
OGC 03-029

Open GIS Consortium, Inc.

Date: 2003-01-20

Reference number of this OpenGIS® project document: OGC 03-029

Version: 0.0.3

Category: OpenGIS® Discussion Paper

Editor: Stephane Fellah (PCI Geomatics)
Steven Keens (PCI Geomatics)

OWS Messaging Framework (OMF)

Copyright notice
This OGC document is a draft and is copyright-protected by OGC. While the
reproduction of drafts in any form for use by participants in the OGC
Interoperability Program is permitted without prior permission from OGC, neither
this document nor any extract from it may be reproduced, stored or transmitted in
any form for any other purpose without prior written permission from OGC.

Warning
This document is not an OGC Standard or Specification. This document presents a
discussion of technology issues considered in an Interoperability Initiative of the
OGC Interoperability Program. The content of this document is presented to create
discussion in the geospatial information industry on this topic; the content of this
document is not to be considered an adopted specification of any kind. This
document does not represent the official position of the OGC nor of the OGC
Technical Committee. It is subject to change without notice and may not be
referred to as an OGC Standard or Specification.

Recipients of this document are invited to submit, with their comments, notification
of any relevant patent rights of which they are aware and to provide supporting
documentation.

Document type: OpenGIS® Discussion Paper
Document stage: Publicly Available
Document language: English

File name: 03-029.doc

OGC 03-029

Contents

i. Preface... iv

ii. Submitting organizations .. iv

iii. Submission contact points ... iv

iv. Revision history..v

v. Changes to the OpenGIS Abstract Specification..v

Foreword... vi

Introduction... vii

1 Scope..1

2 Terms and definitions ..2

3 Conventions ..2
3.1 Normative verbs ...2
3.2 Abbreviated terms ...2
3.3 Use of examples ..3

4 Messaging-style versus RPC-style communication...3
4.1 Overview of RPC style...3
4.2 Messaging Style ..5

5 Architectural considerations...5
5.1 XML based messaging...5
5.2 Network topology independence...6
5.3 Transport Protocol independence ..6
5.4 Favor loose-coupling in “time and space” ...7
5.5 Action-oriented messaging ..9
5.6 Extensibility ..9

6 Proven models using messaging..10
6.1 Regular postal system (Snail mail) ...10

7 Framework Overview..12
7.1 OGC Message Structure..12
7.2 UML model of OMF ..16
7.3 Transport classes..17
7.4 Message classes...17
7.5 Manifest ..18
7.6 Reference ..18
7.7 Schema ..18
7.8 Error..18

viii © OGC 2003 – All rights reserved

OGC 03-029

7.9 Acknowledgement ..18
7.10 Payload..18

8 Header Element Details...20
8.1 Message element...20
8.2 Header element overview ..20
8.3 To and From...23
8.4 MessageId element ...25
8.5 RefToMessageId element ..25
8.6 Timestamp Element ...25
8.7 ExpiryTime element...26
8.8 Action element..26

9 Manifest Details..29
9.1 Manifest element ..29
9.2 Reference element ..30
9.3 Schema element..32
9.4 Manifest example ...32

10 Error Messages...32
10.1 Definitions:..32
10.2 Error Scope...33
10.3 Error Elements...33
10.4 Error code descriptions ...36
10.5 ErrorList Samples..36

11 Acknowledgement Messages ...38
11.1 Acknowledgement Elements ...38
11.2 Acknowledgement example...39

12 Payload Details ...39

13 Status Messages..40

14 Bindings ..41
14.1 Binding to HTTP, SOAP, and multipart MIME ..41
14.2 OGC Message Handling (TO DO) ...54

Annex A: OMF XML Schema (Normative) ..55

Bibliography ...60

© OGC 2003 – All rights reserved
iii

OGC 03-029

i. Preface

This document defines a messaging framework to conduct communications between the
OGC web services. It is independent of any transport protocol and any messaging
encoding. By using the framework, the service designer could focus only on the message
definitions and messaging flows for every action supported by the service, without worry
on the messaging transport and delivery. The framework should considerably simplify the
implementations of the OGC web services and should enable service chaining.

ii. Submitting organizations

The following companies submitted this specification to the OGC as a Request for
Comment:

PCI Geomatics Inc.
490 rue St. Joseph, Suite 400
Hull, Quebec
Canada J8Y 3Y7

iii. Submission contact points

All questions regarding this submission should be directed to the Editor or to the WWW
Mapping SIG chair:

Stephane Fellah
PCI Geomatics Inc.
490 rue St. Joseph, Suite 400
Hull, Quebec J8Y 3Y7 CANADA
1-819-770-0022 ext. 223
fellah@pcigeomatics.com

Steven Keens
PCI Geomatics Inc.
490 rue St. Joseph, Suite 400
Hull, Quebec J8Y 3Y7 CANADA
1-819-770-0022
skeens@pcigeomatics.com

viii © OGC 2003 – All rights reserved

mailto:fellah@pcigeomatics.com
mailto:skeens@pcigeomatics.com

OGC 03-029

iv. Revision history

Date Release Author Paragraph modified Description

24 Dec 02 0.0.2 Steven
Keens

 This update contains the new OMF
schema and more examples. Also
contains examples of OMF bound to
HTTP, SOAP, and multipart related.

20 Jan 03 0.0.3 John
Davidson

 Put into OGC IPR template form.

v. Changes to the OpenGIS Abstract Specification

None required for IPRs.

© OGC 2003 – All rights reserved
v

OGC 03-029

Foreword

Attention is drawn to the possibility that some of the elements of this standard may be the
subject of patent rights. Open GIS Consortium Inc. shall not be held responsible for
identifying any or all such patent rights. However, to date, no such rights have been
claimed or identified.

This version of the specification cancels and replaces all previous versions.

viii © OGC 2003 – All rights reserved

OGC 03-029

Introduction

The current OpenGIS® Web Services such as WMS, WFS and WCS support very simple
synchronous data queries based on HTTP transport protocol. These queries use
extensively the HTTP GET method with a set of standardized key-value pairs. It allows a
user to refer to a map, feature, or coverage by using a simple URL or hyperlink. This is
perfectly valid in the case of simple synchronous queries of information from a end-user
client such as a browser or a viewer application. The more advanced service WFS-T
(WFS with transactional operations) allows the user to insert, update and delete features
encoded in GML by using XML messages transported by using HTTP POST method.

The initial OpenGIS web services (WMS/WFS) are quite simple in comparison with the
coming services such as the image archive service (an aggregation of multiple services),
web coverage server, sensor collection service, metadata services. These new services
have to convey much more complex information than GML such as multiple binary data
(video, image…), metadata of any formats, notification messages, complex spatio-
temporal filter on coverage … A number of limitations have also been identified with the
use of HTTP and a centralized network topology for web services. As a standard body,
OGC remains agnostic of the network topology and transport protocol to use for its web
services infrastructure.

The use cases developed in OWS1.2 have identified a number of requirements for the
communication between web services that are going beyond the current existing
communication. Among these requirements:

• Support of asynchronous messaging useful for notification or long transaction.

• Support of multiple payloads with different content types (binary or text data)

• Secure and reliable message delivery

• Support of streamlined data such as video or audio

• Transport protocol independence

• Mechanism to favor service chaining

• Network topology independence (centralized, decentralized, hybrid, etc.)

• Extensible and robust framework that could accommodate technology changes.

This document defines a messaging framework for the transport, routing, and packaging
of messages, so that clients and OpenGIS services can reliably send and receive their

© OGC 2003 – All rights reserved
vii

OGC 03-029

information. In addition, the guidelines for message exchange are designed to be
applicable independently of the physical systems, network topologies and messaging
standards, used for sending and receiving the data. This approach acts as insurance
against obsolescence as newer interchange technologies come along.

The OWS Messaging Framework (OMF) favors a higher decoupling between the service
and the client. This allows the service designer to focus on the message definitions and
messaging flows for every action supported by the service, without worry on the
messaging transport. The framework considerably simplifies the implementations of the
OpenGIS services and enables service chaining.

viii © OGC 2003 – All rights reserved

OpenGIS® Discussion Paper OGC 03-029

OWS Messaging Framework (OMF)

1 Scope

The scope of this document is to provide a normative model for the transport, routing,
and packaging of messages, so that the client and services can reliably send and receive
their information. OWS Messaging Framework (OMF) is designed to be applicable
independently of the physical systems and of any messaging standards. This approach
acts as insurance against obsolescence as newer interchange technologies come along.

The following is out of scope in this document:

• Specification of the transport protocol to use with OMF

The OMF requires that the messages be capable of being carried over any
available communications protocol. Therefore, this document does not mandate
use of a specific communications protocol. This version of the specification
provides bindings to HTTP and SMTP but other protocols can, and reasonably
will, be used.

• Specification of the network topology to use with OMF.

• Specification of the binding to specific standard messaging service protocols such
as SOAP, ebXML, DIME.

The OMF is a normative model that specifies the required information to match
the requirements described in the introduction. This information is described by
UML, XML schema and RDF schema. The XML schema is normative and could
be used directly by any XML messaging protocol, but it is not a requirement. It is
possible to translate the model to any other interchange technology such as
ebXML message, SOAP or DIME by performing a semantic mapping using
XSLT or an inference engine. The RDF schema defines the ontology for the
messaging framework, i.e. the semantic of the concepts of the model and their
relationships. This ontology could be used to perform semantic mapping between
different XML syntax automatically. Note that it is also possible to use RDF for
messaging exchange that will use the ontology. In this case the messages are
exchanged semantically.

© OGC 2003 – All rights reserved
1

OGC 03-029

2 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

• Message

• Action

• Interface: a named set of operations that characterize the behavior of an entity.

• Service: a distinct part of the functionality that is provided by an entity through
messages (different from current OGC definition)

• Client: a software component that can invoke an action from a server.

• Request: an invocation by a client of an operation.

• Response: the result of an operation returned from a server to a client.

3 Conventions

3.1 Normative verbs

In the sections labeled as normative, the key words "must", "must not", "required",
"shall", "shall not", "should", "should not", "recommended", "may", and "optional" in
this document are to be interpreted as described in Internet RFC 2119 [1].

3.2 Abbreviated terms

CGI Common Gateway Interface

DCP Distributed Computing Platform

DTD Document Type Definition

EPSG European Petroleum Survey Group

GIS Geographic Information System

GML Geography Markup Language

HTTP Hypertext Transfer Protocol

IA Image Archive

IETF Internet Engineering Task Force

MIME Multipurpose Internet Mail Extensions

OGC Open GIS Consortium

2 © OGC 2003 – All rights reserved

OGC 03-029

OMF OpenGIS® Messaging Framework

OWS OpenGIS® Web Service

SOAP Simple Object Access Protocol

URL Uniform Resource Locator

WCS Web Coverage Service

WFS Web Feature Service

WOS Web Object Service

XML Extensible Markup Language

3.3 Use of examples

This specification makes extensive use of XML examples. They are meant to illustrate
the various aspects of the OMF discussed in this specification. While every effort has
been made to ensure that the examples are well formed and valid in many cases this goal
was sacrificed for the sake of clarity. For example, many examples are formatted in a
specific way to highlight a particular aspect that would render the example invalid from
the perspective of an XML validation tool. Further, most examples reference fictitious
servers and data.

Thus, this specification does not assert that any XML encoded example, copied from this
document, will necessarily execute correctly or validate using a particular XML
validation tool.

4 Messaging-style versus RPC-style communication

There are two styles of communication between processes that are possible: Remote
Procedure Call (RPC) style and message-style. This section attempts to discuss about
the pros and cons of both approaches and explains why the messaging style is more
appropriate for the OpenGIS web service architecture.

4.1 Overview of RPC style

A remote procedure call (RPC)-style communication can be implemented using many
existing protocols such as RMI, RPC SOAP, CORBA, DCOM, etc. These traditional
distributed object paradigms are tightly coupled and require many restrictions for client
and servers.

In the RPC case, the service appears as a remote object to the client application. The
interaction between a client and an RPC-style Web service is centered on a service-
specific interface. When clients invoke the Web service, they send parameter values to
the Web service, which executes the required methods, and then sends back the return

© OGC 2003 – All rights reserved
3

OGC 03-029

values. Because of this back and forth conversation between the client and the Web
service,

The RPC style introduces tight coupling in a number of ways::

• Both the client and the service must be up and running at the same time in order
for the service to receive the synchronous remote procedure call from the
application. In a service chain, if one element in a service chain is offline, the
application breaks.

The client application must be programmed to interact with the interface of the service.
The name of the method and its parameters needs to be known. Consequently if you
change the signature of the method, the application breaks. All the clients of the former
interface will need to be updated. That is one of the major drawbacks of the RPC
approach. The client needs to know where the service is located to be able to
communicate with it.

• The client is required to have some knowledge of the capabilities of the service to
find out if the service is compatible or not with it (for example supported filter
encoding by a WCS, supported SLD elements by WMS or CPS, supported SRS or
formats in WCS).

• RPC-style Web services are synchronous, meaning that when a client sends a
request, it waits for a response before doing anything else.

The RPC style is easier to implement: it takes less work to develop communication
between two systems when it could be semi-automated (binding code could be generated
from existing code). However the tight-coupling of the RPC is not adapted in a widely
distributed environment such as the web where the control of the services is
decentralized. Service chaining would require a very high availability of the services. We
all know that is not the case.

RPC Style Support for different protocol bindings

HTTP Get Limited cases

HTTP Post No (convention needs to be used)

SOAP (RPC) Yes

RMI Yes

ebXML (more generally any EDI protocol) No

Corba Yes

4 © OGC 2003 – All rights reserved

OGC 03-029

4.2 Messaging Style

Message-style communication is loosely coupled and document-driven rather than being
associated with a service-specific interface. When a client invokes a web service using a
message-style communication, the client typically sends an entire document, such as a
feature filter, rather than a discrete set of parameters. The Web service accepts the entire
document, processes it, and may or may not return a result message. Because no tightly-
coupled request-response between the client and Web service occurs, message-style Web
services promote a looser coupling between client and server.

Message-style Web services could support asynchronous communication. A client that
invokes the Web service does not wait for a response before it can do something else.
The response from the Web service, if any, can appear minutes, hours or days later. A
client can either send or receive a document to or from a message-style Web service.

In a message-style approach, it is necessary to define a message format, and then
compose the message using the format before sending and extracting that data from the
message after receiving. The messaging style enables a loose coupling by not being
bound to particular methods and arguments. This is a good approach when two different
business entities need to communicate by using some industry-standard message schema.
Basically the interface of the message style services consists of two operations: send and
receive.

Messaging Style Support for different protocol bindings

CORBA Possible

ebXML (more generally any EDI protocol) Yes

HTTP Get Limited cases

HTTP Post Yes

RMI Possible

SOAP (document) Yes

The loosely-coupling in “time and space” conveyed the messaging style has motivated
the decision to choose the messaging style instead of the RPC style communication. The
messaging is supporting all the requirements described in the introduction.

5 Architectural considerations

5.1 XML based messaging

TO DO: The OGC framework is based on XML because…

© OGC 2003 – All rights reserved
5

OGC 03-029

5.2 Network topology independence

The OGC messaging framework is designed to remain independent of any network
topology used by the OGC service architecture. Web Services are typically described in
two ways: the conceptual view and the manifestation view. From the conceptual
viewpoint, Web services are an example of Service Oriented Architecture (SOA). As
with most SOAs, there are three main entities: service providers, service consumers and
service registrars. The three entities work in concert to provide a loosely coupled
computing paradigm. The manifestation of this paradigm is through standards, such as
XML, SOAP, WSDL and UDDI. Peer-to-peer or space systems also leverage a SOA.
But unlike Web services, the determination of who is a provider, a consumer or a
registrar is much looser. Typically a peer/space is all three aforementioned roles, whereas
in Web Services a node is typically a producer and a consumer but not a registrar. Most
peer/space systems tend to have strengths in self healing, resilience through redundancy
and very loose coupling through a highly distributed topology. All peer/spaces systems
are communicating by using asynchronous messaging. It is up to the system architect to
choose which network topology is required for its needs. The OGC messaging framework
remains neutral to the choice of the network topology and could accommodate both
approaches.

5.3 Transport Protocol independence

The OGC messaging framework is independent of any transport protocol. The current
OGC web services are highly based on HTTP, but it is not a requirement. Other protocol
could be used such as RMI, SMTP, BEEP, wireless packet, Bluetooth, SMS,…that their
own twists and purposes. It is undeniable that HTTP is used by virtually every web page
on the internet. There is nothing wrong with the protocol per se, as its ubiquity and high
dependability mean that it is the one of the best way to make a reliable connection over
the internet. However HTTP has severe limitations that could make it a barrier for using
web services.

Among the problems with HTTP:

• HTTP is a RPC (Remote Protocol Call) protocol (or synchronous): One program,
such as browser, uses an RPC protocol to request a service from another program
located in another computer in a network, such as the server, without having to
understand the network details. This works for small transactions such as asking
for web pages, but when web services start running transactions that take some
time to complete over the protocol, the model fails (sensor planning service,
orthorectification, classification services…). Intermediaries such as routers and
cables between clients and servers will not allow single transactions that take this
long. As explained above, RPC is often not a good model for web services.
Notification (asynchronous) message is very hard to implement in HTTP without
some serious hacking.

6 © OGC 2003 – All rights reserved

OGC 03-029

• HTTP protocol is asymmetric: Only one entity can initiate an exchange over
HTTP, the other entity is passive and can only respond. For peer-to-peer
applications, this is not really suitable.

• Inefficient to streamline binary data such as video.

Microsoft, IBM (HTTP-R), W3C and Sun (JXTA) are working on alternative protocols
an industry-wide way to do long-running requests that will probably make HTTP less
important in the future. The messaging framework is built on top the transport layer and
does not have any dependency on any transport protocol.

5.4 Favor loose-coupling in “time and space”

The messaging framework is designed to favor loose-coupling between the client and the
services. An application process can broadcast a request message and then terminate.
Some time later, a service may come online and download the request message. This is
said to be loose coupling in both "time and space" in that the application and service do
not need to be connected simultaneously and the application never needs to know the
address of the service in order to make that connection. Also, since all communications
are message-centric instead of interface or protocol based, applications do not need to be
programmed to a particular interface or protocol. As there are no interfaces or protocols
to change, the application does not break and the system scales very well.

Using a decentralized broadcast medium, the client does not need to be aware of the
service interfaces. Instead, they subscribe to a broadcast medium such as Messaging
Oriented Middleware (MOM), space technology, or peer to peer. An application seeking
service will publish its message, such as an image processing job, or specific coverage at
a specific location, to the medium. When the services see the published message, they,
being knowledgeable of their own capabilities, will decide whether to service it or not.
For example, a service may service the coverage or performs an image processing task or
respond with a bid to perform the job as appropriate. They are many different ways to
implement this loose-coupling. Among these technologies are J2EE JMS, ebXML
messaging, JXTA, JavaSpace. The figure below summarizes the level of decoupling for
each system type.

© OGC 2003 – All rights reserved
7

OGC 03-029

Asynchronous

Synchronous

TIME

CHANNEL

PROCESS SPACE
ter

Proc
ess

Int
raP

roc
ess

Connectionless

Connection oriented

Peer-to-Peer/ Space

RPC/ Web Services (UDDI)
Procedure call

In

Message queuing system

The focus of this document is the definition of a framework for all the standard messages
that will be used across all OGC web services messages for inter-process communication.
Numerous messaging framework are available such as ebXML Message (based on
SOAP), SOAP, JXTA message, DIME. These technologies are still maturing and subject
to change. However, what is common among all these messaging frameworks is the use
of XML to encode messages. The intent of this OGC messaging framework is to remain
agnostic to the different existing messaging framework. It is up to system architect to use
the messaging framework fitting its needs. For example, ebXML messaging is mainly
used for B2B where security is critical and collaboration agreement is necessary prior to
business transactions. However HTTP POST could be also used for simple access from a
Web Browser to some OGC services such as WMS. The message body is the same, but
the transport is different. Some implementation guidelines could be provided by OGC
for mapping OGC messages to different type messaging frameworks that will emerge in
the future. Another crucial aspect is the support of multipart messages and support of
binary data attachments (ref. SOAP with attachments). Some protocols are more
adequate for transferring binary data than others. Once again, it is up to the system
designer to make the choice of the protocol.

8 © OGC 2003 – All rights reserved

OGC 03-029

5.5 Action-oriented messaging

The design of the framework intends to separate the data from the action to perform on
the data. Multiple actions could also be performed on the same data. The framework is
said action-oriented.

The advantages of separating the action from the data are the following ones:

• Clean separation of the data from the action on the data. The data-oriented
approach is not coupled to any service, so it could be used by a variety of
services.

• The same data can be acted upon in many different ways, simply by sending the
data to a different service and specifying a different action (assuming that the
service supports that action)

• We can capitalize on existing industry DTDs and XML Schemas. For example,
the Geographic Markup Language (GML) defines how to structure geographic
features. There are many existing instance documents conforming to GML. Web
services can be created to provide services for those instance documents. The data
format has already been defined. All the service needs to do is to define actions
on that data format.

• New cottage industries could be developed to define actions (and their semantics)
for vertical industries, e.g., the forestry industry will define a forestry namespace.
Within that namespace they will define all the action types on travel-formatted
data, along with the semantics of each action type.

This approach of separating the data from the action on the data has implications on how
a service must be described. A service description (capability) must specify 2 things:

• The type of data (data model or data format) it can process, e.g., GML document,
image type, etc.

• The types of actions it can perform on the data, e.g., get coverage, get feature
action, insert, delete, update actions, etc

5.6 Extensibility

OMF is designed to be extensible in order to accommodate different user needs such as
security (digital signature, encryption), reliable delivery.

© OGC 2003 – All rights reserved
9

OGC 03-029

6 Proven models using messaging

6.1 Regular postal system (Snail mail)

Messaging communication describes something analogous to a package sent via the
regular postal system (snail mail). The postal system has proven to be a highly effective,
reliable, and somewhat private method for sending packages. It has also proven to be
extensible … it still works after hundreds (possibly thousands) of years with an explosion
of traffic of packages being sent, not to mention the number of senders and recipients.

Conceptually, a package consists of the contents (payload), the wrapping, and the
information on the exterior used to show the destination address, source address, payment
stamp, certification (security and reliability), and the inventory form. The diagram below
shows such a package.

Inventory form

Registered package

$

To:

From :

Diagram: Snail Mail Package

Business messages of any kind, whether postal mail, faxes, telegrams and telexes, email
or over the web have some characteristics in common. For example, they all have
addresses formatted to enable accurate delivery of the message, routing instructions, and
dates and times for logging or verification (for example, postmarks on postal mail). These
data items, designed to help manage the flow of message traffic, are often grouped
together at the top or head of the message (or on an outside envelope), and thus have the
names headers. This separation of headers from the body or payload of the message -
the business stuff is a common feature of business messages and it is at the core of the

10 © OGC 2003 – All rights reserved

OGC 03-029

OGC messaging framework specifications. By harnessing the power of such a paradigm
and morphing it so that it can be used in the digital universe we will be rewarded with a
simple yet extensible framework upon which to build future OGC services.

© OGC 2003 – All rights reserved
11

OGC 03-029

7 Framework Overview

The proposed framework is based extensively on the analogy with the postal mailing
system. It takes in account the architectural considerations and try to make use of the best
design patterns applied for XML.

7.1 OGC Message Structure

A postal package consists of the following parts:

• the envelope or wrapping of the packet

• the routing information

• and sometimes an inventory list of the content of the package

• the packing material to segregate the individual items in the contents

• the items in the packing material

Since the messaging framework has been derived from the postal package model, the
message package has the same analogous parts:

• the message envelope

• the header container which contains a header with addressing information,
message identification, expiry information, actions to perform

• sometimes the manifest (inventory list) references all items in the payload

• the payload container to separate/delineate the individual payload items

• the payload which can contain several items (package contents)

To organize the message structure, care has been taken to separate the metadata from the
data [Separate Metadata and Data design pattern] . This is done by using the Head-
Body XML design pattern. When creating the structure, the metadata are put first
(Metadata First XML design pattern). Stream based processors are popular, particularly
when message are very large, and may take up large amounts of memory, or when speed
of processing is essential. It is often difficult to use stream based processing if the
message header is not located at the beginning of the message. The advantage of this
approach is that the stream-based processors can easily parse the message without
reading the payloads of the message and being able to route the message to the adequate
service(s) for processing. It could also send an error to the sender if the message header
has problems. This drastically reduces the amount of processing required on the
messaging service.

12 © OGC 2003 – All rights reserved

OGC 03-029

Perhaps needs more elaboration

The following diagram depicts the general abstract structure of the OGC message.

Abstract OGC Message Structure

 Communication protocol envelope (HTTP, SMTP, etc.)

To

From

Action.…..

Manifest

Header

Payload(s)

Payload container (MIME envelope, DIME record,etc…)

Payload(s)

Payload container (MIME envelope, DIME record,etc…)

Header container (MIME envelope, DIME record, etc.)

Message envelope (SOAP with attachment, DIME, etc.)

The message can be transported on any communication protocol such as HTTP, SMTP,
or TCP. The message is wrapped in an envelope such as SOAP with attachments or a
DIME envelope. The message envelope has a header container that could be a MIME

© OGC 2003 – All rights reserved
13

OGC 03-029

part, a DIME record, a JXTA envelope, etc. The header container contains only one
header describing the routing and action information and a manifest describing the
payloads of the message (if present). The header is extensible to accommodate custom
needs such as security information (digital signature, encryption information, etc.). The
framework requires the header be encoded in XML. The header container is followed by
zero, one or more payload containers which could be MIME part, DIME record for
example. Every payload container contains typically one payload items but it is not a
requirement. The payload can be any of any type (binary, text, XML, etc.) and size.

The abstract OGC message structure can be easily used by existing messaging protocols
such SOAP, ebXML, JXTA or DIME. Because this framework is based on XML, a
simple XSLT transformation or a semantic mapping (using an inference engine) makes it
easy to convert the OGC message to any of these standards. The mapping mechanism to a
specific protocol could be described in the service description (WSDL for example). It is
out of scope within this document.

The following diagram is showing the general ebXML message structure. ebXML is
using SOAP with attachment for the message envelope and is using MIME part for the
header container and payload container. The header is wrapper by using a SOAP
envelope.

14 © OGC 2003 – All rights reserved

OGC 03-029

 ebXML Message Structure

Communications Protocol Envelope (HTTP, SMTP, etc.)

SOAP with Attachments MIME envelope

MIME Part

SOAP-ENV: Envelope

SOAP-ENV: Header

eb:MessageHeader

eb:Error

eb:Etc.

other:Etc.

eb:Manifest

eb:Etc.

other:Etc

other:Etc
MIME Part(s)

Payload(s)

SOAP-ENV: Body

Payload
Container(s)

Header
Container

Message
Package

The following sections will describe the OMF model more into details. It is important to
understand that the model described is normative. The XML schema proposed as is or
could be transformed to a specific messaging standard such as ebXML. However the
information in the model must be present in the target messaging framework, in order to
be usable in the OGC context.

© OGC 2003 – All rights reserved
15

OGC 03-029

7.2 UML model of OMF

The overall message framework is best depicted by the UML diagram below.

The following sections describe the role of each class.

16 © OGC 2003 – All rights reserved

OGC 03-029

7.3 Transport classes

7.3.1 Envelope

The envelope is an abstraction of a container of message information. It could be
manifested for example as a MIME part, a DIME record, a JXTA message, SOAP
envelope…. It is not the role of this specification to indicate which mechanism to use.
The envelope has two subclasses, the header container and the payload container. It
could be manifested in the same way or differently. The distinction is only logical.

7.3.2 Header container

The header container is a “logical” subclass of the envelope. It contains the message
header information, i.e. the metadata related to the message such as the sender, receiver,
and the action to perform on the message, the description of the payloads. The header
container format is not specified by the OMF specification like the envelope because it
could be manifested as a MIME part or DIME record for example. The header container
has only one instance of header.

7.3.3 Payload container

A payload container is a “logical” subclass of Envelope. Zero or more Payload
Containers may be present within a message. If the message contains an application
payload, it should be enclosed within a Payload Container. If there is no application
payload within the Message Package then a Payload Container must not be present. The
contents of each Payload Container must be identified in the Message Manifest element
within the header container. Like the envelope, the payload container is not specified by
OMF because it depends on the messaging protocol used. The payload container could be
manifested as a MIME part or a DIME record for example.

7.4 Message classes

7.4.1 Header

The Header is required for each OGC message and should be placed in the Header
Container. Only one instance of Header is authorized by message. The Header
contains routing information for the message (To/From, etc.) as well as other context
information about the message such as the message identification (messageID), reference
to the previous message (refToMessageID), time stamp, expiration information
(expiryTime), action to perform and manifest describing the reference to the data
present either in the payload container(s) or elsewhere on the web. Most of this
information is optional, except the Action.

OMF strongly recommends that the header shall be encoded in XML. A normative
XML schema and RDF schema are provided by this specification. Section 8 describes the
header element details by using XML schema. RDF schema is provided in annex B.

© OGC 2003 – All rights reserved
17

OGC 03-029

7.5 Manifest

The Manifest describes the contents of the Resource, which could be a payload of the
message. This is done by using the Reference object. It makes it possible for recipients to
check the content integrity and to determine whether the contents can be processed before
their opening. It also helps with payload extraction. OMF requires a Manifest if there is
any data associated with the message (directly or indirectly). The most obvious data is
found in the payload (direct case), but a Manifest is also required if the message
references data elsewhere through an Internet address (indirect case). The Manifest shall
be encoded in XML according to the OMF schema detailed below in section 9.

7.6 Reference

The key component in the Manifest is the Reference. If the Manifest exist, it must have
a least one Reference. Reference may have zero or more schema associated from which
the payload is defined. It could also provide a text description of the payload. The
Reference refers to a URI that could the URI of a payload in the message or a data
resource on the web. This class needs to be extensible to accommodate future needs.
More details are given in section 9.

7.7 Schema

The schema provides the data model of a payload. The model can be described using a
DTD, XML schema, RDF schema, DAML, Entity-Relation schema. The schema object
gives the internet address where it can be accessed and the version of the schema if
needed.

7.8 Error

ErrorList contains a list of Error messages indicate that an error occurred in a previous
message. The error is a standard message sent by the OGC message service. (Need more
elaboration).

7.9 Acknowledgement

Acknowledgement is a standard message sent by an OGC messaging service and refers
to a message by using its identifier MessageID.

7.10 Payload

If a message has a payload container it must have at least one or more payload items.
Each payload item must be delineated in some way and must be uniquely identified
within the message’s context.

18 © OGC 2003 – All rights reserved

OGC 03-029

The OMF Specification makes no provision, nor limits in any way, the structure or
content of application payloads. Payloads may be simple-plain-text objects or complex
nested multipart objects. The specification of the structure and composition of payload
objects is the prerogative of the organization defining the OGC service processes or
information exchange using the OMF.

TO DO: Need to elaborate on chunked payload

© OGC 2003 – All rights reserved
19

OGC 03-029

8 Header Element Details

8.1 Message element

8.2 Header element overview

The fragment below defines the normative Header XML Schema.

Normative Header XML schema definition:

20 © OGC 2003 – All rights reserved

OGC 03-029

 <element name="Header">
 <annotation>
 <documentation>Encapsulates the OMF header
 information.</documentation>
 </annotation>
 <complexType>
 <sequence>
 <element ref="omf:From" minOccurs="0"/>
 <element ref="omf:To" minOccurs="0"/>
 <element ref="omf:MessageId" minOccurs="0"/>
 <element ref="omf:RefToMessageId" minOccurs="0"/>
 <element ref="omf:Timestamp" minOccurs="0"/>
 <element ref="omf:ExpiryTime" minOccurs="0"/>
 <element ref="omf:Action"/>
 <element ref="omf:Manifest" minOccurs="0"/>
 <choice>
 <element ref="omf:ErrorList" minOccurs="0"/>
 <element ref="omf:Acknowledgment" minOccurs="0"/>
 <element ref="omf:StatusRequest" minOccurs="0"/>
 <element ref="omf:StatusResponse" minOccurs="0"/>
 <any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>
 </choice>
 <any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>
 <attributeGroup ref="omf:headerExtension.grp"/>
 </complexType>
 </element>

8.2.1 ##other element

Many Header element children have a ##other element that allows for foreign
namespace-qualified element content to be added for extensibility. The extension element
must be namespace-qualified in accordance with XMLNS [XMLNS] and must belong to
a foreign namespace. A foreign namespace is one that is NOT
http://www.opengis.net/schema/omf.xsd. The wildcard elements are provided wherever
extensions might be required for private or future extension of the framework.
Implementations of the message handler may ignore the namespace-qualified element
and its content.

The Header can be used as is, in a message or could be transformed to a specific
messaging protocol such as ebXML by using a semantic mapping or a XSLT
transformation. The mechanisms to publish the target messaging framework and
transform the normative message to this target messaging framework are out of scope in
this document.

The following diagram illustrates the Header element.

© OGC 2003 – All rights reserved
21

OGC 03-029

8.2.2 id attribute

Many elements of the header have an id attribute which is an XML ID that may be added
to provide for the ability to uniquely identify the element within the header. This may be
used when applying a digital signature to the Message as individual message extension
elements can be targeted for inclusion or exclusion by specifying a URI of "#<idvalue>"
in the Reference element.

8.2.3 version attribute

The Header has a required version attribute indicating the version of the OGC Header
Specification. Its purpose is to provide future versioning capabilities. For conformance to
this specification, all of the version attributes on any extension elements defined in this
specification must have a value of "1.0". In the future, an OGC message may have a
version value higher than "1.0". An implementation conforming to this specification that

22 © OGC 2003 – All rights reserved

OGC 03-029

receives a message with a version higher than "1.0" may process the message if it
recognizes the version identified and is capable of processing it. It must respond with an
error (details TBD) if it does not recognize the identified version.

The following sections detail the Header’s children.

8.3 To and From

To and From indicates the sender and receiver of the message. The OGC framework
makes these elements optional in the case of synchronous calls such as in HTTP Get. In
the case of asynchronous communication, the To and From are required in order to send
back the response at a later time.

Both To and From are of type Actor and are defined as follows:

The Actor is defined by the following XML schema fragment:

© OGC 2003 – All rights reserved
23

OGC 03-029

Normative PartyId XML schema definition:

<element name="Actor" type="omf:ActorType">
<complexType name="ActorType">
 <sequence>
 <element ref="omf:PartyId" maxOccurs="unbounded"/>
 <element name="Role" type="string" minOccurs="0"/>
 </sequence>
</complexType>

PartyId is defined as follows:

Normative PartyId XML schema definition:

<element name="PartyId" type="omf:IdentifierType"/>
<complexType name="IdentifierType">
 <simpleContent>
 <extension base="omf:non-empty-string">
 <attribute name="type" type="omf:non-empty-string"/>
 </extension>
 </simpleContent>
</complexType>

The actor type contains multiple PartyId elements; all members of the list must identify
the same Party. Unless a single type value refers to multiple identification systems, the
value of any given type attribute must be unique within the list of PartyId elements
contained within either the From or To element. This mechanism is particularly useful
when transport of a message between the parties may involve multiple intermediaries.
More generally, the From Party should provide identification in all domains it knows in
support of intermediaries and destinations that may give preference to particular
identification systems.

The Actor type contains zero or one Role child element that, if present, shall
immediately follow the last PartyId child element. It is recommended to use URI to
define the role. The definition of the role is out of scope in this specification. It could be
done for example in a Collaboration Protocol Agreement (CPA) or in the capabilities of
the service.

Example: The following fragment demonstrates usage of the From and To elements.

24 © OGC 2003 – All rights reserved

OGC 03-029

<omf:From>
 <omf:PartyId omf:type="urn:duns">123456789</omf:PartyId>
 <omf:PartyId omf:type="SCAC">RDWY</omf:PartyId>
 <omf:Role>http://rosettanet.org/roles/Buyer</omf:Role>
</omf:From>
<omf:To>
 <omf:PartyId>mailto:joe@example.com</omf:PartyId>
 <omf:Role>http://rosettanet.org/roles/Seller</omf:Role>
</omf:To>

8.4 MessageId element

The MessageId is optional.

Normative MessageId XML schema definition:

<element name="MessageId" type="omf:non-empty-string"/>

The MessageId element uniquely identifies an individual message. It is useful for
persistency and asynchronous calls. Associating the request with the
response/acknowledgement is done with the RefToMessageId element.

The MessageId can be generated by the client or it can be negotiated with a service. The
MessageId value must be globally unique. It is suggested that a URI be used with the
time the message was create appended. An example is provided in section 8.6.

8.5 RefToMessageId element

The RefToMessageId element has a cardinality of zero or one. When present, it must
contain the MessageId value of an earlier message to which this message relates. If there
is no earlier related message, the element must not be present. An example is provided in
section 8.6.

Normative RefToMessageId XML schema definition:

<element name="RefToMessageId" type="omf:non-empty-string"/>

For Error messages, the RefToMessageId element is required and its value must be the
MessageId value of the message in error.

8.6 Timestamp Element

The OPTIONAL Timestamp is a value representing the time that the message header
was created conforming to a dateTime [XMLSchema] and MUST be expressed as UTC.

© OGC 2003 – All rights reserved
25

OGC 03-029

TimeStamp element definition:
 <element name="TimeStamp" type="dateTime"/>

Normative TimeStamp XML schema definition:

<element name="TimeStamp" type="dateTime"/>

8.7 ExpiryTime element

If the ExpiryTime element is present, it must be used to indicate the time, expressed as
UTC, by which a message should be delivered to the To party. It must conform to an
XML Schema dateTime.

Normative ExpiryTime XML schema definition:

<element name="ExpiryTime" type="dateTime"/>

In this context, the ExpiryTime has expired if the time of the internal clock, adjusted for
UTC, of the receiver is greater than the value of ExpiryTime for the message.

If the To party’s receives a message where ExpiryTime has expired, it shall send a
message to the From party, reporting that the ExpiryTime of the message has expired.
This message shall be comprised of an ErrorList containing an error with the error code
attribute set to ExpiryTimeExpired and the severity attribute set to Error.

The following XML fragment demonstrates the MessageData element’s structure:

<omf:Header>
 <omf:MessageId>20021215111212@mymessageid.com</omf:MessageId>
 <omf:TimeStamp>2002-12-15T11:00:00</omf:ExpiryTime>
 <omf:ExpiryTime>2002-12-15T11:15:00</omf:ExpiryTime>
 <omf:RefToMessageId>2002-12-15T11:12:15@anothermsgid.com
</omf:RefToMessageId>
</omf:Header>

8.8 Action element

The Action specifies the type of activities or processing desired for the message, and
must be understood by the service identified in the child Service. The Action specifies
the process to call in the service. If the values of either the Service or Process element
are unrecognized by the recipient, then it must report an error with an error code of
NotRecognized and a severity of Error.

The Action header element is a required element and is the most important of the header.
There can only be one such element per message.

26 © OGC 2003 – All rights reserved

OGC 03-029

The action supports a wildcard element to allow future extensibility.

Normative Action XML schema definition:

<element name="Action">
 <complexType>
 <complexContent>
 <extension base="omf:ActionType"/>
 </complexContent>
 </complexType>
</element>

<complexType name="ActionType">
 <sequence>
 <element ref="omf:Service"/>
 <element ref="omf:Process"/>
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <anyAttribute namespace="##other"/>
</complexType>

This element prevents the need for the endpoint to read or process the payload body. The
end point becomes a simple router dispatching payloads to the proper services. Each
OGC service needs to define the action set it understands.

8.8.1 Service element

The Service element is a required element in Action. There can only be one such
element per message.

Normative Service XML schema definition:

<element name="Service" type="anyURI"/>

The Service element denotes the OGC service type that processes the message at the
destination. Do not confuse the service “type” with specific service end points. By
denoting the service type we add another level of decoupling in space. The client does

© OGC 2003 – All rights reserved
27

OGC 03-029

not need to know which service instance or instances handle the message. One or more
services handlers could process the message such as in a P2P space based environment.
When you have an end point having multiple services (such as image archive service with
WFS, WCS, and SCS interfaces) this tag allows routing to the message to the proper
service. The router could broadcast the message to all known service handlers.

Note:

URIs in the Service element that start with the namespace urn:opengis:services:msg-
service are reserved for use by this specification.

The content of the Service element MUST be a URI [RFC2396]. If the value of the
Service element is not unrecognized by the service, then it must report the error with an
error code of NotRecognized and a severity of Error.

The following example would route the message to a WFS.

<omf:Service>urn:ogc:services:wfs</omf:Service>

8.8.2 Process element

The Process element is a required element in Action. Its normative XML schema is
defined as follows:

Normative Process XML schema definition:

<element name="Process" type="anyURI"/>

The required Process element identifies a process within a Service that handle the
Message. Process SHALL be unique within the Service in which it is defined. The value
of the Process element is specified by the designer of the service or standardized by
OGC. If the values of either of the Process or Service element are unrecognized by the
service, then it must report the error with an error code of NotRecognized and a severity
of Error.

An example of the Process (getFeature) supported by WFS can encoded as follows:

<omf:Action>
 <omf:Service>urn:opengis:services:wfs</omf:Service>
 <omf:Process>urn:opengis:services:wfs:getFeature</omf:Process>
</omf:Action>

28 © OGC 2003 – All rights reserved

OGC 03-029

Or, according the discussion point above:

<omf:Action>
 <omf:Service>urn:opengis:services:wfs</omf:Service>
 <omf:Process>getFeature</omf:Process>
</omf:Action>

9 Manifest Details

9.1 Manifest element

The Manifest MAY be present in the Header. The Manifest element is a composite
element consisting of one or more Reference lelements. Each Reference element
identifies payload data associated with the message, whether included as part of the
message as payload document(s) contained in a Payload Container, or remote resources
accessible via a URL. In the later case, the receiver will have to access the payload in two
steps. This could be useful to reduce the size of the message.

The purpose of the Manifest is:

• to make it easier to directly extract a particular payload associated with the
message

• to allow an application to determine whether it can process the payload without
having to parse it.

The Manifest element is required when there is a payload. When the payload is empty
the manifest must not be part of the message.

The Manifest element is comprised of one or more Reference elements. Each Reference
element describes one external resource or one payload item.

Normative Process XML schema definition:

© OGC 2003 – All rights reserved
29

OGC 03-029

<element name="Manifest">
 <complexType>
 <sequence>
 <element ref="omf:Reference" maxOccurs="unbounded"/>
 </sequence>
 <attributeGroup ref="omf:idVersionGroup"/>
 </complexType>
</element>
<element name="Reference">
 <complexType>
 <complexContent>
 <extension base="omf:ReferenceType">
 <anyAttribute namespace="##other"/>
 </extension>
 </complexContent>
 </complexType>
</element>
<element name="Schema">
 <complexType>
 <attribute name="location" type="anyURI" use="required"/>
 <attribute ref="omf:version" use="optional"/>
 </complexType>
</element>

9.2 Reference element

The Reference element is a child of the manifest. If a manifest exists then there must be
at least one Reference element. The Reference element is a composite element
consisting of zero or more Schema elements.

A reference must point to a payload or a remote resource bu using a URI. It does so with
attributes:

• id – an XML ID for the Reference element which is optional.This id could be
used by digital signature for example.

30 © OGC 2003 – All rights reserved

OGC 03-029

• xlink:type – this attribute defines the element as being an simple link. It has a
fixed value of 'simple'.

• xlink:href – this required attribute has a value that is the URI of the payload
object referenced. It shall conform to the specification criteria for a simple link.
It shall conform to the XLINK specification criteria for a simple link. The URI
shall use the URI scheme "cid" to reference payload items. The URI can use any
other URI scheme as long as the URI is resolvable.

• xlink:role – this attribute identifies some resource that describes the payload
object or its purpose. If present, then it could have a value that is a valid URI or
is a simple text string describing the role (URI is recommended).

9.2.1 Reference element validation

If an xlink:href attribute contains a URI that is a content id (URI scheme "cid") then a
payload container must be identified by the content-id (MIME contented or DIME record
identifier, etc,…). If it is not, then the error shall be reported to the From party with an
error code of LinkProblem and a severity of Error.

If an xlink:href attribute contains a URI, not a payload container content id (URI scheme
"cid"), and the URI cannot be resolved, it is an implementation decision whether to report
the error. If the error is to be reported, it shall be reported to the From party with an
error code of LinkProblem and a severity of Error.

Normative Reference XML schema definition:

<element name="Reference">
 <complexType>
 <complexContent>
 <extension base="omf:ReferenceType">
 <anyAttribute namespace="##other"/>
 </extension>
 </complexContent>
 </complexType>
</element>
<complexType name="ReferenceType">
 <sequence>
 <element ref="omf:Schema" minOccurs="0" maxOccurs="unbounded"/>
 <element name="description" type="string" minOccurs="0"
 maxOccurs="unbounded"/>
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute ref="omf:id"/>
 <attribute ref="xlink:href" type="anyURI" use="required"/>
 <attribute ref="xlink:role"/>
 <anyAttribute namespace="##other"/>
</complexType>

© OGC 2003 – All rights reserved
31

OGC 03-029

Note: If a payload item exists, which is not referenced by the Manifest, that payload item
can be discarded or an error can be reported (the service decides).

9.3 Schema element

If the item being referenced has schema(s) of some kind that describe it (e.g. an XML
Schema, DTD and/or a database schema), then the Schema element should be present as
a child of the Reference element. It provides a means of identifying the schema and its
version defining the payload object identified by the parent Reference element. The
Schema element contains the following attributes:

• location – the required URI of the schema

• version – a version identifier of the schema

Normative Schema XML schema definition:

<element name="Schema">
 <complexType>
 <attribute name="location" type="anyURI" use="required"/>
 <attribute ref="omf:version" use="optional"/>
 </complexType>
</element>

9.4 Manifest example

<omf:Manifest>
 <omf:Reference omf:id="payref01" xlink:href="cid:payload-item-1"
 xlink:role="urn:opengis:services:wos:metadata"
 xlink:type="simple"/>
 <omf:Reference omf:id="payref02"
 xlink:href="cid:payload-item-2"
 xlink:role=" urn:opengis:services:wos:data
 xlink:type="simple">
 <omf:Schema omf:version="1.0"
omf:location="http://www.opengis.net/remotesensing/formats.rdfs#LandsatHDF_EOS_Band1"/>
 </omf:Reference>
</omf:Manifest>

10 Error Messages

Error messages indicate that an error occurred in a previous message.

10.1 Definitions:

For clarity, two phrases are defined for use in this section:

• "message in error" – A message containing or causing an error or warning of
some kind.

32 © OGC 2003 – All rights reserved

OGC 03-029

• "message reporting the error" – A message containing an ErrorList element
that describes the warning(s) and/or error(s) found in a message in error.

10.2 Error Scope

Errors associated with data communications protocols are detected and reported using the
standard mechanisms supported by that data communications protocol and do not use the
error reporting mechanism described here.

Errors reported via the OMF error message apply to:

• OMF semantic errors

• OMF validation errors

• Security errors

10.3 Error Elements

10.3.1 ErrorList element

The existence of an ErrorList element within a Header element indicates the message
identified by the RefToMessageId element has an error. The ErrorList element is only
used if reporting an error or warning on a previous message.

This element is optional. If there are no errors to be reported then the ErrorList element
must not be present.

If errors exist is a message then the message reporting the error must have the following
elements with the specified values:

• The RefToMessageId must be present and must identify the message in error. It
must be have the same value as the message in error’s MessageId.

• The Service element must be set to: urn:opengis:services:msg-service.

• The Process element must be set to MessageError or
urn:opengis:services:msg-service:message-error.

Normative Header XML schema definition:
<element name="ErrorList">
 <complexType>
 <sequence>
 <element ref="omf:Error" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="highestSeverity" type="omf:severity.type"
 use="required"/>
 </complexType>
</element>

© OGC 2003 – All rights reserved
33

OGC 03-029

<simpleType name="severity.type">
 <restriction base="NMTOKEN">
 <enumeration value="Warning"/>
 <enumeration value="Error"/>
 </restriction>
</simpleType>

The ErrorList element consists of the following attributes:

• highestSeverity - The highestSeverity attribute contains the highest severity of
any of the Error elements. Specifically, if any of the Error elements have a
severity of Error, highestSeverity must be set to Error; otherwise,
highestSeverity must be set to Warning.

10.3.2 Error element

Normative Header XML schema definition:
<element name="Error">
 <complexType>
 <sequence>
 <element ref="omf:Description" minOccurs="0"/>
 <any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>
 <attribute ref="omf:id"/>
 <attribute name="context" type="anyURI"
 default="urn:opengis:services:msg-service"/>
 <attribute name="code" use="required">
 <simpleType>
 <restriction base="omf:non-empty-string">
 <enumeration value="NotRecognized"/>
 <enumeration value="NotSupported"/>
 <enumeration value="ExpiryTimeLapsed"/>
 <enumeration value="Inconsistent"/>
 <enumeration value="DeliveryFailure"/>
 <enumeration value="SecurityFailure"/>
 <enumeration value="LinkProblem"/>
 <enumeration value="Unknown"/>
 </restriction>
 </simpleType>
 </attribute>
 <attribute name="severity" type="omf:severity.type" use="required"/>
 <attribute name="location" type="omf:non-empty-string"/>
 <anyAttribute namespace="##other" processContents="lax"/>
 </complexType>
</element>

The ErrorList element must not exist along with an Acknowledgement element.

34 © OGC 2003 – All rights reserved

OGC 03-029

An Error element consists of the following attributes:

• context - The context attribute identifies the namespace or scheme for the error
codes (code attribute). It must be a URI. Its default value is urn:ogc:omf:errors.
If it does not have the default value, then it indicates an implementation of this
specification has used its own code attribute values. Use of a context attribute
value other than the default is NOT RECOMMENDED. In addition, an
implementation of this specification should not use its own error code attribute
values if an existing error code as defined in this section has the same or very
similar meaning.

• code - This attribute is required. It indicates the nature of the error in the
erroneous message. Valid values for the error code and a description of the code’s
meaning are given in the next section.

• severity - The required severity attribute indicates the severity of the error. Valid
values are:

o Warning - This indicates other messages in the conversation could be
generated in the normal way in spite of this problem.

o Error - This indicates there is an unrecoverable error in the message and
no further message processing should occur. Appropriate failure
conditions should be communicated.

• location - The location attribute points to the part of the message containing the
error. If an error exists in an OMF element and the containing document is "well
formed", then the content of the location attribute must be an XPointer or XPath.
If the error is associated with a payload, then location contains the payload
identifier of the payload in error, using the URI scheme "cid".

Should we use an Xpointer, Xpath, or even, Xlink? I don’t know the differences between
the three to say. ebXML uses Xpointer.

10.3.3 Description element

The content of the Description element provides a narrative description of the error in
the language defined by the xml:lang attribute. The XML parser or other software
validating the message typically generates the message. The content is defined by the
vendor/developer of the software that generated the Error element.

Normative Header XML schema definition:

<element name="Description">
 <complexType>
 <simpleContent>
 <extension base="omf:non-empty-string">
 <attribute ref="xml:lang" use="required"/>

© OGC 2003 – All rights reserved
35

OGC 03-029

 </extension>
 </simpleContent>
 </complexType>
</element>

10.4 Error code descriptions

Error Code Long Description

NotRecognized Although the document is well formed and valid, the element or
attribute contains a value that could not be recognized thus it could
not be used by service.

NotSupported Although the document is well formed and valid, a module present
consistent with the rules and constraints contained in this
specification, but is not supported by the service processing the
message.

ExpiryTimeLapsed A message has been received that arrived after the time specified in
the ExpiryTime element.

Inconsistent Although the document is well formed and valid, according to the
rules and constraints contained in this specification content of an
element or attribute is inconsistent with content of other elements or
their attributes.

DeliveryFailure A message has been received that either probably or definitely
could not be sent to its next destination. Note: if severity is set to
Warning then there is a small probability that the message was
delivered.

SecurityFailure Validation of signatures or checks on the authenticity or authority
of the sender of the message has failed.

LinkProblem A URI link could not be resolved. If the severity is set to Warning
then it is left to the application to determine how to handle the
condition.

Unknown Indicates that an error has occurred not covered explicitly by any of
the other errors. The content of the Error element should be used to
indicate the nature of the problem.

10.5 ErrorList Samples

Service error & Process (XML fragment):

36 © OGC 2003 – All rights reserved

OGC 03-029

<omf:ErrorList omf:highestSeverity="error">
 <omf:Error omf:id="error_001" omf:code="NotRecognized"
 omf:severity="Error"
 omf:location="/Header/Action/Service">
 <omf:Description xml:lang="en-US">
 Unrecognized service urn:ogc:services:wcs
 <omf:Description>
 </omf:Error>
 <omf:Error omf:id="error_002" omf:code="NotRecognized"
 omf:severity="Error"
 omf:location="/Header/Action/Process">
 <omf:Description xml:lang="en-US">
 Unrecognized process GetCaps
 <omf:Description>
 </omf:Error>
</omf:ErrorList>

Action error (full XML):
<?xml version="1.0" encoding="UTF-8"?>
<omf:Header xmlns:omf=”http://www.opengis.net/schema/omf.xsd”
 xmlns:xlink=”http://www.w3.org/1999/xlink”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”http://www.opengis.net/schema/omf.xsd”
 omf:version="1.0">
 <omf:RefToMessageId>20021215111212@messageid.com</omf:RefToMessageId>
 <omf:Action>
 <omf:Service>urn:ogc:omf:service</omf:Service>
 <omf:Process>MessageError</omf:Process>
 </omf:Action>
 <omf:ErrorList highestSeverity="Error">
 <omf:Error code="NotRecognized" severity="Error">
 <omf:Description xml:lang="en-US">
 Action not recognized</omf:Description>
 </omf:Error>
 </omf:ErrorList>
</omf:Header>

Expiry time error (full XML):
<?xml version="1.0" encoding="UTF-8"?>
<omf:Header xmlns:omf=”http://www.opengis.net/schema/omf.xsd”
 xmlns:xlink=”http://www.w3.org/1999/xlink”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”http://www.opengis.net/schema/omf.xsd”
 omf:version="1.0">
 <omf:RefToMessageId>20021215111212@messageid.com</omf:RefToMessageId>
 <omf:Action>
 <omf:Service>urn:ogc:omf:service</omf:Service>
 <omf:Process>MessageError</omf:Process>
 </omf:Action>
 <omf:ErrorList highestSeverity="Error">
 <omf:Error code="ExpiryTimeExpired" severity="Error">
 <omf:Description xml:lang="en-US">
 Action not recognized</omf:Description>
 </omf:Error>
 </omf:ErrorList>
</omf:Header>

© OGC 2003 – All rights reserved
37

http://www.opengis.net/schema/omf.xsd
http://www.opengis.net/schema/omf.xsd
http://www.opengis.net/schema/omf.xsd
http://www.w3.org/1999/xlink
http://www.w3.org/2001/XMLSchema-instance
http://www.opengis.net/schema/omf.xsd
http://www.w3.org/1999/xlink
http://www.w3.org/2001/XMLSchema-instance
http://www.opengis.net/schema/omf.xsd

OGC 03-029

Security error (XML fragment):
<omf:ErrorList omf:highestSeverity="error">
 <omf:Error omf:id="error_107"
 omf:code="SecurityFailure" omf:severity="Error"
 omf:location="URI_of_ds:Signature">
 <omf:Description xml:lang="en-US">
 Signature validation failed.
 <omf:Description>
 </omf:Error>
</omf:ErrorList>

11 Acknowledgement Messages

An acknowledgement message signals to the requestor that the service has received the
message, is able to process it, and that a response is or will be available.
Acknowledgement messages are optional but are highly recommended.

Acknowledgement messages and error messages are highly analogous in that they both
report a status back to the From party.

11.1 Acknowledgement Elements

11.1.1 Acknowledgement element

The Acknowledge element is very simple in that it contains one child element, namely
the TimeStamp element.

Normative Header XML schema definition:
<element name="Acknowledgment">
 <complexType>
 <sequence>
 <element ref="omf:Timestamp" />
 <any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>

The Acknowledgement element must not exist along with an ErrorList element.

If a message contains an Acknowledgement element then the message must also contain
the following elements and values:

• The RefToMessageId must be present and must identify the message being
acknowledged. It must be have the same value as the original message’s
MessageId.

• The Service element must be set to urn:ogc:omf:service.

38 © OGC 2003 – All rights reserved

OGC 03-029

• The Process element must be set to Acknowledgement.

11.1.2 TimeStamp element

The required Timestamp element is a value representing the time that the message
being acknowledged was received by the service generating the acknowledgment
message. It must conform to a dateTime as defined by XML Schema.

11.2 Acknowledgement example

Example 1:
<?xml version="1.0" encoding="UTF-8"?>
<Header xmlns="http://www.opengis.net/schema/omf.xsd"
 version="1.0">
 <RefToMessageId>20021215111212@messageid.com</RefToMessageId>
 <Action>
 <Service>urn:ogc:omf:service</Service>
 <Process>Acknowledgement</Process>
 </Action>
 <Acknowledgement>
 <TimeStamp>2002-08-15T11:12:14</TimeStamp>
 </Acknowledgement>
</Header>

Example 2:
<?xml version="1.0" encoding="UTF-8"?>
<Header xmlns="http://www.opengis.net/schema/omf.xsd"
 version="1.0">
 <From></From>
 <To></To>
 <MessageId>23432@service_message_id.com</MessageId>
 <RefToMessageId>20021215111212@messageid.com</RefToMessageId>
 <Action>
 <Service>urn:ogc:omf:service</Service>
 <Process>Acknowledgement</Process>
 </Action>
 <Acknowledgement>
 <TimeStamp>2002-08-15T11:12:14</TimeStamp>
 </Acknowledgement>
</Header>

12 Payload Details

Zero or more Payload Containers MAY be present within a Message. If the Message
contains an application payload, it SHOULD be enclosed within a Payload Container.

If there is no application payload within the Message Package then a Payload
Container MUST NOT be present. The contents of each Payload Container MUST be
identified in the message Manifest element within the Header.

This specification makes no provision, nor limits in any way, the structure or content of
application payloads. Payloads MAY be simple plain text objects or complex nested

© OGC 2003 – All rights reserved
39

OGC 03-029

multipart objects. The specification of the structure and composition of payload objects is
the prerogative of the organization defining the business process or information exchange
using the OGC Message Service.

12.1.1 Example of a Payload Container

The following fragment represents an example of a Payload Container and a payload
using MIME.

Content-ID: <domainname.example.com> MIME
Content-Type: application/xml

 Payload
<CityModel> Container
 <CityMember> Payload
 ……
 </CityMember>
</CityModel>

13 Status Messages

This element is used when you want to know what the status of a specific message
processing. This is extremely useful for the Notification Service. I have suggested using
OMF for the Notification Service, because the overlap is important.
Here’s the semantic of the status type:

• UnAuthorized: the Message Status Request is not authorized or accepted.

• NotRecognized: the message identified by the RefToMessageId element in the
StatusResponse element is not recognized.

• Received: the message identified by the RefToMessageId element in the
StatusResponse element has been received by the MSH.

• Processed: the message identified by the RefToMessageId element in the
StatusResponse element has been processed by the MSH.

• Forwarded: the message identified by the RefToMessageId element in the
StatusResponse element has been forwarded by the MSH to another MSH

For the image archive we do not need it the Status services. However, for
asynchronous communication, it will be needed.

40 © OGC 2003 – All rights reserved

OGC 03-029

14 Bindings

14.1 Binding to HTTP, SOAP, and multipart MIME

Bindings are best shown with examples. Thus several examples are given. Note, for
clarity and brevity, none of the examples show any binary data sent in the message. The
phrase “... Binary image data not shown...” replaces the binary data.

Example 1:
This example performs a WFS transaction packaged in OMF.

To show that the message packaging style is valuable we are going to insert a number of
features into the WFS using GML. The WFS transaction is an example taken directly
from the OpenGIS Web Feature Server Specification.

Request

Request:
POST /servlet/handler HTTP/1.1
Host: www.example.com
soapAction: ""
Content-type: multipart/related; MimeBoundary="MBndry12345678"; type="text/xml";

--MBndry12345678
Content-ID: message_header
Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:omf="http://www.opengis.net/schema/omf.xsd"
 xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/
 http://www.opengis.net/schema/omf.xsd”>
 <soap:Header>
 <omf:Header omf:version="1.0">
 <omf:From>
 <omf:PartyId>urn:duns:123456789</omf:PartyId>
 </omf:From>
 <omf:To>
 <omf:PartyId>urn:duns:912345678</omf:PartyId>
 </omf:To>
 </omf:Action>
 <omf:Service>urn:ogc:services:wfs</omf:Service>
 <omf:Process>Transaction</omf:Process>
 </omf:Action>
 <omf:MessageId>20001209-133003-28572@example.com</omf:MessageId>
 <omf:Timestamp>2001-02-15T11:12:12</omf:Timestamp>
 </omf:Header>
 </soap:Header>
 <soap:Body>
 <omf:Manifest omf:id="Manifest">
 <omf:Reference omf:id="item01"
 xlink:href="wfs-transaction"

© OGC 2003 – All rights reserved
41

OGC 03-029

 xlink:role="Data" xlink:type="simple">
 <omf:Schema location=”http://www.opengis.net/wfs/transaction.dtd”
 version=”1.0” />
 </omf:Reference>
 <omf:Manifest>
 </soap:Body>
</soap:Envelope>

--MBndry12345678
Content-ID: wfs-transaction
Content-Type: text/xml

<Transaction>
<!-- This example is copied directly from the WFS Specification. -->
<Insert>
 <INWATERA_1M>
 <INWATERA_1M.ID>150<\INWATERA_1M.ID>
 <INWATERA_1M.F_CODE>ABCDE</INWATERA_1M.F_CODE>
 <INWATERA_1M.HYC>152</INWATERA_1M.HYC>
 <INWATERA_1M.TILE_ID>250</INWATERA_1M.TILE_ID>
 <INWATERA_1M.FAC_ID>111</INWATERA_1M.FAC_ID>
 <INWATERA_1M.WKB_GEOM>
 <gml:Polygon gid="1" srsName="http://…/epsg.xml#EPSG:4326">
 <gml:outerBoundaryIs>
 <gml:LinearRing>
 <gml:coordinates>
 -98.54,24.26 ...
 </gml:coordinates>
 </gml:LinearRing>
 </gml:outerBoundaryIs>
 </gml:Polygon>
 </INWATERA_1M.WKB_GEOM>
 </INWATERA_1M>
 <INWATERA_1M>
 <INWATERA_1M.ID>111<\INWATERA_1M.ID>
 <INWATERA_1M.F_CODE>FGHIJ</INWATERA_1M.F_CODE>
 <INWATERA_1M.HYC>222</INWATERA_1M.HYC>
 <INWATERA_1M.TILE_ID>333</INWATERA_1M.TILE_ID>
 <INWATERA_1M.FAC_ID>444</INWATERA_1M.FAC_ID>
 <INWATERA_1M.WKB_GEOM>
 <gml:Polygon gid="1" srsName="http://…/epsg.xml#EPSG:4326">
 <gml:outerBoundaryIs>
 <gml:LinearRing>
 <gml:coordinates>
 -99.99,22.22 ...
 </gml:coordinates>
 </gml:LinearRing>
 </gml:outerBoundaryIs>
 </gml:Polygon>
 </INWATERA_1M.WKB_GEOM>
 </INWATERA_1M>
</Insert>
</Transaction>

--MBndry12345678--

Example 2:
This example inserts multiple related resources into the WCS.

42 © OGC 2003 – All rights reserved

http://www.opengis.net/wfs/transaction.dtd

OGC 03-029

We want to insert into the image archive a Landsat image which consists of 9 files.
There are nine band files, an HDF file, and a native metadata Landsat file. For our
example we’ll use the following files:

L71014032_B10.L1G Band 1

L71014032_B20.L1G Band 2

L71014032_B30.L1G Band 3

L71014032_B40.L1G Band 4

L71014032_B50.L1G Band 5

L71014032_B61.L1G Band 6

L72014032_B62.L1G Band 7

L72014032_B70.L1G Band 8

L72014032_B80.L1G Band 9

L71014032_HDF.L1G HDF

L71014032_MTL.L1G Metadata

The image below describes how the packaging is done.

© OGC 2003 – All rights reserved
43

OGC 03-029

MIME part 11: L71014032_MTL.L1G

MIME part 10: L71014032_HDF.L1G

MIME part 9: L71014032_B80.L1G

MIME part 8: L71014032_B70.L1G

MIME part 7: L71014032_B62.L1G

MIME part 6: L71014032_B61.L1G

MIME part 5: L71014032_B50.L1G

MIME part 4: L71014032_B40.L1G

MIME part 3: L71014032_B30.L1G

MIME part 2: L71014032_B20.L1G

SOAP-ENV: Body
 omf:Manifest

SOAP-ENV: Header
 omf: Header

SOAP-ENV: Envelope

MIME part 1: L71014032_B10.L1G

MIME part 0:
SOAP with attachments

HTTP

44 © OGC 2003 – All rights reserved

OGC 03-029

The example HTTP POST message shows how the files should be packaged in the
message. The example is a mapping (binding) from the OMF normative XML Schema to
SOAP with attachments using HTTP and multipart MIME.

Request

POST /servlet/handler HTTP/1.1
Host: www.example.com
soapAction: ""
Content-type: multipart/related; MimeBoundary="MBndry12345678"; type="text/xml";

--MBndry12345678
Content-ID: message_header
Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:omf="http://www.opengis.net/schema/omf.xsd"
 xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/
 http://www.opengis.net/schema/omf.xsd”>
 <soap:Header>
 <omf:Header omf:version="1.0">
 <omf:From>
 <omf:PartyId>urn:duns:123456789</omf:PartyId>
 </omf:From>
 <omf:To>
 <omf:PartyId>urn:duns:912345678</omf:PartyId>
 </omf:To>
 </omf:Action>
 <omf:Service>urn:ogc:services:wcs</omf:Service>
 <omf:Process>Insert</omf:Process>
 </omf:Action>
 <omf:MessageId>20001209-133003-28572@example.com</omf:MessageId>
 <omf:Timestamp>2001-02-15T11:12:12</omf:Timestamp>
 </omf:Header>
 </soap:Header>
 <soap:Body>
 <omf:Manifest>
 <omf:Reference omf:id="item01"
 xlink:href="L71014032_B10.L1G"
 xlink:role="Data" xlink:type="simple">
 </omf:Reference>
 <omf:Reference omf:id="item02"
 xlink:href="L71014032_B20.L1G"
 xlink:role="Data" xlink:type="simple">
 </omf:Reference>
 <omf:Reference omf:id="item03"
 xlink:href="L71014032_B30.L1G"
 xlink:role="Data" xlink:type="simple">
 </omf:Reference>
 <omf:Reference omf:id="item04"
 xlink:href="L71014032_B40.L1G"
 xlink:role="Data" xlink:type="simple">
 </omf:Reference>
 <omf:Reference omf:id="item05"
 xlink:href="L71014032_B50.L1G"
 xlink:role="Data" xlink:type="simple">
 </omf:Reference>

© OGC 2003 – All rights reserved
45

OGC 03-029

 <omf:Reference omf:id="item06"
 xlink:href="L71014032_B61.L1G"
 xlink:role="Data" xlink:type="simple">
 </omf:Reference>
 <omf:Reference omf:id="item07"
 xlink:href="L71014032_B62.L1G"
 xlink:role="Data" xlink:type="simple">
 </omf:Reference>
 <omf:Reference omf:id="item08"
 xlink:href="L71014032_B70.L1G"
 xlink:role="Data" xlink:type="simple">
 </omf:Reference>
 <omf:Reference omf:id="item09"
 xlink:href="L71014032_B80.L1G"
 xlink:role="Data" xlink:type="simple">
 </omf:Reference>
 <omf:Reference omf:id="item10"
 xlink:href="L71014032_HDF.L1G"
 xlink:role="Data" xlink:type="simple">
 </omf:Reference>
 <omf:Reference omf:id="item11"
 xlink:href="L71014032_MTL.L1G"
 xlink:role="Data" xlink:type="simple">
 <omf:Description xml:lang="en-US">Native Landsat
 metadata</omf:Description>
 </omf:Reference>
 <omf:Reference omf:id="item12"
 xlink:href="item12-metadata"
 xlink:role="Metadata" xlink:type="simple">
 <omf:Schema omf:location="http://www.opengis.net/iso19115.rdfs"
 omf:version="1.0" />
 <omf:Description xml:lang="en-US">
 This refences the special metadata payload.</omf:Description>
 </omf:Reference>
 </omf:Manifest>
 </soap:Body>
</soap:Envelope>

--MBndry12345678
Content-ID: item12-metadata
Content-Type: text/xml
This payload (MIME part) describes contains the metadata that describes each
payload. Whether we use ISO121195, RDF, or something else to describe the data
this payload must be processed.

--MBndry12345678
Content-ID: L71014032_B10.L1G
Content-Type: image
 ... Binary image data not shown...

--MBndry12345678
Content-ID: L71014032_B20.L1G
Content-Type: image
 ... Binary image data not shown...

--MBndry12345678
Content-ID: L71014032_B30.L1G
Content-Type: image
 ... Binary image data not shown...

--MBndry12345678
Content-ID: L71014032_B40.L1G
Content-Type: image

46 © OGC 2003 – All rights reserved

OGC 03-029

 ... Binary image data not shown...

--MBndry12345678
Content-ID: L71014032_B50.L1G
Content-Type: image
 ... Binary image data not shown...

--MBndry12345678
Content-ID: L71014032_B61.L1G
Content-Type: image
 ... Binary image data not shown...

--MBndry12345678
Content-ID: L71014032_B62.L1G
Content-Type: image
 ... Binary image data not shown...

--MBndry12345678
Content-ID: L71014032_B70.L1G
Content-Type: image
 ... Binary image data not shown...

--MBndry12345678
Content-ID: L71014032_B80.L1G
Content-Type: image
 ... Binary image data not shown...

--MBndry12345678
Content-ID: L71014032_HDF.L1G
Content-Type: image
 ... Binary image data not shown...

--MBndry12345678
Content-ID: L71014032_MTL.L1G
Content-Type: text/plain

GROUP = LPGS_METADATA_FILE
 GROUP = METADATA_FILE_INFO
 REQUEST_ID = "LLITE"
 PRODUCT_CREATION_TIME = 2002-07-19T21:07:11Z
 STATION_ID = "EDC"
 LANDSAT7_XBAND = "0"
 GROUND_STATION = "GNC"
 LPS_PROCESSOR_NUMBER = 0
 DATEHOUR_CONTACT_PERIOD = "0125515"
 SUBINTERVAL_NUMBER = "00"
 END_GROUP = METADATA_FILE_INFO
 GROUP = PRODUCT_METADATA
 PRODUCT_TYPE = "L1G"
 EPHEMERIS_TYPE = "PREDICTIVE"
 SPACECRAFT_ID = "Landsat7"
 SENSOR_ID = "ETM+"
 ACQUISITION_DATE = 2001-09-12
 WRS_PATH = 014
 STARTING_ROW = 032
 ENDING_ROW = 032
 BAND_COMBINATION = "123456678"
 PRODUCT_UL_CORNER_LAT = 41.2998960
 PRODUCT_UL_CORNER_LON = -76.3282345
 END_GROUP = PROJECTION_PARAMETERS
 ... More Landsat metadata not shown...
--MBndry12345678––

© OGC 2003 – All rights reserved
47

OGC 03-029

Example 3:

This example inserts a JPEG image in to the image archive. It does not contain any
metadata.

Request

POST /image-archive HTTP/1.1
Host: www.example.com
soapAction: ""
content-type: multipart/related; type="text/xml"; boundary="----PartBoundary"
content-length: 112275

------PartBoundary
Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:omf=”http://www.opengis.net/schema/omf.xsd”
 xmlns:xlink="http://www.w3.org/1999/xlink">
<soap-env:Header>

<omf:Header>
<omf:Action>
 <omf:Service>urn:opengis:services:image-archive</omf:Service>
 <omf:Process>insert</omf:Process>
</omf:Action>
<omf:MessageId>d883f8dc-1b40-4a9c-be72-4a4e015d4b96</omf:MessageId>
</omf:Header>

</soap-env:Header>
<soap-env:Body>

<omf:Manifest>
 <omf:Reference xlink:href="cid:content1040679532663"
 xlink:role="urn:opengis:services:image-archive:roles:data"
 xlink:type="locator"/>

 </omf:Manifest>
</soap-env:Body>
</soap-env:Envelope>
------PartBoundary
Content-Type: image/jpeg
Content-Id: content1040679532663
Content-Disposition: attachment; filename=SharbatGula2.jpg
content-length: 111310

 ... Binary image data not shown...
------PartBoundary--

Response

------=_Part_1_3786945.1040679560663
Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope

xmlns:soap-env=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:omf=”http://www.opengis.net/schema/omf.xsd”
xmlns:xlink="http://www.w3.org/1999/xlink">
<soap-env:Header>

48 © OGC 2003 – All rights reserved

http://www.opengis.net/schema/omf.xsd
http://schemas.xmlsoap.org/soap/envelope/
http://www.opengis.net/schema/omf.xsd

OGC 03-029

 <omf:Header>
<omf:Action>
 <omf:Service>urn:opengis:services:image-archive</omf:Service>
 <omf:Process>transaction-response</omf:Process>
</omf:Action>
<omf:MessageId>215c4768-dd7b-4114-a3c4-8fb33ba7e8e4</omf:MessageId>
<omf:RefToMessageId>d883f8dc-1b40-4a9c-be72-a4e015d4b96</omf:RefToMessageId>
</omf:Header>
</soap-env:Header>
<soap-env:Body>
 <omf:Manifest>
 <omf:Reference xlink:href="cid:Content1040679300245"

 xlink:role="urn:opengis:services:image-archive:roles:transaction-response"
xlink:type="locator"/>
 </omf:Manifest>
</soap-env:Body>
</soap-env:Envelope>

------=_Part_1_3786945.1040679560663
Content-Type: text/xml
Content-Id: Content1040679300245

<?xml version="1.0" encoding="UTF-8"?>
<ia:TransactionResponse xmlns:ia="http://www.opengis.net/iarchive">
 <ia:InsertResult handle="handleData0">
 <ia:InsertedContent msg-content-ref="content1040679532663"
 oid="urn:uuid:a023cd00-0284-40f4-b369-14f78cffacce" />
 <ia:Status>SUCCESS</ia:Status>
 </ia:InsertResult>
 <ia:Status>SUCCESS</ia:Status>
</ia:TransactionResponse>

------=_Part_1_3786945.1040679560663--

Example 4:
This example adds a TIFF and DAT file to the image archive. It also shows how
metadata could be harvested from the DAT and sent as RDF.

This message has four multipart MIME parts. The first, as required, is the SOAP part
while the second contains the Image Archive transaction describing the other payloads
and what to do with them.

Request

POST /image-archive HTTP/1.1
content-type: multipart/related; type="text/xml"; boundary="----=PartBoundary”
content-length: 1342929
soapaction: ""
host: localhost:8080

------=PartBoundary
Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:omf="http://www.opengis.net/schema/omf.xsd"

© OGC 2003 – All rights reserved
49

OGC 03-029

 xmlns:xlink="http://www.w3.org/1999/xlink">
 <soap-env:Header>
 <omf:Header>
 <omf:Action>
 <omf:Service>urn:opengis:services:image-archive</omf:Service>
 <omf:Process>transaction</omf:Process>
 </omf:Action>
 <omf:MessageId>fee06ff0-f23f-47f1-9138-8de11bb45494</omf:MessageId>
 </omf:Header>
 </soap-env:Header>
 <soap-env:Body>
 <omf:Manifest>
 <omf:Reference xlink:href="cid:transaction_request_payload"
 xlink:role="urn:opengis:services:image-archive:roles:transaction-request"
 xlink:type="locator"/>
 <omf:Reference xlink:href="cid:DATFile0"
 xlink:role="urn:opengis:services:image-archive:roles:data"
 xlink:type="locator"/>
 <omf:Reference xlink:href="cid:TIFFFile0"
 xlink:role="urn:opengis:services:image-archive:roles:data"
 xlink:type="locator"/>
 <omf:Reference xlink:type="locator"

 xlink:href="cid:Metadata-ca8231ff-b9bc-4a14-86d4-48d225b2fdf9"
 xlink:role="urn:opengis:services:image-archive:roles:metadata"/>
 </omf:Manifest>
 </soap-env:Body>
</soap-env:Envelope>
------=PartBoundary
Content-Type: text/xml
Content-Id: transaction_request_payload
content-length: 935

<?xml version="1.0" encoding="UTF-8"?>
<ia:Transaction xmlns:ia="http://www.opengis.net/iarchive"
 xmlns:omf="http://www.opengis.net/schema/omf.xsd"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 handle="TransactionHandle1040693031153">
 <ia:Insert handle="Insert692c16da-7674-4f74-adbd-5a6cf91b6628">
 <omf:Reference xlink:href="DATFile0"
 xlink:role="urn:opengis:services:image-archive:roles:data"
 xlink:type="locator" />
 </ia:Insert>
 <ia:Insert handle="Insert516f726a-7352-42f5-8f7e-1556c3d03d72">
 <omf:Reference xlink:href="TIFFFile0"
 xlink:role="urn:opengis:services:image-archive:roles:data"
 xlink:type="locator" />
 </ia:Insert>
 <ia:Insert handle="InsertOp14b9d4c8-a227-47eb-a002-0db17bad3263">
 <omf:Reference xlink:href="Metadata-ca8231ff-b9bc-4a14-86d4-48d225b2fdf9"
 xlink:role="urn:opengis:services:image-archive:roles:metadata"
 xlink:type="locator" />
 </ia:Insert>
</ia:Transaction>
------=PartBoundary
Content-Type: text/plain
Content-Id: DATFile
Content-Disposition: attachment; filename=uav1.dat
content-length: 177

Date: 4/18/2002
Time: 7:54:07 AM
Latitude: 3646.7210 N
Longitude: 07615.9970 W

50 © OGC 2003 – All rights reserved

OGC 03-029

Altitude: 704.4 M
Speed: 000.0
Course: 000.0
Pitch: 0.000000000000
Roll: 0.000000000000
------=PartBoundary
Content-Type: image/tiff
Content-Id: TIFFFile
Content-Disposition: attachment; filename=uav1.tif
content-length: 1334556

 ... Binary image data not shown...

------=PartBoundary
Content-Type: text/xml
Content-Id: Metadata-ca8231ff-b9bc-4a14-86d4-48d225b2fdf9
content-length: 5442

<rdf:RDF
 xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'
 xmlns:NS0='urn:opengis:taxomomy:sensor#'
 xmlns:NS1='urn:opengis:services:sps:taxomomy#'
 xmlns:NS2='http://www.opengis.net/wcs#'
 xmlns:NS3='http://www.fgdc.org/remotesensing-extension#'
 xmlns:rdfs='http://www.w3.org/2000/01/rdf-schema#'
 xmlns:NS4='http://www.geodatasystems.com/uav#'>
 <rdf:Description rdf:about='urn:uuid:b0034e91-1397-47d7-8d2b-821811e10325'>
 <rdf:type rdf:resource='http://www.fgdc.org/remotesensing-
extension#Positional_Information'/>
 <NS3:projection_center_x_position>-
76.26661666666666</NS3:projection_center_x_position>

<NS3:projection_center_y_position>36.77868333333333</NS3:projection_center_y_pos
ition>
 <NS3:projection_center_z_position>704.4</NS3:projection_center_z_position>
 <NS3:kappa>0.0</NS3:kappa>
 <NS3:omega>-0.0</NS3:omega>
 <NS3:phi>0.0</NS3:phi>
 <NS3:roll>0.0</NS3:roll>
 <NS3:pitch>0.0</NS3:pitch>
 <NS3:attitude_angular_unit>decimal degree</NS3:attitude_angular_unit>
 <NS3:projection_center_unit>decimal degree</NS3:projection_center_unit>
 <NS4:speed>0.0</NS4:speed>
 <NS4:course>0.0</NS4:course>
 <NS3:rotationSequence>123</NS3:rotationSequence>
 </rdf:Description>
 <rdf:Description rdf:about='DATFile0'>
 <rdf:type

 rdf:resource='http://www.geodatasystems.com/uav#UAVNavigationInfo'/>
 <NS4:navigation_info_of rdf:resource='TIFFFile0'/>
 <NS4:original_filename>uav1.dat</NS4:original_filename>
 <NS2:nativeFormat rdf:resource='http://www.geodatasystems.com/uav#DAT'/>
 </rdf:Description>
 <rdf:Description rdf:about='http://www.opengis.net/wcs#TIFF_6.0'>
 <rdf:type rdf:resource='http://www.opengis.net/wcs#Format'/>
 <NS2:formatName>TIFF 6.0</NS2:formatName>
 <NS2:nativeFormat>image/tiff</NS2:nativeFormat>
 <NS2:nativeFormat>image/tif</NS2:nativeFormat>
 <NS2:abstract>TIFF format version 6.0</NS2:abstract>
 </rdf:Description>
 <rdf:Description rdf:about='http://www.geodatasystems.com/uav#DAT'>
 <rdf:type rdf:resource='http://www.opengis.net/wcs#Format'/>
 <NS2:formatName>DAT</NS2:formatName>

© OGC 2003 – All rights reserved
51

OGC 03-029

 <NS2:nativeFormat>text/plain</NS2:nativeFormat>
 <NS2:abstract>Format used by GDS to store navigation metadata for UAV
 video image. The DAT file name uses the time stamp of the acquisition
 followed by the extension '.DAT'.</NS2:abstract>
 </rdf:Description>
 <rdf:Description rdf:about='TIFFFile0'>
 <rdfs:label>uav1.tif</rdfs:label>
 <rdfs:comment>Video imagery uav1.tif acquired for by GDS UAV</rdfs:comment>
 <NS4:original_filename>uav1.tif</NS4:original_filename>
 <NS2:nativeFormat
 rdf:resource='http://www.opengis.net/wcs#TIFF_6.0'/>
 <rdf:type
 rdf:resource='http://www.opengis.net/wcs#RectifiableGridCoverage'/>
 <rdf:type
 rdf:resource='http://www.fgdc.org/remotesensing-
extension#Georeferenceable_Raster'/>
 <rdf:type rdf:resource='urn:opengis:services:sps:taxomomy#Observation'/>
 <NS3:has_instrument_georeferencing

 rdf:resource='urn:uuid:d70d872d-9aef-413d-8e9d-285776733629'/>
 <NS2:acquisitionTime>04/18/2002 07:54:07 AM</NS2:acquisitionTime>
 <NS4:navigation_info rdf:resource='DATFile0'/>
 <NS3:instrument_information
 rdf:resource='urn:uuid:2be659b4-c679-4688-bdca-141a302b9941'/>
 <NS3:video-member-of
 rdf:resource='urn:uuid:7eb2bdc7-ba3e-438f-8a2d-a807d24f9b48'/>
 <NS3:image-member-of
 rdf:resource='urn:uuid:7eb2bdc7-ba3e-438f-8a2d-a807d24f9b48'/>
 <NS1:taskID>can-1</NS1:taskID>
 <NS4:averageGroundElevation>32.0</NS4:averageGroundElevation>
 <NS4:averageGroundElevationUnit>m</NS4:averageGroundElevationUnit>
 </rdf:Description>
 <rdf:Description rdf:about='urn:uuid:7eb2bdc7-ba3e-438f-8a2d-a807d24f9b48'>
 <rdf:type rdf:resource='http://www.fgdc.org/remotesensing-
extension#ImageCollection'/>
 <rdf:type rdf:resource='http://www.fgdc.org/remotesensing-
extension#VideoCollection'/>
 <rdf:type
rdf:resource='urn:opengis:services:sps:taxomomy#ObservationCollection'/>
 <NS1:taskID>can-1</NS1:taskID>
 <NS3:collectedByMission
 rdf:resource='urn:uuid:5db4cd00-0c8c-4ab4-a226-cfbf6f9c3315'/>
 <NS3:image-member rdf:resource='TIFFFile0'/>
 <NS3:video-member rdf:resource='TIFFFile0'/>
 <NS3:instrument_information
 rdf:resource='urn:uuid:2be659b4-c679-4688-bdca-141a302b9941'/>
 </rdf:Description>
 <rdf:Description rdf:about='urn:uuid:d70d872d-9aef-413d-8e9d-285776733629'>
 <rdf:type rdf:resource='http://www.fgdc.org/remotesensing-
extension#Instrument_Specific_Georeferencing'/>
 <NS3:position rdf:resource='urn:uuid:b0034e91-1397-47d7-8d2b-821811e10325'/>
 </rdf:Description>
 <rdf:Description rdf:about='urn:uuid:2be659b4-c679-4688-bdca-141a302b9941'>
 <rdf:type rdf:resource='urn:opengis:taxomomy:sensor#VideoCamera'/>
 <NS0:focalLength>28.0</NS0:focalLength>
 <NS0:chipSizeX>8.1</NS0:chipSizeX>
 <NS0:chipSizeY>6.33</NS0:chipSizeY>
 <NS0:model>C814</NS0:model>
 <NS0:manufacturer>Sony</NS0:manufacturer>
 </rdf:Description>
 <rdf:Description rdf:about='urn:uuid:5db4cd00-0c8c-4ab4-a226-cfbf6f9c3315'>
 <rdf:type rdf:resource='http://www.fgdc.org/remotesensing-
extension#Mission'/>
 <NS3:missionDescription>An example mission</NS3:missionDescription>

52 © OGC 2003 – All rights reserved

OGC 03-029

 <NS1:taskID>can-1</NS1:taskID>
 <NS3:collects rdf:resource='urn:uuid:7eb2bdc7-ba3e-438f-8a2d-a807d24f9b48'/>
 </rdf:Description>
</rdf:RDF>
------=PartBoundary--

© OGC 2003 – All rights reserved
53

OGC 03-029

14.2 OGC Message Handling (TO DO)

This diagram shows how the server can handle messages.

54 © OGC 2003 – All rights reserved

OGC 03-029

Annex A: OMF XML Schema (Normative)

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY v5 rel. 2 U (http://www.xmlspy.com) by Keens Steven
(PCI Geomatics) -->
<!-- Create by Stephane Fellah and Steven Keens at PCI Geomatics Inc. -->
<schema targetNamespace="http://www.opengis.net/schema/omf.xsd"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:omf="http://www.opengis.net/schema/omf.xsd"
xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="qualified" version="1.0">
 <import namespace="http://www.w3.org/1999/xlink"
schemaLocation="..\..\gml\3.0\xlink\xlinks.xsd"/>
 <import namespace=http://www.w3.org/XML/1998/namespace
 schemaLocation="xml.xsd"/>
 <element name="Message">
 <complexType>
 <sequence>
 <element ref="omf:HeaderContainer"/>
 <element ref="omf:PayloadContainer" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name="HeaderContainer" type="omf:HeaderContainerType"
substitutionGroup="omf:Envelope"/>
 <element name="Header">
 <annotation>
 <documentation>Encapsulates the OMF header
 information.</documentation>
 </annotation>
 <complexType>
 <sequence>
 <element ref="omf:From" minOccurs="0"/>
 <element ref="omf:To" minOccurs="0"/>
 <element ref="omf:MessageId" minOccurs="0"/>
 <element ref="omf:RefToMessageId" minOccurs="0"/>
 <element ref="omf:Timestamp" minOccurs="0"/>
 <element ref="omf:ExpiryTime" minOccurs="0"/>
 <element ref="omf:Action"/>
 <any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>
 <attribute ref="omf:id"/>
 <attribute ref="omf:version" use="required"/>
 <anyAttribute namespace="##other" processContents="lax"/>
 </complexType>
 </element>
 <element name="MessageId" type="omf:non-empty-string">
 <annotation>
 <documentation>Message identifier</documentation>
 </annotation>
 </element>
 <element name="RefToMessageId" type="omf:non-empty-string">
 <annotation>
 <documentation>Refers to an earlier message</documentation>
 </annotation>
 </element>
 <element name="Timestamp" type="dateTime"/>

© OGC 2003 – All rights reserved
55

http://www.w3.org/XML/1998/namespace

OGC 03-029

 <element name="ExpiryTime" type="dateTime"/>
 <element name="Actor" type="omf:ActorType">
 <annotation>
 <documentation>An actor represents a requester or provider who might
 request or offer a service</documentation>
 </annotation>
 </element>
 <element name="Action">
 <annotation>
 <documentation>Tells the recipient what to do with the
 message.</documentation>
 </annotation>
 <complexType>
 <complexContent>
 <extension base="omf:ActionType"/>
 </complexContent>
 </complexType>
 </element>
 <element name="Service" type="anyURI"/>
 <element name="Process" type="anyURI"/>
 <element name="From" type="omf:ActorType" substitutionGroup="omf:Actor"/>
 <element name="To" type="omf:ActorType" substitutionGroup="omf:Actor"/>
 <element name="PartyId" type="omf:IdentifierType">
 <annotation>
 <documentation>Identifications of the party in all domains in
 support of intermediaries and destinations that may give
 preference to a particular identification system.</documentation>
 </annotation>
 </element>
 <element name="Manifest">
 <annotation>
 <documentation>Lists all items in the payload</documentation>
 </annotation>
 <complexType>
 <sequence>
 <element ref="omf:Reference" maxOccurs="unbounded"/>
 </sequence>
 <attribute ref="omf:id" use="optional"/>
 <attribute ref="omf:version" use="optional"/>
 </complexType>
 </element>
 <element name="Reference">
 <complexType>
 <complexContent>
 <extension base="omf:ReferenceType"/>
 </complexContent>
 </complexType>
 </element>
 <element name="Schema">
 <complexType>
 <attribute name="location" type="anyURI" use="required"/>
 <attribute ref="omf:version" use="optional"/>
 </complexType>
 </element>
 <element name="ErrorList">
 <complexType>
 <sequence>
 <element ref="omf:Error" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="highestSeverity" type="omf:severity.type"
use="required"/>
 </complexType>
 </element>

56 © OGC 2003 – All rights reserved

OGC 03-029

 <element name="Error">
 <complexType>
 <sequence>
 <element ref="omf:Description" minOccurs="0"/>
 <any namespace="##other" processContents="lax" minOccurs="0"

 maxOccurs="unbounded"/>
 </sequence>
 <attribute ref="omf:id"/>
 <attribute name="context" type="anyURI"
 default="urn:opengis:services:msg-service"/>
 <attribute name="code" use="required">
 <simpleType>
 <restriction base="omf:non-empty-string">
 <enumeration value="NotRecognized"/>
 <enumeration value="NotSupported"/>
 <enumeration value="ExpiryTimeLapsed"/>
 <enumeration value="Inconsistent"/>
 <enumeration value="DeliveryFailure"/>
 <enumeration value="SecurityFailure"/>
 <enumeration value="LinkProblem"/>
 <enumeration value="Unknown"/>
 </restriction>
 </simpleType>
 </attribute>
 <attribute name="severity" type="omf:severity.type" use="required"/>
 <attribute name="location" type="omf:non-empty-string"/>
 <anyAttribute namespace="##other" processContents="lax"/>
 </complexType>
 </element>
 <element name="Acknowledgement">
 <complexType>
 <sequence>
 <element ref="omf:Timestamp"/>
 <element ref="omf:From" minOccurs="0"/>
 <any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name="StatusResponse">
 <complexType>
 <sequence>
 <element ref="omf:RefToMessageId"/>
 <any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
 </sequence>
 <attribute name="messageStatus" type="omf:messageStatus.type"
use="required"/>
 </complexType>
 </element>
 <element name="StatusRequest">
 <complexType>
 <sequence>
 <element ref="omf:RefToMessageId"/>
 <any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name="Description">
 <complexType>
 <simpleContent>
 <extension base="omf:non-empty-string">

© OGC 2003 – All rights reserved
57

OGC 03-029

 <attribute ref="xml:lang" use="required"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="PayloadContainer" substitutionGroup="omf:Envelope">
 <complexType>
 <complexContent>
 <extension base="omf:PayloadContainerType">
 <sequence>
 <element name="Payload" maxOccurs="unbounded"/>
 <any namespace="##other" processContents="lax"
minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 </element>
 <element name="Payload"/>
 <element name="Envelope" type="omf:EnvelopeType"/>
 <complexType name="ActorType">
 <annotation>
 <documentation>An actor represents a requester or provider who might
request or offer a service</documentation>
 </annotation>
 <sequence>
 <element ref="omf:PartyId" maxOccurs="unbounded"/>
 <element name="Role" type="string" minOccurs="0">
 <annotation>
 <documentation>Identifies an authorized role of the party
sending and.or receiving the message.</documentation>
 </annotation>
 </element>
 </sequence>
 </complexType>
 <complexType name="ActionType">
 <sequence>
 <element ref="omf:Service"/>
 <element ref="omf:Process"/>
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <anyAttribute namespace="##other"/>
 </complexType>
 <complexType name="ReferenceType">
 <sequence>
 <element ref="omf:Schema" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="omf:Description" minOccurs="0" maxOccurs="unbounded"/>
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute ref="omf:id"/>
 <attributeGroup ref="xlink:locatorLink"/>
 <attribute name="mimeType" type="string" use="optional"/>
 <anyAttribute namespace="##other"/>
 </complexType>
 <complexType name="IdentifierType">
 <simpleContent>
 <extension base="omf:non-empty-string">
 <attribute name="type" type="omf:non-empty-string"/>
 </extension>
 </simpleContent>
 </complexType>
 <complexType name="EnvelopeType"/>
 <complexType name="HeaderContainerType">

58 © OGC 2003 – All rights reserved

OGC 03-029

 <sequence>
 <element ref="omf:Header"/>
 <element ref="omf:Manifest" minOccurs="0"/>
 <choice minOccurs="0">
 <element ref="omf:ErrorList"/>
 <element ref="omf:Acknowledgement"/>
 <element ref="omf:StatusRequest"/>
 <element ref="omf:StatusResponse"/>
 <any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
 </choice>
 <any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 <complexType name="PayloadContainerType"/>
 <simpleType name="status.type">
 <restriction base="NMTOKEN">
 <enumeration value="Reset"/>
 <enumeration value="Continue"/>
 </restriction>
 </simpleType>
 <simpleType name="messageStatus.type">
 <restriction base="NMTOKEN">
 <enumeration value="UnAuthorized"/>
 <enumeration value="NotRecognized"/>
 <enumeration value="Received"/>
 <enumeration value="Processed"/>
 <enumeration value="Forwarded"/>
 </restriction>
 </simpleType>
 <simpleType name="non-empty-string">
 <restriction base="string">
 <minLength value="1"/>
 </restriction>
 </simpleType>
 <simpleType name="severity.type">
 <restriction base="NMTOKEN">
 <enumeration value="Warning"/>
 <enumeration value="Error"/>
 </restriction>
 </simpleType>
 <attribute name="id" type="ID"/>
 <attribute name="version" type="omf:non-empty-string"/>
</schema>

© OGC 2003 – All rights reserved
59

OGC 03-029

Bibliography

[1] ISO 31 (all parts), Quantities and units.

[2] IEC 60027 (all parts), Letter symbols to be used in electrical technology.

[3] ISO 1000, SI units and recommendations for the use of their multiples and of
certain other units.

60 © OGC 2003 – All rights reserved

	Scope
	Terms and definitions
	Conventions
	Normative verbs
	Abbreviated terms
	Use of examples

	Messaging-style versus RPC-style communication
	Overview of RPC style
	Messaging Style

	Architectural considerations
	XML based messaging
	Network topology independence
	Transport Protocol independence
	Favor loose-coupling in “time and space”
	Action-oriented messaging
	Extensibility

	Proven models using messaging
	Regular postal system (Snail mail)

	Framework Overview
	OGC Message Structure
	UML model of OMF
	Transport classes
	Message classes
	Manifest
	Reference
	Schema
	Error
	Acknowledgement
	Payload

	Header Element Details
	Message element
	Header element overview
	To and From
	MessageId element
	RefToMessageId element
	Timestamp Element
	ExpiryTime element
	Action element

	Manifest Details
	Manifest element
	Reference element
	Schema element
	Manifest example

	Error Messages
	Definitions:
	Error Scope
	Error Elements
	Error code descriptions
	ErrorList Samples

	Acknowledgement Messages
	Acknowledgement Elements
	Acknowledgement example

	Payload Details
	Status Messages
	Bindings
	Binding to HTTP, SOAP, and multipart MIME
	OGC Message Handling (TO DO)

