

Open Geospatial Consortium

Publication Date: 2018-04-23

Approval Date: 2016-06-23

Posted Date: 2016-06-08

Reference number of this document: OGC 15-118r1

Reference URL for this document: http://www.opengis.net/doc/PER/IMIS-Profile-recs4-OWS

Category: Engineering Report

Editors: Simon Jirka, Christoph Stasch

Incident Management Information Sharing Profile
Recommendations for OGC Web Services Engineering Report

Copyright notice

Copyright © 2018 Open Geospatial Consortium
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. This document presents a discussion of technology issues
considered in an initiative of the OGC Innovation Program. This document does not represent an
official position of the OGC. It is subject to change without notice and may not be referred to as an
OGC Standard. However, the discussions in this document could very well lead to the definition of
an OGC Standard.

The research in this presentation was conducted under contract with the U.S.
Department of Homeland Security (DHS) Science and Technology Directorate

(S&T), contract # HSHQDC-13-C-00119. The opinions contained herein are those of
the contractors and do not necessarily reflect those of DHS S&T.

Document type: OGC® Engineering Report
Document subtype:
Document stage: Approved for public release
Document language: English

http://www.opengeospatial.org/legal/

OGC 15-118r1

ii Copyright © 2018 Open Geospatial Consortium

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below,
to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property
without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish,
distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to
do so, provided that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above
copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS
THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF
INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY
DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH
THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all
copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as
provided in the following sentence, no such termination of this license shall require the termination of any third party end-user
sublicense to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual
Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent,
copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license
without any compensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or
cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual
Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without
prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may
authorize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any
LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United
Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In the event any provision of this
Agreement shall be deemed unenforceable, void or invalid, such provision shall be modified so as to make it valid and enforceable,
and as so modified the entire Agreement shall remain in full force and effect. No decision, action or inaction by LICENSOR shall be
construed to be a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise exported or re-exported in
violation of U.S. export laws and regulations. In addition, you are responsible for complying with any local laws in your jurisdiction
which may impact your right to import, export or use the Intellectual Property, and you represent that you have complied with any
regulations or registration procedures required by applicable law to make this license enforceable.

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium iii

Contents Page

1	 Introduction ... 1	
1.1	 Scope .. 1	
1.2	 Document Contributor Contact Points ... 1	
1.3	 Revision History ... 2	
1.4	 Future Work ... 2	
1.5	 Foreword .. 2	

2	 References ... 3	

3	 Terms and Definitions ... 3	
4	 Conventions .. 3	

4.1	 Abbreviated Terms ... 3	
4.2	 Unified Modeling Language Notation ... 5	

5	 Overview of Existing Standards ... 5	
5.1	 Overview on Data Models and Encoding Standards .. 5	
5.2	 Overview on Service Interface Standards .. 6	

6	 Catalog Service for the Web ... 7	
6.1	 Implemented Solution (HubCat) for Dynamic Registration and Discovery

of Things ... 7	
6.1.1	 Compusult Implementation .. 7	

6.2	 Pros/Cons .. 11	
6.2.1	 Compusult .. 11	
6.2.2	 Envitia .. 12	

6.3	 Recommended Changes ... 12	
6.3.1	 CSW SensorThings API Profile ... 12	
6.3.2	 Service Object Model .. 12	
6.3.3	 Catalog WMS Service .. 13	

7	 Web Feature Service (WFS) ... 15	
7.1	 Implemented Solution .. 15	

7.1.1	 52°North ... 15	
7.2	 Pros/Cons .. 17	

7.2.1	 52°North ... 17	
7.3	 Recommended Changes ... 18	

8	 Web Maps Service (WMS) ... 18	
8.1	 Implemented Solution .. 19	

8.1.1	 52°North ... 19	
8.1.2	 Compusult .. 20	

8.2	 Pros/Cons .. 24	
8.2.1	 52°North ... 24	

OGC 15-118r1

iv Copyright © 2018 Open Geospatial Consortium

8.2.2	 Compusult .. 24	
8.3	 Recommended Changes ... 24	

9	 Web Processing Service (WPS) .. 25	
9.1	 Implemented Solution .. 25	

9.1.1	 52°North ... 25	
9.1.2	 Compusult .. 26	
9.1.3	 University of Melbourne .. 28	

9.2	 Pros/Cons .. 33	
9.2.1	 52°North ... 33	
9.2.2	 Compusult .. 33	
9.2.3	 UM ... 34	

9.3	 Recommended Changes ... 34	
9.3.1	 WEPS ... 34	

10	 Sensor Observation Service (SOS) ... 35	
10.1	 Implemented Solution .. 35	

10.1.1	 Compusult .. 35	
10.1.2	 UM ... 35	
10.1.3	 OpenSensorHub (OSH) ... 38	
10.1.4	 52°North (Client Only) .. 40	

10.2	 Pros/Cons .. 41	
10.2.1	 Compusult .. 41	
10.2.2	 UM ... 41	
10.2.3	 OSH .. 42	
10.2.4	 52°North ... 43	

10.3	 Recommended Changes ... 43	
10.3.1	 SOS/Sensor Things Profiling ... 43	
10.3.2	 Visualization of Sensors .. 44	
10.3.3	 Determine Available Observation Data ... 44	
10.3.4	 OWS Context Document Extension Suggestions .. 45	

11	 SensorThings API (STA) .. 47	
11.1	 Implemented Solution .. 47	

11.1.1	 Compusult .. 47	
11.1.2	 SensorUp .. 47	

11.2	 Pros/Cons .. 50	
11.2.1	 Compusult .. 50	
11.2.2	 SensorUp .. 50	

11.3	 Recommended Changes ... 51	
11.3.1	 Discovery of URL and Port Number of MQTT Assoicates 51	
11.3.2	 Navigation Links .. 51	
11.3.3	 Relationship to the SOS Standard .. 51	
11.3.4	 Harmonization with Similar Activities .. 51	

12	 Observations and Measurements (O&M) - XML Encoding 51	
12.1.1	 Implemented Solution .. 52	

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium v

12.2	 Pros/Con ... 52	
12.2.1	 Pros .. 52	
12.2.2	 Cons ... 52	

12.3	 Recommended Changes ... 52	

13	 Data Streaming with SWE Common Data .. 52	
13.1	 Implemented Solution .. 52	
13.2	 Pros/Cons .. 53	

13.2.1	 Pros .. 53	
13.2.2	 Cons ... 53	

13.3	 Recommended Changes ... 53	

14	 Sensor Model Language (SensorML) ... 54	
14.1	 Implemented Solution .. 54	
14.2	 Pros/Cons .. 54	

14.2.1	 Pros .. 54	
14.2.2	 Cons ... 55	

14.3	 Recommended Changes ... 55	

Annex A Extensible Markup Language (XML) Example ... 56	
A.1	 General ... 56	
A.2	 Web Feature Service (WFS) Capabilities Example ... 56	
A.3	 Observations and Measurements (O&M) Chemical Measurement

Example .. 63	
A.4	 O&M Pedestrian Count Example ... 63	

Bibliography ... 64	

OGC 15-118r1

vi Copyright © 2018 Open Geospatial Consortium

Figures Page
Figure 1: Possible Model 13	
Figure 2: UML Component Diagram the Implementation of the WFS 16	
Figure 3: Sequence Diagram of the Interactions Between WFS and SOS 17	
Figure 4: Coupling of SOS and WFS (Source: OGC 12-006; p. 147) 18	
Figure 5: UML Component Diagram of 52°North's WMS Implementation 19	
Figure 6: Sequence Diagram of Interactions Between Clients, WMS, WFS and SOS 20	
Figure 7: Compusult WMS Output 21	
Figure 8: Layer Manager 22	
Figure 9: Feature Information Page 23	
Figure 10: Event Processing Architecture Based on the WEPS 25	
Figure 11: Insert Workflow 27	
Figure 12: Update Workflow 27	
Figure 13: Delete Workflow 28	
Figure 14: Event Detection Workflow 29	
Figure 15: Deployed Panel in UM Client for Defining UM WPS Process Input Parameters 30	
Figure 16: UM Client Visualizes a Threshold Notification that is Pulled from Data Store for

Notifications 31	
Figure 17: UM SOS Together with the Components Developed for Real Time 36	
Figure 18: GUI of UM SOS Simulating Wizard 37	
Figure 19: UM Client Provides Concurrent Access to Multiple Layers of Live SOS Observations

 38	
Figure 20: UM Client Provides Chart-view of Live SOS Observations 38	
Figure 21: Interconnected Sensor Hubs 39	
Figure 22: 52°North Client Application for Accessing SOS and STA 40	
Figure 23: Architecture of the 52°North SOS/STA Client Developments 41	

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium vii

Abstract

The Incident Management Information Sharing (IMIS) Internet of Things (IoT) Pilot
established the following objectives:

• Apply OGC principles and practices for collaborative development to existing
standards and technology to prototype an IoT approach to sensor use for incident
management;

• Employ an agile methodology for collaborative development of system designs,
specifications, software and hardware components of an IoT-inspired IMIS
sensor capability;

• Develop profiles and extensions of existing Sensor Web Enablement (SWE) and
other distributed computing standards to provide a basis for future IMIS sensor
and observation interoperability; and

• Prototype capabilities documented in engineering reports and demonstrated in a
realistic incident management scenario.

Based on the findings gathered during the implementation and work on these objectives,
this Engineering Report describes recommendations on profiles for OGC Web services
that shall be used to build IMIS systems.

Business Value

The IMIS IoT Pilot aimed to develop, test and demonstrate the use of networked sensor
technologies in a real-world scenario developed in collaboration with the Department of
Homeland Security and first responder stakeholders. This pilot demonstrated an IoT
approach to sensor use for incident management. Prototype capabilities include ad hoc,
nearly automatic deployment, discovery and access to sensor information feeds, as well
as derivation of actionable information in common formats for use in computer aided
dispatch, emergency operations centers and geographic information systems, as well as
mobile devices.

Within this Engineering Report, guidance and recommendations on profiles for OGC
Web services in IMIS systems are provided. These recommendations shall help to further
advance the applicability of OGC Web services in incident management and thus
increase interoperability within this domain.

OGC 15-118r1

viii Copyright © 2018 Open Geospatial Consortium

Keywords

ogcdocs, imis iot pilot, sensor web

OGC® Engineering Report OGC 15-118r1

 1

Testbed-11 Incident Management Information Sharing Profile
Recommendations for OGC Web Services Engineering Report

1 Introduction

This Engineering Report (ER) provides findings of the Open Geospatial Consortium
(OGC) Incident Management Information Sharing (IMIS) Internet of Things (IoT) Pilot
on profile recommendations for OGC standards. During the IMIS IoT Pilot several OGC
standards were implemented and applied with the aim to develop, test and demonstrate
the use of networked sensor technologies in a real-world scenario.

One important result of these implementation and testing activities was a set of
experiences and ideas for improvements for applying the selected OGC standard in
emergency management scenarios. This ER documents these findings. For each standard
applied within the IMIS IoT Pilot the different implementations and resulting experiences
are introduced. From these finding this document derives several recommendations for
optimizing future versions of the used OGC standards or defining profiles for increasing
interoperability.

1.1 Scope

This OGC® document gives guidelines and recommendations on the development of
profiles for OGC standards to support IMIS based on IoT and Sensor Web technology. It
summarizes the corresponding findings of the OGC IMIS IoT Pilot.

1.2 Document Contributor Contact Points

All questions regarding this document should be directed to the editor or the following
contributors:

Name Organization
Simon Jirka 52°North Initiative for Geospatial Open

Source Software GmbH
Christoph Stasch 52°North Initiative for Geospatial Open

Source Software GmbH
Farzad Alamdar The University of Melbourne
Mike Botts Botts Innovative Research Inc.
Roger Brackin Envitia
Chris Clark Compusult
Flavius Galiber Northrup Grumman Corporation

OGC 15-118r1

2 Copyright © 2018 Open Geospatial Consortium

Mohsen Kalantari The University of Melbourne
Steve Liang SensorUp
Greg Schumann Exemplar City, Inc.
Josh Lieberman Tumbling Walls

1.3 Revision History

Date Release Editor Primary
Clauses

Modified

Description

2015-11-05 0.0.1 Flavius Galiber All Document initialized
2015-11-12 0.0.2 Simon Jirka All Definition of document structure
2016-02-03 0.0.3 ChristophStasch

Simon Jirka
All First version integrating contributions from

pilot participants

2016-03-09 0.0.4 Simon Jirka All Integration of all contributions into a first
consolidated version

2016-06-08 0.9 Simon Jirka All Version posted on the OGC portal

2016-08-18 1.0 Josh Lieberman All Editorial changes and response to DHS
comments

1.4 Future Work

This ER is intended to provide recommendations on the development of IMIS profiles of
different OGC standards. Thus, the recommendations on future work can be found at the
end of each section.

1.5 Foreword

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. The OGC shall not be held responsible for identifying any or
all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of
any relevant patent claims or other intellectual property rights of which they may be
aware that might be infringed by any implementation of the standard set forth in this
document, and to provide supporting documentation.

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium 3

2 References

The following documents are referenced in this document. For dated references,
subsequent amendments to, or revisions of, any of these publications do not apply. For
undated references, the latest edition of the normative document referred to applies.

OGC 06-121r3, OGC® Web Services Common Standard

OGC 06-042, OGC® Web Map Service (WMS)

OGC 07-006r1, OGC® Catalog Services

OGC 08-094r1, OGC® SWE Common Data Model

OGC 09-001, OGC® SWE Service Model

OGC 09-025r2, OGC® Web Feature Service (WFS)

OGC 10-025r1, OGC® Observations and Measurements (O&M) - XML Implementation

OGC 12-000, OGC® Sensor Model Language (SensorML)

OGC 12-006, OGC® Sensor Observation Service (SOS)

OGC 14-065, OGC® Web Processing Service (WPS)

NOTE This OWS Common Standard contains a list of normative references that are also applicable to
this Implementation Standard.

In addition to this document, this report includes several Extensible Markup Language
(XML) files as specified in Annex A.

3 Terms and Definitions

For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard [OGC 06-121r3] shall apply.

4 Conventions

4.1 Abbreviated Terms

API Application Program Interface

AVL Automated Vehicle Location
AWS Amazon Web Services

CSW Catalog Service for the Web

OGC 15-118r1

4 Copyright © 2018 Open Geospatial Consortium

EML Event Pattern Markup Language
ER Engineering Report

GML Geography Markup Language
IMIS Incident Management Information Sharing

IoT Internet of Things
JSON Java Script Object Notation

KVP Key-Value Pair
MQTT Message Queue Telemetry Transport

O&M Observation & Measurements
OSH OpenSensorHub

OWS OGC Web Services
POX Plain Old XML

PTZ Pan–Tilt–Zoom
SAS Sensor Alert Service

SES Sensor Event Service
SensorML Sensor Model Language

SLD Styled Layer Descriptor
SOS Sensor Observation Service

STA Sensor Things API
SWE Sensor Web Enablement

UAS Unmanned Aerial Sensor
URI Uniform Resource Identifier

URL Uniform Resource Locator
UUID Universally Unique Identifier

WEPS Web Event Processing Service
WFS Web Feature Service

WMS Web Map Service
WPS Web Processing Service

XML Extensible Markup Language

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium 5

4.2 Unified Modeling Language Notation

Most diagrams that appear in this ER are presented using the Unified Modeling Language
(UML) static structure diagram, as described in Subclause 5.2 of [OGC 06-121r3].

5 Overview of Existing Standards

This section provides an overview on the existing standards that have been applied in the
IMIS IoT Pilot (for an overview on the architecture see the OGC IoT Architecture ER
(OGC 16-014)). The overview is divided into two subsections: Section 5.1 gives an
overview on the standards for data models and encodings and Section 5.2 introduces the
different standards specifying the service interfaces.

5.1 Overview on Data Models and Encoding Standards

The Geography Markup Language (GML) Encoding Standard (OGC 07-036) defines a
modelling language for geographic information and XML encoding for transferring
geographic information between applications. While GML defines the models and
encodings for geometries of geographic features such as points, lines and polygons, it
does not prescribe the attributes of these features. Therefore, domain-specific application
profiles should be defined.

One such profile is the Observations & Measurements (O&M) standard, which has been
defined within the Sensor Web Enablement (SWE) initiative for exchanging observation
data. It consists of two specifications: the conceptual model (OGC 10-004r3/ISO 19156)
is based on the general feature model and defines basic properties of observations, e.g.,
temporal attributes, information about the procedure used to generate the observation
result, or the observed property. It also defines a model for sampling features. XML
encodings for basic observation types defined in the conceptual model are specified in the
O&M XML Implementation Standard (OGC 10-025r1).

Observations encoded in O&M contain a reference to the procedure used to generate the
observation result. The description of this procedure is usually provided using the Sensor
Model Language (SensorML, OGC 12-000). SensorML defines a model and XML
encoding for processes associated with the measurement and post-transformation of
measured values. These processes may be implemented as sensors, actuators or
computational processes. Both, O&M and SensorML, rely on a common model for
describing and encoding sensor data (streams), the SWE Common Data Model (SWE
Common, OGC 08-094r1).

Finally, for transferring data from the low-level devices to OGC services and vice versa
and for sending tasking information to such devices, the Message Queue Telemetry
Transport (MQTT) protocol has been used. It has become an OASIS standard in v3.1.11.

1 http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

OGC 15-118r1

6 Copyright © 2018 Open Geospatial Consortium

MQTT defines a lightweight publish/subscribe messaging protocol for Machine to
Machine (M2M) communication and is hence in particular used for IoT applications.

5.2 Overview on Service Interface Standards

The OGC Web Service Common (OWS Common) Standard (OGC 06-121r9) specifies
aspects that are common to all OGC interface standards. These include the definition of
the GetCapabilities operation and the Capabilities response structure as well as the
definition of XML and Key-Value Pair (KVP) encodings of operation requests and
responses. Each service described below builds upon these common aspects specified in
OWS Common.

The OGC Catalog Service Implementation Specification (OGC 07-006r1) has been
defined to enable clients to publish and/or discover geospatial datasets and services and
to provide the metadata needed to decide whether clients could use these datasets and
services. The standard specifies interfaces and bindings for publishing and accessing
digital catalogs of metadata for geospatial data, services and related resource information.
The interface provides operations for managing the metadata records, e.g., for harvesting
records, as well as operations for discovering the metadata records, e.g., for describing
record types or querying certain records.

For publishing and retrieving maps as images, e.g., for providing background maps or
pre-rendered satellite data, the OGC has defined the OpenGIS Web Map Server (WMS)
Implementation Specification (OGC 06-042). A WMS lists its available map layers in the
Capabilities document and allows retrieving these layers with several query parameters,
e.g., BoundingBox, using the GetMap operation. The optional GetFeatureInfo operation
allows providing additional information for a certain pixel.

The Web Feature Service (WFS, OGC 09-025r1/ISO 19142) specifies a service interface
for retrieving geographic features (vector data) encoded in GML. The supported feature
types are listed in the Capabilities document. A description of a certain feature type can
be retrieved using the DescribeFeatureType operation. The central operation is the
GetFeature operation that allows querying features from a WFS server. Further optional
operation are specified, for example the Transaction operation for inserting, updating or
deleting features.

While the WFS specifies a general interface for access to geographic features, the Sensor
Observation Service (SOS, OGC 12-006) defines an interface for the pull-based retrieval
of sensor observations and sensor descriptions. It thereby utilizes the models and
encodings defined by the O&M, SWE Common Data, and SensorML standards (see
above). Available observation datasets are described with spatial and temporal extents,
generating procedures (usually sensors) and observed properties in the capabilities
document of the service. Using the DescribeSensor operation, clients can retrieve

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium 7

relevant metadata about sensors encoded in SensorML.2 The GetObservation operation is
the core operation for retrieving observations using several optional filters for different
observation properties. Several extensions exist for transactional retrieval or result
handling in case the same request and response metadata should not be repeated in each
request and response message. For example, results from sensors and processes can also
be retrieved in a highly efficient data stream, using the GetResultTemplate and GetResult
requests. The GetResultTemplate is usually called once by a client to get a SWE
Common-based data description of the data structure and encoding for a particular
offering. Subsequent GetResult requests return only the values of the observations
according to the record structure and encoding described in the GetResultTemplate
response. The GetResult request can also support continuous data streaming.

Similar to SOS, the Sensor Things API (STA)3provides an interface for the retrieval of
observation data relying on the Observations and Measurements (O&M) model of sensor
information. In contrast to SOS, the STA interface relies fundamentally on
Representational State Transfer (REST) principles and specifies Java Script Object
Notation (JSON) as encoding for the observations. As such, it is lightweight and eases the
development of browser-based client applications for developers who favor REST and
JSON approaches.

6 Catalog Service for the Web

6.1 Implemented Solution (HubCat) for Dynamic Registration and Discovery of Things

6.1.1 Compusult Implementation

The Compusult Catalog Service for the Web (CSW) is an implementation of the HTTP
binding defined in OGC's OpenGIS Catalog Services 2.0.2 specification (OGC 07-
006r1). As its data store, it uses the OASIS ebXML Registry Information Model (ebRIM
3.0).

As a service-oriented registry, it carefully catalogs each supported OGC service (i.e.,
WMS, WFS, SOS, WMTS, etc.) using the suggested guidelines set forth in both CSW-
ebRIM Registry Service - Part 1: ebRIM profile of CSW (OGC 07-110r4) and CSW-
ebRIM Registry Service - Part 2: Basic extension package (OGC 07-144r2). This not
only enables the Compusult CSW to store information about the various service types in
an adaptable and manageable manner, but also enables it to be interoperable with other
2.0.2 CSW clients.

2 The DescribeSensor operation is specified in the SWE Service Model Implementation Standard (OGC 09-001) and
referenced from the SOS specification.
3 The STA is not yet an official OGC implementation standard. A draft of the standard has been released for public
comments at http://www.opengeospatial.org/standards/requests/134.

OGC 15-118r1

8 Copyright © 2018 Open Geospatial Consortium

As part of the publishing process, Compusult's CSW creates an ISO 19119 or ISO 19115
document from each OGC service or document it processes and associates it with the
item being published. This helps the registry to support querying records using the ISO
core queryables. CSW clients can then choose to return the matching record or its
associated ISO document.

Another feature of Compusult's CSW is its ability to return various output formats. Using
the outputSchema parameter, 2.0.2 CSW clients can choose between the following
metadata formats:

• ebRIM (urn:oasis:names:tc:ebxml-regrep:xsd:rim:3.0);

• 2.0.2 CSW Core (http://www.opengis.net/cat/csw/2..2);

• ISO (http://www.isotc211.org/2005/gmd);

• FGDC (http://www.fgdc.gov);

• MARC21 (http://www.loc.gov/MARC21); and

• DIF (http://gcmd.gsfc.nasa.gov/Aboutus/xml/dif/).

To dynamically register a SensorThings service, Compusult used guidelines similar to
those outlined in part 1 and 2 of the ebRIM basic extension package (see Section 7.0).

The sections below detail how each SensorThings service is currently represented in the
Compusult CSW registry. The terms used are part of the OASIS ebXML Registry
Information Model (ebRIM 3.0).

6.1.1.1 The Service Object

Each SensorThing service is represented by an ebRIM Service object. This Service object
is the top level object for each registered SensorThing. It is associated with the Thing
objects (see Section 6.1.1.2) that are accessible through the SensorThing service Uniform
Resource Locator (URL) (i.e., http://TheSensorThingURL/Things).

Each Service object has the following attributes:

• Name = “http://TheSensorThingURL”

• Description = "OGC Sensor Things"

Its associated ebRIM Slots include:

• Slot [Name = "Service URL", Value = “http://TheSensorThingURL”]

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium 9

To support spatial searching for the service, we create a spatial slot using the maximum
bounding area of all the Thing objects.

• Slot [Name = http://purl.org/dc/terms/spatial, Value = “maximum bounding area
of all the Thing objects.”]

Each Service object is then classified as: urn:ogc:serviceType:SensorThing

6.1.1.2 The Thing Object

Each Thing object is represented by an ebRIM ExtrinsicObject. It is associated with the
DataStream objects (see Section 6.1.1.3) that are accessible through each Thing URL
(i.e., http://TheSensorThingURL/Things(11)/Datastreams).

Each Thing object has the following attributes:

• Name = value of @iot.selfLink

• Description = value of description

• Type = urn:ogc:def:ebRIM-ObjectType:OGC:Dataset

Its associated ebRIM Slots include:

• Slot [Name = "@iot.id", Value = (value of @iot.id)]

• Slot [Name = "@iot.selfLink", Value = (value of @iot.selfLink)]

• Slot [Name = "Locations@iot.navigationLink", Value = (value of
Locations@iot.navigationLink)]

• Slot [Name = "Datastreams@iot.navigationLink", Value = (value of
Datastreams@iot.navigationLink)]

To support spatial searching for each Thing object, we store its last location in a spatial
slot:

Slot [Name = "http://purl.org/dc/terms/spatial", Value = gml:Envelope info]

To get this information, we use the last entry in the Thing's Locations link using the top
parameter on the REST URL.

Sample URL: http://TheSensorThingURL/Things(11)/Locations?$top=1

Each Thing object is then classified as:

• urn:ogc:def:ebRIM-ObjectType:OGC:Dataset

http://TheSensorThingURL/Things(11)/Datastreams

OGC 15-118r1

10 Copyright © 2018 Open Geospatial Consortium

• urn:ogc:def:ebRIM-ObjectType:OGC:Dataset:SensorThing

To associate the Thing with its parent Service object, an ebRIM Association object is
used with the following attributes:

• associationType = urn:ogc:def:ebRIM-AssociationType:OGC:OperatesOn

• sourceObject = id of Service object.

• targetObject = id of Thing object.

6.1.1.3 The Datastream Object

Each Datastream object is represented by an ebRIM ExtrinsicObject with the following
attributes:

• Name = value of unitOfMeasurement -> name

• Description = value of description

• Type = urn:ogc:def:ebRIM-ObjectType:OGC:Dataset:OGC-
OM:2_0:OM_Measurement

Its associated ebRIM Slots include:

• Slot [Name = "@iot.id", Value = (value of @iot.id)]

• Slot [Name = "@iot.selfLink", Value = (value of @iot.selfLink)]

• Slot [Name = "Thing@iot.navigationLink", Value = (value of
Thing@iot.navigationLink]

• Slot [Name = "Sensor@iot.navigationLink", Value = (value of
Sensor@iot.navigationLink]

• Slot [Name = "Observations@iot.navigationLink", Value = (value of
Observations@iot.navigationLink]

• Slot [Name = "ObservedProperty@iot.navigationLink", Value = (value of
ObservedProperty@iot.navigationLink]

To support the ability to search by date and time, we use the Datastream's Observations
link to get the last phenomenonTime entry to create the phenomenonTime slot:

• Slot [Name = "phenomenonDate", Value = $phenomenonTime]

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium 11

This is accomplished using the orderby and top attributes on the REST URL.

Sample URL:
http://TheServiceThingURL/Things(11)/Datastreams(12)/Observations?$orderby=pheno
menonTime desc&$top=1

Each Datastream object is then classified as:

• urn:ogc:def:ebRIM-ObjectType:OGC:Dataset

• urn:ogc:def:ebRIM-ObjectType:OGC:Dataset:OGC-OM:2_0:OM_Measurement

To associate each Datastream object with its parent Thing object, an ebRIM Association
object is used with the following attributes:

• associationType = "urn:ogc:def:ST-AssociationType:OGC:HasDataStream"

• sourceObject = id of Thing object.

• targetObject = id of Datastream object.

6.2 Pros/Cons

6.2.1 Compusult

6.2.1.1 Pros

• Flexibility: One of the real benefits of using Compusult's CSW is that it is flexible
enough to store just about any type of information. This feature allowed us to
consume SensorThing services relatively easily.

6.2.1.2 Cons

• No Profile: The specification is flexible and therefore, it allows us to name and
associate objects however we want. Without an official profile to follow,
continuing with this approach would leave us unable to be semantically
interoperable.

• Complicated Queries: Another downfall is that sometimes the data that need to be
represented in the ebRIM information model can have a multiple layers of
association. For example, the SensorThings service is associated with multiple
Thing objects and each Thing object is associated with multiple Datastream
objects. Unfortunately, this can sometimes lead to fairly lengthy and complicated
CSW queries that are hard to implement.

OGC 15-118r1

12 Copyright © 2018 Open Geospatial Consortium

6.2.2 Envitia

6.2.2.1 Comments on Using the Compusult Registry (Registry Client)

Envitia were, to the knowledge of the authors, the only client provider to directly access
the HubCat. The following are comments from the perspective of a provider of CSW-
ebRIM clients and servers provider as well as a developer of registry information models
and extension packages.

The Compusult CSW-ebRIM implementation exhibits a high degree of compliance with
the standard; this is not always true for OGC standards and therefore should be
applauded. In that respect, there were no particular interoperability issues and the
standard seems sufficiently tight that the Envitia client was able to interact with the
Compusult HubCat with little difficulty. Interoperability issues do arise through the
choice of HubCat configuration, or ebRIM Registry Extension Package (eREP), since
these packages define specializations of the general record types that a generic client may
not deal with efficiently.

6.3 Recommended Changes

6.3.1 CSW SensorThings API Profile

Although ebRIM Slots, Classifications and Associations were selected with names and
IDs that seemed appropriate, the most important recommendation at this point would be
to implement a CSW STA profile so that official guidelines can be followed to ensure
proper interoperability with other 2.0.2 CSW clients.

6.3.2 Service Object Model

The current HubCaT implementation focuses to a large degree on cataloging service
instances, with service being the primary record type. This is contrary to the approach
used in general by the OGC in cataloguing other data. The core OGC model and the
model implemented in ISO 19115/19119 as well as in ISO 19139 treat dataset and service
as two separate but linked artifacts. This has been embodied in the 115 extension package
for the CSW-ebRIM standard that declares datasets and then associate services with it.
This would allow a client to present a user with available data and then allow them to
discover relevant services that could deliver it. This latter negotiation could go on
automatically in the client. With the current model, the Envitia client could list all
services available but would represent STA, SOS, and WMS services visualizing an SOS
or SensorThings endpoint as separate artifacts even if they serve the same data.

A model closer to that used in I15 would be helpful in resolving this. This is represented
in Figure 1 below.

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium 13

Dataset Service

Service	
Classification

Scheme

Classified	By

OperatesOn
SensorThings

SOS

WMS

Service
Service

Datatype
Classification

Scheme

Atmospherics

Assets

Incidents

Classified	ByTemperatureAir	Temperature

Biometrics

Video	Feeds

Incident	Alarms

Figure 1: Possible Model

6.3.3 Catalog WMS Service

Using ebRIM classification schemes to classify objects would also be helpful, but as
pointed out by Compusult there is a need to standardize on the taxonomies. To some
degree, the above model was played out in the Compusult CSW-WMS which
implemented form of the classification scheme shown on the left, but in a somewhat
limited way, for example linking all sorts of temperature together. This made it useful for
discovery but less useful for visualization as it mixed concepts.

In general terms, the availability of the CSW-WMS did allow the discovery of classes of
sensors in the Envitia Horizon Geo-portal and also the transition from this to accessing
SOS services, which could be accomplished through GetCapabilities requests to the
CSW-WMS. But the recommendation is still that a more formal route within the registry
would be valuable.

6.3.3.1 Sensor Harvesting WPS

The authors see real value in the Sensor Registration Processing Service (WRPS)
provided by Compusult. Evitia provides a very similar interface in practice, although it
relies on a separate REST invocation rather than the WPS interface. There is also value in
formalizing the rules for mapping metadata from specific sources such as SOS
capabilities documents into eREP elements so that the mappings can be implemented the
same way in different technologies.

6.3.3.2 OWS Context Document Alignment

The model described here not only maps to CSW-ISO and the CSW-ebRIM I15 profile,
but also to OWS Context document which allows for a given (‘Layer’ or ‘Resource’ as it
is called) to be offered in various forms. Therefore, an OWS Document could define a
‘Layer’ of ‘Body Temperature’ and offer an SOS and a WMS endpoint to clients so they
can access the most appropriate form of this content.

OGC 15-118r1

14 Copyright © 2018 Open Geospatial Consortium

6.3.3.3 Overall Recommendation with Regards to Data Modelling

Overall, the recommendation is that significantly more work is needed to formalize both
the SWE-IoT eREP’s and the mapping rules from S-Hub service metadata into the
HubCat in order to ensure consistent sensor discovery and exploitation. Envitia consider
it to be worth developing a standard profile specification for this. It would have been
impossible to effectively perform such work in the first IMIS IoT Pilot, but it would be
valuable to carry out in the near future.

6.3.3.4 Stored Queries in CSW-ebXML

If such a standard profile is developed, there may be real value in developing CSW-
ebRIM stored queries. These would allow specific questions (such as find human-
deployed temperature sensors) that might require fairly complex queries to be executed
by relatively simple clients. The value of this feature of CSW-ebRIM in making clients
easier to implement is underestimated by many. Envitia has used it extensively in the past
and suggest it would fit here well too.

6.3.3.5 Catalog/Registry for Sensor Parameter Classification

An issue in using the various sensors was the lack of metadata to allow them to be
discovered without a-priori knowledge. Sensors were in many cases characterized by
‘Sensor_1’ and ‘Parameter_1’ rather than anything identifiable. If there was a sensor
issue in providing this, the Catalog would provide a route for administrators to register
dictionaries to translate ‘Parameter_1’ to ‘Temperature’ and also add critical metadata
such as ‘Deg F or Deg C’ as this is obviously critical.

6.3.3.6 Catalog Federation

Consideration should be given to demonstrating a HubCat federation. Envitia’s client
itself actually made use of two HubCat’s for the Pilot demonstration. It accessed the
Compusult HubCaT as well as Envitia’s cloud-deployed HubCat2 which had maps and
implemented an extension package to store OWS Context documents against
communities of interest.

The authors would have preferred to access a single federated registry which issued
queries to the HubCat and to the authoritative data. Envitia’s CSW-ebRIM service is
capable of supporting this (and most likely that of Compusult, too), and in most urban
incident situations there will be more than one HubCat. Envitia’s view is that it might be
best to deploy a separate federating catalog service that would not have its own holdings,
but simply federate out queries to the HubCat’s serving a particular incident and
aggregate the results for the client. Such models are common and efficient if a high
degree of interoperability between HubCat’s can be maintained.

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium 15

6.3.3.7 Dynamic Registration of Sensors

The practice adopted for the IMIS IoT Pilot was to register sensors when they came
online and drop them out when they went offline. This caused problems in client
implementation; it was hard to obtain a view of the potentially versus actually available
sensors. In some cases, sensor placements were ad hoc but in others the sensors were
predictably positioned, for example on fire trucks. Two approaches may address this. The
first is to catalog every potential sensor, but provide an ‘online/offline’ flag. The other is
to model ‘Sensor Class’ so that a sensor’s interface is clear when it comes online (i.e., Is
it going to be sensor things or SOS? If it is SOS what profile will it support?).

7 Web Feature Service (WFS)

A WFS was deployed for the Pilot that provided access to the features of interest (FoI’s)
of observations that had been published through SOS.

7.1 Implemented Solution

7.1.1 52°North

An overview on the components of the implemented solution for WFS is given in Figure
2. 52°North has implemented a WFS based on its Web Service framework Iceland4 that
acts as a proxy to a SOS. The component offers the mandatory operations of a WFS, i.e.,
the GetCapabilities operation, the DescribeFeatureType and the GetFeature operation.
Besides general operations metadata, the Capabilities document lists the FeatureTypes
that are served by the WFS (the document is listed in Annex A.2). As the WFS is serving
both the observations as well as the sampling features, the types OM_Observation and
SF_SamplingFeature are listed in the Capabilities and the corresponding XML schemas
can be retrieved using the DescribeFeatureType operation.

4 More information the 52°North Iceland Framework is available at
https://wiki.52north.org/bin/view/SensorWeb/Iceland

OGC 15-118r1

16 Copyright © 2018 Open Geospatial Consortium

act WFS_components

Sensor
Observ ation

Serv ice

Web Feature
Serv ice

WFS Client

GetCapabil ities GetFeature

GetFeatureOfInterest

DescribeFeatureType

GetObservation

Figure 2: UML Component Diagram the Implementation of the WFS

A sequence diagram of interactions between WFS and SOS is given in Figure 3. First, a
client can query the Capabilities and available feature types from the WFS using the
GetCapabilities and DescribeFeatureType operations. As core functionality, the client can
retrieve the observations and features of interest from the WFS using the GetFeature
operation. As the WFS implementation acts as a proxy for SOS servers, it needs to map
the GetFeature requests to GetObservation and/or GetFeatureOfInterest requests and can
then forward these requests to the SOS. Once the WFS has received the features, it can
then forward them to the client. In case of observations that are requested, the observation
features need to be extracted from the GetObservationResponse and put into a
FeatureCollection.

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium 17

sd WFS_SOS_interactions

SOS52N
WebFeatureService

WFS Client

alt

GetCapabil ities()

GetObservation()

GetFeature()

MapRequests()

FeatureCollection()

FeatureCollection()

Capabil ities()

GenerateFeatureCollection()

ObservationCollection()

GetFeatureOfInterest()

FeatureType()

DescribeFeatureType()

Figure 3: Sequence Diagram of the Interactions Between WFS and SOS

7.2 Pros/Cons

7.2.1 52°North

Serving observations and features of interest through a WFS server allows WFS clients to
retrieve this information without having to support SOS servers. The WFS lacks metadata
about the observations and sensors available in the Capabilities document, however. For
example, it is not possible to obtain information for which time period, observed
properties and from which sensor observations are available. Furthermore, the WFS also
lacks pre-defined filters for temporal attributes as well as other observation properties,
e.g., for the observed property that points to a description of the observed phenomenon or
for the procedure that points to a description of how the result of an observation has been
taken (usually a sensor description).

OGC 15-118r1

18 Copyright © 2018 Open Geospatial Consortium

Due to these gaps, the SOS may be seen as a specialization of WFS. The SOS supports
one basic feature schema for observations (the O&M model) and provides dedicated
operations for retrieving sensor metadata (DescribeSensor), features of interest
(GetFeatureOfInterest), observations (GetObservation). For each operation, pre-defined
filters are available. For example, the Request schema for GetObservation defines filters
for procedures, observed properties, samplingTime and resultTime.

7.3 Recommended Changes

No specific changes to the specification are recommended. The Pilot implementation
experience suggests, however, that there is some value in devoting SOS to providing
sensor metadata and observations, and otherwise using WFS to provide information about
spatial features such as the features of interest linked to the SOS observations. This
practice is illustrated in Figure 4. The SOS provides, in essence, dynamic property values
for the features served by the WFS.

Figure 4: Coupling of SOS and WFS (Source: OGC 12-006; p. 147)

8 Web Maps Service (WMS)

WMS have been developed to provide applicable basemap data for the incident response
area along with IoT features as a layer. The WMS functions both as an integral map
server and as a Feature Portrayal Server (FPS) to render map images from remote WFS
feature collections and SOS observations.

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium 19

8.1 Implemented Solution

8.1.1 52°North

52°North has implemented a WMS that can harvest features of interest from SOS servers
and visualize information about the features and related observations in map layers.
Figure 5 provides an overview of the components.

cmp WMS_Components

52N WFS UoM Sensor
Observ ation

Serv ice

52N Sensor Web
REST API

52N
FeatureInfoExtension

Geoserv er WMS

WMS Client

GetMap
GetFeatureInfo

GetFeatureOfInterest

GET .../timeseries/t12

GetObservation

Extends

GetCapabilities

GetFeature

Figure 5: UML Component Diagram of 52°North's WMS Implementation

The GeoServer WMS is used to provide the basic WMS operations GetCapabilities,
GetMap and GetFeatureInfo. The GeoServer software can be configured to serve feature
layers from a WFS server as map layers in a WMS. Hence, the 52°North WFS described
in Section 7.1 is utilized to provide the base data used for rendering the map layer
displaying the features of interest. The GeoServer WMS then renders a map layer for
these features of interest using pre-defined symbols. Without supporting information
about the sensors that are observing the features and observations about the features,
however, the WMS layer is of limited use.

52°North thus implemented the FeatureInfo extension. GeoServer utilizes Apache
FreeMarker5, a Java-based template engine, to generate HyperText Markup Language
(HTML) templates. 52°North’s FeatureInfo extension configures these templates by
injecting into them URLs that link to the 52°North’s Sensor Web REST API. The API
encapsulates the business logic for accessing SOS servers as a client, provides RESTful
access to observations and sensor descriptions, and returns those observations encoded in
JSON that can easily be integrated into Web sites. Figure 6 shows a sequence diagram of
typical interactions between clients, the WMS implementation and the components

5 http://freemarker.org/

OGC 15-118r1

20 Copyright © 2018 Open Geospatial Consortium

utilized for the implementation. Once a GetFeatureInfo request is sent to the GeoServer
WMS, the WMS searches for a FeatureInfo template using the ID of the feature for which
information has been requested. The FeatureInfo extension generates the HTML template
by injecting relevant URLs to resources such as observations, sensor description, etc.,
served by the Sensor Web REST API. The prepared HTML template is then used by the
GeoServer WMS and returned to the client. Once the HTML template is loaded on the
client side, the URLs are resolved and the information is displayed in the FeatureInfo
HTML representation.

sd WMS_Interactions

WMS Client

52N
WebFeatureService

SOSGeoserver WMS 52N
FeatureInfoExtension

52N SWE REST
API

TimeSeries()

FeatureInfo()

GetFeatureInfo()

Map()

RetrieveTemplate()

FeatureCollection()

TimeSeriesURL()

InjectURLs()

GetFeature()

GetCapabilities()

GetMap()

ObservationResponse()

Template()

Capabilities()

GetObservation()

Figure 6: Sequence Diagram of Interactions Between Clients, WMS, WFS and SOS

8.1.2 Compusult

The Compusult WMS was implemented to provide visualization of all the sensor data
available in the Compusult HubCat. Sensor data is currently available from both SOS and
STA services, however the WMS consolidates the data such that a user does not need to
know what type of service the data came through, only the type of the sensor the data
comes from. The data are then grouped by type into separate map layers. If more than one
layer is active and a device or Thing has sensors in multiple layers, the symbol is changed

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium 21

to represent a device instead of a sensor type. The user can hover over a sensor symbol to
see the current values. This is visualized in Figure 7.

The layers in the GetCapabilities request are organized by sensor data types, allowing a
user to see all data of the same type within a single layer. A configurable mapping of data
types was used to perform semantic mediation on the data because, typically, services use
different names for the same data. A user can simply add layers for the data he or she is
interested in, as illustrated in Figure 8 below.

Figure 7: Compusult WMS Output

OGC 15-118r1

22 Copyright © 2018 Open Geospatial Consortium

Data is retrieved and cached from external services using a system of multiple threads to
ensure that slow or problematic services do not slow down the WMS. The WMS stores a
configurable amount of historic data for each service as well. Historic locations for a
device are displayed as dots with a path connecting them to the current reading. The
GetFeatureInfo operation is also available from the Compusult WMS. The feature
information page shown in Figure 9 visualizes the recent observations with the associated
locations and timestamps. It also shows the data type of the observations and the service
the observations were retrieved from.

Figure 8: Layer Manager

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium 23

The feature information page also allows the user to create simple alerts on the incoming
observations. When a new observation is retrieved, it is checked against any user-defined
alerts and notifications are fired when matches occur. These notifications will appear as a
dialog that must be dismissed if the alert is set to vital, or a short-lived toast message if
not.

Figure 9: Feature Information Page

OGC 15-118r1

24 Copyright © 2018 Open Geospatial Consortium

8.2 Pros/Cons

8.2.1 52°North

The solution based on GeoServer was largely implemented using default configuration
properties of the GeoServer WMS implementation. For this reason, the feature layers of
the WFS implementation described in Section 7.1 were used as input for the WMS map
layers. Although this reduces implementation efforts, it also comes with a communication
overhead in the implementation, as the WMS queries a WFS that in turn queries an SOS.
In case of a large number of features, a better solution may directly use the
GetFeatureOfInterest operation of SOS. The current solution offers the advantage that
features of interest can be served by WFS, whereas the observations for dynamic
properties are provided by SOS servers (see Section 7.3).

8.2.2 Compusult

8.2.2.1 Pros

• Consolidated Data: Data from different services is consolidated into a single view.
A user can simply pick the layer for the data they are interested in.

8.2.2.2 Cons

• Data Type Naming: Different services use different names for each type of data.
With no semantic rules for naming data types, users must implement specific
mappings for each service they are using.

• Capabilities Updates: If another service requests all of the available layers from a
Capabilities document, it will be unaware of new layers added to the service until
it requests the Capabilities document again.

8.3 Recommended Changes

To easily embed information provided by SOS servers into thin clients or, as done for the
WMS GetFeatureInfo implementation, in HTML templates, a REST binding for SOS
together with a Response Encoding in JSON is recommended. The discussion paper on
O&M JSON Encoding (OGC 15-100r1) may serve as a good basis for defining the JSON
response encoding.

The GetFeatureInfo operation is well suited to provide common information about the
feature as well as observations for this feature. As the feature info can be provided in
HTML, the observation information can be encoded in flexible ways, e.g., as tables or as
images showing diagrams. In the event that this becomes common practice, however, it
would be beneficial to agree upon a minimal set of information that should be provided in
the feature info and a common structure for providing this info.

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium 25

9 Web Processing Service (WPS)

9.1 Implemented Solution

9.1.1 52°North

Within the IMIS IoT Pilot, 52°North developed an event processing architecture which
relies on a WPS server for event processing. Central element is the Web Processing
Service for Event Processing (Web Event Processing Service, WEPS) which controls the
overall workflow. Main tasks of this WEPS are:

• Handling and managing client event subscriptions through WPS Execute
requests; and

• Controlling the event processing module which performs the analysis and pattern
matching of incoming sensor data streams against the event pattern rules
contained in the event subscriptions.

 In order to push all relevant new observations into the event processor a feeder is used

Figure 10 shows the developed architecture with the WEPS at its core. After receiving a
subscription, the WEPS tasks the Event Processor with the corresponding rules for
detecting events relevant to this subscription. After this, the WEPS initiates a feeding
process that regularly checks a data source (in this case a SOS server) for new
observations. As soon as a new observation is available, it is pushed into the event
processor.

Figure 10: Event Processing Architecture Based on the WEPS

OGC 15-118r1

26 Copyright © 2018 Open Geospatial Consortium

The output of the event processor (i.e., all detected events that match to a subscription)
are sent to the Notification Store. This is an RSS-based component that allows clients to
consume RSS-feeds containing those notifications that correspond to their subscriptions.

For initiating an event processing task at the WEPS, the Execute operation is used. This
request contains the following elements:

• Rule: The event filtering rule encoded as specified in the OGC Event Pattern
Markup Language (EML) Discussion Paper (OGC 08-132), this rule specifies
which events are of interest to the user so that a notification message shall be
dispatched if they occur.

• Sampling Rate: A value indicating how often new observations are published by
the sensor, the sampling rate is used by a feeder to determine how often the data
source shall be queried for new observations.

• Runtime: The duration that the subscription shall be active.

• SOS Endpoint: The URL of the SOS server that shall be used by a feeder to
retrieve new observations which are relevant for the subscription.

• GetObservation Template (KVP): A KVP encoded GetObservation request that
delivers the observations required for processing the subscription, the feeder
automatically adds a temporal filter to this URL. This temporal filter is
dynamically generated based on the time stamp of the last observation that was
pushed into the event processor.

• GetObservation Template (POX): This includes values for the GetObservation
request parameters procedure, observedProperty, featureOfInterest and
responseFormat (equivalent to the corresponding parameters in the KVP
GetObervation Template).

Furthermore, information about the target to which notifications shall be sent must be
included in a WEPS Execute request.

9.1.2 Compusult

The Compusult Web Registration Processing Service (WRPS) was implemented to
provide a simpler way for S-Hubs to register their WMS, WMTS, SOS and STA services.
Typically, to register a service in a HubCat requires invoking an Insert Transaction that
maps input metadata into the schema of the information model supported by the HubCat.
The mapping operation can be complex and convoluted. The WRPS simplifies this
process because it provides only three operations, taking just a single parameter each.
These operations consist of:

Insert

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium 27

To publish a service, a WPS request which provides the service URL as an input
parameter is submitted. The WPS will pass this value to the Compusult Publishing
Module, which gathers the required information from the service, creates the required
metadata document and performs an insert into the Catalog. A Universally Unique
Identifier (UUID) which can be used to perform updates and deletes to this specific
record at a later date is returned. This process is illustrated in Figure 11 below:

Update

To update a service, a WPS request which provides the UUID of the record to be updated
is submitted. The process that follows is similar to that of insert and is illustrated in
Figure 12 below:

Figure 12: Update Workflow

Delete

Figure 11: Insert Workflow

OGC 15-118r1

28 Copyright © 2018 Open Geospatial Consortium

To delete a service, a WPS request which provides the UUID of the record to be deleted
is submitted. The WPS will send a Delete transaction directly to the Catalog and the
record is removed, as shown in Figure 13.

9.1.3 University of Melbourne

The University of Melbourne (UM) set up another WPS to enable threshold-based real-
time event detection on sensor observations.. Although WPS has been widely used for
manipulation of static geospatial data, it has been used less often for processing live
sensor data. The IMIS IoT Pilot testbed provided an opportunity to try this. GeoServer,
an open source, Java-based Web server for editing and sharing geospatial data was
selected as the WPS. GeoServer implements a large set of OGC standard services such as
WFS, WMS, Web Coverage Service (WCS) and WPS.

9.1.3.1 Event Detection Workflow

Figure 14 shows the workflow of the UM WPS, illustrating the included components and
their interactions. These components encompass UM Client, GeoServer WPS Server, UM
Data Store for Notifications, UM WPS Process and SOS Server. The UM client, a GIS
Web application, creates and issues WPS requests to the GeoServer WPS, and visualizes
the returned processing results. The WPS accesses live observations from the SOS server
and processes them to detect threshold-exceeding events. The UM Datastore for
Notifications publishes RSS feeds for the alert notifications resulting from the WPS event
detections.

Figure 13: Delete Workflow

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium 29

UM client Geoserver
WPS Server

UM WPS
Process SOS Server

DescribeProcess()

ProcessDescription()

Execute()

Status()

GetCapabilities ()

GetCapabilities Response()

DoProcessing()

Processing Acceptance Result()

GetObservation()
Live observation (O&M)

Execuation ID()

UM WPS Process

GetExecutionStatus()

Analyze the observation

RSS Feed()

GetRSS()

UM Data Store
for Notification

InsertRSS()

loop

[intervalRate is reached = true] &&
[Duration is reached = false]

InsertRSS Response()

Store RSS feed

GetCapabilities ()

GetCapabilities Response()

GetObservation()
GetDataAvailability Response()

loop

[intervalRate is reached = true] &&
[Duration is reached = false]

Figure 14: Event Detection Workflow

The workflow begins with the UM client submitting a GetCapabilities request to the
WPS server. The GeoServer returns the list of published processes, including
“gs:UMEventDetection” which is the identifier for the developed process. In case the
user selects this process, the client submits a DescribeProcess request to the WPS
(passing the UM WPS process identifier) and a GetCapabilities request to the SOS server.
The ProcessDescription and SOS Capabilities document are then parsed and analyzed by
the client, whereby the relevant elements are extracted and populated into the client as
process input parameters (Figure 15).

Once the values for all the process input parameters are determined, the client uses the
values to generate the WPS Execute request and post it to the WPS server. The WPS
returns an ExecutionID as a response (since the process is asynchronous). Meanwhile the
WPS starts the UMEventDetection process with the requested input parameters including
the condition (e.g., greater than or smaller than), threshold value, rate, duration, and a
template for GetObservation requests. The process then sends a GetDataAvailability
request to the SOS server to check whether there is any recent observation available for
the procedure (through analyzing the phenomenonTime included in the
GetDataAvailability response).

OGC 15-118r1

30 Copyright © 2018 Open Geospatial Consortium

Figure 15: Deployed Panel in UM Client for Defining UM WPS Process Input Parameters

In case of availability of recent observations, the process returns “Running” as process
output. It then starts repetitive operations including retrieving the latest observations from
the SOS server, analyzing each observation against the threshold value, as well as
generating and publishing a RSS feed into the Data Store for Notifications in case the
observation result meets the threshold condition. Upon receipt of the InsertRSS request
form the process, the Data Store for Notifications processes the new RSS feed and stores
it in a database. The client can then pull the new RSS feeds from the data store using the
GetRSS operation. Figure 16 illustrates the UM client visualizing a notification pulled
from the data store.

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium 31

Figure 16: UM Client Visualizes a Threshold Notification that is Pulled from Data Store for
Notifications

9.1.3.2 Operations and Request Example

The UM WPS supports the following operations specified by the OGC WPS 1.0
standard:

• GetCapabilities: Requesting details of the service offering, including service
metadata and metadata describing the available processes;

• DescribeProcess: Requesting a description of a WPS process available through
the service; and

• Execute: Requesting the execution of the process with specified input values.

Listing 1 below shows an example of an UM WPS Process execute request. The process
takes a number of LiteralData as input parameters including getObservationTemplate,
condition, threshold, intervalRate, duration and dataStoreForNotificationEndpoint. The
process then performs the above-mentioned operations using the supplied inputs. It also
returns an output indicating whether the process successfully accepted the request or not.

Listing 1: Example of UM WPS Process Execute Request

<?xml version="1.0" encoding="UTF-8"?>
<wps:Execute version="1.0.0" service="WPS"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.opengis.net/wps/1.0.0"
 xmlns:wfs="http://www.opengis.net/wfs"
 xmlns:wps="http://www.opengis.net/wps/1.0.0"
 xmlns:ows="http://www.opengis.net/ows/1.1"
 xmlns:gml="http://www.opengis.net/gml"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:wcs="http://www.opengis.net/wcs/1.1.1"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xsi:schemaLocation="http://www.opengis.net/wps/1.0.0
 http://schemas.opengis.net/wps/
 1.0.0/wpsAll.xsd">

OGC 15-118r1

32 Copyright © 2018 Open Geospatial Consortium

 <ows:Identifier>gs:UMEventDetection</ows:Identifier>
 <wps:DataInputs>
 <wps:Input>
 <ows:Identifier>getObservationTemplate</ows:Identifier>
 <wps:Data>
 <wps:LiteralData>http://iddss-sensor.cdmps.org.au:8080/
 52n-sos-webapp/service?service=SOS
 &version=2.0.0
 &request=GetObservation
 &offering=PedestrianCounting1
 &observedProperty=PeopleCount
 &procedure= PedestrianCounting1
</wps:LiteralData>
 </wps:Data>
 </wps:Input>
 <wps:Input>
 <ows:Identifier>condition</ows:Identifier>
 <wps:Data>
 <wps:LiteralData>greaterThan</wps:LiteralData>
 </wps:Data>
 </wps:Input>
 <wps:Input>
 <ows:Identifier>threshold</ows:Identifier>
 <wps:Data>
 <wps:LiteralData>500</wps:LiteralData>
 </wps:Data>
 </wps:Input>
 <wps:Input>
 <ows:Identifier>intervalRate</ows:Identifier>
 <wps:Data>
 <wps:LiteralData>5</wps:LiteralData>
 </wps:Data>
 </wps:Input>
 <wps:Input>
 <ows:Identifier>duration</ows:Identifier>
 <wps:Data>
 <wps:LiteralData>600</wps:LiteralData>
 </wps:Data>
 </wps:Input>
 <wps:Input>
 <ows:Identifier>
 dataStoreForNotificationEndpoint
 </ows:Identifier>
 <wps:Data>
 <wps:LiteralData>
 http://115.146.95.46:8080/iddss-service
 </wps:LiteralData>
 </wps:Data>
 </wps:Input>
 </wps:DataInputs>
 <wps:ResponseForm>
 <wps:RawDataOutput>
 <ows:Identifier>wpsResult</ows:Identifier>
 </wps:RawDataOutput>
 </wps:ResponseForm>

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium 33

</wps:Execute>

9.2 Pros/Cons

9.2.1 52°North

9.2.1.1 Pros

• The WEPS allows encapsulating event processing functionality in an adopted
OGC standard service (WPS 2.0); this has great potential because such a solution
is not yet available (previous standardization efforts such as Sensor Alert Service
(SAS) and Sensor Event Service (SES) have not resulted in an adopted standard).

• Implementation was possible in a straightforward manner.

• Standardized data access interfaces (i.e., SOS) allow the flexible querying of new
observations to push the data into the event processor.

9.2.1.2 Cons

• The pull-based access to the observation data (through the SOS interface) could
be optimized by a publish/subscribe pattern; it would be interesting to investigate
how the emerging OGC Pub/Sub standard could help in this context.

• There is no common agreement how to structure WPS Execute requests for
creating event subscriptions; a corresponding WPS profile (WEPS) would be
desirable to cover this functionality.

• The WPS interface would need further functionality for managing subscriptions.
This could be covered by a WEPS.

• There are different ways to encode the rules for event pattern detection. At the
OGC, an approach has been described in the EML discussion paper. There are
further best practices/de-facto standards used in practice, which should be
supported by a WEPS profile.

9.2.2 Compusult

9.2.2.1 Pros

• Simple Publishing: Abstracts the complications of creating complicated CSW
Insert Transactions.

• Valid Data: Ensures that all services are cataloged correctly and therefore can be
discovered by other users.

OGC 15-118r1

34 Copyright © 2018 Open Geospatial Consortium

9.2.3 UM

9.2.3.1 Pros

• Interoperability of Sensor Data Analysis: Encapsulating the algorithms for sensor
data analysis using WPS results in interoperable description of processing
functions. Consequently, interoperable access to information products derived
from analysis and modeling of sensor data is provided.

9.2.3.2 Cons

• Lack of Maturity of Tools for WPS Development: During the recent years, a
number of open source toolkits and applications were developed to support OGC
WPS specification. Despite of these advancements, it is still too difficult and
time-consuming to work with the current tools for developing WPS processes.
Inflexibility of GeoServer’s implementation of WPS was a main issue that we
encountered during WPS development.

9.3 Recommended Changes

9.3.1 WEPS

Based on the experiences gained during the IMIS IoT Pilot, a strong recommendation
would be to develop an event processing profile/extension for the OGC WPS 2.0 standard
(i.e., WEPS). Such a specification should address the following requirements

• Specify a basic template for WPS Execute requests that allow the submission of
event subscriptions.

• Provide guidance on how to encode event pattern detection rules. Besides
recommendations on different feasible languages for encoding such rules, a
mechanism will be needed to determine which event pattern languages are
supported by a WPS server.

• Specify additional operations for managing event subscriptions (e.g., updating and
terminating subscriptions); the emerging OGC Pub/Sub standards could be useful
for this functionality.

• Provide guidance on how to flexibly couple a WEPS server to different
notification publication mechanisms. In the testbed, RSS feeds were used for
delivering notifications. Other push based technologies and archives for detected
events should be described as well, however. Most likely this will not require
additional specification work but guidance to apply existing standards for this
purpose.

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium 35

• Support different observation feeding mechanisms into the event processor (e.g.,
using the OGC Pub/Sub specification, MQTT or feeder connected to pull-based
OGC services).

10 Sensor Observation Service (SOS)

10.1 Implemented Solution

10.1.1 Compusult

The Compusult SOS implementation provides data from mobile devices running
Compusult's GoMobile software. These devices provide measurements of battery
information, temperature, humidity, light level, speed, bearing, location, etc.

Three operations are currently supported by the service: GetCapabilities, DescribeSensor
and GetObservation. The GetObservation operation will allow Temporal, Spatial and ID
filters.

When the SOS is started for the first time, it will register itself with the Catalog using the
Compusult publishing WPS, by performing the insert operation. The UUID output by the
insert is stored in the database and used to perform the WPS update operation when
changes have been made to the SOS. If the SOS is shutdown, it will use the stored UUID
to perform the WPS delete operation and unregister itself from the Catalog.

10.1.2 UM

The UM SOS implementation aimed to test the capabilities for dealing with live sensor
feeds and feeding the live SOS data to other software components that are developed as
part of the pilot. For this purpose, the UM SOS was set up based on the 52°North SOS
4.x development line which in turn provides an implementation of the OGC SOS 1.0.0
and 2.0 standards.

Figure 17 shows the UM SOS alongside with other software components that are
interacting with the server in real time. These components include UM client, UM SOS
Simulating Wizard, UM WPS, 52°North WEPS, UM Data Store for Notifications and
Compusult HubCat that are developed and bound during IMIS IoT Pilot testbed to
interactively work together.

OGC 15-118r1

36 Copyright © 2018 Open Geospatial Consortium

The UM Client is a GIS-based Web application that provides an interface for user
interaction with the SOS server. Regarding sensor data publication into SOS, the client
offers tools and commands for obtaining user inputs. The UM SOS Simulating Wizard
component is developed for on-the-fly simulation and publication of sensor feeds into the
SOS server. The remainder components are the WPS servers that are developed to
interact with the SOS instance and analyze its live sensor data. In this regard,
Compusult’s Publishing WPS registers the SOS with the Compusult Catalog Service
upon performing the insert operation. The UM WPS, 52°North WEPS and UM Data
Store for Notifications enable real-time analysis of SOS sensor feeds to detect events.
These WPS servers are described in detail in the WPS section of this ER. With an
emphasis on UM SOS itself and the developed client capabilities, the remainder of this
section describes the supported operations and how these operations are used in practice
for real-time publication and retrieval of sensor feeds.

The UM SOS supports the following operations specified by the SOS 2.0 standard:

• GetCapabilities: Retrieving metadata about the SOS server;

• DescribeSensor: Retrieving metadata about the sensors; and

• GetObservation: Retrieving live sensor observations.

In addition, the UM SOS supports the following transactional SOS operations to publish
the generated observations:

Figure 17: UM SOS Together with the Components Developed for Real Time

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium 37

• InsertSensor: Registration of new sensors; and

• InsertObservation: Inserting new observations published by an already registered
sensor.

To enable the flow of live sensor feeds, a number of sensors with different observed
properties, including chemical, temperature, pedestrian and traffic count, were described
based on SensorML and inserted into the UM SOS. When the sensors are registered, the
SOS allows for insertion of observations for the registered sensors using the
InsertObservation operation. Given the aim to examine the capabilities of the SOS
specification for dealing with real-time sensor feeds, a pragmatic approach was needed
for on-the-fly simulation, description and publication observations on the SOS server.
This necessity was addressed by developing UM SOS Simulating Wizard which is a
mediator software component between an SOS server and the UM client. Figure 18
shows the graphical user interface (GUI) of the SOS simulator that is available in the UM
client, whereby the user can define the input parameters (e.g., rate and temporal filter for
simulation of sensor observations). The simulation workflow includes time-incremental
generation of observations, the encoding of the observations based on O&M and the
insertion of the generated O&M files into the SOS server.

While the sensor observations are being generated and published into the SOS server, the
UM client enables the capability for retrieval of SOS observations in real time. The
workflow for getting observations includes time-incremental execution of
GetObservation operation and visualization of the retrieved data feeds on a map.
Consequently, the user is provided with concurrent access to the multiple layers of live
SOS observations (Figure 19). For visualizing time-series sensor observations in the UM
client (which is based on Cesium), the CZML6 format was used. CZML is an open JSON
schema for describing properties that change value over time in a Web browser running
Cesium7.

6 https://github.com/AnalyticalGraphicsInc/cesium/wiki/CZML-Content
7 https://cesiumjs.org/

Figure 18: GUI of UM SOS Simulating Wizard

OGC 15-118r1

38 Copyright © 2018 Open Geospatial Consortium

In addition to the map-view of observations, the user can use the chart-view analysis to
examine the timeline of the measurements made by the selected sensor(s), shown in
Figure 20.

10.1.3 OpenSensorHub (OSH)

OpenSensorHub (OSH) is an open source, open standard software stack that implements
the full vision of the SWE service and encoding standards in an S-Hub component and
provides these in an easily deployed package. OSH is highly scalable and configurable,
and has been deployed on a variety of platforms from Android cell phones and tablets, to
Linux/Windows/IoS devices, ARM boards, Raspberry Pi, various microcontrollers and

Figure 19: UM Client Provides Concurrent Access to Multiple Layers of Live SOS Observations

Figure 20: UM Client Provides Chart-view of Live SOS Observations

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium 39

on the Amazon Web Services (AWS) Cloud. OSH S-Hubs on all of these platforms can
be interconnected to provide distributed access to a wide range of types and scales of
sensor data (Figure 21).

Figure 21: Interconnected Sensor Hubs

In addition to SOS capabilities, OSH supports SOS Transactional Services (SOS-T);
Sensor Planning Service (SPS) for tasking sensors, actuators and executable processes;
SensorML-encoded on-board processing; and efficient streaming of real-time or archived
observation values. OSH was deployed in this pilot project to support:

• Real-time streaming of video and sensor location/orientation for Android
phones/tablets to the AWS Cloud;

• Real-time streaming and processing of video and sensor location/orientation for a
vehicle-mounted Pan-Tilt-Zoom (PTZ) video camera to the AWS Cloud;

• Real-time streaming of simulated Automated Vehicle Location (AVL) location
data from Huntsville Fire and Rescue, Huntsville Police and Huntsville
Emergency Medical Service (EMS) vehicles;

• Real-time processing and streaming of a Laser Rangefinder to support remote
location tagging;

OGC 15-118r1

40 Copyright © 2018 Open Geospatial Consortium

• On-demand tasking (through SPS) of a Lagrangian Plume Model and serving
(through SOS) the resulting model observations; and

• Storage and streaming of Unmanned Aerial Sensor (i.e., drone) navigation data
(location, attitude, gimbal positions and camera settings and HD video, along with
on-demand geolocation of the camera footprint).

10.1.4 52°North (Client Only)

Within the IMIS IoT Pilot 52°North contributed its JavaScript Sensor Web Client for
allowing users to explore and visualize the available data sets in different ways (e.g., map
view showing sensor locations and the latest measured values, diagram view, table view).
Within the IMIS IoT Pilot this client was enhanced so that it is not only capable of
consuming data from SOS servers but also from STA endpoints (Figure 22). The
architecture of this development is illustrated in Figure 23. In this case, the SOS Client
does not interact directly with the SOS and STA endpoints. Instead, it relies on an
intermediate component, which encapsulates the business logic to interact with SOS and
STA endpoint behind a REST/JSON-based interface. Furthermore, this component
caches metadata about available data in the different registered SOS and STA endpoints.
The reason for this is, that certain client functionality requires more detailed information
about the contents of SOS/STA endpoints, which cannot be directly obtained by single
service operation calls. Instead, this information is cached and made available to the
client through convenience operations (for more details please refer to the IMIS IoT
Architecture ER).

Figure 22: 52°North Client Application for Accessing SOS and STA

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium 41

Figure 23: Architecture of the 52°North SOS/STA Client Developments

10.2 Pros/Cons

10.2.1 Compusult

10.2.1.1 Pros

• Automatic Registration: The SOS is published to the Catalog when activated,
ensuring that it will be discoverable for all users. The Catalog is also notified of
any updates and the SOS is removed when it is no longer active.

10.2.2 UM

10.2.2.1 Pros

• Versatility of SOS Capabilities Document: The Capabilities document is a very
useful resource in the process of binding the software components to the SOS
server. The Capabilities document provides the answer to the questions such as
what sensors are available in the SOS server, what observed properties are
monitored, what is the last update time for each sensor, etc. Since the answers to
these questions can frequently change during the course of time (e.g., through
insertion or deletion of sensors and observations), the existence of the Capabilities

OGC 15-118r1

42 Copyright © 2018 Open Geospatial Consortium

document as a centralized reference resource makes it easier for the developers to
implement functionalities on-top-off SOS servers.

• Reliability of 52°North 4.x Development Line: We found 52°North
Implementation of OGC SOS a well-developed and reliable server for dealing
with live sensor feeds. The server never crashed or slowed under extensive data
entry and concurrent operation execution that we undertook during the pilot. Also,
this implementation of SOS specification additionally supports JSON binding
which significantly improves the developer experience while interacting with the
server.

10.2.2.2 Cons

• Heavy Weight: A RESTful binding is not specified in the current OGC SOS 2.0
standard. It supports Simple Object Access Protocol (SOAP) and Key-Value Pair
(KVP) bindings. Consequently, a lot of bandwidth is devoted to communicating
redundant metadata. Also, the SOAP binding is relatively hard to implement and
is unpopular among mobile developers. As a result, high communication overhead
and heavy power consumption pose a limitation for usage of SOS in the cases
when the bandwidth is limited (such as mobile development).

• Scalability of the Capabilities Document: Despite the versatility of the
Capabilities document, it poses an issue with relation to scalability. In this regard,
when the number of items that are advertised in the Capabilities document
increases (e.g., large number of sensors, observed properties and feature of
interests) the size of the Capabilities document is directly affected. This is the
case for mobile sensor platforms in which all of the sampling features of interest
appear in the Capabilities document and make its size too heavy to process.8

10.2.3 OSH

10.2.3.1 Pros

• Scalable to a wide range of platforms from microcontrollers and cell phones to the
cloud, this allows services to be deployed where they make the most sense.

• Supports both simple and complex sensors.

• Ability to deploy sensors, actuators and processing on the same hub provides
flexibility for distributed capabilities.

8 The GetDataAvailability operation (e.g., described in the OGC SOS 2.0 Hydrology Profile Best Practice document)
has the potential to address this issue.

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium 43

• Support for GetResult and GetResultTemplate for real-time and archived data
provides highly efficient data streaming capabilities.

• Supports both ASCII-comma separated value (CSV) and binary encodings for
data blocks and data streams.

10.2.3.2 Cons

• Support is in progress but not yet available for JSON. Note, however, that CSV
streaming combined with one-time call to GetResultTemplate for result metadata,
structure and encoding is actually more robust and efficient than JSON; still the
option for JSON encoding support would be helpful to many.

10.2.4 52°North

10.2.4.1 Pros

• The SOS interface ensures interoperability when integrating observation data
from multiple data providers.

• The enhancements of an existing SOS client to cover the STA standard, as well,
was possible in a very efficient way.

10.2.4.2 Cons

• SOS (and STA) sometimes requires multiple calls to determine the metadata
necessary for typical client functionality (e.g., determine which time series with
specific characteristics are available. Solutions such as the GetDataAvailability
operation (see SOS 2.0 Hydrology Profile Best Practice) are not part of the core
SOS standard.

10.3 Recommended Changes

10.3.1 SOS/Sensor Things Profiling

The authors discovered a number of interoperability issues with both standards which
were more operational issues rather than failures. Firstly, the benefit of two standards
delivering the same information is always questionable. If they are two mandated
endpoints then this is fine, but if they are alternatives this simply passes the issue on to
the client. Thus, it is necessary to mandate both (i.e., a server must support both) or
mandate one. Alternatively, adapter services, again registered with the Catalog, would be
another approach. This cannot be left to the client to deal with or everyone will be doing
everything twice, however. Secondly, within SOS there is no mandated return format.
WMS clients ensure that users will be able to get a Portable Network Graphics (PNG)
formatted image even if a client can’t process other formats.

OGC 15-118r1

44 Copyright © 2018 Open Geospatial Consortium

This may be the only way to operate for SOS in general (due to the range of sensors), but
for a domain such as IMIS IOT it reduces interoperability. There is a need, per
information type, to agree on the return type and thereby agree on a canonical set of
result types. This is clearly a domain profiling issue.

10.3.2 Visualization of Sensors

There is clearly a need for a range of visualization techniques for sensors, which are very
different in return content even though they have a similar invocation protocol.
Discovering and querying an SOS proved relatively easy compared with negotiating the
return result semantics.

The Envitia Horizon Client implemented SOS visualization as did the Envitia InSight
mobile App. Both used static visualization (displayed geographic position with a symbol
and allowed display of attributes by clicking on the object, typically as simple tabular
lists).

Clearly a model to define visualization of SOSs using Styled Layer Descriptors (SLD)
would be valuable, but there also seems value in taking the next step and supporting a
‘SOS or SensorThings’ portrayal service delivered as a WMS. This is analogous to the
Feature Portrayal service (Component WMS) or SLD supporting Integrated SLD-WMS
service, both of which are typically used to visualize WFS and WCS. These services
provide broader interoperability than SOS as WMS is widely supported.

It is likely that the integrated approach (where the WMS is deployed against an SOS
endpoint) is the most interoperable and could support both pre-loaded styles and SLD
requests (offering scalability to clients). Compusult’s CSW-WMS offers a demonstration
of this type of capability, but our proposition is that it needs to be more focused on a
specific SOS to be useful for visualization as opposed to discovery (which the Compusult
CSW-WMS does well).

It would be possible to set up a WMS service which is orchestrated by the Catalog, which
automatically deploys specific WMS endpoints as SOS servers register. This is an
evolution of the concept implemented by Compusult and proposed by Envitia in their
original proposal.

10.3.3 Determine Available Observation Data

For both the SOS and the STA it was not always possible for clients to determine the
availability of data for certain time series or query criteria. To facilitate the development
of lightweight client applications, an operation such as the GetDataAvailability operation
should be specified as an extension and included in an IMIS SOS Profile.

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium 45

10.3.4 OWS Context Document Extension Suggestions

The OWS Context document provides a framework to reference both Web Services and
local content and embed content. This is all achieved through a concept known as an
‘Offering.’ As described in the IMIS IoT Architecture ER, the OWS Context document
defines a geospatial extent, a temporal extent and an ordered series of layers known as
Resources. Resources break down further into ‘Offerings.’ A given Resource or layer can
have multiple ‘Offerings.’ The concept is that for a given layer the document can offer a
client the opportunity to load the offering most appropriate to the function they need. The
principle is that offerings within a layer offer the same information and so the client can
choose the most appropriate.

10.3.4.1 SOS Offering Extension

The OWS Context 1.0 Standard allows additional offerings to be added, characterized by
a Universal Resource Identifier (URI), in the form of a URL, that identifies a defined
offering. Within the OWS Context 1.0 standard there are already a number of defined
offerings (WMS, WMTS, WFS, CSW, GML etc.) but at present it does not support SOS.

Within the IMIS IoT Pilot, Envitia (co-chair of the OWS Context Standards Working
Group) has developed an SOS Extension to OWS Context. Defining an OWS Context
extension is a simple process. The capability to use the prototype extension has been
added to the Envitia Horizon Web Portal and Envitia InSight Mobile App. The extension
is compliant with OWS 1.0 so it could be defined in a profile.

An OWS Context Web service Offering defines two operation requirements, the
GetCapabilities and a data request used to define the specific request to be used. These
are shown below.

<?xml version="1.0" encoding="UTF-8"?>
<!--A Prototype SOS Offering within OWS Context for SOS -->
<owc:offering code="http://www.opengis.net/spec/owc-atom/1.1/req/sos">
 <owc:operation code="GetCapabilities" method="GET"
 href="https://imis.compusult.net/wes/PXSOS
 ?REQUEST=GetCapabilities&SERVICE=SOS"/>
 <owc:operation code="GetObservation" method="POST"
 xmlns:sos="http://www.opengis.net/sos/2.0"
 href="https://imis.compusult.net/wes/PXSOS">
 <owc:request type="application/xml">
 <sos:GetObservation version="2.0.0" service="SOS">
 <sos:offering>
 https://imis.compusult.net/wes/PXSOS/403/BATTERY
 </sos:offering>
 <sos:procedure>
 https://imis.compusult.net/wes/PXSOS/403/BATTERY
 </sos:procedure>
 <sos:observedProperty>
 https://imis.compusult.net/wes/PXSOS/403/BATTERY/PERCENT
 </sos:observedProperty>
 </sos:GetObservation>
 </owc:request>

OGC 15-118r1

46 Copyright © 2018 Open Geospatial Consortium

 </owc:operation>
</owc:offering>

10.3.4.2 Using OWS Context Documents to Offer Multiple Service Options

Within the OWS Contexts documents used in the IMIS IoT Pilot, layers including an
SOS server and related services such as the CSW-WMS were included. They were not
created as offerings of one layer because they conceptually do not offer the same
information, however; the CSW-WMS layer for Location does visualize the SOS but it
also visualizes other SOS servers delivering position so it is not technically the same
information.

If a WMS were created to visualize an SOS, it would make sense to offer both so that
different client capabilities would be supported. The structure Resource (Layer)
definition is shown below. The OWS Context Document is encoded in Atom (a dialect of
XML) and resource is translated to an Atom ‘entry’ tag. The Resource then has a
bounding extent and some basic metadata describing what it is, followed by two offerings
from which the client can choose.

<?xml version="1.0" encoding="UTF-8"?>
<entry>
 <id>OpenLayers_Layer_Vector_1512</id>
 <title>GPS - Utility Crew</title>
 <updated>2016-01-11T23:44:37Z</updated>
 <georss:where>
 <gml:Polygon>
 <gml:exterior>
 <gml:LinearRing>
 <gml:posList srsDimension="2" srsName="EPSG:4326">
 34.690644924214 -86.583071822499
 34.696407892743 -86.583071822499
 34.696407892743 -86.573400869196
 34.690644924214 -86.573400869196
 34.690644924214 -86.583071822499
 </gml:posList>
 </gml:LinearRing>
 </gml:exterior>
 </gml:Polygon>
 </georss:where>
 <content type="html">GPS - Utility Crew</content>
 <category term="false" scheme="http://www.opengis.net/owc/active"/>
 <category term="1" scheme="http://www.envitia.com/horizon/
 layer/opacity"/>
 <!--Standard WMS Offering pointing to The SOS Visualising WMS -->
 <owc:offering code="http://www.opengis.net/spec/
 owc-atom/1.0/req/sos">
 <!--Content removed for brevity -->
 </owc:offering>
 <!--Extension SOS Offering pointing to the SOS itself -->
 <owc:offering code="http://www.opengis.net/spec/owc-atom/
 1.1-draft/req/sos">
 <!--Content removed for brevity-->

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium 47

 </owc:offering>
</entry>

10.3.4.3 Sensor Things Implementation in OWS Context

Within the IMIS IoT Pilot, only SOS extensions were used. This involved accessing
information from the SensorThings sensor hubs as they also published SOS interfaces. It
is relatively easy to define OWS Context offerings which access SensorThings endpoints,
and now that the STA has been approved as an OGC Standard, the recommendation is
that it is raised as a request on the OWS Context Standards Working Group for inclusion
as a standard offering together with a similar request for SOS.

11 SensorThings API (STA)

11.1 Implemented Solution

11.1.1 Compusult

Similar to the Compusult SOS, the Compusult SensorThings implementation provides
data from mobile devices running Compusult's GoMobile software. The data from these
devices is stored in a database. When a SensorThings request is received it is converted to
a database query and the results are transformed to JSON and returned. The database will
only keep the data available for a configurable amount of time, ensuring the service is not
slowed down by large amounts of data processing. Since the purpose of this service is to
provide the data collected from GoMobile, entities within the service cannot be created,
updated or deleted with HTTP requests. The system query options $expand and $filter are
not implemented; however, all other system query options are available. Like the
Compusult SOS, the Compusult SensorThings implementation will automatically
register/unregister from the Catalog.

11.1.2 SensorUp

The SensorUp STA is a comprehensive implementation of the OGC SensorThings API.
At a high level, the SensorUp STA not only allows clients to retrieve and query IoT data,
but also support IoT devices (sensors) to register themselves and upload readings. In
addition, to minimize IoT devices’ power-consumption and bandwidth-consumption,
SensorUp STA supports the data array extension and MQTT extension. The list of
conformance classes supported by the SensorUp STA is listed below. A detailed
description of the SensorUp STA implementation is presented after the list.

The SensorUp STA implemented the following conformance classes:

• http://www.opengis.net/spec/iot_sensing/1.0/conf/thing

• http://www.opengis.net/spec/iot_sensing/1.0/conf/location

OGC 15-118r1

48 Copyright © 2018 Open Geospatial Consortium

• http://www.opengis.net/spec/iot_sensing/1.0/conf/historical-location

• http://www.opengis.net/spec/iot_sensing/1.0/conf/datastream

• http://www.opengis.net/spec/iot_sensing/1.0/conf/sensor

• http://www.opengis.net/spec/iot_sensing/1.0/conf/observed-property

• http://www.opengis.net/spec/iot_sensing/1.0/conf/observation

• http://www.opengis.net/spec/iot_sensing/1.0/conf/feature-of-interest

• http://www.opengis.net/spec/iot_sensing/1.0/conf/entity-control-information

• http://www.opengis.net/spec/iot_sensing/1.0/conf/resource-path

• http://www.opengis.net/spec/iot_sensing/1.0/conf/request-data

• http://www.opengis.net/spec/iot_sensing/1.0/conf/create-update-delete

• http://www.opengis.net/spec/iot_sensing/1.0/conf/data-array

• http://www.opengis.net/spec/iot_sensing/1.0/conf/create-observations-via-mqtt

• http://www.opengis.net/spec/iot_sensing/1.0/conf/receive-updates-via-mqtt

11.1.2.1 Request Data

SensorUp STA supports all of the system query options, including $filter (for queries),
$count/$skip/$top (for both server-side and client-side paginations), $orderby (for
sortings), $expand (for saving the number of client requests) and $select (for saving data
transmitted over the network). All of the above-mentioned query options have been
demonstrated useful in the IMIS IoT Pilot demonstration; these query options provide
great flexibility for Web clients to navigate and retrieve the desired data with a single
RESTful request.

Take a following use case as an example: a user would like to request the Observations
from all the Datastreams whose ObservedProperty’s name include “temp” (e.g., dew
point temperature and air temperature). It can be fulfilled with the following single
RESTful request:

http://api.sensorup.com/OGCSensorThings/v1.0/ObservedProperties?$filter=substrin
gof(‘temp’,name)&$expand=Datastreams/Observations

In this example, the $expand query option plays an important role as it can significantly
save the number of the requests for a client sent to the server.

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium 49

11.1.2.2 Data Array Extension

SensorUp STA data array implementation is very useful to reduce the data transmitted
over the network and shorten the server response time. As network bandwidth is a scarce
resource when a major disaster strike, the data array feature can be very important.

An example for this IMIS IoT Pilot is for a client to retrieve the heart rate data from a
smart shirt. The example request is as follows:

http://api.sensorup.com/OGCSensorThings/v1.0/Things(<thing_id>)/Datastreams(<d
atastream_id>)/Observations?$resultFormat=dataArray

The response below shows the very compact encoding of the STA data array:

{
 "dataArray@iot.count": 5760,
 "@iot.nextLink": "http:\/\/api.sensorup.com\/OGCSensorThings\
 /v1.0\/Things(<thing_id>)\/Datastreams
 (<datastream_id>)\Observations?$resultFormat=
 dataArray&$top=100&$skip=100",
 "components": [
 "@iot.id",
 "phenomenonTime",
 "result",
 "resultTime"
],
 "dataArray": [
 [
 1185124,
 "2016-01-5T05:00:00.000Z",
 "82",
 null
],
 [
 1185119,
 "2016-01-25T04:00:00.000Z",
 "83",
 null
],
 [
 1185113,
 "2016-01-25T03:00:00.000Z",
 "82",
 null
],
 [
 1185105,
 "2016-01-25T02:00:00.000Z",
 "-81",
 null
],
 [
 1185095,
 "2016-01-25T01:00:00.000Z",

OGC 15-118r1

50 Copyright © 2018 Open Geospatial Consortium

 "82",
 null
]
]
}

11.2 Pros/Cons

11.2.1 Compusult

11.2.1.1 Pros

• Automatic Registration: The SensorThings service is published to the Catalog
when activated, ensuring that it will be discoverable for all users. The Catalog is
also notified of any updates and the SensorThings service is removed when it is
no longer active.

• Data in JSON Format is Easy to Understand: It is simple for the service to
generate and for another machine to parse. It is platform-independent and also
very human-readable.

• Powerful Query Options: The service provides system query options, as well as
system query functions following the OData Canonical function definitions listed
in Section 5.1.1.4 of OData Version 4.0 Part 2: URL Conventions.

• Server-driven Pagination: The STA provides specification for server-driven
pagination. This prevents server slowdowns by limiting the amount of data
retrieved, as well as the response size.

11.2.1.2 Cons

• Query Options Can Be Very Complex: With many possibilities to combine and
process data, queries can become very complicated.

• Information is Dispersed Over Multiple Pages: Data and location for a single
device is organized into multiple entities. Multiple requests are often needed to
retrieve all necessary information for a single device.

11.2.2 SensorUp

11.2.2.1 Pros

• Great Developer Experiences: STA provides great developer experiences. It is
very easy for Web developers to pick up and start coding.

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium 51

• Efficiency Designed for IoT Devices and Applications: STA considered the high
volume and high velocity of the number of the IoT devices and the data collected
by them.

• Built-in Publish/Subscribe Support via MQTT: Receiving data as it happens is
particularly important for emergency response applications. STA’s native support
of MQTT provides a consistent approach for both receiving near real-time
updates (via MQTT) and accessing historical data (via HTTP).

11.3 Recommended Changes

11.3.1 Discovery of URL and Port Number of MQTT Assoicates

In the specification, it is not mentioned how a client can discover the URL and port
number of the MQTT associate with the STA. Location of such information needs to be
defined in the specification.

11.3.2 Navigation Links

Navigation links should use non-relative URLs. A "navigationLink" property within the
current specification only holds a relative URL. To follow a navigation link, a non-
relative URL must be generated from the server endpoint and the relative URL of the
navigation link property. The server already must generate non-relative URLs because
the "selfLink" property is defined as a non-relative URL. Using non-relative URLs would
provide one less processing step to any machine parsing the service as it could read the
property directly as a URL. This would also allow simpler navigation for human users of
the service.

11.3.3 Relationship to the SOS Standard

See Section 10.3.1 about further recommendations on the relationship between SOS and
the STA.

11.3.4 Harmonization with Similar Activities

Besides the STA there are ongoing activities within the OGC community to work on
recommendations for applying JSON and REST concepts. To ensure consistency, a close
alignment between these activities and future versions of this standard are important.

12 Observations and Measurements (O&M) - XML Encoding

The O&M XML Encoding (OGC 10-025r1) is used in GetObservation responses of SOS
servers to encode the observation information.

OGC 15-118r1

52 Copyright © 2018 Open Geospatial Consortium

12.1.1 Implemented Solution

The SOS servers have largely provided their observations using the measurement
requirements class from the O&M – XML Encoding specification (OGC 10-025r1, p.
17/18). Two examples for chemical sensors and pedestrian count are given in Annex A3
and Annex A4.

12.2 Pros/Con

12.2.1 Pros

As the SOS servers have used the same result types, implementing interoperable clients
becomes easier. As the name suggests, however, the observation type for providing the
pedestrian counts may have been an observation with count result type following the
countObservation requirements class of the O&M – XML Encoding standard (OGC 10-
025r1, p. 18/19).

12.2.2 Cons

The repeating of metadata, as well as the verbosity of the XML structure, is inefficient
for supporting highly dynamic observations. Support for time-series tuples (e.g., weather
data consisting of time, location, temperature, pressure, wind speed, wind direction and
rainfall) is complicated by the O&M model and XML encoding.

12.3 Recommended Changes

The usage of certain observation types for specific sensor/observed property
constellations does not seem obvious and straight forward in some cases. We therefore
recommend providing tutorials and best practices for choosing and implementing
appropriate observation types.

13 Data Streaming with SWE Common Data

13.1 Implemented Solution

The SWE Common Data standard provides a means to robustly describe data records,
arrays, vectors and simple components, including the data structure and encoding. For
individual components such as quantities, counts, Booleans, categories and time,
metadata support includes unit of measurement, semantic definition, constraints,
measures of quality, labels, description, etc.

SWE Common Data is utilized within SensorML for describing properties and data
components, in SOS for describing results, in SOS-T for defining the incoming data
stream, in SPS for describing tasking parameters, and in O&M for providing an optional
result metadata and values. The standard is also used in WCS for defining coverage data.

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium 53

Although GetObservation and O&M is supported in OpenSensorHub (OSH), the
demonstrations within the IMIS IoT Pilot make exclusive use of SWE Common Data
descriptions and encodings to support data streaming and highly efficient data block
transfer, including both ASCII and binary data. SWE Common Data also supported SPS
tasking, SensorML descriptions, and SensorML encoded processing. It is the fundamental
data protocol used internally within OpenSensorHub.

13.2 Pros/Cons

13.2.1 Pros

• Robust metadata about the results are provided, and is only needed to be retrieved
once.

• Unlike JSON and XML encodings in O&M, metadata is not repeated with each
measured value allowing for very efficient streams of data.

• SWE Common Data supports both ASCII and binary/compressed data.

• Since the data stream block consist entirely of values, SWE Common Data
provides a highly efficient format for supporting a wide range of data.

13.2.2 Cons

• Parsing of SWE Common Data is relatively easy but is not automatically
supported by Web browser technologies as is JSON.

• General library for reading/writing SWE Common Data is currently Java only,
making it ideal for servers but not necessarily clients.

• As is the case with any data format, whether JSON, O&M, traditional proprietary
files or SWE Common Data, it is still very challenging for a generic client to
know exactly what to do with a collection of new data without having a priori
knowledge of that data. There is a need for at least some common data profiles
that are recognizable by the client (see recommendation below).

13.3 Recommended Changes

Recommending not changes, but extensions to SWE Common Data to provide:

• A JSON encoding option based on the models presented in the standard; current
encoding of these models is XML only.

• Creation of common profiles for location/orientation, video, imagery, weather,
etc. These profiles should be placed in a registry to provide interoperable
descriptions of common observation types.

OGC 15-118r1

54 Copyright © 2018 Open Geospatial Consortium

14 Sensor Model Language (SensorML)

14.1 Implemented Solution

SensorML provides a robust description of sensors and actuators, and executable models
that can be used for discovery, qualification of results and configuration. Since SensorML
models sensors, actuators and executable models as processes, these components can all
be included in SensorML-described process chains or workflows to support on-demand
tasking, data collection, analysis and reaction.

SensorML 2.0 introduced several improvements to the existing standard including better
support for inheritance and more compact description of deployed sensors, actuators and
processes. In addition, there is better support for security tagging, configuration
descriptions and streaming of disparate messages (e.g., from a Chemical / Biological /
Radiological / Nuclear (CBRN) sensing device).

OSH supports SensorML 2.0 through a combined use of predefined SensorML
descriptions coming from Original Equipment Manufacturers (OEM) and system
deployers, and SensorML descriptions generated in code based on current deployed OSH
configurations. Each OSH node can support sensors, actuators and on-demand
processing.

Furthermore, as robots are little more than a collection of sensors, actuators and
processes, SensorML and OSH are well suited for supporting robotic systems, whether
physical entities in specific locations or collections of distributed cooperative virtual
components.

Much of the SensorML support was relatively hidden in the initial IMIS IoT Pilot,
primarily supporting on-demand processing within OSH nodes (e.g., to support
geospatial awareness for video cameras on motor vehicles, unmanned aerial vehicles, and
personnel, and for calculation of remote locations tagged by the Laser Rangefinder).

14.2 Pros/Cons

14.2.1 Pros

• Provides a robust description of sensors, actuators and processes.

• Provides the ability to fully describe complex robotic systems or workflows
consisting of local or distributed sensing, acting or processing components.

• Can be used for on-demand processing within (or external to) any OSH node.

• Processing within an OSH node can be reconfigured on-the-fly by referencing or
sending a new SensorML-encoded process over the Web.

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium 55

14.2.2 Cons

• A simple SensorML viewer/editor is vital to enable OEM’s and sensor deployers
to describe their systems.9

• As with SWE Common Data, a JSON encoding of SensorML is needed for easier
Web-based usage (see recommendation).

14.3 Recommended Changes

As with SWE Common Data, an alternate JSON serialization of SensorML would be
helpful to support descriptions of sensors, actuators and processes.

9 NOTE: Such an editor is currently in the works with initial release planned for 2016.

OGC 15-118r1

56 Copyright © 2018 Open Geospatial Consortium

Annex A

Extensible Markup Language (XML) Example

A.1 General

This annex lists several XML examples of service capabilities, requests or responses.

A.2 Web Feature Service (WFS) Capabilities Example

The document below shows the Capabilities document that is returned by the
GetCapabilities operation of the WFS described in Section 7.

<?xml version="1.0" encoding="UTF-8"?>
<wfs:WFS_Capabilities xmlns:wfs="http://www.opengis.net/wfs/2.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-
 instance"
 xmlns:ows="http://www.opengis.net/ows/1.1"
 xmlns:xlink=http://www.w3.org/1999/
 xlink
 xmlns:fes="http://www.opengis.net/fes/
 2.0"
 version="2.0.0"
 xsi:schemaLocation="http://www.opengis.net/fes
 /2.0
 http://schemas.opengis.net/
 filter/2.0/filterAll.xsd
 http://www.opengis.net/wfs
 /2.0
 http://schemas.opengis.net/
 wfs/2.0/wfs.xsd
 http://www.opengis.net/
 ows/1.1
 http://schemas.opengis.net/
 ows/1.1.0/owsAll.xsd">
 <ows:ServiceIdentification>
 <ows:Title xml:lang="eng">52N WFS</ows:Title>
 <ows:Abstract xml:lang="eng">
 52North Sensor Observation Service - Data Access for the
 Sensor Web
 </ows:Abstract>
 <ows:ServiceType>WFS</ows:ServiceType>
 <ows:ServiceTypeVersion>2.0.0</ows:ServiceTypeVersion>
 <ows:Fees>NONE</ows:Fees>
 <ows:AccessConstraints>NONE</ows:AccessConstraints>
 </ows:ServiceIdentification>
 <ows:ServiceProvider>
 <ows:ProviderName>52North</ows:ProviderName>
 <ows:ProviderSite xlink:href="http://52north.org/swe"/>
 <ows:ServiceContact>

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium 57

 <ows:IndividualName>TBA</ows:IndividualName>
 <ows:PositionName>TBA</ows:PositionName>
 <ows:ContactInfo>
 <ows:Phone>
 <ows:Voice>+49(0)251/396 371-0</ows:Voice>
 </ows:Phone>
 <ows:Address>
 <ows:DeliveryPoint>
 Martin-Luther-King-Weg 24<
 </ows:DeliveryPoint>
 <ows:City>Münster</ows:City>
 <ows:AdministrativeArea>
 North Rhine-Westphalia
 </ows:AdministrativeArea>
 <ows:PostalCode>48155</ows:PostalCode>
 <ows:Country>Germany</ows:Country>
 <ows:ElectronicMailAddress>
 info@52north.org
 </ows:ElectronicMailAddress>
 </ows:Address>
 </ows:ContactInfo>
 </ows:ServiceContact>
 </ows:ServiceProvider>
 <ows:OperationsMetadata>
 <ows:Operation name="DescribeFeatureType">
 <ows:DCP>
 <ows:HTTP>
 <ows:Get xlink:href="http://pilot.52north.org/52n-wfs-
 proxy-webapp/service?">
 <ows:Constraint name="Content-Type">
 <ows:AllowedValues>
 <ows:Value>application/x-kvp</ows:Value>
 </ows:AllowedValues>
 </ows:Constraint>
 </ows:Get>
 </ows:HTTP>
 </ows:DCP>
 <ows:Parameter name="outputFormat">
 <ows:AllowedValues>
 <ows:Value>application/gml+xml; version=3.2</ows:Value>
 <ows:Value>application/om+xml; version=2.0</ows:Value>
 <ows:Value>
 application/samplingspatial+xml; version=2.0
 </ows:Value>
 <ows:Value>text/xml</ows:Value>
 <ows:Value>text/xml; subtype="gml/3.2"</ows:Value>
 </ows:AllowedValues>
 </ows:Parameter>
 </ows:Operation>
 <ows:Operation name="DescribeStoredQueries">
 <ows:DCP>
 <ows:HTTP>
 <ows:Get xlink:href="http://pilot.52north.org/52n-wfs-
 proxy-webapp/service?">
 <ows:Constraint name="Content-Type">
 <ows:AllowedValues>

OGC 15-118r1

58 Copyright © 2018 Open Geospatial Consortium

 <ows:Value>application/x-kvp</ows:Value>
 </ows:AllowedValues>
 </ows:Constraint>
 </ows:Get>
 </ows:HTTP>
 </ows:DCP>
 </ows:Operation>
 <ows:Operation name="GetCapabilities">
 <ows:DCP>
 <ows:HTTP>
 <ows:Get xlink:href="http://pilot.52north.org/52n-wfs-
 proxy-webapp/service?">
 <ows:Constraint name="Content-Type">
 <ows:AllowedValues>
 <ows:Value>application/x-kvp</ows:Value>
 </ows:AllowedValues>
 </ows:Constraint>
 </ows:Get>
 </ows:HTTP>
 </ows:DCP>
 <ows:Parameter name="AcceptFormats">
 <ows:AllowedValues>
 <ows:Value>application/xml</ows:Value>
 </ows:AllowedValues>
 </ows:Parameter>
 <ows:Parameter name="AcceptVersions">
 <ows:AllowedValues>
 <ows:Value>2.0.0</ows:Value>
 </ows:AllowedValues>
 </ows:Parameter>
 <ows:Parameter name="Sections">
 <ows:AllowedValues>
 <ows:Value>All</ows:Value>
 <ows:Value>FeatureTypeList</ows:Value>
 <ows:Value>Filter_Capabilities</ows:Value>
 <ows:Value>OperationsMetadata</ows:Value>
 <ows:Value>ServiceIdentification</ows:Value>
 <ows:Value>ServiceProvider</ows:Value>
 </ows:AllowedValues>
 </ows:Parameter>
 <ows:Parameter name="updateSequence">
 <ows:AnyValue/>
 </ows:Parameter>
 </ows:Operation>
 <ows:Operation name="GetFeature">
 <ows:DCP>
 <ows:HTTP>
 <ows:Get xlink:href="http://pilot.52north.org/52n-wfs-
 proxy-webapp/service?">
 <ows:Constraint name="Content-Type">
 <ows:AllowedValues>
 <ows:Value>application/x-kvp</ows:Value>
 </ows:AllowedValues>
 </ows:Constraint>
 </ows:Get>

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium 59

 </ows:HTTP>
 </ows:DCP>
 <ows:Parameter name="outputFormat">
 <ows:AllowedValues>
 <ows:Value>application/gml+xml; version=3.2</ows:Value>
 <ows:Value>application/om+xml; version=2.0</ows:Value>
 <ows:Value>
 application/samplingspatial+xml; version=2.0
 </ows:Value>
 <ows:Value>text/xml</ows:Value>
 <ows:Value>text/xml; subtype="gml/3.2"</ows:Value>
 <ows:Value>text/xml;charset=UTF-8</ows:Value>
 </ows:AllowedValues>
 </ows:Parameter>
 </ows:Operation>
 <ows:Operation name="GetPropertyValue">
 <ows:DCP>
 <ows:HTTP>
 <ows:Get xlink:href="http://pilot.52north.org/52n-wfs-
 proxy-webapp/service?">
 <ows:Constraint name="Content-Type">
 <ows:AllowedValues>
 <ows:Value>application/x-kvp</ows:Value>
 </ows:AllowedValues>
 </ows:Constraint>
 </ows:Get>
 </ows:HTTP>
 </ows:DCP>
 </ows:Operation>
 <ows:Parameter name="service">
 <ows:AllowedValues>
 <ows:Value>WFS</ows:Value>
 </ows:AllowedValues>
 </ows:Parameter>
 <ows:Parameter name="version">
 <ows:AllowedValues>
 <ows:Value>2.0.0</ows:Value>
 </ows:AllowedValues>
 </ows:Parameter>
 </ows:OperationsMetadata>
 <wfs:FeatureTypeList>
 <wfs:FeatureType>
 <wfs:Name xmlns:ns="http://www.opengis.net/om/2.0">
 ns:OM_Observation
 </wfs:Name>
 <wfs:Title>Observations</wfs:Title>
 <wfs:Abstract>OWS-10 observation for VGI</wfs:Abstract>
 <ows:Keywords>
 <ows:Keyword>observations</ows:Keyword>
 </ows:Keywords>
 <wfs:DefaultCRS>urn:ogc:def:crs:EPSG::4326</wfs:DefaultCRS>
 <wfs:OutputFormats>
 <wfs:Format>application/gml+xml; version=3.2</wfs:Format>
 </wfs:OutputFormats>
 <ows:WGS84BoundingBox>

OGC 15-118r1

60 Copyright © 2018 Open Geospatial Consortium

 <ows:LowerCorner>
 34.6890602111816 -86.59235
 </ows:LowerCorner>
 <ows:UpperCorner>
 34.70061 -86.57660675048828
 </ows:UpperCorner>
 </ows:WGS84BoundingBox>
 </wfs:FeatureType>
 <wfs:FeatureType>
 <wfs:Name xmlns:pil="http://pilot.52north.org">
 pil:PilotFeature
 </wfs:Name>
 <wfs:Title>PilotFeatures for IMIS-IoT</wfs:Title>
 <wfs:Abstract/>
 <ows:Keywords>
 <ows:Keyword>pilot features</ows:Keyword>
 </ows:Keywords>
 <wfs:DefaultCRS>urn:ogc:def:crs:EPSG::4326</wfs:DefaultCRS>
 <wfs:OutputFormats>
 <wfs:Format>application/gml+xml; version=3.2</wfs:Format>
 </wfs:OutputFormats>
 <ows:WGS84BoundingBox>
 <ows:LowerCorner>
 34.6890602111816 -86.59235
 </ows:LowerCorner>
 <ows:UpperCorner>
 34.70061 -86.57660675048828
 </ows:UpperCorner>
 </ows:WGS84BoundingBox>
 </wfs:FeatureType>
 <wfs:FeatureType>
 <wfs:Name xmlns:ns="http://www.opengis.net/
 samplingSpatial/2.0">
 ns:SF_SpatialSamplingFeature
 </wfs:Name>
 <wfs:Title>Features for IMIS-IoT</wfs:Title>
 <wfs:Abstract/>
 <ows:Keywords>
 <ows:Keyword>features</ows:Keyword>
 </ows:Keywords>
 <wfs:DefaultCRS>urn:ogc:def:crs:EPSG::4326</wfs:DefaultCRS>
 <wfs:OutputFormats>
 <wfs:Format>application/gml+xml; version=3.2</wfs:Format>
 </wfs:OutputFormats>
 <ows:WGS84BoundingBox>
 <ows:LowerCorner>
 34.6890602111816 -86.59235
 </ows:LowerCorner>
 <ows:UpperCorner>
 34.70061 -86.57660675048828
 </ows:UpperCorner>
 </ows:WGS84BoundingBox>
 </wfs:FeatureType>
 </wfs:FeatureTypeList>
 <fes:Filter_Capabilities>

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium 61

 <fes:Conformance>
 <fes:Constraint name="ImplementsQuery">
 <ows:NoValues/>
 <ows:DefaultValue>false</ows:DefaultValue>
 </fes:Constraint>
 <fes:Constraint name="ImplementsAdHocQuery">
 <ows:NoValues/>
 <ows:DefaultValue>true</ows:DefaultValue>
 </fes:Constraint>
 <fes:Constraint name="ImplementsFunctions">
 <ows:NoValues/>
 <ows:DefaultValue>false</ows:DefaultValue>
 </fes:Constraint>
 <fes:Constraint name="ImplementsResourceld">
 <ows:NoValues/>
 <ows:DefaultValue>false</ows:DefaultValue>
 </fes:Constraint>
 <fes:Constraint name="ImplementsMinStandardFilter">
 <ows:NoValues/>
 <ows:DefaultValue>false</ows:DefaultValue>
 </fes:Constraint>
 <fes:Constraint name="ImplementsStandardFilter">
 <ows:NoValues/>
 <ows:DefaultValue>false</ows:DefaultValue>
 </fes:Constraint>
 <fes:Constraint name="ImplementsMinSpatialFilter">
 <ows:NoValues/>
 <ows:DefaultValue>true</ows:DefaultValue>
 </fes:Constraint>
 <fes:Constraint name="ImplementsSpatialFilter">
 <ows:NoValues/>
 <ows:DefaultValue>false</ows:DefaultValue>
 </fes:Constraint>
 <fes:Constraint name="ImplementsMinTemporalFilter">
 <ows:NoValues/>
 <ows:DefaultValue>true</ows:DefaultValue>
 </fes:Constraint>
 <fes:Constraint name="ImplementsTemporalFilter">
 <ows:NoValues/>
 <ows:DefaultValue>false</ows:DefaultValue>
 </fes:Constraint>
 <fes:Constraint name="ImplementsVersionNav">
 <ows:NoValues/>
 <ows:DefaultValue>false</ows:DefaultValue>
 </fes:Constraint>
 <fes:Constraint name="ImplementsSorting">
 <ows:NoValues/>
 <ows:DefaultValue>false</ows:DefaultValue>
 </fes:Constraint>
 <fes:Constraint name="ImplementsExtendedOperators">
 <ows:NoValues/>
 <ows:DefaultValue>false</ows:DefaultValue>
 </fes:Constraint>
 <fes:Constraint name="ImplementsMinimumXPath">
 <ows:NoValues/>
 <ows:DefaultValue>false</ows:DefaultValue>

OGC 15-118r1

62 Copyright © 2018 Open Geospatial Consortium

 </fes:Constraint>
 <fes:Constraint name="ImplementsSchemaElementFunc">
 <ows:NoValues/>
 <ows:DefaultValue>false</ows:DefaultValue>
 </fes:Constraint>
 </fes:Conformance>
 <fes:Scalar_Capabilities>
 <fes:ComparisonOperators>
 <fes:ComparisonOperator name="PropertyIsEqualTo"/>
 </fes:ComparisonOperators>
 </fes:Scalar_Capabilities>
 <fes:Spatial_Capabilities>
 <fes:GeometryOperands>
 <fes:GeometryOperand xmlns:ns="http://www.opengis.
 net/gml/3.2"
 name="ns:Envelope"/>
 </fes:GeometryOperands>
 <fes:SpatialOperators>
 <fes:SpatialOperator name="BBOX">
 <fes:GeometryOperands>
 <fes:GeometryOperand xmlns:ns="http://www.opengis.
 net/gml/3.2"
 name="ns:Envelope"/>
 </fes:GeometryOperands>
 </fes:SpatialOperator>
 </fes:SpatialOperators>
 </fes:Spatial_Capabilities>
 <fes:Temporal_Capabilities>
 <fes:TemporalOperands>
 <fes:TemporalOperand xmlns:ns="http://www.opengis.
 net/gml/3.2"
 name="ns:TimeInstant"/>
 <fes:TemporalOperand xmlns:ns="http://www.opengis.
 net/gml/3.2"
 name="ns:TimePeriod"/>
 </fes:TemporalOperands>
 <fes:TemporalOperators>
 <fes:TemporalOperator name="During">
 <fes:TemporalOperands>
 <fes:TemporalOperand xmlns:ns="http://www.opengis.
 net/gml/3.2"
 name="ns:TimePeriod"/>
 </fes:TemporalOperands>
 </fes:TemporalOperator>
 <fes:TemporalOperator name="TEquals">
 <fes:TemporalOperands>
 <fes:TemporalOperand xmlns:ns="http://www.opengis.
 net/gml/3.2"
 name="ns:TimeInstant"/>
 </fes:TemporalOperands>
 </fes:TemporalOperator>
 </fes:TemporalOperators>
 </fes:Temporal_Capabilities>
 </fes:Filter_Capabilities>
</wfs:WFS_Capabilities>

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium 63

A.3 Observations and Measurements (O&M) Chemical Measurement Example

<om:OM_Observation gml:id="o_AC03F21B313075894C23A471044C896999FE65B7">
 <gml:description>
 test description for this observation
 </gml:description>
 <gml:identifier codeSpace="http://www.opengis.net/def/nil/OGC/0/
 unknown">
 Chemical1/1452484545014
 </gml:identifier>
 <om:type xlink:href="http://www.opengis.net/def/observationType/OGC-
 OM/2.0/OM_Measurement"/>
 <om:phenomenonTime>
 <gml:TimeInstant gml:id="phenomenonTime_100607">
 <gml:timePosition>2016-01-11T03:55:45.014Z</gml:timePosition>
 </gml:TimeInstant>
 </om:phenomenonTime>
 <om:resultTime xlink:href="#phenomenonTime_100607"/>
 <om:procedure xlink:href="Chemical1"/>
 <om:observedProperty xlink:href="Gasoline"/>
 <om:featureOfInterest xlink:href="MemorialP" xlink:title="UM"/>
 <om:result xmlns:ns="http://www.opengis.net/gml/3.2" uom="ppm"
 xsi:type="ns:MeasureType">
 50.7
 </om:result>
</om:OM_Observation>

A.4 O&M Pedestrian Count Example

<om:OM_Observation gml:id="o_8C8E602E4313E1567E6CFA19E507952CBE53B7F5">
 <gml:description>
 test description for this observation
 </gml:description>
 <gml:identifier codeSpace="http://www.opengis.net/def/nil/OGC/0/
 unknown">
 PedestrianCounting1/1452484647215
 </gml:identifier>
 <om:type xlink:href="http://www.opengis.net/def/observationType/OGC-
 OM/2.0/OM_Measurement"/>
 <om:phenomenonTime>
 <gml:TimeInstant gml:id="phenomenonTime_101069">
 <gml:timePosition>2016-01-11T03:57:27.215Z</gml:timePosition>
 </gml:TimeInstant>
 </om:phenomenonTime>
 <om:resultTime xlink:href="#phenomenonTime_101069"/>
 <om:procedure xlink:href="PedestrianCounting1"/>
 <om:observedProperty xlink:href="PeopleCount"/>
 <om:featureOfInterest xlink:href="intersection1" xlink:title="UM"/>
 <om:result xmlns:ns="http://www.opengis.net/gml/3.2"
 uom="PeopleCount" xsi:type="ns:MeasureType">
 123.0
 </om:result>
</om:OM_Observation>

OGC 15-118r1

64 Copyright © 2018 Open Geospatial Consortium

Bibliography

[1] Botts, M. and A. Robin (2014). OGC Implementation Specification: Sensor
Model Language (SensorML) 2.0.0 (12-000). Wayland, MA, USA, Open
Geospatial Consortium Inc.

[2] Bröring, A., C. Stasch, et al. (2012). OGC Implementation Specification: Sensor
Observation Service (SOS) 2.0 (12-006). Wayland, MA, USA, Open Geospatial
Consortium Inc.

[3] Cox, S. (2011). OGC Implementation Specification: Observations and
Measurements (O&M) - XML Implementation 2.0 (10-025r1). Wayland, MA,
USA, Open Geospatial Consortium Inc.

[4] de la Beaujardiere, J. (2006). OGC Implementation Specification: Web Map
Service (WMS) 1.3.0 (06-042). Wayland, MA, USA, Open Geospatial
Consortium Inc.

[5] Echterhoff, J. (2011). OGC Implementation Specification: SWE Service Model
2.0.0 (09-001). Wayland, MA, USA, Open Geospatial Consortium Inc.

[6] ISO TC 211 (2011). ISO 19156:2011 - Geographic information -- Observations
and measurements - International Standard. Geneva, Switzerland, International
Organization for Standardization.

[7] Müller, M. and B. Proß (2015). OGC Implementation Specification: Web
Processing Service (WPS) 2.0.0 (14-065). Wayland, MA, USA, Open Geospatial
Consortium Inc.

[8] Nebert, D., A. Whiteside, et al. (2007). OGC Implementation Specification:
Catalog Services Specification 2.0.2 Corrigendum 2 (07-006r1). Wayland, MA,
USA, Open Geospatial Consortium Inc.

[9] Portele, C. (2012). OGC Implementation Specification: Geography Markup
Language (GML) - Extended Schemas and Encoding Rules (OGC 10-129r1).
Wayland, MA, USA, Open Geospatial Consortium Inc.

[10] Robin, A. (2011). OGC Implementation Specification: SWE Common Data
Model 2.0.0 (08-094r1). Wayland, MA, USA, Open Geospatial Consortium Inc.

[11] Vretanos, P. A. (2014). OGC Implementation Specification: Web Feature Service
(WFS) 2.0.2 (09-025r2). Wayland, MA, USA, Open Geospatial Consortium Inc.

[12] Whiteside, A. and J. Greenwood (2010). OGC Implementation Specification:
Web Services Common 2.0.0 (06-121r9). Wayland, MA, USA, Open Geospatial
Consortium Inc.

OGC 15-118r1

Copyright © 2018 Open Geospatial Consortium 65

	Cover_RemoveText2

