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i. Abstract 

This document presents the requirements for defining the Symbology Conceptual Core           
Model (SymCore), the conceptual basis to define symbology rules for the portrayal of             
geographical data. It is modular and extensible (one core model, many extensions), also             
encoding agnostic (one symbology model, many encodings). It contains a minimal set of             
abstract classes representing explicit extension points of the model.  

Note, that this document does not define any extensions. 

The SWG work that led to this proposal has been done in the continuation of the Symbology 
Encoding standard (SE 1.1). While ​portrayal ​concerns the complete picture of what can be called a 
“cartographic ecosystem”, the description of ​symbology ​rules rather concerns the subpart of it 
about the instructions to be applied by a rendering engine to symbolize geodata. That’s why this 
proposal has a focus on symbology versus concerns close to WMS Style Layer Descriptor profile 
(SLD) considerations. In other words, while a set of “layer ​style​” describe the links between some 
geodata and some styles to build a map, each of these styles are built of a set of symbology rules 
in accordance with SymCore. 

The overall motivation that lead to this proposal is related to the issue “​how to make richer the 
symbology abilities​”. The first answer is modularity which comes with extensibility. SE 1.1 is not 
modular per se, while this proposal is designed to be so with a core model extensible to host the 
diversity of such abilities in relation to various data models. It means that the core model is 
somewhat abstract and does not define concrete visualisations (e.g. red dashed line of wide 
thickness to draw features of type cable car). 

The second answer that follows from the first is about extensions. As soon as the conceptual basis 
is set out in a specification document (this proposal), then extensions have to document the 
concrete symbology concepts to portray geodata structured according to a given data model. It is 
worth to notice that conceptually the core model is not related to any specific underlying data model 
to represent. It is up to an extension to define styling abilities in relation to a specific data model 
(e.g FeatureTypeStyle). 

Third answer is about encodings. As soon as the conceptual basis is set out, extensions packaged, 
then it is to define encodings to format the concrete conceptual symbology abilities. 

In summary, SymCore concerns the first answer with a consistent approach to: 

● provide the flexibility required to achieve adequate symbology rules for a variety of 
information communities; e.g. aviation symbols, weather symbols, thematic maps, etc, and; 

● achieve a high level styling interoperability without encoding dependencies 

As a consequence, this proposal follows the same motivation that split up SLD 1.0 (SLD 1.1 and 
SE 1.1). It is to put together parts that are not specific to any service (e.g. WMS), that is to be 
independent, and to allow the concepts to be reused by other standards willing to address aspects 
related to cartography. So a more general and portable symbology model is proposed for use 
across the broad OGC standards baseline, to be applied to geospatial datasets as well as online 
geospatial data and mapping services.  

Potential implementations of SymCore are expected to enhance OGC standards such as the Web 
Map Service, Web Feature Service, GeoPackage, and others. By sharing a common core, and 
using an extension mechanism, integration of these standards for the purposes of cartographic 
representation could be greatly simplified. 
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​1​ Scope 
This document presents the requirements that define the Symbology Conceptual Core           
Model (SymCore). The SymCore is an conceptual, modular, neutral model for the portrayal             
of geographical data. The model contains a minimal set of abstract classes representing             
explicit extension points of the model. Note, that this document does not define any              
extensions. 

Even though the SymCore could be extended in many places (such as Color or              
ParameterValue), the abstract Style class must be considered as the root element for             
portraying a geographic data model and for defining a concrete style model, e.g. specific              
style dedicated to render 2D vector data or a style for 3D, Virtual Reality, Augmented Reality                
topics (Figure 1).  

The SymCore is a new approach (Bocher E, Ertz O, 2018, see Annex B) : 

- to provide the flexibility required to achieve adequate cartographic styling and fill the             
needs of a variety of information communities; e.g. aviation symbols, weather           
symbols, thematic maps, ... 

- to achieve a high level styling interoperability without encoding dependencies. 

 

Figure 1. The core model and its potential extensions 

The figure 2 explains the relation between the core, the potential extensions and their              
encodings. A community style extension must be based on a core element and will be               
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encoding independant. An extension should have a concrete encoding. As the figure shows             
encoding could be implemented in various formats.  

 

 

Figure 2. From core and extensions to encodings: principles of implementation 

​2​ Conformance 
This document defines a standardisation target for encodings that implement the OGC            
Symbology Conceptual Core Model. The goal is to allow different encodings to have             
equivalent content and semantics so that they can be interoperable. This document            
establishes a core requirements class with a URI of         
http://www.opengis.net/spec/symbology/2.0/req/core  

Requirements and conformance test URIs defined in this document are relative to            
http://www.opengis.net/spec/symbology/2.0​. All requirements in this standard are part of the          
core requirement stated above. 

Conformance with this standard shall be checked using all the relevant tests specified in              
Chapter 6 of this document. The framework, concepts, and methodology for testing, and the              
criteria to be achieved to claim conformance are specified in the OGC Compliance Testing              
Policies and Procedures and the OGC Compliance Testing web site. 

​3​ Normative References 
OGC 06-042, OpenGIS Web Map Service (WMS) Implementation Specification, Version 
1.3.0  ​http://www.opengeospatial.org/standards/wms  

OGC 05-078r4, OpenGIS Styled Layer Descriptor Profile of the Web Map Service 
Implementation Specification, Version 1.1.0 ​http://www.opengeospatial.org/standards/sld  

OGC 05-077r4, OpenGIS Symbology Encoding Implementation Specification, Version 1.1.0 
http://www.opengeospatial.org/standards/se  
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OGC 09-026r2, OGC Filter Encoding 2.0 Encoding Standard - With Corrigendum, 
http://www.opengeospatial.org/standards/filter  

OGC 08-131r3, The Specification Model - A Standard for Modular specifications.           
https://portal.opengeospatial.org/files/?artifact_id=34762 
 
IETF RFC 4646: Tags for Identifying Languages, ​https://datatracker.ietf.org/doc/rfc4646/  

ISO 19117:2012, Geographic information - Portrayal 
https://www.iso.org/standard/46226.html  
 
The Unified Code for Units of Measure (UCUM), ​http://unitsofmeasure.org/ucum.html  
 
W3C CSS Fonts chapter,  ​https://www.w3.org/TR/CSS2/fonts.html#font-styling 
 
Bocher E, Ertz O. (2018), A redesign of OGC Symbology Encoding standard for sharing              
cartography. PeerJ Computer Science 4:e143​ ​https://doi.org/10.7717/peerj-cs.143 
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​4​ Definitions and Abbreviations 

​4.1​ Definitions 
 

​4.1.1​ Portrayal 
 
The ISO defines portrayal as presentation of information for human.    See  ISO 19117:2012, 
Geographic information - Portrayal ​https://www.iso.org/standard/46226.html  
 

​4.1.2​ Layer 
 
A layer is an abstraction of reality specified by a geographic data model (feature, coverage,               
3D objects...) and represented using a set of symbols (Style) to plot it.    

​4.1.3​ Rendering engine 
 
A rendering engine is an automated process that produces graphics using a pipeline of              
layers and styles as inputs. A rendering engine is commonly found in desktop or              
server-based geographic information systems. 
 

​4.1.4​ Render 
 
Conversion of digital graphics data into visual form. See ISO 19117:2012, Geographic            
information - Portrayal ​https://www.iso.org/standard/46226.html  
 
 

​4.2​ Abbreviations 
 

The abbreviated terms clause gives a list of the abbreviated terms necessary for             
understanding this document.  

IETF Internet Engineering Task Force, ​https://ietf.org/  

ISO International Organization for Standardization, ​https://www.iso.org  
 
OGC Open Geospatial Consortium, ​www.opengeospatial.org  

UML Unified Modeling Language, ​http://www.uml.org/  
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​5​ Core Conceptual Model 

​5.1​ Overview  
The requirements described in  this section define the symbology core requirement class. 
The UML diagram (Figure 2) shows the fundamental concepts of the Symbology Conceptual 
Core Model. 

Requirement Class: ​http://www.opengis.net/spec/symbology/2.0/req/core 

 

 

Figure 2.  UML Class Diagram of the Symbology core 

Scope: ​All requirements in this subsection relate to the above requirement class. 

Dependencies:​ None 

Description: ​The Symbology conceptual model is shown in the UML Diagram below. 

Each concept in the model can be extended according to two main extension principles: 

● either globally related to an abstract class (in yellow) 
● or locally related to the extension property defined within each class of the model 

The role of each class and property in the model above is described in the tables below. 

​5.2​ Class Style 
Requirement ID:​ ​http://www.opengis.net/spec/symbology/2.0/req/core/StyleClass 
Requirement Txt:​ Implementations shall support the encoding of all properties of the Style 
class and meet all of the tabulated constraints and notes. 

This class is the root concept of the Symbology Conceptual Core Model. This class              
organizes the rules of symbolizing instructions to be applied by a rendering engine on a layer                
of geographic features (e.g., vector based spatial data or raster data). As an abstract class, it                
is designed to be extended (e.g., the FeatureTypeStyle extension for vector data). 
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Please note that the graphic pipeline of the rendering engine must be expressed             
unambiguously for each concrete implementation of a Style in order to enable cartographic             
portrayal interoperability. 

The Style class  properties are documented in the following table. 

Name Definition Data type and value Multiplicity 

name A string value to reference 
the Style ParameterValue data type Zero or one 

title Human readable title ParameterValue data type One 

abstract Human readable description ParameterValue data type Zero or one 

rule Rule(s) that drive(s) the 
rendering engine Rule One or more 

extension 
Any encoding should allow 
the user to extend the class 
to include custom items 

Any Zero or more 

​5.3​ Class Rule 
Requirement ID:​ ​http://www.opengis.net/spec/symbology/2.0/req/core/RuleClass  

Requirement Txt:​ Implementations shall support the encoding of all ​RuleClass ​properties 
and meet all of the tabulated constraints and notes. 

This core class describes the concept of a ​rule​ in the Symbology model. Rules are used to 
organize symbolizing instructions and potentially to define conditions of application of these 
associated symbolizers (e.g., feature-property conditions or map scales). 

The RuleClass  properties are documented in the following table. 

Name Definition Data type and value Multiplicity 

name A string value to reference 
the Rule ParameterValue data type Zero or one 

title Human readable title ParameterValue data type One 

abstract Human readable description ParameterValue data type Zero or one 

symbolizer Symbolize(s) to apply by the 
rendering engine Symbolizer One or more 

extension 
Any encoding should allow 
the user to extend the class 
to include custom properties 

Any Zero or more 
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​5.4​ Class Symbolizer 
Requirement ID:​ ​http://www.opengis.net/spec/symbology/2.0/req/core/SymbolizerClass  

Requirement Txt:​ Implementations shall support the encoding of all ​SymbolizerClass 
properties and meet all of the tabulated constraints and notes. 

This class describes how to portray geographic data given a shape (e.g., area fill, line stroke,                
point marker, etc.) and graphical properties (e.g., color, opacity, font-family, etc.). As an             
abstract class, it is designed to be extended. 

The SymbolizerClass properties are documented in the following table. 

Name Definition Data type and value Multiplicity 

name A string value to reference 
the Symbolizer ParameterValue data type Zero or one 

title Human readable title ParameterValue data type One 

abstract Human readable description ParameterValue data type Zero or one 

uom 
Unit of measure to apply to 
all graphical properties of a 
Symbolizer 

uom code Zero or one 

extension 
Any encoding should allow 
the user to extend the class 
to include custom items 

Any Zero or more 

 

To understand what the symbolizer concept is, consider a “Lake” feature type represented             
by a Polygon that we want to symbolize as a “blue” filled polygon with its boundary drawn as                  
a “black” line. As symbolizer is an abstract class a concrete extension, called here for               
example AreaSymbolizer must be provided to render an interior “fill” and an outlining             
“stroke”. Consequently the AreaSymbolizer extension will implement concrete extensions of          
the abstract Stroke and Fill classes of the conceptual model. 

Depending on the type of geographical object, a set of symbolizer extensions can be              
conceived. For example a LineSymbolizer to draw a river, a PointSymbolizer to locate the              
“Hospitals” or a LabelSymbolizer to  render the road name along a line. 

​5.5​ Class ParameterValue 
Requirement ID: 
http://www.opengis.net/spec/symbology/2.0/req/core/ParameterValueClass 

Requirement Txt:​ Implementations shall support the encoding of all ​ParameterValue 
parameters  class and meet all of the tabulated constraints and notes. 
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The ​ParameterValue class represents a gateway that provides the value to be used by a               
parameter in a styling context of use (almost all styling parameters such as width, opacity,               
displacement, etc are "parameter-values"). This class has a similar meaning to Expression            
as defined in the OGC Filter Encoding 2.0 standard. As an abstract class, it is designed to                 
be extended (e.g., Literal). 

The ParameterValue properties are documented in the following table. 

Name Definition Data type and value Multiplicity 

language 
Language identifier for the 
ParameterValue element. 
(a) 

Character String. This language 
identifier shall be as specified in 
IETF RFC 4646.  

zero or more 

extension 

Any encoding should allow 
the ability to extend the 
class to include custom 
items 

Any zero or more 

(a) The language identifier should offer a way to adapt the ParameterValue to a             
specified language, e.g., display the title of a Rule element both in English and              
French. 

​5.6​ Class Literal 
Requirement ID:​ ​http://www.opengis.net/spec/symbology/2.0/req/core/LiteralClass 
Requirement Txt:​ Implementations shall support the encoding of all parameters of the 
Literal class and meet all of the tabulated constraints and notes. 

The Literal class is a concrete implementation of the ParameterValue class. LiteralClass 
represents a typed atomic literal value as a constant explicitly specified. It was originally 
defined in the OGC Filter Encoding 2.0 standard section 7.5.1. 

LiteralClass properties are documented in the following table. 

Name Definition Data type and value Multiplicity 

value A value for the literal data Any one 

​5.7​ UOM Codelist 
Requirement ID:​ ​http://www.opengis.net/spec/symbology/2.0/req/core/UOMClass 
Requirement Txt:​ Implementations shall support the encoding of all properties of the 
UOMClass​ and meet all of the tabulated constraints and notes. 

For styling parameters that define sizing and positioning of graphical objects (width,            
displacement, etc.) the unit of measure needs to be provided for the rendering engine.              
Therefore, for different levels of elements (eg. Symbolizer, Stroke, Fill, GraphicSize...) the            
model allows using different ​uom codes. Consequently, either the unit of measure is             
determined through the ​uom code directly associated to each element or it is determined by               
the innermost parent ​uom code (e.g., an uom code defined at the Symbolizer level implies               
that this unit is applied for all sizing and positioning values inside the Symbolizer). 
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Below is the list of allowed units of measure as per UCUM (except for pixel): 

● portrayal units: pixel, millimeter, inch, percentage 
● ground units: meter, foot 

The portrayal unit “pixel” is the default unit of measure. If available, the pixel size depends                
on the viewer client resolution, otherwise it is equal to 0.28mm * 0.28mm (~ 90 DPI). 

​5.8​ Class Color 
Requirement ID:​ ​http://www.opengis.net/spec/symbology/2.0/req/core/ColorClass 
Requirement Txt:​ Implementations shall support the encoding of all properties of the Color 
class and meet all of the tabulated constraints and notes. 

The ​ColorClass​ allows the definition of color. As an abstract class and part of the base of the 
core graphical concepts, this class is a global point of extension for specifying concrete 
definitions of colors (e.g., RGBColor extension). 

The ColorClass properties are documented in the following table. 

Name Definition Data type and value Multiplicity 

extension 

Any encoding should   
allow the extension of    
ColorClass with custom   
items 

Any type zero or more 

​5.9​ Class Fill 
Requirement ID:​ ​http://www.opengis.net/spec/symbology/2.0/req/core/FillClass 
Requirement Txt:​ Implementations shall support the encoding of all properties of the 
FillClass​ and meet all of the tabulated constraints and notes. 

FillClass defines the graphical symbolizing parameters required to draw the filling of a             
two-dimensional shape such as a polygon. As an abstract class and part of the base of the                 
core graphical concepts, ​FillClass is a global point of extension for specifying concrete             
definitions for shape fill operations (e.g., the ​SolidFill​ and ​GraphicFill ​extensions). 

The FillClass  properties are documented in the following table. 

Name Definition Data type and value Multiplicity 

uom Unit of measure to apply to all       
graphical properties within a Fill uom code zero or one 

extension 
Any encoding should allow the     
extension of a Fill operation with      
custom items 

Any type zero or more 
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​5.10​ Class Stroke 
Requirement ID:​ ​http://www.opengis.net/spec/symbology/2.0/req/core/StrokeClass 
Requirement Txt:​ Implementations shall support the encoding of all properties of the 
StrokeClass​ and meet all of the tabulated constraints and notes. 

StrokeClass defines the graphical symbolizing parameters for drawing an outline (e.g., for            
linear geometries or the exterior of a polygon geometry). As an abstract class and part of the                 
base of the core graphical concepts, ​StrokeClass is a global point of extension to specify               
concrete ways to draw outlines (e.g., the PenStroke and GraphicStroke extensions). 

The StrokeClass properties are documented in the following table. 

Name Definition Data type and value Multiplicity 

uom Unit of measure to apply to all 
graphical properties inside a Stroke uom code zero or one 

extension Any encoding should allow to 
extend a Stroke with custom items Any type zero or more 

​5.11​ Class Graphic 
Requirement ID:​ ​http://www.opengis.net/spec/symbology/2.0/req/core/GraphicClass 
Requirement Txt:​ Implementations shall support the encoding of all properties of the 
GraphicClass​ and meet all of the tabulated constraints and notes. 

The Graphic class defines the parameters for drawing a graphic symbol such as shape,              
color(s), and size. A ​graphic can be informally defined as “a little picture” and can be either a                  
bitmap or scaled vector. (The term “graphic” is used instead of the term “symbol” to avoid                
confusion with Symbolizer, which is used in a different context in this model.) As an abstract                
class and part of the base of the core graphical concepts, ​GraphicClass is a global point of                 
extension to specify concrete ways to draw “graphic symbol” (e.g. ExternalGraphic and            
MarkGraphic extensions). 

The GraphicClass properties are documented in the following table. 

Name Definition Data type and value Multiplicity 

uom 
Unit of measure to apply to all       
graphical properties within a    
Graphic 

uom code zero or one 

graphicSize Rendering size of the graphic GraphicSize data type zero or one 

extension Any encoding should allow to     
extend a Graphic with custom items Any type zero or more 
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​5.12​ Class GraphicSize 
Requirement ID:​ ​http://www.opengis.net/spec/symbology/2.0/req/core/GraphicSizeClass  

Requirement Txt: Implementations shall support the encoding of all properties of the            
GraphicSizeClass​ and meet all of the tabulated constraints and notes. 

The ​GraphicSize class determines the size of the graphic when it is rendered. As an abstract                
class, it is designed to be extended to support the various ways the size could be specified                 
such as by a single value, a rectangular box, or by a three-dimensional cube. 

The GraphicSize properties are documented in the following table. 

Name Definition Data type and value Multiplicity 

extension Any encoding should allow to extend a 
GraphicSize with custom items Any type zero or more 

​5.13​ Class Label 
Requirement ID:​ ​http://www.opengis.net/spec/symbology/2.0/req/core/LabelClass 

Requirement Txt: Implementations shall support the encoding of all properties of the            
LabelClass​ and meet all of the tabulated constraints and notes. 

LabelClass defines the graphical symbolizing properties for drawing a text label. As an             
abstract class and part of the base of the core graphical concepts, ​LabelClass is a point of                 
extension to specify concrete ways to draw text label according to placement behaviours             
(e.g., a PointLabel or LineLabel). 

LabelClass properties are documented in the following table. 

Name Definition Data type and value Multiplicity 

uom 
Unit of measure to apply to 
the affected graphical 
properties within a Label 

uom code zero or one 

labelText Text-label content to draw ParameterValue data type 
String one 

font Font definition to draw the 
text-label content 

Font data type 
Default value: 
system-dependent 

zero or one 

fill Filling style to draw the 
glyphs Fill data type zero or one 

extension 
Any encoding should allow 
to extend a Label with 
custom items 

Any type zero or more 
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​5.14​ Class Font 
Requirement ID:​ ​http://www.opengis.net/spec/symbology/2.0/req/core/FontClass 

Requirement Txt:​ Implementations shall support the encoding of all properties of the 
FontClass​ and meet all of the tabulated constraints and notes. 

The ​FontClass describes the font properties to apply for the rendering of a text string. It                
refers to the W3C CSS Fonts chapter. 

Name Definition Data type and value Multiplicity 

uom 
Unit of measure to apply to 
the affected graphical 
properties within a Font 

uom code zero or one 

fontFamily Font family name (a) ParameterValue data type 
CharacterString zero or more 

fontSize Font size when applying 
the font to a text string (b) 

ParameterValue data type 
Float zero or one 

fontWeight Amount of weight or 
boldness to use for a font 

ParameterValue data type 
CharacterString zero or one 

fontStyle Style to use for a font ParameterValue data type 
CharacterString zero or one 

extension 
Any encoding should allow 
to extend a Font with 
custom items 

Any type zero or more 

(a) Any number of FontFamily parameters may be given and they are assumed to be in               
preferred order. 

(b) The size unit is specified by the uom code if defined or by the innermost parent unit                 
of measure definition otherwise 

​ 
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​6​ Abstract Test Suite (Normative) 
An Symbology Encoding implementation shall satisfy the following characteristics to be 
conformant with this specification. 

The OGC URI identifier of this conformance class is: 
http://www.opengis.net/spec/symbology/2.0/conf/core​.  

It is the root of the test identifiers described below. 

​6.1​ Implements the Style class 
Test ID:​ ​http://www.opengis.net/spec/symbology/2.0/conf/core/StyleClass 

Test purpose:  
To test requirement ​http://www.opengis.net/spec/symbology/2.0/req/core/StyleClass 

Test method: 
Review all rows of the Style class and confirm that an encoding rule is defined for each 
element in the encoding specification. 

Check that at least one concrete class of the Style class has an encoding rule defined. 

​6.2​ Implements the Rule class. 
Test ID:​ ​http://www.opengis.net/spec/symbology/2.0/conf/core/RuleClass 

Test Purpose:  
To test requirement ​http://www.opengis.net/spec/symbology/2.0/req/core/StyleClass 

Test Method: 
Review all rows of the Rule class and confirm that an encoding is defined for each element 
in the encoding specification. 

​6.3​ Implements the Symbolizer Class. 
Test ID:​ ​http://www.opengis.net/spec/symbology/2.0/conf/core/SymbolizerClass 

Test Purpose: ​To test requirement 
http://www.opengis.net/spec/symbology/2.0/req/core/SymbolizerClass 

Test Method: 
Review all rows of the Symbolizer class and confirm that an encoding rule is defined for 
each element in the encoding specification. 

Check that at least one concrete class of the Symbolizer class (defined by the symbology 
conceptual model) has an encoding rule defined. 
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​6.4​ Implements the ParameterValue Class. 
Test ID:​ ​http://www.opengis.net/spec/symbology/2.0/conf/core/ParameterValueClass 

Test Purpose: ​To test requirement 
http://www.opengis.net/spec/symbology/2.0/req/core/​ParameterValueClass 

Test Method: 
Review all rows of the ParameterValue class and confirm that an encoding rule is defined for 
each element in the encoding specification. 

Check that at least one concrete class (defined by the symbology conceptual model) of the 
ParameterValue abstract class is implemented. 

​6.5​ Implements the Literal class. 
Test ID:​ ​http://www.opengis.net/spec/symbology/2.0/conf/core/LiteralClass 

Test Purpose: ​To test requirement 
http://www.opengis.net/spec/symbology/2.0/req/core/Literal​Class 

Test Method: 
Review all rows of the Literal class and confirm that an encoding rule is defined for each 
element in the encoding specification. 

​6.6​ Implements the uom codelist. 
Test ID:​ ​http://www.opengis.net/spec/symbology/2.0/conf/core/UOMClass 
Test Purpose: ​To test requirement 
http://www.opengis.net/spec/symbology/2.0/req/core/UOMClass 

Test Method: ​Check that at least the pixel portrayal unit of measure is implemented. 

​6.7​ Implements the Color Class. 
Test id:​ ​http://www.opengis.net/spec/symbology/2.0/conf/core/ColorClass 

Test Purpose: ​To test requirement 
http://www.opengis.net/spec/symbology/2.0/req/core/ColorClass 

Test Method: 
Review all rows of the Color class and confirm that an encoding rule is defined for each 
element in the encoding specification. 

Check that at least one concrete class (defined by the symbology conceptual model) of the 
Color abstract class is implemented. 
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​6.8​ Implements the Fill Class. 
Test ID:​ ​http://www.opengis.net/spec/symbology/2.0/conf/core/FillClass 

Test Purpose: ​To test requirement 
http://www.opengis.net/spec/symbology/2.0/conf/req/FillClass 

Test Method: 
Review all rows of the Fill class and confirm that an encoding rule is defined for each 
element in the encoding specification. 

Check that at least one concrete class (defined by the symbology conceptual model) of the 
Fill abstract class is implemented. 

​6.9​ Implements the Stroke Class. 
Test ID:​ ​http://www.opengis.net/spec/symbology/2.0/conf/core/StrokeClass 

Test Purpose: ​To test requirement 
http://www.opengis.net/spec/symbology/2.0/conf/req/StrokeClass 

Test Method: 
Review all rows of the Stroke class and confirm that an encoding rule is defined for each 
element in the encoding specification. 

Check that at least one concrete class (defined by the symbology conceptual model) of the 
Stroke abstract class is implemented. 

​6.10​ Implements the Graphic Class. 
Test ID:​ ​http://www.opengis.net/spec/symbology/2.0/conf/core/GraphicClass 

Test Purpose: ​To test requirement 
http://www.opengis.net/spec/symbology/2.0/conf/req/GraphicClass 

Test Method: 
Review all rows of the Graphic class and confirm that an encoding rule is defined for each 
element in the encoding specification. 

Check that at least one concrete class (defined by the symbology conceptual model) of the 
Graphic abstract class is implemented. 

​6.11​ Implements the GraphicSize Class. 
Test ID:​ ​http://www.opengis.net/spec/symbology/2.0/conf/core/GraphicSizeClass 

Test Purpose: ​To test requirement 
http://www.opengis.net/spec/symbology/2.0/conf/req/GraphicSizeClass 
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Test Method: 
Review all rows of the GraphicSize class and confirm that an encoding rule is defined for 
each element in the encoding specification. 

​6.12​ Implements the Label Class. 
Test ID:​ ​http://www.opengis.net/spec/symbology/2.0/conf/core/LabelClass 

Test Purpose: ​To test requirement 
http://www.opengis.net/spec/symbology/2.0/conf/req/LabelClass 

Test Method: 
Review all rows of the Label class and confirm that an encoding rule is defined for each 
element in the encoding specification. 

Check that at least one concrete class (defined by the symbology conceptual model) of the 
Label abstract class is implemented. 

​6.13​ Implements the Font Class. 
Test ID:​ ​http://www.opengis.net/spec/symbology/2.0/conf/core/FontClass 

Test Purpose: ​To test requirement 
http://www.opengis.net/spec/symbology/2.0/conf/req/FontClass 

Test Method: 
Review all rows of the Font class and confirm that an encoding rule is defined for each 
element in the encoding specification. 
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​Annex A  Example implementation 
The Symbology Conceptual Core Model standard implies that a concrete style           

extension is implemented to control how the features of a certains data model are rendered.               
The following example is given for information only. It must be read and understood as a                
fictitious implementation of an extension. 

Let us introduce the AreaFeatureTypeStyle extension which holds a simple and           
classical symbolizer, call it the AreaSymbolizer extension which describes the graphical           
parameters for drawing polygonal features with outlined and filled surface areas. 

The figure 3 shows the fundamental concepts of the Symbology Conceptual Core 
Model that must be implemented to create the AreaFeatureTypeStyle extension. 

Note that this extension doesn’t contain any rule mechanisms as MinScaleDenominator and 
MaxScaleDenominator or/and filter operators.  

 

 

Figure 3.  UML Class Diagram of the AreaFeatureTypeStyle extension 
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AreaFeatureTypeStyle extension 

The AreaFeatureTypeStyle extension defines the styling that is to be applied to a single 
feature type. 

This class extends the abstract Style class described in the core. It defines the ability to 
portray of a Layer built of N instances of GML AbstractFeatureType (Portele, 2007) with the 
ability to access features according to Simple Feature SF-2 (Van den Brink et al., 2012). 

The rendering engine is driven according to the following execution: all features are applied 
to each symbolizer in sequence as they appear nested in rule and following the “painters 
model” with the first item in a list being the first item plotted and hence being on the “bottom”. 

Name Definition Data type and value Multiplicity 

featureTypeName 
Identifies the specific 
feature type that the 
feature-type style is for 

Literal data type zero or one 

 

To define the access to the exact feature type geometry to style, the extension adds a                
geometry property to the AreaSymbolizer with the related behaviours (described below for            
each requirement). 

Name Definition Data type and value Multiplicity 

geometry 

Geometry 
attribute or 
sub-element of a 
geometry attribute 
(a) added to the 
Symbolizer 

ParameterValue data type 
Geometry  1 one 

(a) Add to symbolizer the geometry attribute, 
(b) Features according GML Simple Feature (SF-2 Level). 

 

AreaSymbolizer extension 

An AreaSymbolizer is used to symbolize a geometry into an area including filling its interior               
and stroking its outline. It is typically used for a 2-dimensional geometry (e.g. Polygon). 

Name Definition Data type and value Multiplicity 

fill Filling style to draw the interior 
area Fill data type Zero or one 

stroke Stroke style to draw the outline Stroke data type Zero or one 

(a) If a geometry has “holes,” then they are not filled, but the borders around the holes                
are stroked in the usual way if a Stroke parameter is mentioned. “Islands” within              
holes are filled and stroked, and so on. If a point is used, then a small, square,                 
orthogonal-normal area should be constructed for rendering. If a line is used, then             

1 from http://www.opengis.net/doc/IS/SFA/6.1.2 
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the line (string) is closed for filling (only) by connecting its end point to its start point,                 
any line crossings are corrected in some way, and only the original line is stroked. 

(b) A missing Fill property means that the geometry will not be filled. A missing Stroke               
property means that the geometry will not be stroked. When both are used, the filling               
is rendered first and then the stroking rendered on top of the filling. 

SolidFill extension 

The SolidFill class is a concrete implementation of the Fill class and allows to formulate a                
filling of an area (e.g. a polygon geometry or any kind of symbol). 

Name Definition Data type and value Multiplicity 

color The color to fill the 
area Color data type zero or one 

opacity Opacity of the Color 

ParameterValue type (Float) 
Value: [0;1] (1 means 100% 
opaque) 
Default value: 0 

zero or one 

Note : Any fill implementation can be imagined as for example a TextureFill extension to               
add a level of artistic control and realism to a surface. For a complex Texture properties a                 
specific Symbolizer could be proposed. 

 

PenStroke extension 

The PenStroke extension is a concrete implementation of the Stroke class. It allows to draw 
a line (e.g. a 1-dimensional geometry, the outline of a marker, etc) analogously to how a pen 
is used with ink, that is to say by filling the area formed by the thickness of the line. 

Name Definition Data type and value Multiplicity 

width 
Thickness of the line which 
gives form to an area to fill 
(a) 

ParameterValue data type (Float) 
Value: [0;+​∞​) 
Default value: 1px 

zero or one 

fill The filling style to draw the 
linear area Fill data type zero or one 

(a) The Width parameter is in the context of a UnitOfMeasure code (that may be              
inherited from a parent element). 

RGBColor extension 

The RGBColor extension is a concrete implementation of the Color class where the color is               
expressed as three integer properties in conformance with the sRGB standardized color            
space. 

Name Definition Data type and value Multiplicity 

red The red value of the 
color 

ParameterValue data type (Integer) 
Value: (0;255) 
Default value: 0 

one 

green The green value of the 
color 

ParameterValue data type (Integer) 
Value: (0;255) 
Default value: 0 

one 
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blue The blue value of the 
color 

ParameterValue data type (Integer) 
Value: (0;255) 
Default value: 0 

one 
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​Annex B 
A redesign of OGC Symbology Encoding 

standard for sharing cartography 
 

 

This annex integrates a paper which does help the reader to understand how the conceptual               
model can be extended to be realized (core and extensions approach). 

Reference: Bocher E, Ertz O. 2018. A redesign of OGC Symbology Encoding standard for              
sharing cartography. PeerJ Computer Science 4:e143 ​https://doi.org/10.7717/peerj-cs.143 
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ABSTRACT
Despite most Spatial Data Infrastructures offering service-based visualization of

geospatial data, requirements are often at a very basic level leading to poor quality of

maps. This is a general observation for any geospatial architecture as soon as open

standards as those of the Open Geospatial Consortium (OGC) are applied. To

improve the situation, this paper does focus on improvements at the portrayal

interoperability side by considering standardization aspects. We propose two major

redesign recommendations. First to consolidate the cartographic theory at the core

of the OGC Symbology Encoding standard. Secondly to build the standard in a

modular way so as to be ready to be extended with upcoming future cartographic

requirements. Thus, we start by defining portrayal interoperability by means of

typical-use cases that frame the concept of sharing cartography. Then we bring to

light the strengths and limits of the relevant open standards to consider in this

context. Finally we propose a set of recommendations to overcome the limits so as to

make these use cases a true reality. Even if the definition of a cartographic-oriented

standard is not able to act as a complete cartographic design framework by itself, we

argue that pushing forward the standardization work dedicated to cartography is a

way to share and disseminate good practices and finally to improve the quality of the

visualizations.

Subjects Spatial and Geographic Information Systems, World Wide Web and Web Science

Keywords Cartography, Spatial Data Infrastructure, Open standards, Portrayal interoperability,

Open Geospatial Consortium

INTRODUCTION
Given how good geospatial technologies take advantage of the constant evolution of

information and communication technologies, Spatial Data Infrastructure (SDI)

appeared as a new paradigm in geospatial data handling. It extends desktop GIS (Craglia,

2010) where data collected by other organizations can be searched, retrieved and

manipulated for several usages (Tóth et al., 2012). Many regional, national and

international initiatives have setup well-defined access policies to promote the

arrangement of SDI because location information is important in managing everything

that a governance has to organize.

Currently, several SDI initiatives are particularly well implemented to encourage data

discovery and sharing across different communities with various applications. Also

service-based visualization of geospatial data is part of the SDI components. In the case of
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INSPIRE, the infrastructure for spatial information in Europe, requirements are defined at

a basic level according to INSPIRE Drafting Team (2014), in section 16, and INSPIRE

Drafting Team (2008) in section A.11, which defines only general portrayal rules as

recommendations. As an example, we may notice the technical guidelines on geology

(INSPIRE Thematic Working Group Geology, 2013) which does not specify styles required

to be supported by INSPIRE view services (section 11.2) but only recommended styles,

often simple to excess, just defining some color tables, stroke width and color, spacing for

dashed lines and graphic patterns to repeat in a surface or over a line. These are relatively

simple to render with current implementation standards in use. Extreme simplicity

may be intentional for some cases, but it may also reveal limitations from these

implementation standards as soon as styles resulting from a cartographic design are more

complex (Ertz, 2013). As a consequence, according to Hopfstock & Grünreich (2009), with

cartographic rules defined at such a basic level, portrayal seems to be considered as

a concern of second zone, almost ignoring “the importance of visualization for

transforming spatial data into useful GI.” Even worse, some contemporary maps coming

from SDI exhibit a serious lack of knowledge in cartography with many map-makers

repeating some basic mistakes. Such as maps from Eurostat/Regional Statistics (2017)

where population is represented as a choropleth map (e.g., population on 1st of January in

NUTS 2 regions). Field (2014) points out that the current demand is for quantity, not for

quality, and it is the Internet (not the discipline of cartography) which is reacting to this

demand.

Hopfstock & Grünreich (2009) underline that poor map design results are the

consequence of a “too technology- and/or data-driven approach” and propose

improvements by making the cartographic design knowledge explicit and operational.

Beside such a relevant proposition at the design level, this paper has a focus on the

implementation level by making portrayal interoperability operational through the

improvement of the open standards dedicated to cartography. Indeed, interoperability is

key for SDI as interconnected computing systems that can work together to accomplish a

common task. And the presence of open standards is required to allow these different

systems to communicate with each other without depending on a particular actor (Sykora

et al., 2007). The common task presently in question is about the ability for a user

community interconnected by interoperable systems to share a cartography used for the

authoring of a map. That is, not only the result of a cartographic rendering built of a set of

pixels, but also the underlying cartographic instructions which describe how the map is

authored. We can figure out how such an ability would participate to empower all types of

users, from the cartographic professionals to data artists, journalists and coders (Field,

2014) to gain useful geographical information by means of cartographic visualizations. An

ability that contributes to the power of maps, from tools which enable the sharing of

spatial information and knowledge, to collaboration through shared creativity and skills

transfer between “produsers” for better decision making (Bruns, 2013).

For cartographic portrayal interoperability, many SDI policies, like INSPIRE Drafting

Team (2014), advise the use of standards from Open Geospatial Consortium (OGC)

like the Styled Layer Descriptor (SLD) (Lupp, 2007) and Symbology Encoding (SE)
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specifications (Müller, 2006), but it seems these standards were not able to bring to reality

the above vision that goes as far as considering SDI as open participation platforms.

We might blame the fact that moving from closed monolithic applications to open

distributed systems is still under way (Sykora et al., 2007) and that cartography must take

effect providing a methodology with a user-oriented approach (Hopfstock & Grünreich,

2009). But this paper wants to show how it is also important to have syntactic portrayal

interoperability operational with a mature open specification able to standardize the

cartographic instructions. We show that the current OGC SE standard does offer limited

capabilities for describing cartographic symbolizations. Then, while we develop some

recommendations to improve the situation through more capabilities to customize the

map symbology, we also propose some good practices to favor the adoption of the

standard by implementors so as to make it really operational for the long term. We believe

that these propositions should lead to rich cartographic portrayal interoperability, going

further than basic styles. There is no reason SDI users have to be satisfied with often

unsuitable maps.

FROM MAP DESIGN TO PORTRAYAL INTEROPERABILITY
Clearly, many definitions and types of map exist. As Tyner (2010) writes “We all

know what a map is, but that definition can vary from person to person and culture

to culture.” However, many of them do share the idea of a map as an intellectual

construction that is based on the experience and knowledge of the cartographer to

manipulate data input according initial hypotheses and its capacity to play with graphic

signs (Slocum et al., 2009; Tyner, 2010). Furthermore, even if the definition is hard to settle,

cartographers have also worked to formalize map syntactics by developing symbol

categories and rules to combine them. Visual variables are symbols that can be applied

to data in order to reveal information. Largely based on the Bertin & Berg (2010)

classification, several cartographic authors agree with a set of commons visual variables

(Carpendale, 2003;MacEachren, 2004; Tyner, 2010): shape, size, hue (color), value, texture,

orientation (Fig. 1).

To create a map, they are individually manipulated or piled up by the cartographer in

the process to visually map information about point, line and area features to visual

variables (MacEachren, 2004; Slocum et al., 2009). This visual mapping is an

embellishment design to improve the aesthetic quality and express efficiently a message

(Wood & Fels, 1992). Even if creating map is an aesthetical exercise it is also a science that

must respect some rules to make sure that the representation is accurate. A de facto set of

best practices based on visual variables has been accepted by the academy of cartographers

(Montello, 2002; McMaster & McMaster, 2002). As Bertin & Berg (2010) explains, the

choice of the “right” visual variable, which would be most appropriate to represent

each aspect of information, depends on the type of geographical object but also its

characteristics (MacEachren, 2004; Nicolas & Christine, 2013). For example, like the

statistical nature of the data (qualitative, quantitative), raw data must be represented

with proportional symbols and a density of values by an areal classification (i.e.,

a choropleth map).
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These map syntactics are the results of the mainstream cartographic theory and the

related design knowledge that help to understand how and why certain displays are more

successful for spatial inference and decision making than others. This subject is an

important issue to improve map quality at the design phase (Hopfstock & Grünreich, 2009).

But also at the implementation phase, the theory related to these visual variables to compose

map symbols is suitable to drive the definition of a standardized styling language that must

be functionally designed and implemented into the geospatial tools making up SDI.

In order to explain how such a standardized styling language is an essential piece to

enable cartographic portrayal interoperability, let us clarify the related concept of sharing

cartography. We consider four use cases typical of sharing levels:

� Level 1: discover

At this level, SDI users discover pre-styled and ready to be visualized map layers,

eventually coming from different systems, they can combine to build a map. For

example, it corresponds to the classical geoportal applications offering the user to

discover and explore prepared maps and combine prepared layers from various

thematics (e.g., map.geo.admin.ch). Typically, it does also match with the story of the

fictive SDI user Mr Tüftel in the Web Portrayal Services book (Andrae et al., 2011).

Mr Tüftel wants to unify on the same map the water pipes from his municipality but

also the pipes from the municipalities in the neighborhood. These are different data

sources he wants to combine in his everyday GIS tool. Finally, during the discovery of

AreaPoint LineSymbol
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Orientation

Variable

Figure 1 The visual variables of symbols. Full-size DOI: 10.7717/peerj-cs.143/fig-1
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some cartographic facets, the user gains knowledge of the potential of the underlying

data sources hosted by the different systems.

� Level 2: author

Starting from level 1, the potential of the underlying data sources may give to the SDI

user some ideas of analytical process which requires to create a new style different from

the default. For example, this is useful for Mr Tüftel in the case he would like to create

an unified map of water pipes, but with the problem of getting different visualizations

of the pipes (e.g., different colors) from the different municipalities. He would then

author a common style (e.g., same color) so as to take the control of the whole

rendering process. Even further, Mr Tüftel may enrich the analytical process and take

benefit of an extra underlying data that classifies each pipe according to its function

(either wastewater or rainwater). He would then author a new style (e.g., orange color

for wastewater pipes, blue color for rainwater pipes) so as to produce a suitable map to

decide where to build the intercommunal water treatment plant.

Starting from level 2 some specific use cases become relevant:

� Level 3: catalog

It is about having at disposal style catalogs offering ready-to-use styles, often tailored

for specific thematics, e.g., noise mapping color palettes (EPA, 2011). The ability to

import such a specialized symbology into users’ tool just avoid to reinvent the wheel in

the sense of re-creating the style from scratch. By analogy, the catalog style use case is

similar to how the OGC Catalog Service for metadata works.

� Level 4: collaborate

The context of this use case is wider and involves several SDI users into a collaborative

authoring process. Several users contribute to the creation of a common map, each user

having specialized skills to complement one another so as to tell stories as maps, each

using her(his) own software (Ertz, Julien & Bocher, 2012). In other words, cartographic

portrayal interoperability enable the freedom to the users to work with the tools they

are most comfortable and productive with. Also, we may notice the educational

capacity of this use case. Considering a team of people with different levels of skills in

cartography, there are offered the chance to share them.

As pointed out by Iosifescu-Enescu, Hugentobler & Hurni (2010), “the use of

standardized exchange languages is commonly considered as the most practical solution

for interoperability especially when it is required to collate resources, like data, from

various systems,” but also when it is to take the control of a distributed cartographic

rendering process. Definitely, starting from level 2, the definition of a standardized styling

language is essential to share cartography: that is the underlying cartographic instruction,

what we call the symbology code which constitutes a style that describes how a map is

authored. Such a definition can be achieved in the same way Iosifescu-Enescu & Hurni

(2007) try to define a cartographic ontology by considering that “the building blocks for

digital map-making are the primary visual variables (color, opacity, texture, orientation,

arrangement, shape, size, focus) and the patterns (arrangement, texture, and
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orientation).” Also, another starting point is to consider a map (either general-purpose

maps, special-purpose maps or thematic maps) as being composed of some graphic

elements (either geometric primitives or pictorial elements). This approach matches the

OGC SE standard which is the standardized styling language (Lupp, 2007) in question

here: a style is applied on a dataset to render a map considering a composition of possible

symbol elements (called Symbolizer) that carry graphical properties (equivalent to

visual variables).

So as to complete the definition of cartographic portrayal interoperability, Fig. 2 shows

that such a styling language is at the core of the third stage of the cartographic pipeline,

the one dedicated to the style rendering. Thus it is to notice that the map layout

design which configures a title, a legend, a north arrow, a scale bar, etc. (Peterson, 2009), is

out of our scope, as well as the preprocessing stage which is dedicated to the preparation

of the dataset to visualize. As an example, building an anamorphic map requires a

preliminary processing to generate consistent geometries with preserved shape and

topology before styling them.

The next part does focus on the technical aspects about how current open standards

are able or not to fully meet the conditions of such a cartographic portrayal

interoperability.

OPEN STANDARDS FOR SHARING CARTOGRAPHY
Given the concept of sharing cartography defined by the above four use cases, let us

see what are the possibilities and limits to implement them using OGC standards.

Figure 2 The four stages of the cartographic map design, inspired from Nicolas & Christine (2013).
Full-size DOI: 10.7717/peerj-cs.143/fig-2
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Use case “discover”
The OGCWebMap Service (WMS) standard (De la Beaujardiere, 2006) is currently the only

widely accepted open standard for map visualization which standardizes the way for Web

clients to request maps with predefined symbolization (Iosifescu-Enescu, Hugentobler &

Hurni, 2010). This ability, as illustrated with Fig. 3, does match the use case level 1 allowing

to discover ready-to-visualize map layers and to combine them to build maps.

Figure 3 Discovery of ready to be visualized map layers with OGC WMS standard.

Full-size DOI: 10.7717/peerj-cs.143/fig-3

Figure 4 Visualization of the grid of map sheets of Switzerland (1:25,000) through a default

cartographic style showing a choropleth symbology based on the year of edition of the sheet.

Full-size DOI: 10.7717/peerj-cs.143/fig-4
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Just send a simple GetMap request to the Swisstopo WMS server to get a predefined

colored map layer to overlay in your web mapping application (Fig. 4):

https://wms.geo.admin.ch/?SERVICE=WMS&VERSION=1.0.0&REQUEST=

GetMap&FORMAT=image/png&LAYERS=ch.swisstopo.pixelkarte-pk25.metadata-

kartenblatt&SRS=EPSG:21781&STYLES=&WIDTH=1895&HEIGHT=

1185&BBOX=475000,68000,854000,305000

The WMS GetMap operation allows to choose one of the internal styles prepared for a

layer by a map-maker (parameter STYLES). Each style is related to one or more datasets

attached to the WMS server and ready to be used by an end-user.

Use case “author”
The analysis of the use case level 2 described in chapter 2 shows that it is required to

establish an open framework able to facilitate decision making through customized

maps. Iosifescu-Enescu (2007) does underline that the WMS standard combined with

the SLD profile and the SE is able to fulfill such a requirement. The ability to drive

remotely the authoring of visualizations is fundamental for this use case, for example to

fulfill the cartographic requirements of Mr Tüftel. He does not want to download the

spatial data, he just wants to adjust the visualization according to his specific needs

(Fig. 5).

Just send the below WMS/SLD request which has a reference to a style file. This latter

includes some SE instructions which allow to get a customized visualization (Fig. 6):

https://wms.geo.admin.ch/?SERVICE=WMS&VERSION=1.0.0&REQUEST=

GetMap&FORMAT=image/png&LAYERS=ch.swisstopo.pixelkarte-pk25.metadata-

kartenblatt&SRS=EPSG:21781&STYLES=&WIDTH=1895&HEIGHT=

1185&BBOX=475000,68000,854000,305000&SLD=http://my.server/style.sld

Figure 5 Authoring of user style to visualize map layers with OGC WMS/SLD and SE standards.

Full-size DOI: 10.7717/peerj-cs.143/fig-5
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The WMS/SLD GetMap operation allows to reference a style authored by the user

client, either hosted on an external server (parameter SLD) or directly sent with the WMS

request (parameter SLD_BODY).

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<StyledLayerDescriptor version="1.0.0"

xmlns="http://www.opengis.net/sld"

xmlns:ogc="http://www.opengis.net/ogc"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.opengis.net/sld

http://schemas.opengis.net/sld/1.0.0/StyledLayerDescriptor.xsd">

<NamedLayer>

<Name>ch.swisstopo.pixelkarte-pk25.metadata-kartenblatt</Name>

<UserStyle>

<Name>LabelBlattnummer</Name>

<FeatureTypeStyle>

<Rule>

<PolygonSymbolizer>

<Fill>

<CssParameter name="fill">#FFFF00</CssParameter>

</Fill>

<Stroke>

<CssParameter name="stroke">#333333</CssParameter>

<CssParameter name="stroke-width">2</CssParameter>

</Stroke>

</PolygonSymbolizer>

<TextSymbolizer>

<Label>

<ogc:PropertyName>Blattnummer</ogc:PropertyName>

</Label>

<Font>

<CssParameter name="font-family">arial</CssParameter>

<CssParameter name="font-size">18</CssParameter>

</Font>

<Fill>

<CssParameter name="fill">#000000</CssParameter>

</Fill>

</TextSymbolizer>

</Rule>

</FeatureTypeStyle>

</UserStyle>

</NamedLayer>

</StyledLayerDescriptor>

Bocher and Ertz (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.143 9/31

http://dx.doi.org/10.7717/peerj-cs.143
https://peerj.com/computer-science/


In other words, the user client (e.g., Mr Tüftel) does take the control of the rendering

process that may be distributed among many WMS servers. Indeed, this ability to drive

remotely from the user client side (with a map viewer including a style editor) the WMS

rendering server does open interesting doors to bring to life the other use cases.

Use case “catalog”
Going further than using a simple WMS GetMap request to get a ready-to-visualize map

layer, the deprecated implementation specification (version 1.0, released in 2002) of

the WMS/SLD standard (Lalonde, 2002) does offer style management requests like

GetStyles. So you get also the underlying symbology instructions of an internal style that has

been predefined and used by the server to show a prepared cartographic facet of some

spatial data of the underlying datasets. Thus, the retrieved style is ready to be reworked

by the user client within a cartographic tool (Fig. 7). While such an ability is already

interesting for the use case level 2, the SLD 1.0 style management offers not only GetStyles

operation but also PutStyles operation. Together, these operations are a good start for the

use case level 3 to build a catalog of styles. The WMS service is then also the storage point

to discover, import and export styles to share with other SDI users through a catalog service.

Nonetheless, it is to notice that the newest SLD 1.1 release does not specify anymore

the style management requests which is then a step back.

Use case “collaborate”
Finally, for the use case level 4, the SE standard is also a centerpiece (Fig. 8). As experimented

by Bocher et al. (2012) in the frame of the SOGVILLE/SCAPC2 research projects, SE

Figure 6 Visualization of the grid of map sheets of Switzerland (1:25,000) through another

cartographic facet showing labels based on the sheet number.

Full-size DOI: 10.7717/peerj-cs.143/fig-6

Bocher and Ertz (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.143 10/31

http://dx.doi.org/10.7717/peerj-cs.143/fig-6
http://dx.doi.org/10.7717/peerj-cs.143
https://peerj.com/computer-science/


instructions are encapsulated into a structure of map project that different users share and

work together in the frame of a collaborative cartographic authoring process. Indeed, while

the OGC OWS Context standard is used to formalize the map project, it does in particular

consider SLD and SE to formalize the shared styles used to render the map layers.

Currently, SLD (SLD 1.0) or SE (SE 1.1) (as styling language to formulate symbology

instructions) are the more advanced open standards for sharing cartography as illustrated

Figure 7 Re-authoring of styles shared through catalogs with OGC WMS/SLD standards.

Full-size DOI: 10.7717/peerj-cs.143/fig-7

Figure 8 Creation of a common map based on shared styles with OGC WMS/SLD, SE and OWS

Context standards. Full-size DOI: 10.7717/peerj-cs.143/fig-8
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by the above use case levels. These standards are quite largely adopted by server-side

rendering systems. It can be explained because SLD is a WMS application profile which is

web service oriented. Indeed, Andrae et al. (2011) redraws the OGC portrayal model by

showing clearly SLD as the web interface to take control of the rendering engine behind

the WMS service. But in 2005, the WMS/SLD 1.1 profile has been released in particular

with the aim to extract the symbology instructions into a dedicated standard, the SE

standard (SE 1.1). As a consequence, while the SLD profile stays strongly related to WMS

service, it is no longer the case for the symbology instructions which can now be used by

any styling software component, not only by WMS/SLD.

Nonetheless, at the desktop-side there are only few software which correctly and

completely implement SE standard together with a graphical user interface to (re)work

styles. Indeed, according to Bocher et al. (2011) many implementations have a

conformance that is often not fully observed leading to interoperability defects in term of

rendering quality. Apart from inherent bugs and dysfunctions of a tool, several reasons

can explain this general situation.

� Due to a partial implementation—see MapServer implementation (McKenna, 2011),

there are unimplemented symbology instructions, e.g., linejoin and linecap of

LineSymbolizer;

� Due to the existence of two versions of symbology instructions between SLD 1.0 and

SE 1.1, these tools may not check this correctly which causes parsing problems of the

XML encoding;

� Due to the divergent reading of what the SE 1.1 standard tries to specify which may

result in different graphical visualizations (it means there are uncomplete or ambiguous

explanations in the specification—like the MarkIndex capability which doesn’t specify

anything on how to select an individual glyph);

� Related to the previous point, there is currently no substantial testsuite within the OGC

Compliance and Interoperability Testing Initiative (“CITE”) to help to disambiguate

and test the graphical rendering conformance of an implementation. Beyond encoding

validity and level of conformance of an implementation (range of supported

capabilities), visual interpretation is essential (see Annex A in Müller (2006)). For

instance, by comparing the output of a system to test with the output of the reference

implementation.

While the above arguments do show how it is essential to have a common styling

language (currently in the name of OGC SE 1.1), this importance is accentuated by

the fact that many changes and proposals have been received by the standard working

group (SWG), in particular from the scientific community (Duarte Teixeira, De Melo Cuba

& Mizuta Weiss, 2005; Cooper, Sykora & Hurni, 2005; Sykora et al., 2007; Dietze & Zipf,

2007; Sae-Tang & Ertz, 2007; Schnabel & Hurni, 2007; Mays, 2012; Iosifescu-Enescu,

Hugentobler & Hurni, 2010; Bocher et al., 2011; Rita, Borbinha & Martins, 2012; Bocher &

Ertz, 2015). All these works share a common claim about enhancing SE. It seems the

communities of users were frustrated because no substantial new symbology capabilities
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have been introduced with the release of SE 1.1 except transformations functions.

Moreover, Bocher et al. (2011) and Bocher & Ertz (2015), explain that these only new

and few capabilities (interpolate, recode, categorize functions) cause confusions and

even some regressions.

For instance, despite all the good intentions, there are several limits that come out from

the introduction of the categorize function (defined by SE 1.1 standard as the transformation

of continuous values to distinct values, e.g., useful to build choropleth maps):

� The definition seems to only match a requirement emphasized by Jenks (Slocum et al.,

2009) that classes must cover all the possible values of the dataset and must not be

discontinuous. However, such a definition has limits considering optimal methods

like the Jenks–Fisher classification or Maximum Breaks classifications that may

produce intervals with gaps (Slocum et al., 2009) and that it is often better to use the

lowest value of the dataset as the minimum value of the first interval rather than

negative infinity;

� The categorize function is redundant with the concept of Rule of the SE standard.

Moreover, the latter does offer wider possibilities to define precisely value intervals

(minimum/maximum values instead of negative/positive infinite, non-contiguous

intervals, interval as singleton);

� Similarly, the RasterSymbolizer concept used to control the styling of raster data has

been reduced because of the ColorMapEntry concept from SLD 1.0 has been replaced

by the categorize transformation function;

� Finally, the introduction of categorize function has also removed from SLD 1.0 the

capability to associate a label to an interval when it is an important requirement to have

such an information to build a map legend.

Along the same lines, the many proposed extensions of SLD and SE standards have to

be analyzed. The purpose is to identify how these cartographic enhancements are relevant

for the redesign of the SE standard. By way of other examples, Sae-Tang & Ertz (2007)

describe four new possibilities to generate thematic maps (CategoryThematicSymbolizer,

SimpleThematicSymbolizer, MultiThematicSymbolizer, ChartThematicSymbolizer).

A similar approach appears in Dietze & Zipf (2007) (DiagramSymbolizer and

ChoroplethSymbolizer) and in Iosifescu-Enescu, Hugentobler & Hurni (2010) to support

various diagram types (e.g., pie charts, bar diagrams) to fulfill the complex visualization

requirements coming from environmental management.

Also, the specific options introduced within the XSD schemas by some off-the-shelf

geospatial software (e.g., “GeoServer”) have to be considered. Of course the extensible

nature of XML is convenient to add cartographic capabilities to implement in the

software, but it may at the same time also create some non-interoperable defects.

Clearly, it seems SE 1.1 has never been designed with modularization and extensibility in

mind and there are no explicit extension points defined in the underlying symbology

model. Moreover, the SE standard does currently only offer one XML-based encoding

and strongly linked to XML modeling principles (Fig. 9). As a consequence, it may be
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difficult for cartographic communities and developers having different encoding

preferences (e.g., CSS-like or JSON-based) to get a chance to observe conformance.

Indeed, while there is a general trend to dislike XML, other encodings seem to be in

fashion, like the YAML-based YSLD styling language proposed by GeoServer (2017) in

addition to the support of OGC SLD standard, or the CSS-derived styling languages

MapCSS (OpenStreetMap, 2017) or CartoCSS styling language from Mapbox (2017),

although it seems already old-fashioned (MacWright, 2016). Also, there are major

proponents of an encoding which would make a wider use of relevant and famous

graphical standards like SVG, just like OWS Context does use the famous Atom

syndication format (Brackin & Gonçalves, 2014). Beyond the trends, there is no

consensus by now.

Figure 9 The physical symbology model of SE formalized with XML Schema Definition.

Full-size DOI: 10.7717/peerj-cs.143/fig-9
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To conclude this chapter, while there are clear possibilities to implement the four levels

of sharing cartography, it is also clear that a revision of the common styling language

played by the SE standard is required. Three major requirements have to be considered:

� Enrich the standard with new cartographic capabilities inline with the evolution of the

needs coming from the map-makers community;

� Redesign the underlying symbology model of the standard so as to be modular and

extensible for the long-term;

� Consider the possibility to have other encodings than XML.

The next chapter does develop some proposals to fulfill these requirements.

PROPOSALS
The overall purpose is to make standards dedicated to cartography (in particular SE) more

attractive by turning them into “a really useful (cartographic) engine,” quoting the nod to

Thomas the Tank Engine alluded by the OGC “Specification Model—A Standard for

Modular specifications” document (Policy SWG, 2009), called the modular spec in below.

Before compiling all the Change Requests collected by the SLD/SE SWG, one

question does arise: how to plug a new requested ability in the standard? One first and

fundamental recommendation is then to consider the modular spec whose release 1.0 has

been edited in 2009, at the time the SE standard was already released and thus not in

compliance with. Indeed, the modular spec specifies generic rules to organize the internal

logical structure of the standard in a modular way so as to strengthen the guarantee of a

useful and worth standard easy to implement but also to extend.

Modular structure: one symbology core, many symbology extensions
The modular spec fittingly suggests modularity with the idea of a standard built of one

simple core and many extensions which expand the functionality of the specification.

Applied to a new revision of the SE standard, the definition of a symbology core requires

first to “reverse design” the underlying symbology model of SE 1.1. After which, the

concrete symbology capabilities have to be extracted and split into many relevant extensions

while taking care of dependencies. The proposed minimal symbology core illustrated by

Fig. 10 is partially abstract and defined according to the following concepts:

� The Style concept, in charge of the cartographic portrayal of a collection of features

stored within a Layer by applying at least one symbology Rule. A feature is described as

an abstraction of real world phenomena as defined by GML standard (Portele, 2007);

Figure 10 Recommendation for a minimal symbology core.

Full-size DOI: 10.7717/peerj-cs.143/fig-10
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� The rendering does run feature per feature using a “one drawing pass” engine;

� Each Rule may be scale filtered and does hold at least one Symbolizer;

� Each Symbolizer does describe the graphical parameters for drawing the features (visual

variables);

� The Style, Rule and Symbolizer concepts hold parameters which are literal values.

Some of the concepts are defined as abstract (in yellow and with italic names in Fig. 10)

so as to be considered as extension points. Actually, regarding this, we may notice that

Craig (2009) does request a similar concept by the use of XML abstract elements which

may than be considered as extension points.

Now that the core is ready, some surrounding extensions may be defined so that the

engine is really able to perform a rendering. Indeed, alone, the core does not concretely

“do” anything. As an example, let us introduce the AreaSymbolizer extension which holds

a simple and classical symbolizer, call it the AreaSymbolizer concept which describes the

graphical parameters for drawing polygonal features with outlined and filled surface areas.

The aim of the below explanations is to illustrate with a simple example the extension

mechanism and how extension points are expanded.

At first, it is defined that the AreaSymbolizer extension has a dependency with the

FeatureTypeStyle extension and the related concepts:

� The FeatureTypeStyle specialization of the Style core concept;

� The portrayal of a Layer built of N instances of GML AbstractFeatureType (Portele,

2007);

� The ability to access features according to Simple Feature SF-2 (Van den Brink, Portele &

Vretanos, 2012);

� The geometry parameter to each Symbolizer extension that depends on this extension

(in this case the AreaSymbolizer extension).

Then, given that the geometry parameter is defined with a dependency on the

ValueReference extension, the ValueReference specialization of the ParameterValue core

concept is introduced. In a general way, when a parameter has to be assigned with a value,

ValueReference does introduce the ability to reference the value extracted from a data

attribute of a feature. This is useful when a FeatureType does hold many geometry

properties and allows to reference the one to be used by the renderer.

Finally, the AreaSymbolizer extension itself is required, holding the AreaSymbolizer

specialization of the Symbolizer core concept. Called PolygonSymbolizer in SE 1.1 and

correctly renamed AreaSymbolizer by Craig (2009), it does introduce:

� The symbology ability to draw a surface area according to a filling and an outline;

� The dependency on the FeatureTypeStyle, Fill and Stroke extensions;

� The ability to reference the geometry data attribute to be drawn (by means of its

dependency on the FeatureTypeStyle extension).
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In consequence, an implementation that wants to observe conformance with the

AreaSymbolizer extension requires to implement and drive its rendering engine according

to all the concepts of the core (thin outline in Fig. 11) and the AreaSymbolizer concept

with all the other concepts required by dependencies (bold outline in Fig. 11).

Nonetheless, even at this point, a rendering engine would neither concretely “do”

anything. Indeed, the implementation has then to offer choices related to the filling and

the outline. Some more concrete capabilities have to be implemented, for instance with

(dashed outline in Fig. 11):

� The SolidFill concept, a Fill specialization which introduces the graphical ability to

define a solid color value combined with an opacity;

� The PenStroke concept, a Stroke specialization which introduces the graphical ability to

draw a continuous or dashed line with or without join and cap;

� The dependent abstract Color concept (and again a concrete choice of color definition

has to be done, like with the RGBColor concept which defines a color in the sRGB color

space with three integer values).

Having this modularity approach for long term extensibility applied to all the symbolizer

concepts, past, present and future, an implementation can with ease manage step by step the

evolution of the conformance level of its technical implementation of the standard.

One encoding-neutral conceptual model, many encodings
Currently, SE 1.1 offers a physical model using XML Schema Definition and, at the same

time, a natural encoding based on XML. The initial motivation explaining the below

recommendation is related to the fact that there is not only XML, but also many other

flavors of encoding, JSON-like, CSS-like, YAML-like among many others it is possible to

imagine. The important for portrayal interoperability is not the encoding, it is rather the

Figure 11 Concepts to implement so as to observe conformance with the AreaSymbolizer extension.

Full-size DOI: 10.7717/peerj-cs.143/fig-11
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symbology model. That is why the “one encoding-neutral model/many encodings”

approach is promising to favor a large adoption of the standard.

This approach has on one side the encoding-neutral model formalized using UML

notations, it can be considered as conceptual. With a class diagram, it does describe the

portrayal concepts, their relationships, the modular organization, the extension points

and the dependencies. We may notice that UML is often preferred when some work is

about the design of portrayal concepts. In Zipf (2005), a simplified version of the

underlying symbology model of SE 1.1 is depicted as an UML class diagram. Moreover,

Craig (2009) does suggest to avoid the XSD attribute concept in the XML encoding so as

to be more portable to other structuring languages which do not have the unusual

attribute concept of XML Schema, UML in particular. These are more arguments that are

in favor of defining at first a conceptual and encoding-neutral model (Fig. 12).

Consequently, doors are open to offer a variety of encodings. Each encoding does

translate into a format the UML notations according to mapping rules. At least one

Figure 12 Extract of the proposed symbology model. Full-size DOI: 10.7717/peerj-cs.143/fig-12
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default encoding and following the OGC tradition, XML may be this default encoding. It

is up to the SWG to define the mapping rules to translate the semantic of the conceptual

model into XML Schema definitions. Indeed, as noticed by Lonjon, Thomasson &Maesano

(2006), the translation fromUML to XML requires a thoughtful analysis of the conceptual

model so as to define the global mapping rules (e.g., translate a specialization relationship

using static or dynamic typing? how to translate a concrete class, an abstract class, the

various types of associations? when using attributes or elements?, etc.). Thus, UML and

XML are together a winning combination two times inline with the modular specification

which recommend UML “If the organizing mechanism for the data model used in the

specification is an object model” and XML “for any specification which has as one of its

purposes the introduction of a new XML schema.”

Of course, all these questions related to the mapping rules have to be considered for

each encoding offered with the standard. We may notice that the OWS Context SWG

adopted a similar approach, offering the default encoding based on XML Atom and

planning to provide an OWS Context JSON Encoding soon, according to Brackin &

Gonçalves (2014).

Style management and parametrized symbolizer
Beyond the tempting recommendation to reintroduce the WMS/SLD GetStyles and

PutStyles methods, the management of a catalog of styles has to be expanded. Thus, Craig

(2009) does suggest the introduction of a mechanism to reference the definition of a

Symbolizer hosted within a catalog. Moreover, the report does enrich the referencing with

a symbolizer-parameterization mechanism so as to offer complete symbolizer re-usability

between different, incompatible feature types. It consists of a list of formal-parameter

names and an argument list.

It is to notice that such a mechanism does fit the one specified by ISO (2012) in term

of parameterized symbol built of dynamic parameters. Thus, in a general way, it is

recommended to consider what ISO has already specified concerning the concepts of

“collection of symbols and portrayal functions into portrayal catalog.”

Concerning this aspect of style management, the proposal suggests to continue the

conceptual work by blending together all these recommendations: reintroduce GetStyles/

PutStyles and introduce the mechanism of symbolizer-parameterization inline with

ISO (2012).

New symbolization capabilities
Among the many symbology capabilities that can be extracted from the pending Change

Requests at OGC and the research works, we list below (non exhaustively) some relevant

ones. Considering the modular structure (see A), each of these capabilities is an extension

(e.g., HatchFill is an extension of the Fill abstract concept, just as SolidFill):

� UnitOfMeasure: current SE 1.1 standard does only offer two ground units (meter and

foot) and one portrayal unit (pixel, which is also not an absolute unit of measure).

It may be relevant to add at least three additional units to make measurements more
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portable between styling representations and rendering environments: portrayal

millimeters and inches as printing measurements, and portrayal (printer’s) points

commonly used for font sizes;

� Transformations: currently, SE 1.1 standard does offer only locally few transformations

capabilities (translation of a polygon or graphic, rotation of a graphic). It may be

relevant to spread out all kind of general affine transformations like Translate, Rotate,

Scale, Matrix using homogeneous coordinates on geometries and graphics;

� Functions: currently, SE 1.1 standard does extend the concept of ogc:expression

inherited from the deprecated Filter Encoding 1.1 standard (Vretanos, 2001) to

adequately support the needs of symbolization in transforming (categorization,

recoding, and interpolation) and editing data (formatting numbers, strings and dates).

It may be relevant to directly use the function definition mechanism of Filter Encoding

2.0 standard (Vretanos, 2010) rather re-inventing such a mechanism (Craig, 2009);

� CompoundStroke: current SE 1.1 standard does offer simple stroke just like with a pen

(optionally with dash pattern) or the linear repetition of a graphic. It may be relevant to

allow multiple graphic and/or simpler strokes to be combined together along the linear

path. It is interesting to produce complex stroke styles such as rendering a sequence of

graphic icons along a line or drawing simple dashed lines between boat-anchor icons

(Craig, 2009);

� CompositeSymbolizer: currently, grouping of symbolizers is only possible in relation

with a rule, eventually driven by a filter. It may be relevant to manage descendant

symbolizers as a single unit separately from the definition of a rule. Having a dedicated

concept for grouping symbolizers does make the logical grouping more explicit and

allows a group of symbolizers to be remotely referenced (see the SymbolizerReference

concept in Craig (2009));

� HatchFill: currently, SE 1.1 standard allows one color filling and the repetition of a

graphic to fill an area. It may be relevant to add cross hatching, a method of area filling

which is often used and has so simple parameters that it should be established as

another filling variety. It is required to allow the configuration of such a filling in a way

conventional in cartography, otherwise the user would be forced to emulate cross

hatching by fiddling with the GraphicFill concept;

� DiagramSymbolizer: current SE 1.1 standard does allow the use of graphics generated

externally (e.g., static image) or well-known shapes or font glyph whose color can be set

internally. It may be relevant to allow the internal definition of more complex diagram

symbolization of geographic features like “Pie,” “Bar,” “Line,” “Area,” “Ring,” and

“Polar” charts. Indeed, it is a usual and effective way of visualizing statistical data

(Iosifescu-Enescu, 2007);

� Multiple drawing pass: current SE 1.1 standard does describe a one drawing pass

rendering (driven by applying symbolizers in the order they are defined by the style and

according to rules and filters). It may be relevant to better control the rendering with

the capabilities to order the level of symbol rendering (e.g., to draw nicely connected

highway symbols).
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REFERENCE IMPLEMENTATION
The OrbisGIS platform has been used to prototype an implementation of the symbology

model all along the standardization work by iterations with tests and validations

(Bocher & Petit, 2015). In the long term, this platform might be adopted as a reference

implementation at the OGC (“CITE”).

OrbisGIS is a Geographical Information System designed by and for research (Bocher &

Petit, 2013) which is the main advantage for research communities comparing to other

GIS. Indeed, OrbisGIS does not intend to reproduce classical GIS functionalities. It is

designed to explore new issues or questions in the field of geospatial techniques and

methods (such as language issues to query spatial information and issues on cartography

about standardization, semantics and user interface design). To address these challenges,

the OrbisGIS architecture (object and data model) and its user interface are frequently

redesigned. This approach is fundamental to test the concepts and the ideas related to

the ongoing standardization process of symbology standards at OGC. Furthermore, the

fact that we have a common set of GIS features organized with the dynamic module

system OSGi to access to the geodata, library to use simple features functions, layer model,

rendering engine, etc. (OSGi, 2014), gives flexibility to plug some experimental code

without breaking the platform and the user can easily switch from one to another

plugin (Fig. 13). More importantly, the usage of OSGi technology does offer a way to

implement the modularization principles depicted in the above (i.e., one OSGi bundle

per symbology extension).

Another motivation is related to the license. OrbisGIS is an open source software,

distributed under the GPL3 license and therefore grants four freedoms (1) to run the

program for any purpose, (2) to study how the program works and adapt it to your needs,

Figure 13 OrbisGIS dynamic module system with OSGi.

Full-size DOI: 10.7717/peerj-cs.143/fig-13
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(3) to redistribute copies so you can help your neighbour, and (4) to improve the

program, and to release your improvements to the public, so that the whole community

benefits (Steiniger & Hunter, 2012).

This aspect is essential in order to have a reference implementation available for the

community of implementers of a standard, guiding them better in the understanding of a

specification. Given the core principle of science that having open source code available does

enable reproducibility (Ertz, Rey & Joost, 2014), we argue that this is also valid for open

standards. On one side, it is easy for other researchers and businesses to verify and re-use new

developments and adapt them to their needs (Steiniger &Hunter, 2012). Furthermore, having

the code of the rendering engine, the user interfaces and all the tests fully accessible should

facilitate the understanding and the dissemination of standards for portrayal interoperability

while minimizing interoperability defects. In the following we describe the main aspects

covered by OrbisGIS to implement the proposed redesign of the symbology model.

XML encoding/decoding
In the context of a prototyping iteration, the symbology model presented in the chapter 4

has been transposed to a XSD schema (Maxence et al., 2017). The Java Architecture for

XML Binding (Ort & Mehta, 2003) library is used to generate the XSD schema-derived

Java binding classes. Finally, a Java Style Object Model is built. Thus, symbology

instructions are stored in a style file using XML encoding and is parsed prior to be applied

by the rendering engine.

Rendering engine
The rendering engine is a OSGi bundle whose mechanism is divided into 12 sequences

(Fig. 14):

(1) User interface event to draw a map.

(2) The renderer engine gets the style file that contains the symbology instructions.

Figure 14 Main sequences of the rendering engine. Full-size DOI: 10.7717/peerj-cs.143/fig-14
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(3, 4 and 5) The style file is read by the XML parser to create the Java Style Object Model

composed of rules and symbols.

(6) The renderer engine starts to draw the style object looping over each rules.

(7) Each rule is scanned to check if a filter must be applied. The filter condition (e.g.,

select all values greater than : : : ) is prepared for each symbolizer of the rule.

(8) The renderer engine starts to draw all symbols available in the Java Style Object

Model.

(9) Each symbol reads the data source on which the style must be applied.

(10) A set of features according to the potential filter constraint of the symbolizer is

returned (including geometries and data attributes).

(11) The symbols are filled with the features properties to create the graphic elements and

visual variables.

(12) Finally, the renderer engine displays the style as a map image.

User interfaces
OrbisGIS offers two kind of user interfaces for configuring the map styles using the

capabilities of the underlying symbology model (Fig. 15):

� At first some productivity tools organized around a set of widgets each dedicated to

common thematic maps. The possibilities are limited to what these widgets are able to

configure related to what they have been built for. Nonetheless, the second tool can then

be used in an expert mode to go further.

� Secondly, rather intended for an expert who want to tinker and tweak. As an advanced

style editor, it is a flexibility tool which allows to manipulate all elements of the

symbology model (Rule, Symbols, visual variables). A good knowledge of the

symbology model is required because each elements of the style must be set

individually. Consequently, the user can express without any limitation (except the

limits of the symbology model itself) all her(his) creativity to build cartographic

visualizations.

To illustrate some results rendered with OrbisGIS we present two maps extracted

from the “Wall of Maps” (Bocher & Ertz, 2016). The first one shows a bivariate map

to display the number of building permits in Europe in 2005 compared to 2014

(Fig. 16).

Bivariate map is a common technique to combine visual variables. The map uses the

same type of visual variable to represent two values (as half circles). The main symbology

elements used to create this bivariate map are:

� The style element contains two rules named A and B;

� Rule A contains one symbolizer element (AreaSymbolizer) to display the stroke of the

European countries;

� Rule B defines the bivariate proportional symbol with two elements of PointSymbolizer

(for readability, we present only the instructions for the left half-circle visual variable);
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� The PointSymbolizer contains several sub-elements:

– The geometry element allows specifying which geometry attribute is to be rendered;

– The ST_PointOnSurface is an OGC filter function (Vretanos, 2010) used to have a

point geometry guaranteed to lie on the surface. This new point derived from the

input geometry is the location where to anchor a MarkGraphic, otherwise the

symbol might be applied on all the vertices of a geometry;

� the MarkGraphic is defined by:

– The symbol shape identified by a well-known name, HALFCIRCLE (right side);

– The size of the shape varies according the height of its view box;

– To have the shape size proportional with the number of building permits in 2015:

� An interpolate function is applied on;

� It uses a ValueReference that points to the attribute named permits2005;

� The interpolation is defined by two interpolation points chosen along a desired

mapping curve (here the minimum and maximum values);

� For each interpolation point the height of the view box is specified with a specific

unit of measure;

– Because the half-circle shape is drawn to the right side, a 180� rotation is operated;

– To finish, the MarkGraphic is filled with a RGB color.

The second map shows a combination of several visual variables: shape, size, color,

patterns and orientation (Fig. 17). The style is organized around six filtered rules that

correspond to the biogeographic regions in Switzerland. We present two Rules (A and B)

that use the HatchFill and GraphicFill concepts which are extensions of the Fill abstract

concept of the symbolizer model.

CONCLUSION
Considering the fundamental works of Bertin & Berg (2010) and successors, the

community of map makers has constantly investigated questions about cartographic

visualizations in term of design using the appropriate visual variables and combining

them together with relevancy. Despite an important body of principles and practices, the

community did not grasp the questions about standardization. However, given the

multiplicity of software used to flood the world with maps, these questions are nowadays a

strategic challenge to be considered in relation with operational requirements.

Even if the definition of a cartographic-oriented standard is not able to act as a

complete cartographic design framework by itself, we argue that pushing forward the

work aiming at the creation of dedicated standards for cartography is a way to share and

disseminate good practices. Indeed, too much SDIs do merely accept the limits of the

current standards and consequently poor map design and quality. While they have to

apply OGC standards, it is essential to build standards so as to be able to enrich their
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Figure 15 (A) The screenshot shows the list of productivity tools available in OrbisGIS. (B)

The screenshot shows the user interface of the productivity tool dedicated to choropleth maps.

(C) The screenshot shows a prototype of advanced style editor.

Full-size DOI: 10.7717/peerj-cs.143/fig-15
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Figure 17 (A) Symbology instructions showing how to combine visual variables (YAML encoded for

the ease of reading). (B) A map of the biogeographic regions in Switzerland coming out from the

rendering engine using these instructions. Full-size DOI: 10.7717/peerj-cs.143/fig-17

Figure 16 (A) Some redesigned symbology instructions (YAML encoded for the ease of reading).

(B) A bivariate proportional symbol map coming out from the rendering engine using these

instructions. Full-size DOI: 10.7717/peerj-cs.143/fig-16
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cartographic capabilities at long-term, to make grow up the good practices and finally to

improve the quality of the visualizations. In this sense, we have identified some use cases

showing how it is important to make portrayal interoperability operational for sharing

cartography, from discovery to collaboration activities, by way of authoring and

cataloging activities.

From research results in link with the dedicated SLD/SE OGC SWG (Ertz & Bocher,

2010), this paper does extract some recommendations to enable portrayal interoperability.

They invite to improve the OGC SE standard based on principles and practices in

cartography. We start from a functional definition of a map translated into a set of visual

variables which are combined to create symbols and finally a map style. The proposed

recommendations do observe this functional definition which is already at the heart of

how SE standard has been specified by OGC.

Now, in the long term, it is recommended that a design approach is driven by a

conceptual definition of the model and unconstrained by specific encoding aspects, and,

as soon as the model is ready, then a default encoding is offered (e.g., XSD/XML).

Following from this approach of dissociation, it does allow the definition of other

encodings according to the various flavors within the communities.

Given that the cartographic requirements will progress over time due to practices

growing up and according to domain specific features, the offered symbology model is

empowered so as to be extensible and ready to offer new cartographic methods. Moreover,

such a modular approach allows implementations to be compliant step-by-step. As a

consequence the adoption of the standard should be favored.

Finally, we claim to a testsuite within the OGC CITE so as to help to disambiguate and

test the visual conformance of the implementations. While it shall be associated to

reference implementations, having at least one open source is also essential for the

community of implementers, guiding them even more in the understanding of the

standard. In this sense, OrbisGIS is an open source platform that has been used to

prototype an implementation of the symbology model all along the standardization

process by iterations with tests and validations. It might become an open source reference

implementation.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Erwan Bocher conceived and designed the experiments, performed the experiments,

analyzed the data, contributed reagents/materials/analysis tools, wrote the paper,

prepared figures and/or tables, performed the computation work, reviewed drafts of

the paper.

Bocher and Ertz (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.143 27/31

http://dx.doi.org/10.7717/peerj-cs.143
https://peerj.com/computer-science/


� Olivier Ertz conceived and designed the experiments, performed the experiments,

analyzed the data, contributed reagents/materials/analysis tools, wrote the paper,

prepared figures and/or tables, performed the computation work, reviewed drafts of

the paper.

Data Availability
The following information was supplied regarding data availability:

GitHub repository with the OrbisGIS platform, containing a partial implementation of

the Symbology Rendering model: https://github.com/orbisgis/orbisgis.

REFERENCES
Andrae C, Graul C, Over M, Zipf A. 2011. Web Portrayal Services: OpenGIS Web Map Service,

Styled Layer Descriptor, Symbology Encoding und ISO 19117 Portrayal vorgestellt und erläutert.
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Technical report. Available at https://halshs.archives-ouvertes.fr/halshs-01141548 (accessed

27 September 2017).
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