tr>
<td>/Capabilities/Contents/ObservationOfferingList/ObservationOffering/observedProperty/@href</td>
<td>ExtrinsicObject[@objectType='ObservationOffering']/Slot[@name='ObservedProperties']/ValueList/Value[]</td>
<td>String</td>
</tr>
<tr>
<td>/Capabilities/Contents/ObservationOfferingList/ObservationOffering/resultFormat</td>
<td>ExtrinsicObject[@objectType='ObservationOffering']/Slot[@name='ResultFormats']/ValueList/Value[]</td>
<td>String</td>
</tr>
<tr>
<td>/Capabilities/Contents/ObservationOfferingList/ObservationOffering/resultModel</td>
<td>ExtrinsicObject[@objectType='ObservationOffering']/Slot[@name='ResultModels']/ValueList/Value[]</td>
<td>String</td>
</tr>
<tr>
<td>/Capabilities/Contents/ObservationOfferingList/ObservationOffering/featureOfInterest/FeatureCollection/featureMember/GeoReferenceableFeature/@id</td>
<td>ExtrinsicObject[@objectType='FeatureOfInterest']/Name/LocalizedString/@value (linked to the source ObservationOffering ExtrinsicObject object by a 'HasFeatureOfInterest' Association)</td>
<td>String</td>
</tr>
<tr>
<td>/Capabilities/Contents/ObservationOfferingList/ObservationOffering/featureOfInterest/FeatureCollection/featureMember/GeoReferenceableFeature/name</td>
<td>ExtrinsicObject[@objectType='FeatureOfInterest']/Description/LocalizedString/@value</td>
<td>String</td>
</tr>
<tr>
<td>/Capabilities/Contents/ObservationOfferingList/ObservationOffering/featureOfInterest/FeatureCollection/featureMember/GeoReferenceableFeature/locati on</td>
<td>ExtrinsicObject[@objectType='FeatureOfInterest']/Slot[@name='FootPrint']/ValueList/Value[1] (Transformed in EPSG:4326)</td>
<td>Geometry</td>
</tr>
</tbody>
</table>

The following diagram represents an SOS instance mapped to an ebRIM structure.
On the left of the diagram, we can see the OGC services taxonomy, composed by a ClassificationScheme (red box) with its children ClassificationNode (orange boxes).

At the center of the diagram, we can see the Service object (purple box) linked to the SOS ClassificationNode with a Classification (blue box) and the ServiceBinding (brown box) attached to this Service. Service has also a set of Associations (light pink boxes) of 3 different AssociationType. The first AssociationType, OffersService, is the Association to the Organization object (dark cyan box) itself attached to the User object (flashy pink box). The second AssociationType, Implements, is the Associations to the ExtrinsicObject (green boxes) representing the Operation of the Service. The last AssociationType, Contains, is the Association to the ExtrinsicObject (green box) representing the Observations of the ObservationOffering.

At the right of the diagram, we can see the ebRIM structure representing the Observation. So we have the ExtrinsicObject (green box) representing the Observations of the ObservationOffering, linked through Associations of type HasFeatureOfInterest (light pink boxes) to ExtrinsicObject (green boxes) representing FeatureOfInterest of the Observation.

1.4.4 Query extensions / standard queries
The following query retrieves all registered SOS:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<csw:GetRecords
xmlns:csw="http://www.opengis.net/cat/csw"
xmlns:ogc="http://www.opengis.net/ogc"
version="2.0.0"
```
The following query retrieves all Observation Offerings intersecting a given bounding box:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<csw:GetRecords
 xmlns:csw="http://www.opengis.net/cat/csw"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:gml="http://www.opengis.net/gml"
 version="2.0.0"
 outputSchema="EBRIM">
 <csw:Query typeNames="ExtrinsicObject">
 <csw:ElementName>/ExtrinsicObject</csw:ElementName>
 <csw:Constraint version="1.0.0">
 <ogc:Filter>
 <ogc:And>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>/ExtrinsicObject/@objectType</ogc:PropertyName>
 <ogc:Literal>ObservationOffering</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 <ogc:Intersects>
 ...
 </ogc:Intersects>
 </ogc:And>
 </ogc:Filter>
 </csw:Constraint>
 </csw:Query>
</csw:GetRecords>
```
<ogc:PropertyName>/ExtrinsicObject/Slot[@name="FootPrint"]/ValueList/Value[1]
  </ogc:PropertyName>
<gml:Box srsName="EPSG:4326">
  <gml:coordinates>5.210,50.890
  </gml:Box>
</ogc:Intersects>
</ogc:And>
</ogc:Filter>
</csw:Constraint>
</csw:Query>
</csw:GetRecords>

The following query retrieves all Observation Offerings containing data for a given date:

<?xml version="1.0" encoding="UTF-8"?>
<csw:GetRecords
  xmlns:csw="http://www.opengis.net/cat/csw"
  xmlns:ogc="http://www.opengis.net/ogc"
  version="2.0.0"
  outputSchema="EBRIM">
  <csw:Query typeNames="ExtrinsicObject">
    <csw:ElementName>/ExtrinsicObject</csw:ElementName>
    <csw:Constraint version="1.0.0">
      <ogc:Filter>
        <ogc:And>
          <ogc:PropertyIsEqualTo>
            <ogc:PropertyName>/ExtrinsicObject/@objectType</ogc:PropertyName>
            <ogc:Literal>ObservationOffering</ogc:Literal>
          </ogc:PropertyIsEqualTo>
          <ogc:PropertyIsLessThanOrEqualTo>
            <ogc:PropertyName>/ExtrinsicObject/Slot[@name="BeginTime"]/ValueList/Value[1]
            <ogc:Literal>2006-01-01T00:00:00Z</ogc:Literal>
          </ogc:PropertyIsLessThanOrEqualTo>
          <ogc:PropertyIsGreaterThanOrEqualTo>
            <ogc:PropertyName>/ExtrinsicObject/Slot[@name="EndTime"]/ValueList/Value[1]
            <ogc:Literal>2006-01-01T00:00:00Z</ogc:Literal>
          </ogc:PropertyIsGreaterThanOrEqualTo>
        </ogc:And>
      </ogc:Filter>
    </csw:Constraint>
  </csw:Query>
</csw:GetRecords>
1.4.5 Output schemas / formats

1.4.6 Resource lifecycle

1.4.7 Transaction corresponding to SOS instances harvest
   transaction1.xml: SOS at http://eo1.geobliki.com/sos
   transaction2.xml: SOS at http://mars.uni-muenster.de:8080/52nSOSv2/sos

1.4.8 Experiment
   An Catalogue able to harvest SOS has been provided by Ionic for the OWS-4 Demo:
   http://dev.ionicsoft.com:8082/ows4catalog/wrs/WRS?request=getCapabilities

   A JSP with some queries samples is also available:
   http://dev.ionicsoft.com:8082/ows4catalog/elements/sos.jsp

   The following diagram shows how these 3 SOS instances are mapped into the ebRIM model and linked to the OGC Services Taxonomy.

   http://ren.3eti.net:8080/ogc2/GetCapabilities.ogc
   http://vast.uah.edu:8080/ows-dev/scoopTest
   http://imasoft.spotimage.com/52nSOSv2/sos
1.5 SensorML Management

1.5.1 Material Description
SensorML is an OGC standard markup language (using XML schema) for providing descriptions of sensor systems. By design it supports a wide range of sensors, including both dynamic and stationary platforms and both in-situ and remote sensors.

1.5.2 Mapping of source materials into ebRIM objects
SensorML provides a rich collection of metadata that can be harvested by catalogues in order to:

- discover sensor systems and observation processes,
- archive sensor parameters, so observations from these systems can still be reprocessed and improved long after the origin mission has ended.
This metadata includes identifiers, classifiers, constraints (time, legal, and security), capabilities, characteristics, contacts, and references, in addition to inputs, outputs, parameters, and system location.

Essential elements of SensorML documents are:

**System**: Composite model of a group or array of components, which can include detectors, actuators, or sub-systems. A System relates a Process Chain to the real world and therefore provides additional definitions regarding relative positions of its components and communication interfaces.

**Sensor**: Specific type of System representing a complete Sensor. This could be for example a complete airborne scanner which includes several Detectors (one for each band).

**ProcessModel**: Atomic processing block usually used within a more complex Process Chain. It is associated to a Process Method which defines the process interface as well as how to execute the model. It also precisely defines its own inputs, outputs and parameters.

**ProcessChain**: Composite processing block consisting of interconnected sub-processes, which can in turn be Process Models or Process Chains. A process chain also includes possible data sources as well as connections that explicitly link input and output signals of sub-processes together. It also precisely defines its own inputs, outputs and parameters.

**Detector**: Atomic part of a composite Measurement System defining sampling and response characteristic of a simple detection device. A detector has only one input and one output, both being scalar quantities. More complex Sensors such as a frame camera which are composed of multiple detectors can be described as a detector group or array using a System or Sensor.

**Actuator**: An actuator, the reverse of a sensor, is a device that converts an electrical signal to an action.

**PropertyList**: List of properties

**DocumentList**: List of documents

**ContactList**: List of contacts

Each SensorML harvested in Catalog is represented by an ExtrinsicObject, having as content (related RepositoryItem) the XML file itself, and linked through Associations to additional ExtrinsicObjects representing essential elements, as described in the following schema:
Following tables define the mapping between SensorML instances and the corresponding ebRIM structure.

### 1.5.2.1 The SensorML root element:

<table>
<thead>
<tr>
<th>SensorML Element</th>
<th>EbRIM Element</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SensorML</td>
<td>ExtrinsicObject[@objectType='SensorML']</td>
<td>String</td>
</tr>
</tbody>
</table>

### 1.5.2.2 The System element:

<table>
<thead>
<tr>
<th>SensorML Element</th>
<th>EbRIM Element</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SensorML/System</td>
<td>ExtrinsicObject[@objectType='System'] linked to the SensorML ExtrinsicObject by an 'hasComponent' Association</td>
<td>String</td>
</tr>
<tr>
<td>/SensorML/System/@id</td>
<td>ExtrinsicObject[@objectType='System']/Slot[@name = 'Identifier']/ValueList/Value[1]</td>
<td>String</td>
</tr>
<tr>
<td>/SensorML/System/identification/IdentifierList/identifier[@name='uid']/Term</td>
<td>ExtrinsicObject[@objectType='System']/@uuid</td>
<td>String</td>
</tr>
<tr>
<td>/SensorML/System/identification/IdentifierList/identifier[@name='short_name']/Term</td>
<td>ExtrinsicObject[@objectType='System']/Name/LocalizedString/@value</td>
<td>String</td>
</tr>
<tr>
<td>/SensorML/System/identification/IdentifierList/identifier[@name='long_name']/Term</td>
<td>ExtrinsicObject[@objectType='System']/Description/LocalizedString/@value</td>
<td>String</td>
</tr>
<tr>
<td>/SensorML/System/capabilities/PropertyList/property/@name</td>
<td>ExtrinsicObject[@objectType='System']/Slot[@name = 'Capabilities']/ValueList/Value[]</td>
<td>String</td>
</tr>
<tr>
<td>/SensorML/System/characteristics/PropertyList/property/@name</td>
<td>ExtrinsicObject[@objectType='System']/Slot[@name = 'Characteristics']/ValueList/Value[]</td>
<td>String</td>
</tr>
<tr>
<td>/SensorML/System/contact/ResponsibleParty/organizationName</td>
<td>Organization/Name/LocalizedString/@value linked to the System ExtrinsicObject by an 'providedBy' Association</td>
<td>String</td>
</tr>
<tr>
<td>/SensorML/System/contact/ResponsibleParty/individualName</td>
<td>User/PersonName/@fullName, registered as User of the providing Organization</td>
<td>String</td>
</tr>
<tr>
<td>/SensorML/System/contact/ResponsibleParty/contactMeta</td>
<td>User/TelephoneNumbers</td>
<td>/</td>
</tr>
</tbody>
</table>
Let’s talk about his XML part of the System definition:

```xml
<classification>
 <ClassifierList>
 <classifier name="sensor_type">
 <Term qualifier="urn:ogc:classifier:sensorType">Positioning System</Term>
 </classifier>
 <classifier name="application">
 <Term qualifier="urn:ogc:classifier:application">Navigation Measurements</Term>
 </classifier>
 </ClassifierList>
</classification>
```

Actually, every term's qualifier is represented in the catalogue as a taxonomy. So in this example, 2 Classifications are created. The first one links the System ExtrinsicObject to the 'Positioning System' ClassificationNode, child of the 'urn:ogc:classifier:sensorType' ClassificationScheme. The second one links the same System ExtrinsicObject to the 'Navigation Measurements' ClassificationNode, child of the 'urn:ogc:classifier:application' ClassificationScheme.

Such ClassificationScheme or ClassificationNode are created during the harvesting process if they don't exist yet.

### 1.5.2.3 The Sensor element:

<table>
<thead>
<tr>
<th>SensorML Element</th>
<th>EbRIM Element</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SensorML/Sensor</td>
<td>ExtrinsicObject[@objectType='Sensor'] linked to the SensorML ExtrinsicObject by an 'hasComponent' Association</td>
<td>String</td>
</tr>
<tr>
<td>/SensorML/Sensor/@id</td>
<td>ExtrinsicObject[@objectType='Sensor']/Slot[@name='Identifier']/ValueList/Value[1]</td>
<td>String</td>
</tr>
<tr>
<td>/SensorML/Sensor/identification/IdentifierList/identifier[@name='uid']/Term</td>
<td>ExtrinsicObject[@objectType='Sensor']/@uuid</td>
<td>String</td>
</tr>
<tr>
<td>/SensorML/Sensor/identification/IdentifierList/identifier[@name='short_name']/Term</td>
<td>ExtrinsicObject[@objectType='Sensor']/Name/LocalizedString[@value]</td>
<td>String</td>
</tr>
<tr>
<td>/SensorML/Sensor/identification/IdentifierList/identifier[@name='long_name']/Term</td>
<td>ExtrinsicObject[@objectType='Sensor']/Description/LocalizedString[@value]</td>
<td>String</td>
</tr>
<tr>
<td>/SensorML/Sensor/inputs/InputList/input/@name</td>
<td>ExtrinsicObject[@objectType='Sensor']/Slot[@name='Inputs']/ValueList/Value[]</td>
<td>String</td>
</tr>
<tr>
<td>/SensorML/Sensor/outputs/OutputList/output/@name</td>
<td>ExtrinsicObject[@objectType='Sensor']/Slot[@name='Outputs']/ValueList/Value[]</td>
<td>String</td>
</tr>
<tr>
<td>/SensorML/Sensor/processes/ProcessList/process/@name</td>
<td>ExtrinsicObject[@objectType='Sensor']/Slot[@name='Processes']/ValueList/Value[]</td>
<td>String</td>
</tr>
</tbody>
</table>

Like for the System element, classification part of the XML definition is transformed into Classifications to corresponding ClassificationNode of the right taxonomy.
1.5.2.4 The ProcessModel element:

<table>
<thead>
<tr>
<th>SensorML Element</th>
<th>EbRIM Element</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SensorML/ProcessModel</td>
<td>ExtrinsicObject[@objectType='ProcessModel'] linked to the SensorML ExtrinsicObject by an 'hasComponent' Association</td>
<td>String</td>
</tr>
<tr>
<td>/SensorML/ProcessModel/@id</td>
<td>ExtrinsicObject[@objectType='ProcessModel']/Slot[@name='Identifier']/ValueList/Value[1]</td>
<td>String</td>
</tr>
</tbody>
</table>

1.5.2.5 The ProcessChain element:

<table>
<thead>
<tr>
<th>SensorML Element</th>
<th>EbRIM Element</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SensorML/ProcessChain</td>
<td>ExtrinsicObject[@objectType='ProcessChain'] linked to the SensorML ExtrinsicObject by an 'hasComponent' Association</td>
<td>String</td>
</tr>
<tr>
<td>/SensorML/ProcessChain/@id</td>
<td>ExtrinsicObject[@objectType='ProcessChain']/Slot[@name='Identifier']/ValueList/Value[1]</td>
<td>String</td>
</tr>
</tbody>
</table>

1.5.2.6 The Detector element:

<table>
<thead>
<tr>
<th>SensorML Element</th>
<th>EbRIM Element</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SensorML/Detector</td>
<td>ExtrinsicObject[@objectType='Detector'] linked to the SensorML ExtrinsicObject by an 'hasComponent' Association</td>
<td>String</td>
</tr>
<tr>
<td>/SensorML/Detector/@id</td>
<td>ExtrinsicObject[@objectType='Detector']/Slot[@name='Identifier']/ValueList/Value[1]</td>
<td>String</td>
</tr>
</tbody>
</table>

1.5.2.7 The Actuator element:

<table>
<thead>
<tr>
<th>SensorML Element</th>
<th>EbRIM Element</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SensorML/Actuator</td>
<td>ExtrinsicObject[@objectType='Actuator'] linked to the SensorML ExtrinsicObject by an 'hasComponent' Association</td>
<td>String</td>
</tr>
<tr>
<td>/SensorML/Actuator/@id</td>
<td>ExtrinsicObject[@objectType='Actuator']/Slot[@name='Identifier']/ValueList/Value[1]</td>
<td>String</td>
</tr>
</tbody>
</table>

1.5.2.8 The PropertyList element:

<table>
<thead>
<tr>
<th>SensorML Element</th>
<th>EbRIM Element</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SensorML/PropertyList</td>
<td>ExtrinsicObject[@objectType='PropertyList'] linked to the SensorML ExtrinsicObject by an 'hasComponent' Association</td>
<td>String</td>
</tr>
</tbody>
</table>

1.5.2.9 The DocumentList element:

<table>
<thead>
<tr>
<th>SensorML Element</th>
<th>EbRIM Element</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SensorML/DocumentList</td>
<td>ExtrinsicObject[@objectType='DocumentList'] linked to the SensorML ExtrinsicObject by an 'hasComponent' Association</td>
<td>String</td>
</tr>
</tbody>
</table>

1.5.2.10 The ContactList element:

<table>
<thead>
<tr>
<th>SensorML Element</th>
<th>EbRIM Element</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SensorML/ContactList</td>
<td>ExtrinsicObject[@objectType='ContactList'] linked to the SensorML ExtrinsicObject by an 'hasComponent' Association</td>
<td>String</td>
</tr>
</tbody>
</table>

1.6 Phenomenon Dictionary Management

1.6.1 Material Description

SWE Community needs GML dictionary defining phenomenons. These phenomenons are used:

1. When defining the output of a process (system) in SensorML
2. When defining the GetObservation on the returning capabilities document (see values of parameter)
3. In the getObservation response (See observedProperty)
4. When describing the output in SensorML document (swe:component)

1.6.2 Mapping of source materials into ebRIM objects

Catalogs handle GML dictionaries and organize phenomenons in a hierarchical
taxonomy. The taxonomy is useful to search and retrieve for example SOS or
Observations linked to a phenomenon or any of its descendants: e.g. a user asks for all
Observations served by an SOS and related to the “AirTemperature” or any of its
descendants (more specific) like “AverageAirTemperature15Minute” and
“AverageAirTemperature30Minute”.

The entire dictionary is represented by a ClassificationScheme object. Each dictionary
entry (of type Phenomenon, ConstrainedPhenomenon, CompositePhenomenon or
PhenomenonSeries) is represented by a ClassificationNode, child of the
ClassificationScheme.

The following table defines the mapping between the Dictionary and ebRIM objects:

<table>
<thead>
<tr>
<th>Dictionary Element</th>
<th>EbRIM Element</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>/Dictionary/identifier</td>
<td>ClassificationScheme/@uuid</td>
<td>URN</td>
</tr>
<tr>
<td>/Dictionary/name</td>
<td>ClassificationScheme/Name/LocalizedString/@value</td>
<td>String</td>
</tr>
<tr>
<td>/Dictionary/description</td>
<td>ClassificationScheme/Description/LocalizedString/@value</td>
<td>String</td>
</tr>
</tbody>
</table>

The following table defines the mapping between the Phenomenon Dictionary entry and
ebRIM objects:

<table>
<thead>
<tr>
<th>Dictionary Element</th>
<th>EbRIM Element</th>
<th>Type</th>
</tr>
</thead>
</table>
| /Dictionary/dictionaryEntry/Phenomenon | ClassificationNode child of the ClassificationScheme | /
| "Phenomenon" (fixed Value) | ClassificationNode/Slot[@name="PhenomenonType”]/ValueList/Value[1] | String |
| /Dictionary/dictionaryEntry/Phenomenon/identifier | ClassificationNode/@uuid | URN |
| /Dictionary/dictionaryEntry/Phenomenon/name | ClassificationNode/Name/LocalizedString/@value | String |
| /Dictionary/dictionaryEntry/Phenomenon/description | ClassificationNode/Description/LocalizedString/@value | String |

Next schema shows how simple phenomenons are represented into the taxonomy.

```xml
<gml:Dictionary>
 <gml:description>A dictionary of phenomena, compiled through OWS-1, OWS-1.2 OWS-3. SJDC 2005-10-03</gml:description>
 <gml:name>OWS Phenomena</gml:name>

 <gml:dictionaryEntry>
 <swe:Phenomenon gml:id="AtmosphericPressure">
```

Copyright © 2007 Open Geospatial Consortium. All Rights Reserved
fluid pressure exerted due to the gravitational effect on the column of atmosphere above the position of interest

<gmldescription xlink:href="http://sweet.jpl.nasa.gov/ontology/property.owl#AtmosphericPressure">fluid pressure exerted due to the gravitational effect on the column of atmosphere above the position of interest</gmldescription>


<gmname>Atmospheric Pressure</gmname>

</swe:Phenomenon>
</gmldictionaryEntry>

<gmldictionaryEntry>
  <swe:Phenomenon gml:id="CloudCover">
    <gmldescription>fraction of sky occupied by visible cloud</gmldescription>
    <gmname>Cloud Cover</gmname>
  </swe:Phenomenon>
</gmldictionaryEntry>

<gmldictionaryEntry>
  <swe:Phenomenon gml:id="Density">
    <gmldescription/>
    <gmname>Density</gmname>
  </swe:Phenomenon>
</gmldictionaryEntry>

<gmldictionaryEntry>
  <swe:Phenomenon gml:id="Radiation">
    <gmname>Radiation</gmname>
  </swe:Phenomenon>
</gmldictionaryEntry>

[...]
</gmldictionary>

Copyright © 2007 Open Geospatial Consortium. All Rights Reserved
The following table defines the mapping between the **ConstrainedPhenomenon** Dictionary entry and ebRIM objects:

<table>
<thead>
<tr>
<th>Dictionary Element</th>
<th>EbRIM Element</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>/Dictionary/dictionaryEntry/ConstrainedPhenomenon</td>
<td>ClassificationNode child of the ClassificationScheme</td>
<td>/</td>
</tr>
<tr>
<td>&quot;ConstrainedPhenomenon&quot; (fixed Value)</td>
<td>ClassificationNode/Slot[@name=&quot;PhenomenonType&quot;]/ValueList/Value[1]</td>
<td>String</td>
</tr>
<tr>
<td>/Dictionary/dictionaryEntry/ConstrainedPhenomenon/identifier</td>
<td>ClassificationNode/@uuid</td>
<td>URN</td>
</tr>
<tr>
<td>/Dictionary/dictionaryEntry/ConstrainedPhenomenon/name</td>
<td>ClassificationNode/Name/LocalizedString/@value</td>
<td>String</td>
</tr>
<tr>
<td>/Dictionary/dictionaryEntry/ConstrainedPhenomenon/description</td>
<td>ClassificationNode/Description/LocalizedString/@value</td>
<td>String</td>
</tr>
<tr>
<td>/Dictionary/dictionaryEntry/ConstrainedPhenomenon/base/@href</td>
<td>Association (with associationType equals to 'derivedFrom') to the ClassificationNode of the same taxonomy having this uuid</td>
<td>String</td>
</tr>
</tbody>
</table>

Next schema shows how constrained phenomenons are represented into the taxonomy.

```xml
<gml:Dictionary>
 <gml:description>A dictionary of phenomena, compiled through OWS-1, OWS-1.2 OWS-3. SJDC 2005-10-03</gml:description>
 <gml:name>OWS Phenomena</gml:name>

 <gml:dictionaryEntry>
 <swe:Phenomenon gml:id="Radiation">
 </swe:Phenomenon>
 </gml:dictionaryEntry>
</gml:Dictionary>
```
<gml:name>Radiation</gml:name>
</swe:Phenomenon>
</gml:dictionaryEntry>

<gml:dictionaryEntry>
  <swe:ConstrainedPhenomenon gml:id="Radiance">
    <gml:name>Radiance</gml:name>
    <swe:base xlink:href="#Radiation"/>
    <swe:singleConstraint>
      <swe:TypedValue>
        <swe:value xsi:type="gml:CodeType">passive</swe:value>
      </swe:TypedValue>
    </swe:singleConstraint>
  </swe:ConstrainedPhenomenon>
</gml:dictionaryEntry>

<gml:dictionaryEntry>
  <swe:ConstrainedPhenomenon gml:id="_19V">
    <gml:description>19 GHz Radiation Vertical Polarisation</gml:description>
    <gml:name>19V</gml:name>
    <swe:base xlink:href="#Radiation"/>
    <swe:singleConstraint>
      <swe:TypedValue>
        <swe:property codeSpace="./">PeakWavelength</swe:property>
        <swe:value xsi:type="gml:MeasureType" uom="./units.xml#GHz">19.35</swe:value>
      </swe:TypedValue>
    </swe:singleConstraint>
    <swe:singleConstraint>
      <swe:TypedValue>
        <swe:property codeSpace="./">PolarisationDirection</swe:property>
        <swe:value xsi:type="gml:CodeType" codeSpace="http://www.opengis.net/sensorGlossary">V</swe:value>
      </swe:TypedValue>
    </swe:singleConstraint>
  </swe:ConstrainedPhenomenon>
</gml:dictionaryEntry>
<swe:ConstrainedPhenomenon gml:id="_19H">
  <gml:description>19 GHz Radiation Horizontal Polarisation</gml:description>
  <gml:identifier codeSpace="urn:x-ogc:def:phenomenon:OGC:19H" gml:id="19H">
    <gml:name>19H</gml:name>
    <swe:base xlink:href="#Radiation"/>
    <swe:singleConstraint>
      <swe:TypedValue>
        <swe:property codeSpace="./">peakWavelength</swe:property>
        <swe:value xsi:type="gml:MeasureType" uom="#GHz">19.35</swe:value>
      </swe:singleConstraint>
    </swe:singleConstraint>
    <swe:singleConstraint>
      <swe:TypedValue>
        <swe:property codeSpace="./">PolarisationDirection</swe:property>
      </swe:singleConstraint>
    </swe:singleConstraint>
  </gml:identifier>
</swe:ConstrainedPhenomenon>

[...]
</gml:Dictionary>

---

The following table defines the mapping between the CompositePhenomenon Dictionary entry and ebRIM objects:
Next schema shows how composite phenomenons are represented into the taxonomy.

```xml
<gml:Dictionary>
 <gml:description>A dictionary of phenomena, compiled through OWS-1, OWS-1.2 OWS-3. SJDC 2005-10-03</gml:description>
 <gml:name>OWS Phenomena</gml:name>

 <gml:dictionaryEntry>
 <swe:Phenomenon gml:id="Direction">
 <gml:name>Direction</gml:name>
 </swe:Phenomenon>
 </gml:dictionaryEntry>

 <gml:dictionaryEntry>
 <swe:Phenomenon gml:id="Speed">
 <gml:name>Speed</gml:name>
 </swe:Phenomenon>
 </gml:dictionaryEntry>

 <gml:dictionaryEntry>
 <swe:CompositePhenomenon gml:id="Velocity" dimension="2">
 <gml:name>Velocity</gml:name>
 </swe:CompositePhenomenon>
 </gml:dictionaryEntry>
</gml:Dictionary>
```
<gml:name>Velocity</gml:name>
<swe:component xlink:href="#Speed"/>
<swe:component xlink:href="#Direction"/>
</swe:CompositePhenomenon>
</gml:dictionaryEntry>

[...]
</gml:Dictionary>

The following table defines the mapping between the PhenomenonSeries Dictionary entry and ebRIM objects:

<table>
<thead>
<tr>
<th>Dictionary Element</th>
<th>EbRIM Element</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>/Dictionary/dictionaryEntry/PhenomenonSeries</td>
<td>ClassificationNode child of the ClassificationScheme</td>
<td>/</td>
</tr>
<tr>
<td>&quot;PhenomenonSeries&quot; (fixed Value)</td>
<td>ClassificationNode/Slot[@name=&quot;PhenomenonType&quot;]/ValueList/Value[1]</td>
<td>String</td>
</tr>
<tr>
<td>/Dictionary/dictionaryEntry/PhenomenonSeries/identifier</td>
<td>ClassificationNode/@uuid</td>
<td>URN</td>
</tr>
<tr>
<td>/Dictionary/dictionaryEntry/PhenomenonSeries/name</td>
<td>ClassificationNode/Name/LocalizedString/@value</td>
<td>String</td>
</tr>
<tr>
<td>/Dictionary/dictionaryEntry/PhenomenonSeries/description</td>
<td>ClassificationNode/Description/LocalizedString/@value</td>
<td>String</td>
</tr>
<tr>
<td>/Dictionary/dictionaryEntry/PhenomenonSeries/base/@href</td>
<td>Association (with associationType equals to 'derivedFrom') to the ClassificationNode of the same taxonomy having this uuid</td>
<td>String</td>
</tr>
</tbody>
</table>

Next schema shows how phenomenon SERIES are represented into the taxonomy.
<gml:Dictionary>
  <gml:description>A dictionary of phenomena, compiled through OWS-1, OWS-1.2 OWS-3. SJDC 2005-10-03</gml:description>
  <gml:name>OWS Phenomena</gml:name>

  <gml:dictionaryEntry>
    <swe:Phenomenon gml:id="Radiation">
      <gml:name>Radiation</gml:name>
    </swe:Phenomenon>
  </gml:dictionaryEntry>

  <gml:dictionaryEntry>
    <swe:ConstrainedPhenomenon gml:id="Radiance">
      <gml:name>Radiance</gml:name>
      <swe:base xlink:href="#Radiation"/>
      <swe:singleConstraint>
        <swe:TypedValue>
          <swe:value xsi:type="gml:CodeType">passive</swe:value>
        </swe:TypedValue>
      </swe:singleConstraint>
    </swe:ConstrainedPhenomenon>
  </gml:dictionaryEntry>

  <gml:dictionaryEntry>
    <swe:PhenomenonSeries gml:id="uSpectrum" dimension="17">
      <gml:description>Simple spectrum with uniform spacing of bands</gml:description>
      <gml:name>UniformSpectrum</gml:name>
      <swe:base xlink:href="#Radiance"/>
      <swe:constraintList>
        <swe:TypedValueList>
          <swe:property codeSpace=".">Wavelength</swe:property>
          <swe:value xsi:type="gml:MeasureType" uom="./units.xml#um">0.300</swe:value>
        </swe:TypedValueList>
      </swe:constraintList>
    </swe:PhenomenonSeries>
  </gml:dictionaryEntry>
</gml:Dictionary>
Annex B OWS Domain Extension Package—Feature Catalog

1 Introduction

The purpose of this ANNEX is to describe how to register artefacts, described using the Department of Defence Metadata Standard (DDMS V1.3), into the ebRIM (V3.0). This annex specifically describes how DDMS metadata was mapped into the information model of a CSW-ebRIM compliant catalogue for the OWS4 testbed.

In the testbed an automated tool, called UGAS, was used to generate a GML application schemas from a UML models (encoded in XML as an XMI file). Embedded within the generated GML application schemas, DDMS were used to describe resources (or artefacts) declared therein (e.g. http://demo.cubewerx.com/FeatureCatalogue/GSIP.xsd). The CubeWerx catalogue was modified to harvest this embedded DDMS metadata and register the artefacts declared in the schema into the catalogue's information model (ebRIM V3.0).

2 UML Model

The following class diagram shows the artefacts, and their inter-relationships, that are registered as a result of the catalogue processing DDMS metadata embedded in a GML application schema.

Figure B.1 – Feature Catalogue UML
3 Object Types

As shown in subclause B.2, four basic object types were processed in the OWS4 testbed. Within the embedded DDMS metadata, these object types were designated using the codes: UMLApplicationSchema, Schema, FeatureType and PropertyType. For the OWS4 testbed, the "schema" types were further organized into the hierarchy shown in figure A.1 in order to discriminate an XML-Schema from a GML Application Schema from a UML Application Schema.

For the purpose of designation slot types, several DDMS-specific object types were also defined. These types include a boolean, string, double and a couple of extended date types. These types were organized into a classification sub-tree with the root node designated DDMS_Slot_Types, as shown in figure B.2.

Figure B.2 shows the portion of the ebRIM type classification scheme relevant to the OWS4 project. Namespace-like prefixes are used in the diagram to discriminate the origin of each node. The prefix 'ebrim' is used to designate nodes that already exist in the classification scheme. The prefix 'csw-ebrim' is used to designate nodes added by the csw-ebRIM extension package. The prefix 'ows4-ddms' is used to designate nodes added during the OWS4 testbed to support the harvesting of DDMS metadata.

```
ebrim:ObjectType
 |
 + ebrim:RegistryObject
 |
 + ebrim:ExtrinsicObject
 |
 + csw-ebrim:Schema
 |
 + ows4-ddms:XML-Schema
 |
 + ows4-ddms:GML-Application-Schema
 |
 + ows4-ddms:UML-Application-Schema

```
Figure B.2 – ObjectType classification scheme

The following XML fragments define the additional nodes that need to be added to the ObjectType classification scheme:

```xml
<rim:ClassificationNode code="XML-Schema"
 objectType="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:ClassificationNode"
 lid="urn:x-ogc:specification:csw-ebrim:ObjectType:Schema:XML-Schema"
 id="urn:x-ogc:specification:csw-ebrim:ObjectType:Schema:XML-Schema"
 parent="urn:x-ogc:specification:csw-ebrim:ObjectType:Schema">
 <rim:Name>
 XML-Schema
 </rim:Name>
</rim:ClassificationNode>
```
<rim:LocalizedString value="XML-Schema" />

</rim:Name>

<rim:Description>

<rim:LocalizedString xml:lang="en"
value="An XML schema document."/>

</rim:Description>

</rim:ClassificationNode>

<rim:ClassificationNode code="GML-Application-Schema"

  objectType="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:ClassificationNode"


<rim:Name>

  <rim:LocalizedString value="GML-Application-Schema" />

</rim:Name>

<rim:Description>

<rim:LocalizedString xml:lang="en"
value="A GML application schema document."/>

</rim:Description>

</rim:ClassificationNode>

<rim:ClassificationNode code="UML-Application-Schema"
objectType="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:ClassificationNode"


parent="urn:x-ogc:specification:csw-ebrim:ObjectType:Schema">

<Name>
  <LocalizedString value="UML-Application-Schema" />
</Name>

<Description>
  <LocalizedString xml:lang="en"
    value="A UML model encoded as an XMI document."/>
</Description>

</ClassificationNode>

<ClassificationNode code="FeatureType"
  objectType="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:ClassificationNode"
  id="urn:x-ogc:specification:csw-ebrim:ObjectType:FeatureType"
  parent="urn:oasis:names:tc:ebxml-regrep:ObjectType:ExtrinsicObject">

<Name>
  <LocalizedString value="FeatureType" />
</Name>

<Description>
</Description>

<rim:LocalizedString value="DDMS_Slot_Types"/>
</rim:Name>

<rim:Description>
  <rim:LocalizedString xml:lang="en" value="Types defined by the DDMS"/>
</rim:Description>
</rim:ClassificationNode>

<rim:ClassificationNode code="String"
  objectType="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:ClassificationNode"
  lid="urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types:String"
  id="urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types:String"
  parent="urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types">
  <rim:Name>
    <rim:LocalizedString value="String"/>
  </rim:Name>

  <rim:Description>
    <rim:LocalizedString xml:lang="en" value="A character string type."/>
  </rim:Description>
</rim:ClassificationNode>

<rim:ClassificationNode code="Boolean"
  objectType="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:ClassificationNode"
  lid="urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types:Boolean"
  id="urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types:Boolean"
<rim:ClassificationNode code="Boolean"
    objectType="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:ClassificationNode"
    id="urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types:Boolean"
    parent="urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types">
    <rim:Name>
        <rim:LocalizedString value="Boolean"/>
    </rim:Name>
    <rim:Description>
        <rim:LocalizedString xml:lang="en"
            value="A value of TRUE or FALSE"/>
    </rim:Description>
</rim:ClassificationNode>

<rim:ClassificationNode code="Double"
    objectType="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:ClassificationNode"
    id="urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types:Double"
    parent="urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types">
    <rim:Name>
        <rim:LocalizedString value="Double"/>
    </rim:Name>
    <rim:Description>
        <rim:LocalizedString xml:lang="en"
            value="An IEEE double value."/>
    </rim:Description>
</rim:ClassificationNode>
<rim:ClassificationNode code="CombinedDateType"
    objectType="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:ClassificationNode"
    id="urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types:CombinedDateType"
    parent="urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types">
    <rim:Name>
        <rim:LocalizedString value="CombinedDateType" />
    </rim:Name>
    <rim:Description>
        <rim:LocalizedString xml:lang="en" value="A value whose type corresponds to one of the XML types dateTime, date, gYearMonth, gYear"/>
    </rim:Description>
</rim:ClassificationNode>

<rim:ClassificationNode code="ExtendedCombinedDateType"
    objectType="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:ClassificationNode"
    id="urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types:ExtendedCombinedDateType"
    parent="urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types">
    <rim:Name>
        <rim:LocalizedString value="ExtendedCombinedDateType" />
    </rim:Name>
</rim:ClassificationNode>
4 Association Types

In the embedded DDMS metadata, the `<relation>` element is used to declare relationships or associations between the resource containing the element and other resources.

The following association types have been used within the OWS4 testbed:

1. **derivedFrom**
   an association between a GML Application Schema and the UML Application Schema from which it was generated (also used to indicate that one resource is derived from another resource)

2. **dependsOn**
   an association between schema documents indicating that one schema depend on another schema

3. **partOf**
   an association between a feature type and the GML Application Schema within which it is declared

4. **resource**
   an association between a resource and itself typically used to specify a URL reference to the declaration of the resource within a GML Application Schema

5. **propertyOf**
   an association indicating that the resource is a property of a specified feature type
6. **inView**

   an association indicating that a feature is part of the specified View (this is mapped as a classification in ebRIM)

Examples:

The following XML fragments are examples of the relation element:

```xml
<relation xlink:href="GSIP_320/GSIP.xsd">resource</relation>
```

```xml
<relation xlink:href="urn:x-nsgfc:AS:id:gsip:v1.8_draft">derivedFrom</relation>
```

```xml
<relation xlink:href="urn:x-nsgfc:AS:id:gsip:v1.8_draft">partOf</relation>
```

```xml
<relation xlink:href="urn:x-nsgfc:GMLAS:id:app:unknown">dependsOn</relation>
```

```xml
```

```xml
```

```xml
```

With respect to the class diagram in subclause A.2, a GML Application Schema is **derivedFrom** a UML Application Schema. Each **FeatureType** is **partOf** a GML Application Schema and each **PropertyType** is a **propertyOf** a **FeatureType**.

Figure B.3 shows a portion of the AssociationType classification scheme and the additional nodes added to that scheme to support the harvesting of DDMS metadata. The prefix 'ebrim' is used to indicate nodes that are already part of the canonical ebXML AssociationType classification scheme. The prefix 'csw-ebrim' is used to indicate nodes added to the canonical AssociationType classification scheme by the csw-ebRIM
extension package. Finally, the prefix 'ows4-ddms' indicates nodes added to the canonical AssociationType classification scheme during the OWS4 testbed to support harvesting DDMS metadata.

```
ebrim:AssociationType
 |
 +- csw-ebrimAssociationType
 |
 +- ows4-ddms:derivedFrom
 |
 +- ows4-ddms:dependsOn
 |
 +- ows4-ddms:partOf
 |
 +- ows4-ddms:resource
 |
 +- ows4-ddms:propertyOf
 |
 +- ows4-ddms:inView
```

**Figure B.3 – AssociationType classification scheme**

The following XML fragments define the additional association type nodes that need to added to a catalogue to support harvesting of DDMS metadata:

```
<rim:ClassificationNode code="derivedFrom"
 objectType="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:ClassificationNode"
 lid="urn:x-ogc:specification:ows4-ddms:AssociationType:derivedFrom"
 id="urn:x-ogc:specification:ows4-ddms:AssociationType:derivedFrom"
```

Copyright © 2007 Open Geospatial Consortium. All Rights Reserved
OGC 06-155

parent="urn:oasis:names:tc:ebxml-regrep:classificationScheme:AssociationType">

<rim:Name>
  <rim:LocalizedString value="derivedFrom" />
</rim:Name>

<rim:Description>
  <rim:LocalizedString xml:lang="en" value="an association between a GML Application Schema and the UML Application Schema from which it was generated"/>
</rim:Description>
</rim:ClassificationNode>

<rim:ClassificationNode code="dependsOn"

  objectType="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:ClassificationNode"

  lid="urn:x-ogc:specification:ows4-ddms:AssociationType:dependsOn"

  id="urn:x-ogc:specification:ows4-ddms:AssociationType:dependsOn"

  parent="urn:oasis:names:tc:ebxml-regrep:classificationScheme:AssociationType">

  <rim:Name>
    <rim:LocalizedString value="dependsOn" />
  </rim:Name>

  <rim:Description>
    <rim:LocalizedString xml:lang="en" value="an association between schema documents indicating that one schema depend on another schema"/>
  </rim:Description>
</rim:ClassificationNode>

<rim:ClassificationNode code="partOf"
objectType="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:ClassificationNode"

lid="urn:x-ogc:specification:ows4-ddms:AssociationType:partOf"
id="urn:x-ogc:specification:ows4-ddms:AssociationType:partOf"
parent="urn:oasis:names:tc:ebxml-regrep:classificationScheme:AssociationType">

<rim:Name>
  <rim:LocalizedString value="partOf" />
</rim:Name>

<rim:Description>
  <rim:LocalizedString xml:lang="en" value="an association between a feature type and the GML Application Schema within which it is declared"/>
</rim:Description>
</rim:ClassificationNode>

<rim:ClassificationNode code="resource"

objectType="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:ClassificationNode"

lid="urn:x-ogc:specification:ows4-ddms:AssociationType:resource"
id="urn:x-ogc:specification:ows4-ddms:AssociationType:resource"
parent="urn:oasis:names:tc:ebxml-regrep:classificationScheme:AssociationType">

<rim:Name>
  <rim:LocalizedString value="resource"/>
</rim:Name>

<rim:Description>
  <rim:LocalizedString xml:lang="en" value="an association between a resource and itself typically used to specify a URL reference to the declaration of the resource within a GML Application Schema"/>
</rim:Description>
</rim:ClassificationNode>
<rim:ClassificationNode code="propertyOf"
   objectType="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:ClassificationNode"
   lid="urn:x-ogc:specification:ows4-ddms:AssociationType:propertyOf"
   id="urn:x-ogc:specification:ows4-ddms:AssociationType:propertyOf"
   parent="urn:oasis:names:tc:ebxml-regrep:classificationScheme:AssociationType">
   <rim:Name>
     <rim:LocalizedString value="propertyOf" />
   </rim:Name>
   <rim:Description>
     <rim:LocalizedString xml:lang="en" value="an association indicating that the resource is a property of a specified feature type"/>
   </rim:Description>
</rim:ClassificationNode>

<rim:ClassificationNode code="inView"
   objectType="urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:ClassificationNode"
   lid="urn:x-ogc:specification:ows4-ddms:AssociationType:inView"
   id="urn:x-ogc:specification:ows4-ddms:AssociationType:inView"
   parent="urn:oasis:names:tc:ebxml-regrep:classificationScheme:AssociationType">
   <rim:Name>
     <rim:LocalizedString value="inView" />
   </rim:Name>
</rim:ClassificationNode>
5 Element Mappings

This subclause describes how each source element from a DDMS metadata document is mapped to elements in the ebRIM in order to create a feature catalogue.

Source Path:
Resource/identifier/@qualifier
Resource/identifier/@value

Target Path:
ExtrinsicObject/@id
- OR -
ExtrinsicObject/ExternalIdentifier/@id

Notes:
If the value of the Resource/identifier/@qualifier value is set to 'urn:uuid' the value of the attribute Resource/identifier/@value is mapped to the attribute ExtrinsicObject/@id.

Otherwise the catalogue generates a value for the ExtrinsicObject/@id attribute and creates an ExternalIdentifier object where the attribute value of the Resource/identifier/@qualifier attribute is mapped to the ExternalIdentifier/@identificationScheme attribute and the value of the Resource/identifier/@value attribute is mapped to the attribute ExternalIdentifier/@value.
The value of the system generated id is then copied to the ExternalIdentifier/@registryObject attribute.

Source Path:
Resource/title

Target Path:
ExtrinsicObject/Name/LocalizedString[@xml:lang="..."]
ExtrinsicObject/Name/LocalizedString[@charset="..."]
ExtrinsicObject/Name/LocalizedString[@value="title"]

Notes:
The **lang** attribute may be set of the Resource/language element is set. Similarly, the **charset** attribute can be set from the declared character set of the XML document (e.g. UTF-8).

Source Path:
Resource/subtitle

Target Path:
ExtrinsicObject/Slot[@name="subtitle" and @slotType="urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types:String"]/ValueList/Value

Notes:
The subtitle is mapped to a slot. It's type is set using the id of the string object type defined in subclause A.3 (i.e. urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types:String).
Source Path:

Resource/description

Target Path:

ExtrinsicObject/Description/LocalizedString[@xml:lang="TOKEN1"]
ExtrinsicObject/Description/LocalizedString[@charset="TOKEN2"]
ExtrinsicObject/Description/LocalizedString[@value="description"]

Notes:

The **lang** attribute may be set if the Resource/language element is set. Similarly, the **charset** attribute can be set from the declared character set of the XML document (e.g. UTF-8).

Source Path:

Resource/language/@qualifier
Resource/language/@value

Target Path:

.../xml:lang="value"

Notes:

If the language element is set, its value is used to populate the localized strings in the ebRIM. For OWS4, the only supported qualifier was "ISO 639-1".

Source Path:

Resource/dates@posted
Target Path:

ExtrinsicObject/Slot/[@name="posted" and @slotType="urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types:CombinedDateType"]/ValueList/Value

ExtrinsicObject/Slot/[@name="created" and @slotType="urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types:CombinedDateType"]/ValueList/Value

ExtrinsicObject/Slot/[@name="validTil" and @slotType="urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types:CombinedDateType"]/ValueList/Value

ExtrinsicObject/Slot/[@name="infoCutOff" and @slotType="urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types:CombinedDateType"]/ValueList/Value

Notes:

The various date source elements are mapped, in ebRIM, to slots of the same name. The slotType attribute is set using the id of the CombinedDateType object type defined in subclause A.3 (i.e. urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types:CombinedDateType).

Source Path:

Resource/rights/@privacyAct

Target Path:

ExtrinsicObject/Slot/[@name="rights" and @slotType="urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types:Boolean"]/ValueList/Value
Source Path:

Resource/rights/@copyright

Target Path:

ExtrinsicObject/Slot/[@name="copyright" and @slotType="urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types:Boolean"]/ValueList/Value

Source Path:

Resource/rights/@intellectualProperty

Target Path:

ExtrinsicObject/Slot/[@name="intellectualProperty" and @slotType="urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types:Boolean"]/ValueList/Value

Source Path:

Resource/source/@schemaHref

Resource/source/@schemaQualifier

Target Path:

ExternalLink@externalURI

ExternalLink/Slot/[@name="schemaQualifier" and @slotType="urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types:URI"]/ValueList/Value

Notes:

Copyright © 2007 Open Geospatial Consortium. All Rights Reserved
An ExternalLink object is created and the value of the attribute Resource/source/@schemaHref is mapped to ExternalLink@externalURI.

An Association object is then created to relate the ExternalLink object to the ExtrinsicObject created for the record. The association mapping is:

Association/sourceObject
-> ExtrinsicObject/@id
Association/targetObject
-> ExternalLink/@id
Association/associationType
-> urn:x-ogc:specification:csw-ebrim:AssociationType:derivedFrom

-----------------------------------------------

**Source Path:**

Resource/source/@qualifier
Resource/source/@value

**Target Path:**

Association/@sourceObject
Association/@targetObject
Association/@associationType

**Notes:**

An ebRIM association is used to reference the resource from which the current resource was derived.

The value of the Association/@sourceObject attribute is set to value of the id of the current resource (see: Source Path: Resource/identifier)
If the value of the Resource/source/@qualifier attribute is set to "urn:uuid" then the Resource/source/@value value is mapped to Association/@targetObject. Otherwise, an ExternalLink object must be created and the value of the Association/@targetObject is set to the value of the ExternalLink/@id attribute.

The value of the Association/@associationType is set to:

urn:x-ogc:specification:ows4-ddms:AssociationType:derivedFrom

Source Path:

Resource/type@qualifier

Resource/type@value

Target Path:

ExtrinsicObject/@objectType

Notes:

For OWS4, one of:


urn:x-ogc:specification:csw-ebrim:ObjectType:FeatureType

urn:x-ogc:specification:csw-ebrim:ObjectType:PropertyType

Source Path:

Resource/creator/Organization/name

Resource/creator/Organization/phone
OGC 06-155

Resource/creator/Organization/email

Resource/publisher/Organization/phone
Resource/publisher/Organization/name
Resource/publisher/Organization/email

Resource/contributor/Organization/name
Resource/contributor/Organization/phone
Resource/contributor/Organization/email

Resource/pointOfContact/Organization/name
Resource/pointOfContact/Organization/phone
Resource/pointOfContact/Organization/email

**Target Path:**

Organization/Name/LocalizedString[@xml:lang="..."]
Organization/Name/LocalizedString[@charset="..."]
Organization/Name/LocalizedString[@value="name"]

Organization/Slot[@name="OrganizationType" and @slotType="urn:x-ogc:specification:cswebrim:ObjectType:DDMS_Slot_Types:String"]/ValueList/Value

Organization/TelephoneNumber/@number
Organization/EmailAddress/@address

**Notes:**
The `xml:lang` attribute may be set of the Resource/language element is set. Similarly, the charset attribute can be set from the declared character set of the XML document (e.g. UTF-8).

A Slot name "OrganizationType" is used to discriminate the different types or organizations found in a DDMS document. The allowed values are:

- creator
- publisher
- contributor
- pointOfContact

The corresponding telephone number is mapped to the attribute Organization/TelephoneNumber/@number.

The Organization object is associated to the ExtrinsicObject created for the artefact via the Organization/@parent attribute. That is, that the value of the Organization/@parent attribute equals the value of the ExtrinsicObject/@id attribute.

Source Path:

Resource/format/Media/mimeType

Target Path:

ExtrinsicObject/@mimeType

Source Path:

Resource/format/Media/extent@qualifier

Resource/format/Media/extent@value

Target Path:
ExtrinsicObject/Slot/[@name="extent" and @slotType="urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types:String"]/ValueList/Value

Source Path:

Resource/format/Media/medium

Target Path:

ExtrinsicObject/Slot/[@name="medium" and @slotType="urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types:String"]/ValueList/Value

Source Path:

Resource/subjectCoverage/Subject/category/@code
Resource/subjectCoverage/Subject/category/@qualifier
Resource/subjectCoverage/Subject/category/@label

Target Path:

Classification/@classificationScheme
Classification/@classificationNode
Classification/@classifiedObject

Notes:

There is no direct mapping between the Resource/subjectCoverage values and the Classification object. Basically, the catalogue has to recognize the DDMS subjectCoverage category and map it to an appropriate classification node in a classification scheme that is loaded into the catalogue.
In the OWS4 testbed the following classification schemes were used to categorize resources:

- http://www.isotc211.org/2005/gmd/MD_TopicCategoryCode
- http://www.dgiwg.org/dfdd/category
- http://www.nga.mil/
- http://www.nga.mil/gsip/classification/DataContentStandards
- http://www.nga.mil/gsip/classification/Views

The ISO Topic Categories were encoded as an ebRIM classification scheme (see MD_Topic_Categories.xml).

Source Path:

Resource/subjectCoverage/Subject/keyword/@value

Target Path:

ExtrinsicObject/Slot[@name="keyword" and @slotType="urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types:String"]/ValueList/Value[N]

Source Path:

Resource/virtualCoverage/@address
Resource/virtualCoverage/@protocol

Target Path:

UNMAPPED (not used in OWS4 testbed)
Target Path:

ExtrinsicObject/Slot/[@name="TimePeriod_name" and @slotType="urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types:String"]/ValueList/Value

ExtrinsicObject/Slot/[@name="TimePeriod_start" and @slotType="urn:x-ogc:specification:csw_ebrim:ObjectType:DDMS_Slot_Types:ExtendedCombinedDateType"]/ValueList/Value

ExtrinsicObject/Slot/[@name="TimePeriod_end" and @slotType="urn:x-ogc:specification:csw_ebrim:ObjectType:DDMS_Slot_Types:ExtendedCombinedDateType"]/ValueList/Value

Source Path:

Resource/geospatialCoverage/GeospatialExtent/geographicIdentifier/name

Resource/geospatialCoverage/GeospatialExtent/geographicIdentifier/region

Target Path:

UNMAPPED (not used in OWS4 testbed)

Source Path:

Resource/geospatialCoverage/GeospatialExtent/geographicIdentifier/countryCode@qualifier

Resource/geospatialCoverage/GeospatialExtent/geographicIdentifier/countryCode@value

80
Target Path:

UNMAPPED (not used in OWS4 testbed)

Source Path:

Resource/geospatialCoverage/GeospatialExtent/geographicIdentifier/facilityIdentifier/@beNumber

Resource/geospatialCoverage/GeospatialExtent/geographicIdentifier/facilityIdentifier/@osuffix

Target Path:

ExtrinsicObject/Slot/[@name="FacilityIdentifier_beNumber" and @slotType="urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types:String"]/ValueList/Value

ExtrinsicObject/Slot/[@name="FacilityIdentifier_osuffix" and @slotType="urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types:String"]/ValueList/Value

Source Path:

Resource/geospatialCoverage/GeospatialExtent/boundingBox/WestBL

Resource/geospatialCoverage/GeospatialExtent/boundingBox/EastBL

Resource/geospatialCoverage/GeospatialExtent/boundingBox/SouthBL

Resource/geospatialCoverage/GeospatialExtent/boundingBox/NorthBL

Target Path:

ExtrinsicObject/Slot/[@name="boundingBox"]/ValueList/Value
Notes:
The values are converted to a gml:Envelope and stored in a Slot named "boundingBox".

Source Path:
- Resource/geospatialCoverage/GeospatialExtent/verticalExtent/@unitOfMeasure
- Resource/geospatialCoverage/GeospatialExtent/verticalExtent/@datum
- Resource/geospatialCoverage/GeospatialExtent/verticalExtent/MinVerticalExtent
- Resource/geospatialCoverage/GeospatialExtent/verticalExtent/MaxVerticalExtent

Target Path:
- ExtrinsicObject/Slot/[@name="VerticalExtent_UOM" and @slotType="urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types:String"]/ValueList/Value
- ExtrinsicObject/Slot/[@name="VerticalExtent_Datum" and @slotType="urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types:String"]/ValueList/Value
- ExtrinsicObject/Slot/[@name="VerticalExtent_Min" and @slotType="urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types:Double"]/ValueList/Value
- ExtrinsicObject/Slot/[@name="VerticalExtent_Max" and @slotType="urn:x-ogc:specification:csw-ebrim:ObjectType:DDMS_Slot_Types:Double"]/ValueList/Value

Source Path:
- Resource/geospatialCoverage/GeospatialExtent/boundingGeometry

Target Path:
- ExtrinsicObject/Slot/[@name="boundingGeometry"]/ValueList/Value

Note:
The bounding geometry is either a gml:Point or gml:Polygon according to the DDMS schema.

Source Path:

Resource/geospatialCoverage/GeospatialExtent/postalAddress/street
Resource/geospatialCoverage/GeospatialExtent/postalAddress/city
Resource/geospatialCoverage/GeospatialExtent/postalAddress/state
Resource/geospatialCoverage/GeospatialExtent/postalAddress/postalCode
Resource/geospatialCoverage/GeospatialExtent/postalAddress/countryCode@qualifier
Resource/geospatialCoverage/GeospatialExtent/postalAddress/countryCode@value

Target Path:

Organization/Address/@streetNumber
Organization/Address/@street
Organization/Address/@city
Organization/Address/@stateOrProvince
Organization/Address/@postalCode
Organization/Address/@country

6 Security Tags

Two approaches were tried to map security information into ebRIM.

The first approach was to use ebRIM Slots to store the security metadata. The problem with this approach was that some of the DDMS metadata elements are mapped to Slots and it not possible to dynamically extend a Slot by adding a Slot. Methods were developed to circumvent this limitation but they relied on non-standard conventions and in the end were determined to be awkward to query.
The second approach tried was to extend the ebRIM model by adding a Security element. The following XML-Schema fragment defines the necessary extension:

```xml
<element name="Security" type="DDMS_Security_Type"/>
<complexType name="DDMS_Security_Type">
 <attribute name="parent" type="tns:referenceURI" use="required"/>
 <attribute name="about" type="string" use="optional"/>
 <attribute name="name" type="string" use="optional"/>
 <attributeGroup ref="ICISM:SecurityAttributesGroup"/>
</complexType>
```

The parent attribute references the id of the resource to which the security information is being attached. The about attribute references the name of the ebRIM element to which the security information is attached. The name attribute is used to further qualify the value of the about attribute (e.g. as would be required if the security information was attached to a Slot).

Example:

Consider the title element of a resource with the identifier "urn:x-nsgfc:GMLAS:id:gsip:v1.8_draft:AerialFarm":

```xml
<title ICISM:classification="U" ICISM:ownerProducer="U.S. National Geospatial-Intelligence Agency">Aerial Farm</title>
```

In ebRIM, the DDMS title element would be mapped to a Slot:

```xml
<ExtrinsicObject id="urn:x-nsgfc:GMLAS:id:gsip:v1.8_draft:AerialFarm">
 <Slot name="title" slotType="urn:x_ogc:specification:csw_ebrim:ObjectType:DDMS_Slot_Types:String">
 <ValueList>
 <Value>Aerial Farm</Value>
 </ValueList>
 </Slot>
</ExtrinsicObject>
```
and the security metadata, using the newly added Security element, would be mapped as:

```xml
<Security
 parent="urn:x-nsgfc:GMLAS:id:gsip:v1.8_draft:AerialFarm"
 about="Slot"
 name="title"
 ICISM:classification="U"
 ICISM:ownerProducer="U.S. National Geospatial-Intelligence Agency"/>
```

### 7 Mapping to OGC Core Properties

The following table defines the mapping of DDMS metadata elements to the OGC Core Properties. Since both DDMS and the OGC Core Properties are based on Dublin Core metadata elements, the mapping is straightforward.

<table>
<thead>
<tr>
<th>DDMS Metadata Element</th>
<th>OGC Core Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>ddms:identifier</td>
<td>dc:identifier</td>
</tr>
<tr>
<td>ddms:title</td>
<td>dc:title</td>
</tr>
<tr>
<td>ddms:subtitle</td>
<td>dct:alternative</td>
</tr>
<tr>
<td>ddms:description</td>
<td>dc:description</td>
</tr>
<tr>
<td>ddms:language</td>
<td>dc:language</td>
</tr>
<tr>
<td>ddms:dates/@created</td>
<td>dct:dateSubmitted</td>
</tr>
<tr>
<td>ddms:dates/@posted</td>
<td>dct:issued</td>
</tr>
<tr>
<td>DDMS Metadata Element</td>
<td>OGC Core Element</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>ddms:dates/@validTil</td>
<td>dct:valid</td>
</tr>
<tr>
<td>ddms:rights</td>
<td>dc:rights</td>
</tr>
<tr>
<td>ddms:source</td>
<td>dc:source</td>
</tr>
<tr>
<td>ddms:type</td>
<td>dc:type</td>
</tr>
<tr>
<td>ddms:creator</td>
<td>dc:creator</td>
</tr>
<tr>
<td>ddms:publisher</td>
<td>dc:publisher</td>
</tr>
<tr>
<td>ddms:contributor</td>
<td>dc:contributor</td>
</tr>
<tr>
<td>ddms:format</td>
<td>dc:format</td>
</tr>
<tr>
<td>ddms:subjectCoverage</td>
<td>dc:coverage</td>
</tr>
<tr>
<td>ddms:temporalCoverage</td>
<td>dct:temporal</td>
</tr>
<tr>
<td>ddms:geospatialCoverage</td>
<td>dct:spatial</td>
</tr>
<tr>
<td>sm:relation</td>
<td>dc:relation</td>
</tr>
</tbody>
</table>
Annex C Mapping Templates

See OASIS [1] for discussion of using the following source to ebRIM mapping templates.

1 Types

<table>
<thead>
<tr>
<th>Source Concept</th>
<th>ebRIM Object Type Name</th>
<th>ebRIM Parent Type Name</th>
<th>ebRIM code</th>
<th>ObjectType ID</th>
<th>Comment</th>
</tr>
</thead>
</table>

2 Attributes

<table>
<thead>
<tr>
<th>Source Attribute</th>
<th>ebRIM Attribute</th>
<th>Cardinality</th>
<th>Comment</th>
</tr>
</thead>
</table>

3 Associations

<table>
<thead>
<tr>
<th>AssociationType</th>
<th>ID</th>
<th>Description</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Association Source Object Type</th>
<th>Association Target Object Type</th>
<th>ebRIM Association Type</th>
<th>ebRIM Association Name</th>
<th>Comment</th>
</tr>
</thead>
</table>

4 Classifications

<table>
<thead>
<tr>
<th>Name</th>
<th>ID</th>
<th>Reference</th>
<th>Comment</th>
</tr>
</thead>
</table>

5 Stored Queries

<table>
<thead>
<tr>
<th>Search by (Parameters)</th>
<th>AdHocQuery Expression</th>
<th>Description</th>
</tr>
</thead>
</table>
Bibliography
