
Open Geospatial Consortium Inc.
Date: 2019-xx-xx
[bookmark: Cover_RemoveText2]Reference number of this OGC® document: OGC 12-000r1
OGC name of this OGC® project document: http://www.opengis.net/doc/IS/SensorML/2.0
Version: 2.1
Category: OGC® Encoding Standard
	Editor:	Mike Botts
	Co-Editor:	Alexandre Robin

OGC® SensorML:
 Model and XML Encoding Standard

Copyright notice
Copyright © 2019 Open Geospatial Consortium
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.
Warning
This document is not an OGC Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an OGC Standard.
Document type: 	OGC® Publicly Available Standard
Document subtype: 	Encoding
Document stage: 	Draft
Document language: 	English
Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

(Page intentionally left blank)

[bookmark: _GoBack]Contents
i.	Preface	ix
ii.	Submitting Organizations	ix
Submission Contact Points	x
iii.	Revision History	x
iv.	Future Work	x
v.	Changes to the OGC® Abstract Specification	x
Sensor Model Language (SensorML): An Implementation Specification	15
1	Scope	15
2	Conformance	17
2.1	Overview	17
2.2	Specification identifier	17
2.3	Conformance classes	17
3	Normative References	19
4	Terms and Definitions	20
5	Conventions	25
5.1	Abbreviated terms	25
5.2	UML notation	26
5.3	Table notation used to express requirements	26
6	Requirements Class: Core Concepts (normative core)	28
6.1	Introduction	28
6.2	Process Definitions	29
7	UML Conceptual Models (normative)	31
7.1	Package Dependencies	31
7.1.1	Dependency on GML Feature Model and ISO TC 211 Models	31
7.1.2	Dependency on SWE Common Data Models	34
7.1.3	Relationship to Observations and Measurements (O&M)	36
7.2	Requirements Class: Core Abstract Process	38
7.2.1	ObservableProperty	38
7.2.2	DescribedObject	39
7.2.3	AbstractProcess	45
7.2.4	SWE Common Data Types	51
7.3	Requirements Class: Simple Process	53
7.3.1	Simple Process Definition	53
7.3.2	Process Method Definition	55
7.4	Requirements Class: Aggregate Process	56
7.4.1	Aggregate Process Definition	56
7.6	Requirement Class: Physical Component	59
7.6.1	Abstract Physical Process Defined	59
7.6.2	Physical Component Defined	64
7.7	Requirement Class: Physical System	65
7.8	Requirements Class: Processes with Advanced Data Types	68
7.9	Requirements Class: Configurable Processes	69
7.9.1	Modes	70
7.9.2	Settings	72
8	XML Schema Implementation (normative)	74
8.1	Requirements Class: Core Abstract Process Schema	75
8.1.1	General XML Principles	75
8.1.2	General XSD Dependencies and XML Heading	79
8.1.3	DescribedObject Properties	81
8.1.4	Abstract Process	100
8.2	Requirements Class: Simple Process Schema	120
8.2.1	Simple Process	120
8.2.2	Process Method	121
8.3	Requirements Class: Aggregate Process Schema	123
8.3.1	Aggregate Process	124
8.3.2	Components	131
8.3.3	Connections	132
8.4	Requirements Class: Physical Component Schema	137
8.4.1	Abstract Physical Process	138
8.4.2	Physical Component	151
8.5	Requirements Class: Physical System Schema	154
8.5.1	Physical System	155
Requirements Class: Configurable Process Schema	159
8.5.2	Modes	160
8.5.3	Settings	162
A.1	Conformance Test Class: Core Concepts	166
A.1.1	Core concepts are the base of all derived models	166
A.1.2	A process model has inputs, outputs, parameters, and method	166
A.1.3	A process model has a unique ID	167
A.1.4	A process model has metadata	167
A.1.5	Metadata not used in process execution	167
A.2	Conformance Test Class: Core Abstract Process	168
A.2.1	Dependency on Core	168
A.2.2	Fully implement CoreProcess	168
A.2.3	DescribedObject derived from GML AbstractFeature	169
A.2.4	Using GML identifier for uniqueID in CoreProcess	169
A.2.5	Extensions must be in a separate namespace	169
A.2.6	Extensions shall not be required for process execution	170
A.2.7	ObservableProperty and SWE Common Data used for process input, output, and parameters	170
A.2.8	Use of SWE Common Data aggregate models for process input, output, and parameters	170
A.2.9	Application and requirements of typeOf property	171
A.2.10	Simple inheritance extends a base class referenced by typeOf	171
A.2.11	Supporting configuration in processes	171
A.2.12	Dependency on SWE Common Data simple types	172
A.3	Conformance Test Class: Simple Process	173
A.3.1	Dependency on core	173
A.3.2	Fully Implement SimpleProcess	173
A.3.3	Simple process definition	174
A.3.4	Simple process has method	174
A.4	Conformance Test Class: Aggregate Process	175
A.4.1	Dependency on core	175
A.4.2	Fully Implement Aggregate Process	175
A.4.3	Definition of Aggregate Process	176
A.4.4	Aggregate Process requires one or more components	176
A.5	Conformance Test Class: Physical Component	177
A.5.1	Fully implement Physical Component	177
A.5.2	Dependency on core process	177
A.5.3	Position by point	178
A.5.4	Position by location and orientation	178
A.5.5	Position by trajectory	178
A.5.6	Position by process	179
A.5.7	Physical Component definition	179
A.6	Conformance Test Class: Physical System	180
A.6.1	Fully implement Physical System	180
A.6.2	Physical System definition	180
A.6.3	Physical System dependency	181
A.7	Conformance Test Class: Process with Advanced Data Types	182
A.7.1	Advanced Process dependency	182
A.7.2	Fully implement AdvancedProcess	182
A.8	Conformance Test Class: Configurable Processes	183
A.8.1	Dependency on Core Process	183
A.8.2	Fully Implement Configurable Process	183
A.8.3	ModeChoice requires 2 or more Modes	184
A.8.4	A configured process requires a Settings element	184
A.8.5	Only parameter values can be set by setValue	184
A.8.6	Only parameter array values can be set by setArrayValues and setEncodedValues	185
A.8.7	Only parameter values can be constrained with setConstraint	185
A.9	Conformance Test Class: Core Abstract Process Schema	186
A.9.1	Compliance with core XML schemas and Schematron patterns	186
A.9.2	XML property values are included inline or by reference	187
A.9.3	Each extension uses a different namespace	187
A.9.4	Extensions do not redefine XML elements or types	187
A.9.5	The value of the definition attribute is a resolvable URI	188
A.9.6	Dependence on GML 3.2	188
A.9.7	Dependence on SWE Common Data 2.0	188
A.9.8	Globally unique ID required	189
A.9.9	External namespace required for security constraints	189
A.9.10	Extension element used for security tagging of individual properties	189
A.9.11	Xlink role or arcrole shall be used to define relationship of contacts	190
A.9.12	The typeOf property shall provide the uniqueID and resolvable location of the description on the referenced object	190
A.9.13	The feature of interest property shall specify a role, and if available, the uniqueID of the feature	190
A.9.14	The definition attribute required for ObservableProperty	191
A.9.15	Use aggregate data for related data elements	191
A.9.16	Use Vector for inputs, outputs, and parameters that specify position	191
A.9.17	Use of resolvable URL to reference data streams	192
A.9.18	Use DataChoice in multiplexed data streams	192
A.10	Conformance Test Class: Simple Process Schema	193
A.10.1	Compliance with simple_process XML schemas and Schematron patterns	193
A.11	Conformance Test Class: Aggregate Process Schema	194
A.11.1	Compliance with simple_process XML schemas and Schematron patterns	194
A.11.2	Title and resolvable URL required for components provided by Reference	194
A.12	Conformance Test Class: Physical Component Schema	197
A.12.1	Compliance with physical_component XML schemas and Schematron patterns	197
A.12.2	A physical process can only attach to a physical process	197
A.12.3	The attachedTo element must have xlink:title and xlink:href	198
A.12.4	Position requires a DataRecord with two Vectors	198
A.12.5	Dynamic state requires a Data Array or Process	198
A.12.6	Trajectory requires a DataArray with a time field and one or more Vectors	199
A.12.7	Process required for positions or state provided on-demand	199
A.13	Conformance Test Class: Physical System Schema	200
A.13.1	Compliance with physical_system XML schemas and Schematron patterns	200
A.14	Conformance Test Class: Configurable Process Schema	201
A.14.1	Compliance with configuration XML schemas and Schematron patterns	201
A.14.2	Modes can change values of parameters	201
A.14.3	Modes can only set values of parameters to those allowed by its constraints	202

Table of Figures
Figure 5.1 – UML Notation	25
Figure 7.1 – Internal Package Dependencies	30
Figure 7.2 – External Package Dependencies – GML	31
Figure 7.3 – Models for dependent GML Feature classes	32
Figure 7.4 – External Package Dependencies – ISO TC 211	32
Figure 7.5 – ISO 19115 Models for dependent classes.	33
Figure 7.6 – External Package Dependencies – SWE Common Data	34
Figure 7.7 –Models for dependent SWE Common AbstractDataComponent class.	35
Figure 7.8 – DescribedObject with Metadata Properties	40
Figure 7.9 – Models for Metadata Elements	41
Figure 7.10 – Model for history events	44
Figure 7.11 – UML models for DescribedObject and AbstractProcess	45
Figure 7.12 – UML models for process inputs, outputs, and parameters.	46
Figure 7.13 – Model for Simple Process	53
Figure 7.14 – Model for ProcessMethod	54
Figure 7.15 – Model for Aggregate Process	57
Figure 7.16 – Model for Physical Process Component	59
Figure 7.17 – Models for SpatialFrame and PositionUnion	61
Figure 7.18 – Model for Physical Processing System	65
Figure 7.19 – Model for Modes	70
Figure 7.20 – Model for Configured Process Settings	71
Figure 7.21 – Model for Settings Elements	72

i. [bookmark: _Toc176596175][bookmark: _Ref197775570][bookmark: _Toc6781378]
Preface
The primary focus of the Sensor Model Language (SensorML) is to provide a robust and semantically-tied means of defining processes and processing components associated with the measurement and post-measurement transformation of observations. This includes sensors and actuators as well as computational processes applied pre- and post-measurement.
The main objective is to enable interoperability, first at the syntactic level and later at the semantic level (by using ontologies and semantic mediation), so that sensors and processes can be better understood by machines, utilized automatically in complex workflows, and easily shared between intelligent sensor web nodes.
This standard is one of several implementation standards produced under OGC’s Sensor Web Enablement (SWE) activity. This standard is a revision of content that was previously integrated in the SensorML version 1.0 standard (OGC 07-000).
ii. [bookmark: _Toc176596176][bookmark: _Toc6781379]Submitting Organizations
The following organizations have contributed and submitted this Encoding Standard to the Open Geospatial Consortium Inc.:
Botts Innovative Research, Inc.
Sensia Software LLC
Spot Image, S.A.
Seicorp, Inc.
US National Geospatial Intelligence Agency (NGA)
TASC

[bookmark: _Toc176596177][bookmark: _Toc6781380]
Submission Contact Points
All questions regarding this submission should be directed to the editor or the submitters:
	Contact
	Company
	Email

	Michael E. Botts
	Botts Innovative Research, Inc
	mike.botts@botts-inc.com

	Alexandre Robin
	Sensia Software LLC
	alex.robin@sensiasoftware.com

	Jim Greenwood
	Seicorp, Inc.
	jgreenwood@Seicorp.com

	David Wesloh
	US National Geospatial Intelligence Agency
	David.G.Wesloh@nga.mil

	
	
	

iii. [bookmark: _Toc176596178][bookmark: _Toc6781381] Revision History

	Date
	Release
	Author
	Paragraph modified
	Description

	2012-03-16
	2.0 draft
	Mike Botts
	All
	Initial reviewed version

	2012-07-27
	2.0
	Mike Botts
	All
	Completed specification

	2012-09-12
	2.0
	John Greybeal
	All
	Edits and corrections throughout

	2012-09-12
	2.0
	Alex Robin
	All
	Edits and corrections throughout

	2013-07-04
	2.0
	Mike Botts
	All
	Final draft version

	2018-08-08
	2.1
	Eric Hirschorn
	7.9.2 (Req 43), 8.5.3, 8.1.3.15, A.8.6
	Added setEncodedValues

	2019-04-21
	2.1
	Eric Hirschorn
	Introduction, Normative References
	Edits requested by OAB review

	
	
	
	
	

iv. [bookmark: _Toc176596179][bookmark: _Toc6781382] Future Work
Future work will target the description of specialized processes, sensors, and actuators by restricting (via profiles) the generic models and schema defined in this standard. Such profiles will allow interoperability of models and schema both within specific processing and measurement communities as well as between disparate.

v. [bookmark: _Toc176596180][bookmark: _Toc6781383]Changes to the OGC® Abstract Specification
The OGC® Abstract Specification does not require changes to accommodate this OGC® Standard.
[bookmark: _Toc443470358]Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. Open Geospatial Consortium Inc. shall not be held responsible for identifying any or all such patent rights. However, to date, no such rights have been claimed or identified. Recipients of this document are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property rights of which they may be aware that might be infringed by any implementation of the specification set forth in this document, and to provide supporting documentation.
Introduction
This Standard arises from work originally undertaken through the Open Geospatial Consortium’s Sensor Web Enablement (SWE) activity. SWE is concerned with establishing interfaces and encodings that will enable a “Sensor Web” through which applications and services will be able to access sensors of all types, and observations generated by them, over the Web. SWE has defined, prototyped and tested several components needed for a Sensor Web, namely:
· Sensor Model Language (SensorML)
· Observations & Measurements (O&M)
· Sensor Observation Service (SOS)
· Sensor Planning Service (SPS)
· SWE Common Data and Services
This Standard specifies models and an XML implementation for the SensorML.
This document deprecates and replaces the first version of OGC® Sensor Model Language (SensorML) Specification version 1.0.0 (OGC 07-000) and the SensorML Corrigendum version 1.0.1 (OGC 07-122r2).
The main changes of SensorML 2.0 from SensorML version 1.0.1 are:
The separation of SWE Common Data into a separate specification (OGC 07-094r1)
Improved derivation and association of SensorML from GML 3.2 and ISO 19115
More explicit definition of the standard and its requirements
Separation of SensorML into several conformance classes to allow software to support only the part of SensorML that is relevant to the application (e.g. non-physical processes only)
Improved support for inheritance, configuration, and modes (e.g. for describing a particular model of a sensor and then an instance of that sensor with particular configuration)
Improved explicit support for data streaming (associated with inputs, outputs, and parameters)
Addition of Feature of Interest for support of discovery
Addition of extension points for domain or community-specific schema
Improved support for defining position of both static and dynamic components and systems
Inclusion of DataInterface and DataStream as a possible input, output, or parameter value
Additionally, much additional and improved functionality of SensorML has been gained through additions and improvements of the SWE Common Data Model specification. Thus, the following additions to SWE Common Data Model are reflected as improvements in SensorML v2.0:
A DataChoice component providing support for variable (multiplexed) data types
The DataStream object improving support for real-time data streams
The XMLBlock encoding providing support for simple XML encoded data
Support for definition of NIL values and associated reasons
The CategoryRange class to define ranges of ordered categorical quantities
Extension points for domain or community-specific schema
Ability to provide security tagging of individual data components through the use of extension points
Also, some elements of the SWE Common Data Model specification have been removed and replaced by their soft-typed equivalents defined using RelaxNG and/or Schematron. These include:
Position, SquareMatrix
SimpleDataRecord, ObservableProperty
ConditionalData, ConditionalValue
Curve, NormalizedCurve
The derivation from GML has also been improved by making all elements substitutable for GML AbstractValue (and thus transitively for GML AbstractObject) and AbstractFeature so that they can be used directly by GML application schemas. The GML encoding rules as defined in ISO 19136 have also been used to generate XML schemas from the UML models with only minor modifications.
This release is not fully backwards compatible with version 1.0.1 even though changes were kept to a minimum.
The main change of SensorML 2.1 from SensorML 2.0 is the addition of setEncodedValues in both the standard and in the XML implementation to provide a method to more concisely encode arrays, as compared to setArrayValues.
As this standard is XML-based, JSON implementations are ruled to be out of scope. However, Alex Robin has developed a non-normative Best Practice for such implementations: OGC 07-112r2 – JSON Encoding Rules SWE Common / SensorML.
SensorML 2 is well-suited for describing sensor model imaging geometries – the SensorML 2.0 RFC contains examples of a frame camera sensor model based on the Community Standard Model from NGA (NGA.SIG.0002_2.1). Additional (and more complete) sensor model descriptions are being compiled into a sensor model repository by the OGC Naming Authority, based on work by Gobe Hobona [OGC 18-042r3 (unpublished)]. In addition, work to connect OGC grid coverages to SensorML 2 that began in 2013 is now completed, which involved extending CIS 1.0 [OGC 09-146r2] via the ReferenceableGridCoverage Extension [OGC 16-083r3] to support SensorML 2 descriptions. Version 2.1 of the GMLJP2 imagery standard [OGC 08-083r8] takes advantage of this coverage extension standard to support embedded and externally located SensorML 2 descriptions, thereby giving GMLJP2 the ability to support “raw” sensor model imagery.
SensorML	OGC 12-000r1
OGC 12-000r1	SensorML	
SensorML	OGC 12-000r1

	
	

198
	
	

199
	
	

[bookmark: _Toc6781384]Sensor Model Language (SensorML):
An Implementation Specification
[bookmark: _Toc443461091][bookmark: _Toc443470360][bookmark: _Toc176596181][bookmark: _Toc6781385]Scope
This standard defines models and XML Schema encoding for SensorML. The primary focus of SensorML is to provide a framework for defining processes and processing components associated with the measurement and post-measurement transformation of observations. Thus SensorML has more of a focus on the process of measurement and observation, rather than on sensor hardware, yet still provides a robust means of defining the physical characteristics and functional capabilities of physical processes such as sensors and actuators.
The aims of SensorML are to:
· Provide descriptions of sensors and sensor systems for inventory management
· Provide sensor and process information in support of asset and observation discovery
· Support the processing and analysis of the sensor observations
· Support the geolocation of observed values (measured data)
· Provide performance and quality of measurement characteristics (e.g., accuracy, threshold, etc.)
· Provide general descriptions of components (e.g. a particular model or type of a sensor) as well as the specific configuration of that component when its deployed
· Provide a machine interpretable description of the interfaces and data streams flowing in and out of a component
· Provide an explicit description of the process by which an observation was obtained (i.e., it’s lineage)
· Provide an executable aggregate process for deriving new data products on demand (i.e., derivable products)
· Archive fundamental properties and assumptions regarding sensor systems and computational processes

SensorML provides a common framework for any process, but is particularly well-suited for the description of sensor and systems and the processes surrounding sensor observations. Within SensorML, sensor and transducer components (detectors, transmitters, actuators, and filters) are all modeled as physical processes that can be connected and participate equally within a process network or system, and which utilize the same model framework as any other process.
Processes are entities that take one or more inputs and through the application of well-defined methods and configurable parameters, and produce one or more outputs. The process model defined in SensorML can be used to describe a wide variety of processes, including not only sensors, but also actuators, spatial transforms, and data processes, to name a few. SensorML also supports explicit linking between processes and thus supports the concept of process chains, networks, or workflows, which are themselves defined as processes using a composite pattern.
SensorML provides a framework within which the geometric, dynamic, and observational characteristics of sensors and sensor systems can be defined. There are a great variety of sensor types, from simple thermometers to complex electron microscopes and earth observing satellites. These can all be supported through the definition of simple and aggregate processes.
The models and schema within the core SensorML specification provide a “skeletal” framework for describing processes, aggregate processes, and sensor systems. Interoperability within and between various sensor communities, is greatly improved through the definition of shared community-specific semantics (within online dictionaries or ontologies) that can be utilized within the framework. In addition, the profiling of small, general-use, atomic processes that can serve as components within aggregate processes and systems is envisioned.

[bookmark: _Toc443461092][bookmark: _Toc443470361][bookmark: _Toc176596182][bookmark: _Toc6781386]
Conformance
[bookmark: _Toc176596183][bookmark: _Toc6781387]Overview
This standard has been written to be compliant with the OGC Specification Model – A Standard for Modular Specification (OGC 08-131r3). Extensions of this standard shall themselves be conformant to the OGC Specification Model.
This Standard defines conceptual models and an XML implementation of these models for describing non-physical and physical processes surrounding the act of measurement and subsequent processing of observations. The conceptual models are described using UML while the implementation is described using the XML Schema language and Schematron. It is envisioned that OWL (Web Ontology Language) and RDF (Resource Description Framework) versions could also be generated from the models if deemed useful and desired.
[bookmark: _Toc264473595][bookmark: _Toc176596184][bookmark: _Toc6781388]Specification identifier
[bookmark: spec]All requirements-classes and conformance-classes described in this document are owned by the specification identified as http://www.opengis.net/spec/sensorML/2.0.
[bookmark: _Toc176596185][bookmark: _Toc219621919][bookmark: _Toc254961208][bookmark: _Toc264473596][bookmark: _Toc6781389]Conformance classes
The conformance rules are based on XML validation using the XML Schema representation of SensorML, together with processing of constraints expressed using Schematron assertions and reports.
Conformance with this specification shall be checked using all the relevant tests specified in Annex A. The framework, concepts, and methodology for testing, and the criteria to be achieved to claim conformance are specified in ISO 19105: Geographic information — Conformance and Testing. In order to conform to this OGC™ encoding standard, a standardization target shall implement the core conformance class, and choose to implement any one or more of the other conformance classes.
The conformance rules for the XML implementation are based on XML validation using XML Schema representation of SensorML, together with processing constraints expressed using Schematron assertions and reports.

[bookmark: Table1]Table 1 — Conformance classes related SensorML instances

	Conformance class
	Description
	Clause

	Core Concepts
	
	

	http://www.opengis.net/spec/SensorML/2.0/req/core
	Core Concepts
	A.1

	Conceptual Models:
	
	

	http://www.opengis.net/spec/SensorML/2.0/req/model/coreProcess
	Abstract Process
	A.2

	http://www.opengis.net/spec/SensorML/2.0/req/model/simpleProcess
	(Non-Physical) Simple Process
	A.3

	http://www.opengis.net/spec/SensorML/2.0/req/model/aggregateProcess
	(Non-Physical) Aggregate Process
	A.4

	http://www.opengis.net/spec/SensorML/2.0/req/model/physicalComponent
	Physical Component
	A.5

	http://www.opengis.net/spec/SensorML/2.0/req/model/physicalSystem
	Physical System
	A.6

	http://www.opengis.net/spec/SensorML/2.0/req/model/advancedProcesses
	Processes with Advanced Data Types
	A.7

	http://www.opengis.net/spec/SensorML/2.0/req/model/configurableProcess
	Configurable Process
	A.8

	
	
	

	XML Schema:
	
	

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess
	Core Process
	A.9

	http://www.opengis.net/spec/SensorML/2.0/req/xml/simpleProcess
	(Non-Physical) Simple Process
	A.10

	http://www.opengis.net/spec/SensorML/2.0/req/xml/aggregateProcess
	(Non-Physical) Aggregate Process
	A.11

	http://www.opengis.net/spec/SensorML/2.0/req/xml/physicalComponent
	Physical Component
	A.12

	http://www.opengis.net/spec/SensorML/2.0/req/xml/physicalSystem
	Physical System
	A.13

	http://www.opengis.net/spec/SensorML/2.0/req/xml/configurableProcess
	Configurable Process
	A.14

[bookmark: _Toc443461093][bookmark: _Toc443470362][bookmark: _Toc176596186][bookmark: _Toc6781390]
Normative References
The following normative documents contain provisions which, through reference in this text, constitute provisions of document OGC 08-094. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this document are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies.

OGC 08-131r3 – The Specification Model – A Standard for Modular Specification
OGC 08-094r1 – SWE Common Data Model Encoding Standard, version 2.0
ISO/IEC 11404:2007 – General-Purpose Datatypes
ISO 8601:2004 – Representation of Dates and Times
ISO 19103:2005 – Conceptual Schema Language
ISO 19108:2002 – Temporal Schema
ISO 19111:2007 – Spatial Referencing by Coordinates
ISO 19115:2006 – All Metadata
Unified Code for Units of Measure (UCUM) – Version 2.1, Nov. 2011
Unicode Technical Std #18 – Unicode Regular Expressions, Version 19, Oct. 2016
The Unicode Standard, Version 10.0, December 2017
W3C Extensible Markup Language (XML) – Version 1.0 (4th Edition), Aug. 2006
W3C XML Schema – Version 1.0 (Second Edition), October 2004
IEEE 754:2008 – Standard for Binary Floating-Point Arithmetic
IETF RFC 2045 – Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies, November 1996
IETF RFC 5234 – Augmented BNF for Syntax Specifications: ABNF

[bookmark: _Toc443461094][bookmark: _Toc443470363][bookmark: _Toc176596187][bookmark: _Toc6781391]
Terms and Definitions
For the purpose of this document, the following terms and definitions apply:

Actuator
A type of transducer that converts a signal to some real-world action or phenomenon.
Aggregate Process
Composite process consisting of interconnected sub-processes, which can in turn be Simple Processes or themselves Aggregate Processes. An aggregate process can include possible data sources. A decription of an aggregate process should explicitly define connections that link input and output signals of sub-processes together. Since it is a process itself, an aggregate process also has its own inputs, outputs and parameters.
Coordinate Reference System (CRS)
A spatial or temporal framework within which a position and/or time can be defined. According to ISO 19111, a coordinate system that is related to the real world by a datum.
Coordinate System (CS)
According to ISO19111, a set of (mathematical) rules for specifying how coordinates are assigned to points. In this document, a Coordinate System is extended to be defined as a set of axes with which location and orientation can be defined.
[bookmark: Glossary_DataComponent]Data Component
Element of sensor data definition corresponding to an atomic or aggregate data type
Note: A data component is a part of the overall dataset definition. The dataset structure can then be seen as a hierarchical tree of data components.
Datum
Undefined in ISO 19111. Defined her as a means of relating a coordinate system to the real world by specifying the physical location of the coordinate system and the orientation of the axes relative to the physical object. For a geodetic datum, the definition also includes a reference ellipsoid that approximates the physical or gravitational surface of the planetary body.

Detector
Atomic part of a composite Measurement System defining sampling and response characteristic of a simple detection device. A detector has only one input and one output, both being scalar quantities. More complex Sensors, such as a frame camera, which are composed of multiple detectors, can be described as a detector group or array using a System or Sensor model.
Determinand
A Parameter or a characteristic of a phenomenon subject to observation. Synonym for observable. [O&M]
[bookmark: Glossary_Feature]Feature
Abstraction of real-world phenomena [ISO 19101:2002, definition 4.11]
Note:	A feature may occur as a type or an instance. Feature type or feature instance should be used when only one is meant.
Location
A point or extent in space relative to a coordinate system. For point-based systems, this is typical expressed as a set of n-dimensional coordinates within the coordinate system. For bodies, this is typically expressed by relating the translation of the origin of an object’s local coordinate system with respect to the origin of an external reference coordinate system.
Location Model
A model that allows one to locate objects in one local reference frame relative to another reference frame.
Measurand
Physical parameter or a characteristic of a phenomenon subject to a measurement, whose value is described using a Measure (ISO 19103). Subset of determinand or observable. [O&M]
Measure (noun)
Value described using a numeric amount with a scale or using a scalar reference system [ISO/TS 19103]. When used as a noun, measure is a synonym for physical quantity
Measurement (noun)
An observation whose result is a measure [O&M]
Measurement (verb)
An instance of a procedure to estimate the value of a natural phenomenon, typically involving an instrument or sensor. This is implemented as a dynamic feature type, which has a property containing the result of the measurement. The measurement feature also has a location, time, and reference to the method used to determine the value. A measurement feature effectively binds a value to a location and to a method or instrument.
Muliplexed Data Stream
A data stream that consists of disparate but well defined data packets within the same stream.
Observable, Observable Property (noun)
A parameter or a characteristic of a phenomenon subject to observation. Synonym for determinand. [O&M]

A physical property of a phenomenon that can be observed and measured (e.g. temperature, gravitational force, position, chemical concentration, orientation, number-of-individuals, physical switch status, etc.), or a characteristic of one or more feature types, the value for which must be estimated by application of some procedure in an observation. It is thus a physical stimulus that can be sensed by a detector or created by an actuator.
Observation
Act of observing a property or phenomenon [ISO/DIS 19156, definition 4.10]
Note:	The goal of an observation may be to measure, estimate or otherwise determine the value of a property.
[bookmark: Glossary_MeasurementSystem]Observation Procedure
Method, algorithm or instrument, or system of these which may be used in making an observation [ISO/DIS 19156, definition 4.11]
Note: In the context of the sensor web, an observation procedure is often composed of one or more sensors that transform a real world phenomenon into digital information, plus additional processing steps.
Observed Value
A value describing a natural phenomenon, which may use one of a variety of scales including nominal, ordinal, ratio and interval. The term is used regardless of whether the value is due to an instrumental observation, a subjective assignment or some other method of estimation or assignment. [O&M]
Orientation
The rotational relationship of an object relative to an external coordinate system. Typically expressed by relating the rotation of an object’s local coordinate axes relative to those axes of an external reference coordinate system.

Phenomenon
A physical state that can be observed and its properties measured.
Physical System
An aggregate model of a group or array of process components, which can include detectors, actuators, or sub-systems. A Physical System relates an Aggregate Process to the real world and therefore provides additional definitions regarding relative positions of its components and communication interfaces.
Position
The location and orientation of an object relative to an external coordinate system. For body-based systems (in lieu of point-based systems) is typically expressed by relating the object’s local coordinate system to an external reference coordinate system. This definition is in contrast to some definitions (e.g. ISO 19107) which equate position to location.
Process
An operation that takes one or more inputs, and based on a set of parameters, and a methodology generates one or more outputs.
Process Method
Definition of the algorithm, behaviour, and interface of a Process.
[bookmark: Glossary_Property]Property
Facet or attribute of an object referenced by a name
[ISO/DIS 19143:2010]
Example	: Abby's car has the color red, where "color" is a property of the car instance, and “red” is the value of that property.
Reference Frame
A coordinate system by which the position (location and orientation) of an object can be referenced.
Result
An estimate of the value of some property generated by a known procedure [O&M]
Sample
A representative subset of the physical entity on which an observation is made.
Sensor
An entity capable of observing a phenomenon and returning an observed value. Type of observation procedure that provides the estimated value of an observed property at its output.
Note: A sensor uses a combination of physical, chemical or biological means in order to estimate the underlying observed property. At the end of the measuring chain electronic devices often produce signals to be processed.
Sensor Model
In line with traditional definitions of the remote sensing community, a sensor model is a type of Location Model that allows one to georegister or co-register observations from a sensor (particularly remote sensors).
[bookmark: Glossary_SensorData]Sensor Data
List of digital values produced by a sensor that represents estimated values of one or more observed properties of one or more features.
Note: Sensor data is usually available in the form of data streams or computer files.
Sensor-Related Data
List of digital values produced by a sensor that contains ancillary information that is not directly related to the value of observed properties
Example: sensor status, quality of measure, quality of service, battery life, etc. Such data can be sent in the same data stream with measured values and when measured is sometimes indistinguishable from sensor data.
(Sensor) Platform
An entity to which can be attached sensors or other platforms. A platform has an associated local coordinate reference frame that can be referenced relative to an external coordinate reference frame and to which the reference frames of attached sensors and platforms can be referenced.
Transducer
An entity that receives a signal as input and generates a modified signal as output. Includes detectors, actuators, and filters.
Value
A member of the value-space of a datatype. A value may use one of a variety of scales including nominal, ordinal, ratio and interval, spatial and temporal. Primitive datatypes may be combined to form aggregate datatypes with aggregate values, including vectors, tensors and images [ISO11404].

[bookmark: _Toc493581631][bookmark: _Toc443461095][bookmark: _Toc443470364][bookmark: _Toc176596188][bookmark: _Toc6781392]
Conventions
[bookmark: _Toc176596189][bookmark: _Toc6781393]Abbreviated terms
In this document the following abbreviations and acronyms are used or introduced:
[bookmark: _Toc443461096][bookmark: _Toc443470365]CRS	Coordinate Reference System
DN				Digital Number
ECEF			Earth-Centered Earth-Fixed
ECI				Earth Centered Inertial
GPS	Global Positioning System
ISO	International Organization for Standardization
MISB	Motion Imagery Standards Board
OGC	Open Geospatial Consortium
SAS	Sensor Alert Service
SensorML	Sensor Model Language
SI	Système International (International System of Units)
SOS	Sensor Observation Service
SPS	Sensor Planning Service
SWE	Sensor Web Enablement
TAI	Temps Atomique International (International Atomic Time)
uom	Unit(s) of measure
UCUM	Unified Code for Units of Measure
UML	Unified Modeling Language
UTC	Coordinated Universal Time
XML	eXtended Markup Language
1D	One Dimensional
2D	Two Dimensional
3D	Three Dimensional
[bookmark: _Toc482665220][bookmark: _Toc485456415][bookmark: _Toc493581633][bookmark: _Toc176596190][bookmark: _Toc6781394]UML notation
The diagrams that appear in this standard are presented using the Unified Modeling Language (UML) static structure diagram. The UML notations used in this standard are described in the diagram below.
[image: UML_image]
[bookmark: _Ref247008381][bookmark: _Toc240696622]Figure 5.1 – UML Notation
[bookmark: _Toc265077561][bookmark: _Toc176596191][bookmark: _Toc6781395]Table notation used to express requirements
For clarity, each normative statement in this standard is in one and only one place and is set in a bold font within the tabular format shown below. If the statement of the requirement is repeated for clarification, the “bold font” home of the statement is considered the official statement of the normative requirement. Individual requirements are clearly highlighted and identified throughout the document by using tables and URL identifiers of the following format:
	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/{req-class-name}/{req-name}

	Req N. Textual description of requirement.

In this standard, all requirements are associated to tests in the abstract test suite in Annex A. The reference to the requirement in the test case is done by its URL.
Requirements classes are separated into their own clauses and named, and specified according to inheritance (direct dependencies). The Conformance test classes in the test suite are similarly named to establish an explicit and mnemonic link between requirements classes and conformance test classes. There are formally identified by URL and described within a tabular format as shown below:
	Requirements Class

	http://www.opengis.net/spec/SensorML/2.0/req/{req-class-name}

	Target Type
	Description of standardization target type

	Dependency
	http://www.opengis.net/spec/SensorML/2.0/req/{req-class-name}

[bookmark: _Ref203461007]Examples will be indicated using a grey text box and are considered to be informative rather than normative:
Example
This is an example text box that will include informative notes and examples.

[bookmark: _Toc176596192][bookmark: _Ref194046911][bookmark: _Ref194046926]

[bookmark: _Toc6781396]Requirements Class: Core Concepts (normative core)

	Requirements Class

	http://www.opengis.net/spec/SensorML/2.0/req/core

	Target Type
	Derived Model, Encoding, and Software Implementation

[bookmark: _Ref268869039][bookmark: _Toc176596193][bookmark: _Toc6781397]Introduction
In SensorML, all components are modeled as processes. This includes components normally viewed as hardware, such as detectors, actuators, and physical processors (which are viewed as physical components) and sensors and platforms (which are viewed as physical systems). All components are modeled as processes that receive input and through the application of an algorithm defined by a method and set parameter values, generate output. All such components can therefore participate in process networks (or aggregate processes). Aggregate processes are themselves processes with their own inputs, outputs, and parameters.
Hence, SensorML can be viewed as a specialized process description language with an emphasis on application to sensor data. Process descriptions in SensorML are agnostic of the environment in which they might be executed, or the protocol by which data is exchanged between process execution modules.
In order to support the use of SensorML within specialized applications (e.g. processing centers or image processing software), the SensorML models and encodings have been divided into several conformance classes. Thus if one wishes to use SensorML for computation processes only, the software only needs to conform to the requirements for non-physical processes. Similarly, by only adhering to the Simple Process conformance class, a piece of software can describe internal processes using SensorML while supporting chaining of these processes in a proprietary way.
However, all derived model and encodings based on SensorML must implement the core concepts of SensorML, regardless of whether they deal strictly with non-physical computational processes or sensor systems.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/core/core-concepts-used

	[bookmark: _Ref194047147]Any derived model or encoding shall correctly implement the modeling concepts defined in the core of this specification.

[bookmark: _Toc176596194][bookmark: _Toc6781398]Process Definitions
[bookmark: _Ref203378502][bookmark: _Ref206921454][bookmark: _Ref245009481][bookmark: _Ref245009484]In SensorML, all relevant components are modeled as processes, including both computation and physical processes (e.g. detectors, actuators, and sensor systems). Processes in SensorML are conceptually divided into two types: (1) those that are physical processes, such as detectors, actuators, and sensor systems, where information regarding their positions may be relevant, and (2) non-physical or “pure” processes which can be treated as merely mathematical operations or functions.
Fundamentally, a process is a physical or computational operation that may receive input and based on configurable parameters and a methodology, generate output.Example
For a process representing the standard linear equation, x would be the input, m and b the parameters, y the output, and the equation y = mx + b would define the methodology.
For a detector, the input would typically be a physical stimulus (or observable property), the parameters might include a calibration curve and other factors that affect the measurement, and the output would be a digital number representing some quantity representation of that observed property.

Inputs and outputs may be digital numbers or physical stimuli (i.e. observable properties of the environment). Parameters can be variable or constant, but they don’t typically vary at the same frequency as the input values. In essence, however, parameters can be viewed as just another input into the process that is either fixed or changes less frequently than inputs
A process can consist of a single atomic operation, or an explicitly defined network of operations (e.g. an aggregate process or system).
Any process must have a definable method of operation. In the case of an aggregate process or physical system, the explicit description of the process components and the flow of data between them will itself serve as the process methodology.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/core/processes

	[bookmark: _Ref268869038][bookmark: _Ref268869040]The core model for a process shall define inputs, outputs, parameters, and methodology of that process.

Any process description must provide a unique ID that can be used for discovery of that process and for retrieving the definition of that process.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/core/uniqueID

	[bookmark: _Ref194047663]The core model for a process shall include a unique ID for distinguishing that process from all others.

To be useful, the core process model shall include metadata about the process that aid in identification, discovery, and qualification of the process but do not themselves affect the execution of the process.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/core/metadata

	[bookmark: _Ref194050995]The core model for a process shall include metadata that support identification, discovery, and qualification of the process.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/core/execution

	[bookmark: _Ref194051125]The metadata descriptions for a process shall not be required for successful execution of that process. All information required for execution of a simple process shall be contained within the inputs, outputs, parameters, and methodology descriptions of the process.

Process definitions can support general representations of a process or a specific instance of a process. Example
A general process for the linear equation would define the allowable inputs, outputs, and parameters. A specific instance of the process might define constant values for the parameters.
An example of a general physical process would be the manufacturer’s description of the characteristics and configurable options for a particular model of a sensor (i.e. one that describes the common characteristics of all instances of that model of sensor). The description of a specific instance of that model of sensor would include information that is relevant to that particular instance of the sensor (e.g. serial number, owner’s name, location, etc.).

[bookmark: _Toc176596195][bookmark: _Toc6781399]
UML Conceptual Models (normative)

This standard defines normative UML models with which derived encoding models as well as all future separate extensions should be compliant. The standardization target type for the UML requirements classes defined in this clause is thus a software implementation or an encoding model that directly implements the conceptual models defined in this standard.
[bookmark: _Toc176596196][bookmark: _Toc6781400]Package Dependencies
The packages defined by the SensorML Model and their dependencies are shown in figure below:

[image: InternalDependencies]
[bookmark: _Toc240696623]Figure 7.1 – Internal Package Dependencies

SensorML also has dependencies on several external packages defined within other standards, namely GML 3.2, ISO 19103, ISO 19108, ISO 19111, and ISO 19115, as described below.
[bookmark: _Toc176596197][bookmark: _Toc6781401]Dependency on GML Feature Model and ISO TC 211 Models
A process represents a feature type as defined by the ISO General Feature Model and is thus modeled as an instance of the <<metaclass>> GF_FeatureType (ISO 19109:2006). These models are further refined within the GML 3.2 standard (ISO 19136) which will provide the basis for XML encodings in the following section 8 of this specification document. This association of SensorML process with GML primarily brings recognition of SensorML processes as features and provides important identity properties.

[image: Dependencies Diagram - GML]
[bookmark: _Toc240696624]Figure 7.2 – External Package Dependencies – GML

The base feature classes in GML from which all processes in SensorML derive include AbstractGML and AbstractFeature, as shown in the figure below:
[image: GML_classes]
[bookmark: _Toc240696625]Figure 7.3 – Models for dependent GML Feature classes

SensorML is dependent on ISO 19108:206 for Temporal Schema. In particular, the temporal elements, TM_Instant and TM_Period are used within the core SensorML model for Abstract Process. Additionally, SensorML depends on ISO 19115 for general metadata elements.

[image: Dependencies Diagram - ISO TC211]
[bookmark: _Toc240696626]Figure 7.4 – External Package Dependencies – ISO TC 211

The SensorML standard utilizes the ISO 19115 models for common metadata properties such as citations, online resources, responsible party, and constraints. While Version 1.0 of SensorML defined encoding based on the ISO 19115 models, this version utilizes these models directly.

[image: ISO19115 classes]
[bookmark: _Toc240696627]Figure 7.5 – ISO 19115 Models for dependent classes.

[bookmark: _Toc176596198][bookmark: _Toc6781402]Dependency on SWE Common Data Models
In particular, SensorML is heavily dependent on the SWE Common Data Model standard for defining inputs, outputs, and parameters, as well as for specifying characteristics, capabilities, interfaces, and event properties. The SWE Common Data Models, which were originally defined within the version 1.0 SensorML specification, are in version 2.0 defined as a separate specification and are utilized throughout the SWE family of encoding and web service specifications.
[image: Dependencies Diagram - SWE]
[bookmark: _Toc240696628]Figure 7.6 – External Package Dependencies – SWE Common Data

The SWE Common specification provides a flexible yet robust means of defining data types and data values, including support for simple data types such as Quantity, Boolean, Category, Count, Text, and Time, as well as aggregate data such as DataRecord, DataArray, Vector, and Matrix. Additionally, SWE Common supports the concept of DataChoice, which will be utilized by SensorML for providing multiplexed messages in data streams and configurable options for processes and physical systems.
The data models in SWE Common provide additional properties than are provided by basic data types, including for example, units of measure (uom), quality indications, allowable constraints, significant digit counts, and in particular, the meaning and semantics of a data component. Both simple and aggregate data components in SWE Common allow for unambiguous definition of that data component through a resolvable link to an online dictionary or ontology. The definition of the SWE Common Data Models can be found in OGC 08-094r1.
The main objective of SWE Common Data Models is to achieve interoperability, first at the syntactic level, and later at the semantic level (by using ontologies and semantic mediation) so that sensor data can be better understood by machines, processed automatically in complex workflows, and easily shared between intelligent sensor web nodes.
SensorML depends heavily on the AbstractDataComponent element defined in SWE Common. This element serves as the base component from which all relevant data types in SWE Common are derived, including Quantity, Count, Category, Boolean, Text, DataRecord, DataArray, Vector, Matrix, and DataChoice. AbstractDataComponent thus serves as a substitution group that any of these data types can satisfy. AbstractSWEIdentifiable will serve as the basis for the ObservableProperty element defined in this specification (Section 7.2.1).
The model for the SWE Common AbstractDataComponent is given in the figure below:

[image: SWE Common Classes]
[bookmark: _Toc240696629]Figure 7.7 –Models for dependent SWE Common AbstractDataComponent class.

[bookmark: _Toc176596199][bookmark: _Toc6781403]Relationship to Observations and Measurements (O&M)
Conceptual models for Observations and Measurements are provided by ISO 19156, which also provides models for sampling feature types. XML Schema encodings of these models are provided by the OGC Observations and Measurements XML Implementation Document (OGC 10-025). The model for Observation defines a procedure of type AbstractFeature which references or describes the origin of the observation (i.e. how the observation came to be).
SensorML has an association to the O&M models but no direct dependencies on them. The result of a SensorML process is typically considered to be an observation result if it is measuring or deriving some value of a physical property or phenomenon. Thus, the output values described in SensorML and resulting from a sensor or process may be packaged in an O&M Observation object, or provided as a SWE Common DataStream. Inversely, the procedure property within an Observation instance may reference a SensorML description of the measurement process.

[bookmark: _Toc176596200][bookmark: _Ref194051381][bookmark: _Toc6781404]
Requirements Class: Core Abstract Process

	Requirements Class

	http://www.opengis.net/spec/sensorML/2.0/req/model/coreProcess

	Target Type
	Derived Models, Encodings, and Software Implementations

	Dependency
	http://www.opengis.net/spec/SensorML/2.0/req/core

	Dependency
	http://www.opengis.net/spec/SWE/2.0/req/uml-block-components

	Dependency
	ISO 19115:2006 (All Metadata)

	Dependency
	ISO 19136 (GML)

All major classes in SensorML are based on a process model, as presented in the core concepts. Processes are features as defined in ISO 19109:2006 and modeled in GML 3.2. SensorML also supports interoperable discovery, identification, and qualification of these processes through the definition of a standard collection of metadata.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/coreProcess/dependency-core

	[bookmark: _Ref194052625]An encoding or software passing the “Core Abstract Process” model conformance class shall first pass the “Core Concepts” conformance test class.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/coreProcess/package-fully-implemented

	[bookmark: _Ref240535800]An encoding or software shall correctly implement all UML classes defined in the “Core” package and described in this section

[bookmark: _Toc176596201][bookmark: _Ref195933184][bookmark: _Toc6781405]ObservableProperty
An ObservableProperty is a physical property of a phenomenon that can be observed and measured (e.g. temperature, gravitational force, position, chemical concentration, orientation, number-of-individuals, physical switch status, etc.), or a characteristic of one or more feature types, the value for which must be estimated by application of some procedure in an observation. It is thus a physical stimulus that can be sensed by a detector or created by an actuator.
Example
The ObservableProperty element allows one to reference a measurable property of a phenomenon or feature for detector inputs or actuator outputs. For example, the temperature of the atmosphere is an ObservableProperty. Before measurement, it is simply a property of the atmosphere that can be defined and measured. After measurement by a detector, the temperature may be represented as a Quantity with units of measure, a value, and an indication of our degree of confidence in the measurement.

ObservableProperty is derived as a concrete instance of the SWE Common AbstractSWEIdentifiable and adds the definition property to this model. It will be used as a potential input (e.g. for detectors), output (e.g. for actuators), and for parameters (e.g. for a sensor whose measurement varies with fluctuations of atmospheric pressure on a diaphragm).
In ObservableProperty the phenomenon property will be defined by reference using the definition attribute. The definition attribute value will reference a property defined within a dictionary or ontology. An ObservableProperty may also include a name and a description. However, unlike the simple data types in SWE Common, an ObservableProperty does NOT include the properties uom, quality, or constraints, since these are typically characteristics of the measuring procedure and not properties of the observable phenomenon itself.

[bookmark: _Toc176596202][bookmark: _Toc6781406]DescribedObject
As shown in the UML model below, the DescribedObject class provides a specific set of metadata for all process classes in SensorML. Since DescribedObject is itself derived from GML AbstractFeature, all processes in SensorML are themselves features, which conforms to the conceptual models for processes as stated in Section 6.
	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/coreProcess/gmlDependency

	[bookmark: _Ref194052849]DescribedObject shall derive from the GML base class, AbstractFeature, and is thus modeled as a feature with well-defined metadata properties. Any model or encoding derived from DescribedObject shall thus be of type featureType.

The GML AbstractFeature inheritance provides a unique ID, and support for multiple names and a description. The unique ID in SensorML will be supported by a single gml:identifier property inherited from GML AbstractFeature.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/coreProcess/uniqueID

	[bookmark: _Ref194053044]A single, required gml:identifier property inherited from GML AbstractFeature shall be used to provide a unique ID for the DescribedObject.

Metadata about each process is essential to supporting identification, discovery, and qualification of the process. Metadata is provided by the base class, DescribedObject, from which AbstractProcess is derived. While these metadata may provide relevant information to understand quality of output from the process, the values of properties within the DescribedObject should not be required for execution of the process. The model for the DescribedObject is shown in Figure 7.8., while the models for the individual property values are provided in either Figure 7.9 or in the ISO 19115 models in Figure 7.5.
The DescribedObject includes several descriptive properties that support rapid discovery (keywords, identification, and classification), constraints (validTime, securityConstraints, legalConstraints), qualification (characteristics and capabilities), references (contacts and documentation), and history. These are each grouped in lists, which provide for easy seaparation and parsing of these properties.
[bookmark: _Toc176596203]Extension Property
The extension property allows one to add domain or community-specific content to a DescribedObject instance. This might include, for example, security taggings, vendor or community-specific metadata, or information encoded in other models or schema. Extension properties must exist in a separate namespace and SensorML-compliant software is not required to understand or utilize the information contained within the extension property.
The constraints on the extension property include: (a) the extension model must be defined in a separate namespace, (b) the information added by the extension model must not be required for execution of the process, and (c) SensorML-compliant parsers may parse and utilize the information within these extensions but they are not required to do so in order to be compliant to the SensorML standard.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/coreProcess/extensionIndependence

	[bookmark: _Ref194053509]Models inside of the extension property must exist within a namespace other than SensorML.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/coreProcess/extensionRestrictions

	[bookmark: _Ref194053661]Information provided inside of the extension property must not be required for execution of the process and shall not alter the execution of the process.

[image: DescribedObject]
[bookmark: _Toc240696630]Figure 7.8 – DescribedObject with Metadata Properties

[image: MetadataElements]
[bookmark: _Toc240696631]Figure 7.9 – Models for Metadata Elements
[bookmark: _Toc176596204]Keywords
Keywords provide a simple means of discovery using short tokens that may be recognized by the general audience or specific communities. Keywords are unqualified terms in that they are not necessarily required to be related to a specific codespace or ontology, as are classifiers and identifiers.
[bookmark: _Toc176596205]Identifiers
The identifier property takes a Term as its value. The Term has a definition attribute that specifies in this case the type of identifier, while the codeSpace attribute specifies that the value of the identifier is according to the rules or enumerations of a particular authority. Example
An identifier with a definition of “http://sensors.ws/def/tailNumber” might take “N291PV” as its value based on the codespace of a US Air Force rules dictionary. Other possible definitions for identifiers might include, for example, shortName, longName, acronym, missionID, processorID, serialNumber, manufacturerID, or partNumber.

The identification properties should be considered as information suitable for the discovery applications.
[bookmark: _Toc176596206]Classifiers
The classifier property provides a list of possible classifiers that might aid in the rapid discovery or organization of processes, sensors, or sensor systems. The classifier properties should be considered as information suitable for the discovery and categorization applications.Example
Definitions for a classifier Term might include, for instance, sensorType, observableType, processType, intendedApplication, or missionType.

[bookmark: _Toc176596207]Security Constraints
The model for specification of security constraints shall be based on external security models, such as the Security Banner Marking model of the Intelligence Community Information Security Marking (IC ISM) Standard. The securityConstraints property takes a value of xs:Any which allows various communities and countries to utilize their standard XML encoding for security tags. This security constraint is for the overall document. As will be discussed in the XML encoding, extension points provided with SWE Common Data elements will allow security tagging for individual properties or property aggregates.Example
One can specify the overall security classification of the entire document using the Intelligence Community Information Security Banner Marking (IC ISM) standard or using ISO 19115 MD_Constraints. For tagging individual sections in the document, the SensorML standard allows for security tagging of properties using an extension property, as describe in later sections of the standard.

[bookmark: _Toc176596208]Valid Time Constraint
The validTime property indicates the time instance or time range over which this process description is valid. Time constraints are important for processes in which parameter values or operation modes may change with time, or instrument deployment times change.Example
Several SensorML documents can exist for the same sensor or system description but with different validity periods. This allows for capturing the configuration of a sensor at different times and, along with the history section, is the basis for maintaining history of the sensor’s description. Alternately, parameter values can be provided as a time-tagged series of values accounting for changes.

[bookmark: _Toc176596209]Legal Constraint
The legalConstraints property is based on ISO 19115 and specifies whether such legal and ethical considerations as privacy acts, intellectual property rights, copyrights, or scientific publication ethics apply to the content of the process description and its use.
[bookmark: _Toc176596210]Capabilities
The capabilities property is intended for the definition of properties that further qualify the input or output of the process, component, or system for the purpose of discovery. These properties are defined using one or more SWE Common DataRecord elements.
Once a user has identified candidate sensors or processes based on the classifiers described above, the capabilities parameters might prove useful for further filtering of processes or sensor system during this discovery stage. Thus, the capabilities properties should be considered as information suitable for the discovery process.
Example
A particular remote sensor on a satellite might measure radiation between a certain spectral range (e.g. 700 to 900 nanometers) at a particular ground resolution (e.g. 5 meter), and with a typical spatial repeat period (e.g. 3.25 – 4.3 days). Alternatively, a particular process might have certain quality constraints. Any process may have certain limits (e.g., operational and survivable limits), based on physical or mathematical conditions.
These properties do affect the output of the process and should be considered as capabilities.

[bookmark: _Toc176596211]Characteristics
A physical or non-physical process may have characteristics that may not directly qualify the output. These properties are defined using one or more SWE Common DataRecord elements.Example
A component may have certain physical measurements such as dimensions and weight, and be constructed of a particular material. A component may have particular power demands, or anticipated lifetime.These are characteristics of the component that may not directly affect the output of the component or system.

The characteristics properties may or may not be considered as information suitable for the discovery process.
[bookmark: _Toc176596212]Contacts
Contact information can provide access to manufacturers, system experts, equipment owners, or any other persons responsible in some way for design, deployment, maintenance, or additional information regarding the DescribedObject. The contact property within the ContactList takes the ISO 19115 classes CI_ResponsibleParty as its values.
[bookmark: _Toc176596213]Documentation
Documentation can be provided which provides further clarification about the DescribedObject. This might include technical manuals, manufacturer brochures, journal references, or theoretical-basis documents. The DocumentList document property takes the ISO 19115 CI_OnlineResource as it value.
[bookmark: _Toc176596214]History
Within SensorML, the history of a process can be provided through a collection of Event objects. These are provided within an EventList that serves as the value of the history property. Events might for instance, specify calibration or maintenance history of a sensor, changes to an algorithm or parameter within a computational process, or deployment and maintenance events.

[image: Event]
[bookmark: _Toc240696632]Figure 7.10 – Model for history events

[bookmark: _Toc176596215][bookmark: _Toc6781407]AbstractProcess
As discussed in the Core Concepts, the major elements of SensorML are modeled as physical and non-physical processes. All SensorML process elements shall derive from AbstractProcess, shown in Figure 7.11. The class AbstractProcess itself derives from the DescribedObject class and thus inherits a wide range of optional metadata supporting discovery, identification, and qualification and an option for domain and community-specific extensions. In addition to the metadata provided by DescribedObject, the AbstractProcess includes the properties of inputs, outputs, and parameters, as required by the process model defined in the Core Concepts, as well as the properties typeOf, featureOfInterest, configuration, and modes which will be discussed below.

[image: AbstractProcesses]
[bookmark: _Toc240696633]Figure 7.11 – UML models for DescribedObject and AbstractProcess
[bookmark: _Toc176596216]Inputs, Outputs, and Parameters
As discussed in the Core Concepts, any process can have inputs, outputs, and parameters. Processes typically receive input and based on the parameter settings and methodology, generate output. Some processes, such as detectors, receive physical stimulus as input and generate digital numbers as output. In such cases, the input would be represented as an ObservableProperty, and the output as a DataComponent (e.g. a Quantity). If this output is encoded and accessible directly, then the output can be represented as a DataInterface.

Thus, an AbstractProcess model supports the inputs, outputs, and parameters properties in conformance with the Core Concepts. These properties can accept ObservableProperty or SWE Common elements AbstractDataComponent or DataStream as their values. Classes derived from AbstractDataComponent include Quantity, Count, Category, Boolean, Text, and Time, as well as ranges and aggregates of these simple data types.Example
A digital thermometer is stimulated by an observable property of the environment (temperature), which is modelled as its input (ObservableProperty), and outputs a digital number (Quantity) that represents a measure of that property.

[image: Process IO]
[bookmark: _Toc240696634]Figure 7.12 – UML models for process inputs, outputs, and parameters.

The core process model will utilize the SWE Common Data Models for defining inputs, outputs, and parameters, as well as for other metadata properties. SensorML models are required to support the SWE Common Data Model up to the Block Components Requirements Class, but many instances of SensorML will find ALL conformance levels of SWE Common Data to be useful, including binary encodings.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/coreProcess/SWE-Common-dependency

	[bookmark: _Ref194054140]Any derived model or encoding for process shall utilize ObservableProperty or SWE Common Data Components as values for inputs, outputs, and parameters, and shall at a minimum conform to the SWE Common Data “Block Components Package” class (http://www.opengis.net/spec/SWE/2.0/req/uml-block-components).

The input, output, or parameters of many processes include multiple values, possibly of different data types, that are tightly related to one another. Sometimes referred to as tuples or records, these data aggregates can consist of values that are perhaps meaningless without the other associated values (e.g. the coordinates within a spatial reference system), or provide a more complete understanding because of their association with one another (e.g. a set of measured values taken by a sensor at a given time). Such data shall be modelled using the aggregate data types defined by the SWE Common Data standard.Examples
The location of a dynamic object can be specified through the aggregate values of time, latitude, longitude, and altitude. In such cases, the expression of one of the values separate from the others is meaningless or less complete than the expression of these values as a set or aggregate. These four values should be encapsulated in a Vector data type that also identifies the reference frame in which the latitude, longitude and altitude coordinates are expressed

Weather stations often express a set of measurements of the atmosphere as a single record that might include for instance temperature, pressure, relative humidity, cloudiness, wind speed, and wind direction. These would be considered a tuple of values that provides a more complete picture of the environment at a particular time. This tuple should be modeled as a DataRecord with 7 fields (one for each measured parameters listed above + one time stamp) to indicate that the sampling time applies to all observable values included in the record.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/coreProcess/aggregateData

	[bookmark: _Ref194054278]Multiple input, output, and parameter values that are tightly related with one another shall be modelled as a SWE Common Data aggregate data type.

[bookmark: _Toc176596218]Feature of Interest
Most sensors and many non-physical processes have been deployed or implemented with a focus on one or more features of interest. Within SensorML, the primary purpose of including a FeatureOfInterest property for AbstractProcess is to support discovery as well as to further clarify the intended purpose of the physical or non-physical process.
Example
The features of interest of an installed web camera might include a particular building, a particular street, or a general area of observation surrounding the camera. Features of interest for other sensors might include the Gulf of Mexico, a particular drilling well, the atmosphere surrounding a particular weather station, a particular patient, or a particular automobile. Features of interest for a model or other process might include a particular river basin, a particular toxic plume release, or a particular metropolitan area.

Inheritance, Extension, and Configuration
SensorML supports the concepts of inheritance, extension, and configuration. In other words, generalized base processes can be described in SensorML and then that description can be augmented or further constrained by one or more separate descriptions. Thus, a single, generalized description of a physical or non-physical process can serve as a basis for one or many more specific process descriptions. This provides support for more simple and concise process descriptions while also providing the ability for the user or application to “drill down” to greater and greater detail as desired.
The inheritance model will support two cases:
a) Simple inheritance – the specific process description provides only additional information to the description of the general process, without modifying or restricting any property values of the general process.
b) Configuration – the specific process description is able to set or restrict property values within the allowable range provided by the general process description, as well as provide additional information.
The key to inheritance, extension, and configuration of a process lies in the typeOf property, by which a specific process can reference its more general base process. The typeOf property takes as its value any process model derived from AbstractProcess. This will be “by-reference-only” meaning that the value must be in the form of a resolvable link to another process instance.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/coreProcess/typeOf

	[bookmark: _Ref194054444]A process that is a specific instance of another process shall reference the more general process through its typeOf property. The value of the typeOf property shall be a resolvable link to an instance of a process derived from AbstractProcess.

Simple Inheritance
In the simple inheritance model, a process (referred to as the “specific process”) inherits and augments information from another process (referred to as the “general process”).
Example
An Original Equipment Manufacturer (OEM) provides a description of a particular model of their sensor that would define inputs, outputs, and parameters, as well as perhaps capabilities, characteristics, manufacturer contact information and documentation relevant to that model. Thousands of sensors of this model type may of course be manufactured and sold by the OEM.
When one purchases and deploys an instance of that model of sensor, the owner can then reference the OEM’s description of the model and provide additional information that’s specific to his specific instance of the sensor. Additional information might include, for example, serial number, owner’s contact information, the sensor’s location, calibration data, and the interface description for accessing the data.

The simple inheritance model is fully supported in the Core Process conformance class and will be supported solely through the use of the typeOf property within the specific process. The typeOf property within the specific process will reference the general process through a resolvable reference.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/coreProcess/simpleInheritance

	[bookmark: _Ref194054712]A process instance that references another process through the typeOf property, but does not include the configuration property, shall inherit properties of the referenced process through simple inheritance. The complete description of that process is thus the addition of information from both process descriptions.

[bookmark: _Toc176596219]Support for Configurable Processes
A configurable process is one that includes options or choices that can be selected, restricted, or enabled during deployment, operation, or execution of that process.Example
An Original Equipment Manufacturer (OEM) can provide a description of a particular model of their sensor that would define inputs, outputs, and parameters, as well as perhaps capabilities, characteristics, manufacturer contact information and documentation relevant to that model. In addition, the OEM enables an individual instance of that model of sensor to be configured by providing options for setting parameter values, setting modes, or choosing a particular interface. Thousands of sensors of this model type may of course be manufactured and sold by the OEM.
When one purchases and deploys an instance of that model of sensor, the owner can then reference the OEM’s description of the model and provide additional information that’s specific to that particular instance of the sensor. In addition, the owner can configure the sensor by setting values, selecting modes, and enabling particular interfaces. These settings would be provided in the instance description.

The configuration model will utilize both the typeOf and configuration properties. The typeOf property references the more general process as with simple inheritance, while the configuration property provides a means to further restrict the options and allowed values for the specific process. The configuration property in the AbstractProcess takes an AbstractSettings class as its value.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/coreProcess/configuration

	[bookmark: _Ref194054989]A process instance that references another process through the typeOf property, and further restricts options or allowed values provided in the referenced process, shall specify those restrictions through the configuration property.

A concrete implementation of a Settings class will be provided in a later Conformance Clause.

[bookmark: _Toc6781408]SWE Common Data Types
Many properties in the DescribedObject and AbstractProcess classes described above are of type AbstractDataComponent as defined in the SWE Common Data Model standard. This data type is used for defining inputs, outputs and parameters, as well as for other metadata properties.
This requirements class only mandates the support of the “Simple Components” and “Record Components” as defined in the SWE Common Data Model standard. These includes the scalar data types Boolean, Text, Count, Quantity, Category, Time and their range equivalents, as well as DataRecord and Vector.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/coreProcess/SWE-Common_dependency

	[bookmark: _Ref240536513]Contents of all properties of type AbstractDataComponents shall pass the SWE Common Data Model “Records Components Package” conformance test class.

However, many implementations of SensorML will find ALL conformance levels of the SWE Common Data Model to be useful, including arrays, choices and encodings. An implementation claiming support for more than the record components can pass the “Processes with Advanced Data Types” conformance test class of this standard.

[bookmark: _Toc176596220][bookmark: _Ref194055731][bookmark: _Toc6781409]
Requirements Class: Simple Process

	Requirements Class

	http://www.opengis.net/spec/sensorML/2.0/req/model/simpleProcess

	Target Type
	Derived Models, Encodings, and Software Implementations

	Dependency
	http://www.opengis.net/spec/SensorML/2.0/req/coreProcess

A simple process is derived from abstract process model, as presented in Clause 7.2.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/simpleProcess/dependency-core

	[bookmark: _Ref194056574]An encoding or software passing the “Simple Process” model conformance class shall first pass the “Abstract Process” requirements test class.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/simpleProcess/package-fully-implemented

	[bookmark: _Ref240536767]The encoding or software shall correctly implement all UML classes defined in the “SimpleProcess” package described in this section.

[bookmark: _Toc176596221][bookmark: _Toc6781410]Simple Process Definition
A simple process is a process that, for whatever reason, is considered indivisible. That is, there is no intent to further divide the process description into an aggregation of sub-processes. While the process method may describe several steps within the algorithm, the actual execution of this process is expected to occur as a single modular unit.
Often simple processes are computational processes that can be executed with an associated piece of software. Simple processes are often one component of a physical or non-physical aggregate process.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/simpleProcess/definition

	[bookmark: _Ref194055808]A process shall be modeled a “Simple Process” if it provides a processing function with well-defined inputs and outputs, if there is no intent to further divide the process description into sub-process components, and if knowledge of its physical location is of no importance.

The SimpleProcess model, as shown in Figure 7.13, is a concrete instantiation of the AbstractProcess model. The SimpleProcess requires a method description.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/simpleProcess/method

	[bookmark: _Ref194056762]An encoding or software implementation of the SimpleProcess class shall support the definition of the method.

[image: SimpleProcess]
[bookmark: _Toc240696635]Figure 7.13 – Model for Simple Process

Example
A process computing a simple mathematical function such as sine, cosine or square root is usually modeled as a SimpleProcess instance. However, even more complex processes can be modeled this way if there is no intent to break down the implementation of the process into sub-processes.

[bookmark: _Toc176596222][bookmark: _Toc6781411]Process Method Definition
The ProcessMethod provides a description of the methodology used by the process to execute and generate output based on the input and parameter values. This includes a textual description, as well as an optional description of the algorithm in an appropriate format (e.g. mathML) and optional references to particular executable implementations.
The ProcessMethod definition should be sufficient to allow one to understand how input values are converted to output values, given a particular set of parameter values, and be able to write software that is capable of executing this process.
A ProcessMethod description may be protected by security or legal constraints, which would purposely prevent access to the method description as well as restrict knowledge of the methodology to authorized personnel only. However, regardless of access restrictions, a ProcessMethod should always be able to be referenced and identified by a unique identifier.

[image: ProcessMethod]
[bookmark: _Toc240696636]Figure 7.14 – Model for ProcessMethod
[bookmark: _Toc176596223][bookmark: _Ref194393542][bookmark: _Toc6781412]
Requirements Class: Aggregate Process

	Requirements Class

	http://www.opengis.net/spec/sensorML/2.0/req/model/aggregateProcess

	Target Type
	Derived Encoding or Software Implementation

	Dependency
	http://www.opengis.net/spec/sensorML/2.0/conf/model/coreProcess

An aggregate process is derived from abstract process model, as presented in Clause 7.2.
	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/aggregateProcess/dependency-core

	[bookmark: _Ref194392769][bookmark: _Ref240538767]An encoding or software passing the “Aggregate Process” conformance test class shall first pass the “Simple Process” conformance test class.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/aggregateProcess/package-fully-implemented

	[bookmark: _Ref240538866]The encoding or software shall correctly implement all UML classes defined in the “AggregateProcess” package described in this section.

[bookmark: _Toc6781413]Aggregate Process Definition
An aggregate process is a collection of autonomous component processes with an explicit mapping of the data flow between these processes. Components of an aggregate process can be simple processes (i.e. atomic) or be aggregate process themselves. Aggregate processes can include both physical and non-physical (i.e. logical) components.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/aggregateProcess/definition

	[bookmark: _Ref194392958]A process shall be modeled as an “aggregate process” if it provides a processing function with well-defined inputs and outputs, if there is intent to further divide the process description into sub-processes, and if knowledge of its physical location is of no importance.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/aggregateProcess/components

	[bookmark: _Ref194393125]An encoding or software implementation of the AggregateProcess class shall support the inclusion of one or more component processes and a means for explicitly specifying data flow between these components.

In SensorML, an aggregate process is agnostic to the execution engine that may perform the actual execution of individual sub-processes and manage the execution sequencing and the flow of data between the components. Also, while it is possible in SensorML to more explicitly define the data encoding if desired by using the encoding specifications defined in the SWE Common Data Specification, SensorML is typically agnostic to the protocol and format of data flowing between logical processes.
This provides significant flexibility as to where and how a SensorML-defined aggregate process is executed. While the ProcessMethod explicitly defines the algorithm for executing an atomic process, the actual execution of that algorithm and the management of data flow between processes can be handled by any software system able to parse a SensorML-defined aggregate process and sequence the execution of the processes.
A SensorML-defined process component or aggregate process can be executed through web services, within the CPU of a laptop, mobile device, or supercomputer, or a mix of these. Furthermore, a SensorML-defined aggregate process can be executed wherever desired, be it at a large data or computation center, within a visualization and analysis client on a laptop, or on-board a sensor or actuator system. Thus, SensorML provides the choice to either bring the process to the data or bring the data to the process.
The model for AggregateProcess is shown in the figure below. AggregateProcess extends the AbstractProcess model and adds one or more process components and explicit linking of data flow between these components. The component property takes any component derived from AbstractProcess as its value. Component process descriptions can be provided inline or by reference.
The derivation from AbstractProcess means that an AggregateProcess instance itself has its own inputs, outputs, and parameters, as well as identification and possible metadata.

[image: AggregateProcess]
[bookmark: _Toc240696637]Figure 7.15 – Model for Aggregate Process

[bookmark: _Toc176596225][bookmark: _Ref194394432]

[bookmark: _Toc6781414]Requirement Class: Physical Component
	Requirements Class

	http://www.opengis.net/spec/sensorML/2.0/req/model/physicalComponent

	Target Type
	Derived Encoding or Software Implementation

	Dependency
	http://www.opengis.net/spec/SensorML/2.0/req/coreProcess

In the context of SensorML, physical processes represent real processing devices whose spatio-temporal position is important. Physical processes include detectors, actuators, sensor systems, and actuator systems. Such processes typically, but not always, involve interactions beween a real-world domain (or environment) and a digital domain. Example
A detector or sensor system typically senses an environmental stimulus and provides a digital number representing the measure of a property of that environment (e.g. temperature). Likewise, an actuator receives a digital number and based on its values causes an action in the real-world environment.Both devices interact with the real world and their position is usually of importance to the end-user. These should usually be modelled as physical components

Because physical processes typically interact with the real-world environment, the position (location and orientation), as well as perhaps the dynamic state (velocity and acceleration), are usually of importance. We wish to either measure an observable property at a particular location in the environment or we wish to affect a physical action at a particular place in the environment. Thus, the position where the physical process measures or acts becomes important.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/physicalComponent/package-fully-implemented

	[bookmark: _Ref240539963]The encoding or software shall correctly implement all UML classes defined in the “PhysicalComponent” package described in this section.

[bookmark: _Toc176596226][bookmark: _Toc6781415]Abstract Physical Process Defined
The AbstractPhysicalProcess model is derived from AbstractProcess and thus includes the metadata and properties of a core process. Additionally, AbstractPhysicalProcess supports additional properties that allow one to define spatial and temporal coordinates for the physical process device.
	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/physicalComponent/dependency-core

	[bookmark: _Ref240540004]An encoding or software passing the “Physical Component” conformance class shall first pass the “Core Abstract Process” conformance test class.

The model for AbstractPhysicalProcess is shown in Figure 7.16 below. The additional properties of the AbstractPhysicalProcess will be discussed in subsequent clauses.

[image: PhysicalComponent]
[bookmark: _Toc240696638]Figure 7.16 – Model for Physical Process Component

attachedTo Property
A physical process (“child process”) may be attached to another physical process (“parent process”) such that the movement of the parent process affects the position of the child process. The attachedTo property provides a reference from the attached process to the process to which it is attached. Example:
A video camera is attached to a gimbal that allows rotation of the camera to view a 360o area surrounding the camera. In such a case, the camera is said to be attached to the gimbal. Both are physical processes (the camera, a sensor; the gimbal, an actuator). The video camera description should thus use the attachedTo property to reference the gimbal description.

[bookmark: _Toc176596227]Position and Spatial Reference Frames
In this standard, the position or dynamic state of a physical object is defined as a relationship of the reference frame of the object to some external reference frame. SensorML allows for the definition of direct orthogonal (i.e. Cartesian) reference frames that are assumed to be attached to the physical component where they are described.
A reference frame is defined by its origin and its axes, which are described relative to the physical object itself using natural language and are not relative to any relationship of the object to some external frame. The relationship of this object’s reference frame to an external reference frame is defined by the position or dynamic state of the object. The models for reference frames and spatial position are provided in Figure 7.17.Example:
The origin of an airplane’s spatial reference frame can be defined as the being at the center of the Inertial Navigation Unit main gyro. The axes can be defined by the following statements: “X is along the symmetric axis of the airplane’s fuselage from the gyro to the nose of the airplane (along the platform roll axis of the airplane), Z is perpendicular to X and toward the belly of the airplane (along the yaw axis of the aircraft), and Y is Z cross X (in the direction of of the right wing and along the pitch axis of the airplane)”.
The location of this aircraft can then be given as the spatial relationship of the origin of this reference frame to some external reference frame (e.g. Earth-Centered-Earth-Fixed XYZ or latitude-longitude-altitude). Likewise, the orientation of the aircraft can be specified as the angular relationship of the axes of its reference frame to the axes of some external reference frame (e.g. ECEF or North-East-Down).

[image: Position]
[bookmark: _Toc240696639]Figure 7.17 – Models for SpatialFrame and PositionUnion

In this standard, position is defined as the combination of location and orientation. Location is the llinear displacement (translation) of the origin of the object’s spatial reference frame relative to the origin of some external reference frame (which must be designated). The orientation of an object is the angular relationship between the axes of the object’s reference axes to those of some external reference frame. The dynamic state of an object can include its time-tagged location, orientation, linear velocity, angular velocity, and higher-order derivatives when required (e.g. linear and angular acceleration, jerk, etc.).
An external reference frame can be another object’s reference frame (e.g. the reference frame of a ship) or a geographic reference frame (e.g. WGS84 latitude-longitude-altitude).
The PositionUnion class provides various means of specifying the location, position, or dynamic state of an object. These will be described in more detail in the appropriate XML encoding section, but the following rules apply to the SensorML models.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/physicalComponent/byPointOrLocation

	[bookmark: _Ref194394638]Specification of position “byPoint” or “byLocation” shall specify the location of the origin of the object’s reference frame relative to the origin of a well-defined and specified external reference frame.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/physicalComponent/byPosition

	[bookmark: _Ref194394712]Specification of position “byPosition” shall specify, using two Vectors, the location and orientation of the object’s reference frame relative to a well-defined and specified external reference frame.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/physicalComponent/byTrajectory

	[bookmark: _Ref194394804][bookmark: _Ref240540356]Specification of position “byTrajectory” shall specify, at a minimum, the time-tagged location of the object’s reference frame relative to a well-defined and specified external reference frame, but may also include its orientation and any number of derivatives of the location and orientation.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/physicalComponent/byProcess

	[bookmark: _Ref194394873]Specification of position “byProcess” shall specify SensorML-modeled process whose output provides, at a minimum, the time-tagged location of the object’s reference frame relative to a well-defined and specified external reference frame, but may also include its orientation and any number of derivatives of the location and orientation.

Temporal Reference Frames
Just as spatial position must be related to a spatial reference frame, time must also be related to a temporal reference frame. Temporal reference frames can include a particular calendar, a particular time of day reference frame, or a frame attached to an event of interest.

Example:
A temporal frame can be attached to an event of interest, such as the start of the mission. When such a reference frame is defined, time measurements can be expressed in seconds past the mission start time (which is usually itself referenced to a global time frame such as UTC or TAI).

A temporal reference frame can be defined within a physical process and is particularly useful if the component is a process that outputs its own measure of time (such as an on-board clock or high-resolution counter).

[bookmark: _Toc6781416]Physical Component Defined
Any processing device can be considered a physical component, if it provides a processing function with well-defined inputs and outputs, if there is no intent to further divide the device description into component sub-processes, and if knowledge of its physical location is useful. Such devices could include, but not be limited to, detectors, actuators, reflectors, electrical components (e.g transformers, capacitors, resistors), or perhaps even computational units (when knowing their location in a computational facility is helpful).

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/physicalComponent/definition

	[bookmark: _Ref194395097]A process shall be modeled as a “Physical Component” if it provides a processing function with well-defined inputs and outputs, if there is no intent to further divide the device description into sub-process components, and if knowledge of its physical location is of importance.

As shown in the models of Figure 7.16, the PhysicalComponent class is a concrete instantiation of an AbstractPhysicalProcess that adds the method property, which takes a ProcessMethod as its value. ProcessMethod was defined earlier in clause 7.3.2.
[bookmark: _Toc176596228][bookmark: _Toc6781417]
Requirement Class: Physical System

	Requirements Class

	http://www.opengis.net/spec/sensorML/2.0/req/model/physicalSystem

	Target Type
	Derived Encoding or Software Implementations

	Dependency
	http://www.opengis.net/spec/SensorML/2.0/req/physicalComponent

A physical system is used to model a hardware device as an aggregate process made of one or more components and whose location in the real world is known and of importance.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/physicalSystem/package-fully-implemented

	[bookmark: _Ref240540654]The encoding or software shall correctly implement all UML classes defined in the “PhysicalSystem” package described in this section.

Sensor and actuator systems (e.g. machines and robots) are typically physical systems that perform a particular feat through the coordinated actions of both physical and non-physical sub-processes. Even though a sensor system’s overall application is to sense something in the environment, the system itself can consist of sensing components (e.g. detectors and sensing subsystems), action (e.g. actuators and robotic subsystems), and computational components.
Example:
A weather station is an example of physical system that is composed of several sensors (thermometer, barometer, wind sensor, etc.) and other computational process such as an algorithm to compute wind chill. All these components can be described in SensorML and grouped in a PhysicalComponent description representing the station as a whole.
A hand-held digital camera can also be modeled as a physical system with an overall task of sensing radiance in a scene and generating an image. However, the camera is an aggregate of various sub-processes, each of which can be physical or non-physical, and can be sensing, acting, or computational. For example, a light detector outputs a measure of brightness, which serves as the input of a computational process which outputs a signal that provides input into an actuator that controls the opening or closing of the iris. The final iris size is sensed by another detector which inputs that value into a process that encodes that value into an EXIF format that accompanies the image, which is generated by a entirely different subsystem of the camera.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/physicalSystem/definition

	[bookmark: _Ref194397466]A process shall be modeled as a “Physical System” if it provides a processing function with well-defined inputs and outputs, if the device description is further divided into subprocess components, and if knowledge of its physical location is of importance.

The model for PhysicalSystem, as shown in Fig. 7.18, is derived from AbstractPhysicalProcess, and adds the components and connections properties that have been described in the non-physical counterpart, AggregateProcess (Clause 7.4).

[image: PhysicalSystem]
[bookmark: _Toc240696640]Figure 7.18 – Model for Physical Processing System

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/physicalSystem/dependency-core

	[bookmark: _Ref194397509][bookmark: _Ref240540963]An encoding or software passing the “Physical System” model conformance test class shall first pass the “Physical Component” conformance test class.

[bookmark: _Toc176596229][bookmark: _Ref194727893][bookmark: _Ref240541685][bookmark: _Toc6781418]
Requirements Class: Processes with Advanced Data Types

	Requirements Class

	http://www.opengis.net/spec/sensorML/2.0/req/model/advancedProcess

	Target Type
	Derived Encoding or Software Implementations

	Dependency
	http://www.opengis.net/spec/SensorML/2.0/req/coreProcess

	Dependency
	http://www.opengis.net/spec/SWE/2.0/req/uml-block-components

	Dependency
	http://www.opengis.net/spec/SWE/2.0/req/uml-choice-components

The “Core Abstract Process” requirements class only requires the support of the record and scalar data types wherever a data type from the SWE Common standard is used.
This class also requires support for more advanced data types defined in the SWE Common standard : DataArray, Matrix, DataStream and Choice.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/advancedProcess/dependency-core

	[bookmark: _Ref240541337]An encoding or software passing the “Advanced Data Types” model conformance class shall first pass the “Abstract Core Process” conformance test class.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/advancedProcess/package-fully-implemented

	[bookmark: _Ref240541530]The encoding or software shall correctly implement all UML classes defined in the “Core” package and described in this section.

[bookmark: _Toc176596230][bookmark: _Ref194728564][bookmark: _Toc6781419]
Requirements Class: Configurable Processes

	Requirements Class

	http://www.opengis.net/spec/sensorML/2.0/req/model/configurableProcess

	Target Type
	Derived Encoding or Software Implementation

	Dependency
	http://www.opengis.net/spec/SensorML/2.0/req/coreProcess

Many processes, both physical and non-physical, are configurable in that they provide one with the ability to set parameters values, enable options, or select modes before or during execution/operation. Thus a general configurable process can be defined and published specifying allowed values for parameters, modes that can be selected, and options that can be enabled or disabled.
A specific process that inherits from this general process can then refine the process in several ways by: (1) specifying values for parameters, (2) further constraining the allowable values of parameters, (3) selecting an operational mode (which then sets a group of parameter values), or (4) enabling or disabling particular options such as particular outputs or components.
In this document, we will refer to the more general process as the “configurable process”, and the more specific process that inherits from it, as the “configured process”.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/configurableProcess/dependency-core

	[bookmark: _Ref194728680]An encoding or software passing the “Configurable Process” conformance test class shall first pass the “Core Abstract Process” conformance test class.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/configurableProcess/package-fully-implemented

	[bookmark: _Ref240542026]The encoding or software shall correctly implement all UML classes defined in the “Configuration” package described in this section.

A process shall be considered “configurable” if it provides options, variable parameters, or modes that can be selected or set before or during deployment or execution.
[bookmark: _Ref194728726]A process shall be considered “configured” if it sets options, parameter values, or modes that were defined within the configurable process.Example:
A configurable process based on the linear equation (y=mx+b) defines two parameters for “slope” and “y-intercept” but does not provide values for these parameters. A configured process can inherit from this configurable process and set the values of those parameters (e.g. y=2x+4).

A process becomes “configurable” by one or more of the following characteristics:
c) it defines parameters, but not defining their values
d) it defines a range or selection of possible values for parameters using the swe:AllowedValues property
e) it defines modes which in turn set a collection of parameter values when enabled
f) it allows inputs, outputs, or components to be enabled or disabled

A process becomes “configured” by having both of the following two characteristics:
a) it inherits from a configurable process using the typeOf property
b) it specifies one or more settings within the configuration property

[bookmark: _Toc6781420]Modes
A process mode is a specific configuration in which the values for multiple parameters can be set and multiple options selected by enabling that mode. Often modes are established as a convenience so that a process can be configured during deployment or execution in order to best meet some specific operational need.Example:
A Doppler radar for monitoring storms may have several modes from which one can select depending on the prevailing conditions at the time. For instance, there can be “clear-sky”, “storm”, and “severe-storm” modes in which the scanning properties, radar intensity, and gain settings can all change by simply changing the mode setting

A configurable process can but is not required to contain one or more modes properties. The modes property takes an AbstractModes as its value. As shown in Figure 7.19, the concrete ModeChoice class defined in this conformance clause is derived from AbstractModes and serves as the concrete instantiation for defining modes in this specification.
ModeChoice shall include two or more mode properties that take Mode as their value. In addition to metadata provided by the base DescribedObject class, Mode includes a configuration property that allows one to define a collection of settings for that mode.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/configurableProcess/twoModesRequired

	[bookmark: _Ref194728905]A ModeChoice instantiation must include two or more mode properties.

[image: Modes]
[bookmark: _Toc240696641]Figure 7.19 – Model for Modes

The configuration property takes a Settings object, which will be described in more detail below.

[bookmark: _Toc6781421]Settings
The configuration property and it Settings value can be utilized in two cases:
g) within the Mode definition of a configurable process for defining a collection of settings for that particular mode
h) as a required property within a configured process for setting one or more configurable properties

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/configurableProcess/settingsProperty

	[bookmark: _Ref194729024]A configured process must include a configuration property that takes a Settings class as its value.

The Settings class is shown in Fig. 7.20 with its possible property values shown in Fig. 7.21. For all settings, the property in the configurable process is specified by the DataComponentPath reference.
Within the Settings class, one may (a) set particular values for parameters, (b) set an array of values for a parameter (and only a parameter that takes a DataArray as its value, (c) further constrain allowed values for parameters, (d) set the operational mode, and (e) enable or disable an input or output.

[image: Settings]
[bookmark: _Toc240696642]Figure 7.20 – Model for Configured Process Settings

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/configurableProcess/setValueRestriction

	[bookmark: _Ref194729132]The setValue property shall only reference and set values for a parameter defined in a configurable process.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/configurableProcess/setArrayValueRestriction

	[bookmark: _Ref194729245]The setArrayValues and setEncodedValues properties shall only reference and set array values for a parameter defined in a configurable process.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/model/configurableProcess/setConstraintRestriction

	[bookmark: _Ref194729332]The setConstraint property shall only reference and set constraints for a parameter defined in a configurable process.

[image: Configuration]
[bookmark: _Toc240696643]Figure 7.21 – Model for Settings Elements

[bookmark: _Toc176596232][bookmark: _Toc6781422]
XML Schema Implementation (normative)
This standard defines a normative XML Schema grammar and a set of patterns that represent an XML implementation of the conceptual models presented in Section 7. The standardization target type for all requirements classes in this clause is an XML instance that seeks compliance with this XML encoding model.
XML schemas defined in this section are a direct implementation of the UML conceptual models described in Section 7. They have been automatically generated from these models by strictly following well-defined encoding rules described in Annex C. All attributes and composition/aggregation associations contained in the UML models are encoded either as XML elements or XML attributes but the names are fully consistent. One XML schema file is produced for each UML package.
Schematron patterns implement most additional requirements stated in Section 7. One Schematron file is produced for each XML package.
All example instances given in this section are informative and are used solely for illustrating features of the normative model. Many of these examples reference semantic information by using URLs that are resolvable to definitions maintained in one of several online ontologies:
The OGC online registry at http://www.opengis.net/def/.
The general sensor community ontologies at http://www.sensorML.com/ .
The SWEET ontology maintained by NASA JPL at http://sweet.jpl.nasa.gov/2.0/.
The MMI ontology registry and repository at http://mmisw.org/orr/.

All XML examples are marked by a light gray background and formatted with a fixed- width font.
NOTE: These and additional examples, with explanation, can be found at:
http://www.sensorml.com/sensorML-2.0/examples/index.html
[bookmark: _Ref245290901][bookmark: _Ref245290904][bookmark: _Toc176596233][bookmark: _Toc6781423]
Requirements Class: Core Abstract Process Schema
	Requirements Class

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess

	Target Type
	XML Instance

	Dependency
	http://www.opengis.net/spec/SensorML/2.0/req/model/coreProcess

	Dependency
	http://www.opengis.net/spec/SWE/2.0/req/xml-encoding-principles

	Dependency
	http://schemas.opengis.net/gml/3.2.1/gml.xsd

	Dependency
	http://schemas.opengis.net/sweCommon/2.0/swe.xsd

	Dependency
	http://schemas.opengis.net/iso/19139/20070417/gmd/gmd.xsd

	Dependency
	http://schemas.opengis.net/iso/19139/20070417/gco/gco.xsd

XML Schema elements and types defined in the “core.xsd” schema file implements all classes defined in the “Core Abstract Process” UML package.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess/schema-valid

	[bookmark: _Ref247010075][bookmark: _Ref248248476][bookmark: _Toc269143371]The XML instance shall be valid with respect to the XML grammar defined in the “core.xsd”, as well as satisfy all Schematron patterns defined in “core.sch”.

[bookmark: _Toc176596234][bookmark: _Ref251316991][bookmark: _Toc6781424]General XML Principles
This section lists common requirements associated to the XML encoding rules used in the context of this standard. As mentioned above, the normative XML schemas in this standard have been generated by strictly following UML to XML encoding rules, such that the schemas are the exact image of the UML models. The same encoding principles shall be used by all extensions of this standard.
[bookmark: _Toc176596235]XML Encoding Conventions
The rules used to encode the SensorML models into an XML Schema are similar to those used to derive GML application schemas and defined in ISO 19136. Most extensions to these rules were defined and implemented within the OGC SWE Common Data v2.0 standard and have been defined to allow:
Use of “soft-typed” properties. These properties are encoded as XML elements with a generic element name but provide a “name” attribute for further disambiguation.
Encoding of certain properties as XML attributes. This type of encoding adds to the “element-only” rules defined by ISO 19136. It is restricted to properties with a primitive type and indicated by a new tagged value in the UML model.
Use of a new abstract base type. A custom base type called “AbstractSWEType” is used for all complex types.
Following ISO 19136 encoding rules, each UML class with a <<Type>> or <<DataType>> stereotype, or no stereotype at all, is implemented in the schema as a global XML complex type with a corresponding global XML element (called object element). Each of these elements has the same name as the UML class (i.e. always UpperCamelCase) and the name of the associated complex type is a concatenation of this name and the word “Type”.
Each UML class attribute is implemented either as a global complex type and a corresponding local element (called property element), or as an XML attribute. Each property complex type is given a name composed of the UML attribute name (always lowerCamelCase) and the words “PropertyType”. The element is defined locally within the complex type representing the class carrying the attribute and named exactly like the attribute in UML (i.e. no global elements are created for class attributes). Class associations are implemented similarly except they cannot be implemented as an XML attributes.
[bookmark: _Ref251580530][bookmark: _Toc176596236]IDs and Linkable Properties
The schemas defined in this standard make extensive use of “xlink” features to support hypertext referencing in XML. This allows most property elements to reference content either internally or externally to the instance document, instead of including this content inline. This is supported by extensive use of the “id” attribute (of type xs:ID) on most object elements, and of the “swe:AssociationAttributeGroup” attribute group, on most property elements.
According to settings in the SensorML models, values for properties can be provided inline, by reference, or by either method.
In properties that support “xlink” attributes, one can usually choose to define that property value inline, as in:

 <swe:field>
 <swe:Quantity id="TEMP" … />
 </swe:field>

One can then reference an object within the same document by its ID:

<swe:field xlink:href="#TEMP"/>

An object within an external document can also be referenced by including the full URI:

<swe:field xlink:href="http://www.my.com/fields.xml#TEMP"/>

Typically, “xlink” references will be specified as resolvable URLs. It is required that the property has either the “xlink:href” attribute set or contain an inline value, even though this cannot be enforced by XML schema.
	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess/ref-or-inline-value-present

	[bookmark: _Ref247009705][bookmark: _Toc269143372]A property element supporting the “swe:AssociationAttributeGroup” shall either contain the value inline or populate the “xlink:href” attribute with a valid reference, but shall not be empty.

[bookmark: _Ref251580679][bookmark: _Toc176596237]
As later specified, further requirements may be placed on the use of objects reference by xlink. This includes in some case, the use of both xlink:href to provide a resolvable link to the object’s description as well as the use of an xlink:title to provide the uniqueID of the object. Particular properties may also require the application of xlink:role or xlink:arcrole to provide the absolute and relative role of the object, respectively.
Extensibility Points
The SensorML schemas define extensibility points that can be used to insert ad-hoc XML content that is not specified by this standard. This is done via optional “extension” element of type “xs:anyType” in the base abstract complex type “AbstractSWEType”. Since all object types defined in this standard derive from this base type, extensions can be added for many properties in a SensorML instance.
This mechanism allows for a “laxist” way of including extended content in XML instances as the extended content is by default ignored by the validator. However, it is also possible to formally validate extended content by writing an XML schema for the extension and feeding it to the validator via the “xsi:schemaLocation” attribute in all instances using the extension.
The recommended way of extending the XML schema of this standard is to define new properties on existing objects by inserting them in an “extension” slot. Additionally this should be done in a way that these new properties can be safely ignored by an implementation that is not compatible with a given extension. However, it should be recognized that defining new XML object elements (such as new data component objects) rather than new properties will greatly reduce forward compatibility of implementations compliant to this standard with XML instances containing extensions of this standard.
In any case, all extensions of the XML schema described in this standard shall be defined in a new namespace (other than the namespaces used by this standard and its dependencies) in order to allow easy detection of extensions by implementations.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess/extension-namespace-unique

	[bookmark: _Ref247009720][bookmark: _Toc269143373]All extensions of the XML schemas described in this standard shall be defined in a new unique namespace (other than the namespaces used by this standard and its dependencies).

Extensions are not allowed to change the meaning or behavior of elements and types defined by this standard in any way (in this case, new classes or properties shall me defined). This guarantees that implementations that have no knowledge of an extension can still properly use XML instances containing these extensions.
	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess/extension-coherent-with-core

	[bookmark: _Ref247009732][bookmark: _Toc269143374]Extensions of this standard shall not redefine or change the meaning or behavior of XML elements and types defined in this standard.

The execution of the process should not depend on information contained within an extension. Data values required for process execution must be provided within the input, output, and parameter properties, and within the SensorML and SWE Common Data namespace elements (i.e. sml and swe, respectively), and cannot exclusively be contained in the extension classes.
	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess/extension-process-execution

	[bookmark: _Ref194735233]Extensions of this standard shall not exclusively contain information required for the successful execution of the process.

Note that extension points are also supported by the SWE Common Data specification such that community-specific XML elements can be added to any property value that uses a SWE Common data type element as its value. Common anticipated applications of property-specific extension points include security tagging of individual properties and community-specific quality control characterization of property values.
[bookmark: _Toc6781425]General XSD Dependencies and XML Heading

The header for all specified schema provides namespaces and dependencies. The header for core processes below specifices the namespaces and dependent schema for “sml”, “swe”, “gml”, “gco”, and “gmd”.

<schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:xml="http://www.w3.org/XML/1998/namespace" xmlns:gco="http://www.isotc211.org/2005/gco" xmlns:gmd="http://www.isotc211.org/2005/gmd" xmlns:sml="http://www.opengis.net/sensorML/2.0" xmlns:gml="http://www.opengis.net/gml/3.2" xmlns:swe="http://www.opengis.net/swe/2.0" targetNamespace="http://www.opengis.net/sensorML/2.0" elementFormDefault="qualified" attributeFormDefault="unqualified">
	<annotation>
		<documentation>
 The core elements of an abstract process from which all major elements of SensorML are derived.
 </documentation>
	</annotation>
	<import namespace="http://www.isotc211.org/2005/gmd"
 schemaLocation="http://schemas.opengis.net/iso/19139/20070417/gmd/gmd.xsd"/>
	<import namespace="http://www.isotc211.org/2005/gco"
 schemaLocation="http://schemas.opengis.net/iso/19139/20070417/gco/gco.xsd"/>
	<import namespace="http://www.opengis.net/gml/3.2"
 schemaLocation="http://schemas.opengis.net/gml/3.2.1/gml.xsd"/>
	<import namespace="http://www.opengis.net/swe/2.0"
 schemaLocation="http://schemas.opengis.net/sweCommon/2.0/swe.xsd"/>
	<import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd"/>

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess/gml-dependency

	[bookmark: _Ref194735670]This standard shall utilize and depend upon the OGC GML 3.2 standard schema within the http://www.opengis.net/gml/3.2 namespace and defined in http://schemas.opengis.net/gml/3.2.1/

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess/swe-common-dependency

	[bookmark: _Ref194735865]This standard shall utilize and depend upon the OGC SWE Common Data 2.0 standard within the http://www.opengis.net/swe/2.0 namespace and defined in http://schemas.opengis.net/sweCommon/2.0/swe.xsd and any corregendum (i.e. any versions 2.0.*).

Several base abstract types are defined in the SWE Common Data standard are used for derivation of elements within this SensorML specification. These are defined in the “swe” namespace and defined in:
 http://schemas.opengis.net/sweCommon/2.0/basic_types.xsd

These basic types are used as base substitution groups for all global XML elements defined in this standard. Below are XML schema snippets for the “AbstractSWE”, “AbstractSWEIdentifiable” and “AbstractSWEValue” elements and corresponding complex types:

	<element name="AbstractSWE" type="swe:AbstractSWEType" abstract="true">
		<annotation>
			<documentation>
Base substitution groups for all SWE Common objects other than value objects
</documentation>
		</annotation>
	</element>

	<complexType name="AbstractSWEType">
		<sequence>
			<element name="extension" type="anyType" minOccurs="0" maxOccurs="unbounded">
				<annotation>
					<documentation>Extension slot for future extensions to this standard.</documentation>
				</annotation>
			</element>
		</sequence>
		<attribute name="id" type="ID" use="optional"/>
	</complexType>

[bookmark: OLE_LINK3]The “AbstractSWE” complex type is the base for all derived complex types defined in this standard. It defines a first extension mechanism as an optional “extension” element that allows for any extended element content (in a namespace other than the SWE Common Data Model namespace). It also has an optional “id” attribute allowing referencing the object that derives from it.

	<element name="AbstractSWEIdentifiable" type="swe:AbstractSWEIdentifiableType" abstract="true"
		substitutionGroup="swe:AbstractSWE">
		<annotation>
			<documentation>
Base substitution groups for all SWE Common objects with identification metadata
</documentation>
		</annotation>
	</element>

	<complexType name="AbstractSWEIdentifiableType">
		<complexContent>
			<extension base="swe:AbstractSWEType">
				<sequence>
					<element name="identifier" type="anyURI" minOccurs="0">
						<annotation>
							<documentation>
Unique identifier of the data component. It can be used to globally identify a particular
component of the dataset, a process input/output or a universal constant
</documentation>
						</annotation>
					</element>
					<element name="label" type="string" minOccurs="0">
						<annotation>
							<documentation>
Textual label for the data component . This is often used for displaying a human readable
name for a dataset field or a process input/output
</documentation>
						</annotation>
					</element>
					<element name="description" type="string" minOccurs="0">
						<annotation>
							<documentation>
Textual description (i.e. human readable) of the data component usually used to clarify its
nature
</documentation>
						</annotation>
					</element>
				</sequence>
			</extension>
		</complexContent>
	</complexType>

The “AbstractSWEIdentifiable” complex type derives from “AbstractSWE” and adds three identification elements. These elements are to be used as described in the UML section of this standard.

Based on these dependencies, an example header for a typical SensorML instance is given below:

<?xml version="1.0" encoding="UTF-8"?>
<sml:PhysicalSystem gml:id="DAVIS_PRO_VANTAGE2"
 xmlns:sml="http://www.opengis.net/sensorML/2.0"
 xmlns:swe="http://www.opengis.net/swe/2.0"
 xmlns:gml="http://www.opengis.net/gml/3.2"
 xmlns:gmd="http://www.isotc211.org/2005/gmd"
 xmlns:gco="http://www.isotc211.org/2005/gco"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xsi:schemaLocation="http://www.opengis.net/sensorML/2.0 http://schemas.opengis.net/sensorML/2.0/sensorML.xsd">

[bookmark: _Toc6781426]DescribedObject Properties
The DescribedObject element is an XML Schema implementation of the UML classes defined in clause 7.2.2. DescribedObject is the base class for all process objects defined in this standard. DescribedObject is derived from gml:AbstractFeature. In essence it provides a common set of metadata for a general feature. It is particularly suited for processes and functional devices, as later described in this specification.
The XML snippet for the DescribedObject element and its corresponding complex types is shown below:

<element name="DescribedObject" type="sml:DescribedObjectType" abstract="true"
 substitutionGroup="gml:AbstractFeature">
	<annotation>
		<documentation>
 A feature with generic metadata which further clarifies the object and supports object discovery.
 </documentation>
	</annotation>
</element>

<complexType name="DescribedObjectType" abstract="true">
		<complexContent>
			<extension base="gml:AbstractFeatureType">
				<sequence>
					<element name="extension" type="anyType" minOccurs="0" maxOccurs="unbounded">
						<annotation>
							<documentation>
A property that allows one to extend a document using a schema in a different
namespace from the current schema.
</documentation>
						</annotation>
					</element>
					<element name="keywords" type="sml:KeywordListPropertyType"
minOccurs="0" maxOccurs="unbounded">
						<annotation>
							<documentation>
Short keywords describing the context of this document to aid in discovery.
</documentation>
						</annotation>
					</element>
					<element name="identification" type="sml:IdentifierListPropertyType"
minOccurs="0" maxOccurs="unbounded">
						<annotation>
							<documentation>
Identifiers useful for discovery of the process (e.g. short name, mission id, wing id, serial
number, etc.)
</documentation>
						</annotation>
					</element>
					<element name="classification" type="sml:ClassifierListPropertyType"
minOccurs="0" maxOccurs="unbounded">
						<annotation>
							<documentation>
Classifiers useful for discovery of the process (e.g. process type, sensor type, intended
application, etc.)
</documentation>
						</annotation>
					</element>
					<element name="validTime" minOccurs="0" maxOccurs="unbounded">
						<annotation>
							<documentation>
The time instance or time range during which this instance description is valid.
</documentation>
						</annotation>
						<complexType>
							<sequence>
								<group ref="sml:TimeInstantOrPeriod"/>
							</sequence>
						</complexType>
					</element>
					<element name="securityConstraints" type="anyType" minOccurs="0" maxOccurs="unbounded">
						<annotation>
							<documentation>
Overall security tagging of process description; individual tagging of properties can be
done using extension element.
</documentation>
						</annotation>
					</element>
					<element name="legalConstraints" type="gmd:MD_LegalConstraints_PropertyType"
minOccurs="0" maxOccurs="unbounded">
						<annotation>
							<documentation>
Legal constraints applied to this description (e.g. copyrights, legal use, etc.)
</documentation>
						</annotation>
					</element>
					<element name="characteristics" minOccurs="0" maxOccurs="unbounded">
						<annotation>
							<documentation>
Useful properties of this process that do not further qualify the output values (e.g.
component dimensions, battery life, operational limits, etc).
</documentation>
						</annotation>
						<complexType>
							<complexContent>
								<extension base="sml:CharacteristicListPropertyType">
									<attribute name="name" type="NCName" use="required"/>
								</extension>
							</complexContent>
						</complexType>
					</element>
					<element name="capabilities" minOccurs="0" maxOccurs="unbounded">
						<annotation>
							<documentation>
Properties that further clarify or quantify the output of the process (e.g. dynamic range,
sensitivity, threshold, etc.). These can assist in the discovery of processes that meet
particular requirements.
</documentation>
						</annotation>
						<complexType>
							<complexContent>
								<extension base="sml:CapabilityListPropertyType">
									<attribute name="name" type="NCName" use="required"/>
								</extension>
							</complexContent>
						</complexType>
					</element>
					<element name="contacts" type="sml:ContactListPropertyType"
minOccurs="0" maxOccurs="unbounded">
						<annotation>
							<documentation>
Persons or responsible parties that are relevant to this process (e.g. designer,
manufacturer, expert, etc.)
</documentation>
						</annotation>
					</element>
					<element name="documentation" type="sml:DocumentListPropertyType"
minOccurs="0" maxOccurs="unbounded">
						<annotation>
							<documentation>
Additional external online documentation of relevance to this process (e.g. user's guides,
product manuals, specification sheets, images, technical papers, etc.)
</documentation>
						</annotation>
					</element>
					<element name="history" type="sml:EventListPropertyType"
minOccurs="0" maxOccurs="unbounded">
						<annotation>
							<documentation>
A collection of time-tagged events relevant to this process.
</documentation>
						</annotation>
					</element>
				</sequence>
				<attribute ref="xml:lang" use="optional">
					<annotation>
						<documentation>
A tag that identifies the language (e.g. english, french, etc.) for the overall document using a
two-letters code as defined by ISO 639-1.
</documentation>
					</annotation>
				</attribute>
			</extension>
		</complexContent>
	</complexType>

Most properties in DescribedObject are optional, thereby allowing the description to be as small or as robust as one desires.

All property elements in DescribedObject are of type DescribedObjectPropertyType which supports the ability to reference the value of the property externally through xlink:href or provide the value inline.

	<complexType name="DescribedObjectPropertyType">
		<sequence minOccurs="0">
			<element ref="sml:DescribedObject"/>
		</sequence>
		<attributeGroup ref="gml:AssociationAttributeGroup"/>
		<attributeGroup ref="gml:OwnershipAttributeGroup"/>
	</complexType>

Additionally, most property values in DescribedObject are of type AbstractMetadataListType, which supports a list structure along with identification and definition properties.

	<element name="AbstractMetadataList" type="sml:AbstractMetadataListType"
		substitutionGroup="swe:AbstractSWEIdentifiable"/>

	<complexType name="AbstractMetadataListType">
		<complexContent>
			<extension base="swe:AbstractSWEIdentifiableType">
				<attribute name="definition" type="anyURI" use="optional"/>
			</extension>
		</complexContent>
	</complexType>
	<complexType name="AbstractMetadataListPropertyType">
		<sequence minOccurs="0">
			<element ref="sml:AbstractMetadataList"/>
		</sequence>
		<attributeGroup ref="swe:AssociationAttributeGroup"/>
	</complexType>

Description Property
The description property is inherited from gml:AbstractFeature and provides a textual description for the feature.
An example of a description is given below:

 <gml:description>Thermometer on the window of the Cass Building, Room 315</gml:description>

Name Property
The name property is inherited from gml:AbstractFeature and provides a common name for the feature.
An example of the name property is given below:

 <gml:name>Health Physics Instruments 2070 Gamma Detector</gml:name>

Unique Identifier
This specification reserves the gml:identifier, inherited from gml:AbstractFeature, as a means of providing a unique identifier for the DescribedObject. This unique identifier should be referenced in any other specification that involves this object, thereby providing a means of searching for all references to this object.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess/globallyUniqueID

	[bookmark: _Ref194736037]An instance supporting DescribedObject shall have one and only one gml:identifier and this element shall have a codespace attribute with a value set to “uniqueID”. The value of the gml:identifier shall be a globally unique identifier for the DescribedObject.

The value of the gml:identifier can be a URI (e.g. URL or URN) or a series of string characters that uniquely identify the object. An example of a globally unique identifier for a weather station is given below:

 <gml:identifier codeSpace="uid">urn:icd:stations:FR8766</gml:identifier>

<gml:identifier codeSpace="uid">38a7s8f9d55</gml:identifier>

Keywords
The keyword property and the KeywordList element are XML Schema implementations of the UML classes defined in clause 7.2.2.2.
The XML snippet for the KeywordList element and its corresponding complex types is shown below:

	<element name="KeywordList" type="sml:KeywordListType" substitutionGroup="sml:AbstractMetadataList"/>

	<complexType name="KeywordListType">
		<complexContent>
			<extension base="sml:AbstractMetadataListType">
				<sequence>
					<element name="codeSpace" type="swe:Reference" minOccurs="0" maxOccurs="1"/>
					<element name="keyword" type="string" minOccurs="1" maxOccurs="unbounded"/>
				</sequence>
			</extension>
		</complexContent>
	</complexType>
	<complexType name="KeywordListPropertyType">
		<sequence minOccurs="0">
			<element ref="sml:KeywordList"/>
		</sequence>
		<attributeGroup ref="swe:AssociationAttributeGroup"/>
	</complexType>

The KeywordList element includes an optional codespace attribute that shall reference an external dictionary or keyword list that includes all possible keyword entries. An example of a keyword list without a codespace defined is shown below:

 	<keywords>
		<KeywordList>
			<keyword>weather station</keyword>
			<keyword>precipitation</keyword>
			<keyword>wind speed</keyword>
			<keyword>temperature</keyword>
		</KeywordList>
	</keywords>

An example of a keyword list with codespace is shown below:

	<keywords>
		<KeywordList codespace="http://myAuthoritativeDomain.org/def/myKeywordList">
			<keyword>weather station</keyword>
			<keyword>precipitation</keyword>
			<keyword>wind speed</keyword>
			<keyword>temperature</keyword>
		</KeywordList>
	</keywords>

Identifiers
The IdentifierList and the Term elements are XML Schema implementations of the UML classes defined in clause 7.2.2.3. The identifier property of the IdentifierList takes a Term as its value. The Term element has an optional definition attribute that shall reference a resolvable definition of the term within an online dictionary or ontology.
The XML snippets for the IdentifierList and Term elements and their corresponding complex types are shown below:

Term:
	<element name="Term" type="sml:TermType" substitutionGroup="swe:AbstractSWE"/>

	<complexType name="TermType">
		<complexContent>
			<extension base="swe:AbstractSWEType">
				<sequence>
					<element name="label" type="string"/>
					<element name="codeSpace" type="swe:Reference" minOccurs="0" maxOccurs="1"/>
					<element name="value" type="string"/>
				</sequence>
				<attribute name="definition" type="anyURI" use="optional"/>
			</extension>
		</complexContent>
	</complexType>
	<complexType name="TermPropertyType">
		<sequence minOccurs="0">
			<element ref="sml:Term"/>
		</sequence>
		<attributeGroup ref="swe:AssociationAttributeGroup"/>
	</complexType>

IdentifierList:
	<element name="IdentifierList" type="sml:IdentifierListType" substitutionGroup="sml:AbstractMetadataList"/>

	<complexType name="IdentifierListType">
		<complexContent>
			<extension base="sml:AbstractMetadataListType">
				<sequence>
					<element name="identifier" minOccurs="1" maxOccurs="unbounded">
						<complexType>
							<sequence>
								<element ref="sml:Term"/>
							</sequence>
						</complexType>
					</element>
				</sequence>
			</extension>
		</complexContent>
	</complexType>

	<complexType name="IdentifierListPropertyType">
		<sequence minOccurs="0">
			<element ref="sml:IdentifierList"/>
		</sequence>
		<attributeGroup ref="swe:AssociationAttributeGroup"/>
	</complexType>

An example of an identifier list is shown below:

<sml:identification>
 <sml:IdentifierList>
 <sml:identifier>
 <sml:Term definition="http://sensorML.com/def/property/ShortName">
 <sml:label>Short Name</sml:label>
 <sml:value>Thermometer FR8766</sml:value>
 </sml:Term>
 </sml:identifier>
 <sml:identifier>
 <sml:Term definition="http://sensorML.com/def/property/Manufacturer">
 <sml:label>Manufacturer Name</sml:label>
 <sml:value>ACME Inc</sml:value>
 </sml:Term>
 </sml:identifier>
 <sml:identifier>
 <sml:Term definition="http://sensorML.com/def/property/ModelNumber">
 <sml:label>Manufacturer Model</sml:label>
 <sml:value>T911</sml:value>
 </sml:Term>
 </sml:identifier>
 <sml:identifier>
 <sml:Term definition=" http://sensorML.com/def/property/SerialNumber">
 <sml:label>Serial Number</sml:label>
 <sml:value>FT5743456566-997</sml:value>
 </sml:Term>
 </sml:identifier>
 </sml:IdentifierList>
 </sml:identification>

Classifiers
The ClassifierList is an XML Schema implementations of the UML classes defined in clause 7.2.2.4. The classifier property of the ClassifierList takes a Term as its value.
The XML snippet for the ClassifierList element and its corresponding complex types is shown below:

	<element name="ClassifierList" type="sml:ClassifierListType" substitutionGroup="sml:AbstractMetadataList"/>

	<complexType name="ClassifierListType">
		<complexContent>
			<extension base="sml:AbstractMetadataListType">
				<sequence>
					<element name="classifier" minOccurs="1" maxOccurs="unbounded">
						<complexType>
							<sequence>
								<element ref="sml:Term"/>
							</sequence>
						</complexType>
					</element>
				</sequence>
			</extension>
		</complexContent>
	</complexType>

	<complexType name="ClassifierListPropertyType">
		<sequence minOccurs="0">
			<element ref="sml:ClassifierList"/>
		</sequence>
		<attributeGroup ref="swe:AssociationAttributeGroup"/>
	</complexType>

An example of a classifier list is shown below:

 <sml:classification>
 <sml:ClassifierList>
 <sml:classifier>
 <sml:Term definition="http://sensorML.com/def/property/SensorType">
 <sml:label>Sensor Type</sml:label>
 <sml:value>Weather Station</sml:value>
 </sml:Term>
 </sml:classifier>
 <sml:classifier>
 <sml:Term definition="http://sensorML.com/def/property/IntendedApplication">
 <sml:label>Intended Application</sml:label>
 <sml:value>Weather</sml:value>
 </sml:Term>
 </sml:classifier>
 </sml:ClassifierList>
 </sml:classification>

Security Constraints
The securityConstraints property provides an overall security tagging for the overall document. Typically if any part of a document is classified as Secret, for instance, then the entire document is tagged as Secret.
Because various nations and other entities may have developed their own XML schema for supporting security tagging, the value of the securityConstraints property is provide as xs:any. Thus, like the extension property, the value of the securityConstraint property can be any XML, but this XML must be defined in a namespace other than those used in this standard.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess/documentSecurityTags

	[bookmark: _Ref194736388]All values for the securityConstraints property shall be defined in a new unique namespace (other than the namespaces used by this standard and its dependencies).

Note on Security Tagging Individual Properties
It is often required or desireable that security tagging exists not only for the entire document but for individual property values as well. SensorML supports tagging of individual property values and lists through the extension property that is inherited by all elements derived from AbstractSWEType and AbstractSWEIdentifiableType.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess/individualSecurityTags

	[bookmark: _Ref194736764]Security tagging of individual property values shall utilize the extension element within the appropriate SensorML or SWE Common data elements.

Valid Time Constraints
The validTime element is an XML Schema implementation of the UML class defined in clause 7.2.2.6.
The XML Schema snippet from DescribedObject that pertains to the validTime property is given below. The validTime property takes either a GML TimePeriod or TimeInstant as its value.

	<element name="validTime" minOccurs="0" maxOccurs="unbounded">
		<annotation>
			<documentation>
The time instance or time range during which this instance description is valid.
</documentation>
		</annotation>
		<complexType>
			<sequence>
				<group ref="sml:TimeInstantOrPeriod"/>
			</sequence>
		</complexType>
	</element>

	<group name="TimeInstantOrPeriod">
		<annotation>
			<documentation>Either a Time Instant or Time Period</documentation>
		</annotation>
		<choice>
			<element ref="gml:TimePeriod"/>
			<element ref="gml:TimeInstant"/>
		</choice>
	</group>

	<complexType name="TimeInstantOrPeriodPropertyType">
		<sequence minOccurs="0">
			<group ref="sml:TimeInstantOrPeriod"/>
		</sequence>
		<attributeGroup ref="swe:AssociationAttributeGroup"/>
	</complexType>

An example of the valid time being given by a TimePeriod is shown below:

	<validTime>
		<gml:TimePeriod gml:id="deploymentDates">
			<gml:beginPosition>2009-01-01T14:00:00Z</gml:beginPosition>
			<gml:endPosition>2013-12-31T08:20:00Z</gml:endPosition>
		</gml:TimePeriod>
	</validTime>

Legal Constraints
The legalConstraints element is an XML Schema implementation of the UML class defined in clause 7.2.2.7.
The XML Schema snippet from DescribedObject that pertains to the legalConstraints property is given below. The legalConstraints property takes an ISO 19115 MD_LegalConstraints element as its value, which is encoded according to ISO19139 schema.

	<element name="legalConstraints" type="gmd:MD_LegalConstraints_PropertyType"
minOccurs="0" maxOccurs="unbounded">
		<annotation>
			<documentation>Legal constraints applied to this description (e.g. copyrights, legal use, etc.)
</documentation>
		</annotation>
	</element>

An example of legalConstraints is provided below:

 <sml:legalConstraints>
		<gmd:MD_LegalConstraints>
			 <gmd:useLimitation>
				<gco:CharacterString>
				Disclaimer - While every effort has been made to ensure that the data from this sensor
				is accurate and reliable within the limits of the current state of the art, we cannot assume
				liability for any damages caused by any errors or omissions in the data, nor as a result of
				the failure of the data to function on a particular system. We makes no warranty, expressed
				or implied, nor does the fact of distribution constitute such a warranty.
				</gco:CharacterString>
			</gmd:useLimitation>
		</gmd:MD_LegalConstraints>
 </sml:legalConstraints>

Capabilities
The capabilities property and the CapabilitiesList element are XML Schema implementations of the UML classes defined in clause 7.2.2.9. The capabilities property takes a CapabilitiesList as its value. The CapabilitiesList member property accepts any SWE Common data component as its value.
The XML snippet for the CapabilitiesList element and its corresponding complex types is shown below:

	<element name="CapabilityList" type="sml:CapabilityListType" substitutionGroup="sml:AbstractMetadataList"/>

	<complexType name="CapabilityListType">
		<complexContent>
			<extension base="sml:AbstractMetadataListType">
				<sequence>
					<element name="capability" minOccurs="1" maxOccurs="unbounded">
						<complexType>
							<complexContent>
								<extension base="swe:AbstractDataComponentPropertyType">
									<attribute name="name" type="NCName" use="required"/>
								</extension>
							</complexContent>
						</complexType>
					</element>
				</sequence>
			</extension>
		</complexContent>
	</complexType>

	<complexType name="CapabilityListPropertyType">
		<sequence minOccurs="0">
			<element ref="sml:CapabilityList"/>
		</sequence>
		<attributeGroup ref="swe:AssociationAttributeGroup"/>
	</complexType>

Thus capabilities can be described using SWE Common simple types, such as Quantity, Count, Boolean, Category, Text, and Time as well as be aggregate types such as DataRecord, DataArray, Vector, or Matrix.
An example of capabilities is given below:

 <sml:capabilities>
 <sml:CapabilityList>
 <sml:capability name="measurementProperties">
 <swe:DataRecord definition="http://sensorML.com/def/property/measurementProperties">
 <swe:label>Measurement Properties</swe:label>
 <swe:field name="RadiationRange">
 <swe:QuantityRange definition="http://sensorML.com/def/property/radiationLevel">
 <swe:uom code="R/h"/>
 <swe:value>0 30</swe:value>
 </swe:QuantityRange>
 </swe:field>
 <swe:field name="Sensitivitity">
 <swe:Quantity definition="http://sensorML.com/def/property/radiationSensitivity">
 <swe:uom code="{tot}/uR"/>
 <swe:value>1</swe:value>
 </swe:Quantity>
 </swe:field>
 <swe:field name="SamplePeriod">
 <swe:Quantity definition="http://sensorML.com/def/property/samplePeriod">
 <swe:uom code="s"/>
 <swe:value>1</swe:value>
 </swe:Quantity>
 </swe:field>
 <swe:field name="MeasurementOutputTime">
 <swe:Quantity definition="http://sensorML.com/def/property/outputPeriod">
 <swe:uom code="s"/>
 <swe:value>450</swe:value>
 </swe:Quantity>
 </swe:field>
 </swe:DataRecord>
 </sml:capability>
 </sml:CapabilityList>
 </sml:capabilities>

Characteristics
The characteristics property and the CharacteristicsList element are XML Schema implementations of the UML classes defined in clause 7.2.2.9. The characteristics property takes a CharacteristicsList as its value. The CharacteristicsList member property accepts any SWE Common data component as its value.
The XML snippet for the CharacteristicsList element and its corresponding complex types is shown below:

<element name="CharacteristicList" type="sml:CharacteristicListType"
	substitutionGroup="sml:AbstractMetadataList"/>

	<complexType name="CharacteristicListType">
		<complexContent>
			<extension base="sml:AbstractMetadataListType">
				<sequence>
					<element name="characteristic" minOccurs="1" maxOccurs="unbounded">
						<complexType>
							<complexContent>
								<extension base="swe:AbstractDataComponentPropertyType">
									<attribute name="name" type="NCName" use="required"/>
								</extension>
							</complexContent>
						</complexType>
					</element>
				</sequence>
			</extension>
		</complexContent>
	</complexType>

	<complexType name="CharacteristicListPropertyType">
		<sequence minOccurs="0">
			<element ref="sml:CharacteristicList"/>
		</sequence>
		<attributeGroup ref="swe:AssociationAttributeGroup"/>
	</complexType>
Thus characteristics can be described using SWE Common simple types, such as Quantity, Count, Boolean, Category, Text, and Time as well as be aggregate types such as DataRecord, DataArray, Vector, or Matrix.
An example of characteristics that groups like properties in data records is given below:

	<sml:characteristics name="generalProperties">
		<sml:CharacteristicList>

			<sml:characteristic name="physicalProperties">
				<swe:DataRecord definition="http://sensorML.com/def/property/physicalProperties">
					<swe:label>Physical Properties</swe:label>
					<swe:field name="PhysicalProperties">
						<swe:DataRecord>
							<swe:field name="Weight">
								<swe:Quantity definition="http://sensorML.com/def/property/weight">
									<swe:uom code="oz"/>
									<swe:value>10</swe:value>
								</swe:Quantity>
							</swe:field>
							<swe:field name="Length">
								<swe:Quantity definition="http://sensorML.com/def/property/length">
									<swe:uom code="in"/>
									<swe:value>4.5</swe:value>
								</swe:Quantity>
							</swe:field>
							<swe:field name="Width">
								<swe:Quantity definition="http://sensorML.com/def/property/width">
									<swe:uom code="in"/>
									<swe:value>2.5</swe:value>
								</swe:Quantity>
							</swe:field>
							<swe:field name="Height">
								<swe:Quantity definition="http://sensorML.com/def/property/height">
									<swe:uom code="in"/>
									<swe:value>1.4</swe:value>
								</swe:Quantity>
							</swe:field>
							<swe:field name="CasingMaterial">
								<swe:Category definition="http://sensorML.com/def/property/material">
									<swe:value>Aluminum</swe:value>
								</swe:Category>
							</swe:field>
						</swe:DataRecord>
					</swe:field>
				</swe:DataRecord>
			</sml:characteristic>

			<sml:characteristic name="electricalRequirements">
				<swe:DataRecord definition="http://sensorML.com/def/property/powerRequirement">
					<swe:label>Electrical Requirements</swe:label>
					<swe:field name="voltage">
						<swe:QuantityRange definition="http://sensorML.com/def/property/voltage">
							<swe:uom code="V"/>
							<swe:value>8 12</swe:value>
						</swe:QuantityRange>
					</swe:field>
					<swe:field name="CurrentType">
						<swe:Category definition="http://sensorML.com/def/property/electricalCurrentType">
							<swe:value>DC</swe:value>
						</swe:Category>
					</swe:field>
					<swe:field name="AmpRange">
						<swe:QuantityRange definition="http://sensorML.com/def/property/electricalCurrent">
							<swe:uom code="mA"/>
							<swe:value>20 40</swe:value>
						</swe:QuantityRange>
					</swe:field>
				</swe:DataRecord>
			</sml:characteristic>

		</sml:CharacteristicList>
	</sml:characteristics>

Contacts
The contacts property and the ContactList element are XML Schema implementations of the UML classes defined in clause 7.2.2.11. The contacts property takes a ContactList as its value. The ContactList member property supports an ISO 19115 CI_ResponsibleParty as its value, which is encoded according to ISO19139 schema.
The XML snippet for the ContactList element and its corresponding complex types is shown below:

	<element name="ContactList" type="sml:ContactListType" substitutionGroup="sml:AbstractMetadataList"/>

	<complexType name="ContactListType">
		<complexContent>
			<extension base="sml:AbstractMetadataListType">
				<sequence>
					<element name="contact" type="gmd:CI_ResponsibleParty_PropertyType"
minOccurs="1" maxOccurs="unbounded"/>
				</sequence>
			</extension>
		</complexContent>
	</complexType>

	<complexType name="ContactListPropertyType">
		<sequence minOccurs="0">
			<element ref="sml:ContactList"/>
		</sequence>
		<attributeGroup ref="swe:AssociationAttributeGroup"/>
	</complexType>

A contact can have multiple roles for which it is responsible. What is of most interest in this standard is the role the responsible party plays relative to the object being described. Therefore, the role of the responsible party (e.g. manufacturer, expert, owner, etc.) shall be given by the xlink:arcrole attribute in the member property of the ContactList.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess/contactRole

	[bookmark: _Ref194737014]The role of the responsible party relative to the described object shall be provided using the xlink:arcrole attribute of the relevant member property of the ContactList.

An example of a ContactList is shown below (note that the gmd schema requires a CharacterString element before the values of properties).

 <sml:contacts>
 <sml:ContactList>

 <sml:contact xlink:arcrole="http://sensorml.com/def/role/Operator">
 <gmd:CI_ResponsibleParty>
 <gmd:organisationName>
 <gco:CharacterString>METEO France</gco:CharacterString>
 </gmd:organisationName>
 <gmd:contactInfo>
 <gmd:CI_Contact>
 <gmd:phone>
 <gmd:CI_Telephone>
 <gmd:voice>
 <gco:CharacterString>+33 5 99 11 22 33 44</gco:CharacterString>
 </gmd:voice>
 </gmd:CI_Telephone>
 </gmd:phone>
 <gmd:address>
 <gmd:CI_Address>
 <gmd:deliveryPoint>
 <gco:CharacterString>42 Avenue Gaspard Coriolis</gco:CharacterString>
 </gmd:deliveryPoint>
 <gmd:city>
 <gco:CharacterString>TOULOUSE</gco:CharacterString>
 </gmd:city>
 <gmd:postalCode>
 <gco:CharacterString>31100</gco:CharacterString>
 </gmd:postalCode>
 <gmd:country>
 <gco:CharacterString>FRANCE</gco:CharacterString>
 </gmd:country>
 </gmd:CI_Address>
 </gmd:address>
 </gmd:CI_Contact>
 </gmd:contactInfo>
 <gmd:role gco:nilReason="inapplicable"/>
 </gmd:CI_ResponsibleParty>
 </sml:contact>

 <sml:contact
		 xlink:arcrole="http://sensorml.com//def/role/manufacturer"
		 xlink:href="http://www.myCompany.com/contact/company.xml"/>

 </sml:ContactList>
 </sml:contacts>

Documentation
The documentation property and the DocumentList element are XML Schema implementations of the UML classes defined in clause 7.2.2.11. The documentation property takes a DocumentList as its value. The DocumentList member property supports an ISO 19115 CI_OnlineResource as its value, which is encoded according to ISO19139 schema.
The XML snippet for the DocumentList element and its corresponding complex types is shown below:

	<element name="DocumentList" type="sml:DocumentListType" substitutionGroup="sml:AbstractMetadataList"/>

	<complexType name="DocumentListType">
		<complexContent>
			<extension base="sml:AbstractMetadataListType">
				<sequence>
					<element name="document" type="gmd:CI_OnlineResource_PropertyType"
minOccurs="1" maxOccurs="unbounded"/>
				</sequence>
			</extension>
		</complexContent>
	</complexType>

	<complexType name="DocumentListPropertyType">
		<sequence minOccurs="0">
			<element ref="sml:DocumentList"/>
		</sequence>
		<attributeGroup ref="swe:AssociationAttributeGroup"/>
	</complexType>

An example of documentation is given below (note that the gco and gmd schema require a CharacterString element before the values of properties):

	<documentation>
		<DocumentList>
			<document xlink:arcrole="http://sensorml.com/def/role/userManual">
				<gmd:CI_OnlineResource>
					<gmd:linkage>
						<gmd:URL>http://myCompany.com/ref/2031manual.pdf</gmd:URL>
					</gmd:linkage>
					<gmd:name>
						<gco:CharacterString>
							User Manual for Model 2031
						</gco:CharacterString>
					</gmd:name>
					<gmd:description>
						<gco:CharacterString>
							This document provides the complete Users Manual for the myCompany sensor model 2031.
						</gco:CharacterString>
					</gmd:description>
				</gmd:CI_OnlineResource>
			</document>

			<document xlink:arcrole="productImage">
				<gmd:CI_OnlineResource>
					<gmd:linkage>
						<gmd:URL>http://myCompany.com/ref/2031image.jpg</gmd:URL>
					</gmd:linkage>
					<gmd:name>
						<gco:CharacterString>
							Sensor Model 2031
						</gco:CharacterString>
					</gmd:name>
					<gmd:description>
						<gco:CharacterString>
							This is an image of sensor model 2031.
						</gco:CharacterString>
					</gmd:description>
				</gmd:CI_OnlineResource>
			</document>
	
		</DocumentList>
</documentation>

History
The history property and the EventList and Event elements are XML Schema implementations of the UML classes defined in clause 7.2.2.12. The history property takes an EventList as its value. The EventList member property takes an Event as its value. The XML snippets for the EventList and Event elements and their corresponding complex types are shown below:
EventList:
	<element name="EventList" type="sml:EventListType" substitutionGroup="sml:AbstractMetadataList"/>

	<complexType name="EventListType">
		<complexContent>
			<extension base="sml:AbstractMetadataListType">
				<sequence>
					<element name="event" type="sml:EventPropertyType"
minOccurs="1" maxOccurs="unbounded"/>
				</sequence>
			</extension>
		</complexContent>
	</complexType>

	<complexType name="EventListPropertyType">
		<sequence minOccurs="0">
			<element ref="sml:EventList"/>
		</sequence>
		<attributeGroup ref="swe:AssociationAttributeGroup"/>
	</complexType>

Event:
	<element name="Event" type="sml:EventType" substitutionGroup="swe:AbstractSWEIdentifiable">
		<annotation>
			<documentation>A time tagged Event with description and relevant property values.</documentation>
		</annotation>
	</element>
	<complexType name="EventType">
		<complexContent>
			<extension base="swe:AbstractSWEIdentifiableType">
				<sequence>
					<element name="keywords" type="sml:KeywordListPropertyType" minOccurs="0" maxOccurs="1">
						<annotation>
							<documentation>keywords useful for discovery of the event</documentation>
						</annotation>
					</element>
					<element name="identification" type="sml:IdentifierListPropertyType"
minOccurs="0" maxOccurs="1">
						<annotation>
							<documentation>Identifiers relevant to the event</documentation>
						</annotation>
					</element>
					<element name="classification" type="sml:ClassifierListPropertyType"
minOccurs="0" maxOccurs="1">
						<annotation>
							<documentation>Type of event (useful for discovery)</documentation>
						</annotation>
					</element>
					<element name="contacts" type="sml:ContactListPropertyType" minOccurs="0" maxOccurs="1">
						<annotation>
							<documentation>Persons or parties relevant to this event</documentation>
						</annotation>
					</element>
					<element name="documentation" type="sml:DocumentListPropertyType"
minOccurs="0" maxOccurs="1">
						<annotation>
							<documentation>Additional documentation relevant to this event</documentation>
						</annotation>
					</element>
					<element name="time">
						<annotation>
							<documentation>DateTime of the event</documentation>
						</annotation>
						<complexType>
							<sequence>
								<group ref="sml:TimeInstantOrPeriod"/>
							</sequence>
						</complexType>
					</element>
					<element name="property" type="swe:AbstractDataComponentPropertyType"
minOccurs="0" maxOccurs="1">
						<annotation>
							<documentation>
Properties of interest to the event (e.g. calibration values, condition category, error codes,
etc)
</documentation>
						</annotation>
					</element>
					<element name="configuration" minOccurs="0" maxOccurs="1">
						<annotation>
							<documentation>Configuration settings adjusted during event</documentation>
						</annotation>
						<complexType>
							<sequence>
								<element ref="sml:AbstractSettings"/>
							</sequence>
						</complexType>
					</element>
				</sequence>
				<attribute name="definition" type="anyURI" use="optional"/>
			</extension>
		</complexContent>
	</complexType>

	<complexType name="EventPropertyType">
		<sequence minOccurs="0">
			<element ref="sml:Event"/>
		</sequence>
		<attributeGroup ref="swe:AssociationAttributeGroup"/>
	</complexType>

An example of an EventList is shown below. EventList could of course be presented inline as a value of the history property, or could be maintained externally and referenced by the xlink:href attribute of the history property.

<sml:EventList>
 <sml:event>
 <sml:Event>
 <swe:label>Scheduled Maintenance</swe:label>
 <swe:description>
		Monthly maintenance of station exterior.-Checked electronics-Checked casingChecked power
		supply.Everything OK.
	 </swe:description>
 <sml:time>
 <gml:TimePeriod gml:id="MP1">
 <gml:beginPosition>2002-03-01T10:00:00Z</gml:beginPosition>
 <gml:endPosition>2002-03-01T11:00:00Z</gml:endPosition>
 </gml:TimePeriod>
 </sml:time>
 </sml:Event>
 </sml:event>
 <sml:event>
 <sml:Event>
 <swe:label>Calibration</swe:label>
 <swe:description>Recalibration of acquisition electronics using temperature reference</swe:description>
 <sml:time>
 <gml:TimeInstant gml:id="MP2">
 <gml:timePosition>2002-03-01T18:00:00Z</gml:timePosition>
 </gml:TimeInstant>
 </sml:time>
 <sml:configuration>
 <sml:Settings>
 <sml:setEncodedValues ref="base/components/raingauge/parameters/steady-state-response">
 1,2,3,4,5 2,4,6,8,10
 </sml:setEncodedValues>
 </sml:Settings>
 </sml:configuration>
 </sml:Event>
 </sml:event>
</sml:EventList>

[bookmark: _Toc6781427]Abstract Process
AbstractProcessType is derived from DescribedObject and serves as the base class for all processes modelled and encoded in this specification. Thus, all processes include the metadata described above plus the elements defined in this section and its subsections.
The AbstractProcess element is an XML Schema implementation of the UML class defined in clause 7.2.3.
The XML snippet for the AbstractProcess element and its corresponding complex types is shown below. The various properties of AbstractProcess will be discussed in more detail in the following subsections.

	<element name="AbstractProcess" type="sml:AbstractProcessType" abstract="true"
		substitutionGroup="sml:DescribedObject">
		<annotation>
			<documentation>The general base model for any process.</documentation>
		</annotation>
	</element>
	<complexType name="AbstractProcessType" abstract="true">
		<complexContent>
			<extension base="sml:DescribedObjectType">
				<sequence>
					<element name="typeOf" type="gml:ReferenceType" minOccurs="0" maxOccurs="1">
						<annotation>
							<appinfo>
								<gml:targetElement>sml:AbstractProcess</gml:targetElement>
							</appinfo>
							<documentation>
A reference to a base process from which this process inherits properties and constraints
(e.g. original equipment manufacturer's model description, generic equation, etc.). The
uniqueID of the referenced process must be provided using the xlink:title attribute while
the URL to the process description must be provided by the xlink:href attribute.
</documentation>
						</annotation>
					</element>
					<element name="configuration" minOccurs="0" maxOccurs="1">
						<annotation>
							<documentation>
Value settings that further constrain the properties of the base process.
</documentation>
						</annotation>
						<complexType>
							<sequence>
								<element ref="sml:AbstractSettings"/>
							</sequence>
						</complexType>
					</element>
					<element name="featuresOfInterest" minOccurs="0" maxOccurs="1">
						<annotation>
							<documentation>
A collection of features relevant to a process (e.g. the Gulf of Mexico, the White House,
the set of all Fibonacci Numbers, etc.); can also support a sampling feature. The primary
purpose of the Features of Interest is to support discovery.
</documentation>
						</annotation>
						<complexType>
							<sequence>
								<element ref="sml:FeatureList"/>
							</sequence>
						</complexType>
					</element>
					<element name="inputs" minOccurs="0" maxOccurs="1">
						<annotation>
							<documentation>
The list of data components (and their properties and semantics) that the process will
accept as input; In the standard linear equation y=mx+b; x is the input, m and b are the
parameters, and y is the output.
</documentation>
						</annotation>
						<complexType>
							<sequence>
								<element ref="sml:InputList"/>
							</sequence>
						</complexType>
					</element>
					<element name="outputs" minOccurs="0" maxOccurs="1">
						<annotation>
							<documentation>
The list of data components (and their properties and semantics) that the process will
accept as output; In the standard linear equation y=mx+b; x is the input, m and b are the
parameters, and y is the output.
</documentation>
						</annotation>
						<complexType>
							<sequence>
								<element ref="sml:OutputList"/>
							</sequence>
						</complexType>
					</element>
					<element name="parameters" minOccurs="0" maxOccurs="1">
						<annotation>
							<documentation>
The list of data components (and their properties and semantics) that the process will
accept as parameters; In the standard linear equation y=mx+b; x is the input, m and b are
the parameters, and y is the output.
</documentation>
						</annotation>
						<complexType>
							<sequence>
								<element ref="sml:ParameterList"/>
							</sequence>
						</complexType>
					</element>
					<element name="modes" minOccurs="0" maxOccurs="unbounded">
						<annotation>
							<documentation>
A collection of parameters that can be set at once through the selection of a particular
predefined mode.
</documentation>
						</annotation>
						<complexType>
							<sequence>
								<element ref="sml:AbstractModes"/>
							</sequence>
						</complexType>
					</element>
				</sequence>
				<attribute name="definition" type="anyURI">
					<annotation>
						<documentation>
An optional property that allows one to reference the process instance in an online ontology
or dictionary. The value of the property must be a resolvable URI.
</documentation>
					</annotation>
				</attribute>
			</extension>
		</complexContent>
	</complexType>

	<complexType name="AbstractProcessPropertyType">
		<sequence minOccurs="0">
			<element ref="sml:AbstractProcess"/>
		</sequence>
		<attributeGroup ref="gml:AssociationAttributeGroup"/>
		<attributeGroup ref="gml:OwnershipAttributeGroup"/>
	</complexType>

Definition
As with the definition attribute used in SWE Common simple and aggregate data components, the definition attribute for a DescribedObject provides the ability to link to a definition or classification within an online ontology. Relationships of this object with various other objects can then be inferred based on the ontology. There is some potential for overlap of functionality between the definition attribute and the identification and classification properties. Some communities may prefer to primarily use classification and identification elements, while others prefer to use the definition attribute or both.
TypeOf
The typeOf property provides a reference to a base process from which this process inherits properties and constraints. It is a key component in support of inheritance as described in the models in Clause 7.2.3.3.
Two pieces of information required in order to reference a base process instance, the uniqueID of the process and a resolvable URL reference to the process description. These shall be provided by the xlink:title and xlink:href attributes, respectively.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess/typeOfReference

	[bookmark: _Ref194737354]The typeOf property shall require meaningful values for the xlink:title and xlink:href attributes. The uniqueID of the referenced process, given by its gml:identifier property, shall be the value of the xlink:title attribute, while a resolvable URL to the reference process description shall be the value of the xlink:href attribute.

An example of the typeOf property is given below:

 <sml:typeOf xlink:title="urn:heath:2070"
 xlink:href="http://www.sensors.ws/examples/sensorML-2.0/configuration/gamma2070.xml"/>

Abstract Configuration
The optional configuration property takes an AbstractConfiguration as its value, which provides a placeholder for configuration information in the AbstractProcess. A concrete class supporting configuration will be provided in a higher-level conformance class in Requirements Class: Configurable Process Schema in Clause 8.6.

FeatureOfInterest
The featureOfInterest property and the FeatureList element are XML Schema implementations of the UML classes defined in clause 7.2.3.1. The featureOfInterest property takes a FeatureList as its value. The FeatureList member property takes any object derived from GML AbstractFeature as its value. This feature can be described inline, but will most often be provided by reference using the xlink:href attribute.
The XML snippet for the FeatureList element and its corresponding complex types is shown below.

	<element name="FeatureList" type="sml:FeatureListType" substitutionGroup="sml:AbstractMetadataList"/>

	<complexType name="FeatureListType">
		<complexContent>
			<extension base="sml:AbstractMetadataListType">
				<sequence>
					<element name="feature" type="gml:FeaturePropertyType"
minOccurs="1" maxOccurs="unbounded"/>
				</sequence>
			</extension>
		</complexContent>
	</complexType>

	<complexType name="FeatureListPropertyType">
		<sequence minOccurs="0">
			<element ref="sml:FeatureList"/>
		</sequence>
		<attributeGroup ref="swe:AssociationAttributeGroup"/>
	</complexType>

An example for a Feature-of-Interest list is given below. In this case, all features are by reference.

 <sml:featureOfInterest>
		<sml:FeatureList>
			<sml:feature xlink:arcrole="http://sensorml.com/def/property/station"
				xlink:title="urn:myDomain:station:A209"
				xlink:href="http://myDomain.com/features/officeA209.xml"/>
			<sml:feature xlink:arcrole="http://sensorml.com/def/property/observedFeature"
				xlink:title="urn:mmi:features:GulfOfMexico"
				xlink:href="http://mmi.org/features/GulfOfMexico.xml"/>
		</sml:FeatureList>
	</sml:featureOfInterest>

To better understand the role that the feature of interest plays with regard to the process, the xlink:arcrole attribute of the feature property shall be used to specify this relationship. To aid in discovery, the unique ID or name of the feature shall be provided in the xlink:title attribute if it exists.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess/foiArcroleAndTitle

	[bookmark: _Ref194737734]Regardless of whether a feature of interest is described inline or provided by reference, the xlink:arcrole attribute of the member property of the FeatureList shall be used to specify the relationship of the associated feature to the process. If a unique identifier or name for the feature of interest exists, it shall be the value of the xlink:title of the member property of the FeatureList.

Inputs, Outputs, and Parameters
The input, output, and parameter properties and the InputList, OutputList, and ParameterList elements are XML Schema implementations of the UML classes defined in clause 7.2.3.1. The input, output, and parameter properties takes InputList, OutputList, and ParameterList elements as their respective value. The member properties of these lists take any element of the DataComponentOrObservable Union as their value. This union and its components will be discussed in more detail in subsequent sections.
The XML snippets for the InputList, OutputList, and ParameterList elements and their corresponding complex types are shown below:

Inputs:
	<element name="InputList" type="sml:InputListType" substitutionGroup="swe:AbstractSWE"/>

	<complexType name="InputListType">
		<complexContent>
			<extension base="swe:AbstractSWEType">
				<sequence>
					<element name="input" minOccurs="1" maxOccurs="unbounded">
						<complexType>
							<complexContent>
								<extension base="sml:DataComponentOrObservablePropertyType">
									<attribute name="name" type="NCName" use="required"/>
								</extension>
							</complexContent>
						</complexType>
					</element>
				</sequence>
			</extension>
		</complexContent>
	</complexType>

	<complexType name="InputListPropertyType">
		<sequence minOccurs="0">
			<element ref="sml:InputList"/>
		</sequence>
		<attributeGroup ref="swe:AssociationAttributeGroup"/>
	</complexType>

Outputs:
	<element name="OutputList" type="sml:OutputListType" substitutionGroup="swe:AbstractSWE"/>

	<complexType name="OutputListType">
		<complexContent>
			<extension base="swe:AbstractSWEType">
				<sequence>
					<element name="output" minOccurs="1" maxOccurs="unbounded">
						<complexType>
							<complexContent>
								<extension base="sml:DataComponentOrObservablePropertyType">
									<attribute name="name" type="NCName" use="required"/>
								</extension>
							</complexContent>
						</complexType>
					</element>
				</sequence>
			</extension>
		</complexContent>
	</complexType>

	<complexType name="OutputListPropertyType">
		<sequence minOccurs="0">
			<element ref="sml:OutputList"/>
		</sequence>
		<attributeGroup ref="swe:AssociationAttributeGroup"/>
	</complexType>

Parameters:
	<element name="ParameterList" type="sml:ParameterListType" substitutionGroup="swe:AbstractSWE"/>

	<complexType name="ParameterListType">
		<complexContent>
			<extension base="swe:AbstractSWEType">
				<sequence>
					<element name="parameter" minOccurs="1" maxOccurs="unbounded">
						<complexType>
							<complexContent>
								<extension base="sml:DataComponentOrObservablePropertyType">
									<attribute name="name" type="NCName" use="required"/>
								</extension>
							</complexContent>
						</complexType>
					</element>
				</sequence>
			</extension>
		</complexContent>
	</complexType>

	<complexType name="ParameterListPropertyType">
		<sequence minOccurs="0">
			<element ref="sml:ParameterList"/>
		</sequence>
		<attributeGroup ref="swe:AssociationAttributeGroup"/>
	</complexType>

An example of inputs, outputs, and parameters from a particular process is given below (in this case, a gamma radiation sensor):

	<!-- =================== -->
	<!-- Inputs -->
	<!-- =================== -->
	<sml:inputs>
		<sml:InputList>
			<sml:input name="gammaRadiation">
				<sml:ObservableProperty definition="http://sensorML.com/def/property/radiation">
					<swe:label>Electromagnetic Radiation</swe:label>
				</sml:ObservableProperty>
			</sml:input>
		</sml:InputList>
	</sml:inputs>
	<!-- ===================== -->
	<!-- outputs -->
	<!-- ===================== -->
	<sml:outputs>
		<sml:OutputList>
			<sml:output name="dose">
				<swe:DataRecord>
					<swe:field name="averageDose">
						<swe:Quantity definition="http://sensors.ws/ont/SWE/sensor-property/DoseRate.html">
							<swe:label>Average Dose of Gamma Radiation</swe:label>
							<swe:uom code="uR/min"/>
						</swe:Quantity>
					</swe:field>
					<swe:field name="InstantaneousDose">
						<swe:Quantity definition="http://sensorML.com/def/property/radiationDose">
							<swe:label>Instantaneous Dose of Gamma Radiation</swe:label>
							<swe:uom code="uR"/>
						</swe:Quantity>
					</swe:field>
				</swe:DataRecord>
			</sml:output>
		</sml:OutputList>
	</sml:outputs>
	<!-- ======================== -->
	<!-- Parameters -->
	<!-- ======================== -->
	<sml:parameters>
		<sml:ParameterList>
			<sml:parameter name="energyResponse">
				<swe:DataArray definition="http://sensors.ws/spectralResponse">
					<swe:label>Gamma Radiation Response Curve</swe:label>
					<swe:description>
						The normalized energy response per KeV showing the sensitivity to gamma radiation
					</swe:description>
					<swe:elementCount>
						<swe:Count>
							<swe:value>7</swe:value>
						</swe:Count>
					</swe:elementCount>
					<swe:elementType name="energyResponse">
						<swe:DataRecord>
							<swe:label>Normalize Energy Response</swe:label>
							<swe:field name="radiationEnergy">
								<swe:Quantity definition="http://sensorml.com/def/propertyradiationEnergy">
									<swe:label>Radiation Energy</swe:label>
									<swe:uom code="KeV"/>
								</swe:Quantity>
							</swe:field>
							<swe:field name="relativeResponse">
								<swe:Quantity definition="http://sensorml.com/def/propertyrelativeResponse">
									<swe:label>Relative Response</swe:label>
									<swe:uom code="%"/>
								</swe:Quantity>
							</swe:field>
						</swe:DataRecord>
					</swe:elementType>
					<swe:encoding>
						<swe:TextEncoding blockSeparator="
" tokenSeparator=","/>
					</swe:encoding>
					<swe:values>
						10.0,73 17.5,89.5 20.0,94.0 30.,95.5 40.0,96.0 50.0,96.0 100.0,94.0
					</swe:values>
				</swe:DataArray>
			</sml:parameter>
		</sml:ParameterList>
	</sml:parameters>

Data Component Union
The DataComponentOrObservable group provides three choices to serve as process inputs, outputs, and parameters. These include swe:AbstractDataComponent, sml:ObservableProperty, and sml:DataInterface. These will each be discussed further in the following sections.
The XML snippet defining the DataComponentOrObservable group is given below:

	<group name="DataComponentOrObservable">
		<choice>
			<element ref="swe:AbstractDataComponent">
				<annotation>
					<documentation>
A single digital number (DN) or aggregate of DNs that represent the value of some property.
Single data components can be of type Quantity, Count, Category, Boolean, Text, or Time; these
can be aggregated in records, arrays, vector, and matrices.
</documentation>
				</annotation>
			</element>
			<element ref="sml:ObservableProperty">
				<annotation>
					<documentation>
A physical property of the environment that can be observed by an appropriate detector (e.g.
temperature, pressure, etc.); Typically,an ObservableProperty serves as the input of a detector
and the output of an actuator.
</documentation>
				</annotation>
			</element>
			<element ref="sml:DataInterface">
				<annotation>
					<documentation>
A data interface serves as an intermediary between the pure digital domain and the physical
domain where DN are encoded into a format and perhaps transmitted through physical
connections using some well-defined protocol. The DataInterface element allows one to define
the components, semantics, encoding, connections, and protocol at an input, output, or parameter
port.
</documentation>
				</annotation>
			</element>
		</choice>
	</group>

	<complexType name="DataComponentOrObservablePropertyType">
		<sequence minOccurs="0">
			<group ref="sml:DataComponentOrObservable"/>
		</sequence>
		<attributeGroup ref="swe:AssociationAttributeGroup"/>
	</complexType>
ObservableProperty
The ObservableProperty element is an XML encoding of the model defined in Clause 7.2.1 and discussed more in Clause 7.2.3.1. The ObservableProperty is used to represent an observable property or state in the environment. It is often used as an input field (e.g. stimulus) for a detector or the output field (e.g. action) of an actuator.
The XML snippet defining ObservableProperty and its associated complex types is shown below:

	<element name="ObservableProperty" type="sml:ObservablePropertyType"
		substitutionGroup="swe:AbstractSWEIdentifiable">
		<annotation>
			<documentation>
A physical property that can be observed and possibly measured (e.g. temperature, color, position). An
ObservableProperty has unambiguous definition, but does not have units of measure.
</documentation>
		</annotation>
	</element>

	<complexType name="ObservablePropertyType">
		<complexContent>
			<extension base="swe:AbstractSWEIdentifiableType">
				<attribute name="definition" type="anyURI" use="required"/>
			</extension>
		</complexContent>
	</complexType>

	<complexType name="ObservablePropertyPropertyType">
		<sequence minOccurs="0">
			<element ref="sml:ObservableProperty"/>
		</sequence>
		<attributeGroup ref="swe:AssociationAttributeGroup"/>
	</complexType>

The ObservableProperty element requires a URL as the value of its definition attribute, which shall resolve to a definition for the observable within an online dictionary or ontology.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess/observableDefinition

	[bookmark: _Ref194737966]The ObservableProperty element shall include the definition attribute that shall take as its value, a resolvable URL referencing the definition of the observable within an online dictionary or ontology.

An minimal example of the use of ObservableProperty as a value for an input property is given below:

	<sml:input name="temperature">
		<sml:ObservableProperty
			definition="http://www.opengis.net/def/property/OGC/0/AtmosphericTemperature"/>
	</sml:input>

SWE Common Data
SWE Common data types support the description and encoding of determined values, those measured or calculated by a physical or computational process. In addition to the those properties described in ObservableProperty, SWE Common data types can also support other properties such as units of measure, constraints, quality indicators, and values. It is highly recommended that one become familiar with the SWE Common Data specification in OGC 08-094.
In addition to simple data types such as Quantity, Count, Boolean, Category, Time, and Text, SWE Common Data also supports several aggregate data types, such as DataRecord, DataArray, Vector, and Matrix. These allow appropriate grouping of data components, such as a DataRecord including an instantaneous snapshot of the atmosphere (e.g. temperature, pressure, wind direction, and wind speed), a DataArray providing the axes definitions and values for a calibration curve, a Vector providing the GPS location (e.g. latitude, longitude, and altitude) of a dynamic platform, or a Matrix providing the covariance of a set of measurements.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess/DataRecord

	[bookmark: _Ref194738134]Input, output, and parameter data components that are dependent on one another or represent the state at a given time, shall be surrounded by an appropriate aggregate data component, such as swe:DataRecord, swe:Vector, or swe:Matrix.

The following example for a wind chill calculation process uses only SWE Common Quantity elements for inputs and outputs. Note that the input fields are surrounded by a swe:DataRecord element since the temperature and wind speed fields express the condition of the environment at a given time instance.

 <!--================ -->
 <!-- Inputs -->
 <!-- ================ -->
 <sml:inputs>
 <sml:InputList>
 <sml:input name="process_inputs">
 <swe:DataRecord>
 <swe:field name="temperature">
 <swe:Quantity definition="http://sweet.jpl.nasa.gov/2.2/quanTemperature.owl#Temperature">
 <swe:uom code="cel"/>
 </swe:Quantity>
 </swe:field>
 <swe:field name="windSpeed">
 <swe:Quantity definition="http://sweet.jpl.nasa.gov/2.2/quanSpeed.owl#WindSpeed">
 <swe:uom code="m/s"/>
 </swe:Quantity>
 </swe:field>
 </swe:DataRecord>
 </sml:input>
 </sml:InputList>
 </sml:inputs>
 <!-- ================ -->
 <!-- Outputs -->
 <!-- ================ -->
 <sml:outputs>
 <sml:OutputList>
 <sml:output name="windChill">
 <swe:Quantity definition="http://sweet.jpl.nasa.gov/2.2/quanTemperature.owl#WindChill">
 <swe:uom code="cel"/>
 </swe:Quantity>
 </sml:output>
 </sml:OutputList>
 </sml:outputs>

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess/VectorUse

	[bookmark: _Ref194738599]A swe:Vector shall be used for any input, output, or parameter value that requires position to be specified relative to a specific axis of a reference frame.

An example of position output provided as output of a system is given below. This example uses both Vector and DataRecord elements to group the fields appropriately.

<sml:output>
 <swe:DataRecord>
 <swe:field name="location">
 <swe:Vector
 		definition="http://sensorml.com/def/property/SensorLocation"
			referenceFrame="http://www.opengis.net/def/crs/EPSG/6.7/4979"
			localFrame="#SENSOR_FRAME">
 <swe:coordinate name="Lat">
 <swe:Quantity definition="http://sensorml.com/def/property/latitude" axisID="Lat">
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="Lon">
 <swe:Quantity definition="http://sensorml.com/def/property/longitude" axisID="Long">
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="Alt">
 <swe:Quantity definition="http://sensorml.com/def/property/altitude" axisID="Alt">
 <swe:uom code="m"/>
 </swe:Quantity>
 </swe:coordinate>
 </swe:Vector>
 </swe:field>
 <swe:field name="orientation">
 <swe:Vector
 		definition="http://sensorml.com/def/property/SensorOrientation"
			referenceFrame="http://www.opengis.net/def/crs/NED"
			localFrame="#SENSOR_FRAME">
 <swe:coordinate name="TrueHeading">
 <swe:Quantity definition="http://sensorml.com/def/property/trueHeading" axisID="Z">
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="Pitch">
 <swe:Quantity definition="http://sensorml.com/def/property/pitch" axisID="Y">
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:coordinate>
 </swe:Vector>
 </swe:field>
 </swe:DataRecord>
 </sml:output>

Data Interface
The DataInterface element is an XML encoding of the model defined in Clause 7.10. DataInterface describes the data components as described in the previous clause, but also provides a description of the data encoding of a datastream flowing to or from a process interface as well as a description of interface characteristics itself (e.g. the communication protocols and perhaps physical nature as outlined in the OSI interface stack).
The XML snippet for the DataInterface element and its associated complex types is shown below:

	<element name="DataInterface" type="sml:DataInterfaceType" substitutionGroup="swe:AbstractSWEIdentifiable">
		<annotation>
			<documentation>
The DataInterface description provides information sufficient for "plug-and-play" access to and parsing of
the data stream or file at the particular IO port.
</documentation>
		</annotation>
	</element>

	<complexType name="DataInterfaceType">
		<complexContent>
			<extension base="swe:AbstractSWEIdentifiableType">
				<sequence>
					<element name="data" type="swe:DataStreamPropertyType">
						<annotation>
							<documentation>
The definition of the digital data components and encoding accessed through the data
interface.
</documentation>
						</annotation>
					</element>
					<element name="interfaceParameters" type="swe:DataRecordPropertyType"
minOccurs="0" maxOccurs="1">
						<annotation>
							<documentation>
A set of property values that define the type and configuration of a data interface (e.g. the
port settings of an RS232 interface).
</documentation>
						</annotation>
					</element>
				</sequence>
			</extension>
		</complexContent>
	</complexType>

	<complexType name="DataInterfacePropertyType">
		<sequence minOccurs="0">
			<element ref="sml:DataInterface"/>
		</sequence>
		<attributeGroup ref="swe:AssociationAttributeGroup"/>
	</complexType>

The DataInterface essentially consists of a required data property, which takes a SWE Common DataStream element as its value, and an optional interfaceParameters property that defines the interface as a set of fields within a SWE Common DataRecord. This specification does not define the specific fields required to define the interface, but it is expected that one or more profiles will be defined for common interface definitions.
In the following example, the values property reference a RESTful resource (e.g. a daily record of weather) available on the web through html protocol. This example is for a network of weather sensors; thus the network stream includes station ID and location as part of the data components. In this case, a description of the InterfaceParameters is neither required nor useful.

 <sml:outputs>
 <sml:OutputList>
 <sml:output name="sensorNetworkStream">
 <sml:DataInterface>
 <sml:data>
 <swe:DataStream>
				<swe:description>
					 This stream is for a sensor network where all output are homogeneous;
					 The station ID and location is provided with each reading;
				 </swe:description>
 <swe:elementType name="weather_data">
 <swe:DataRecord>
 <swe:label>Atmospheric Conditions</swe:label>
 <swe:field name="time">
 <swe:Time
 definition="http://sensorml.com/def/property/SamplingTime">
 <swe:uom
 xlink:href="http://www.opengis.net/def/uom/ISO-8601/0/Gregorian"/>
 </swe:Time>
 </swe:field>
 <swe:field name="sensorID">
 <swe:Text
 definition="http://www.opengis.net/def/property//OGC/0/sensorUID"/>
 </swe:field>

 <swe:field name="location">
 <swe:Vector
 definition="http://sensorml.com/def/property/PlatformLocation"
 referenceFrame="http://www.opengis.net/def/crs/EPSG/0/4979">
 <swe:coordinate name="lat">
 <swe:Quantity
 definition="http://sweet.jpl.nasa.gov/2.0/spaceCoordinates.owl#Latitude"
 axisID="Lat">
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="lon">
 <swe:Quantity
 definition="http://sweet.jpl.nasa.gov/2.0/spaceCoordinates.owl#Longitude"
 axisID="Long">
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="alt">
 <swe:Quantity
 definition="http://sweet.jpl.nasa.gov/2.0/spaceExtent.owl#Altitude"
 axisID="h">
 <swe:uom code="m"/>
 </swe:Quantity>
 </swe:coordinate>
 </swe:Vector>
 </swe:field>

 <swe:field name="temp">
 <swe:Quantity
 definition="http://mmisw.org/ont/cf/parameter/air_temperature">
 <swe:uom code="Cel"/>
 </swe:Quantity>
 </swe:field>
 <swe:field name="pressure">
 <swe:Quantity
 definition="http://mmisw.org/ont/cf/parameter/barometric_pressure">
 <swe:uom code="kPa"/>
 </swe:Quantity>
 </swe:field>
 <swe:field name="wind_speed">
 <swe:Quantity
 definition="http://mmisw.org/ont/cf/parameter/wind_speed">
 <swe:uom code="km/h"/>
 </swe:Quantity>
 </swe:field>
 <swe:field name="wind_dir">
 <swe:Quantity
 definition="http://mmisw.org/ont/cf/parameter/wind_to_direction">
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:field>
 </swe:DataRecord>
 </swe:elementType>
 <swe:encoding>
 <swe:TextEncoding tokenSeparator="," blockSeparator=""/>
 </swe:encoding>

 <swe:values xlink:href="rtp://mySensors.com:4356/76455"/>

 </swe:DataStream>
 </sml:data>
 </sml:DataInterface>
 </sml:output>

The returned resource “weatherNetwork201.txt” might return the most recent reading from the network and look like:
2009-05-23T19:36:15Z,urn:myNet:stations:76455,35.4,135.6,5.0,25.4,100.3,7.31,270.8
2009-05-23T19:36:15Z,urn:myNet:stations:55577,34.1,138.9,4.1,25.5,100.5,7.54,271.4
2009-05-23T19:38:15Z,urn:myNet:stations:85643,43.9,141.0,3.8,25.7,100.1,7.44,260.2
2009-05-23T19:39:15Z,urn:myNet:stations:22298,46.7,140.0,1.2,26.5,100.6,7.30,271.9
2009-05-23T19:40:15Z,urn:myNet:stations:92675,43.1,131.0,6.7,25.5,100.2,7.54,271.0

The following example also references an external source for the values of the stream, but instead of a static resource, it references a Real-Time-Protocol (RTP) server that will continue to send real-time measurements until the client disconnects.

 <sml:output name="gammaRadiation">
 <sml:DataInterface>

 <!-- data description -->
 <sml:data>
 <swe:DataStream>
 <swe:elementType name="gamaRadiation">
				<swe:DataRecord>
					<swe:field name="averageDose">
						<swe:Quantity definition="http://sensorml.com/def/property/DoseRate.html">
							<swe:label>Average Dose of Gamma Radiation</swe:label>
							<swe:uom code="uR/min"/>
						</swe:Quantity>
					</swe:field>
					<swe:field name="InstantaneousDose">
						<swe:Quantity definition="http://sensorml.com/def/property/radiationDose">
							<swe:label>Instantaneous Dose of Gamma Radiation</swe:label>
							<swe:uom code="uR"/>
						</swe:Quantity>
					</swe:field>
				</swe:DataRecord>
 </swe:elementType>

 <!-- encoding description -->
 <swe:encoding>
 <swe:TextEncoding tokenSeparator="," blockSeparator=" "/>
 </swe:encoding>

 <!-- a Real-Time-Protocol (RTP) server that continues to stream real time measurements -->
 <swe:values xlink:href="rtp://myServer.com:4563/sensor/02080"/>

 </swe:DataStream>
 </sml:data>
 </sml:DataInterface>
 </sml:output>

Once one establishes connection to such a server, the server would then begin streaming over real-time values for the data as they become available. Such a stream might look like:

7248,26.3 7248,26.4 7250,26.6 7251,28.3 ... [continues until disconnected]

Since SWE Common also supports binary encodings, the same sensor system could describe binary data, as in the current example:

 <sml:output name="gammaRadiation">
 <sml:DataInterface>

 <!-- data description -->
 <sml:data>
 <swe:DataStream>
 <swe:elementType name="gamaRadiation">
				<swe:DataRecord>
					<swe:field name="averageDose">
						<swe:Quantity definition="http://sensorml.com/def/property/DoseRate.html">
							<swe:label>Average Dose of Gamma Radiation</swe:label>
							<swe:uom code="uR/min"/>
						</swe:Quantity>
					</swe:field>
					<swe:field name="InstantaneousDose">
						<swe:Quantity definition="http://sensorml.com/def/property/radiationDose">
							<swe:label>Instantaneous Dose of Gamma Radiation</swe:label>
							<swe:uom code="uR"/>
						</swe:Quantity>
					</swe:field>
				</swe:DataRecord>
 </swe:elementType>

			<swe:encoding>
				<swe:BinaryEncoding byteEncoding="raw" byteOrder="bigEndian">
					<swe:member>
						<swe:Component ref="averageDose"
							dataType="http://www.opengis.net/def/dataType/OGC/0/float32"/>
					</swe:member>
					<swe:member>
						<swe:Component ref="instantaneousDose"
 							dataType="http://www.opengis.net/def/dataType/OGC/0/float32"/>
					</swe:member>
				</swe:BinaryEncoding>	
			</swe:encoding>

 <swe:values xlink:href="rtp://myServer.com:4563/sensor/02080"/>

 </swe:DataStream>
 </sml:data>
 </sml:DataInterface>
 </sml:output>

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess/DataStreamURL

	[bookmark: _Ref194739022]When the values of a DataStream can be referenced by a resolvable URL, that URL shall be the value of of the xlink:href attribute in the value property of the DataStream.

Using the SWE Common Data element, DataChoice, it is also possible to define and stream a collection of disparate packets within the same DataStream. According to the SWE Common Data specification, the structure of each packet shall be defined as a separate item within the DataChoice object. The subsequent values of each packet shall be preceded by the item name, as in the example XML and data stream below:

 <sml:output name="tempAndWind">
 <sml:DataInterface>
 <sml:data>
 <swe:DataStream>
 <swe:elementType name="message">
 <swe:DataChoice>

 <!-- packet definition 1 - temperature -->
 <swe:item name="TEMP">
 <swe:DataRecord>
 <swe:label>Temperature Measurement</swe:label>
 <swe:field name="time">
 <swe:Time definition="http://sensorml.com/def/property/SamplingTime">
 <swe:uom xlink:href="http://www.opengis.net/def/uom/ISO-8601/0/Gregorian"/>
 </swe:Time>
 </swe:field>
 <swe:field name="temp">
 <swe:Quantity definition="http://mmisw.org/ont/cf/parameter/air_temperature">
 <swe:uom code="Cel"/>
 </swe:Quantity>
 </swe:field>
 </swe:DataRecord>
 </swe:item>

 <!-- packet definition 2 - wind -->
 <swe:item name="WIND">
 <swe:DataRecord>
 <swe:label>Wind Measurement</swe:label>
 <swe:field name="time">
 <swe:Time definition="http://sensorml.com/def/property/SamplingTime">
 <swe:uom xlink:href="http://www.opengis.net/def/uom/ISO-8601/0/Gregorian"/>
 </swe:Time>
 </swe:field>
 <swe:field name="wind_speed">
 <swe:Quantity definition="http://mmisw.org/ont/cf/parameter/wind_speed">
 <swe:uom code="km/h"/>
 </swe:Quantity>
 </swe:field>
 <swe:field name="wind_dir">
 <swe:Quantity definition="http://mmisw.org/ont/cf/parameter/wind_to_direction">
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:field>
 </swe:DataRecord>
 </swe:item>
 </swe:DataChoice>
 </swe:elementType>

 <swe:encoding>
 <swe:TextEncoding tokenSeparator="," blockSeparator=""/>
 </swe:encoding>

 <swe:values xlink:href="rtp://mySensors.com:4356/76455"/>

 </swe:DataStream>
 </sml:data>
 </sml:DataInterface>
 </sml:output>

With an example streaming values looking like:
TEMP,2009-05-23T19:36:15Z,25.5
TEMP,2009-05-23T19:37:15Z,25.6
WIND,2009-05-23T19:37:17Z,56.3,226.3
TEMP,2009-05-23T19:38:15Z,25.5
WIND,2009-05-23T19:38:16Z,58.4,225.1

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess/MultiplexedDataStream

	[bookmark: _Ref194738900]When the values of a DataStream consist of a series of multiplexed packets, the value of the elementType property shall be specified using the SWE Common Data DataChoice element.

In addition to online interfaces to data, DataInterface can also support physical interfaces such as RS232 or USB. In such cases, the value property is ignored, and the interfaceParameters property of the DataInterface element shall be used to specify the interface characteristics.
An example of an interface description is given below. Since interface description profiles will be created under separate documents, the following example is informative, not normative.

 <sml:interfaceParameters>
			<swe:DataRecord definition="http://sensorml.com/def/property/serialPortSettings">
				<swe:field name="portType">
					<swe:Category definition="http://sensorml.com/def/property/serialPortType">
						<swe:label>Port Type</swe:label>
						<swe:value>RS232</swe:value>
					</swe:Category>
				</swe:field>
				<swe:field name="portNumber">
					<swe:Count definition="http://sensorml.com/def/property/portNumber">
						<swe:label>Port Number</swe:label>
						<swe:value>0</swe:value>
					</swe:Count>
				</swe:field>
				<swe:field name="baudRate">
					<swe:Count definition="http://sensorml.com/def/property/baudRate">
						<swe:label>Baud Rate</swe:label>
						<swe:value>9600</swe:value>
					</swe:Count>
				</swe:field>
				<swe:field name="bits">
					<swe:Count definition="http://sensorml.com/def/property/DataBitSize">
						<swe:label>Data Bits</swe:label>
						<swe:value>8</swe:value>
					</swe:Count>
				</swe:field>
				<swe:field name="parity">
					<swe:Category definition="http://sensorml.com/def/property/baudRate">
						<swe:label>Parity</swe:label>
						<swe:value>N</swe:value>
					</swe:Category>
				</swe:field>
				<swe:field name="stopBits">
					<swe:Count definition="http://sensorml.com/def/property/stopBits">
						<swe:label>Stop Bits</swe:label>
						<swe:value>1</swe:value>
					</swe:Count>
				</swe:field>
			</swe:DataRecord>
 </sml:interfaceParameters>

Modes
The AbstractModes element provides a base class from which will be derived a concrete Modes class in the higher-level conformance class specified by the Requirements Class: Configurable Process Schema in Clause 8.6.
The XML Schema implementation of AbstractModes and its related complex type is given below:

	<element name="AbstractModes" type="sml:AbstractModesType" substitutionGroup="swe:AbstractSWE"/>

	<complexType name="AbstractModesType">
		<complexContent>
			<extension base="swe:AbstractSWEType"/>
		</complexContent>
	</complexType>

	<complexType name="AbstractModesPropertyType">
		<sequence minOccurs="0">
			<element ref="sml:AbstractModes"/>
		</sequence>
		<attributeGroup ref="swe:AssociationAttributeGroup"/>
	</complexType>

[bookmark: _Toc6781428]Requirements Class: Simple Process Schema
	Requirements Class

	http://www.opengis.net/spec/SensorML/2.0/req/xml/simpleProcess

	Target Type
	XML Instance

	Dependency
	http://www.opengis.net/spec/SensorML/2.0/req/model/simpleProcess

	Dependency
	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess

XML Schema elements and types defined in the “simple_process.xsd” schema file implement all classes defined respectively in the “simpleProcess” UML package defined in Clause 7.3.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/simpleProcess/schema-valid

	[bookmark: _Ref194739684]The XML instance shall be valid with respect to the XML grammar defined in the “simple_process.xsd”, as well as satisfy all Schematron patterns defined in “simple_process.sch”.

The following XML snippet provides the appropriate header and import statements for the simple_process.xsd:

<schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:sml="http://www.opengis.net/sensorML/2.0"
	xmlns:gml="http://www.opengis.net/gml/3.2" xmlns:swe="http://www.opengis.net/swe/2.0"
	targetNamespace="http://www.opengis.net/sensorML/2.0" elementFormDefault="qualified"
	attributeFormDefault="unqualified">
	<annotation>
		<documentation>
The elements of a concrete simple non-physical process derived from the core process
model.
</documentation>
	</annotation>
	<import namespace="http://www.opengis.net/gml/3.2"
		schemaLocation="http://schemas.opengis.net/gml/3.2.1/gml.xsd"/>
	<import namespace="http://www.opengis.net/swe/2.0"
		schemaLocation="http://schemas.opengis.net/sweCommon/2.0/swe.xsd"/>
	<include schemaLocation="core.xsd"/>

[bookmark: _Toc6781429]Simple Process
The “SimpleProcesss” element is the XML schema implementation of the “SimpleProcess” UML class defined in clause 7.3.1. The schema snippet for this element and its corresponding complex type is shown below:

	<element name="SimpleProcess" type="sml:SimpleProcessType" substitutionGroup="sml:AbstractProcess"/>

	<complexType name="SimpleProcessType">
		<complexContent>
			<extension base="sml:AbstractProcessType">
				<sequence>
					<element name="method" type="sml:ProcessMethodPropertyType" minOccurs="0" maxOccurs="1"/>
				</sequence>
			</extension>
		</complexContent>
	</complexType>

	<complexType name="SimpleProcessPropertyType">
		<sequence minOccurs="0">
			<element ref="sml:SimpleProcess"/>
		</sequence>
		<attributeGroup ref="gml:AssociationAttributeGroup"/>
		<attributeGroup ref="gml:OwnershipAttributeGroup"/>
	</complexType>

The SimpleProcess element and complex type is derived from AbstractProcess and adds a method property to the properties inherited from AbstractProcess. The method property takes a ProcessMethod element as its value.

[bookmark: _Toc6781430]Process Method
The “ProcessMethod” element is the XML schema implementation of the “ProcessMethod” UML class defined in clause 7.3.2. The schema snippet for this element and its corresponding complex type is shown below:
	
<element name="ProcessMethod" type="sml:ProcessMethodType"
		substitutionGroup="swe:AbstractSWEIdentifiable">
		<annotation>
			<documentation>
The method describes (as an algorithm or text) how the process takes the input and parameter values
and generates output values.
</documentation>
		</annotation>
	</element>

	<complexType name="ProcessMethodType">
		<complexContent>
			<extension base="swe:AbstractSWEIdentifiableType">
				<sequence>
					<element name="algorithm" minOccurs="0" maxOccurs="unbounded">
						<complexType>
							<sequence>
								<element ref="sml:AbstractAlgorithm"/>
							</sequence>
						</complexType>
					</element>
				</sequence>
			</extension>
		</complexContent>
	</complexType>

	<complexType name="ProcessMethodPropertyType">
		<sequence minOccurs="0">
			<element ref="sml:ProcessMethod"/>
		</sequence>
		<attributeGroup ref="swe:AssociationAttributeGroup"/>
	</complexType>

	<element name="AbstractAlgorithm" type="sml:AbstractAlgorithmType" abstract="true"
		substitutionGroup="gml:AbstractObject"/>

	<complexType name="AbstractAlgorithmType" abstract="true">
		<sequence/>
		<attribute ref="gml:id" use="optional"/>
	</complexType>

	<complexType name="AbstractAlgorithmPropertyType">
		<sequence minOccurs="0">
			<element ref="sml:AbstractAlgorithm"/>
		</sequence>
		<attributeGroup ref="swe:AssociationAttributeGroup"/>
	</complexType>

The ProcessMethod element is derived from SWEIdentifiableType and thus supports the swe:identifier, swe:label, and swe:description properties, as well as the swe:extension property, which supports the ability to specify community-specific XML elements for describing the method.
Furthermore, ProcessMethod has an algorithm property that takes an AbstractAlgorithm element as its value. It is anticipated that profiles will be specified in separate specifications that will support algorithms descriptions through schema such as MathML.
[bookmark: _Toc6781431]
Requirements Class: Aggregate Process Schema
	Requirements Class

	http://www.opengis.net/spec/SensorML/2.0/req/xml/aggregateProcess

	Target Type
	XML Instance

	Dependency
	http://www.opengis.net/spec/SensorML/2.0/req/model/aggregateProcess

	Dependency
	http://www.opengis.net/spec/SensorML/2.0/req/xml/simpleProcess

XML Schema elements and types defined in the “aggregate_process.xsd” schema file implement all classes defined respectively in the “aggregateProcess” UML package defined in Clause 7.4.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/aggregateProcess/schema-valid

	[bookmark: _Ref194739842]The XML instance shall be valid with respect to the XML grammar defined in the “aggregate_process.xsd”, as well as satisfy all Schematron patterns defined in “aggregate_process.sch”.

The following XML snippet provides the appropriate header and import statements for the simple_process.xsd:

<schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:sml="http://www.opengis.net/sensorML/2.0"
	xmlns:gml="http://www.opengis.net/gml/3.2" xmlns:swe="http://www.opengis.net/swe/2.0"
	targetNamespace="http://www.opengis.net/sensorML/2.0" elementFormDefault="qualified"
	attributeFormDefault="unqualified">
	<annotation>
		<documentation>
The elements of a concrete aggregate non-physical process derived from the core process
model.
</documentation>
	</annotation>
	<import namespace="http://www.opengis.net/gml/3.2"
		schemaLocation="http://schemas.opengis.net/gml/3.2.1/gml.xsd"/>
	<import namespace="http://www.opengis.net/swe/2.0"
		schemaLocation="http://schemas.opengis.net/sweCommon/2.0/swe.xsd"/>
	<include schemaLocation="simple_process.xsd"/>

[bookmark: _Toc6781432]Aggregate Process
The “AggregateProcess” element is the XML schema implementation of the “AggregateProcess” UML class defined in clause 7.4.1. The schema snippet for this element and its corresponding complex type is shown below:

	<element name="AggregateProcess" type="sml:AggregateProcessType" substitutionGroup="sml:AbstractProcess">
		<annotation>
			<documentation>
A process that consist of a collection of linked component processes resulting in a specified
output.
</documentation>
		</annotation>
	</element>

	<complexType name="AggregateProcessType">
		<complexContent>
			<extension base="sml:AbstractProcessType">
				<sequence>
					<element name="components" type="sml:ComponentListPropertyType"
minOccurs="0" maxOccurs="1"/>
					<element name="connections" type="sml:ConnectionListPropertyType"
minOccurs="0" maxOccurs="1">
						<annotation>
							<documentation>
The explicit definition of data links between outputs, inputs, and parameters of the
components within an aggregate process.
</documentation>
						</annotation>
					</element>
				</sequence>
			</extension>
		</complexContent>
	</complexType>

	<complexType name="AggregateProcessPropertyType">
		<sequence minOccurs="0">
			<element ref="sml:AggregateProcess"/>
		</sequence>
		<attributeGroup ref="gml:AssociationAttributeGroup"/>
		<attributeGroup ref="gml:OwnershipAttributeGroup"/>
	</complexType>

The AggregateProcess element and complex type is derived from AbstractProcess and adds components and connections properties to the properties inherited from AbstractProcess. The components and connections properties take ComponentList and ConnectionList as their values, respectively.
The following two examples show the same aggregate process. A graphic of this “Slice and Clip” AggregateProcess is shown in Figure 8.1. In this diagram, inputs to the aggregate process and its components are shown on the left of the object, while outputs are on the right and parameters are on top. In this example, the parameter values are set and constant, as shown by the values assigned them. However, parameters can be variable and supplied by connections as can inputs.
This diagram and the following SensorML instances illustrate that an AggregateProcess can have multiple components and connections that will be discussed in more detail in the following Sections 8.3.2 and 8.3.3. Notice that inputs, outputs, and parameters can be defined for the aggregate process as well as for the individual components.
[image:]
Figure 8.1. A diagram showing the components and connections of the “Scale and Clip” AggregateProcess.

The first example provides a complete definition of the component processes and the setting of parameter values inline.

<?xml version="1.0" encoding="UTF-8"?>
<sml:AggregateProcess gml:id="scaleAndClip01"
 xmlns:sml="http://www.opengis.net/sensorML/2.0"
 xmlns:swe="http://www.opengis.net/swe/2.0"
 xmlns:gml="http://www.opengis.net/gml/3.2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xsi:schemaLocation="http://www.opengis.net/sensorML/2.0 http://schemas.opengis.net/sensorML/2.0/sensorML.xsd "
 definition="http://sensors.ws/process/linearInterpolator">

 <!-- ============================= -->
 <!-- Descriptions -->
 <!-- ============================= -->
 <gml:description>
		A simple aggregate process that scales according to linear equation y = 2.3x + 1.76 and then clips if below 15.0
		In this example all processes are defined inline with no configuration settings. Parameter values are set inline.
	</gml:description>
 <gml:identifier codeSpace="uid">urn:myCompany:swe:process:scaleAndClip01</gml:identifier>
 <gml:name>Scale and Clip Aggregate Process 01</gml:name>

 <!-- ============================= -->
 <!-- Aggregate Process Inputs -->
 <!-- ============================= -->
 <sml:inputs>
 <sml:InputList>
 <sml:input name="valueIn">
 <swe:Quantity definition="http://sensorml.com/def/propertysimpleDN">
 <swe:uom code="any"/>
 </swe:Quantity>
 </sml:input>
 </sml:InputList>
 </sml:inputs>

 <!-- ============================= -->
 <!-- Aggregate Process Outputs -->
 <!-- ============================= -->
 <sml:outputs>
 <sml:OutputList>
 <sml:output name="valueOut">
 <swe:Quantity definition="http://sensorml.com/def/propertysimpleDN">
 <swe:uom code="any"/>
 </swe:Quantity>
 </sml:output>
 </sml:OutputList>
 </sml:outputs>

 <!-- ======================================= -->
 <!-- Aggregate process components declared -->
 <!-- == -->
 <sml:components>
		<sml:ComponentList >
		
			<!-- Component 1 - Linear Interpolator -->
			<sml:component name="scale">	
				<sml:SimpleProcess gml:id="linearInterpolator01"
					definition="http://sensors.ws/process/linearInterpolator">
					<!-- ============================= -->
					<!-- Linear Interpolator Descriptions -->
					<!-- ============================= -->
					<gml:description>A linear interpolator based on equation y = mx + b </gml:description>
					<gml:identifier codeSpace="uid">urn:myCompany:process:8755d73ab</gml:identifier>
					<gml:name>Linear Equation 01</gml:name>
					<!-- ============================= -->
					<!-- Linear Interpolator Inputs -->
					<!-- ============================= -->
					<sml:inputs>
						<sml:InputList>
							<sml:input name="x">
								<swe:Quantity definition="http://sensorml.com/def/propertyxCoordinate">
									<swe:uom code="any"/>
								</swe:Quantity>
							</sml:input>
						</sml:InputList>
					</sml:inputs>
					<!-- ============================= -->
					<!-- Linear Interpolator Outputs -->
					<!-- ============================= -->
					<sml:outputs>
						<sml:OutputList>
						<!-- scaled output value -->
							<sml:output name="y">
								<swe:Quantity definition="http://sensorml.com/def/propertysimpleDN">
									<swe:uom code="any"/>
								</swe:Quantity>
							</sml:output>
						</sml:OutputList>
					 </sml:outputs>
					<!-- ============================= -->
					<!-- Linear Interpolator Parameters -->
					<!-- ============================= -->
					<sml:parameters>
						<sml:ParameterList>
							<sml:parameter name="slope-intercept">
								<swe:DataRecord>
									<swe:field name="slope">
										<swe:Quantity definition="http://sensorml.com/def/propertylinearSlope">
											<swe:uom code="any"/>
											<!-- slope value set inline -->
											<swe:value>2.3</swe:value>
										</swe:Quantity>
									</swe:field>
									<swe:field name="intercept">
										<swe:Quantity definition="http://sensorml.com/def/propertylinearAxisIntercept">
											<!-- y-intercept value set inline -->
											<swe:uom code="any"/>
											<swe:value>1.76</swe:value>
										</swe:Quantity>
									</swe:field>
								</swe:DataRecord>
							</sml:parameter>
						</sml:ParameterList>
					</sml:parameters>
				</sml:SimpleProcess>		
			</sml:component>
			

			<!-- Component 2 - Threshold clipper -->
			<sml:component name="clip">	
				<sml:SimpleProcess gml:id="thresholdClipper"
					definition="http://sensors.ws/process/thresholdClipper">
					<!-- ============================= -->
					<!-- Threshold Clipper Descriptions -->
					<!-- ============================= -->
					<gml:description>
						A process that clips anything below threshold;
						values higher than threshold to passValue output;
						Values below threshold sent to failValue output</gml:description>
					<gml:identifier codeSpace="uid">urn:myCompany:swe:process:65d74a65c</gml:identifier>
					<gml:name>Threshold Clipper 01</gml:name>
					<!-- ============================= -->
					<!-- Threshold Clipper Inputs -->
					<!-- ============================= -->
					<sml:inputs>
						<sml:InputList>
							<sml:input name="valueIn">
								<swe:Quantity definition="http://sensorml.com/def/propertysimpleDN">
									<swe:uom code="any"/>
								</swe:Quantity>
							</sml:input>
						</sml:InputList>
					</sml:inputs>
					<!-- ============================= -->
					<!-- Threshold Clipper Outputs -->
					<!-- ============================= -->
					<sml:outputs>
						<sml:OutputList>
						<!-- output for values that pass -->
							<sml:output name="passValue">
								<swe:Quantity definition="http://sensorml.com/def/propertypassValue">
									<swe:uom code="any"/>
								</swe:Quantity>
							</sml:output>
							<!-- output for values that fail -->
							<sml:output name="failValue">
								<swe:Quantity definition="http://sensorml.com/def/propertyfailValue">
									<swe:uom code="any"/>
								</swe:Quantity>
							</sml:output>
						</sml:OutputList>
					 </sml:outputs>
					<!-- ============================= -->
					<!-- Threshold Clipper Parameters -->
					<!-- ============================= -->
					<sml:parameters>
						<sml:ParameterList>
							<sml:parameter name="threshold">
								<swe:Quantity definition="http://sensorml.com/def/propertylowerThreshold">
									<swe:uom code="any"/>
									<!-- threshold value set inline -->
									<swe:value>15.0</swe:value>
								</swe:Quantity>
							</sml:parameter>
						</sml:ParameterList>
					</sml:parameters>
				</sml:SimpleProcess>		
			</sml:component>
			
		</sml:ComponentList>
 </sml:components>

 <!-- ======================================= -->
 <!-- Aggregate process links declared -->
 <!-- == -->
 <sml:connections>
		<sml:ConnectionList>

		<!-- Connect AggregateProcess input to LinearInterpolator (scale) input -->
			<sml:connection>
				<sml:Link>
					<sml:source ref="inputs/valueIn"/>
					<sml:destination ref="components/scale/inputs/x"/>
				</sml:Link>
			</sml:connection>
			
			<!-- Connect LinearInterpolator (scale) output to ThresholdClipper (clip) input -->
			<sml:connection>
				<sml:Link>
					<sml:source ref="components/scale/outputs/y"/>
					<sml:destination ref="components/clip/inputs/valueIn"/>
				</sml:Link>
			</sml:connection>

			<!-- Connect ThresholdClipper (clip) passValue output to AggregateProcess passValue output -->
			<sml:connection>
				<sml:Link>
					<sml:source ref="components/clip/outputs/passValue"/>
					<sml:destination ref="outputs/valueOut"/>
				</sml:Link>
			</sml:connection>

			<!-- Note: ThresholdClipper (clip) failValue output is ignored in this example -->

		</sml:ConnectionList>
 </sml:connections>
</sml:AggregateProcess>

Typically, however, aggregate processes will consist of well-defined, modular component processes that exist in a process repository and can be referenced and configured using the typeOf and configuration properties, respectively (discussed in subsequent Section 8.6). The second example utilizes components that are externally defined but are referenced and configured within the aggregate process description.

<?xml version="1.0" encoding="UTF-8"?>
<sml:AggregateProcess gml:id="scaleAndClip06"
 xmlns:sml="http://www.opengis.net/sensorML/2.0"
 xmlns:swe="http://www.opengis.net/swe/2.0"
 xmlns:gml="http://www.opengis.net/gml/3.2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xsi:schemaLocation="http://www.opengis.net/sensorML/2.0 http://schemas.opengis.net/sensorML/2.0/sensorML.xsd"
 definition="http://sensors.ws/process/linearInterpolator">
 <!-- ============================= -->
 <!-- Descriptions -->
 <!-- ============================= -->
 <gml:description>
	A simple aggregate process that scales according to linear equation y = 2.3x + 1.76 and then clips if below 15.0
	In this example all processes are defined externally and configured.
	</gml:description>
 <gml:identifier codeSpace="uid">urn:myCompany:process:scaleAndClip06</gml:identifier>
 <gml:name>Scale and Clip Aggregate Process 06</gml:name>
 <!-- ============================= -->
 <!-- Aggregate Process Inputs -->
 <!-- ============================= -->
 <sml:inputs>
 <sml:InputList>
 <sml:input name="valueIn">
 <swe:Quantity definition="http://sensorml.com/def/propertysimpleDN">
 <swe:uom code="any"/>
 </swe:Quantity>
 </sml:input>
 </sml:InputList>
 </sml:inputs>
 <!-- ============================= -->
 <!-- Aggregate Process Outputs -->
 <!-- ============================= -->
 <sml:outputs>
 <sml:OutputList>
 <sml:output name="valueOut">
 <swe:Quantity definition="http://sensorml.com/def/propertysimpleDN">
 <swe:uom code="any"/>
 </swe:Quantity>
 </sml:output>
 </sml:OutputList>
 </sml:outputs>

 <!-- ======================================= -->
 <!-- Aggregate process components declared -->
 <!-- == -->
 <sml:components>
		<sml:ComponentList >
		
			<!-- Component 1 - Linear Interpolator -->
			<sml:component name="scale">	
				<sml:SimpleProcess gml:id="linearInterpolatorConfigured"
					definition="http://sensors.ws/process/linearInterpolator">
					<!-- ============================= -->
					<!-- Linear Interpolator Descriptions -->
					<!-- ============================= -->
					<gml:description>A linear interpolator with slope of 2.3 and intercept of 1.76</gml:description>
					<gml:identifier codeSpace="uid">urn:myCompany:swe:process:09h57b21</gml:identifier>
					<gml:name>Linear Equation 01 Configured</gml:name>
					 <sml:typeOf xlink:title="urn:net:swe:process:linearEquation01"
						xlink:href="http://sensors.ws/processes/LinearInterpolator01"/>
					<sml:configuration>
						<sml:Settings>
							<sml:setValue ref="parameters/slope-intercept/slope">2.3</sml:setValue>
							<sml:setValue ref="parameters/slope-intercept/intercept">1.76</sml:setValue>
						</sml:Settings>
					</sml:configuration>
				</sml:SimpleProcess>		
			</sml:component>
			

			<!-- Component 2 - Threshold clipper -->
			<sml:component name="clip">	
				<sml:SimpleProcess gml:id="thresholdClipperConfigured"
					definition="http://sensors.ws/process/thresholdClipper">
					<!-- ============================= -->
					<!-- Threshold Clipper Descriptions -->
					<!-- ============================= -->
					<gml:description>
						A process that passes values of 15.0 and above to the passValue output;
					</gml:description>
					<gml:identifier codeSpace="uid">urn:myCompany:swe:process:0678b365a</gml:identifier>
					<gml:name>Threshold Clipper 01 Configured</gml:name>
				 <sml:typeOf xlink:title="urn:net:swe:process:thresholdClip01"
						xlink:href="http://sensors.ws/processes/ThresholdClipper01"/>
					<sml:configuration>
						<sml:Settings>
							<sml:setValue ref="parameters/threshold">15.0</sml:setValue>
						</sml:Settings>
					</sml:configuration>
				</sml:SimpleProcess>		
			</sml:component>
			
		</sml:ComponentList>
 </sml:components>

 <!-- ======================================= -->
 <!-- Aggregate process links declared -->
 <!-- == -->
 <sml:connections>
		<sml:ConnectionList>

		<!-- Connect AggregateProcess input to LinearInterpolator (scale) input -->
			<sml:connection>
				<sml:Link>
					<sml:source ref="inputs/valueIn"/>
					<sml:destination ref="components/scale/inputs/x"/>
				</sml:Link>
			</sml:connection>
			
			<!-- Connect LinearInterpolator (scale) output to ThresholdClipper (clip) input -->
			<sml:connection>
				<sml:Link>
					<sml:source ref="components/scale/outputs/y"/>
					<sml:destination ref="components/clip/inputs/valueIn"/>
				</sml:Link>
			</sml:connection>

			<!-- Connect ThresholdClipper (clip) passValue output to AggregateProcess passValue output -->
			<sml:connection>
				<sml:Link>
					<sml:source ref="components/clip/outputs/passValue"/>
					<sml:destination ref="outputs/valueOut"/>
				</sml:Link>
			</sml:connection>

			<!-- Note: ThresholdClipper (clip) failValue output is ignored in this example -->

		</sml:ConnectionList>
 </sml:connections>
</sml:AggregateProcess>

[bookmark: _Toc6781433]Components
The components property and the ComponentList elements are XML Schema implementations of the UML classes defined in clause 7.4. The components property takes a ComponentList as its value. The ComponentList component property takes an AbstractProcess as its value. Thus any SensorML process can be a component of an aggregate process, whether that process is itself simple or aggregate, non-physical or physical.
The XML snippet for the ComponentList element and its corresponding complex types is shown below:
	<element name="ComponentList" type="sml:ComponentListType" substitutionGroup="swe:AbstractSWE"/>

	<complexType name="ComponentListType">
		<complexContent>
			<extension base="swe:AbstractSWEType">
				<sequence>
					<element name="component" minOccurs="1" maxOccurs="unbounded">
						<annotation>
							<documentation>
A description of a component of the aggregate process. If by reference, the uniqueID of
the referenced process must be provided using the xlink:title attribute while the URL to
the process description must be provided by the xlink:href attribute.
</documentation>
						</annotation>
						<complexType>
							<complexContent>
								<extension base="sml:AbstractProcessPropertyType">
									<attribute name="name" type="NCName" use="required"/>
								</extension>
							</complexContent>
						</complexType>
					</element>
				</sequence>
			</extension>
		</complexContent>
	</complexType>

	<complexType name="ComponentListPropertyType">
		<sequence minOccurs="0">
			<element ref="sml:ComponentList"/>
		</sequence>
		<attributeGroup ref="swe:AssociationAttributeGroup"/>
	</complexType>

The component process can be described inline or be referenced through the xlink:href property. For a reference to an external process description, two pieces of information are required in order to reference a component process instance, the uniqueID of the process and a resolvable URL referencing the process description. These shall be provided by the xlink:title and xlink:href attributes, respectively.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/aggregateProcess/componentReference

	[bookmark: _Ref194740309]When the value of the component property is “byReference”, there shall be meaningful values for the xlink:title and xlink:href attributes. The uniqueID of the referenced process, given by its gml:identifier property, shall be the value of the xlink:title attribute, while a resolvable URL to the referenced process description shall be the value of the xlink:href attribute.

The examples in Section 8.3.1 show that the components of an aggregate process can be fully described inline, or be externally referenced processes that are configurable.
[bookmark: _Toc6781434]Connections
The connections property and the ConnectionList elements are XML Schema implementations of the UML classes defined in clause 7.4. The connections property takes a ConnectionList as its value. The ConnectionList connection property takes a Link as its value.
The XML snippet for the ConnectionList and Link elements and their corresponding complex types is shown below:
ConnectionList:
	<element name="ConnectionList" type="sml:ConnectionListType" substitutionGroup="swe:AbstractSWE"/>

	<complexType name="ConnectionListType">
		<complexContent>
			<extension base="swe:AbstractSWEType">
				<sequence>
					<element name="connection" minOccurs="1" maxOccurs="unbounded">
						<complexType>
							<sequence>
								<element ref="sml:Link"/>
							</sequence>
						</complexType>
					</element>
				</sequence>
			</extension>
		</complexContent>
	</complexType>

	<complexType name="ConnectionListPropertyType">
		<sequence minOccurs="0">
			<element ref="sml:ConnectionList"/>
		</sequence>
		<attributeGroup ref="swe:AssociationAttributeGroup"/>
	</complexType>

Link:
	<element name="Link" type="sml:LinkType" substitutionGroup="gml:AbstractObject"/>

	<complexType name="LinkType">
		<sequence>
			<element name="source" type="sml:DataComponentRefPropertyType">
				<annotation>
					<documentation>The output from which the link originates.</documentation>
				</annotation>
			</element>
			<element name="destination" type="sml:DataComponentRefPropertyType">
				<annotation>
					<documentation>The input or parameter into which the data flows.</documentation>
				</annotation>
			</element>
		</sequence>
		<attribute ref="gml:id" use="optional"/>
	</complexType>

	<complexType name="LinkPropertyType">
		<sequence minOccurs="0">
			<element ref="sml:Link"/>
		</sequence>
		<attributeGroup ref="swe:AssociationAttributeGroup"/>
	</complexType>

	From core.xsd:

	<complexType name="DataComponentRefPropertyType">
		<attribute name="ref" type="sml:DataComponentPathPropertyType" use="required"/>
	</complexType>

	<simpleType name="DataComponentPathPropertyType">
		<restriction base="token">
			<pattern value="([a-zA-Z_][a-zA-Z0-9_\-\.]*)(/[a-zA-Z_][a-zA-Z0-9_\-\.]*)*"/>
		</restriction>
	</simpleType>

Rules for Connections
The Link element may define a data connection between any properties of a process, but it typically connects inputs, outputs, and parameters. However, certain rules apply regarding sources for data (provided by the source property of the Link element) and destinations for data (provided by the destination property of the Link element).
Typical data flow is from an aggregate processes input to one or more component’s input, from a component output to another component’s input, or from a component’s output to an output of the aggregate process.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/aggregateProcess/inputConnectionRestrictions

	[bookmark: _Ref197775607]The input of an enclosing aggregate process can connect to the input of one or more of its components; otherwise an input cannot connect to another input.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/aggregateProcess/outputConnectionRestrictions

	[bookmark: _Ref197775869]The output of a component can connect to an output of its enclosing aggregate process; otherwise an output cannot connect to another output.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/aggregateProcess/multipleConnections

	[bookmark: _Ref197775950]An output can connect to multiple destinations, but an input can only have one source connection.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/aggregateProcess/parameterConnectionRestrictions

	[bookmark: _Ref197776073]A parameter can only be connected as a destination; a parameter cannot serve as a source.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/aggregateProcess/propertyConnectionRestrictions

	[bookmark: _Ref197776162]Process properties other than inputs, outputs, or parameters can only serve as sources of data not destinations.

Rules for Path Designation
While the use of XPath was considered as a means of designating Link sources and destinations, this protocol was rejected on the grounds that its was too complicated for our needs and because it did not allow continues designation of paths for “byReference” objects. The designation of a path starts at the base element of the aggregate process and only uses property elements. Where the attribute name exists for an element, it is used; otherwise the element name is used.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/aggregateProcess/designatingLinkPaths

	[bookmark: _Ref197776329]The following rules shall be used for designating the source and destination paths within the Linked element.
i) [bookmark: _Ref197776397]The path begins at the base of the cuurent process
j) [bookmark: _Ref197776430]The path includes only property elements (lowerCamelCase) and not value objects (UpperCamelCase)
k) [bookmark: _Ref197776448]If the property has an attribute name and it has a value, then it shall be used; otherwise the unqualified name of the property element should be used
l) [bookmark: _Ref197776473]The path can follow properties that are byReference

As an example, a snippet of the previous example is given below, highlighting the source path parts in yellow and the destination path parts in cyan. The subsequent example shows the appropriate source link path (in yellow) and the destination link path (in cyan).

<?xml version="1.0" encoding="UTF-8"?>
<sml:AggregateProcess gml:id="scaleAndClip06"

 … deleted for brevity sake …

 <!-- ============================= -->
 <!-- Aggregate Process Inputs -->
 <!-- ============================= -->
 <sml:inputs>
 <sml:InputList>
 <sml:input name="valueIn">
 <swe:Quantity definition="http://sensorml.com/def/propertysimpleDN">
 <swe:uom code="any"/>
 </swe:Quantity>
 </sml:input>
 </sml:InputList>
 </sml:inputs>

 … deleted for brevity sake …

 <sml:components>
		<sml:ComponentList >
		
			<!-- Component 1 - Linear Interpolator -->
			<sml:component name="scale">	
				<sml:SimpleProcess gml:id="linearInterpolator01"
					definition="http://sensors.ws/process/linearInterpolator">
					<!-- ============================= -->
					<!-- Linear Interpolator Descriptions -->
					<!-- ============================= -->
					<gml:description>A linear interpolator based on equation y = mx + b </gml:description>
					<gml:identifier codeSpace="uid">urn:myCompany:process:8755d73ab</gml:identifier>
					<gml:name>Linear Equation 01</gml:name>
					<!-- ============================= -->
					<!-- Linear Interpolator Inputs -->
					<!-- ============================= -->
					<sml:inputs>
						<sml:InputList>
							<sml:input name="x">
								<swe:Quantity definition="http://sensorml.com/def/propertyxCoordinate">
									<swe:uom code="any"/>
								</swe:Quantity>
							</sml:input>
						</sml:InputList>
					</sml:inputs>

 … deleted for brevity sake …

 <sml:connections>
		<sml:ConnectionList>

			<!-- Connect AggregateProcess input to LinearInterpolator (scale) input -->
			<sml:connection>
				<sml:Link>
					<sml:source ref="inputs/valueIn"/>
					<sml:destination ref="components/scale/inputs/x"/>
				</sml:Link>
			</sml:connection>

… deleted for brevity sake …

[bookmark: _Toc6781435]Requirements Class: Physical Component Schema
	Requirements Class

	http://www.opengis.net/spec/SensorML/2.0/req/xml/physicalComponent

	Target Type
	XML Instance

	Dependency
	http://www.opengis.net/spec/SensorML/2.0/req/model/physicalComponent

	Dependency
	http://www.opengis.net/spec/SensorML/2.0/req/xml/simpleProcess

XML Schema elements and types defined in the “physical_component.xsd” schema file implement all classes defined respectively in the “physicalComponent” UML package defined in Clause 7.6.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/physicalComponent/schema-valid

	[bookmark: _Ref194741321]The XML instance shall be valid with respect to the XML grammar defined in the “physical_component.xsd”, as well as satisfy all Schematron patterns defined in “physical_component.sch”.

The following XML snippet provides the appropriate header and import statements for the physical_component.xsd:

<schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:sml="http://www.opengis.net/sensorML/2.0"
	xmlns:gml="http://www.opengis.net/gml/3.2" xmlns:swe="http://www.opengis.net/swe/2.0"
	targetNamespace="http://www.opengis.net/sensorML/2.0" elementFormDefault="qualified"
	attributeFormDefault="unqualified">
	<annotation>
		<documentation>
The elements of a concrete simple physical process derived from the core process model.
</documentation>
	</annotation>
	<import namespace="http://www.opengis.net/swe/2.0"
		schemaLocation="http://schemas.opengis.net/sweCommon/2.0/swe.xsd"/>
	<import namespace="http://www.opengis.net/gml/3.2"
		schemaLocation="http://schemas.opengis.net/gml/3.2.1/gml.xsd"/>
	<include schemaLocation="simple_process.xsd"/>

[bookmark: _Toc6781436]Abstract Physical Process
AbstractPhysicalProcess is derived from AbstractProcess and serves as the base class for all physical processes modelled and encoded in this specification..
The “AbstractPhysicalProcess” element is the XML schema implementation of the “AbstractPhysicalProcess” UML class defined in clause 7.6. The schema snippet for this element and its corresponding complex type is shown below.

	<element name="AbstractPhysicalProcess" type="sml:AbstractPhysicalProcessType" abstract="true"
		substitutionGroup="sml:AbstractProcess">
		<annotation>
			<documentation>
A physical process where the spatial and temporal state of the process is relevant.
</documentation>
		</annotation>
	</element>
	<complexType name="AbstractPhysicalProcessType" abstract="true">
		<complexContent>
			<extension base="sml:AbstractProcessType">
				<sequence>
					<element name="attachedTo" type="gml:ReferenceType" minOccurs="0" maxOccurs="1">
						<annotation>
							<appinfo>
								<gml:targetElement>sml:AbstractPhysicalProcess</gml:targetElement>
							</appinfo>
							<documentation>
References the physical component or system (e.g. platform) to which to which this
component or system is attached.
</documentation>
						</annotation>
					</element>
					<element name="localReferenceFrame" minOccurs="0" maxOccurs="unbounded">
						<annotation>
							<documentation>
A spatial reference frame of the physical component itself; this reference frame is
absolute and defines the relationship of the reference frame to the physical body of the
component; position of the component relates this reference frame to some external
reference frame. Note that units are specified in the position so they are not specified as
part of the SpatialFrame.
</documentation>
						</annotation>
						<complexType>
							<sequence>
								<element ref="sml:SpatialFrame"/>
							</sequence>
						</complexType>
					</element>
					<element name="localTimeFrame" minOccurs="0" maxOccurs="unbounded">
						<annotation>
							<documentation>
Supports local time reference frames such as "time past mission start". Note that units are
handled in timePosition so they are not specified in the TemporalFrame.
</documentation>
						</an notation>
						<complexType>
							<sequence>
								<element ref="sml:TemporalFrame"/>
							</sequence>
						</complexType>
					</element>
					<element name="position" type="sml:PositionUnionPropertyType"
minOccurs="0" maxOccurs="unbounded">
						<annotation>
							<documentation>
Provides positional information relating the component's spatial reference frame to an
external spatial reference frame. Positional information can be given by location, by full
body state, by a time-tagged trajectory, or by a measuring or computational process.
</documentation>
						</annotation>
					</element>
					<element name="timePosition" type="swe:TimePropertyType"
minOccurs="0" maxOccurs="unbounded">
						<annotation>
							<documentation>
Provides Time positions typically reference a local time frame to an external time frame.
For example, a timer-start-time might be given relative to an "absolute" GPS time.
</documentation>
						</annotation>
					</element>
				</sequence>
			</extension>
		</complexContent>
	</complexType>
	<complexType name="AbstractPhysicalProcessPropertyType">
		<sequence minOccurs="0">
			<element ref="sml:AbstractPhysicalProcess"/>
		</sequence>
		<attributeGroup ref="gml:AssociationAttributeGroup"/>
		<attributeGroup ref="gml:OwnershipAttributeGroup"/>
	</complexType>

AbstractPhysicalProcess element adds the following properties to the AbstractProcess: attachedTo, localReferenceFrame, temporalReferenceFrame, and position. These properties of AbstractPhysicalProcess will be discussed in more detail in the following subsections.

AttachedTo
The attachedTo property provides a reference to either a PhysicalComponent or PhysicalSystem. It provides a means for an attached component to reference back to the component or system to which it is attached. This is particularly useful when the movement of the parent affects the movement of the component.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/physicalComponent/attachedToTarget

	[bookmark: _Ref194741597]The attachedTo property shall provide a reference to an object of type PhysicalComponent or PhysicalSystem.

The same rules shall apply as those for component references stated earlier.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/physicalComponent/attachedToReference

	[bookmark: _Ref194741840]The attachedTo property shall require meaningful values for the xlink:title and xlink:href attributes. The uniqueID of the referenced process, given by its gml:identifier property, shall be the value of the xlink:title attribute, while a resolvable URL to the reference process description shall be the value of the xlink:href attribute.

Local Reference Frame
The localReferenceFrame property takes a SpatialFrame as its value. The “SpatialFrame” element is an XML schema implementation of the “SpatialFrame” UML class defined in clause 7.6. The schema snippet for this element and its corresponding complex type is shown below.

	<element name="SpatialFrame" type="sml:SpatialFrameType" substitutionGroup="swe:AbstractSWEIdentifiable">
		<annotation>
			<documentation>
A general spatial Cartesian Reference Frame where the axes and origin will be defined textually relative
to a physical component.
</documentation>
		</annotation>
	</element>

	<complexType name="SpatialFrameType">
		<complexContent>
			<extension base="swe:AbstractSWEIdentifiableType">
				<sequence>
					<element name="origin" type="string">
						<annotation>
							<documentation>
A textual description of the origin of the reference frame relative to the physical device
(e.g. "the origin is at the point of attachment of the sensor to the platform").
</documentation>
						</annotation>
					</element>
					<element name="axis" minOccurs="1" maxOccurs="unbounded">
						<annotation>
							<documentation>
Axis with name attribute and a textual description of the relationship of the axis to the
physical device; the order of the axes listed determines their relationship according to the
right-handed rule (e.g. axis 1 cross axis 2 = axis 3).
</documentation>
						</annotation>
						<complexType>
							<simpleContent>
								<extension base="string">
									<attribute name="name" type="NCName" use="required"/>
								</extension>
							</simpleContent>
						</complexType>
					</element>
				</sequence>
			</extension>
		</complexContent>
	</complexType>

	<complexType name="SpatialFramePropertyType">
		<sequence minOccurs="0">
			<element ref="sml:SpatialFrame"/>
		</sequence>
		<attributeGroup ref="swe:AssociationAttributeGroup"/>
	</complexType>

The SpatialFrame element provides a textual description of the physical process’ local coordinate reference frame. The position of this physical component or system is based on relating this local reference frame to some external reference frame (e.g. a platform or geographic reference frame).

NOTE WELL: It is important that the following assumptions are understood when defining a local spatial reference frame:
(a) there is an assumption of a right-handed coordinate system (i.e. x cross y = z)
(b) the listing of the axes is assumed to be in order according to the right-hand rule (i.e. axis1 cross axis2 = axis3)
Failure to adher to these assumptions cannot be determined by a conformance test but can have dire consequences when tasking an actuator or geolocating sensor data. Failure to follow these assumptions typically results in negation of one or more axes or incorrect rotation directions about one or more axes.

An example of a local reference frame description is given below:

<sml:localReferenceFrame>
 <sml:SpatialFrame id="SENSOR_FRAME">
 <sml:origin>
 	Origin is at the intersection of the symmetric axis of the cylinder and the rear of the sensor
 </sml:origin>
	 <sml:axis name="X">X is perdendicular to the symmetric axis and intersects the indicator marked "x"
			on the casing</sml:axis>
 <sml:axis name="Y">Y is orthogonal to Z and X (= Z cross X)</sml:axis>
 <sml:axis name="Z">Z is along the symmetric axis of the sensor in the direction of view</sml:axis>
	</sml:SpatialFrame>
 </sml:localReferenceFrame>

Position
The position property of a physical component can be defined by one of several methods, including (1) by description, (2) by point, (3) by position, (4) by dynamic state, (5) by trajectory, or (6) by process. These are defined by the PositionUnion element shown below:
	<group name="PositionUnion">
		<annotation>
			<documentation>
A choice of elements for defining spatial state (e.g. location, orientation, linear/angular velocity and
linear/angular acceleration.
</documentation>
		</annotation>
		<choice>
			<element ref="swe:Text">
				<annotation>
					<documentation>
Provides positional information in textual form (e.g. "located on the intake line before the catalytic
converter"); shall only be used when a more precise location is unknown or irrelevant.
</documentation>
				</annotation>
			</element>
			<element ref="gml:Point">
				<annotation>
					<documentation>Provides static location only using a gml:Point element.</documentation>
				</annotation>
			</element>
			<element ref="swe:Vector">
				<annotation>
					<documentation>Provides a static location using a swe:Vector.</documentation>
				</annotation>
			</element>
			<element ref="swe:DataRecord">
				<annotation>
					<documentation>
Provides location and orientation as a DataRecord consisting of one or two Vector elements.
</documentation>
				</annotation>
			</element>
			<element ref="swe:DataArray">
				<annotation>
					<documentation>
Provides time-tagged dynamic state information that can include, for instance, location,
orientation, velocity, acceleration, angular velocity, angular acceleration; shall be a DataArray
consisting of a DataRecord element of multiple Vector fields.
</documentation>
				</annotation>
			</element>
			<element ref="sml:AbstractProcess">
				<annotation>
					<documentation>
Provides for positional information to be provided by a process; example processes could include
a physical sensor such as a GPS, a computational process such as an orbital propagation model,
a specific web service such as a SOS, or any process who's output provides positional
information.
</documentation>
				</annotation>
			</element>
		</choice>
	</group>

	<complexType name="PositionUnionPropertyType">
		<sequence minOccurs="0">
			<group ref="sml:PositionUnion"/>
		</sequence>
		<attributeGroup ref="swe:AssociationAttributeGroup"/>
	</complexType>
The location of a component is the location of origin of the components local reference frame relative to the origin of some defined external reference frame (e.g. the reference frame of a sensor’s platform or a geospatial reference frame). Likewise, the orientation of the component is the angular displacement of the x-y-z axes of the local reference frame relative to the corresponding axes of the external reference frame. For dynamic state, the velocity and acceleration are the first and second time derivatives of location, respectively, while angular velocity and angular acceleration are the first and second time derivatives of orientation.
Each option is defined in more detail below with appropriate examples.
 Position by Description
There are physical components for which the precise location is either not known or is not really relevant. One example would be an O2 sensor on the exhaust line of a car as shown in the following example:

 <sml:position>
	 <swe:Text>Located on the exhaust manifold before the catalytic converter</swe:Text>
 </sml:position>

 Position by Point
Position by point supports a static location using the gml:Point element. It is not appropriate if the orientation of the component is relevant or the component is has a dynamic location.

 <sml:position>
 <!-- EPSG 4326 is for latitude-longitude, in that order -->
 <gml:Point gml:id="stationLocation" srsName="http://www.opengis.net/def/crs/EPSG/0/4326">
 <gml:coordinates>47.8 88.56</gml:coordinates>
 </gml:Point>
 </sml:position>

 Position by Location
As an alternative to using the gml:Point, a static location can also be provided using a swe:Vector, as in the example below:

 <sml:position>
 <swe:Vector definition="http://sensorml.com/def/property/SensorLocation"
			 referenceFrame="http://www.opengis.net/def/crs/EPSG/6.7/4326">
 <swe:coordinate name="Lat">
 <swe:Quantity definition="http://sensorml.com/def/property/Latitude" axisID="Lat">
 <swe:uom code="deg"/>
 <swe:value>47.8</swe:value>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="Lon">
 <swe:Quantity definition="http://sensorml.com/def/property/Longitude" axisID="Long">
 <swe:uom code="deg"/>
 <swe:value>2.3</swe:value>
 </swe:Quantity>
 </swe:coordinate>
 </swe:Vector>
 </sml:position>

 Position by Position
Position is defined here as consisting of both location and orientation. A static position shall be provided using a swe:DataRecord consisting of two swe:Vector elements, one for location and one for orientation.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/physicalComponent/position-by-position

	[bookmark: _Ref194742147]The position property shall take a swe:DataRecord as its value when both location and orientation are relevant. This swe:DataRecord shall consist of two swe:Vector fields, the first for location and the second for orientation.

An example of location and orientation defined for the position is shown below:

 <sml:position>
 <swe:DataRecord>
 <swe:field name="location">
 <swe:Vector
 		definition="http://sensorml.com/def/property/SensorLocation"
			referenceFrame="http://www.opengis.net/def/crs/EPSG/6.7/4979"
			localFrame="#SENSOR_FRAME">
 <swe:coordinate name="Lat">
 <swe:Quantity definition="http://sensorml.com/def/property/latitude" axisID="Lat">
 <swe:uom code="deg"/>
 <swe:value>47.8</swe:value>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="Lon">
 <swe:Quantity definition="http://sensorml.com/def/property/longitude" axisID="Long">
 <swe:uom code="deg"/>
 <swe:value>2.3</swe:value>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="Alt">
 <swe:Quantity definition="http://sensorml.com/def/property/altitude" axisID="Alt">
 <swe:uom code="m"/>
 <swe:value>40.8</swe:value>
 </swe:Quantity>
 </swe:coordinate>
 </swe:Vector>
 </swe:field>
 <swe:field name="orientation">
 <swe:Vector
 		definition="http://sensorml.com/def/property/SensorOrientation"
			referenceFrame="http://www.opengis.net/def/crs/NED"
			localFrame="#SENSOR_FRAME">
 <swe:coordinate name="TrueHeading">
 <swe:Quantity definition="http://sensorml.com/def/property/trueHeading" axisID="Z">
 <swe:uom code="deg"/>
 <swe:value>-6.8</swe:value>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="Pitch">
 <swe:Quantity definition="http://sensorml.com/def/property/pitch" axisID="Y">
 <swe:uom code="deg"/>
 <swe:value>0.3</swe:value>
 </swe:Quantity>
 </swe:coordinate>
 </swe:Vector>
 </swe:field>
 </swe:DataRecord>
 </sml:position>

 Position by Trajectory
For components moving within an external reference frame, the state of the component through time shall be expressed using a swe:DataArray or process (described in the following section).

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/physicalComponent/dynamicState

	[bookmark: _Ref194742531]The dynamic state through time of a moving physical component shall be described using a swe:DataArray or a sml:AbstractProcess.

The data array shall describe the time-dependent state of the physical component as appropriate and may include location, orientation, linear and angular velocity, and linear and angular acceleration.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/physicalComponent/positionByTrajectory

	[bookmark: _Ref194742748]A swe:DataArray describing the trajectory of a moving component shall contain as its elementType a swe:DataRecord that includes a time field plus one or more swe:Vector fields supporting any or all appropriate properties of dynamic state (e.g. location, orientation, linear velocity, linear acceleration, angular velocity, and angular acceleration).

An example of dynamic position being defined as a trajectory is shown below. In this example the values for the location are provided inline within the DataArray element.

 <sml:position>
 <swe:DataArray definition="http://www.opengis.net/def/trajectory">
 <swe:elementCount>
 <swe:Count>
 <swe:value>10</swe:value>
 </swe:Count>
 </swe:elementCount>
 <swe:elementType name="trajectory">
 <swe:DataRecord definition="http://www.opengis.net/def/trajectory">
 <swe:field name="samplingTime">
 <swe:Time definition="http://sensorml.com/def/property/SamplingTime">
 <swe:label>Sampling Time</swe:label>
 <swe:uom xlink:href="http://www.opengis.net/def/uom/ISO-8601/0/Gregorian"/>
 </swe:Time>
 </swe:field>
 <swe:field name="location">
 <swe:Vector
 	 definition="http://sensorml.com/def/property/location"
 referenceFrame="http://www.opengis.net/def/crs/EPSG/6.7/4326"
 localFrame="#SENSOR_CRS">
 <swe:label>Platform Location</swe:label>
 <swe:coordinate name="Lat">
 <swe:Quantity definition="http://sensorml.com/def/property/Latitude"
 	axisID="Lat">
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="Lon">
 <swe:Quantity definition="http://sensorml.com/def/property/Longitude"
 	axisID="Long">
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:coordinate>
 </swe:Vector>
 </swe:field>
 </swe:DataRecord>
 </swe:elementType>
 <swe:encoding>
 <swe:TextEncoding blockSeparator="
" tokenSeparator=","/>
 </swe:encoding>
 <swe:values>
 2011-03-01T04:20:00Z,25.72,-61.75
 2011-03-14T13:10:00Z,25.49,-61.70
 2011-03-21T18:43:00Z,25.35,-61.63
 2011-03-30T05:13:00Z,24.87,-61.43
 2011-04-08T01:45:00Z,24.86,-61.42
 2011-04-12T08:34:00Z,24.32,-61.67
 2011-04-15T09:12:00Z,24.54,-61.53
 2011-04-21T03:21:00Z,24.53,-61.68
 2011-04-27T04:34:00Z,24.32,-61.76
 2011-05-01T12:01:00Z,24.28,-61.56
 </swe:values>
 </swe:DataArray>
 </sml:position>

It is also possible to support “out-of-band” values by referencing an external “flat file” through the xlink:href attribute of the values property, such as:

<swe:values xlink:href="http://myDomain/data/aircraftLocation_20048763">

Futhermore, the trajectory does not need to be constrained to provide only location. A trajectory DataRecord could include time, location, and orientation (e.g. pitch, roll, yaw), as well as perhaps velocity, and acceleration.
Finally, if part of the physical process (e.g. a sensor system) outputs its own position (e.g. using a GPS), that DataRecord can be referenced as in the following example:

 <sml:outputs>
 <sml:OutputList>
 <!-- for the case of moving thermometer output in sync with GPS location -->
 <sml:output name="tempStream">
 <swe:DataRecord>
 <swe:field name="sampleTime">
 <swe:Time definition="http://sensorml.com/def/property/SamplingTime"
 referenceFrame="http://www.opengis.net/def/trs/OGC/0/GPS">
 <swe:label>Sampling Time</swe:label>
 <swe:uom xlink:href="http://www.opengis.net/def/uom/ISO-8601/0/Gregorian"/>
 </swe:Time>
 </swe:field>
 <swe:field name="temperature">
 <swe:Quantity definition="http://sweet.jpl.nasa.gov/2.2/quanTemperature.owl#Temperature">
 <swe:label>Air Temperature</swe:label>
 <swe:uom code="Cel"/>
 </swe:Quantity>
 </swe:field>
 <swe:field name="location" >
			<swe:Vector id="MY_LOCATION" definition="http://sensorml.com/def/property/location"
				 referenceFrame="http://www.opengis.net/def/crs/EPSG/6.7/4326">
				<swe:coordinate name="Lat">
					<swe:Quantity definition="http://sensorml.com/def/property/Latitude" axisID="Lat">
					 <swe:uom code="deg"/>
					</swe:Quantity>
				</swe:coordinate>
				<swe:coordinate name="Lon">
					<swe:Quantity definition="http://sensorml.com/def/property/Longitude" axisID="Long">
					 <swe:uom code="deg"/>
					</swe:Quantity>
				</swe:coordinate>
			</swe:Vector>
		 </swe:field>
 </swe:DataRecord>
 </sml:output>
 </sml:OutputList>
 </sml:outputs>
 <!-- ======================================= -->
 <!-- Sensor Location from Component Output -->
 <!-- ======================================= -->
 <sml:position xlink:href="#MY_LOCATION"/>

 Position by Process
With dynamic sensor systems, it is often necessary or more efficient to calculate position or dynamic state as-needed, on-demand or to retrieve position values from a web service as-needed.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/physicalComponent/position-by-process

	[bookmark: _Ref194743382]The position property shall take a SensorML-encoded process (either inline or by reference) when those values are calculated or retrieved on-demand as-needed. The output of that process shall be a swe:DataArray describing the trajectory of the component, or a swe:DataRecord describing instantaneous position or state of the component.

The following example shows a configured SimpleProcess that calculates position on-demand using an orbital mechanics model. The process takes time as input and provides dynamic state as output. The example utilizes a configurable process to be discussed in a later section.

 <sml:position>
 <sml:SimpleProcess gml:id="OrbitalPropagationModel">
 <sml:validTime>
 <gml:TimePeriod gml:id="TimeSegment">
 <gml:beginPosition>2010-03-01T00:20:00Z</gml:beginPosition>
 <gml:endPosition>2010-03-02T04:01:00Z</gml:endPosition>
 </gml:TimePeriod>
 </sml:validTime>
 <sml:typeOf xlink:title="urn:sensors:sgp4" xlink:href="http://myDomain.org/processes/sgp4Propagation.xml"/>
 <sml:configuration>
 <sml:Settings>
 <sml:setValue ref="base/parameters/elements/epoch">2010-03-01T02:00:14.32994Z</sml:setValue>
 <sml:setValue ref="base/parameters/elements/star">0.11897E-4</sml:setValue>
 <sml:setValue ref="base/parameters/elements/inclination">98.7187</sml:setValue>
 <sml:setValue ref="base/parameters/elements/rightAscension">128.3968</sml:setValue>
 <sml:setValue ref="base/parameters/elements/eccentricity">0.00000571</sml:setValue>
 <sml:setValue ref="base/parameters/elements/argOfPerigee">101.8476</sml:setValue>
 <sml:setValue ref="base/parameters/elements/meanAnomaly">258.2808</sml:setValue>
 <sml:setValue ref="base/parameters/elements/meanMotion">14.20027191</sml:setValue>
 </sml:Settings>
 </sml:configuration>
 <sml:method xlink:href="http://blah.blah/processes/sgp4_method.xml"/>
 </sml:SimpleProcess>
 </sml:position>

The following example shows position obtained as-needed from an oline SOS web service. The SimpleProcess is a configured instance of an SOS client process. The process takes time as input and provides position as output.

 <sml:position>
 <!-- position by process -->
 <sml:SimpleProcess gml:id="SOS_Client">
 <sml:typeOf xlink:title="urn:ogc:service:sos"
 xlink:href="http://blah.blah/def/processes/SOS-position-client.xml"/>
 <sml:configuration>
 <sml:Settings>
 <sml:setValue ref="base/parameters/URI">http://sensors.ws/services/mySOS</sml:setValue>
 <sml:setValue ref="base/parameters/layer">position</sml:setValue>
 <sml:setValue ref="base/parameters/procedure">mySat1</sml:setValue>
 </sml:Settings>
 </sml:configuration>
 <sml:method xlink:href="http://blah.blah/processes/position_sos_method.xml"/>
 </sml:SimpleProcess>
 </sml:position>

Local Time Frame
The localTimeFrame property takes a TemporalFrame as its value and is an XML schema implementation of the localTimeFrame UML model defined in clause 7.6. The schema snippet for this element and its corresponding complex type is shown below.

	<element name="TemporalFrame" type="sml:TemporalFrameType"
		substitutionGroup="swe:AbstractSWEIdentifiable">
		<annotation>
			<documentation>
A general temporal frame such as a mission start time or timer start time. The origin should just describe
context of the start of time (e.g. start of local timer).
</documentation>
		</annotation>
	</element>

	<complexType name="TemporalFrameType">
		<complexContent>
			<extension base="swe:AbstractSWEIdentifiableType">
				<sequence>
					<element name="origin" type="string"/>
				</sequence>
			</extension>
		</complexContent>
	</complexType>

	<complexType name="TemporalFramePropertyType">
		<sequence minOccurs="0">
			<element ref="sml:TemporalFrame"/>
		</sequence>
		<attributeGroup ref="swe:AssociationAttributeGroup"/>
	</complexType>

An example of a declared localTimeFrame is given below:

<sml:localTimeFrame>
		<sml:TemporalFrame id="MISSION-START-TIME">
			<sml:origin>
 ISO 8601 formatted time at the start of the mission (i.e. when onboard clock is started)
 </sml:origin>
		</sml:TemporalFrame>
	</sml:localTimeFrame>

Time Position
The timePosition property takes a swe:TimePropertyType element as its value. The timePosition property allows one to specify the relationship between a local time frame and some other internal or external time frame. as described above (Section 8.4.1.4).
The id of the localTimeFrame defined in the example above, can be used as the value of the localFrame attribute of the swe:Time element in order to specify the relationship of that local time frame to some external time frame. This way several time positions can be defined relative to each other. The following example shows how this can be used to express times of high frequency scan lines acquired by an airborne scanner relative to the flight’s start time:

<sml:timePosition name=”mission-start-time”>
	<swe:Time definition="http://sensor.com/def/property/MissionStartTime"
 	 	localFrame="#MISSION-START-TIME" referenceFrame="http://www.opengis.net/def/trs/OGC/0/UTC">
			<swe:label>Flight Time</swe:label>
			<swe:description>Time at take-off in UTC</swe:description>
			<swe:uom xlink:href="http://www.opengis.net/def/uom/ISO-8601/0/Gregorian"/>
			<swe:value>2009-01-26T10:21:45+01:00</swe:value>
 	 </swe:Time>
</sml:timePosition>

Scan times can then be expressed relative to the flight’s start time as in the example below (note: the scan-start-time position might be defined in the SensorML document, as below, but the high-frequency scan-start-time values would more likely be provided as part of a block or stream of output data).

	<sml:timePosition name=”scan-start-time”>
		<swe:Time definition="http://sensorML.com/def/property/ScanStartTime"
				 localFrame="#SCAN-START-TIME" referenceFrame="#MISSION-START-TIME">
			<swe:label>Scanline Time</swe:label>
			<swe:description>Acquisition time of the scan line</swe:description>
			<swe:uom code="s"/>
			<swe:value>1256.235</swe:value>
	 </swe:Time>
	</sml:timePosition>

[bookmark: _Toc6781437]Physical Component
PhysicalComponent is derived from AbstractPhysicalProcess and is the XML schema implementation of the “PhysicalComponent” UML class defined in clause 7.6. The schema snippet for this element and its corresponding complex type is shown below.

	<element name="PhysicalComponent" type="sml:PhysicalComponentType"
		substitutionGroup="sml:AbstractPhysicalProcess">
		<annotation>
			<documentation>
A PhysicalComponent is a physical process that will not be further divided into smaller components.
</documentation>
		</annotation>
	</element>
	<complexType name="PhysicalComponentType">
		<complexContent>
			<extension base="sml:AbstractPhysicalProcessType">
				<sequence>
					<element name="method" type="sml:ProcessMethodPropertyType" minOccurs="0" maxOccurs="1">
						<annotation>
							<documentation>
The method describes (as an algorithm or text) how the process takes the input and,
based on the parameter values, generates output values.
</documentation>
						</annotation>
					</element>
				</sequence>
			</extension>
		</complexContent>
	</complexType>

	<complexType name="PhysicalComponentPropertyType">
		<sequence minOccurs="0">
			<element ref="sml:PhysicalComponent"/>
		</sequence>
		<attributeGroup ref="gml:AssociationAttributeGroup"/>
		<attributeGroup ref="gml:OwnershipAttributeGroup"/>
	</complexType>

The example below illustrates the definition of a local coordinate reference frame as well as the definition of position (i.e. both location and orientation) of the physical component. While the position of the component is specified here relative to a geospatial reference frame, it could also be specified relative to some other external reference frame, such as the reference frame of a platform.

<?xml version="1.0" encoding="UTF-8"?>
<sml:PhysicalComponent gml:id="MY_SENSOR"
	xmlns:sml="http://www.opengis.net/sensorML/2.0"
	xmlns:swe="http://www.opengis.net/swe/2.0"
	xmlns:gml="http://www.opengis.net/gml/3.2"
	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	xmlns:xlink="http://www.w3.org/1999/xlink"
	xsi:schemaLocation="http://www.opengis.net/sensorML/2.0 http://schemas.opengis.net/sensorML/2.0/sensorML.xsd">

 <!-- === -->
 <!-- System Description -->
 <!-- === -->
 <gml:description>
 Stationary Location and Orientation - Single-beam Motion Detector
 </gml:description>

 <!-- === -->
 <!-- Observed Property = Output -->
 <!-- === -->
 <sml:outputs>
 <sml:OutputList>
 <sml:output name="motionDetection">
 <swe:Boolean definition="http://sensorml.com/def/property/motion"/>
 </sml:output>
 </sml:OutputList>
 </sml:outputs>

 <!-- ==================================== -->
 <!-- Station Reference Frame -->
 <!-- ==================================== -->
 <!-- Particularly when dealing with orientations, one needs to understand the sensor's
 reference frame as defined by the OEM or sensor deployer; the position and
 orientation of this local frame is then described relative to an external reference
 frame in the "position" property -->
 <sml:localReferenceFrame>
 <sml:SpatialFrame id="SENSOR_FRAME">
 <sml:origin>
	 	Origin is at the intersection of the symmetric axis of the cylinder and the rear of the sensor
	 </sml:origin>
 	 <sml:axis name="X">
	 	X is perdendicular to the symmetric axis and intersects the indicator marked "x" on the casing
	 </sml:axis>
 <sml:axis name="Y">Y = Z cross X</sml:axis>
 <sml:axis name="Z">
		 Z is along the symmetric axis of the sensor in the direction of view
	 </sml:axis>
 </sml:SpatialFrame>
 </sml:localReferenceFrame>

 <!-- === -->
 <!-- Station Location and Orientation -->
 <!-- === -->
 <sml:position>
 <swe:DataRecord>
 <swe:field name="location">
 <swe:Vector
 		definition="http://sensorml.com/def/property/SensorLocation"
			referenceFrame="http://www.opengis.net/def/crs/EPSG/6.7/4979"
			localFrame="#SENSOR_FRAME">
 <swe:coordinate name="Lat">
 <swe:Quantity definition="http://sensorml.com/def/property/latitude" axisID="Lat">
 <swe:uom code="deg"/>
 <swe:value>47.8</swe:value>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="Lon">
 <swe:Quantity definition="http://sensorml.com/def/property/longitude" axisID="Long">
 <swe:uom code="deg"/>
 <swe:value>2.3</swe:value>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="Alt">
 <swe:Quantity definition="http://sensorml.com/def/property/altitude" axisID="Alt">
 <swe:uom code="m"/>
 <swe:value>40.8</swe:value>
 </swe:Quantity>
 </swe:coordinate>
 </swe:Vector>
 </swe:field>
 <swe:field name="orientation">
 <swe:Vector
 		definition="http://sensorml.com/def/property0/SensorOrientation"
			referenceFrame="http://www.opengis.net/def/crs/NED"
			localFrame="#SENSOR_FRAME">
 <swe:coordinate name="TrueHeading">
 <swe:Quantity definition="http://sensorml.com/def/property/trueHeading" axisID="Z">
 <swe:uom code="deg"/>
 <swe:value>-6.8</swe:value>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="Pitch">
 <swe:Quantity definition="http://sensorml.com/def/property/pitch" axisID="Y">
 <swe:uom code="deg"/>
 <swe:value>0.3</swe:value>
 </swe:Quantity>
 </swe:coordinate>
 </swe:Vector>
 </swe:field>
 </swe:DataRecord>
 </sml:position>
</sml:PhysicalComponent>
[bookmark: _Toc6781438]
Requirements Class: Physical System Schema
	Requirements Class

	http://www.opengis.net/spec/SensorML/2.0/req/xml/physicalSystem

	Target Type
	XML Instance

	Dependency
	http://www.opengis.net/spec/SensorML/2.0/req/model/physicalSystem

	Dependency
	http://www.opengis.net/spec/SensorML/2.0/req/xml/aggregateProcess

	Dependency
	http://www.opengis.net/spec/SensorML/2.0/req/xml/physicalComponent

XML Schema elements and types defined in the “physical_system.xsd” schema file implement all classes defined respectively in the “physicalSystem” UML package defined in Clause 7.7.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/physicalSystem/schema-valid

	[bookmark: _Ref194745676]The XML instance shall be valid with respect to the XML grammar defined in the “physical_system.xsd”, as well as satisfy all Schematron patterns defined in “physical_system.sch”.

The following XML snippet provides the appropriate header and import statements for the physical_component.xsd:

<schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:sml="http://www.opengis.net/sensorML/2.0"
	xmlns:gml="http://www.opengis.net/gml/3.2" xmlns:swe="http://www.opengis.net/swe/2.0"
	targetNamespace="http://www.opengis.net/sensorML/2.0" elementFormDefault="qualified"
	attributeFormDefault="unqualified">
	<annotation>
		<documentation>
The elements of a concrete aggregate physical process derived from the core process model.
</documentation>
	</annotation>
	<import namespace="http://www.opengis.net/swe/2.0"
		schemaLocation="http://schemas.opengis.net/sweCommon/2.0/swe.xsd"/>
	<import namespace="http://www.opengis.net/gml/3.2"
		schemaLocation="http://schemas.opengis.net/gml/3.2.1/gml.xsd"/>
	<include schemaLocation="physical_component.xsd"/>
	<include schemaLocation="aggregate_process.xsd"/>

[bookmark: _Toc6781439]Physical System
The PhysicalSystem element and complex type are derived from the AbstractPhysicalProcessType and ths has all of the inherited properties defined in Clause 7.6. PhysicalSystem also has the components and connections properties that have already been described in Clause 7.4.
The schema snippet for this element and its corresponding complex type is shown below.

	<element name="PhysicalSystem" type="sml:PhysicalSystemType"
		substitutionGroup="sml:AbstractPhysicalProcess">
		<annotation>
			<documentation>
A PhysicalSystem is an aggregate system that can include multiple components (both physical and non-
physical) with explicit links between the outputs, inputs, and parameters of the individual components. In a
PhysicalSystem, the spatial position of the System itself is relevant to its application.
</documentation>
		</annotation>
	</element>
	<complexType name="PhysicalSystemType">
		<complexContent>
			<extension base="sml:AbstractPhysicalProcessType">
				<sequence>
					<element name="components" type="sml:ComponentListPropertyType"
minOccurs="0" maxOccurs="1">
						<annotation>
							<documentation>
The collection of processes that make up a process aggregation.
</documentation>
						</annotation>
					</element>
					<element name="connections" type="sml:ConnectionListPropertyType"
minOccurs="0" maxOccurs="1">
						<annotation>
							<documentation>
The explicit definition of data links between outputs, inputs, and parameters of the
components within an aggregate process.
</documentation>
						</annotation>
					</element>
				</sequence>
			</extension>
		</complexContent>
	</complexType>

	<complexType name="PhysicalSystemPropertyType">
		<sequence minOccurs="0">
			<element ref="sml:PhysicalSystem"/>
		</sequence>
		<attributeGroup ref="gml:AssociationAttributeGroup"/>
		<attributeGroup ref="gml:OwnershipAttributeGroup"/>
	</complexType>

A PhysicalSystem is a physical process that consists of multiple components that can be both physical and non-physical. As with the non-physical AggregateProcess, the PhysicalSystem allows for listing of the components as well as explicit mapping of the flow of data throughout the system.
In the example below there are three components: a thermometer that outputs temperature, an anemometer that outputs both wind speed and wind direction, and a non-physical windchill process that takes temperature and wind speed and calculates a windchill factor. The components are provided “by reference” using the xlink:href attribute. The outputs of these three components connect to the outputs of the system itself, as shown in the ConnectionsList.

<?xml version="1.0" encoding="UTF-8"?>
<sml:PhysicalSystem gml:id="MY_WEATHER_STATION"
 xmlns:sml="http://www.opengis.net/sensorML/2.0"
 xmlns:swe="http://www.opengis.net/swe/2.0"
 xmlns:gml="http://www.opengis.net/gml/3.2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xsi:schemaLocation="http://www.opengis.net/sensorML/2.0 http://schemas.opengis.net/sensorML/2.0/sensorML.xsd">

 <!-- === -->
 <!-- System Description -->
 <!-- === -->
 <gml:description> Weather station in my yard </gml:description>
 <gml:identifier codeSpace="uid">urn:weather-we-is:stations:FR8766</gml:identifier>

 <!-- == -->
 <!-- Inputs = Observed Properties -->
 <!-- == -->
	<sml:inputs>
		<sml:InputList>
			<sml:input name="temperature">
				<sml:ObservableProperty definition="http://sweet.jpl.nasa.gov/2.3/propTemperature.owl#Temperature"/>
			</sml:input>
			<sml:input name="wind">
				<sml:ObservableProperty definition="http://sweet.jpl.nasa.gov/2.3/phenAtmoWind.owl#Wind"/>
			</sml:input>
		</sml:InputList>
	</sml:inputs>

 <!-- === -->
 <!-- Outputs = Quantities -->
 <!-- === -->
 <sml:outputs>
 <sml:OutputList>
 <sml:output name="weather">
 <swe:DataRecord>
 <swe:field name="temperature">
 <swe:Quantity definition="http://sensorml.com/def/property/AtmosphericTemperature">
 <swe:label>Air Temperature</swe:label>
 <swe:uom code="cel"/>
 </swe:Quantity>
 </swe:field>
 <swe:field name="wind_chill">
 <swe:Quantity definition="http://sensorml.com/def/property/WindChillFactor">
 <swe:label>Wind Chill Factor</swe:label>
 <swe:uom code="cel"/>
 </swe:Quantity>
 </swe:field>
 <swe:field name="wind_speed">
 <swe:Quantity definition="http://sensorml.com/def/property/WindSpeed">
 <swe:label>Wind Speed</swe:label>
 <swe:uom code="km/h"/>
 </swe:Quantity>
 </swe:field>
 <swe:field name="wind_direction">
 <swe:Quantity definition="http://sensorml.com/def/property/WindDirection">
 <swe:label>Wind Direction</swe:label>
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:field>
 </swe:DataRecord>
 </sml:output>
 </sml:OutputList>
 </sml:outputs>

 <!-- === -->
 <!-- System Location -->
 <!-- === -->
 <sml:position>
 <gml:Point gml:id="stationLocation" srsName="http://www.opengis.net/def/crs/EPSG/0/4326">
 <gml:coordinates>47.8 88.56</gml:coordinates>
 </gml:Point>
 </sml:position>

 <!-- === -->
 <!-- System Components -->
 <!-- === -->
 <sml:components>
 <sml:ComponentList>
 <sml:component name="thermometer" xlink:title="urn:davis:sensors:7817"
 xlink:href="http://www.sensors.ws/examples/sensorML-2.0/xml/sensors/Davis_7817_complete.xml"/>
 <sml:component name="anemometer" xlink:title="urn:davis:sensors:barometer_internal"
 xlink:href="http://www.sensors.ws/examples/sensorML-2.0/xml/sensors/Davis_7911.xml"/>
 <sml:component name="windchill" xlink:title="urn:ogc:process:windchill-02"
 xlink:href="http://www.sensors.ws/examples/sensorML-2.0/xml/processes/windchill-02.xml"/>
 </sml:ComponentList>
 </sml:components>

 <!-- === -->
 <!-- Connections between components and system output -->
 <!-- === -->
 <sml:connections>
 <sml:ConnectionList>
 <!-- connection between thermometer's output and system's temperature output -->
 <sml:connection>
 <sml:Link>
 <sml:source ref="components/thermometer/outputs/temperature"/>
 <sml:destination ref="outputs/weather/temperature"/>
 </sml:Link>
 </sml:connection>
 <!-- connection between anemometer's wind speed output and system's windspeed output -->
 <sml:connection>
 <sml:Link>
 <sml:source ref="components/anemometer/outputs/wind_state/wind_speed"/>
 <sml:destination ref="outputs/weather/wind_speed"/>
 </sml:Link>
 </sml:connection>
 <!-- connection between anemometer's wind direction output and system's wind direction output -->
 <sml:connection>
 <sml:Link>
 <sml:source ref="components/anemometer/outputs/wind_state/wind_direction"/>
 <sml:destination ref="outputs/weather/wind_direction"/>
 </sml:Link>
 </sml:connection>
 <!-- connection between thermometer's output and windchill temperature input -->
 <sml:connection>
 <sml:Link>
 <sml:source ref="components/thermometer/outputs/temperature"/>
 <sml:destination ref="components/windchill/inputs/process_inputs/temperature"/>
 </sml:Link>
 </sml:connection>
 <!-- connection between anemometer's wind speed output and windchill wind_speed input -->
 <sml:connection>
 <sml:Link>
 <sml:source ref="components/thermometer/outputs/wind_state/wind_speed"/>
 <sml:destination ref="components/windchill/inputs/process_inputs/wind_speed"/>
 </sml:Link>
 </sml:connection>
 <!-- connection between windchill process output and system's windchill output -->
 <sml:connection>
 <sml:Link>
 <sml:source ref="components/thermometer/outputs/windchill"/>
 <sml:destination ref="outputs/weather/windchill"/>
 </sml:Link>
 </sml:connection>
 </sml:ConnectionList>
 </sml:connections>
</sml:PhysicalSystem>
[bookmark: _Toc6781440]
Requirements Class: Configurable Process Schema
	Requirements Class

	http://www.opengis.net/spec/SensorML/2.0/req/xml/configuration

	Target Type
	XML Instance

	Dependency
	http://www.opengis.net/spec/SensorML/2.0/req/model/configuration

	Dependency
	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess

XML Schema elements and types defined in the “configurable_process.xsd” schema file implement all classes defined respectively in the “configurable_process” UML package defined in Clause 7.7.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/configuration/schema-valid

	[bookmark: _Ref194745805]The XML instance shall be valid with respect to the XML grammar defined in the “configuration.xsd”, as well as satisfy all Schematron patterns defined in “configuration.sch”.

The following XML snippet provides the appropriate header and import statements for the configurable_process.xsd:

<schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:sml="http://www.opengis.net/sensorML/2.0"
	xmlns:swe="http://www.opengis.net/swe/2.0" targetNamespace="http://www.opengis.net/sensorML/2.0"
	elementFormDefault="qualified" attributeFormDefault="unqualified">
	<annotation>
		<documentation>
The elements supporting configurability and configuration settings of a instance of any process.
</documentation>
	</annotation>
	<import namespace="http://www.opengis.net/swe/2.0"
		schemaLocation="http://schemas.opengis.net/sweCommon/2.0/swe.xsd"/>
	<include schemaLocation="simple_process.xsd"/>

The primary elements supporting configurable processes will be discussed in more detail in the following subclauses.
[bookmark: _Toc6781441]Modes
The Mode element is an XML schema implementation of the models defined in Clause 7.9.1. It allows one to define a choice of modes, each of which in turn sets the values for a collection of parameters.
The XML snippet for the Mode and ModeChoice elements and their complex types is given below:

Mode:
	<element name="Mode" type="sml:ModeType" substitutionGroup="sml:DescribedObject"/>

	<complexType name="ModeType">
		<complexContent>
			<extension base="sml:DescribedObjectType">
				<sequence>
					<element name="configuration" type="sml:SettingsPropertyType"/>
				</sequence>
			</extension>
		</complexContent>
	</complexType>

	<complexType name="ModePropertyType">
		<sequence minOccurs="0">
			<element ref="sml:Mode"/>
		</sequence>
		<attributeGroup ref="swe:AssociationAttributeGroup"/>
	</complexType>

ModeChoice:
	<element name="ModeChoice" type="sml:ModeChoiceType" substitutionGroup="sml:AbstractModes">
		<annotation>
			<documentation>
A collection of modes from which one can exclusively select during configuration of a process.
</documentation>
		</annotation>
	</element>

	<complexType name="ModeChoiceType">
		<complexContent>
			<extension base="sml:AbstractModesType">
				<sequence>
					<element name="mode" type="sml:ModePropertyType" minOccurs="1" maxOccurs="unbounded"/>
				</sequence>
			</extension>
		</complexContent>
	</complexType>

	<complexType name="ModeChoicePropertyType">
		<sequence minOccurs="0">
			<element ref="sml:ModeChoice"/>
		</sequence>
		<attributeGroup ref="swe:AssociationAttributeGroup"/>
	</complexType>

A Mode is restricted in the values that it can set. In essence, a Mode is restricted to setting only the values of previously defined parameters of the enclosed process and its base processes, and the values of these parameters must be set consistent with the parameters allowed values.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/configuration/modeRestriction

	[bookmark: _Ref194745968]A Mode shall not set any process property values, other than the values of parameters defined within the same process or its parent processes.

	Requirement

	http://www.opengis.net/spec/SensorML/2.0/req/xml/configuration/parameterValues

	[bookmark: _Ref194746203]The parameter values set by a Mode cannot be outside of the values allowed by the AllowedValues property of the parameter.

In the following example, the definition of the parameters, samplingRate and gain are defined within the parameters section of the process description. Then two modes (“lowThreat” and “highThreat”) are defined, each of which defines specific values for these the two parameters.

 <!-- ==================================== -->
 <!-- Parameters -->
 <!-- ==================================== -->
 <sml:parameters>
 <sml:ParameterList>
			<sml:parameter name="settings">
				<swe:DataRecord id="CURRENT_SETTINGS">
				 <swe:field name="samplingRate">
						<swe:Quantity definition="http://sensorml.com/def/propertysamplingRate" updatable="false">
							<swe:label>Sampling Rate</swe:label>
							<swe:uom code="Hz"/>
							<swe:constraint>
								<swe:AllowedValues>
									<swe:interval>0.01 10.0</swe:interval>
								</swe:AllowedValues>
							</swe:constraint>
						</swe:Quantity>
					</swe:field>
					<swe:field name="gain">
						<swe:Quantity definition="http://sensorml.com/def/propertygain" updatable="false">
							<swe:label>Gain</swe:label>
							<swe:uom code="Hz"/>
							<swe:constraint>
								<swe:AllowedValues>
									<swe:interval>1.0 2.5</swe:interval>
								</swe:AllowedValues>
							</swe:constraint>
						</swe:Quantity>
					</swe:field>
					<!-- Note: no parameter values provided because the sensor switches automatically when mode is
						changed -->
				</swe:DataRecord>
			</sml:parameter>
 </sml:ParameterList>
 </sml:parameters>

 <!-- ==================================== -->
 <!-- Modes -->
 <!-- ==================================== -->
 <sml:modes>
 <sml:ModeChoice id="THREAT_LEVEL_MODE">
 <sml:mode>
 <sml:Mode gml:id="lowThreat">
 <gml:description> Setting when nothing has been detected </gml:description>
 <gml:name>Low Threat Mode</gml:name>
 <sml:configuration>
 <sml:Settings>
 <sml:setValue ref="parameters/settings/samplingRate">0.1</sml:setValue>
 <sml:setValue ref="parameters/settings/gain">1.0</sml:setValue>
 </sml:Settings>
 </sml:configuration>
 </sml:Mode>
 </sml:mode>
 <sml:mode>
 <sml:Mode gml:id="highThreat">
 <gml:description> Setting when something has been detected </gml:description>
 <gml:name>High Threat Mode</gml:name>
 <sml:configuration>
 <sml:Settings>
 <sml:setValue ref="parameters/settings/samplingRate">10.0</sml:setValue>
 <sml:setValue ref="parameters/settings/gain">2.5</sml:setValue>
 </sml:Settings>
 </sml:configuration>
 </sml:Mode>
 </sml:mode>
 </sml:ModeChoice>
 </sml:modes>

[bookmark: _Toc6781442]Settings
The Settings element is an XML schema implementation of the models defined in Clause 7.9.2. It allows one to set values of parameters, to select modes, and to enable or disable components.
The XML snippet for the Settings element and its complex types is given below:

[bookmark: _Toc176596239]	<element name="Settings" type="sml:SettingsType" substitutionGroup="sml:AbstractSettings"/>

	<complexType name="SettingsType">
		<complexContent>
			<extension base="sml:AbstractSettingsType">
				<sequence>
					<element name="setValue" type="sml:ValueSettingPropertyType"
minOccurs="0" maxOccurs="unbounded">
						<annotation>
							<documentation>Allows the setting of a particular property value.</documentation>
						</annotation>
					</element>
					<element name="setArrayValues" type="sml:ValueSettingPropertyType"
minOccurs="0" maxOccurs="unbounded">
						<annotation>
							<documentation>Allows the setting of array values for a particular property.</documentation>
						</annotation>
					</element>
<element name="setEncodedValues" type="swe:EncodedValuesPropertyType"
minOccurs="0" maxOccurs="unbounded">
						<annotation>
							<documentation>
Allows the setting of array values for a particular property. Encoding specification is expected to be located in the “ref” attribute of swe:EncodedValuesPropertyType.
</documentation>
						</annotation>
					</element>

					<element name="setConstraint" type="sml:ConstraintSettingPropertyType"
minOccurs="0" maxOccurs="unbounded">
						<annotation>
							<documentation>
Allows one to further restrain the allowed values of a particular property.
</documentation>
						</annotation>
					</element>
					<element name="setMode" type="sml:ModeSettingPropertyType"
minOccurs="0" maxOccurs="unbounded">
						<annotation>
							<documentation>
Allows one to select a predefined mode, which by inference sets a collection of property
values according to the definition of that mode.
</documentation>
						</annotation>
					</element>
					<element name="setStatus" type="sml:StatusSettingPropertyType"
minOccurs="0" maxOccurs="unbounded">
						<annotation>
							<documentation>
Allows one to set the status (enabled, disabled, etc) of a particular input, output, or
parameter.
</documentation>
						</annotation>
					</element>
				</sequence>
			</extension>
		</complexContent>
	</complexType>

	<complexType name="SettingsPropertyType">
		<sequence minOccurs="0">
			<element ref="sml:Settings"/>
		</sequence>
		<attributeGroup ref="swe:AssociationAttributeGroup"/>
	</complexType>

setValue PropertyType:
	<complexType name="ValueSettingPropertyType">
		<simpleContent>
			<extension base="token">
				<attribute name="ref" type="sml:DataComponentPathPropertyType" use="required"/>
			</extension>
		</simpleContent>
	</complexType>

setArrayValue PropertyType:
	<complexType name="ArraySettingPropertyType">
		<sequence>
			<element name="ArrayValues">
				<complexType>
					<sequence>
						<element name="encoding">
							<complexType>
								<sequence>
									<element ref="swe:AbstractEncoding"/>
								</sequence>
							</complexType>
						</element>
						<element name="value" type="swe:EncodedValuesPropertyType"/>
					</sequence>
				</complexType>
			</element>
		</sequence>
		<attribute name="ref" type="sml:DataComponentPathPropertyType" use="required"/>
	</complexType>

setMode PropertyType:
	<complexType name="ModeSettingPropertyType">
		<simpleContent>
			<extension base="NCName">
				<attribute name="ref" type="sml:DataComponentPathPropertyType" use="required"/>
			</extension>
		</simpleContent>
	</complexType>

setStatus PropertyType:
	<complexType name="StatusSettingPropertyType">
		<simpleContent>
			<extension base="sml:StatusType">
				<attribute name="ref" type="sml:DataComponentPathPropertyType" use="required"/>
			</extension>
		</simpleContent>
	</complexType>

setConstraint PropertyType:
	<complexType name="ConstraintSettingPropertyType">
		<sequence>
			<group ref="sml:Constraint"/>
		</sequence>
		<attribute name="ref" type="sml:DataComponentPathPropertyType" use="required"/>
	</complexType>

	<group name="Constraint">
		<choice>
			<element ref="swe:AllowedTimes"/>
			<element ref="swe:AllowedTokens"/>
			<element ref="swe:AllowedValues"/>
		</choice>
	</group>

	<complexType name="ConstraintPropertyType">
		<sequence minOccurs="0">
			<group ref="sml:Constraint"/>
		</sequence>
		<attributeGroup ref="swe:AssociationAttributeGroup"/>
	</complexType>

	<simpleType name="StatusType">
		<restriction base="string">
			<enumeration value="enabled"/>
			<enumeration value="disabled"/>
		</restriction>
	</simpleType>

The following example shows use of the configuration property within a configured process. In this example, the value of the Averaging Period for the raingauge is set to 60.0 (in whatever units of measure are use by the parameter), the Sampling Period of the raingauge has been constrained between 30.0 and 60.0, and the rain gauge component has been enabled.
The path describing the properties and components shall be provided by the ref attribute and must follow the same rules set for connection Links in Section 8.3.3.2.

Annex A [bookmark: _Toc443470372][bookmark: _Toc438968655][bookmark: _Toc443461103][bookmark: _Ref243910171][bookmark: _Toc269744050][bookmark: _Ref195931678]
(normative)

Abstract Conformance Test Suite
A.1 [bookmark: _Ref247891521][bookmark: _Ref247891526][bookmark: _Ref247918951][bookmark: _Toc269744051][bookmark: _Toc6781443]Conformance Test Class: Core Concepts
	Conformance Test Class

	http://www.opengis.net/spec/SensorML/2.0/conf/core

	Target Type
	Derived Models and Software Implementations

Tests described in this section shall be used to test conformance of software and encoding models implementing the Requirements Class: Core Concepts (normative core).
A.1.1 [bookmark: _Toc6781444]Core concepts are the base of all derived models
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/core/core-concepts-used

	Requirement
Req 1
	Any derived model or encoding shall correctly implement the modeling concepts defined in the core of this specification.

	Test Method
	Inspect the model or software implementation to verify the above.

	Test Type
	Capability

A.1.2 [bookmark: _Toc6781445]A process model has inputs, outputs, parameters, and method
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/core/processes

	Requirement
Req 2
	The core model for a process shall define inputs, outputs, parameters, and methodology of that process.

	Test Method
	Inspect the model or software implementation to verify the above.

	Test Type
	Capability

A.1.3 [bookmark: _Toc6781446]A process model has a unique ID
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/core/uniqueID

	Requirement
Req 3
	The core model for a process shall include a unique ID for distinguishing that process from all others.

	Test Method
	Inspect the model or software implementation to verify the above.

	Test Type
	Capability

A.1.4 [bookmark: _Toc6781447]A process model has metadata
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/core/metadata

	Requirement
Req 4
	The core model for a process shall include metadata that support identification, discovery, and qualification of the process.

	Test Method
	Inspect the model or software implementation to verify the above.

	Test Type
	Capability

A.1.5 [bookmark: _Toc6781448]Metadata not used in process execution
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/core/execution

	Requirement
Req 5
	The metadata descriptions for a process shall not be required for successful execution of that process. All information required for execution of a simple process shall be contained within the inputs, outputs, parameters, and methodology descriptions of the process.

	Test Method
	Verify that the implementation of the conceptual model has a constraint that enforces the above.

	Test Type
	Capability

A.2 [bookmark: _Toc269744052][bookmark: _Toc6781449]Conformance Test Class: Core Abstract Process
	Conformance Test Class

	http://www.opengis.net/spec/sensorML/2.0/conf/model/coreProcess

	Target Type
	Derived Models, Encodings, and Software Implementations

	Dependency
	http://www.opengis.net/spec/sensorML/2.0/conf/core

	Dependency
	http://www.opengis.net/spec/SWE/2.0/req/uml-block-components

	Dependency
	ISO 19115:2006 (All Metadata)

	Dependency
	ISO 19136 (GML)

Tests described in this section shall be used to test conformance of software and encoding models implementing the conceptual models defined in Requirements Class: Core Abstract Process.
A.2.1 [bookmark: _Toc6781450]Dependency on Core
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/coreProcess/dependency-core

	Requirement
Req 6
	An encoding or software passing the “Core Abstract Process” model conformance class shall first pass the “Core Concepts” conformance test class.

	Test Method
	Apply all tests described in section A.1

	Test Type
	Capability

A.2.2 [bookmark: _Toc6781451]Fully implement CoreProcess
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/coreProcess/package-fully-implement

	Requirement
Req 7
	An encoding or software shall correctly implement all UML classes defined in the “Core” package and described in this section

	Test Method
	Inspect the model or software implementation to verify the above.

	Test Type
	Capability

A.2.3 [bookmark: _Toc6781452]DescribedObject derived from GML AbstractFeature
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/coreProcess/gmlDependency

	Requirement
Req 8
	DescribedObject shall derive from the GML base class, AbstractFeature, and is thus modeled as a feature with well-defined metadata properties. Any model or encoding derived from DescribedObject shall thus be of type featureType.

	Test Method
	Inspect the model or software implementation to verify the above.

	Test Type
	Capability

A.2.4 [bookmark: _Toc6781453]Using GML identifier for uniqueID in CoreProcess
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/coreProcess/uniqueID

	Requirement
Req 9
	A single, required gml:identifier property inherited from GML AbstractFeature shall be used to provide a unique ID for the DescribedObject.

	Test Method
	Verify that the implementation of the conceptual model has a constraint that enforces the above.

	Test Type
	Capability

A.2.5 [bookmark: _Toc6781454]Extensions must be in a separate namespace
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/coreProcess/extensionIndependence

	Requirement
Req 10
	Models inside of the extension property must exist within a namespace other than SensorML.

	Test Method
	Inspect the model or software implementation to verify the above.

	Test Type
	Capability

A.2.6 [bookmark: _Toc6781455]Extensions shall not be required for process execution
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/coreProcess/extensionRestrictions

	Requirement
Req 11
	Information provided inside of the extension property must not be required for execution of the process and shall not alter the execution of the process.

	Test Method
	Verify that the implementation of the conceptual model has a constraint that enforces the above.

	Test Type
	Capability

A.2.7 [bookmark: _Toc6781456]ObservableProperty and SWE Common Data used for process input, output, and parameters
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/coreProcess/SWE-Common-dependency

	Requirement
Req 12
	Any derived model or encoding for process shall utilize ObservableProperty or SWE Common Data Components as values for inputs, outputs, and parameters, and shall at a minimum conform to the SWE Common Data “Block Components Package” class (http://www.opengis.net/spec/SWE/2.0/req/uml-block-components).

	Test Method
	Inspect the model or software implementation to verify the above.

	Test Type
	Capability

A.2.8 [bookmark: _Toc6781457]Use of SWE Common Data aggregate models for process input, output, and parameters
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/coreProcess/aggregateData

	Requirement
Req 13
	Multiple input, output, and parameter values that are tightly related with one another shall be modelled as a SWE Common Data aggregate data type.

	Test Method
	Verify that the implementation of the conceptual model has a constraint that enforces the above.

	Test Type
	Capability

A.2.9 [bookmark: _Toc6781458]Application and requirements of typeOf property
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/coreProcess/typeOf

	Requirement
Req 14
	A process that is a specific instance of another process shall reference the more general process through its typeOf property. The value of the typeOf property shall be a resolvable link to an instance of a process derived from AbstractProcess.

	Test Method
	Verify that the implementation of the conceptual model has a constraint that enforces the above.

	Test Type
	Capability

A.2.10 [bookmark: _Toc6781459]Simple inheritance extends a base class referenced by typeOf
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/coreProcess/simpleInheritance

	Requirement
Req 15
	A process instance that references another process through the typeOf property, but does not include the configuration property, shall inherit properties of the referenced process through simple inheritance. The complete description of that process is thus the addition of information from both process descriptions.

	Test Method
	Verify that the implementation of the conceptual model has a constraint that enforces the above.

	Test Type
	Capability

A.2.11 [bookmark: _Toc6781460]Supporting configuration in processes
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/coreProcess/configuration

	Requirement
Req 16
	A process instance that references another process through the typeOf property, and further restricts options or allowed values provided in the referenced process, shall specify those restrictions through the configuration property.

	Test Method
	Verify that the implementation of the conceptual model has a constraint that enforces the above.

	Test Type
	Capability

A.2.12 [bookmark: _Toc6781461]Dependency on SWE Common Data simple types
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/coreProcess/SWE-Common_dependency

	Requirement
Req 17
	Contents of all properties of type AbstractDataComponents shall pass the SWE Common Data Model “Records Components Package” conformance test class.

	Test Method
	Validate according to appropriate SWE Common Data conformance tests

	Test Type
	Capability

A.3 [bookmark: _Toc6781462]Conformance Test Class: Simple Process
	Conformance Test Class

	http://www.opengis.net/spec/sensorML/2.0/conf/model/simpleProcess

	Target Type
	Derived Encoding and Software Implementation

	Dependency
	http://www.opengis.net/spec/sensorML/2.0/conf/model/coreProcess

Tests described in this section shall be used to test conformance of software and encoding models implementing the conceptual models defined in Requirements Class: Simple Process.

A.3.1 [bookmark: _Toc6781463]Dependency on core
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/simpleProcess/dependency-core

	Requirement
Req 18
	An encoding or software passing the “Simple Process” model conformance class shall first pass the “Abstract Process” requirements test class.

	Test Method
	Apply all tests described in section A.2.

	Test Type
	Capability

A.3.2 [bookmark: _Toc6781464]Fully Implement SimpleProcess
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/simpleProcess/package-fully-implement

	Requirement
Req 19
	The encoding or software shall correctly implement all UML classes defined in the “SimpleProcess” package described in this section.

	Test Method
	Inspect the model or software implementation to verify the above.

	Test Type
	Capability

A.3.3 [bookmark: _Toc6781465]Simple process definition
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/simpleProcess/definition

	Requirement
Req 20
	A process shall be modeled a “Simple Process” if it provides a processing function with well-defined inputs and outputs, if there is no intent to further divide the process description into sub-process components, and if knowledge of its physical location is of no importance.

	Test Method
	Verify that the implementation of the conceptual model has a constraint that enforces the above.

	Test Type
	Capability

A.3.4 [bookmark: _Toc6781466]Simple process has method
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/simpleProcess/method

	Requirement
Req 21
	An encoding or software implementation of the SimpleProcess class shall support the definition of the method.

	Test Method
	Inspect the model or software implementation to verify the above.

	Test Type
	Capability

A.4 [bookmark: _Toc6781467]Conformance Test Class: Aggregate Process
	Conformance Test Class

	http://www.opengis.net/spec/sensorML/2.0/conf/model/aggregateProcess

	Target Type
	Derived Encoding and Software Implementation

	Dependency
	http://www.opengis.net/spec/sensorML/2.0/conf/model/coreProcess

Tests described in this section shall be used to test conformance of software and encoding models implementing the conceptual models defined in Requirements Class: Aggregate Process.
A.4.1 [bookmark: _Toc6781468]Dependency on core
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/aggregateProcess/dependency-core

	Requirement
Req 22
	An encoding or software passing the “Aggregate Process” conformance test class shall first pass the “Simple Process” conformance test class.

	Test Method
	Apply all tests described in section A.2.

	Test Type
	Capability

A.4.2 [bookmark: _Toc6781469]Fully Implement Aggregate Process
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/aggregateProcess/package-fully-implemented

	Requirement
Req 23
	The encoding or software shall correctly implement all UML classes defined in the “AggregateProcess” package described in this section.

	Test Method
	Verify that the implementation fully implements all of the package.

	Test Type
	Capability

A.4.3 [bookmark: _Toc6781470]Definition of Aggregate Process
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/aggregateProcess/definition

	Requirement
Req 24
	A process shall be modeled as an “aggregate process” if it provides a processing function with well-defined inputs and outputs, if there is intent to further divide the process description into sub-processes, and if knowledge of its physical location is of no importance.

	Test Method
	Verify that the implementation of the conceptual model has constraints that enforce the above.

	Test Type
	Capability

A.4.4 [bookmark: _Toc6781471]Aggregate Process requires one or more components
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/aggregateProcess/components

	Requirement
Req 25
	An encoding or software implementation of the AggregateProcess class shall support the inclusion of one or more component processes and a means for explicitly specifying data flow between these components.

	Test Method
	Verify that the implementation of the conceptual model has a constraint that enforces the above.

	Test Type
	Capability

A.5 [bookmark: _Toc6781472]Conformance Test Class: Physical Component
	Conformance Test Class

	http://www.opengis.net/spec/sensorML/2.0/conf/model/physicalComponent

	Target Type
	Derived Encoding and Software Implementation

	Dependency
	http://www.opengis.net/spec/sensorML/2.0/conf/model/coreProcess

Tests described in this section shall be used to test conformance of software and encoding models implementing the conceptual models defined in Requirement Class: Physical Component.
A.5.1 [bookmark: _Toc6781473]Fully implement Physical Component
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/physicalComponent/package-fully-implement

	Requirement
Req 26
	The encoding or software shall correctly implement all UML classes defined in the “PhysicalComponent” package described in this section.

	Test Method
	Verify that the implementation fully implements all of the package.

	Test Type
	Capability

A.5.2 [bookmark: _Toc6781474]Dependency on core process
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/physicalComponent/dependency-core

	Requirement
Req 27
	An encoding or software passing the “Physical Component” conformance class shall first pass the “Core Abstract Process” conformance test class.

	Test Method
	Apply all tests described in section A.2.

	Test Type
	Capability

A.5.3 [bookmark: _Toc6781475]Position by point
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/physicalComponent/byPointOrLocation

	Requirement
Req 28
	Specification of position “byPoint” or “byLocation” shall specify the location of the origin of the object’s reference frame relative to the origin of a well-defined and specified external reference frame.

	Test Method
	Verify that the implementation of the conceptual model has a constraint that enforces the above.

	Test Type
	Capability

A.5.4 [bookmark: _Toc6781476]Position by location and orientation
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/physicalComponent/byPosition

	Requirement
Req 29
	Specification of position “byPosition” shall specify, using two Vectors, the location and orientation of the object’s reference frame relative to a well-defined and specified external reference frame.

	Test Method
	Verify that the implementation of the conceptual model has a constraint that enforces the above.

	Test Type
	Capability

A.5.5 [bookmark: _Toc6781477]Position by trajectory
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/physicalComponent/byTrajectory

	Requirement
Req 30
	Specification of position “byTrajectory” shall specify, at a minimum, the time-tagged location of the object’s reference frame relative to a well-defined and specified external reference frame, but may also include its orientation and any number of derivatives of the location and orientation.

	Test Method
	Verify that the implementation of the conceptual model has a constraint that enforces the above.

	Test Type
	Capability

A.5.6 [bookmark: _Toc6781478]Position by process
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/physicalComponent/byProcess

	Requirement
Req 31
	Specification of position “byProcess” shall specify SensorML-modeled process whose output provides, at a minimum, the time-tagged location of the object’s reference frame relative to a well-defined and specified external reference frame, but may also include its orientation and any number of derivatives of the location and orientation.

	Test Method
	Verify that the implementation of the conceptual model has a constraint that enforces the above.

	Test Type
	Capability

A.5.7 [bookmark: _Toc6781479]Physical Component definition
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/physicalComponent/byProcess

	Requirement
Req 32
	A process shall be modeled as a “Physical Component” if it provides a processing function with well-defined inputs and outputs, if there is no intent to further divide the device description into sub-process components, and if knowledge of its physical location is of importance.

	Test Method
	Verify that the implementation of the conceptual model has a constraint that enforces the above.

	Test Type
	Capability

A.6 [bookmark: _Toc6781480]Conformance Test Class: Physical System
	Conformance Test Class

	http://www.opengis.net/spec/sensorML/2.0/conf/model/physicalSystem

	Target Type
	Derived Encoding and Software Implementation

	Dependency
	http://www.opengis.net/spec/sensorML/2.0/conf/model/PhysicalComponent

Tests described in this section shall be used to test conformance of software and encoding models implementing the conceptual models defined in Requirements Class: Physical System.
A.6.1 [bookmark: _Toc6781481]Fully implement Physical System
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/physicalSystem/package-fully-implemented

	Requirement
Req 33
	The encoding or software shall correctly implement all UML classes defined in the “PhysicalSystem” package described in this section.

	Test Method
	Inspect the model or software implementation to verify the above.

	Test Type
	Capability

A.6.2 [bookmark: _Toc6781482]Physical System definition
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/physicalSystem/definition

	Requirement
Req 34
	A process shall be modeled as a “Physical System” if it provides a processing function with well-defined inputs and outputs, if the device description is further divided into subprocess components, and if knowledge of its physical location is of importance.

	Test Method
	Verify that the implementation of the conceptual model has a constraint that enforces the above.

	Test Type
	Capability

A.6.3 [bookmark: _Toc6781483]Physical System dependency
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/physicalSystem/dependency-core

	Requirement
Req 35
	An encoding or software passing the “Physical System” model conformance test class shall first pass the “Physical Component” conformance test class

	Test Method
	Apply all tests described in section A.5.

	Test Type
	Capability

A.7 [bookmark: _Toc6781484]Conformance Test Class: Process with Advanced Data Types
	Conformance Test Class

	http://www.opengis.net/spec/sensorML/2.0/conf/model/advancedProcess

	Target Type
	Derived Encoding and Software Implementation

	Dependency
	http://www.opengis.net/spec/sensorML/2.0/req/model/coreProcess

	Dependency
	http://www.opengis.net/spec/SWE/2.0/req/uml-block-components

	Dependency
	http://www.opengis.net/spec/SWE/2.0/req/uml-choice-components

Tests described in this section shall be used to test conformance of software and encoding models implementing the conceptual models define Requirements Class: Processes with Advanced Data Types.
A.7.1 [bookmark: _Toc6781485]Advanced Process dependency
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/advancedProcess/dependency-core

	Requirement
Req 36
	An encoding or software passing the “Advanced Data Types” model conformance class shall first pass the “Abstract Core Process” conformance test class.

	Test Method
	Apply all tests described in section A.2.

	Test Type
	Capability

A.7.2 [bookmark: _Toc6781486]Fully implement AdvancedProcess
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/advancedProcess/package-fully-implement

	Requirement
Req 37
	The encoding or software shall correctly implement all UML classes defined in the “Core” package and described in this section.

	Test Method
	Inspect the model or software implementation to verify the above.

	Test Type
	Capability

A.8 [bookmark: _Toc6781487]Conformance Test Class: Configurable Processes
	Conformance Test Class

	http://www.opengis.net/spec/sensorML/2.0/conf/model/configurableProcess

	Target Type
	Derived Encoding and Software Implementation

	Dependency
	http://www.opengis.net/spec/sensorML/2.0/conf/req/coreProcess

Tests described in this section shall be used to test conformance of software and encoding models implementing the conceptual models defined in Requirements Class: Configurable Processes.
A.8.1 [bookmark: _Toc6781488]Dependency on Core Process
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/configurableProcess/dependency-core

	Requirement
Req 38
	An encoding or software passing the “Configurable Process” conformance test class shall first pass the “Core Abstract Process” conformance test class.

	Test Method
	Apply all tests described in section A.2.

	Test Type
	Capability

A.8.2 [bookmark: _Toc6781489]Fully Implement Configurable Process
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/configurableProcess/package-fully-implemented

	Requirement
Req 39
	The encoding or software shall correctly implement all UML classes defined in the “Configuration” package described in this section.

	Test Method
	Inspect the model or software implementation to verify the above.

	Test Type
	Capability

A.8.3 [bookmark: _Toc6781490]ModeChoice requires 2 or more Modes
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/configurableProcess/twoModesRequired

	Requirement
Req 40
	A ModeChoice instantiation must include two or more mode properties.

	Test Method
	Inspect the model or software implementation to verify the above.

	Test Type
	Capability

A.8.4 [bookmark: _Toc6781491]A configured process requires a Settings element
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/configurableProcess/settingsProperty

	Requirement
Req 41
	A configured process must include a configuration property that takes a Settings class as its value.

	Test Method
	Verify that the implementation of the conceptual model has a constraint that enforces the above.

	Test Type
	Capability

A.8.5 [bookmark: _Toc6781492]Only parameter values can be set by setValue
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/configurableProcess/setValueRestriction

	Requirement
Req 42
	The setValue property shall only reference and set values for a parameter defined in a configurable process.

	Test Method
	Verify that the implementation of the conceptual model has a constraint that enforces the above.

	Test Type
	Capability

A.8.6 [bookmark: _Toc6781493]Only parameter array values can be set by setArrayValues and setEncodedValues
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/configurableProcess/setArrayValueRestriction

	Requirement
Req 43
	The setArrayValues and setEncodedValues properties shall only reference and set array values for a parameter defined in a configurable process.

	Test Method
	Verify that the implementation of the conceptual model has a constraint that enforces the above.

	Test Type
	Capability

A.8.7 [bookmark: _Toc6781494]Only parameter values can be constrained with setConstraint
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/model/configurableProcess/setConstraintRestriction

	Requirement
Req 44
	The setConstraint property shall only reference and set constraints for a parameter defined in a configurable process.

	Test Method
	Verify that the implementation of the conceptual model has a constraint that enforces the above.

	Test Type
	Capability

A.9 [bookmark: _Ref248249521][bookmark: _Ref248252581][bookmark: _Ref269139755][bookmark: _Toc269744058][bookmark: _Toc6781495]Conformance Test Class: Core Abstract Process Schema
	Conformance Test Class

	http://www.opengis.net/spec/SensorML/2.0/conf/xml/coreProcess

	Target Type
	XML Instance

	Dependency
	http://www.opengis.net/spec/SensorML/2.0/req/model/coreProcess

	Dependency
	http://www.opengis.net/spec/SWE/2.0/req/xml-encoding-principles

	Dependency
	http://schemas.opengis.net/gml/3.2.1/gml.xsd

	Dependency
	http://schemas.opengis.net/sweCommon/2.0/swe.xsd

	Dependency
	http://schemas.opengis.net/iso/19139/20070417/gmd/gmd.xsd

	Dependency
	http://schemas.opengis.net/iso/19139/20070417/gco/gco.xsd

All tests in this conformance test class and in the following shall be used to check conformance of XML instances created according to the schemas defined in this standard. They shall also be used to check conformance of software implementations that output XML instances.

A.9.1 [bookmark: _Toc6781496]Compliance with core XML schemas and Schematron patterns
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/xml/coreProcess /schema-valid

	Requirement
Req 45
	The XML instance shall be valid with respect to the XML grammar defined in the “core.xsd”, as well as satisfy all Schematron patterns defined in “core.sch”.

	Test Method
	Validate the XML instance containing core process with the “core.xsd” XML schema file and the Schematron patterns in “core.sch”.

	Test Type
	Capability

A.9.2 [bookmark: _Toc6781497]XML property values are included inline or by reference
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/xml/coreProcess/ref-or-inline-value-present

	Requirement
Req 46
	A property element supporting the “swe:AssociationAttributeGroup” shall either contain the value inline or populate the “xlink:href” attribute with a valid reference, but shall not be empty.

	Test Method
	Check that all properties either include an inline value or an “xlink:href” attribute.

	Test Type
	Capability

A.9.3 [bookmark: _Toc6781498]Each extension uses a different namespace
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/xml/coreProcess/extension-namespace-unique

	Requirement
Req 47
	All extensions of the XML schemas described in this standard shall be defined in a new unique namespace (other than the namespaces used by this standard and its dependencies).

	Test Method
	If the standardization target is an extension of the XML schema defined in this standard, inspect the XML schema of the extension to verify the above.

	Test Type
	Capability

A.9.4 [bookmark: _Toc6781499]Extensions do not redefine XML elements or types
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/xml/coreProcess/extension-coherent-with-core

	Requirement
Req 48
	Extensions of this standard shall not redefine or change the meaning or behavior of XML elements and types defined in this standard.

	Test Method
	Verify that all XML elements of the XML instance containing extensions can still be interpreted correctly without reading the extended information.
Note: This test cannot be run automatically as the meaning the extension must be known and thus is not required to be implemented in the Executable Test Suite.

	Test Type
	Capability

A.9.5 [bookmark: _Toc6781500]The value of the definition attribute is a resolvable URI
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/xml/coreProcess/extension-process-execution

	Requirement Req 49
	Extensions of this standard shall not exclusively contain information required for the successful execution of the process.

	Test Method
	Verify that the process execution does not require information to be retrieved from the extension element.

	Test Type
	Capability

A.9.6 [bookmark: _Toc6781501]Dependence on GML 3.2
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess/gml-dependency

	Requirement Req 50
	This standard shall utilize and depend upon the OGC GML 3.2 standard schema within the http://www.opengis.net/gml/3.2 namespace and defined in http://schemas.opengis.net/gml/3.2.1/

	Test Method
	Validate the XML Instance according to GML 3.2 conformance tests

	Test Type
	Capability

A.9.7 [bookmark: _Toc6781502]Dependence on SWE Common Data 2.0
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess/swe-common-dependency

	Requirement Req 51
	This standard shall utilize and depend upon the OGC SWE Common Data 2.0 standard within the http://www.opengis.net/swe/2.0 namespace and defined in http://schemas.opengis.net/sweCommon/2.0/swe.xsd and any corregendum (i.e. any versions 2.0.*).

	Test Method
	Validate the XML Instance according to SWE Common Data v2.0 conformance tests

	Test Type
	Capability

A.9.8 [bookmark: _Toc6781503]Globally unique ID required
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess/globallyUniqueID

	Requirement Req 52
	An instance supporting DescribedObject shall have one and only one gml:identifier and this element shall have a codespace attribute with a value set to “uniqueID”. The value of the gml:identifier shall be a globally unique identifier for the DescribedObject.

	Test Method
	Validate the XML Instance contains a unique ID for gml:identifier based on a well-defined protocol.

	Test Type
	Capability

A.9.9 [bookmark: _Toc6781504]External namespace required for security constraints
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess/documentSecurityTags

	Requirement Req 53
	All values for the securityConstraints property shall be defined in a new unique namespace (other than the namespaces used by this standard and its dependencies).

	Test Method
	Validate the XML Instance does not use namespaces used in this specification for the value of the securityConstraint property.

	Test Type
	Capability

A.9.10 [bookmark: _Toc6781505] Extension element used for security tagging of individual properties
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess/individualSecurityTags

	Requirement Req 54
	Security tagging of individual property values shall utilize the extension element within the appropriate SensorML or SWE Common data elements.

	Test Method
	Validate that security tagging of individual properties uses the extension element.

	Test Type
	Capability

A.9.11 [bookmark: _Toc6781506] Xlink role or arcrole shall be used to define relationship of contacts
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess/contactRole

	Requirement Req 55
	The role of the responsible party relative to the described object shall be provided using the xlink:arcrole attribute of the relevant member property of the ContactList.

	Test Method
	Validate within the XML Instance that either xlink:arcrole or xlink:role are present in the member element of ContactList.

	Test Type
	Capability

A.9.12 [bookmark: _Toc6781507] The typeOf property shall provide the uniqueID and resolvable location of the description on the referenced object
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess/typeOfReference

	Requirement Req 56
	The typeOf property shall require meaningful values for the xlink:title and xlink:href attributes. The uniqueID of the referenced process, given by its gml:identifier property, shall be the value of the xlink:title attribute, while a resolvable URL to the reference process description shall be the value of the xlink:href attribute.

	Test Method
	Validate that an xlink:title and xlink:href are present in any typeOf element of an XML Instance.

	Test Type
	Capability

A.9.13 [bookmark: _Toc6781508] The feature of interest property shall specify a role, and if available, the uniqueID of the feature
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess/foiArcroleAndTitle

	Requirement Req 57
	Regardless of whether a feature of interest is described inline or provided by reference, the xlink:arcrole attribute of the member property of the FeatureList shall be used to specify the relationship of the associated feature to the process. If a unique identifier or name for the feature of interest exists, it shall be the value of the xlink:title of the member property of the FeatureList.

	Test Method
	Validate that the member property of a FeatureList has a xlink:arcrole attribute present.

	Test Type
	Capability

A.9.14 [bookmark: _Toc6781509] The definition attribute required for ObservableProperty
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess/observableDefinition

	Requirement Req 58
	The ObservableProperty element shall include the definition attribute that shall take as its value, a resolvable URL referencing the definition of the observable within an online dictionary or ontology.

	Test Method
	Validate the presence and resolvability of the definition attribute for any ObservableProperty element.

	Test Type
	Capability

A.9.15 [bookmark: _Toc6781510] Use aggregate data for related data elements
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess/DataRecord

	Requirement Req 59
	Input, output, and parameter data components that are dependent on one another or represent the state at a given time, shall be surrounded by an appropriate aggregate data component, such as swe:DataRecord, swe:Vector, or swe:Matrix.

	Test Method
	Validate by inspection that dependent data components and those representing the state at a given time are encpsulted within an appropriate aggregate data component.

	Test Type
	Capability

A.9.16 [bookmark: _Toc6781511] Use Vector for inputs, outputs, and parameters that specify position
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess/VectorUse

	Requirement Req 60
	A swe:Vector shall be used for any input, output, or parameter value that requires position to be specified relative to a specific axis of a reference frame.

	Test Method
	Validate that positions within inputs, outputs, and parameters utilize the swe:Vector element.

	Test Type
	Capability

A.9.17 [bookmark: _Toc6781512]Use of resolvable URL to reference data streams
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess/DataStreamURL

	Requirement Req 61
	When the values of a DataStream can be referenced by a resolvable URL, that URL shall be the value of of the xlink:href attribute in the value property of the DataStream.

	Test Method
	Validate the presence of an xlink:href atribute with resolvable URL for DataStream values provided by reference.

	Test Type
	Capability

A.9.18 [bookmark: _Toc6781513] Use DataChoice in multiplexed data streams
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess/MultiplexedDataStream

	Requirement Req 62
	When the values of a DataStream consist of a series of multiplexed packets, the value of the elementType property shall be specified using the SWE Common Data DataChoice element.

	Test Method
	Validate that a DataStream consisting of disparate packages utilizes DataChoice to encapsulate those packages and that each package is defined as an item.

	Test Type
	Capability

A.10 [bookmark: _Toc6781514]Conformance Test Class: Simple Process Schema
	Conformance Test Class

	http://www.opengis.net/spec/SensorML/2.0/conf/xml/simpleProcess

	Target Type
	XML Instance

	Dependency
	http://www.opengis.net/spec/SensorML/2.0/req/model/simpleProcess

	Dependency
	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess

All tests in this conformance test class and in the following shall be used to check conformance of XML instances created according to the schemas defined in this standard. They shall also be used to check conformance of software implementations that output XML instances.
A.10.1 [bookmark: _Toc6781515]Compliance with simple_process XML schemas and Schematron patterns
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/xml/simpleProcess/schema-valid

	Requirement
Req 63
	The XML instance shall be valid with respect to the XML grammar defined in the “simple_process.xsd”, as well as satisfy all Schematron patterns defined in “simple_process.sch”.

	Test Method
	Validate the XML instance containing core process with the “simple_process.xsd” XML schema file and the Schematron patterns in “simple_process.sch”.

	Test Type
	Capability

A.11 [bookmark: _Toc6781516]Conformance Test Class: Aggregate Process Schema
	Conformance Test Class

	http://www.opengis.net/spec/SensorML/2.0/conf/xml/aggregateProcess

	Target Type
	XML Instance

	Dependency
	http://www.opengis.net/spec/SensorML/2.0/req/model/aggregateProcess

	Dependency
	http://www.opengis.net/spec/SensorML/2.0/req/xml/simpleProcess

All tests in this conformance test class and in the following shall be used to check conformance of XML instances created according to the schemas defined in this standard. They shall also be used to check conformance of software implementations that output XML instances.
A.11.1 [bookmark: _Toc6781517]Compliance with simple_process XML schemas and Schematron patterns
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/xml/aggregateProcess/schema-valid

	Requirement
Req 64
	The XML instance shall be valid with respect to the XML grammar defined in the “aggregate_process.xsd”, as well as satisfy all Schematron patterns defined in “aggregate_process.sch”.

	Test Method
	Validate the XML instance containing core process with the “aggregate_process.xsd” XML schema file and the Schematron patterns in “aggregate_process.sch”.

	Test Type
	Capability

A.11.2 [bookmark: _Toc6781518]Title and resolvable URL required for components provided by Reference
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/xml/aggregateProcess/componentReference

	Requirement
Req 65
	When the value of the component property is “byReference”, there shall be meaningful values for the xlink:title and xlink:href attributes. The uniqueID of the referenced process, given by its gml:identifier property, shall be the value of the xlink:title attribute, while a resolvable URL to the referenced process description shall be the value of the xlink:href attribute.

	Test Method
	Validate the presence of xlink:title and xlink:href for the component property when its value is provided by reference.

	Test Type
	Capability

	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/xml/aggregateProcess/inputConnectionRestrictions

	Requirement
Req 66
	The input of an enclosing aggregate process can connect to the input of one or more of its components; otherwise an input cannot connect to another input.

	Test Method
	Validate that there are no input-to-input connections, other than from the aggregate process to one or more of its components.

	Test Type
	Capability

	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/xml/aggregateProcess/outputConnectionRestrictions

	Requirement
Req 67
	The output of a component can connect to an output of its enclosing aggregate process; otherwise an output cannot connect to another output.

	Test Method
	Validate that there are no output-to-output connections, other than from a component process to the output of the aggregate process to.

	Test Type
	Capability

	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/xml/aggregateProcess/multipleConnections

	Requirement
Req 68
	An output can connect to multiple destinations, but an input can only have one source connection.

	Test Method
	Validate that there are no multiple connection within any given input port.

	Test Type
	Capability

	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/xml/aggregateProcess/parameterConnectionRestrictions

	Requirement
Req 69
	A parameter can only be connected as a destination; a parameter cannot serve as a source.

	Test Method
	Validate that there are no parameter ports in any destination path.

	Test Type
	Capability

	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/xml/aggregateProcess/propertyConnectionRestrictions

	Requirement
Req 70
	Process properties other than inputs, outputs, or parameters can only serve as sources of data not destinations.

	Test Method
	Validate that no properties other than inputs, outputs, and parameters are included as a destination.

	Test Type
	Capability

	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/xml/aggregateProcess/inputConnectionRestrictions

	Requirement
Req 71
	The following rules shall be used for designating the source and destination paths within the Linked element.
(a) The path begins at the base of the
(b) The path includes only property elements (lowerCamelCase) and not value objects (UpperCamelCase)
(c) If the property has an attribute name and it has a value, then it shall be used; otherwise the unqualified name of the property element should be used
(d) The path can follow properties that are byReference

	Test Method
	Validate that all paths lead to valid ports.

	Test Type
	Capability

A.12 [bookmark: _Toc6781519]Conformance Test Class: Physical Component Schema
	Conformance Test Class

	http://www.opengis.net/spec/SensorML/2.0/conf/xml/physicalComponent

	Target Type
	XML Instance

	Dependency
	http://www.opengis.net/spec/SensorML/2.0/req/model/physicalComponent

	Dependency
	Http://www.opengis.net/spec/SensorML/2.0/req/xml/simpleProcess

All tests in this conformance test class and in the following shall be used to check conformance of XML instances created according to the schemas defined in this standard. They shall also be used to check conformance of software implementations that output XML instances.
A.12.1 [bookmark: _Toc6781520]Compliance with physical_component XML schemas and Schematron patterns
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/xml/physicalSystem/schema-valid

	Requirement
Req 72
	The XML instance shall be valid with respect to the XML grammar defined in the “physical_component.xsd”, as well as satisfy all Schematron patterns defined in “physical_component.sch”.

	Test Method
	Validate the XML instance containing core process with the “physical_component.xsd” XML schema file and the Schematron patterns in “physical_component.sch”.

	Test Type
	Capability

A.12.2 [bookmark: _Toc6781521]A physical process can only attach to a physical process
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/xml/physicalComponent/attachedToTarget

	Requirement
Req 73
	The attachedTo property shall provide a reference to an object of type PhysicalComponent or PhysicalSystem.

	Test Method
	Validate that the target for the attachedTo property is a PhysicalComponent or PhysicalSystem.

	Test Type
	Capability

A.12.3 [bookmark: _Toc6781522]The attachedTo element must have xlink:title and xlink:href
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/xml/physicalComponent/attachedToReference

	Requirement
Req 74
	The attachedTo property shall require meaningful values for the xlink:title and xlink:href attributes. The uniqueID of the referenced process, given by its gml:identifier property, shall be the value of the xlink:title attribute, while a resolvable URL to the reference process description shall be the value of the xlink:href attribute.

	Test Method
	Validate that the the attachedTo property has values for the xlink:href and xlink:title attributes.

	Test Type
	Capability

A.12.4 [bookmark: _Toc6781523]Position requires a DataRecord with two Vectors
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/xml/physicalComponent/position-by-position

	Requirement
Req 75
	The position property shall take a swe:DataRecord as its value when both location and orientation are relevant. This swe:DataRecord shall consist of two swe:Vector fields, the first for location and the second for orientation.

	Test Method
	When the position element takes a swe:DataRecord as its value, validate that the DataRecord contains two swe:Vector elements as its fields.

	Test Type
	Capability

A.12.5 [bookmark: _Toc6781524]Dynamic state requires a Data Array or Process
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/xml/physicalComponent/dynamicState

	Requirement
Req 76
	The dynamic state through time of a moving physical component shall be described using a swe:DataArray or a sml:AbstractProcess.

	Test Method
	Validate through inspection that time-tagged locations, positions, or state values are provided by either swe:DataArray or a class derived from sml:AbstractProcess.

	Test Type
	Capability

A.12.6 [bookmark: _Toc6781525]Trajectory requires a DataArray with a time field and one or more Vectors
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/xml/physicalComponent/positionByTrajectory

	Requirement
Req 77
	A swe:DataArray describing the trajectory of a moving component shall contain as its elementType a swe:DataRecord that includes a time field plus one or more swe:Vector fields supporting any or all appropriate properties of dynamic state (e.g. location, orientation, linear velocity, linear acceleration, angular velocity, and angular acceleration).

	Test Method
	When the position element takes a swe:DataArray as its value, validate that the DataArray contains a time field and one or more swe:Vector elements as its fields.

	Test Type
	Capability

A.12.7 [bookmark: _Toc6781526]Process required for positions or state provided on-demand
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/xml/physicalComponent/position-by-process

	Requirement
Req 78
	The position property shall take a SensorML-encoded process (either inline or by reference) when those values are calculated or retrieved on-demand as-needed. The output of that process shall be a swe:DataArray describing the trajectory of the component, or a swe:DataRecord describing instantaneous position or state of the component.

	Test Method
	When the position element takes an instance of sml:AbstractProcess as its value, validate that the output of the process contains a swe:DataArray with time-tagged trajectory data, or a swe:DataRecord with time-tagged position or state data.

	Test Type
	Capability

A.13 [bookmark: _Toc6781527]Conformance Test Class: Physical System Schema
	Conformance Test Class

	http://www.opengis.net/spec/SensorML/2.0/conf/xml/physicalSystem

	Target Type
	XML Instance

	Dependency
	http://www.opengis.net/spec/SensorML/2.0/req/model/physicalSystem

	Dependency
	http://www.opengis.net/spec/SensorML/2.0/req/xml/aggregateProcess

	Dependency
	http://www.opengis.net/spec/SensorML/2.0/req/xml/physicalComponent

All tests in this conformance test class and in the following shall be used to check conformance of XML instances created according to the schemas defined in this standard. They shall also be used to check conformance of software implementations that output XML instances.

A.13.1 [bookmark: _Toc6781528]Compliance with physical_system XML schemas and Schematron patterns
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/xml/physicalSystem/schema-valid

	Requirement
Req 79
	The XML instance shall be valid with respect to the XML grammar defined in the “physical_system.xsd”, as well as satisfy all Schematron patterns defined in “physical_system.sch”.

	Test Method
	Validate the XML instance containing core process with the “physical_system.xsd” XML schema file and the Schematron patterns in “physical_system.sch”.

	Test Type
	Capability

A.14 [bookmark: _Toc6781529]Conformance Test Class: Configurable Process Schema
	Conformance Test Class

	http://www.opengis.net/spec/SensorML/2.0/conf/xml/configuration

	Target Type
	XML Instance

	Dependency
	http://www.opengis.net/spec/SensorML/2.0/req/model/configuration

	Dependency
	http://www.opengis.net/spec/SensorML/2.0/req/xml/coreProcess

All tests in this conformance test class and in the following shall be used to check conformance of XML instances created according to the schemas defined in this standard. They shall also be used to check conformance of software implementations that output XML instances.
A.14.1 [bookmark: _Toc6781530]Compliance with configuration XML schemas and Schematron patterns
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/xml/configuration/schema-valid

	Requirement
Req 80
	The XML instance shall be valid with respect to the XML grammar defined in the “configuration.xsd”, as well as satisfy all Schematron patterns defined in “configuration.sch”.

	Test Method
	Validate the XML instance containing core process with the “configuration.xsd” XML schema file and the Schematron patterns in “configuration.sch”.

	Test Type
	Capability

A.14.2 [bookmark: _Toc6781531]Modes can change values of parameters
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/xml/configuration/modeRestriction

	Requirement
Req 81
	A Mode shall not set any process property values, other than the values of parameters defined within the same process or its parent processes.

	Test Method
	Validate that setValue references only parameter properties and only parameter properties within the current process or a parent process.

	Test Type
	Capability

A.14.3 [bookmark: _Toc6781532]Modes can only set values of parameters to those allowed by its constraints
	Conformance Test

	http://www.opengis.net/spec/SensorML/2.0/conf/xml/configuration/parameterValues

	Requirement
Req 82
	The parameter values set by a Mode cannot be outside of the values allowed by the AllowedValues property of the parameter.

	Test Method
	Validate that the parameter values set within Mode are within the appropriate range as defined in the swe:AllowedValues property of that parameter.

	Test Type
	Capability

[bookmark: _Ref256064699][bookmark: _Toc176596261]
Annex B
(normative)

UML to XML Schema Encoding Rules

This standard follows a model-driven approach to automatically generate the XML Schema detailed in Section 8 from the UML models introduced in Section 7. The encoding rules used by this standard to generate XML schema are derived from GML encoding rules defined in ISO 19136.
A few changes have been introduced to GML encoding rules in order to accommodate for Sensor Web Enablement specific needs. These changes are listed and explained below:
· Relaxed rule on the mandatory gml:id attribute. gml:id is thus optional in SWE schemas.
· Introduced new stereotype for soft-typed-properties.
· Added support for encoding simple-type properties as XML attributes.
· Use different base type for <<Type>> stereotype (Elements are derived from anyType and made substitutable for gml:AbstractValue instead of gml:AbstractGML).

image20.png
class Modes

[
Core:DescribedObject

!

‘xension: Any[0.]
keywords: KeywordLst 0.

entication: IdentifierList[0.]
Slssificaton: ClassfierLit[0.7]

ValidTime: TimelnstantOrPeriod [0.7]
securityConstaints: Any 0.7]
legalConstinis: MD_LegalConstaints 0.°]
haracteristis: CharscteniticL s (0.1
copabilies: CapabiliyList 0."]

contacts ContacLit 0.7

ocumentation: DocumsntLis [0.]

hisory: EventLst0.]

pr——

“Typen
ModeChoice

S N

“Typen
Woce.

<propetys
+ mods: NMode[1.7]

<propetys
= configuratin: Setings

image21.png
class Settings.

<Typen
Setings.

pr—e——

propertys

setvalue: ValueSsting 0.]
setAnValues: AneySeting 0.°]
“etConsuaint. ConsvaintSeting 0.7
“ethlode: ModsSeting [0.7]
setStatus: StatusSeting 0.°]

image22.png
class Configuration

DataTypes DataTypes
ConstraintSetiing Mode setting

<propetys <propetys

< Value: Constaint < Velue: Locaiame

DataTypes
ValueSeting DstaTyper DstaTyper
Arayseting Statsseting
<properys
" Value: Componentvaiue pr— p—
< coting: avstacEncoding e statis
+ Valus: Encodeavatues
nions
Core:ComponentValue
<union Enumerstions
<oropertys Constraint ‘st
¥ oyBooiean: Boclean
+ oyinteger Ineger e p—
+ byReal: Real < categany. AllowsdTotens ¥ Ghabled: Characesiing
* bySiing: Charscirsiing < time: AllovedTimes + enabled: Crarscarsting
2 byTime: T Postion 2 number. Alowedvaluss

image23.gif
valueln

[Dem—{E

valueOut
failValue
fom|

23 176 150
T U

siope intersect Wreshog passValue

x 9 valusin
g— >
Linearinterpolator: Threshold:
scale clip
AggregateProcess:

Scale and Clip

image1.png
Aggregation between classes

Association between classes

Association Name

g

q

Class #1 Class #2
role-t role2
Association Cardinality
Class onlyone Lt Class
— Zewormore - f—Class
Class

Optional (zero or one)

One or more

‘Specific number

Class Inheritance (subtyping of classes)

Superclass

Component
[Class 22

‘Subdlass #n

image2.png
pkg Dependencies on Leaf Packages

Neme: Dependencies on Lest Paciages
Author. ot

Vesion: 10

Createc: 12972008 120823 AM

Updstes: /912011 3:35:41 PM

Py

“Application Schems»
Sensor Model Language 2.0

image3.png
pkg External Dependencies (GIL)

Name: Extemal Dependendies (ML)
Author. ot

Veson: 10

Crestec

92011 3:40:23 P
Updstes: /912011 3:41:27 PM

imports

image4.png
class GMIL Components

prr——

ypes
gmiBase-AbstractGHL

Gesaription: Crarsctersting [0.1]
GesoriptionReference: URI0..1]
name: Ganericiame 0.7]
identifir. ScopedName [0.1]

r—
festure-Abstractreature

= boundedBy. GM_Envelope [0.1]

image5.png
pkg External Dependencies (150 TC211)

Name:
Autner
Version
Crestec
Updstes

Extemal Dependencies 150 TC211)
botts

0
2712011 402:48 PM
782011 5:21:47 P

prey
PhysicalComponent
NN -
\ Simports !
\ T e
Y SN2

150 19103:2005 Schema Language.

image6.png
class IS0 19115 Components.

cdstatypes
Citation and responsible party information:
Cl_ResponsibleParty

cdstatype
Citation and responsible party information:
C1_Contact

incividualName: Characiarsting 0.1]

- = phone: Cl_Telepnona [0.1]

~ organiationame: CharacterSting (0..1] + sddress: CI_Address 0.1]

+ positioniName: CheracterSting [0.1] ~ onlineResoircs: CI_OnlinsRezourcs (0.1]

= contaciinfo: CI_Contact[0.1] ~ housOfSenice: Charactersting [0.1]

+ role: GI_RoleCode + contactinsiructions: CharacterSting 10.1]

JR— JR—

Citation and responsible party information: Citation and responsible party information:
C1_OnlineResource C1_Address.

= inkage: URL = celvenPaint: Crarscersting 0]

= protocol: Charactrsting [0.1] ity Craractersting [0.1)

~ spplicationProfile: CharacterSting [0.1] ~ sdminisrativeives: Charsctersting 0.1]

= name: Crarsctersiing 0.1] + postalCods: CharacterSting [0.1]

~ desciption: CraracterSting [0.1] = county: Crarsctersting 0-1]

~ function: CI_OnLineFunctionCode [0.1] ~ elecroniciailAddress: CharacterSiring (0.1

Constraintinformation: MD_LegalConstraints

WD Constraint|

= scoessConstaints: MD_ResticionCod= 0.1
+ useConstaints: MD_RestictionCods [0.]
+ otherConstisints: CharacterSting [0.°]

dstatypes
Citation and responsible party
information:CI_Telephone.

= voice: Graractersting [0.7]
+ facsimile: CharacterSting 0.1

image7.png
pkg External Dependencies (SWE)

Name:
Autner
Version
Crestec
Updstes

Extemal Dependendies (SWE)
botts

0
92011 3:34:40 P
92011 3:28:59 P

SR -
W'

P eE—

SWE Common Data Model 20

1

image8.png
class SWE Common Components.

<Typen
Basic Types-AbstractSWE.

<propetys
= Stension: Any (0.7

<Typen
Basic Types: AbstractSWEldentiiable

<propetys
" ideniifir. ScopedName [0.1]
+ label: CheracierSting [0.1]
+ desaription: CharacterSting [0.1]

=+ definition: Scopediiame [0.1]
= optionsl: Boolean (0.1] = false
+ updatable: Boolean [0.1]

image9.png
class DescribedObject

r——
DesoribedObject

!

‘xension: Any[0.]
keywords: KeywordLst 0.

entication: IdentifierList[0.]
Slssificaton: ClassfierLit[0.7]

ValidTime: TimelnstantOrPeriod [0.7]
securityConstaints: Any 0.7]
legalConstinis: MD_LegalConstaints 0.°]
haracteristis: CharscteniticL s (0.1
copabilies: CapabiliyList 0."]

contacts ContacLit 0.7

ocumentation: DocumsntLis [0.]

history: EventLst0.7]

image10.png
class Metadata Lists.

e g =
Type
Keyworatist g =
|pasic Types:abswociswEentrabid S
<popertys
2 aespace: Dictonary 0.1 soroperys
I DeSpace Diciora 0| | spepere ¥ antact o Resporsilerary 1.7
g < deniifer. Seopedame 19.1]
< label: Croractrsting 0.1
* desciption: Crarectrsving 0.1
e e
IdentierList Documentist
<popertys <aroperys
et Tam1 ¥ Socument. C1_onineasoures 1.1
wal T~ e 1

AbstractiletadataList

<Typen

«Typen
| coropemnn | S

Pt < definition: ScopedNiame [0.1]

<propetys <propetys
< dassfier. Term [1.1] Satent Eventin.)

Typen Types
Capabliyist CharacterstiList
<propetys <propetys
=+ capability: AbstaciDataComponent[1.°] = Characerisic. AbstacDtaComponent 1.7
- Typen “Typen
TimeinstantOrPeriod Featurelist =
r <propetys <properys
B = member. GFl_Featie 1.7 < label: CreracierSting
+ byTimeRsnge: TM_Period i e=pace: Dictonary 0..1)
< + definition: Scopediame [0.1]
+ value: Crarscersting

image11.png
class History

==

<Typen
Basic Types: AbstractSWEldentiiable

<propetys
" ideniifir. ScopedName [0.1]
+ label: CheracierSting [0.1]
= desaription: CharacterSting [0.1]

«Typen
Event

propertys
definiton: Scopediame (0..1]
Keywords: KeywordLst (0..1]
dentiication: Identifierist[0.1]
Slssifcation: Classifieist 0.1]
contacts Contactis (0.1)
ocumentation: DosumentList [0.1]
time: TimelnstantOrFerioa
property. AbstraciDataComponent 0.1]
configurtion: AbstrsctSetiings [0..1]

image12.png
class AbstractProcesses

r——
DesoribedObject

!

‘xension: Any[0.]
keywords: KeywordLst 0.

entication: IdentifierList[0.]
Slssificaton: ClassfierLit[0.7]

ValidTime: TimelnstantOrPeriod [0.7]
securityConstaints: Any 0.7]
legalConstinis: MD_LegalConstaints 0.°]
haracteristis: CharscteniticL s (0.1
copabilies: CapabiliyList 0."]

contacts ContacLit 0.7

ocumentation: DocumsntLis [0.]

history: EventLst0.7]

Jr—

propertys
definiton: Scopediame [0.1]
fypeOt AbstractProcess[0.1]
configurtion: AbsrsctSatings [0..1]
featuresOfinterest: FeatureList (0.1]
inputs InputList (0..1]
outputs: OutputLst[0.1]
parametess: ParameterList[0.1]
modes: Absractiodes [0.7]

image13.png
class Process 10 Lists

<Typen
Basic Types-AbstractSWE.

<propetys
= Stension: Any (0.7

s e E
puttist ouputtist Parsmatertst
7Pt Datacomponsniorossenable 17| |+ output. DataCompenentorossenabie [1.7| | porameter. DataGomponentoropsenvatie 1.°]
T— estectsWEGeriTabe
DatacomponenOrobservable Types
Observabierroperty

= obsenvable: ObservableProperty
+ dataComponent: AvstraciDataComponent prm——

~ intertace: Dataintertace. = defiition: Scopediiame

<Typen
Datainterfzce

<propetys
< data: Datasteam
+ intertaceParameters: DataRecord [0.1]

image14.png
class SimpleProcess.

= definition: Scopediiame [0.1]
+ typeOt: AbstractProcess 0..1]

+ configuration: AbstiacSetiings [0.1]
+ festuresOfinarest. FeatureList[0.1]
+ inputs: InputList[0.1]

+ outputs: Outputlist[0.1]

+ parameters: ParameterList[0.1]

+ modes: Absiracihiodss [0.°]

[r—
SimpleProcess.

=+ method: Processhistnod 0.1]

image15.png
class Processhethod

==

<Typen
Basic Types: AbstractSWEldentiiable

<propetys
" ideniifir. ScopedName [0.1]
+ label: CheracierSting [0.1]
= desaription: CharacterSting [0.1]

<Typen
Processhisthod

<propestys
= algorthm: Absvractalgaritim [0.7]

I acition t textual
esaripton, slgorithm.
a0 be supported with
various sppropriste.
langusges, such a5
NistnliL, ava, o

image16.png
class AggregateProcess

«Typen
Componenttist

propertys

definiton: Scopediame [0.1]
fypeOt AbstractProcess[0.1]
configuration: AbsvactSetings [0..1]
featuresOfinterest: FeatureList (0.1]
inputs InputList (0..1]

outputs: OutputLst[0.1]
parametess: ParameterList[0.1]
modes: Absractiodes 0.7

<propetys
+ component: AbstactProcess [1.°]

<Typen
ConnectionList

<propestys
+ connection: Link[1."]

DataTypes
Link

= companents: ComponentList[0.1]
+conneclions: ConnedtionL st [0.1]

<propetys
< ource: DataComponentat
+destination: DatsComponenRef

image17.png
class PhysicalComponent

propertys
definiton: Scopediame [0..1]
fypeOt. AbstractProcess[0.1]
configurtion: AbsrsctSstings[0..1]
featuresOfinterest: FeatureList (0.1]
inputs InputList (0..1]
outputs: OutputLst[0.1]
parametess: ParameterList[0.1]
modes: Absractiodes [0.7]

[—
AbstractPhysicalProcess

<propestys
=+ stiachedTo: AbstractPhysicalProcess 0.1]
+ localReferenceFrame: SpatisiFrame 0.°]
+ localTimeFrame: TemporalFram [0.°]
= positon: PositionUnion 0]

= timePosition: Time [0.7]

image18.png
class Position

==

<Typen
Basic Types: AbstractSWEldentiiable

<propetys
" ideniifir. ScopedName [0.1]
+ label: CheracierSting [0.1]
= desaription: CharacterSting [0.1]

Typen =
Types
SpatialFrame TemporalFrame.
<propetys cpropertys
= origin: Charsctersing = arigin: Charsctersiing
+ oxis: Charactersting [1.7]

<Union
PositionUnion

propertys
byDesatiption: Text
byPoint. Gl_Point
byLocation: Vector
byPosiion: DataRecord
yTrsjecioy: DataAray
byProcess: AbstiacProcess

image19.png
class PhysicalSystem

= definition: Scopediiame [0.1]
+ typeOt: AbstactProcess 0.1]

+ configuration: AbstiacSetiings [0.1]
+ festuresOfinarest. FeatureList[0.1]
< inputs: InputList[0.1]

+ outputs: Outputlist[0.1]

+ parameters: ParameterList[0.1]

+ modes: Absiracihiodss [0.°]

—
PhysicalComponent-AbstractPhysicalProcess

<propestys
=+ stiachedTo: AbstractPhysicalProcess 0.1]
+ localReferenceFrame: SpatisiFrame 0.°]
+ localTimeFrame: TemporalFram [0.°]
= positon: PositionUnion 0]

= _timePosition: Time 0.7)

[r—
Physicalsystem

<propetys
= companents: ComponentList[0.1]
+conneclions: ConnedtionL st [0.1]

