
1
Copyright © 2018 Open Geospatial Consortium

Open Geospatial Consortium
Submission Date: 2017-08-31

Approval Date: 2017-09-15

Publication Date: 2018-01-18

External identifier of this OGC® document: http://www.opengis.net/doc/BP/SWE-JSON/1.0

Internal reference number of this OGC® document: 17-011r2

Version: 1.0

Category: OGC® Best Practice

Editor: Alex Robin

JSON Encoding Rules

SWE Common / SensorML

Copyright notice

Copyright © 2018 Open Geospatial Consortium
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document defines an OGC Best Practice on a particular technology or ap-
proach related to an OGC standard. This document is not an OGC Standard and
may not be referred to as an OGC Standard. This document is subject to change
without notice. However, this document is an official position of the OGC mem-
bership on this particular technology topic.

 Document type: OGC® Best Practice
Document subtype:
Document stage: Approved for public release
Document language: English

http://www.opengeospatial.org/legal/

2
Copyright © 2018 Open Geospatial Consortium

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below,
to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property
without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish,
distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to
do so, provided that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above copyright
notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT
MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL
PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM ANY ALLEGED
INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH THE IMPLEMENTATION, USE,
COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all
copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as
provided in the following sentence, no such termination of this license shall require the termination of any third party end-user
sublicense to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual
Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent,
copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license
without any compensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or
cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual
Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without
prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may
authorize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any
LICENSOR standards or specifications. This Agreement is governed by the laws of the Commonwealth of Massachusetts. The
application to this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is hereby expressly
excluded. In the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be
modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force and effect. No
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies available to it.

3
Copyright © 2018 Open Geospatial Consortium

Contents
1.Scope .. 6

2.References .. 6

3.Terms and Definitions .. 6

4.Conventions ... 7

4.1Abbreviated Terms ... 7

4.2Identifiers ... 7

5.JSON Encoding Rules .. 8

5.1JSON Information Model .. 8

5.2Requirements Class: UML - JSON Mapping .. 9

5.2.1UML Stereotypes ... 9

5.2.2Rules for UML Classes .. 9

5.2.3Rules for UML Properties ... 10

5.3XML - JSON Mapping (informative) .. 14

5.3.1XML Elements Types .. 14

5.3.2Namespaces ... 14

5.3.3XML Object Elements Mappings .. 14

5.3.4XML Property Elements Mappings ... 15

5.3.5XML Attributes Mappings ... 16

5.3.6XML Data Types Mappings .. 17

5.4Comparative XML and JSON Examples ... 18

5.4.1SWE Common Example ... 18

5.4.2SensorML Example ... 19

6.Existing Implementation .. 21

4
Copyright © 2018 Open Geospatial Consortium

i. Abstract
This document describes new JavaScript Object Notation (JSON) encodings for the
Sensor Web Enablement (SWE) Common Data Model and the Sensor Model Language
(SensorML). Rather than creating new JSON schemas, this document defines encoding
rules that allow auto-generation of JSON instances that conform to the Unified Modeling
Language (UML) models. Alternatively, the mappings given in the second part of the
document can be used to convert bi-directionally between XML and JSON
representations.

ii. Keywords
The following are keywords to be used by search engines and document catalogues.

ogcdoc, ogc document, sensor, actuator, swe, json, extension, encoding, encoding rules,
data model, sensor model, sensorml, swe common

iii. Preface
The SensorML standard [OGC 12-000] defines conceptual models and a corresponding
XML encoding (specified by an XML schema) for describing sensors, actuators and
associated processing components. Likewise, the SWE Common Data Model standard
[OGC 08-194-r1], which is also a dependency of the SensorML standard, defines
conceptual models and XML encodings for describing the structure and efficiently
encoding values of data streams.

This document describes new JSON encoding rules that are applicable to both standards,
and enable bi-directional conversion between XML and JSON data representations of the
conceptual models. The rules are designed to be easy to implement so that software that
already supports the XML encoding can be easily updated to support the new JSON
representation.

Suggested additions, changes, and comments on this document are welcome and
encouraged. Such suggestions may be submitted by email message, or by making
suggested changes in an edited copy of this document.

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. The Open Geospatial Consortium shall not be held
responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of
any relevant patent claims or other intellectual property rights of which they may be
aware that might be infringed by any implementation of the standard set forth in this
document, and to provide supporting documentation.

5
Copyright © 2018 Open Geospatial Consortium

iv. Submitting organizations
The following organizations submitted this Document to the Open Geospatial
Consortium (OGC):

• Botts Innovative Research, Inc.

• Sensia Software LLC

v. Submitters
All questions regarding this submission should be directed to the editor or the submitters:

Name Affiliation
Alexandre Robin Sensia Software LLC
Michael E. Botts Botts Innovative Research, Inc.

vi. Future work
This document only defines JSON encoding rules for the SensorML and SWE Common
Data Model standards, but the same rules could potentially be applied to other OGC
standards. In particular, the following standards of the Sensor Web Enablement initiative
could be aligned to use the same rules:

• Observations and Measurements (O&M) JSON: these recently proposed
encodings could potentially be revisited so that the exact same rules are used to
derive the JSON representation.

• SensorThings API: this RESTful interface standard could make use of the
SensorML JSON encoding proposed herein. A future v2.0 could also be aligned to
use the proposed SWE Common JSON representation rather than the slightly
different models/JSON structure that was created for v1.0.

• In general, there is a need for a set of rules for transforming UML into JSON
beyond SWE. These rules are needed for most of the OGC standards including
OWS Common.

There are also some aspects of the encoding rules that should probably be debated:

• Should GeoJSON be used whenever a GML geometry is used?

• Should plural words be used for properties with multiplicity greater than one
encoded as arrays?

The authors have endeavored to ensure that the encoding rules are compatible with those
identified by Testbed-12 [OGC 16-051]. However, aspects such as namespaces are not
supported in the current version of the encoding rules. It is envisioned that future versions
of the encoding rules will apply lessons from Testbed-12 regarding use of JSON Schema
or JSON-LD for supporting namespaces.

6
Copyright © 2018 Open Geospatial Consortium

1. Scope

This document describes encoding rules that can be used to derive a JSON structure (i.e.
JSON schema) from the UML conceptual models of SWE Common and SensorML. It
also describes direct mappings between XML and JSON instances to ease
implementation of software that does conversion between XML and JSON
representations.

2. References

The following normative documents contain provisions that, through reference in this
text, constitute provisions of this document. For dated references, subsequent
amendments to, or revisions of, any of these publications do not apply. For undated
references, the latest edition of the normative document referred to applies.

OGC 12-000: OGC® SensorML: Model and XML Encoding Standard, version 2.0,
February 2014

OGC 08-094r1: OGC® SWE Common Data Model Encoding Standard, version 2.0,
January 2011

OGC 07-036: Geographic Markup Language, version 3.2.1, August 2007,
Annex E: UML-to-GML application schema encoding rules

IETF RFC 7159: The JavaScript Object Notation (JSON) Data Interchange Format,
March 2014

OGC 16-051: Testbed-12: Javascript-JSON-JSON-LD Engineering Report, May
2017

3. Terms and Definitions

This document uses the terms defined in Sub-clause 5.3 of [OGC 06-121r8], which is
based on the ISO/IEC Directives, Part 2, Rules for the structure and drafting of
International Standards. In particular, the word “shall” (not “must”) is the verb form used
to indicate a requirement to be strictly followed to conform to this standard.

For the purposes of this document, no other terms and definitions apply.

7
Copyright © 2018 Open Geospatial Consortium

4. Conventions

4.1 Abbreviated Terms

JSON JavaScript Object Notation

O&M Observations and Measurements

SensorML Sensor Model Language

SWE Common SWE Common Data Model

XML eXtensible Markup Language

4.2 Identifiers

The normative provisions in this specification are denoted by the URI:

http://www.opengis.net/spec/SWE-JSON/1.0

All requirements and conformance tests that appear in this document are denoted by
partial URIs which are relative to this base.

5. JSON Encoding Rules

5.1 JSON Information Model

In this document, the choice was made to maintain the complete information model in the
JSON representation, and to not apply any simplification. With the exception of
namespaces, all information included in the UML conceptual models is thus present in
the JSON representation (similarly to the XML encoding). This allows for bi-directional
conversion between XML and JSON without any loss of information.

The encoding rules defined in this document refer to JSON data types whose definitions
are recalled below:

Objects: An object structure is represented as a pair of curly brackets surrounding zero or
more name/value pairs (or members). Members are separated by commas. Each member
must have a distinct name (i.e. a JSON object is essentially a map).

Arrays: An array structure is represented as square brackets surrounding zero or more
values (or elements). Elements are separated by commas.

Numbers: A decimal or integer number represented in base 10, with a sign and optional
exponent.

8
Copyright © 2018 Open Geospatial Consortium

Strings: A string of Unicode characters that begins and ends with quotation marks.

5.2 Requirements Class: UML - JSON Mapping

Requirements Class

http://www.opengis.net/spec/SWE-JSON/1.0/req/uml-json
Target Type JSON Instance

This requirements class defines bi-directional mappings between the UML conceptual
models for SWE Common/SensorML and the proposed JSON encoding.

5.2.1 UML Stereotypes

SWE Common and SensorML conceptual models use many of the UML conventions
defined in annex E of [OGC 07-036]. In particular, the following stereotypes are used:
<<Type>>, <<DataType>> and <<property>>.

In addition, some UML tags are used to customize encoding of certain properties:

• by-reference: indicates that the property value can be given by reference (with
the XML encoding, this translates into xlink attributes on the property)

• soft-typed: indicates that the property is soft-typed and must carry a “name”
attribute to be fully qualified.

5.2.2 Rules for UML Classes

Requirement

http://www.opengis.net/spec/SWE-JSON/1.0/req/uml-class-type
 Req 1 An instance of a UML class with stereotype <<Type>> or <<DataType>> or no

stereotype at all shall be encoded as a JSON object containing a “type” member
whose value is the name of the UML class.

Example 1: Object type

UML JSON

<<Type>>	
Quantity	

[...]	

{	
		“type”:	“Quantity”,	
		[...]	
}	

9
Copyright © 2018 Open Geospatial Consortium

Requirement

http://www.opengis.net/spec/SWE-JSON/1.0/req/uml-class-ref
 Req 2 An instance of a UML class derived from the Reference class shall be encoded

as a JSON object without a “type” member.

Example 2: Reference object

UML JSON

<<Type>>	
Quantity	

	 <<DataType>>	
UnitReference	

<<property>>	
uom:	UnitReference	

	 code:	UomSymbol	

{	
		“type”:	“Quantity”,	
		“uom”:	{	“code”:	“hPa”	}	
}	

5.2.3 Rules for UML Properties

Requirement

http://www.opengis.net/spec/SWE-JSON/1.0/req/uml-property
 Req 3 A UML attribute or association with stereotype <<property>> shall be encoded

as a JSON object member. The member’s name shall be the same as the UML
attribute or association’s name.

Requirement

http://www.opengis.net/spec/SWE-JSON/1.0/req/uml-property-single
 Req 4 If the UML property has multiplicity one, the value of the JSON member shall

be the property instance value.

Requirement

http://www.opengis.net/spec/SWE-JSON/1.0/req/uml-property-multi
 Req 5 If the UML property has multiplicity greater than one, the value of the JSON

member shall be a JSON array containing a list of property instance values.

Requirement

http://www.opengis.net/spec/SWE-JSON/1.0/req/uml-property-numeric
 Req 6 If the UML property is of type “Real” or “Integer”, its instance value shall be a

JSON number.

10
Copyright © 2018 Open Geospatial Consortium

Example 3: Property with numeric type

UML JSON

<<Type>>	
Quantity	

<<property>>	
value:	Real	

{	
		“type”:	“Quantity”,	
		“value”:	3.2	
}	

Example 4: Property with numeric type and multiplicity > 1

UML JSON

<<Type>>	
QuantityRange	

<<property>>	
value:	Real[2]	

{	
		“type”:	“Quantity”,	
		“value”:	[3.2,	10.4]	
}	

Requirement

http://www.opengis.net/spec/SWE-JSON/1.0/req/uml-property-string
 Req 7 If the UML property is not of type “Real” or “Integer”, its instance value shall

be a JSON string.

Example 5: Property with non-numeric type

UML JSON

<<Type>>	
Time	

<<property>>	
value:	TM_Position	[0..1]	

{	
		“type”:	“Time”,	
		“value”:	“2014-05-02T23:45:32Z”	
}	

Example 6: Property with non-numeric type and multiplicity > 1

UML JSON

<<Type>>	
Keywords	

<<property>>	
keyword:	string	[1..*]	

{	
		“type”:	“Keywords”,	
		“keyword”:	[“word1”,	“word2”]	
}	

Requirement

http://www.opengis.net/spec/SWE-JSON/1.0/req/uml-property-complex

11
Copyright © 2018 Open Geospatial Consortium

 Req 8 If the UML property is of object type, its instance value shall be the JSON
object corresponding to the UML class (see Req 1).

Example 7: Property with object type

UML JSON

<<Type>>	
Quantity	

	 <<Type>>	
AllowedValues	

<<property>>	
constraint:	AllowedValues	

	 [...]	

{	
		“type”:	“Quantity”,	
		“constraint”:	{	
				“type”:	“AllowedValues”,	
				...	
		}	
}	

Example 8: Property with object type and multiplicity > 1

UML JSON

<<Type>>	
Category	

<<property>>	
quality:	Quality	[0..*]	

{	
		“type”:	“Category”,	
		“quality”:	[
				{	...	},	
				{	...	}	
]	
}	

Requirement

http://www.opengis.net/spec/SWE-JSON/1.0/req/uml-property-ref
 Req 9 If a UML property allows the “by-reference” pattern as defined in [ISO 19136]

and a reference is used, its instance value shall be a JSON object with a “href”
member and optional “role” and “arcrole”members.

Example 9: By-reference property

UML JSON

<<Type>>	
SimpleProcess	

<<property>>	
typeOf:	AbstractProcess	[0..1]	
[...]	

{	
		“type”:	“SimpleProcess”,	
		“typeOf”:	{	“href”:	”http://myuri”	},	
		...	
}	

Example 10: By-reference property with multiplicity > 1

UML JSON

12
Copyright © 2018 Open Geospatial Consortium

<<Type>>	
Quantity	

<<property>>	
field:	AbstractDataComponent	[1..*]	
[...]	

{	
		“type”:	“DataRecord”,	
		“field”:	[
				{	“href”:	”http://myuri”	},	
				{	...	}	
]	
}	

Requirement

http://www.opengis.net/spec/SWE-JSON/1.0/req/uml-property-softtyped
 Req 10 If the UML property is a “soft-typed” property as defined in [OGC 08-094r1], a

“name” member is added to the property instance value object.

Example 11: Soft-typed property

UML JSON

<<Type>>	
DataRecord	

<<property>>	
field:	AbstractDataComponent	[1..*]	
[...]	

{	
		“type”:	“DataRecord”,	
		“field”:	[
				{	“name”:	”temp”,	...	},	
				{	“name”:	“press”,	...	}	
]	
}	

5.3 XML - JSON Mapping (informative)

This section describes bi-directional mappings between the SWE Common/SensorML
XML representation and the proposed JSON encoding. This is not normative but can help
updating software that already support the XML representation.

Although these mappings are expressed in terms of XML and JSON structure, it is
important to understand that an implementation of these mappings does NOT imply
generating an actual XML document before it can be converted to JSON and vice-versa.
Implementation can instead apply the mapping “on-the-fly” to whatever representation
(e.g. programming language structures such as objects) they desire.

5.3.1 XML Elements Types

XML schemas for SWE Common and SensorML were auto-generated from UML models
using well defined encoding rules; thus they are consistent in the way they alternate two
types of XML elements:

• Object elements start with an upper-case letter and correspond to class names in
the conceptual models. Object elements can contain several property elements.

13
Copyright © 2018 Open Geospatial Consortium

• Property elements start with a lower-case letter and correspond to a class
attributes names in the conceptual models. A property element can contain either
an inline value or a single nested object element.

These two types of XML elements are encoded differently in JSON.

5.3.2 Namespaces

JSON does not have the concept of namespaces natively, thus none are used when
representing the SWE Common and SensorML conceptual models as JSON in this
current version of the encoding rules.

5.3.3 XML Object Elements Mappings

An XML object element that is the root of the document is encoded as a JSON object.

An XML object element that is not the root of the document is necessarily nested within a
parent XML property element. Since XML complex property elements in SWE schemas
always take a single child element, we collapse both the property and its complex value
in a single JSON object. In this case, only its local name is retained and set as value of
the “type” member of the enclosing JSON object.

Example 12: Object element as root

XML JSON

<Quantity>	
		[...]	
</Quantity>	
	

{	
		“type”:	“Quantity”,	
		...	
}	

Example 13: Object element as child

XML JSON

<prop>	
		<Quantity>	
				[...]	
		</Quantity>	
</prop>	

“prop”:	{	
		“type”:	“Quantity”,	
		...	
}	
	

5.3.4 XML Property Elements Mappings

An XML property element maps to a JSON object’s member. The member’s name
corresponds to the local part (i.e. without the namespace prefix) of the XML element’s
name.

14
Copyright © 2018 Open Geospatial Consortium

5.3.4.1 Property with simple type (multiplicity = 1)
If the XML property has multiplicity one and is of simple type (i.e. the property contains
an inline value), the value of the JSON member is a JSON number or string.

Example 14: Simple property value

XML JSON

<swe:Quantity>	
		<swe:value>3.2</swe:value>	
</swe:Quantity>	
	

{	
		“type”:	“Quantity”,	
		“value”:	3.2	
}	

5.3.4.2 Property with complex type (multiplicity = 1)
If the XML property has multiplicity one and is of complex type (i.e. the property
contains a nested XML element or attribute), the value of the JSON member is a JSON
object.

Example 15: Property with nested attribute

XML JSON

<swe:Quantity>	
		<swe:uom	code=”hPa”/>	
</swe:Quantity>	
	

{	
		“type”:	“Quantity”,	
		“uom”:	{	“code”:	“hPa”	}	
}	

Example 16: Property with nested element

XML JSON

<swe:Quantity>	
		<swe:constraint>	
				<swe:AllowedValues>	
						[...]	
				</swe:AllowedValues>	
		</swe:constraint>	
</swe:Quantity>	
	

{	
		“type”:	“Quantity”,	
		“constraint”:	{	
				“type”:	“AllowedValues”,	
				...	
		}	
}	

5.3.4.3 Property with simple type (multiplicity > 1)
If the XML property has multiplicity greater than one and is of simple type, the value of
the JSON member is a JSON array that collects all values from the different occurrences
of this property.

Example 17: Simple property with multiplicity > 1

XML JSON

15
Copyright © 2018 Open Geospatial Consortium

<sml:Keywords>	
		<sml:keyword>word1</sml:keyword>	
		<sml:keyword>word2</sml:keyword>	
</sml:Keywords>	

{	
		“type”:	“Keywords”,	
		“keyword”:	[“word1”,	“word2”]	
}	

5.3.4.4 Property with complex type (multiplicity > 1)
If the XML property has multiplicity greater than one and is of complex type, the value of
the JSON member is a JSON array that collects all values from the different occurrences
of this property as JSON objects.

Example 18: Complex property with multiplicity > 1

XML JSON

<swe:DataRecord>	
		<swe:field	name=”temp”>[...]</swe:field>	
		<swe:field	name=”press”>[...]</swe:field>	
</swe:DataRecord>	
	
	
	

{	
		“type”:	“DataRecord”,	
		“field”:	[
				{	“name”:	“temp”	},	
				{	“name”:	“press”	}	
]	
}	

5.3.5 XML Attributes Mappings

An XML attribute maps to a JSON object’s member whose value is a JSON number or
string. The member’s name corresponds to the local part (i.e. without the namespace
prefix) of the XML attribute’s name.

Example 19: Attribute on property element

XML JSON

<swe:field	name=”temp”>	
		[...]	
</swe:field>	
	

“field”:	{	
		“name”:	“temp”,	
		...	
}	

An XML attribute that is a child of an XML object element is appended directly to the
enclosing JSON object after the “type” object member.

Example 20: Attribute on object element

XML JSON

<swe:Quantity	definition=”uri”/>	
	
	
	

{	
		“type”:	“Quantity”,	
		“definition”:	{	“code”:	“hPa”	}	
}	

16
Copyright © 2018 Open Geospatial Consortium

5.3.6 XML Data Types Mappings

An element or attribute value of type “decimal”, “float” or “double” or any type derived
from these is encoded as a JSON number.

An element or attribute value of any other type is encoded as a JSON string.

XML values that are fixed in the schema can be omitted in JSON.

5.4 Comparative XML and JSON Examples

The following snippets show an XML instance and the corresponding JSON obtained by
applying the mappings defined in this document.

5.4.1 SWE Common Example

XML
<DataRecord>	
		<label>Weather	Data	Record</label>	
		<description>Record	of	synchronous	weather	measurements</description>	
		<field	name="ts">	
				<Time	definition="http://www.opengis.net/def/property/OGC/0/SamplingTime"	
										referenceFrame="http://www.opengis.net/def/trs/OGC/0/GPS">	
						<label>Sampling	Time</label>	
						<uom	href="http://www.opengis.net/def/uom/ISO-8601/0/Gregorian"/>	
				</Time>	
		</field>	
		<field	name="temp">	
				<Quantity	definition="http://mmisw.org/ont/cf/parameter/air_temperature">	
						<label>Air	Temperature</label>	
						<uom	code="Cel"/>	
				</Quantity>	
		</field>	
		<field	name="press">	
				<Quantity	definition="http://mmisw.org/ont/cf/parameter/air_pressure">	
						<label>Air	Pressure</label>	
						<uom	code="mbar"/>	
				</Quantity>	
		</field>	
</DataRecord>	

JSON
{	
		"type":	"DataRecord",	
		"label":	"Weather	Data	Record",	
		"description":	"Record	of	synchronous	weather	measurements",	
		"field":	[
				{	
						"name":	"ts",	
						"type":	"Time",	
						"definition":	"http://www.opengis.net/def/property/OGC/0/SamplingTime",	
						"referenceFrame":	"http://www.opengis.net/def/trs/OGC/0/GPS",	
						"label":	"Sampling	Time",	
						"uom":	{	"href":	"http://www.opengis.net/def/uom/ISO-8601/0/Gregorian"	}	

17
Copyright © 2018 Open Geospatial Consortium

				},	
				{	
						"name":	"temp",	
						"type":	"Quantity",	
						"definition":	"http://mmisw.org/ont/cf/parameter/air_temperature",	
						"label":	"Air	Temperature",	
						"uom":	{	"code":	"Cel"	}	
				},	
				{	
						"name":	"press",	
						"type":	"Quantity",	
						"definition":	"http://mmisw.org/ont/cf/parameter/air_pressure",	
						"label":	"Air	Pressure",	
						"uom":	{	"code":	"mbar"	}	
				}	
]	
}	

5.4.2 SensorML Example

XML
<PhysicalComponent	id="MY_SENSOR">	
		<description>Thermometer	on	the	window	of	the	Cass	Building,	Room	315</description>	
		<identifier>urn:icd:stations:FR8766</identifier>	
		<identification>	
				<IdentifierList>	
						<identifier>	
								<Term	definition="http://sensorml.com/ont/swe/property/ShortName">	
										<label>Short	Name</label>	
										<value>Thermometer	FR8766</value>	
								</Term>	
						</identifier>	
						<identifier>	
								<Term	definition="http://sensorml.com/ont/swe/property/Manufacturer">	
										<label>Manufacturer	Name</label>	
										<value>ACME	Inc</value>	
								</Term>	
						</identifier>	
						<identifier>	
								<Term	definition="http://sensorml.com/ont/swe/property/SerialNumber">	
										<label>Serial	Number</label>	
										<value>FT5743456566-997</value>	
								</Term>	
						</identifier>	
				</IdentifierList>	
		</identification>	
		<outputs>	
				<OutputList>	
						<output	name="temp">	
								<Quantity	definition="http://sweet.jpl.nasa.gov/2.2/quanTemperature.owl#Temperature">	
										<uom	code="Cel"/>	
								</Quantity>	
						</output>	
				</OutputList>	
		</outputs>	
		<position>	
				<Point	id="stationLocation">	
						<srsName>http://www.opengis.net/def/crs/EPSG/0/4326</srsName>	
						<srsDimension>2</srsDimension>	
						<pos>47.8	88.56</pos>	

18
Copyright © 2018 Open Geospatial Consortium

				</Point>	
		</position>	
</PhysicalComponent>	

19
Copyright © 2018 Open Geospatial Consortium

JSON
{	
		"type":	"PhysicalComponent",	
		"id":	"MY_SENSOR",	
		"description":	"Thermometer	on	the	window	of	the	Cass	Building,	Room	315",	
		"identifier":	"urn:icd:stations:FR8766",	
		"identification":	[
				{	
						"type":	"IdentifierList",	
						"identifier":	[
								{	
										"type":	"Term",	
										"definition":	"http://sensorml.com/ont/swe/property/ShortName",	
										"label":	"Short	Name",	
										"value":	"Thermometer	FR8766"	
								},	
								{	
										"type":	"Term",	
										"definition":	"http://sensorml.com/ont/swe/property/Manufacturer",	
										"label":	"Manufacturer	Name",	
										"value":	"ACME	Inc"	
								},	
								{	
										"type":	"Term",	
										"definition":	"http://sensorml.com/ont/swe/property/ModelNumber",	
										"label":	"Manufacturer	Model",	
										"value":	"T911"	
								},	
								{	
										"type":	"Term",	
										"definition":	"http://sensorml.com/ont/swe/property/SerialNumber",	
										"label":	"Serial	Number",	
										"value":	"FT5743456566-997"	
								}	
]	
				}	
],	
		"classification":	[
				{	
						"type":	"ClassifierList",	
						"classifier":	[
								{	
										"type":	"Term",	
										"definition":	"http://sensorml.com/ont/swe/property/IntendedApplication",	
										"label":	"Intended	Application",	
										"value":	"Atmospheric	Temperature"	
								}	
]	
				}	
],	
		"outputs":	{	
				"type":	"OutputList",	
				"output":	[
						{	
								"name":	"temp",	
								"type":	"Quantity",	
								"definition":	"http://sweet.jpl.nasa.gov/2.2/quanTemperature.owl#Temperature",	
								"uom":	{	"code":	"Cel"	}	
						}	
]	
		},	
		"position":	[
				{	
						"type":	"Point",	
						"id":	"stationLocation",	

20
Copyright © 2018 Open Geospatial Consortium

						"srsName":	"http://www.opengis.net/def/crs/EPSG/0/4326",	
						"srsDimension":	"2",	
						"pos":	"47.8	88.56"	
				}	
]	
}	

6. Existing Implementation

An implementation of the proposed JSON encodings is available as part of the
OpenSensorHub project: http://www.opensensorhub.org.

In order to reuse all code from the existing implementation of SWE Common and
SensorML, the XML to/from JSON encoding mappings were implemented directly
against the Streaming API for XML (StAX) which is available in Java. StAX is a very
efficient streaming API for XML available in Java and OSH uses it to serialize/deserialize
Java objects to/from OGC XML representations at high speed and with low memory
footprint (i.e. the use of StAX means there is no need to create a Document Object Model
(DOM) representation of the XML document in memory).

OSH adds implementations of StAX interfaces (namely XMLStreamReader and
XMLStreamWriter) called JsonStreamReader and JsonStreamWriter that can read/write
JSON directly and send/consume data directly using the StAX pipeline. This is a very
efficient approach because no conversion between JSON and XML actually occurs, rather
the data encoded in either format is consumed directly into the application through the
same StAX pipeline and, consequently, JSON encoders/decoders can be used
interchangeably with their XML counter parts whenever needed.

A demonstration SOS server supporting the JSON encoding for various datasets has been
setup and example requests are available at the following location:

http://sensiasoft.net:8181/demo.html

http://www.opensensorhub.org/
http://sensiasoft.net:8181/demo.html

	Cover_RemoveText2

