
Open Geospatial Consortium

Submission Date: 2016-02-18

Approval Date: 2016-05-08

Publication Date: 2017-09-13

External identifier of this OGC® document: http://www.opengis.net/doc/IS/3dps/1.0

Internal reference number of this OGC® document: 15-001r4

Version: 1.0

Category: OGC® Implementation Standard

Editors: Benjamin Hagedorn, Simon Thum, Thorsten Reitz, Voker Coors, Ralf Gutbell

OGC® 3D Portrayal Service 1.0

Copyright notice

Copyright © 2015-2017 Open Geospatial Consortium
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/

Warning

This document is an OGC Member approved international standard. This document is available
on a royalty free, non-discriminatory basis. This version is informative. The normative version
is available at:

http://docs.opengeospatial.org/is/15-001r4/15-001r4.html

Recipients of this document are invited to submit, with their comments, notification of any
relevant patent rights of which they are aware and to provide supporting documentation.

Document type: OGC® Standard

Document subtype:

Document stage: Approved for public release

Document language: English

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject
to the terms set forth below, to any person obtaining a copy of this Intellectual Property and any
associated documentation, to deal in the Intellectual Property without restriction (except as set forth
below), including without limitation the rights to implement, use, copy, modify, merge, publish,
distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the
Intellectual Property is furnished to do so, provided that all copyright notices on the intellectual property
are retained intact and that each person to whom the Intellectual Property is furnished agrees to the terms
of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in
addition to the above copyright notice, a notice that the Intellectual Property includes modifications that
have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS
UNDER ANY PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT
OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS
NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL
PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE
INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE
INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO
EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL
PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR
ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER
ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH THE
IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS
INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual
Property together with all copies in any form. The license will also terminate if you fail to comply with
any term or condition of this Agreement. Except as provided in the following sentence, no such
termination of this license shall require the termination of any third party end-user sublicense to the
Intellectual Property which is in force as of the date of notice of such termination. In addition, should the
Intellectual Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole
opinion be likely to infringe, any patent, copyright, trademark or other right of a third party, you agree
that LICENSOR, in its sole discretion, may terminate this license without any compensation or liability to
you, your licensees or any other party. You agree upon termination of any kind to destroy or cause to be
destroyed the Intellectual Property together with all copies in any form, whether held by you or by any
third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or
part of the Intellectual Property shall not be used in advertising or otherwise to promote the sale, use or
other dealings in this Intellectual Property without prior written authorization of LICENSOR or such
copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize you or any
third party to use certification marks, trademarks or other special designations to indicate compliance with
any LICENSOR standards or specifications. This Agreement is governed by the laws of the
Commonwealth of Massachusetts. The application to this Agreement of the United Nations Convention
on Contracts for the International Sale of Goods is hereby expressly excluded. In the event any provision
of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be modified so as
to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force and
effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or
remedies available to it.

Table of Contents
1. Scope . 6

2. Conformance . 7

3. References . 8

4. Terms and Definitions. 10

5. Conventions . 11

5.1. Use of the terms "3D scene" and "3D view" . 11

5.2. Abbreviated terms . 11

5.3. UML notation. 11

5.4. Data dictionary tables . 11

5.5. Namespace prefix conventions . 12

6. 3D Portrayal Service Overview. 13

6.1. Overview . 13

6.2. Historical background. 13

6.3. Design of this standard . 14

6.4. Interoperability scenarios . 14

7. 3DPS Service Model . 16

7.1. 3DPS operation types . 16

7.2. 3DPS service handling . 17

7.3. Coordinate systems . 18

7.3.1. Coordinate reference systems . 18

7.3.2. Image coordinate system . 19

8. 3DPS Core . 20

8.1. Shared aspects. 20

8.1.1. Position2D data structure . 20

8.1.2. Position3D data structure . 20

8.2. GetCapabilities operation (mandatory). 21

8.2.1. GetCapabilities request . 21

8.2.2. GetCapabilities response . 22

8.2.3. GetCapabilities exceptions . 36

8.3. Binding for the GetCapabilities operation . 36

8.3.1. GetCapabilities request HTTP/GET + KVP encoding . 36

8.3.2. GetCapabilities response XML encoding (mandatory). 36

8.4. AbstractGetPortrayal operation (abstract) . 39

8.4.1. AbstractGetPortrayal request . 40

8.4.2. AbstractGetPortrayal response . 44

8.4.3. AbstractGetPortrayal exceptions . 44

8.5. GetResourceById operation (optional) . 45

8.5.1. Obtaining ResourceId URIs. 45

8.5.2. Categories of resources . 46

8.5.3. GetResourceById request . 46

8.5.4. GetResourceById response . 47

8.5.5. GetResourceById exceptions . 47

9. Scene Extension . 48

9.1. Introduction. 48

9.2. Modifications to service capabilities . 48

9.2.1. Modifications to ServiceIdentification. 48

9.2.2. Modifications to OperationsMetadata . 49

9.2.3. Additions to Layer structure . 49

9.2.4. AvailableOffset . 50

9.2.5. AvailableOffsetMode . 50

9.2.6. Additions to PortrayalCapabilities structure . 51

9.3. GetScene request . 52

9.3.1. Offset . 54

9.3.2. OffsetMode . 54

9.3.3. Format . 54

9.3.4. Viewpoints . 54

9.3.5. Delivery Options . 54

9.4. GetScene response . 55

9.5. GetScene exceptions. 56

9.6. Binding Extensions for the GetScene operation . 56

9.6.1. HTTP/GET + KVP binding . 56

10. View Extension . 58

10.1. Introduction. 58

10.2. Concepts . 58

10.2.1. Image layer concept . 58

10.2.2. 3D projections . 61

10.2.3. Extensibility . 66

10.3. Modifications to service capabilities . 66

10.3.1. Modifications to ServiceIdentification . 66

10.3.2. Modifications to OperationsMetadata . 66

10.3.3. Additions to Layer structure . 66

10.3.4. Additions to PortrayalCapabilities structure . 67

10.4. GetView request . 69

10.4.1. BackgroundColor . 71

10.4.2. TransparentBackground . 71

10.4.3. Portrayals . 72

10.4.4. Exceptions . 73

10.5. GetView response. 73

10.5.1. MIME multipart response. 74

10.6. GetView exceptions . 74

10.7. Binding Extensions for the GetView operation. 74

10.7.1. HTTP/GET + KVP binding . 74

10.7.2. GetView request XML encoding (optional). 79

11. Info Extension. 81

11.1. Introduction. 81

11.2. Modifications to service capabilities . 81

11.2.1. Modifications to ServiceIdentification . 81

11.2.2. Modifications to OperationsMetadata . 82

11.2.3. Additions to Layer structure . 83

11.3. AbstractGetFeatureInfo request . 84

11.3.1. Layers . 85

11.3.2. FeatureCount . 85

11.3.3. IdOnly . 85

11.3.4. Format . 85

11.3.5. Exceptions . 85

11.4. GetFeatureInfoByRay request . 86

11.4.1. Width, Height. 86

11.4.2. Projection . 86

11.4.3. ImagePosition . 87

11.5. GetFeatureInfoByPosition request . 87

11.5.1. CRS . 87

11.5.2. Coordinate . 87

11.5.3. Tolerance . 88

11.6. GetFeatureInfoByObjectId request . 88

11.6.1. ObjectID. 88

11.6.2. FeatureCount . 88

11.7. GetFeatureInfo response . 89

11.7.1. FeatureInfo encoding . 90

11.7.2. GetFeatureInfo exceptions . 92

11.7.3. Exception codes. 92

12. Annex A: Conformance Class Abstract Test Suite (normative) . 94

12.1. Conformance class: core . 94

12.2. Tests for requirements of the core requirements class . 94

12.3. Conformance class: scene. 95

12.4. Tests for requirements of the scene requirements class . 95

12.5. Conformance class: view . 97

12.6. Tests for requirements of the view requirements class . 97

12.7. Conformance class: info . 98

12.8. Tests for requirements of the info requirements class . 98

13. Annex B: XML Schemas (normative). 101

13.1. core schema. 101

13.2. scene schema. 106

13.3. view schema . 106

13.4. info schema . 109

14. Annex C: Tiling in scene-based 3D portrayal (informative) . 112

15. Annex D: X3D (informative) . 113

15.1. REFERENCES . 114

16. Annex E: Revision History . 116

i. Abstract

The 3D Portrayal Service Standard is a geospatial 3D content delivery implementation specification.
It focuses on what is to be delivered in which manner to enable interoperable 3D portrayal.

It does not define or endorse particular content transmission formats, but specifies how geospatial
3D content is described, selected, and delivered. It does not prescribe how aforementioned content
is to be organized and represented, but provides a framework to determine whether 3D content is
interoperable at the content representation level. More details are available in Design of this
standard.

ii. Keywords

The following are keywords to be used by search engines and document catalogues.

ogcdoc, OGC document, 3D, portrayal, service, geospatial, specification

iii. Preface This document is based on two OGC discussion papers (WPVS: OGC 09-166r2, W3DS:
OGC 09-104r3), which each detail a service interface to support 3D portrayal of geodata, but using
two different mechanisms (image and scene-graph based). Due to considerable overlap, it was
decided that, for standardization, their technical content should be merged as far as possible. This
document represents the efforts by the 3D Portrayal Service SWG to merge the two proposals,
retaining these two different mechanisms while providing a foundation for other potential
mechanisms.

This document does not suggest any updates to the OGC Abstract Specification.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any or all
such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any relevant
patent claims or other intellectual property rights of which they may be aware that might be infringed
by any implementation of the standard set forth in this document, and to provide supporting
documentation.

iv. Submitting organizations

The following organizations submitted this Document to the Open Geospatial Consortium (OGC):

• Fraunhofer Gesellschaft

• Hasso Plattner Institute at the University of Potsdam

• Esri R&D Center Zürich

v. Submitters

All questions regarding this submission should be directed to the editor or the submitters:

Table 1. Editors

4

Name Affiliation

Benjamin Hagedorn Hasso Plattner Institute at the University of Potsdam

Simon Thum Fraunhofer IGD

Thorsten Reitz Esri R&D Center Zürich

Volker Coors Fraunhofer IGD, HFT Stuttgart

Ralf Gutbell Fraunhofer IGD

Table 2. Additional contributors

Name Affiliation

Arne Schilling virtualcitySYSTEMS

Dieter Hildebrandt Hasso Plattner Institute at the University of Potsdam

Jan Klimke Hasso Plattner Institute at the University of Potsdam

Jürgen Döllner Hasso Plattner Institute at the University of Potsdam

Mike McCann Monterey Bay Aquarium Research Institute

Tatjana Kutzner Technical University of Munich

Thomas H. Kolbe Technical University of Munich

5

Chapter 1. Scope
This OGC® document specifies a standard service interface for web-based 3D geodata portrayal
supporting a) delivery of geometric 3D scene data and b) server-side 3D scene rendering. It is
applicable to 3D geodata stores that want to target a range of portrayal clients, or to 3D geodata
portrayal clients that want to portray geodata from a range of compatible sources.

This standard intends to enable semantic interoperability in geospatial 3D portrayal services. That
is, it represents 3D geodata with potentially rich metadata and accompanying description of the
technical requirements for portrayal thereof on a given client. It addresses use cases such as 3D
portrayal of geodata and requesting additional information at the user’s discretion. More details
about possible interoperability scenarios may be obtained from the 3DPIE report [OGC 12-075].

This standard does not define or endorse a transmission format for scenes or images. It is therefore
not sufficient to enable interoperability, but to determine automatically if interoperation is
possible.

6

Chapter 2. Conformance
This OGC interface standard targets at 3DPS 1.0 implementations, i.e., 3D portrayal services and
clients.

Requirements for 4 standardization target types are considered:

• Conformance class core, of http://www.opengis.net/spec/3DPS/1.0/conf-class/core, with a single
pertaining requirements class, core, of http://www.opengis.net/spec/3DPS/1.0/req/core.

• Conformance class scene, of http://www.opengis.net/spec/3DPS/1.0/conf-class/scene, with a single
pertaining requirements class, scene, of http://www.opengis.net/spec/3DPS/1.0/req/scene.

• Conformance class view, of http://www.opengis.net/spec/3DPS/1.0/conf-class/view, with a single
pertaining requirements class, view, of http://www.opengis.net/spec/3DPS/1.0/req/view.

• Conformance class info, of http://www.opengis.net/spec/3DPS/1.0/conf-class/info, with a single
pertaining requirements class, info, of http://www.opengis.net/spec/3DPS/1.0/req/info.

Conformance with this standard shall be checked using all the relevant tests specified in Annex A
(normative) of this document. The framework, concepts, and methodology for testing, and the
criteria to be achieved to claim conformance are specified in the OGC Compliance Testing Policies
and Procedures and the OGC Compliance Testing web site.

In order to conform to this OGC® interface standard, a software implementation shall implement
the core conformance class and one or more of the scene and view conformance classes. It is also
possible for a yet unspecified extension to be considered sufficient for conformance as are the
scene and view extensions. Such an extension shall be accepted as an addendum to this standard,
facilitate 3D portrayal and provide at least one conformance class that is dependent on the core
conformance class.

Requirements URIs and conformance test URIs defined in this document are relative to
http://www.opengis.net/spec/3DPS/1.0.

It has been brought to the SWGs attention that the omission of a baseline format has consequences
for the testability of the service specification and hence, the definition of conformance. Namely, in
the case of the scene conformance class, no single delivery format may be used to define or test
conformance. However this mirrors the situation in the 3D modeling world and seems unlikely to
change soon. Thus, an abstract statement of conformance to the 3D portrayal service standard is to
be seen as a first step to make it easier to interoperate. A particular service instance may not work
with a given client due to differences in data encoding, format provisions employed, or a focus on
the image-based or scene-based conformance classes. However, a client implementation will be
able to tell reliably whether and how interoperation with a given service instance is possible.

7

http://www.opengis.net/spec/3DPS/1.0/conf-class/core
http://www.opengis.net/spec/3DPS/1.0/req/core
http://www.opengis.net/spec/3DPS/1.0/conf-class/scene
http://www.opengis.net/spec/3DPS/1.0/req/scene
http://www.opengis.net/spec/3DPS/1.0/conf-class/view
http://www.opengis.net/spec/3DPS/1.0/req/view
http://www.opengis.net/spec/3DPS/1.0/conf-class/info
http://www.opengis.net/spec/3DPS/1.0/req/info
http://www.opengis.net/spec/3DPS/1.0

Chapter 3. References
The following normative documents contain provisions that, through reference in this text,
constitute provisions of this document. For dated references, subsequent amendments to, or
revisions of, any of these publications do not apply. For undated references, the latest edition of the
normative document referred to applies.

OGC 04-046r3

Open Geospatial Consortium, OGC 04-046r3, The OpenGIS Abstract Specification, Topic 2: Spatial
Referencing by Coordinates, August 2004

OGC CityGML

Open Geospatial Consortium, OGC OGC 12-019, OGC City Geography Markup Language (CityGML)
Encoding Standard, Version: 2.0.0

OWS Common

Open Geospatial Consortium, OGC 06-121r9, OGC Web Services Common Standard, version 2.0

W3C XML 1.0

W3C Recommendation, Extensible Markup Language (XML) 1.0 (Fifth Edition),
http://www.w3.org/TR/xml

IETF RFC 1738

IETF RFC 1738, Uniform Resource Locators (URL)

IETF RFC 2046

N. Fred, N. Borenstein, Multipurpose Internet Mail Extension (MIME) Part Two: Media Types,
November 1998

ISO/IEC 14977

ISO/IEC 14977:1996(E), Extended BNF

ISO 19117

ISO 19117:2012, Geographic information — Portrayal

RFC 3986

IETF RFC 3986, Uniform Resource Identifier (URI): Generic Syntax

RFC 2046

IETF RFC 2046, N. Freed, N. Borenstein, Multipurpose Internet Mail Extensions (MIME) Part Two:
Media Types, Nov. 1998

OGC KML

OGC 07-147r2, OGC KML, 2008

In addition to this document, this standard includes several normative XML Schema files. Following
approval of this document, these schemas will be posted online at the http://schemas.opengis.net.
These XML Schema files are also bundled with the present document. In the event of a discrepancy

8

http://www.w3.org/TR/xml
http://schemas.opengis.net

between the bundled and online versions of the XML Schema files, the online files shall be
considered authoritative.

9

Chapter 4. Terms and Definitions
For the purpose of this document, the terms and definitions given in the above references apply. In
addition, the following terms and definitions apply.

Portrayal

presentation of information to humans.
NOTE: This term is defined by [ISO 19117].

Scene, 3D scene

geometry and texture data that is to be portrayed.

View, 3D view

rendering result generated by projecting a 3D scene to a view plane.

10

Chapter 5. Conventions
This section provides details of conventions used in the document.

5.1. Use of the terms "3D scene" and "3D view"
The term "3D scene" refers to a digital representation of geographic data that is mainly composed
from 3D graphics data (mainly geometry and texture data), which is also often referred to as 3D
display elements.

The term "3D view" refers to a visual representation of a 3D scene that was created by a 3D
rendering system and can be directly perceived by humans.

5.2. Abbreviated terms
The following symbols and abbreviated are used in this standard.

3DPIE

3D Portrayal Interoperability Experiment (see [OGC 12-075])

3DPS

3D Portrayal Service

CS

Coordinate System

W3DS

Web 3D Service

WSC

OGC Web Services Common

WVS

Web View Service

5.3. UML notation
UML static structure diagrams appearing in this specification are used as described in Subclause 5.2
of [OWS Common].

5.4. Data dictionary tables
The UML model data dictionary is specified herein in a series of tables. The contents of the columns
in these tables are described in Subclause 5.5 of [OWS Common]. The contents of these data
dictionary tables are normative, including any table footnotes.

The "Names" column of these tables contains two names for each included parameter or

11

association (or data structure): The first name is the UML model attribute or association role name.
The second name uses the XML encoding capitalization specified in Subclause 11.6.2 of [OWS
Common].

For the reader’s convenience, table rows describing inherited components are shaded.

5.5. Namespace prefix conventions
The following namespaces are used in this document (Table 3). The prefix abbreviations constitute
conventions used here, but are not normative. The namespaces to which the prefixes refer are
normative, however.

Table 3. Namespaces used in this document

Prefix Namespace URI Description

xsd http://www.w3.org/2001/XMLSchema XML Schema namespace

core http://www.opengis.net/3dps/1.0/core 3DPS Version 1.0 Core

scene http://www.opengis.net/3dps/1.0/scene 3DPS Version 1.0 Scene Extension

view http://www.opengis.net/3dps/1.0/view 3DPS Version 1.0 View Extension

info http://www.opengis.net/3dps/1.0/info 3DPS Version 1.0 Info Extension

12

http://www.w3.org/2001/XMLSchema
http://www.opengis.net/3dps/1.0/core
http://www.opengis.net/3dps/1.0/scene
http://www.opengis.net/3dps/1.0/view
http://www.opengis.net/3dps/1.0/info

Chapter 6. 3D Portrayal Service Overview

6.1. Overview
The 3D Portrayal Service (3DPS) is an OGC service implementation specification targeting the
delivery of 3D portrayals in an interoperable fashion. When client and service(s) involved share a
common set of capabilities, it becomes possible to view and analyze 3D geoinformation from
diverse sources in a combined manner.

Major use cases include navigating in the represented scene, retrieving feature information, and
analyzing detailed information like simulation results or other 3D spatial information provided
using the service instances. See the OGC Spatial Data on the Web Use Cases & Requirements
document [OGC 15-074 R1] for additional use cases for 3D on the Web.

6.2. Historical background
In the OGC Military Pilot Project, Phase 1, (MPP-1) three-dimensional portrayal was defined as a
new operation — GetView — on a Web Map Service (WMS). As three-dimensional portrayal adds
complexities that are out of scope of a WMS, a new Web Terrain Service (WTS) had been defined
[OGC 01-061]. Later on, the different aspects and use cases of interoperable 3D geovisualization
were discussed in detail by (Altmaier & Kolbe, 2003) within the context of the Geospatial Data
Infrastructure North Rhine Westphalia (GDI NRW) in Germany. With the Web 3D Service (W3DS)
they proposed a new web service delivering 3D computer graphics models. Two versions of the
W3DS were published as OGC discussion papers [OGC 05-019] and [OGC 09-104r1]. OGC-internally,
the development of 3D portrayal capabilities led to the proposal of a Web Perspective View Service
(WPVS, serving rendered image data), which was generalized and published as OGC Web View
Service (WVS) discussion paper [OGC 09-166r2].

Subsequently, five service implementations of at least one of both standards, together with 5 clients
(both tailored and general-purpose), were subjected to the 3D Portrayal Interoperability
Experiment (3DPIE, final report published as [OGC 12-075]). It emerged that several interoperability
scenarios combining both approaches were indeed possible, and that the differences between
W3DS and WVS were significant but mostly reconcilable.

However, some weaknesses also emerged. For example, the problem of scaling to bigger geodata
was tackled with the well-known tiling technique. Tiling does not easily translate to geometric 3D
data, and, as a consequence, there is no one-size-fits-all solution. Despite this, the proposals put
forward a limited but complex solution.

The 3DPS combines the essential parts of the proposed W3DS and WVS into one common interface.
It intentionally does not address some features, notably tiling, to the degree previous approaches
did. However the 3D Portrayal Service SWG recognizes the potential of tiling and welcomes work
on standardization to support tiling orthogonally to this standard.

In particular, any kind of approach that is based on spatial index transmission format (as could be
negotiated and delivered through a 3DPS implementation) will likely work well in a 3DPS service
implementation and benefit from the rich metadata provided through OGC Web Services Common

13

[OWS Common], the portable negotiation of format-specific idiosyncrasies, and the seamless
transition to server-side rendering offered by 3DPS. Several such formats are standardized, e.g.,
[OGC KML]. At the time of this writing, multiple efforts to set industry standards that address the
problem of tiling and indexing 3D geodata are also under way.

6.3. Design of this standard
For this first version of a 3D Portrayal Service standard, the goal was to find a unifying core of 3D
portrayal tasks that can be standardized as [OWS Common] based requests in that they provide
potential for interoperability, do not limit the possible implementations too much, and retain
wiggle room for upcoming technologies. It is considered in-scope to define how instances of this
specification may establish interoperability in their particular case, but it is considered out-of-scope
to define a single baseline for interoperability.

For example, it was clear that new approaches that stream images from live 3D renderings as
moving pictures or that provide 3D scenes as a stream of geometries could not be expected to be
amenable to standardization efforts at the time.

At the same time, refinement of 3D scenes or 3D representations beyond approaches based on
multiple representations were not in the base discussion papers and had to be left out due to a lack
of agreement on the semantics of such approaches.

3D portrayal, in particular the scalable sort, poses specific challenges to the design of the
underlying data storage and query capabilities, which are partly subject to this standard and partly
have to be left to implementations, simply as there is no stable standardization target yet. Thus, it is
expected that the number of actually interoperable implementations will lag behind adoption
numbers, especially for the scene-based approach (as represented by the scene conformance class).
Image-based portrayal, on the other hand, is easier to standardize due to well-established image
formats.

This background is reflected in the standard by means of several design decisions. The standard

• defines two portrayal modes with a common core to stay adaptable to the moving target of 3D
content representation and distribution technologies,

• re-uses existing format capabilities for delay-loading scene parts (tiling and streaming),

• defines many semantics as open lists of capabilities to provide flexible semantics,

• favors the possibility of determining interoperability of given implementations over decisions,
which would actually enhance interoperability, to leave enough room for future innovation.

While these are relatively defensive design goals, the SWG believes that this set represents a good
way to a useful first interface supporting interoperable service-based 3D portrayal. The goal of
3DPS is to enable actual interoperation, i.e., to automate matching 3D portrayal clients to services.

6.4. Interoperability scenarios
The interoperability scenarios that this standard enables mirror those demonstrated in the 3DPIE
experiments (see OGC 12-075), namely [1: Experiment 1 is out of scope]:

14

• Linking W3DS and WVS (experiment 2),

• Integration of multiple W3DS in a 3D client (experiment 3),

• W3DS/WVS for browser-based portrayal (experiment 4),

• W3DS/WVS for mobile portrayal (experiment 5).

However, it is expected that more interoperability scenarios are enabled through this 3DPS
standard.

15

Chapter 7. 3DPS Service Model

7.1. 3DPS operation types
The specified 3D Portrayal Service (3DPS) provides geometric 3D graphics data and/or rendered
images. Thus, it supports two fundamental 3D portrayal schemes and associated client/server
configurations.

The 3D Portrayal Service interface specifies the following operations that may be invoked by a 3DPS
client and may be performed by a 3DPS service.

a. GetCapabilities — This operation allows a client to request information about a 3DPS server’s
capabilities and scene information offered.

b. AbstractGetPortrayal (abstract) — This is the abstract operation that forms the basis of the 3DPS
operations GetScene and GetView and provides common parameters.

c. GetResourceById — This operation allows a client to request arbitrary resources, as indicated by
the service.

d. GetScene — This operation allows a client to retrieve a 3D scene represented as 3D geometries
and texture data, organized as a scene graph and/or spatial index.

e. GetView — This operation allows a client to retrieve a 3D view of a scene represented as images.

f. AbstractGetFeatureInfo (abstract) — This is the abstract operation that forms the basis for
specific GetFeatureInfo operations that allow a client to retrieve more information about
portrayed features.

g. GetFeatureInfoByRay — This operation allows a client to retrieve information about features
that are selected based on a virtual ray.

h. GetFeatureInfoByPosition — This operation allows a client to retrieve information about features
that are selected based on location.

i. GetFeatureInfoByObjectId — This operation allows a client to retrieve information about
features that are selected based on object identifiers.

16

Figure 1. 3DPS UML class diagram

Figure 1 illustrates the 3DPS structure and interface as a UML class diagram. It shows that the 3DPS
inherits the GetCapabilities operation from the [OWS Common] and adds the 3DPS operations.

A client should first, during a sequence of 3DPS requests, issue a GetCapabilities request to the
service to obtain an up-to-date listing of supported operations and available data. To retrieve a
vector representation or image representation of the data, a client will then perform one or more
GetScene or GetView requests. If the client needs non-portrayal information (attributes) of one of
the features, it will issue one of the GetFeatureInfo operations, depending on service capabilities
and the information that is available to the client.

7.2. 3DPS service handling
The 3DPS operation requests except the GetCapabilities operation make use of the abstract
core:RequestBase structure, which mimics the abstract RequestBase data structure from [OWS
Common] Subclauses 9.2.

Accordingly, all 3DPS requests except GetCapabilities shall include, in addition to operation-specific
parameters, the parameters described in Figure 2 and specified in Table 4:

• For all 3DPS requests, the request service parameter shall have a fixed value of ``3DPS''.

• For all 3DPS requests, the request version parameter shall have a fixed value of ``1.0''.

• The Extensions component is a hook for further request parameters defined, e.g., by 3DPS
extension standards.

17

Figure 2. 3DPS core:RequestBase UML class diagram

Table 4. Components of core:RequestBase structure

Names Definition Data type and value Multiplicity and
use

service
service

Service type identifier string, not empty
Value is fixed to ``3DPS''

One (mandatory)

request
request

Operation name string, not empty
Value is operation name

One (mandatory)

version
version

Standard version for
operation

string, not empty
Value is fixed to ``1.0''

One (mandatory)

extensions
Extensions

Container for any kind of
ancillary information to be
sent from client to server

Extensions type Zero or one
(optional)

7.3. Coordinate systems

7.3.1. Coordinate reference systems

This standard uses several coordinate reference system (CRS) types, see Table 5. The two most
important CRS types are the request CRS and the layer CRS. There might also be a bounding box CRS
that is different from the request CRS.

Since CRS transformation and conversion is not necessarily feasible for some given client, it is
recommended for an implementation to ensure a common CRS exists that is available on every
layer.

Table 5. 3DPS Coordinate reference system types

Name Definition

Request CRS The CRS specified after the CRS parameter of a request. It is being considered
for viewpoints and bounding boxes in request parameters and as the primary
CRS in the response.

Bounding box CRS A bounding box may be given with an explicit CRS specification. The bounding
box CRS is either the explicitly specified CRS of the bounding box, or the
request CRS.

Layer CRS The layer CRS is (one of) the CRS in which a particular layer is represented.
Depending on service capabilities, data from the layer may not be requested if
the request CRS is not one of the layer CRSs.

Viewpoint CRS The viewpoint CRS is the CRS in which a viewpoint is defined.

Vertical datum

18

In addition, the issue of a vertical datum is important for 3D portrayal because it defines the third
dimension. At the time of this writing, there is no agreement on how to specify a vertical datum in
service interfaces, so the vertical datum is implied in many cases. To enable communicating the
vertical datum assumed by a service instance, each layer that holds height data shall advertise the
vertical datum as a layer CRS. This CRS is then implied in requests querying the layer.

If no such CRS is specified, the vertical datum should be considered unknown, with undefined
behavior potentially ensuing.

NOTE
This approach is subject to change as agreement is reached on handling vertical CRS
in geospatial services.

7.3.2. Image coordinate system

An image CS is a coordinate system (CS) for a 3D view produced by a 3DPS supporting the View
Extension. A 3D view is a rectangular grid of pixels. The image CS has a horizontal axis denoted x,
and a vertical axis denoted y. x and y shall have only nonnegative integer values. The origin (x,y) =
(0,0) is the pixel in the upper left corner of the image; x increases to the right and y increases
downward. The image CS corresponds to the Map CS described in the WMS specification [OGC 06-
042] clause 6.7.2.

The Width and Height parameters used in several 3DPS operation requests correspond to x and y as
follows:

• Width denotes the size of the 3D view image in pixels along the x axis (that is, Width-1 is the
maximum value of x).

• Height denotes the size of the 3D view image in pixels along the y axis (that is, Height-1 is the
maximum value of y).

19

Chapter 8. 3DPS Core

8.1. Shared aspects

8.1.1. Position2D data structure

As defined in Figure 3 and Table 6, Position2D consists of two coordinates. If any of these
coordinates is missing or empty, a 3DPS shall raise an InvalidParameterValue exception with the
name of the parent element (in case of XML request) or the containing parameter (in case of
HTTP/GET request).

Figure 3. 3DPS core:Position2D and core:Position3D UML class diagram

Table 6. Components of core:Position2D structure

Names Definition Data type and value Multiplicity and
use

x1
X1

First position coordinate Double Origin and units
specified by request CRS

One (mandatory)

x2
X2

Second position coordinate Double
Origin and units specified
by request CRS

One (mandatory)

8.1.2. Position3D data structure

As defined in Figure 3 and Table 7, Position3D consists of three coordinates. If any of these
coordinates is missing or empty, a 3DPS service shall raise an InvalidParameterValue with the
name of the parent element (in case of XML request) or the containing parameter (in case of
HTTP/GET request).

Table 7. Components of core:Position3D structure

Names Definition Data type and value Multiplicity and
use

x1
X1

First position coordinate Double
Origin and units specified
by request CRS

One (mandatory)

x2
X2

Second position coordinate Double
Origin and units specified
by request CRS

One (mandatory)

20

Names Definition Data type and value Multiplicity and
use

x3
X3

Third position coordinate Double
Origin and units specified
by request CRS

One (mandatory)

8.2. GetCapabilities operation (mandatory)
A GetCapabilities operation, as required by [OWS Common], allows a 3DPS client to retrieve service
and scene metadata offered by a 3DPS server.

8.2.1. GetCapabilities request

Requirement 1: http://www.opengis.net/spec/3DPS/1.0/req/service/core/getcapabilities/
request/structure

A core:GetCapabilities request shall consist of a core:GetCapabilities data structure that
is derived from ows:GetCapabilities as specified in [OWS Common] Subclause 7.2.1 and
that is refined as specified in Figure 4 and Table 8.

Figure 4. 3DPS core:GetCapabilities request UML class diagram

Table 8. Modified components of core:GetCapabilities request

Names Definition Data type and value Multiplicity and
use

service
service

Service type identifier string, not empty
Value is fixed to ``3DPS''

One (mandatory)

Sections parameter

According to [OWS Common] Subclause 7.3.3., the Sections parameter value shall contain an

21

http://www.opengis.net/spec/3DPS/1.0/req/service/core/getcapabilities/request/structure
http://www.opengis.net/spec/3DPS/1.0/req/service/core/getcapabilities/request/structure

unordered list of zero or more names of the elements within a service metadata document that
shall be returned. Table 9 lists the sections name values that are allowed; it includes the section
name values specified by [OWS Common] and adds the PortrayalCapabilities Section.

Table 9. Meaning of allowed section name values

Section name Meaning

Service Identification Return ServiceIdentification element in service metadata document

ServiceProvider Return ServiceProvider metadata element in service metadata
document

OperationsMetadata Return OperationsMetadata element in service metadata document

Languages Return Languages metadata element in service metadata document

Contents Return Contents metadata element in service metadata document

PortrayalCapabilities Return PortrayalCapabilities metadata element in service metadata
document

All Return complete service metadata document, containing all elements

8.2.2. GetCapabilities response

A service metadata document shall be the normal response to a client performing a GetCapabilities
request, and shall contain metadata appropriate to the specific 3DPS server. It includes metadata as
defined in Subclause 7.4.2 of [OWS Common], a Contents section, and a PortrayalCapabilities
section.

Requirement 2: http://www.opengis.net/spec/3DPS/1.0/req/service/core/getcapabilities/
response/structure

The response to a successful GetCapabilities request shall consist of a core:Capabilities
structure as defined in Figure 5, Table 10, Figure 6, Table 11, Table 12, Figure 7, and
Table 14.

Figure 5. 3DPS core:Capabilities UML class diagram

22

http://www.opengis.net/spec/3DPS/1.0/req/service/core/getcapabilities/response/structure
http://www.opengis.net/spec/3DPS/1.0/req/service/core/getcapabilities/response/structure

Table 10. Components of core:Capabilities structure

Names Definition Data type and value Multiplicity and
use

version
Version

Specification version for
operation

string
Value fixed to ``1.0''

One (mandatory)

updateSequence
UpdateSequence

Service metadata
document version, value is
increased whenever any
change is made in
complete service metadata
document, see [OWS
Common]

string type, not empty Zero or one
(optional)

serviceIdentificatio
n
ServiceIdentificatio
n

Metadata about this
specific service. The
schema of this section shall
be the same as for all
OWSs, as specified in
Subclause 7.4.4 and
owsServiceIdentification.x
sd of [OWS Common].

ows:ServiceIdentification
as defined in [OWS
Common]

as defined in [OWS
Common]

serviceProvider
ServiceProvider

Metadata about the
organization operating this
service. The schema of this
section shall be the same
for all OWSs, as specified
in Subclause 7.4.5 and
owsServiceProvider.xsd of
[OWS Common].

ows:ServiceProvider type
as defined in [OWS
Common]

as defined in [OWS
Common]

operationsMetadata
OperationsMetadat
a

Metadata about the
operations specified by this
service and implemented
by this service, including
the URLs for operation
requests. The basic
contents and organization
of this section shall be the
same as for all OWSs, as
specified in Subclause 7.4.6
and
owsOperationsMetadata.xs
d of [OWS Common].

ows:OperationsMetadata
type as defined in [OWS
Common]

as defined in [OWS
Common]

languages
Languages

Languages supported by
this server.

ows:Languages type as
specified in [OWS
Common], Subsection 7.4.9

as defined in [OWS
Common]

contents
Contents

Information about the 3D
data content offered
through this service

Contents type, see Table 11 Zero or one
(optional)

23

Names Definition Data type and value Multiplicity and
use

portrayalCapabilitie
s
PortrayalCapabilitie
s

Information about the
portrayal capabilities of
this service

PortrayalCapabilities type,
see Table 14

Zero or one
(optional)

Contents section contents

The Contents section of the service metadata document provides details about data layers that can
be requested for portrayal. Its structure is derived from the OWSContents definition in [OWS
Common], Subsection 7.4.8, as described in Figure 6, Table 11 and Table 12. The
ows:DatasetSummary is replaced by core:Layer.

Figure 6. 3DPS core:Contents and core:Layer and UML class diagram

Table 11. Components of core:Contents structure

Names Definition Data type and value Multiplicity and
use

layer
Layer

Metadata describing a
dataset available from this
service

Layer type, see Table 12 Zero or more
(optional)
Include as many as
layers shall be
advertised

Table 12. Components of core:Layer structure

24

Names Definition Data type and value Multiplicity and
use

title
Title

Title of this dataset, human
readable

ows:LanguageString, see
[OWS Common] 10.7

Zero or more
(optional)

abstract
Abstract

Brief narrative description
of this dataset

ows:LanguageString, see
[OWS Common] 10.7

Zero or more
(optional)

keywords
Keywords

Unordered list of one or
more commonly used or
formalized word(s) or
phrase(s) used to describe
this dataset

ows:Keywords type in
ows19115subset.xsd

Zero or more
(optional)
One for each
keyword authority
used

wgs84BoundingBox
WGS84BoundingBo
x

Minimum bounding
rectangle surrounding
dataset, specified in WGS84
CRS with decimal degrees
and longitude before
latitude a,c

ows:WGS84BoundingBox,
see [OWS Common], Table
34

Zero or more
(optional)
Include when
useful or needed

identifier
Identifier

Unambiguous identifier of
this dataset, unique for this
server

ows:Code type, not empty One (mandatory)

boundingBox
BoundingBox

Minimum bounding
rectangle surrounding
dataset, in available CRS b,c

ows:BoundingBox, see
[OWS Common], Table 33

Zero or more
(optional)
Include when
relevant and
available, ideally at
least one per
AvailableCRS

availableCRS
AvailableCRS

Coordinate reference
system in which data from
this layer may be
requested

URI One or more
(mandatory)

availableLOD
AvailableLOD

LOD value that holds data
for this layer.

string Zero or more
(optional)

availableStyle
AvailableStyle

Specification of style
available for this layer

Style type, see Table 13 Zero or more
(optional)

deliveryOption
DeliveryOption

Identifier of delivery
option available when
requesting the layer.

string Zero or more
(optional)
One for each
supported delivery
option

metadata
Metadata

Reference to more
metadata about this layer

ows:Metadata, see [OWS
Common], Table 35

Zero or more
(optional)
Include when
useful

extensions
Extensions

Hook for layer extensions Extensions type Zero or one
(optional)

25

Names Definition Data type and value Multiplicity and
use

layer
Layer

Metadata describing one
subsidiary dataset
available from this serviced

Layer type, see this table Zero or more
(optional)
One for each
subsidiary layer

a This WGS84BoundingBox can be approximate, but should be as precise as practical. If multiple
WGS84 bounding boxes are included, this shall be interpreted as the union of the areas of these
bounding boxes.
b More generally, definition of the horizontal, vertical, and temporal extent of this specific dataset.
Zero or more BoundingBoxes are allowed in addition to one or more WGS84BoundingBoxes to
allow more precise specification of the Dataset area in AvailableCRSs.
c If multiple bounding boxes are included having the same CRS, they shall be interpreted as their
spatial union.
d Replaces the DatasetSummary component in ows:DatasetSummary

The components of the core:Layer are described and discussed in the following.

AvailableCRS

Every Layer is available in one or more layer coordinate reference systems. In order to indicate
which layer CRSs are available, every named Layer shall have at least one AvailableCRS element
that is either stated explicitly or inherited from a parent Layer. The root Layer shall include a
sequence of zero or more AvailableCRS elements listing all CRSs that are common to all subsidiary
layers. A child layer may optionally add to the list inherited from a parent layer. Any duplication
shall be ignored by clients.

When a Layer is available in several coordinate reference systems, the list of available CRS values
shall be represented as a sequence of AvailableCRS elements, each of which contains only a single
CRS name.

EXAMPLE: <AvailableCRS>CRS:84</AvailableCRS> <AvailableCRS>EPSG:26718</AvailableCRS>.

AvailableLOD

A layer may contain objects in several representations to choose from. Thus, each layer may
advertise a set of ``levels of detail'' (LODs) present on that layer by referring to the LOD names as
defined in the AvailableLODScheme elements of the PortrayalCapabilities section. See
AvailableLODScheme for more information on LODs.

AvailableStyle

For each Layer, a server may advertise layer-specific styles (service styles), which modify the
appearance of feature representations retrieved through the 3DPS AbstractGetPortrayal operation.
For each layer-specific style, it provides an AvailableStyle element of type Style, which is listed in
Table 13.

Each Style consists of an Identifier, a Title which may be presented to the user, an Abstract and a
list of Keywords. The Abstract should give a brief narrative description of how the visualization is
influenced by the style. The style identifier is used in an AbstractGetPortrayal request’s Style
parameter.

26

If more than one available style is advertised for one Layer, the server shall declare one of those
AvailableStyle items as default by settings its IsDefault property to ``true''. If only a single style is
available for one layer, that style does not need to be advertised by the server and is implicitly used
as the layer’s default style.

Table 13. Components of core:Style structure

Names Definition Data type and value Multiplicity and
use

title
Title

Title of this style, human
readable

ows:LanguageString, see
[OWS Common] 10.7

Zero ore more
(optional)

abstract
Abstract

Brief narrative description
of this style

ows:LanguageString, see
[OWS Common] 10.7

Zero or more
(optional)

keywords
Keywords

Unordered list of one or
more commonly used or
formalized word(s) or
phrase(s) used to describe
this style

ows:Keywords type in
ows19115subset.xsd

Zero or more
(optional)
One for each
keyword authority
used

identifier
Identifier

Unambiguous identifier of
this style, unique for this
server

ows:Code type, not empty One (mandatory)

isDefault
IsDefault

This style is used when no
style is specified for this
layer in the request

Boolean type Zero or one
(optional)
Default is ``false''

DeliveryOption

For a layer several delivery options may be available a client can choose from. Thus, each layer may
advertise a set of delivery options present on that layer by referring to the delivery option names as
defined in the DeliveryOption elements of the PortrayalCapabilities section; see DeliveryOption.

Extensions

The Extensions component is provided as a canonical place for extensions to define layer-specific
metadata and can be used, e.g., by 3DPS extension modules as a hook for operation-specific layer
extensions.

PortrayalCapabilities section contents

The PortrayalCapabilities structure is specified in Figure 7 and Table 14, Table 15, Table 16, Table
17, Table 18, Table 19.

27

Figure 7. 3DPS core:PortrayalCapabilities UML class diagram

Table 14. Components of core:PortrayalCapabilities structure

Names Definition Data type and value Multipli
city and
use

overallStyle
OverallStyle

Overall style supported OverallStyle type, see Table
15

Zero or
more
(optiona
l)

background
Background

Metadata describing
backgrounds that can be
used for portrayal
generation

Background type, see Table
18

Zero or
more
(optiona
l)

availableSpatialSelection
AvailableSpatialSelection

Spatial selection method
supported

string, type+ Value is one of
those in Table 20. Default is
``overlaps''

Zero or
more
(optiona
l)
Include
when
other
than
``overla
p''
method
are
offered

28

Names Definition Data type and value Multipli
city and
use

availableLODScheme
AvailableLODScheme

LOD scheme supported LODScheme type, see Table
16

Zero or
more
(optiona
l)

availableLODSelection
AvailableLODSelection

LOD selection method
supported

string,
Value is one of those in
Table 22. Default is
``equals''

Zero or
more
(optiona
l)
Include
when
other
than
``equals
''
method
is
offered

deliveryOption
DeliveryOption

Delivery option supported DeliveryOption type, see
Table 17

Zero or
more
(optiona
l)

viewpointHint
ViewpointHint

Metadata describing a
meaningful viewpoint

ViewpointHint type, see
Table 19

Zero or
more
(optiona
l)

supportsBoundingBoxConve
rsion
SupportsBoundingBoxConve
rsion

Flag indicating if the Server
can convert non-advertised
BoundingBoxes

Boolean type (true/false) Zero or
one
(optiona
l)

extensions
Extensions

Hook for portrayal
capability extensions

Extensions type Zero or
one
(optiona
l)

Table 15. Components of core:OverallStyle structure

Names Definition Data type and value Multiplicity and
use

title
Title

Title of the overall style,
normally used for display
to a human

ows:LanguageString, see
[OWS Common] 10.7

Zero or more
(mandatory)

abstract
Abstract

Brief narrative description
of this overall style,
normally available for
display to a human

ows:LanguageString, see
[OWS Common] 10.7

Zero or more
(optional)

29

Names Definition Data type and value Multiplicity and
use

keywords
Keywords

Unordered list of one or
more commonly used or
formalized word(s) or
phrase(s) used to describe
this overall style

ows:Keywords type in
ows19115subset.xsd

Zero or more
(optional)
One for each
keyword authority
used

identifier
Identifier

Unambiguous identifier of
this overall style, unique
for this server

ows:Code type, not empty One (mandatory)

Table 16. Components of core:LODScheme structure

Names Definition Data type and value Multiplicity and
use

title
Title

The name used to refer to
the LOD scheme

ows:LanguageString, see
[OWS Common] 10.7

Zero or more
(optional)

abstract
Abstract

Brief narrative description
of this LOD scheme,
normally available for
display to a human

ows:LanguageString, see
[OWS Common] 10.7

Zero or more
(optional)

keywords
Keywords

Unordered list of one or
more commonly used or
formalized word(s) or
phrase(s) used to describe
this LOD scheme

ows:Keywords type in
ows19115subset.xsd

Zero or more
(optional)
One for each
keyword authority
used

identifier
Identifier

Unambiguous identifier of
this LOD scheme

ows:Code type, not empty One (mandatory)

lod
LOD

A level name as described
in AvailableLODScheme

QName One or more
(mandatory)

Table 17. Components of core:DeliveryOption structure

Names Definition Data type and value Multiplicity and
use

title
Title

Title of this delivery
option, can be used for
display to human

ows:LanguageString, see
[OWS Common] 10.7

Zero or more
(optional)

abstract
Abstract

Brief narrative description
of this delivery option,
normally available for
display to a human

ows:LanguageString, see
[OWS Common] 10.7

Zero or more
(optional)

keywords
Keywords

Unordered list of one or
more commonly used or
formalized word(s) or
phrase(s) used to describe
this delivery option

ows:Keywords type in
ows19115subset.xsd

Zero or more
(optional)
One for each
keyword authority
used

30

Names Definition Data type and value Multiplicity and
use

identifier
Identifier

Unambiguous identifier or
name of this delivery
option, unique for this
server

ows:Code type, not empty One (mandatory)

format
Format

A format which supports
the delivery option. Empty
means no restriction

ows:MimeType Zero or more
(optional)

Table 18. Components of core:Background structure

Names Definition Data type and value Multiplicity and
use

title
Title

Title of the background,
normally used for display
to a human

ows:LanguageString, see
[OWS Common] 10.7

Zero or more
(optional)

abstract
Abstract

Brief narrative description
of this background,
normally available for
display to a human

ows:LanguageString, see
[OWS Common] 10.7

Zero or more
(optional)

keywords
Keywords

Unordered list of one or
more commonly used or
formalized word(s) or
phrase(s) used to describe
this background

ows:Keywords type in
ows19115subset.xsd

Zero or more
(optional)
One for each
keyword authority
used

identifier
Identifier

Unambiguous identifier of
this background, unique
for this 3DPS server

ows:Code type, not empty One (mandatory)

Table 19. Components of core:ViewpointHint structure

Names Definition Data type and value Multiplicity and
use

title
Title

Title of this viewpoint,
human readable

ows:LanguageString, see
[OWS Common] 10.7

Zero or more
(optional)

abstract
Abstract

Brief narrative description
of this viewpoint

ows:LanguageString, see
[OWS Common] 10.7

Zero or more
(optional)

keywords
Keywords

Unordered list of one or
more commonly used or
formalized word(s) or
phrase(s) used to describe
this viewpoint

ows:Keywords type in
ows19115subset.xsd

Zero or more
(optional)
One for each
keyword authority
used

poc
POC

Position of the virtual
camera (point of camera)

Position3D type, see Table
7

One (mandatory)

poi
POI

Position of point of interest Position3D type, see Table
7

One (mandatory)

31

Names Definition Data type and value Multiplicity and
use

up
Up

Position of a point forming
the vector pointing in
``up'' direction by
subtracting the POC

Position3D type, see Table
7

Zero or one
(optional)
Include when
camera roll desired

AvailableSpatialSelection

For selecting features to be part of a portrayal response, a server has to check the spatial relation
between the request BoundingBox and the feature’s 3D geometry.

In Table 20 the three possible spatial selection methods defined by this standard are named and
described.

The default selection method is ``overlaps'', which includes any feature that is partly or entirely
contained in the request BoundingBox into service response.

Table 20. Spatial selection methods

Name Description

overlaps A feature is only selected, if its 3D geometry is contained in or intersects with
the given BoundingBox. This is the default mode.

contains_center A feature is only selected, if its ``center point'' is contained or intersects with
the BoundingBox. How the center point is computed by the service is not
defined, but it shall be inside the convex hull of the feature.

cut This spatial selection method shall not return features or parts of features that
lie outside of the BoundingBox. Features that are completely contained in the
BoundingBox shall be returned unmodified. Features that intersect with the
borders of the BoundingBox shall be split and parts that lie outside shall be cut
away. The parts that lie inside of the BoundingBox shall be selected for
response. Multiple requests with adjacent BoundingBoxes shall generate
feature geometries that fit seamlessly together without gaps or cracks.

OverallStyle

An OverallStyle is usually a reference to a scene or view embellishment that is not treated as being
bound to a specific layer, e.g., an adornment of certain features, or a special shading to be used to
portray a data overlay in the 3D scene or view. For simple clients, such embellishments may result
in a much improved user experience, or show additional information. However, such offerings are
often implementation-specific and may be harmful to service interoperability.

A server advertises available these portrayal-wide styles through a number of OverallStyle
elements, each containing an OverallStyle name, which can be used by a client within a portrayal
request.

Background

The Background parameter contains an available background as described in Table 18. If no
Background is advertised, the server uses an internal default background for portrayal.

32

AvailableLODScheme

The AvailableLODScheme element describes a set of Levels of Detail (LODs) that can be provided by
the advertised Layers (see Figure 6).

In this document, the term LOD refers to the concept of discrete Levels of Detail, meaning that any
given geographic feature may have multiple geometric representations. These representations can
be considered independent of each other, for the purpose of portrayal.

For instance, a building may be represented a) as simple box geometry, b) as a geometry with
additional façade textures, c) as a group containing elements for walls, roofs, windows, doors, or d)
even as a group containing the complete room interior. Each of these representations describes the
same geographic feature and can therefore be stored in the same layer. However, it is not necessary
that all LODs are consistently available for each feature. A client may assemble its scene graph from
subsets of the same layer having different LODs and thus adjust the workload placed on the
graphics pipeline.

Usually LODs are organized in one or more LOD schemes, which describe attributes of the
individual LODs so a client is able to process and use them adequately. Each LOD scheme (of which
there may be one or more) contains a title, abstract, unique identifier, and a full order of LOD
definitions, which carry the actual numeric value or magnitude of the LODs.

This LOD value is a URI consisting of the LOD scheme’s identifier value as prefix and the actual
numeric value, separated by a colon, e.g., ``CityGML:4'' for CityGML indoor building models. The
prefix indicates the spectrum of possible values and how these values should be interpreted and,
conventionally, is fixed per AvailableLODScheme node.

The exact meaning of individual LOD levels remains out of scope for the purposes of this standard.
However, the order should, on average, reflect the complexity of members of a certain level of
detail definition.

The numeric value indicates the actual level'' of detail on that ordinal scale. The scale values
have a total order, which is connex (a > b or a < b or a = b) and transitive (a > b > c implies

a > c), but no interval or metric may be derived from the values. For instance, CityGML:4'' is
more accurate than ``CityGML:2'', but not necessarily twice as accurate.

The order of the LOD nodes within the AvailableLODScheme node is not defined, but it is
recommended to use an order increasing by the LODValue, from lower to higher levels of detail.

Table 21 lists LOD names associated with well-known LOD schemes whose meaning should be
preserved, i.e., no conflicting names or semantics should be introduced by a service
implementation.

NOTE
The commonly understood LOD definitions of CityGML can be found in [OGC
CityGML] Subclause 6.2, and are specified in Table 21.

Table 21. Well-known LOD names

LOD names Description

CityGML:0, CityGML:1,
CityGML:2, CityGML:3, CityGML:4

[OGC CityGML] Subclause 6.2

33

LOD names Description

INSPIRE:0, INSPIRE:1, INSPIRE:2,
INSPIRE:3, INSPIRE:4

same as CityGML

AvailableLODSelection

The AvailableLODSelection components list the LOD selection methods that a client can apply for
telling the service how to interpret the requested LOD value for each layer.

Four selection methods are predefined that fit the well-known LOD-based multiple representations
approach. These predefined LOD selection methods are defined in Table 22. A specific 3DPS server
may define additional LOD selection methods.

Table 22. 3DPS LOD selection methods

Name Description

equals For each feature, the available LODs are compared with the requested LOD. If
the requested LOD is available for this feature, then the according model shall
be selected and included for portrayal response. If the requested LOD is not
available for this feature, then the feature shall not be included in the request.
This is the default selection method.

equals_or_smaller This method causes the service to compile a scene from multiple available
LODs. Only one LOD for each feature shall be selected. If the requested LOD is
available for this feature, then the according model shall be selected and
included in the scene. If the requested LOD is not available for this feature,
then the service shall select the next lower LOD available for this feature. If no
LOD equal or lower than the requested LOD is available for this feature, then
this feature shall be omitted in the scene altogether. Cumulative LOD models,
e.g., building blocks representing multiple buildings as a single geometry, shall
be handled so that no overlaps with higher LODs occur. If a higher LOD for
one building included in the block is available, then the block shall be omitted.

combined This method causes the service to include multiple LODs for each feature in
the scene, if available. The service shall include for each feature all LODs
equal or smaller than the requested LOD value in the AbstactGetPortrayal
request.

equals_or_similar The service shall make a best effort to find models closely matching the
requested LOD. Completeness of the result, if possible free of doubly
represented features, is the quality criterion for this strategy.

DeliveryOption

A delivery option is an optional mode that affects how the implementation serves its data. For
example, whether the service sends a full textured building or some down-scaled variant that looks
alike from a distance may be controlled using a delivery option.

The goal of delivery options is to be able to broker the best-performing exchange mode between a
client and a service instance without causing malfunction due to interoperability issues. If an
implementation has special features geared towards specific clients, e.g., an optimized streaming
option for terrain data, it should use the delivery option as a marker on the layers that support the
feature. Clients are expected to possess a positive list of delivery options they support, and to only
ask for delivery options they are ready to support.

34

Delivery options are a way to safeguard tweaks, optimizations, and other means necessary for
performance but detrimental to interoperability. Delivery options help to establish interoperability
and improve performance in more complex settings, e.g., involving multiple service instances, by
making communications more transparent, predictable, and thus dependable.

Interoperability considerations:

Similar to the Format parameter, availability of delivery options may affect the potential for
interoperability with a given client. Unlike the Format parameter, delivery options may co-exist in a
single request, they may or may not not be subject to interoperability considerations, and finally,
delivery options do not require (but benefit from) a shared understanding of the available options.
Accordingly, some delivery options may be sensible only in specific clients, uncommon format
profiles, or depend on other specific circumstances that a client does not know about.

Clients should match the service-provided list of delivery options with an internal list of desired
mechanisms, and generally refrain from requesting unsupported or unwanted delivery options.
Delivery options may have an impact on interoperability, but there seems to be no general way of
communicating the pitfalls or benefits associated with them. This standard therefore just specifies
name and identifiers, which hopefully serve to safely determine the (absence of) potential for
interoperability.

Discussion:

The intent behind delivery options is to provide safe means of establishing interoperability. That is,
it should be known in advance and not through user-observed or silent failure, if a client may
communicate and portray properly data from a set or subset of service instances. MIME types,
formats, and their profiles alone are not well-suited to capture the fast-paced evolution in 3D
portrayal in the detail required to establish interoperability. In lieu of a commonly accepted
mechanism to do that, delivery options enable safeguarding the development of improved
mechanisms so that interoperability can be safely determined by machines.

The same goals could be achieved by using MIME types and parameters (e.g., RFC 2231), but while
MIME has interoperability as a goal, performance or bandwidth are not generally seen as a concern
for MIME. Moreover, many of the practically working approaches encompass several formats,
making the reliance on MIME types artificial.

Given these considerations, the ``delivery options'' approach seems a much more workable way of
addressing the current diversity of mechanisms. Interoperability may be assessed by humans and
can be implanted (in a backwards-compatible manner) into clients because each delivery option is
associated with multiple URIs treated as aliases, some of which may serve backwards compatibility.
Thus, implementers of this standard may safely evolve their designs as long as they make breaking
changes visible through delivery options.

ViewpointHint

A ViewpointHint parameter describes a meaningful camera specification, which a client can use to
request a specific portrayal. For this, it suggests meaningful combinations of camera position (POC),
camera look-to (POI), camera up-direction (UP) as well as a field of view angle in x-direction (FOVX).

SupportsBoundingBoxConversion

The SupportsBoundingBoxConversion parameter is ``true'' if the service instance supports

35

conversion of bounding boxes from the request CRS into appropriate layer CRS for query.

Extensions

The Extensions component is provided as a canonical place for extensions and can be used, e.g., as
a hook for operation-specific service metadata by 3DPS extension modules.

8.2.3. GetCapabilities exceptions

If a 3DPS service encounters an error while performing a GetCapabilities operation, it shall return
an exception report message as specified in [OWS Common] Subclause 7.4.1.

8.3. Binding for the GetCapabilities operation

8.3.1. GetCapabilities request HTTP/GET + KVP encoding

The GetCapabilities request HTTP/GET + KVP encoding is as specified in Subsection 7.2.3 of [OWS
Common].

EXAMPLE: A GetCapabilities request may look like this:

http://www.example.com/3dps?SERVICE=3DPS&REQUEST=GetCapabilities&
ACCEPTVERSIONS=1.0

8.3.2. GetCapabilities response XML encoding (mandatory)

As desired by [OWS Common], a 3DPS server shall offer the service metadata at least in XML
format. An XML schema fragment for a service metadata document extends OWS CapabilitiesType
in owsCommon.xsd of [OWS Common] as refined for the 3DPS, and may be reviewed under Annex
B: XML Schemas (normative).

As indicated, this XML schema document uses the owsServiceIdentification.xsd,
owsServiceProvider.xsd, and owsOperationsMetadata.xsd schemas specified in [OWS Common]. It
also uses XML schema documents for the Contents and PortrayalCapabilities sections of the service
metadata document, which are split per target namespace as listed in Table 23. All these XML
schema documents contain documentation of the meaning of each element, attribute, and type, and
this documentation shall be considered normative as specified in Subclause 11.6.3 of [OWS
Common].

Table 23. Namespaces and their schema files

Namespace URI Schema file

http://www.opengis.net/3dps/1.0/core 3dps-core.xsd

http://www.opengis.net/3dps/1.0/scene 3dps-scene.xsd

http://www.opengis.net/3dps/1.0/view 3dps-view.xsd

http://www.opengis.net/3dps/1.0/info 3dps-info.xsd

EXAMPLE: The response to a valid GetCapabilities request may look like this:

36

http://www.example.com/3dps?SERVICE=3DPS&REQUEST=GetCapabilities&ACCEPTVERSIONS=1.0
http://www.example.com/3dps?SERVICE=3DPS&REQUEST=GetCapabilities&ACCEPTVERSIONS=1.0
http://www.opengis.net/3dps/1.0/core
http://www.opengis.net/3dps/1.0/scene
http://www.opengis.net/3dps/1.0/view
http://www.opengis.net/3dps/1.0/info

<?xml version="1.0" encoding="UTF-8"?>
<Capabilities xmlns="http://www.opengis.net/3dps/1.0/core"
 xmlns:core="http://www.opengis.net/3dps/1.0/core"
 xmlns:ows="http://www.opengis.net/ows/2.0"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/3dps/1.0 ../../../schema/3dpResp.xsd"
version="1.0">
 <ows:ServiceIdentification>
 <ows:Title>3DPS Example Implementation</ows:Title>
 <ows:Abstract>A 3DPS Example</ows:Abstract>
 <ows:Keywords>
 <ows:Keyword>3D</ows:Keyword>
 <ows:Keyword>Portrayal</ows:Keyword>
 </ows:Keywords>
 <ows:ServiceType codeSpace="OGC">3DPS</ows:ServiceType>
 <ows:ServiceTypeVersion>1.0</ows:ServiceTypeVersion>
 <ows:Profile>
http://www.opengis.net/spec/3DPS/1.0/extension/scene/1.0</ows:Profile>
 <ows:Profile>http://www.opengis.net/spec/3DPS/1.0/extension/view/1.0</ows:Profile>
 <ows:Fees>none</ows:Fees>
 <ows:AccessConstraints>none</ows:AccessConstraints>
 </ows:ServiceIdentification>
 <ows:ServiceProvider>
 <ows:ProviderName>Fraunhofer IGD</ows:ProviderName>
 <ows:ServiceContact>
 <ows:PositionName>Geographic Information Management</ows:PositionName>
 <ows:ContactInfo>
 <ows:Address>
 <ows:ElectronicMailAddress>geo@igd.fraunhofer.de</ows:ElectronicMailAddress>
 </ows:Address>
 </ows:ContactInfo>
 </ows:ServiceContact>
 </ows:ServiceProvider>
 <ows:OperationsMetadata>
 <ows:Operation name="GetScene">
 <ows:DCP>
 <ows:HTTP>
 <ows:Get xlink:href="http://example.com/3dps?" />
 </ows:HTTP>
 </ows:DCP>
 <ows:Parameter name="Exceptions">
 <ows:AllowedValues>
 <ows:Value>text/xml</ows:Value>
 <ows:Value>application/vnd.ogc.se_xml</ows:Value>
 <ows:Value>application/vnd.ogc.se_blank</ows:Value>
 <ows:Value>blank</ows:Value>
 <ows:Value>errormarker</ows:Value> <!-- custom extension -->
 </ows:AllowedValues>
 <ows:DefaultValue>text/xml</ows:DefaultValue>
 </ows:Parameter>

37

 <!-- ... more parameters -->
 </ows:Operation>
 <ows:Operation name="GetView">
 <ows:DCP>
 <ows:HTTP>
 <ows:Get xlink:href="http://example.com/ogc/3dps?" />
 </ows:HTTP>
 </ows:DCP>
 <ows:Parameter name="Exceptions">
 <ows:AllowedValues>
 <ows:Value>text/xml</ows:Value>
 <ows:Value>application/vnd.ogc.se_xml</ows:Value>
 <ows:Value>application/vnd.ogc.se_inimage</ows:Value>
 <ows:Value>application/vnd.ogc.se_blank</ows:Value>
 <ows:Value>blank</ows:Value>
 </ows:AllowedValues>
 <ows:DefaultValue>text/xml</ows:DefaultValue>
 </ows:Parameter>
 <!-- ... more parameters -->
 </ows:Operation>
 <!-- ... more operations -->
 </ows:OperationsMetadata>
 <Contents>
 <Layer>
 <ows:Title>Buildings</ows:Title>
 <ows:Identifier>buildingLayer</ows:Identifier>
 <ows:BoundingBox>
 <ows:LowerCorner>...</ows:LowerCorner>
 <ows:UpperCorner>...</ows:UpperCorner>
 </ows:BoundingBox>
 <AvailableCRS>EPSG:4327</AvailableCRS>
 <AvailableLOD>CityGML:1</AvailableLOD>
 <AvailableLOD>CityGML:2</AvailableLOD>
 <AvailableStyle>
 <ows:Identifier>textured</ows:Identifier>
 </AvailableStyle>
 <Extensions>
 <!-- ... e.g., extension-specific data -->
 </Extensions>
 </Layer>
 <!-- ... more layers -->
 </Contents>
 <PortrayalCapabilities>
 <OverallStyle>
 <ows:Title>Wireframe</ows:Title>
 <ows:Identifier>wireframe</ows:Identifier>
 </OverallStyle>
 <OverallStyle>
 <ows:Title>Dynamic sky</ows:Title>
 <ows:Identifier>dynamicSky</ows:Identifier>
 </OverallStyle>

38

 <AvailableLODScheme>
 <ows:Title>CityGML</ows:Title>
 <ows:Identifier codeSpace="http://www.opengis.net/3dps/1.0">
CityGML</ows:Identifier>
 <LOD>CityGML:0</LOD>
 <LOD>CityGML:1</LOD>
 <LOD>CityGML:2</LOD>
 <LOD>CityGML:3</LOD>
 <LOD>CityGML:4</LOD>
 </AvailableLODScheme>
 <AvailableLODScheme>
 <ows:Title>customScheme</ows:Title>
 <ows:Identifier codeSpace="http://example.com">
ExampleCustomLODs</ows:Identifier>
 <LOD>boundingBox</LOD>
 <LOD>simplified</LOD>
 <LOD>full</LOD>
 </AvailableLODScheme>
 <DeliveryOption>
 <ows:Title>TextureAtlas</ows:Title>

<ows:Identifier>http://www.opengis.net/spec/3DPS/1.0/concept/service/scene/deliveryOpt
ions/textureAtlas</ows:Identifier>
 <Format>image/png</Format>
 <Format>image/jpg</Format>
 </DeliverOption>
 <ViewpointHint>
 <ows:Title>View from top</ows:Title>
 <POC><X1>13.4097</X1><X2>52.5177</X2><X3>220.0</X3></POC>
 <POI><X1>13.4087</X1><X2>52.5202</X2><X3>120.0</X3></POI>
 <UP><X1>0.0</X1><X2>0.0</X2><X3>1.0</X3></UP>
 </ViewpointHint>
 <SupportsBoundingBoxConversion>true</SupportsBoundingBoxConversion>
 <Extensions>
 <!-- ... operation-specific extensions -->
 </Extensions>
 </PortrayalCapabilities>
</Capabilities>

8.4. AbstractGetPortrayal operation (abstract)
The abstract core:AbstractGetPortrayal operation specifies the commonality between the two
represented portrayal approaches, 3D scene-graph delivery and rendered image delivery. The
actual operations (serving a particular approach) shall be derived from the AbstractGetPortrayal
operation by adding required parameters and specifying those not concretized in the
AbstractGetPortrayal operation.

This operation is not to be implemented directly.

39

8.4.1. AbstractGetPortrayal request

A core:AbstractGetPortrayal request shall consist of a core:AbstractGetPortrayal structure as
defined in Figure 8 and Table 24. This applies only to actual implementations of the request.

Figure 8. 3DPS core:AbstractGetPortrayal request UML class diagram

Table 24. Components of core:AbstractGetPortayal request

Names Definition Data type and value Multiplicity and
use

service
Service

Service type identifier string
fixed to ``3DPS''

One (mandatory)

request
Request

Operation name string
Value to be specified by
concrete operations

One (mandatory)

version
Version

Standard version for
operation

string, not empty
Value is fixed to ``1.0''

One (mandatory)

extensions
Extensions

Extension hook Extensions Zero or one
(optional)

crs
CRS

Primary CRS anyURI as defined in [OWS
Common] Subclause 10.3

One (mandatory)

boundingBox
BoundingBox

Bounding box corners
surrounding selected
dataset, in CRS units.

BoundingBox data
structure, see [OWS
Common] Subclause 10.2.

Zero or more
(optional)

40

Names Definition Data type and value Multiplicity and
use

spatialSelection
SpatialSelection

Indicates method of
selecting objects with
BoundingBox

string, not empty. Values
are specified in service
metadata, see Table 20.
Default is ``overlaps''

Zero or one
(optional)
Include if selection
method other than
``overlaps'' is
required

layers
Layers

List of layer identifiers to
retrieve the data from

StringList, not empty
Values are specified in
service metadata

One (mandatory)

styles
Styles

List of one style identifier
per requested layer

StringList, not empty
Values are specified in
service metadata

Zero or one
(optional)

background
Background

Identifier of desired
background

string, not empty
Values are specified in
service metadata

Zero or one
(optional)
Include when
background desired

lods
LODs

List of one LOD identifier
per requested layer

StringList, not empty
Values are specified in
service metadata

Zero or one
(optional)

lodSelection
LODSelection

Indicates method for
selecting LODs

string, not empty
Values are specified in
service metadata, see Table
22. Default is ``equals''

Zero or one
(optional)
Include if method
other than
``equals'' is
required

overallStyles
OverallStyles

Identifier(s) of desired
overall scene style(s)

StringList, not empty
Values are specified in
service metadata

Zero or one
(optional) Include
when overall styling
desired

deliveryOptions
DeliveryOptions

Identifier(s) of delivery
options requested by the
client

StringList, not empty
Values are specified in
service metadata

Zero or more
(optional)

exceptions
Exceptions

Format of exceptions ows:MimeType, see [OWS
Common] Subclause 10.5

Zero or one
(optional)

CRS

The CRS parameter defines the coordinate reference system that is considered to be in effect for the
operation request and response. In particular, it is considered as the CRS for the bounding box if
that is not specified explicitly. See Coordinate systems for details.

The parameter value for the coordinate reference system (CRS) is defined in Subclause 10.3 of [OWS
Common] and [OGC 04-046r3]. If a 2D CRS is used, the height reference is taken from the layer’s
vertical datum.

41

BoundingBox

The BoundingBox parameter allows a Client to request a particular spatial subset.

It defines the coordinates of the bounding box corners in at least 2 dimensions and, optionally, the
CRS in which they are specified. The CRS given is relevant only to the query and defaults to the one
given with the CRS parameter.

If a 3DPS service supports a bounding box CRS other than the available Layer CRS, this capability
should be advertised in the metadata document by setting the SupportsBoundingBoxConversion.

The BoundingBox data structure is defined in [OWS Common] Subclause 10.2. The units, ordering,
and direction of increment of the x1, x2, and x3 axes are as defined by its CRS element.

If the BoundingBox values are not defined for the given CRS (e.g., latitudes greater than 90 degrees
in CRS:84), the service shall treat this as an error. If a request contains an invalid bounding box
(e.g., one whose minimum x1 is greater than the maximum x1) the service shall treat this as an
error. No axis wrap-around behavior should be assumed.

SpatialSelection

The SpatialSelection parameter defines the method that a server shall use to check the spatial
relation between the requested BoungindBox and the features' 3D geometries. Available methods
for spatial selection are advertised in the server’s metadata document. See
AvailableSpatialSelection for more details.

Layers

The Layers parameter specifies a comma-separated list of data layers to be displayed. The concept
of the layer is a metaphor to the traditional (two-dimensional) cartography, with which geo objects
of different classes were drawn on different transparent foils resulting in a map with an overall
view of these foils.

The definition of a layer for the purposes of this standard is lent from WMS: ``basic unit of
geographic information that may be requested as a map from a service''.

The Layer parameter contains a list of layer identifiers that specifies the layer to include. The order
in which the layers are listed in the Layers parameter does not influence the visual appearance of
the generated scene or view. However, the order of the lists in the (optional) Styles and LOD
parameters shall correspond with the Layers list. Each entry in the Layers list shall refer to a layer
identifier as described in the service metadata.

The Layers parameter can be empty, which means not to constrain the output to any specific set of
layers. A service receiving an empty Layers parameter could a) serve all data available, b) serve
only a subset of the data, or c) serve no data at all.

Styles

The Styles parameter lists the visual styles in which each layer is to be rendered. There is a one-to-
one correspondence between the values in the Layers parameter and the values in the Styles
parameter: The Styles list shall contain one Style identifier for each Layer in the Layers parameter;

42

the order shall be the same. Thus, the Styles list shall have the same length as the Layers list.

A client may request the default style for a layer using an empty value. If several layers are
requested with a mixture of named and default styles, the Styles parameter shall include empty
values between commas (as in STYLES=style1,,style2,,'') to represent default Styles. If all
layers are to be shown using their default styles, a request shall contain either multiple

comma-separated values one for each layer (as in STYLES=,,,'') or a single empty value
(``STYLES='').

Each data layer in the list of Layers is rendered using the corresponding style in the same position
in the Styles list. Each style name shall be one that was defined for or inherited by this layer as
specified in the service metadata. (In other words, the client may not request a layer in a style that
was only defined for a different layer.)

If a service advertises several styles for a layer and the client sends a request for the default style,
the choice of which style to use as default shall be indicated in the service metadata, see Table 13.

Currently, the 3DPS only supports service-defined styles, advertised by identifier in the service
metadata. Thus, styling of features may not be transparent to a client. Therefore, it is recommended
to include a detailed style description in the service metadata. In case of user styles included in the
GetScene request, the client has full control over the styling.

EXAMPLE: Layers=dtm,vegetation,buildings&Styles=orthophoto,,textured

Background

The Background parameter tells the server which background to apply to creating the 3D portrayal.
It contains of the background identifiers advertised in the service metadata document.

LODs

The parameter LODs specifies for each layer which Level of Detail (LOD) to choose from when
accessing the service’s data repository. The parameter value is a list of names referring to the
available LODs as specified in the service metadata’s PortrayalCapabilities and Contents sections,
see AvailableLODScheme.

The length of the LODs list shall be equal to the length of the list in the Layers parameter. The order
of the LODs list entries shall correlate with the Layers list entries, meaning that LOD n shall be
selected from layer n.

LODSelection

In conjunction with the LOD parameter, the LODSelection parameter may be used for telling the
service how to interpret the LOD value for each requested layer. The selection methods offered by a
3DPS service are advertised in the service metadata. See AvailableLODSelection for more details on
LOD selection methods.

OverallStyles

The OverallStyles parameter specifies, which styles to apply to the overall 3D scene or view. It
contains a list of identifiers of OverallStyles as described in the service metadata; see OverallStyle.

43

If no OverallStyles are specified in the service request, a service implementation should not apply
or deliver any. If the combination of styles requested cannot be delivered, the service should make
an effort to prioritize the first-mentioned overall styles, or return an exception.

DeliveryOptions

The DeliveryOptions parameter specifies a list of delivery options requested by the client. The client
is expected to be prepared to properly handle each of the delivery options. See DeliveryOption for
details.

This list is to be interpreted as a request, i.e., failure to use a specific delivery option is not to be
treated as an error. The reason is that it is hard to foresee, properly describe, and implement the
constraints that might hold for a particular delivery option, e.g., a terrain streaming method might
have legal constraints depending on the effective legislation. It is not, in full generality, possible for
a client to only ask for delivery options that will work for the service instance. A more mundane
case might be a delivery option that is only available for a part of the layers being requested.
Treating this as an error would preclude forming such a request.

However, requesting a delivery option that is not advertised for any of the layers being requested,
or not at all, should be treated as an error with the DeliveryOptionNotDefined exception code.

Exceptions

The Exceptions parameter specifies the behavior of the service upon detecting an error, e.g., an
invalid request or an internal server error. The default value is ``text/xml''. The value shall be one
of the MIME types offered in the service metadata document.

If the Exceptions parameter is set to blank'' (i.e., the character sequence comprised of `b', `l',
`a', `n', `k'), then the service shall, upon detecting an error, return a document of the MIME

type specified in the format parameter whose content is uniformly off'', i.e., a response document
with a valid structure according to the requested format and with no or no useful content. This
silent mode is useful if the client is not prepared to process service exceptions. For example, the
client may be a generic client that understands the format expected but not OGC exception reports.

Accordingly, the service may issue an HTTP status code of 200 (OK) or 204 (no content) instead of an
error code (see AbstractGetPortrayal exceptions).

Extensions

The Extensions parameter carries ancillary informatino to be sent from client to server.

8.4.2. AbstractGetPortrayal response

The AbstractGetPortrayal response shall be specified by actual implementations of this abstract
operation without restrictions by the abstract operation.

8.4.3. AbstractGetPortrayal exceptions

If a 3DPS service encounters an error while performing a concrete AbstractGetPortrayal operation,
it shall return an exception report message as specified in Clause 8 of [OWS Common].

44

In case of an incorrect request or an intermittent error while generating or delivering the response,
the response shall be supplied in the requested exception format (i.e., the request parameter
Exception) by the service. The rules of the underlying DCP are to be observed, in particular the
HTTP status code and MIME type should be set according to the exception.

All exception codes defined in [OWS Common] remain valid. The exception codes listed in Table 25
are defined for more specific cases.

Table 25. Additional AbstractGetPortrayal exceptions

exceptionCode value Meaning of code locator value

StyleNotDefined an unadvertised Style is requested the style name

BackgroundNotDefined an unadvertised Background is
requested

the background name

DeliveryOptionNotDefined an unadvertised DeliveryOption is
requested

the delivery option
name

LODNotDefined an unadvertised LOD name is
requested

the LOD name

LODNotApplicable an unsuitable LOD name is
requested

the LOD name

8.5. GetResourceById operation (optional)
Optionally, a 3DPS implementation may offer a GetResourceById operation to deliver resources
deemed necessary for operation. The operation follows the blueprint given in [OWS Common]
Subclause 9.3, subsequently the ``base GetResourceByID operation''. [2: Following the notion that
'Id' is an abbreviation not an acronym, the preferred casing in this document is 'GetResourceById'
not 'GetResourceByID' and 'ResourceId' not 'ResourceID', respectively.]

A typical reason to implement GetResourceById is streaming, i.e., delay-loading pre-computed parts
of the data on offer to support interactive users exploring the data. Other types of resources could
be textures, geospatial indexes, or parts of a web application to access the service.

There is no obligation to route such resources through a GetResourceById operation, however, it
might be preferable for deployment reasons, e.g., to control (re-)generation of resources or to state
their origin in sensitive scenarios.

8.5.1. Obtaining ResourceId URIs

There are several ways in which resource identifiers may be obtained, which in principle can be
direct or indirect. Direct refers to the specification of a URI suitable to submit as the ResourceId.
Indirect refers to the specification of a URL that constitutes a valid GetResourceById operation
request when resolved and executed.

The only direct way of obtaining resource identifiers is as part of a layer’s metadata. It should be
noted that, since the output format is required, the direct specification only makes sense when the
OutputFormat parameter is also specified.

45

Indirect resource identifiers may be obtained as URIs embedded in GetCapabilities, GetScene or any
other 3DPS operation response, including HTTP redirects where permissible.

No service instance should expect a client to come up with or modify resource identifiers by itself.

8.5.2. Categories of resources

The GetResourceById operation may respond to requests with a variety of resource categories, and
this operation does not impose a limit on the categories. However, as called for in the base
GetResourceByID operation, it lists typical categories and associated MIME types. An
implementation may deliver other resource categories as it sees fit.

Table 26. Examples of resource categories as delivered by the GetResourceById operation.

Type Example use Example MIME type(s)

Images 3D views or textures image/png, image/jpeg

Indexes Geospatial indexes application/vnd.google-earth.kml+xml,
model/x3d+xml

Geodata 2D/3D geospatial data, tiles or
else

application/vnd.google-earth.kml+xml,
model/x3d+xml

8.5.3. GetResourceById request

The GetResourceById request strictly follows the base GetResourceByID request with changes and
clarifications listed here.

Requirement 3: http://www.opengis.net/spec/3DPS/1.0/req/service/core/
getResourceById/request

A core:GetResourceById request shall be in conformance with the base
GetResourceByID operation request as defined in Subclause 9.3 of [OWS Common], with
the additional constraints laid out in this section and in Figure 9 and Table 27.

Figure 9. 3DPS core:GetResourceById request UML class diagram

46

http://www.opengis.net/spec/3DPS/1.0/req/service/core/getResourceById/request
http://www.opengis.net/spec/3DPS/1.0/req/service/core/getResourceById/request

Table 27. Additional components of core:GetResourceById request

Names Definition Data type and value Multiplicity and
use

request
request

Operation name string, not empty
Value is fixed to
``GetResourceById''

One (mandatory)

extensions
Extensions

Container for any kind of
ancillary information to be
sent from client to server

Extensions type Zero or one
(optional)

resourceId
ResourceId

Unambiguous identifier of
desired resource

URI, not empty One (mandatory)

outputFormat
OutputFormat

Reference to format in
which operation output
data should be encoded

string, not empty One (mandatory)

ResourceId

A ResourceId parameter shall be part of each core:GetResourceById operation request.

OutputFormat

The OutputFormat parameter specifies the expected output format. While the output format may be
determined by the resource identified with the resource identifier, specifying the output format
works in cases where that is not the case (e.g., multiple representations of one resource) but not
vice versa. The format, even if not necessary for resource selection, should be used for validation.

8.5.4. GetResourceById response

Requirement 4: http://www.opengis.net/spec/3DPS/1.0/req/service/core/
getResourceById/response

The GetResourceById response shall be a document conforming to the requested MIME
type, or an exception.

8.5.5. GetResourceById exceptions

Exceptions shall be handled according to the base GetResourceByID operation as described in
Subclause 9.3.3.2 of [OWS Common].

47

http://www.opengis.net/spec/3DPS/1.0/req/service/core/getResourceById/response
http://www.opengis.net/spec/3DPS/1.0/req/service/core/getResourceById/response

Chapter 9. Scene Extension

9.1. Introduction
The GetScene operation of the Scene Extension allows a client to retrieve a 3D scene, i.e., graphical
data (including geometry and texture data as well as hierarchies), in a standard data format, from a
3DPS service. To achieve an actual 3D portrayal, this data needs to be rendered at the client side.
This has the benefit that the client can deliver a responsive navigation experience to the user
because it can avoid or delay round-trips to the service instance in most cases.

The GetScene operation is the entry point for a scene-based client to request the geodata that a
3DPS instance is capable of serving in a particular bounding box. At this point, the client is assumed
to have issued a GetCapabilites request, processed the response, and determined the instance’s
capability to serve compatible 3D geodata.

Existing and evolving 3D model formats and their delivery mechanisms vary a lot. Thus, the 3DPS
GetScene operation is intentionally defined to allow for a range of mechanisms, potentially limiting
the scope for interoperability to quite specific client/server combinations. However, the 3DPS
GetScene operation intends to make it possible to integrate different 3D data pools in a single client
view. It fosters this interoperability scenario by enabling the client to determine whether the data
served by the instances may be combined sensibly at all. In other words, GetScene cannot make 3D
data interoperable, but it can help getting there or see why it will not work - before failing horribly
in front of the user.

A 3DPS client needs to support the 3D model format, in which a 3DPS delivers a scene as GetScene
response. Potential interoperability problems arising from a mismatch of client format capability
and implicit service expectations should be dealt with using the content of the GetCapabilities
response (in particular delivery options), format-side provisions such as profiles or additional
service parameters, in order of preference.

9.2. Modifications to service capabilities

9.2.1. Modifications to ServiceIdentification

A service announces support of the Scene Extension to a client by adding the URL identifying this
extension to the list of supported extensions delivered in the service metadata document.

Requirement 5: http://www.opengis.net/spec/3DPS/1.0/req/service/scene/extension-
identifier

A 3DPS service implementing conformance class scene of this Scene Extension shall
include the following URI in a Profile element of the ServiceIdentification in a
GetCapabilities response: http://www.opengis.net/spec/3DPS/1.0/extension/scene/1.0.

Dependency: 3DPS Core (http://www.opengis.net/spec/3DPS/1.0/conf-class/core)

48

http://www.opengis.net/spec/3DPS/1.0/req/service/scene/extension-identifier
http://www.opengis.net/spec/3DPS/1.0/req/service/scene/extension-identifier
http://www.opengis.net/spec/3DPS/1.0/extension/scene/1.0
http://www.opengis.net/spec/3DPS/1.0/conf-class/core

9.2.2. Modifications to OperationsMetadata

Requirement 6: http://www.opengis.net/spec/3DPS/1.0/req/service/scene/operations-
metadata-getscene

A 3DPS service implementing conformance class scene of this Scene Extension shall
include an Operation element in the OperationsMetadata section in a GetCapabilities
response having its name attribute set to ``GetScene''.

Dependency: 3DPS Core (http://www.opengis.net/spec/3DPS/1.0/conf-class/core)

9.2.3. Additions to Layer structure

Requirement 7: http://www.opengis.net/spec/3DPS/1.0/req/service/scene/layer-extension

A 3DPS service implementing conformance class scene of this Scene Extension shall
extend the core:Layer Extensions structure by zero or one SceneLayerExtension
structure as defined in Figure 10 and Table 28.

Dependency: 3DPS Core (http://www.opengis.net/spec/3DPS/1.0/conf-class/core)

Figure 10. 3DPS scene:SceneLayerExtension UML class diagram

Table 28. Components of scene:SceneLayerExtension structure

Names Definition Data type and value Multiplicity and
use

availableFormat
AvailableFormat

Output format valid for
this layer

ows:OutputFormat type Zero or more
(optional)

availableOffset
AvailableOffset

Offset available for
querying this layer

Position3D structure, see
Table 7

Zero or more
(optional)

availableOffsetMod
e
AvailableOffsetMod
e

Offset mode available for
querying this layer

string
Values are defined in
service metadata

Zero or more
(optional)

AvailableFormat

The AvailableFormat element provides information about data formats in which the advertised
Layers are available.

AvailableFormat items advertise available encodings of scene data returned by the GetScene
operation as ows:MimeType as per [OWS Common] Subclause 10.5.

Table 29 specifies canonical MIME types. These MIME types shall be advertised and recognized by a
service implementation if the formats represented by them are supported, even if more qualified
alternatives exist.

49

http://www.opengis.net/spec/3DPS/1.0/req/service/scene/operations-metadata-getscene
http://www.opengis.net/spec/3DPS/1.0/req/service/scene/operations-metadata-getscene
http://www.opengis.net/spec/3DPS/1.0/conf-class/core
http://www.opengis.net/spec/3DPS/1.0/req/service/scene/layer-extension
http://www.opengis.net/spec/3DPS/1.0/conf-class/core

Annex D describes the X3D profiles and nodes that are appropriate for use by a service that returns
X3D. It highlights the use of the X3D Geospatial component, which is important to support, as it
allows for combination of content from different services.

Table 29. Canonical MIME types for scene encoding (non-exhaustive list)

Encoding format MIME type

X3D VRML model/x3d+vrml

X3D XML model/x3d+xml

OGC KML as XML application/vnd.google-earth.kml+xml

OGC KML as KMZ application/vnd.google-earth.kmz

VRML model/vrml

Esri i3s application/vnd.esri.i3s.json+gzip

glTF model/vnd.gltf+json

Requirement 8: http://www.opengis.net/spec/3DPS/1.0/req/service/scene/mimetypes

A 3DPS service implementing conformance class scene of this Scene Extension shall
advertise available output formats as MIME types, and additionally shall advertise and
recognize the MIME types named in Table 29 if the formats represented by them are
supported, even if more qualified alternatives exist.

9.2.4. AvailableOffset

The AvailableOffset elements provide information about fixed offsets in which the advertised
Layers are available. A client should not expect other offsets to be available unless the
SupportsArbitraryOffset portrayal capability is ``true''.

9.2.5. AvailableOffsetMode

Depending on the requested CRS, coordinate values of 3D objects may become bigger than typical
3D display pipelines can handle. For example, UTM coordinates require a mantissa of 9 digits for
achieving accuracy in centimeters. Clients using single precision floating point numbers (32 bit;
IEEE Std 754-2008) are not able to handle such coordinates very well.

The offset parameter can be used in order to define a reference point in 3D which is then used to
enhance the technically available precision, e.g., by subtracting it from all coordinate values, thus
reducing the number of significant digits. This offset needs coordination.

Some 3D formats have built-in capabilities to handle geocoordinates, but even in such cases it may
be advantageous to use a common offset the client determines. The offset may be applied in several
ways, exemplified by the offset modes given in Table 30. For all offset modes it holds that CRS
coordinate order is observed in the request. An implementation should choose a suitable offset
mode if an explicit mode is not given. An implementation should advertise the offset modes it
supports and is free to add more specific offset modes if available. It should support one of the
modes given in Table 30 for increased interoperability.

Table 30. Offset modes

50

http://www.opengis.net/spec/3DPS/1.0/req/service/scene/mimetypes

Identifier Definition

subtract The offset is subtracted from all coordinates specifying absolute geolocations. Thus,
when the client adds the offset to them, true geocoordinates in the request CRS are
obtained.

embed The offset is embedded in the resulting scene by means of the request format. Not all
formats have such provisions, the client should know if it is capable of handling the
request format’s appropriate mechanism. It is unspecified whether the offset is
actually subtracted from geocoordinates, or whether it is embedded in the request
CRS. However, embed'' should enable the client to obtain true geocoordinates
without remembering the offset separate from the result. A possible realization
of embed'' is the X3D ``GeoOrigin'' node.

Under circumstances, the offset may be service-defined, so only one of the offset values offered in
the capabilities may be retrieved successfully. If the service advertises offsets, they should include
an explicit mode specification.

Clarification: An offset is conceptually different from false easting/northing. False easting/northing
serves to make geocoordinates unique, while offset makes unique global coordinates ambiguous.
Thus, an offset is NOT expected to be represented in a CRS definition.

Information about available offset modes is to be added to the metadata document as a operation
metadata’s and operation’s parameter definition.

AvailableStyle

Styles usually affect the symbolization of features, e.g., the materials can be replaced by another
material, including diffuse color, reflection properties, and transparency as defined in the style.
Styling can also take the feature attribute values as input for distinguishing features of different
categories by color. Styling may also apply different symbols to point and line features including
geometric primitives, billboards, textures, and complex 3D prototypes. The size of these symbols
may be scaled according to feature attribute values. It is recommended to use the Symbology
Encoding (SE) and Filter Encoding (FE) as basis for defining service styles (see [OGC 05-077r4] and
[OGC 09-026r2]), and extend the capabilities for styling 3D objects (see [OGC 09-042]).

9.2.6. Additions to PortrayalCapabilities structure

Requirement 9: http://www.opengis.net/spec/3DPS/1.0/req/service/scene/
portrayalcapabilities-extension

A 3DPS service implementing conformance class scene of this Scene Extension shall
extend the core:PortrayalCapabilities Extensions structure by zero or one
ScenePortrayalCapabilitiesExtension as defined in Figure 11 and Table 31.

Dependency: 3DPS Core (http://www.opengis.net/spec/3DPS/1.0/conf-class/core)

Figure 11. 3DPS scene:ScenePortrayalCapabilitiesExtension UML diagram

51

http://www.opengis.net/spec/3DPS/1.0/req/service/scene/portrayalcapabilities-extension
http://www.opengis.net/spec/3DPS/1.0/req/service/scene/portrayalcapabilities-extension
http://www.opengis.net/spec/3DPS/1.0/conf-class/core

Table 31. Components of scene:ScenePortrayalCapabilitiesExtension structure

Names Definition Data type and value Multiplicity and
use

supportsArbitraryO
ffset
SupportsArbitraryO
ffset

Specifies whether the
client may request
arbitrary offset parameters

boolean type, not empty
Value either true'' or
false''. Default is ``false''

Zero or one
(optional)

SupportsArbitraryOffset

The SupportsArbitraryOffset component specifies whether the server allows a client to request
arbitrary offset parameters. The element’s default value is ``false''.

9.3. GetScene request

Requirement 10: http://www.opengis.net/spec/3DPS/1.0/req/service/scene/getscene/
request/structure

A scene:GetScene request shall consist of a scene:GetScene structure as defined in
Figure 12 and Table 32.

52

http://www.opengis.net/spec/3DPS/1.0/req/service/scene/getscene/request/structure
http://www.opengis.net/spec/3DPS/1.0/req/service/scene/getscene/request/structure

Figure 12. 3DPS scene:GetScene request UML class diagram

Table 32. Additional components of scene:GetScene request

Names Definition Data type and value Multiplicity and
use

request
Request

Operation name string
Value is fixed to
``GetScene''

One (mandatory)

offset
Offset

Offset vector which shall
be applied to the scene

Position3D Zero or one
(optional)

offsetMode
OffsetMode

Offset mode to use when
applying the offset b

string Zero or one
(optional)

format
Format

Format encoding of the
scene

ows:MimeType, see [OWS
Common] Subclause 10.5

One (mandatory)

viewpoints
Viewpoints

Viewpoints to include in
operation response

string, list of tuple values,
separated by comma.

Zero or one
(optional)

a Coordinates are ordered in the request CRS order.
b The OffsetMode parameter requires the presence of the Offset parameter.

53

9.3.1. Offset

The offset to use for scene delivery. See AvailableOffset and AvailableOffsetMode.

9.3.2. OffsetMode

The offset mode to use for applying the offset defined in the OffsetMode parameter. See
AvailableOffset and AvailableOffsetMode.

9.3.3. Format

The mandatory Format parameter specifies the target encoding of the returned scene provided as
ows:MimeType, see [OWS Common] Subclause 10.5. Available formats are described in the service
metadata.

9.3.4. Viewpoints

The Viewpoints parameter can be used to instruct the server to include a list of viewpoints in the
scene from which a user can choose from. Viewpoints are presented in most viewers as list which
can be used to move quickly to another pre-defined position and view direction.

If multiple viewpoints are defined, then the first in the list shall be used as default viewpoint when
loading the scene. This is mainly useful to create a HTTP/GET-based link into a 3D scene.

The Viewpoints parameter contains a comma separated list of tuple values defining for each
viewpoint a) a Title, b) the Point of Interest (POIx, POIy, POIz), c) the Point of Camera (POCx, POCy,
POCz), d) the up vector (UPx, UPy, UPz), and e) the horizontal Field of View (FOVX). Thus, 11 values
are used to define one viewpoint. In case of multiple viewpoints to insert, all values are appended
to the list consecutively; the length of the Viewpoints parameter list values shall be divisible by 11:

Viewpoints = Viewpoint,{Viewpoint}
Viewpoint = Title,POIx,POIy,POIz,POCx,POCy,POCz,UPx,UPy,UPz,FOVX

All tuple values refer to the spatial reference system specified by the request CRS parameter. The
FOV is specified in arc degrees.

9.3.5. Delivery Options

Typical delivery options in GetScene based requests may be obtained from Table 33.

Table 33. Additional DeliveryOption names

Title Identifier Description

spatialIndex
SpatialIndex

http://www.opengis.net/spec/
3DPS/1.0/concept/service/scene/
deliveryOptions/spatialIndex

deliver spatially annotated links to this service,
e.g., KML NetworkLink, X3D GeoLOD, ESRI i3s
nodes, but generally not any actual geometries

54

http://www.opengis.net/spec/3DPS/1.0/concept/service/scene/deliveryOptions/spatialIndex
http://www.opengis.net/spec/3DPS/1.0/concept/service/scene/deliveryOptions/spatialIndex
http://www.opengis.net/spec/3DPS/1.0/concept/service/scene/deliveryOptions/spatialIndex

Title Identifier Description

textureAtlas
TextureAtlas

http://www.opengis.net/spec/
3DPS/1.0/concept/service/scene/
deliveryOptions/textureAtlas

try to recombine textures to optimize rendering

regroupGeome
try
RegroupGeome
try

http://www.opengis.net/spec/
3DPS/1.0/concept/service/scene/
deliveryOptions/regroup

regroup geometry to optimize rendering; object
identity needs not to be maintained

reduceQuality
ReduceQuality

http://www.opengis.net/spec/
3DPS/1.0/concept/service/scene/
deliveryOptions/reduceQuality

Use any technique available to save bandwidth,
source data quality needs not to be maintained

9.4. GetScene response
The response to a valid GetScene request is a document of the MIME type as specified in the request
Format parameter, except under error conditions. This document contains a 3D scene assembled
from the features of the selected Layers (mainly) within the specified BoundingBox, represented in
the specified CRS, Format, and Styles.

NOTE

This implies CRS coordinate order, which may be very different to an applicable
client-side computer graphics convention. It is the client’s responsibility to execute
any transforms required to convert from CRS axis order to the client’s axis order
convention.

If the GetScene request contains a list of service style identifiers and/or overall style identifiers,
then the features delivered are portrayed according to the respective style(s). Some output formats
may not support all the portrayal capabilities (here, this term refers to format provisions not
subject to the 3DPS) that are called for by the LODSelection, for defining a virtual
camera/viewpoint, or to support certain styles. It is left to the implementation to decide whether to
treat this as an error condition or to continue on a best-effort basis. However, if such a condition
arises and the implementation chooses to treat it as an error, the error code should be
FormatCapabilityMissing. The same holds when the service implementation imposes the
shortcoming, not the format definition itself. For example, this is the case when a ``combined'' LOD
is requested but the format does not have provisions to switch individual features as appropriate.

If the response data contains references to additional resources which are to be loaded by the
client, for instance URIs of textures, then those resources should be accessible to the client
following standard [RFC 3986] resolution rules, where the base URI is the GetScene request URI that
produced the response. Relative paths may be used, but are discouraged due to their potential
interference with service invocations.

URIs within the GetScene response might also point to GetResourceById operation requests to the
same service or other accessible 3DPS instances, or may point to other service end points producing
the required MIME type. For example, a WCS may be used as source for terrain textures. To
maximize interoperability, URIs representing service calls should be valid service invocations in
themselves, i.e., not require the client to understand the service structure. In other words, service
invocations should be treatable as resources. Notwithstanding this, an advanced or special client

55

http://www.opengis.net/spec/3DPS/1.0/concept/service/scene/deliveryOptions/textureAtlas
http://www.opengis.net/spec/3DPS/1.0/concept/service/scene/deliveryOptions/textureAtlas
http://www.opengis.net/spec/3DPS/1.0/concept/service/scene/deliveryOptions/textureAtlas
http://www.opengis.net/spec/3DPS/1.0/concept/service/scene/deliveryOptions/regroup
http://www.opengis.net/spec/3DPS/1.0/concept/service/scene/deliveryOptions/regroup
http://www.opengis.net/spec/3DPS/1.0/concept/service/scene/deliveryOptions/regroup
http://www.opengis.net/spec/3DPS/1.0/concept/service/scene/deliveryOptions/reduceQuality
http://www.opengis.net/spec/3DPS/1.0/concept/service/scene/deliveryOptions/reduceQuality
http://www.opengis.net/spec/3DPS/1.0/concept/service/scene/deliveryOptions/reduceQuality

could take advantage of prior knowledge about certain services to deliver a better experience. Such
behavior should be guarded by appropriate delivery options to make sure a general client does not
request it by accident.

Requirement 11: http://www.opengis.net/spec/3DPS/1.0/req/service/scene/getScene/
response

The GetScene response shall be a document conforming to the requested MIME type, or
an exception.

9.5. GetScene exceptions
A GetScene request may return any of the exception reports defined in core:AbstractGetPortrayal
and/or as specified in Clause 8 of [OWS Common].

In addition, a service shall throw a service exception (code = FormatCapabilityMissing) if an
unavailable format-specific feature is requested. The locator should be the parameter containing
the unsupported style or other portrayal feature, and the text should be indicative of the root cause.

9.6. Binding Extensions for the GetScene operation

9.6.1. HTTP/GET + KVP binding

The GetScene request may be issued as a HTTP/GET KVP-based request.

Table 34 defines the KVP encoding for the GetScene request. It contains the complete parameter
mapping including the parameters defined by core:AbstractGetPortrayal and core:RequestBase.

Table 34. GetScene request KVP encoding

Name and example a Optionality Definition and format

service=3DPS Mandatory Service type identifier

request=GetScene Mandatory Operation name

version=1.0 Mandatory Standard version for operation

crs=epsg:4327 Mandatory Identifier URI of primary CRS

boundingBox=0.0,0.0,0.0,10.0,10.0,5
0.0

Optional Bounding box surrounding selected dataset,
in available CRS

spatialSelection=cut Optional Method of selecting objects with
BoundingBox

layers=layer1,layer2 Mandatory Identifiers of layers to retrieve the data
from, comma-separated list

styles=style1,style2 Optional Identifier of service style to be used applied,
comma-separated list

background=darkSky Optional Background identifier as string

lods=citygml:4 Optional List of LODs requested for the layers,
comma-separated list

56

http://www.opengis.net/spec/3DPS/1.0/req/service/scene/getScene/response
http://www.opengis.net/spec/3DPS/1.0/req/service/scene/getScene/response

Name and example a Optionality Definition and format

lodSelection=equals_or_similar Optional Method for selecting LODs

overallStyles=photorealistic Optional Identifier(s) of desired overall scene style(s)

deliveryOptions=regroupGeometry Optional URIs: Names of the delivery options
requested by the client, comma-sparated

exceptions=text/xml Optional Format of exceptions

offset=200000,200000,0 Optional Offset vector which shall be applied to the
scene, using the mode specified (if any)

format=model/x3d+xml Mandatory Format encoding of the scene

viewpoints=Overview,13.4097,52.5
177,
220.0,13.4087,52.5202,120.0,100

Optional Viewpoints as tuple values to be added by
server, comma-separated list of string

a All parameter names are listed here using mostly lower case letters. However, any parameter
name capitalization shall be allowed in KVP encoding, see Subclause 11.5.2. All example values
depend on how a specific OWS specifies them.

57

Chapter 10. View Extension

10.1. Introduction
The View Extension defines the GetView operation, which allows a client to retrieve readily
rendered images, i.e., visual representations of an underlying 3D scene, as plain standard images.
Image generation is done completely on the server side. This allows for high quality 3D
visualization in identical quality on any device, including resource-poor mobile devices.

10.2. Concepts
This section explains the concepts behind the GetView operation. Readers familiar with computer
graphics concepts may want to skip it.

10.2.1. Image layer concept

Besides color images, the View Extension defines additional image layers of a 3D view, which
represent discrete geometric and thematic information for each image pixel. They follow the G-
Buffer concept used in computer graphics and are not necessarily meant for human consumption.

It is foreseen to encode non-color image layers using standard image formats as well. This allows
for applying the same principles for data encoding, data compression, data exchange, and client-
side data loading and processing for all image layers.

Table 35 lists the image layer types that are suggested by the 3DPS View Extension and that are
described in the following.

Table 35. Image layer names and descriptions

Names URI Description

Color http://www.opengis.net/spec/3DPS/1.0/
concept/service/view/imageLayers/
color

contains color value for each pixel

Depth http://www.opengis.net/spec/3DPS/1.0/
concept/service/view/imageLayers/
depth

contains depth values describing the
view-space distance to each pixel

ObjectId http://www.opengis.net/spec/3DPS/1.0/
concept/service/view/imageLayers/
objectid

contains object identifier values
identifying the features at a pixel

Normal http://www.opengis.net/spec/3DPS/1.0/
concept/service/view/imageLayers/
normal

encodes the surface normal for the
surface represented

Mask http://www.opengis.net/spec/3DPS/1.0/
concept/service/view/imageLayers/
mask

encodes for each pixel, whether any
feature is visible there

58

http://www.opengis.net/spec/3DPS/1.0/concept/service/view/imageLayers/color
http://www.opengis.net/spec/3DPS/1.0/concept/service/view/imageLayers/color
http://www.opengis.net/spec/3DPS/1.0/concept/service/view/imageLayers/color
http://www.opengis.net/spec/3DPS/1.0/concept/service/view/imageLayers/depth
http://www.opengis.net/spec/3DPS/1.0/concept/service/view/imageLayers/depth
http://www.opengis.net/spec/3DPS/1.0/concept/service/view/imageLayers/depth
http://www.opengis.net/spec/3DPS/1.0/concept/service/view/imageLayers/objectid
http://www.opengis.net/spec/3DPS/1.0/concept/service/view/imageLayers/objectid
http://www.opengis.net/spec/3DPS/1.0/concept/service/view/imageLayers/objectid
http://www.opengis.net/spec/3DPS/1.0/concept/service/view/imageLayers/normal
http://www.opengis.net/spec/3DPS/1.0/concept/service/view/imageLayers/normal
http://www.opengis.net/spec/3DPS/1.0/concept/service/view/imageLayers/normal
http://www.opengis.net/spec/3DPS/1.0/concept/service/view/imageLayers/mask
http://www.opengis.net/spec/3DPS/1.0/concept/service/view/imageLayers/mask
http://www.opengis.net/spec/3DPS/1.0/concept/service/view/imageLayers/mask

Image layer types

Color layer

A color layer contains a color value for each pixel, e.g., RGB or RGBA color data. Alpha values are
required for storing a transparent background. For color layers, standard image encodings provide
good compression results.

Depth layer

A depth layer encodes for each pixel the distance to the visible surface. Unit of measure shall be
meter (#m) as defined by GML3 [OGC 03-105r1]. This representation abstracts from computer
graphical details and the distance values can be used without additional computation in an
application. Also, depth images represent a major means to compose multiple images generated
from the same camera position and by the same projection.

ObjectId layer

Object identifiers (object-ids for short) are distinct numeric values assigned to all the features in the
3D geo database provided by the 3DPS. An ObjectId layer contains an object-id for each pixel and
allows a client application, e.g., to determine all the pixels that show a specific feature or to retrieve
feature information based on the object-id.

For a 3DPS service, object-ids shall be unique over all provided data Layers and even over multiple
GetView requests, due to facilitating consistent interaction across multiple 3D views. The object-id
basically refers to the graphical representation of a feature and does not necessarily equal to the
feature’s identifier. It is rather left to a specific 3DPS service how to determine and assign unique
object-ids to all features. Object-id value ``0'' is reserved for pixels that do not represent a feature
(e.g., pixels representing the sky) or for which no object-id could be determined.

Normal layer

A normal layer describes for each pixel the direction of the surface normal visible at that pixel. A
normal layer might be used, e.g., for computing good camera positions of client-side computation of
image effects. The normal layer contains the value ``0'' for a pixel that does not represent any
surface point (e.g., sky or transparent background).

Mask layer

A mask layer contains a value of 1'' for each pixel that covers a scene object and 0'' otherwise.
For example, Mask layers provide information about unused image space or support client-side
altering of the scene background.

Other image layers

The image layers specified in this View Extension represent a fundamental subset of view-related
data. However, image layers are not limited to the specified ones. A 3DPS service can implement
and advertise additional image layers in the service’s metadata document together with available
encodings and formats.

Image layer encodings

Image layer encodings can differ in

a. the way of representing image layer data, e.g., as RGB colors

59

b. the way of encoding this data as standard image.

Image layer encodings/formats shall be advertised as (parameterized) MIME types in the service’s
metadata document.

The View Extension suggests representing image layer data in colors and encoding them by
appropriate standard image formats. Alternative encodings/formats are possible.

In the following, default encodings for the suggested image layers are described. Table 36 provides
an overview of the corresponding MIME types describing these default encodings. A MIME type
parameter ``mode'' shall be used for adjusting the required bit depth.

Table 36. Image layer encodings (non-exhaustive)

Image layer name MIME types

Color image/jpeg

image/png a

image/png;mode=24bit

image/png;mode=32bit

Depth image/png a

image/png;mode=24bit

image/png;mode=32bit

ObjectId image/jpeg

image/png a

image/png;mode=24bit

image/png;mode=32bit

Normal image/jpeg

image/jpeg;mode=24bit

image/png;mode=32bit

image/png a

image/png;mode=24bit

image/png;mode=32bit

Mask image/jpeg b

image/png a

image/png;mode=1bit
a Server chooses bit depth.
b Inefficient due to 24-bit data storage.

For alternative service-specific data encodings, a MIME type parameter ``encoding'' should be used
for identifying the data encoding and format.

EXAMPLE: A 3DPS service-specific MIME type for a normal layer encoding could be
``image/png;mode=24bit,encoding=two-component'' which specifies the representation of normal
vectors by two components only.

60

Depth layer default encoding

Per default, depth values shall be represented by float values. They shall be encoded as colors by
converting the float value into a Byte array and assigning these Bytes to the color components. The
endianness shall be BGR for 24-bit encoding or ABGR for 32-bit encoding. Due to the direct storage
as color components, resulting depth images possess very little pixel-to-pixel coherence, and should
not be stored in lossy image formats.

ObjectId layer default encoding

Per default, object-ids shall be represented by unsigned integer values. They are encoded as colors
by converting the object-id integer value into a Byte array and assigning these Bytes to the color
components. The endianness shall be BGR for 24-bit encoding or ABGR for 32-bit encoding. This
does not specify the internal endianness of the image format used to encode the colors, rather the
mapping of bytes to properly decoded and separated color components.

Normal layer default encoding

Per default, normal layers encode normalized normal vectors in world space by encoding each
vector component (X,Y,Z) as color component (B,G,R) of a 24-bit color image. A surface normal shall
be encoded as 24-bit RGB color value in the following way:

1. Surface normal shall be considered in world space.

2. Surface normal shall be normalized to length of 1.0.

3. Each normalized normal shall be transformed into a right-hand Cartesian coordinate system,
having the z-axis pointing up, which leads to a normalized normal n = (x, y, z).

4. For each X, Y, and Z component of the transformed normal a decimal value shall be computed
by adding 1 and dividing the result by 2.

5. These values shall represent the color components, B, G, and R respectively. Endianness shall
be BGR.

A 3DPS consumer requesting a normal layer encoded in this default format, shall decode this data
the other way round, by multiplying with 2 and subtracting 1 and assigning the value to the x, y,
and z components of a normal vector.

Mask layer default encoding

Mask values 0 and 1 shall be color-encoded as follows: white shall be used for mask value 0'',
i.e., for pixels that do not cover a scene object; the color black shall be used mask value 1'',
i.e., for pixels that do cover scene objects. Mask layers could be encoded in any image format, but
formats capable of 1-bit content should be preferred for coding efficiency.

10.2.2. 3D projections

Two-dimensional representations of a 3D virtual environment are generated by transforming
points of the 3D scene onto a projection surface. Planar projections can be categorized into
perspective projections and parallel projections, which can be further sub-categorized, e.g., in one
and two-point perspective projections or orthographic and oblique parallel projections (Figure 13).
Besides this, projections can be planar or non-planar. With planar projections, points in the 3D
space are linearly mapped to points on a 2D projection plane, i.e., the 3D point, the projected point,
and the center of projection are collinear. With non-planar projections, these rays from center of

61

projection to the three-dimensional point are non-linearly mapped, but are, e.g., projected spherical
or cylindrical.

Figure 13. Examples of projection types.

While a 1-point central perspective projection is close to the human perception of the real world,
various application domains and visualization techniques could benefit from additional projection
types. Because of that, the View Extension allows for choosing a projection type that shall be
applied for rendering the view (Figure 14).

Figure 14. Examples of perspective projection (left) and orthographic projection (right).

The 3DPS View Extension specifies two planar projection types, a perspective projection type and
an orthographic projection type, Perspective and Orthographic, as defined in Table 37, Figure 15,
Table 38, Table 39 and Table 40.

For this, the ProjectionBase data structure forms the basis of specific projections as specified by
extensions of this standard.

NOTE
For an XML binding, this standard defines the schema element core:Projection of
type core:ProjectionBaseType as the head of a substitution group of projection
types.

62

A specific 3DPS service can provide additional projection types. Supported projection types shall be
advertised in the service metadata document. Possible values for the parameters of each projection
type should be advertised in the service’s metadata.

Table 37. Supported projection types and meaning

Identifier Description

Perspective PerspectiveProjection as defined in Table 39

Orthographic OrthographicProjection as defined in Table 40

Figure 15. 3DPS view:PerspectiveProjection and core:OrthographicProjection UML class diagram

Table 38. Components of core:ProjectionBase structure

Names Definition Data type and value Multiplicity and
use

typeName
TypeName

Unambious identifier of
this projection type

ows:Code type, not empty One (mandatory)

Table 39. Components of view:PerspectiveProjection structure

Names Definition Data type and value Multiplicity and
use

typeName
TypeName

Unambious identifier of
this projection type

ows:Code type, not empty
fixed to ``Perspective''

One (mandatory)

poc
POC

Position of the virtual
camera (point of camera)

Position3D type, see Table
7

One (mandatory)

poi
POI

Position of point of interest Position3D type, see Table
7

One (mandatory)

up
Up

Position of a point forming
the vector pointing in
``up'' direction by
subtracting the POC

Position3D type, see Table
7

Zero or one
(optional)
Include when
camera roll desired

63

Names Definition Data type and value Multiplicity and
use

fovx
FOVX

Field of view of the virtual
camera in horizontal
direction

Double type
Value in degrees, service
metadata shall specify
default value

Zero or one
(optional)
Include when FOVX
other than default
value desired

fovy
FOVY

Field of view of the virtual
camera in vertical
direction

Double type
Value in degrees, service
metadata shall specify
default value

Zero or one
(optional)
Include when FOVY
other than default
value desired

nearPlane
NearPlane

Distance to the camera’s
near clipping plane

Double type
Default value is advertised
in service metadata. Values
in the measure of the
request CRSa

Zero or one
(optional) Include
when NearPlane
other than default
desired

farPlane
FarPlane

Distance to the camera’s
far clipping plane

Double type
Default value is advertised
in service metadata. Values
in measure of the request
CRSa

Zero or one
(optional)
Include when
FarPlane other than
default desired

a In the case of a 2D request CRS, measure unit is meter

Table 40. Components of view:OrthographicProjection structure

Names Definition Data type and value Multiplicity and
use

typeName
TypeName

Unambious identifier of
this projection type

ows:Code type, not empty
fixed to ``Orthographic''

One (mandatory)

poc
POC

Position of the virtual
camera (point of camera)

Position3D type, see Table
7

One (mandatory)

poi
POI

Position of point of interest Position3D type, see Table
7

One (mandatory)

up
Up

Position of a point forming
the vector pointing in
``up'' direction by
subtracting the POC

Position3D type, see Table
7

Zero or one
(optional)
Include when
camera roll desired

left
Left

Distance to the left border
of the view frustum

Double type
Default value is advertised
in service metadata. Value
in measure of the request
CRSa

Zero or one
(optional)
Include when value
other than default
desired

right
Right

Distance to the right
border of the view frustum

Double type
Default value is advertised
in service metadata. Value
in measure of the request
CRSa

Zero or one
(optional)
Include when value
other than default
desired

64

Names Definition Data type and value Multiplicity and
use

bottom
Bottom

Distance to the bottom
border of the view frustum

Double type
Default value is advertised
in service metadata. Value
in measure of the request
CRSa

Zero or one
(optional)
Include when value
other than default
desired

top
Top

Distance to the top border
of the view frustum

Double type
Default value is advertised
in service metadata. Value
in measure of the request
CRSa

Zero or one
(optional)
Include when value
other than default
desired

nearPlane
NearPlane

Distance to the camera’s
near clipping plane

Double type
Default value is advertised
in service metadata. Values
in the measure of the
request CRSa

Zero or one
(optional) Include
when NearPlane
other than default
desired

farPlane
FarPlane

Distance to the camera’s
far clipping plane

Double type
Default value is advertised
in service metadata. Values
in measure of the request
CRSa

Zero or one
(optional)
Include when
FarPlane other than
default desired

a In the case of a 2D request CRS, measure unit is meter

POC, POI, Up

In PerspectiveProjection and OrthographicProjection data structures, the mandatory POC and POI
parameters and the optional Up parameter specify the position and orientation of a virtual camera
used for generating the 3D view on the 3D scene.

NearPlane, FarPlane

In PerspectiveProjection and OrthographicProjection data structures, the optional NearPlane and
FarPlane parameters specify the distance to the near clipping plane and far clipping plane. A 3DPS
service shall suggest appropriate default values in the NearPlaneHint and FarPlaneHint elements
of the service metadata.

FOVX, FOVY

In PerspectiveProjection data structure, the optional FOVX and FOVY parameters specify the field of
view of the virtual camera. Values are in degrees. FOVX specifies the horizontal angle of view, FOVY
specifies the vertical angle of view. The service shall suggest default values for FOVX and FOVY in
the service metadata. If FOVX and FOVY are not provided, the service shall use the default values. If
only one of FOVX or FOVY is provided, the service shall compute the missing value from the aspect
ratio of the requested Width and Height.

Left, Right, Bottom, Top

In OrthographicProjection data structure, the optional Left, Right, Bottom, and Top parameters
specify the left, right, lower, and upper borders of the cuboidal view frustum. These borders shall
be specified as distance to the center of projection. The service shall suggest default values for Left,
Right, Bottom, and Up in the service metadata. If Left, Right, Bottom, and Up are not provided, the

65

service shall use the default values.

EXAMPLE: An orthographic projection resulting in an image having the center of projection (POI) in
the center of that image includes a parameter set such as: Left=-100, Right=100, Bottom=-100,
Top=100.

10.2.3. Extensibility

The View Extension is designed for supporting extensibility of the following aspects of 3D portrayal:

a) Image layers: Beyond image layers COLOR, OBJECTID, DEPTH, NORMAL, MASK, specific 3DPS
services can provide additional image layers. Those shall be advertised in the 3DPS service’s
metadata document.

b) Image layer encodings: Beyond encoding image layers as suggested in this specification, specific
3DPS services can provide other encodings. These encodings shall be advertised in the 3DPS
service’s metadata document.

EXAMPLE: A specific 3DPS service could provide an image layer containing only the specular
lighting information, which can be used for image post-processing.

10.3. Modifications to service capabilities

10.3.1. Modifications to ServiceIdentification

A service announces support of the View Extension to a client by adding the URL identifying this
extension to the list of supported extensions delivered in the service metadata document.

Requirement 12: http://www.opengis.net/spec/3DPS/1.0/req/service/view/extension-
identifier

A 3DPS service implementing conformance class view of this View Extension shall
include the following URI in a Profile element of the ServiceIdentification section in a
GetCapabilities response: http://www.opengis.net/spec/3DPS/1.0/extension/view/1.0.

Dependency: 3DPS Core (http://www.opengis.net/spec/3DPS/1.0/conf-class/core)

10.3.2. Modifications to OperationsMetadata

Requirement 13: http://www.opengis.net/spec/3DPS/1.0/req/service/view/operations-
metadata-getview <A 3DPS service implementing conformance class view of this View
Extension shall include an Operation element in the OperationsMetadata section in a
GetCapabilities response having its name attribute set to ``GetView''.

Dependency: 3DPS Core (http://www.opengis.net/spec/3DPS/1.0/conf-class/core)

10.3.3. Additions to Layer structure

This View Extension does not add any components to the core:Layer structure defined in Figure 6
and Table 12.

66

http://www.opengis.net/spec/3DPS/1.0/req/service/view/extension-identifier
http://www.opengis.net/spec/3DPS/1.0/req/service/view/extension-identifier
http://www.opengis.net/spec/3DPS/1.0/extension/view/1.0
http://www.opengis.net/spec/3DPS/1.0/conf-class/core
http://www.opengis.net/spec/3DPS/1.0/req/service/view/operations-metadata-getview
http://www.opengis.net/spec/3DPS/1.0/req/service/view/operations-metadata-getview
http://www.opengis.net/spec/3DPS/1.0/conf-class/core

10.3.4. Additions to PortrayalCapabilities structure

Requirement 14: http://www.opengis.net/spec/3DPS/1.0/req/service/view/
portrayalcapabilities-extension

A 3DPS service implementing conformance class view of this View Extension shall
extend the core:PortrayalCapabilities Extensions structure by zero or one
ViewPortrayalCapabilitiesExtension as defined in Figure 16, Table 41, Table 42, Table 35,
Table 43, and Table 44.

Dependency: 3DPS Core (http://www.opengis.net/spec/3DPS/1.0/conf-class/core)

Figure 16. 3DPS view:ViewPortrayalCapabilitiesExtension UML class diagram

Table 41. Components of view:ViewPortrayalCapabilitiesExtension structure

Names Definition Data type and value Multiplicity and
use

availableImageLaye
r
AvailableImageLay
er

Image layers that can be
served by this service

ImageLayer type, see Table
42
At least default ``COLOR''
layer shall be supported

Zero or more
(optional)
Include when more
than the ``COLOR''
layer are supported

67

http://www.opengis.net/spec/3DPS/1.0/req/service/view/portrayalcapabilities-extension
http://www.opengis.net/spec/3DPS/1.0/req/service/view/portrayalcapabilities-extension
http://www.opengis.net/spec/3DPS/1.0/conf-class/core

Names Definition Data type and value Multiplicity and
use

availableProjection
AvailableProjection

Specification of a
projection that is
supported by this service

AvailableProjection type,
see Table 43

Zero or more
(optional)
Include one for
each supported
projection type

nearPlaneHint
NearPlaneHint

Hint at convenient near
plane parameter value

PositiveNumber type Zero or one
(optional)

farPlaneHint
FarPlaneHint

Hint at convenient far
plane parameter value

PositiveNumber type Zero or one
(optional)

supportsMultipleVie
ws
SupportsMultipleVi
ews

Signals if the service
supports the retrieval of
multiple portrayals or
image layers

Boolean type
Default shall be ``true''

Zero or one
(optional)
Include when
multipart response
is not supported

Table 42. Components of view:ImageLayer structure

Names Definition Data type and value Multiplicity and
use

title
Title

Title of this image layer,
human readable

ows:LanguageString, see
[OWS Common] 10.7

Zero or more
(optional)

abstract
Abstract

Brief narrative description
of this image layer

ows:LanguageString, see
[OWS Common] 10.7

Zero or more
(optional)

keywords
Keywords

Unordered list of one or
more commonly used or
formalized word(s) or
phrase(s) used to describe
this image layer

ows:Keywords type in
ows19115subset.xsd

Zero or more
(optional)
One for each
keyword authority
used

identifier
Identifier

Unambiguous identifier of
this image layer, unique
for this server

ows:Code type, not empty One (mandatory)

availableFormat
AvailableFormat

Format that is available for
this ImageLayer

ows:MimeType, not empty,
see [OWS Common]
Subclause 10.5

One or more
(mandatory)
One for each
supported image
layer format

Table 43. Components of view:AvailableProjection structure

Names Definition Data type and value Multiplicity and
use

title
Title

Title of this projection,
human readable

ows:LanguageString, see
[OWS Common] 10.7

Zero or more
(optional)

abstract
Abstract

Brief narrative description
of this projection

ows:LanguageString, see
[OWS Common] 10.7

Zero or more
(optional)

68

Names Definition Data type and value Multiplicity and
use

keywords
Keywords

Unordered list of one or
more commonly used or
formalized word(s) or
phrase(s) used to describe
this projection

ows:Keywords type in
ows19115subset.xsd

Zero or more
(optional)
One for each
keyword authority
used

typeName
TypeName

Unambiguous identifier of
this projection type,
unique for this server

ows:Code type, not empty One (mandatory)

projectionParamete
r
ProjectionParamete
r

Parameter of this
projection type

ProjectionParameter,
which is derived from
ows:DomainType, see
[OWS Common] Subclause
13.2.1, and has an attribute
described in Table 44

Zero or more
(optional)
Include one for
each parameter of
the projection

Table 44. Attribute of view:ProjectionParameter structure

Names Definition Data type and value Multiplicity and
use

required
Required

Flag signaling whether
projection parameter is
required or can be omitted

Boolean type, not empty
Default shall be ``true''

Zero or one
(optional)
Include when value
other than ``true''
is desired

NearPlaneHint, FarPlaneHint

For retrieving good visual results from the 3D portrayal service, the near and far clipping planes
restricting the viewing frustum have to be set appropriately. The NearPlaneHint and FarPlaneHint
parameters provide a hint on such values.

SupportsMultipleViews

The SupportsMultipleViews parameter is a flag that signals if a 3DPS service supports responding
multiple views or multiple image layers by a single GetView response as HTTP multipart/mixed
message (see MIME multipart response).

10.4. GetView request

Requirement 15: http://www.opengis.net/spec/3DPS/1.0/req/service/view/getview/
request/structure

The view:GetView request shall comply with the structure defined in Figure 17 and
Table 45.

69

http://www.opengis.net/spec/3DPS/1.0/req/service/view/getview/request/structure
http://www.opengis.net/spec/3DPS/1.0/req/service/view/getview/request/structure

Figure 17. 3DPS view:GetView request UML class diagram

Table 45. Additional components of view:GetView request

Names Definition Data type and value Multiplicity and
use

request
Request

Operation name string
Value is fixed to
``GetView''

One (mandatory)

backgroundColor
BackgroundColor

Background color desired string, not empty
Hexadecimal RGB color
values, format 0xRRGGBB.
Default is 0xFFFFFF
(white)

Zero or one
(optional)
Include when
background color
other than white
desired

70

Names Definition Data type and value Multiplicity and
use

transparentBackgro
und
TransparentBackgr
ound

Background transparency
desired a

Boolean type, not empty
Default is ``false''

Zero or one
(optional)
Include when
transparent
background desired

portrayals
Portrayals

List of portrayal output
specifications

List of Portrayal type, not
empty, see Table 46

One (mandatory)

a When provided within the same request, only that one of the two or three background-related
parameters is applied that is evaluated first. Order of evaluation is: Background before
BackgroundColor before TransparentBackground.

10.4.1. BackgroundColor

The optional BackgroundColor parameter is a string that specifies the color to be used as the
background (non-data) pixels of a COLOR image layer. The general format of BackgroundColor is a
hexadecimal encoding of an RGB value where two hexadecimal characters are used for each of red,
green, and blue color values. The values can range between 00 and FF (0 and 255, base 10) for each.
The format is 0xRRGGBB; either upper or lower case characters are allowed for RR, GG, and BB
values. The 0x'' prefix shall have a lower case x''. The default value is 0xFFFFFF (corresponding
to the color white) if this parameter is absent from the request.

When the Format parameter is an image format, a 3DPS shall set the background pixels to the color
specified by the BackgroundColor parameter.

A 3DPS service shall use the BackgroundColor only a) when no Background parameter is provided
with the GetView request or b) in the case of an exception and exception format is ``inimage''.

10.4.2. TransparentBackground

The optional TransparentBackground parameter is a flag that specifies whether the view
background of a COLOR layer is to be made transparent or not. Default value is ``false''.

NOTE

The image/gif format provides 1-bit transparency and is properly displayed by
common web clients. The image/png format provides a range of transparency
options but support in viewing applications is often implemented slightly at odds
with the specification (which is precise regarding alpha blending). The image/jpeg
format does not provide transparency.

When TransparentBackground is set to true and the Format parameter contains an image format
(e.g., image/gif), then a 3DPS shall return (when permitted by the requested format) a result where
all of the pixels not representing features or data values in that Layer are set to a transparent value.
If the picture format does not support transparency, then the service shall respond with a non-
transparent image (in other words, it is not an error for the client to always request transparent
maps regardless of format). When the TransparentBackground parameter is set to ``false'', non-
data pixels shall be set to the value of BackgroundColor.

71

A 3DPS service shall generate a transparent background only, when no Background and
BackgroundColor parameters are provided with the GetView request.

10.4.3. Portrayals

The mandatory Portrayals parameter specifies one or multiple portrayals to be generated by a
3DPS. It contains one or multiple Portrayal components, which specify image size (width and
height), projection, image layers, output formats, and image qualities as defined in Table 46.

Table 46. Components of view:Portrayal structure

Names Definition Data type and value Multiplicity and
use

width
Width

Width of desired output
image, in pixels

PositiveInteger type One (mandatory)

height
Height

Height of desired output
image, in pixels

PositiveInteger type One (mandatory)

projection
Projection

Camera specification and
projection parameters

core:ProjectionBase type,
not empty, see Table 39
and Table 40

One (mandatory)

imageLayers
ImageLayers

Reference(s) to image
layers to retrieve

List of string elements, not
empty

One (mandatory)

formats
Formats

Format encoding(s) of
ImageLayer(s)

List of ows:MimeType,
not empty, see [OWS
Common] Subclause 10.5. a

One (mandatory)

qualities
Qualities

Integer that specifies
desired quality of portrayal
view (e.g., data resolution,
rendering accuracy)

List of Integer type, can be
empty
List items can be empty,
values from 0 to 100,
default is 100 b,c

Zero or one
(optional)
Include when
desired

a The Formats list must have same length as in parameter ImageLayers.
b If not empty, the Qualities list must have same length as lists in parameters ImageLayers and
Formats.
c The Qualities parameter is only useful for formats supporting lossy compression. For other
output formats the Qualities parameter shall be ignored. The Qualities parameter should be used
carefully: Applying lossy image compression to image layers other than COLOR will result in
images containing errors, e.g., wrong depth values or object identifiers.

Width, Height

The mandatory Width and Height parameters specify the size in integer pixels of the 3D view that
shall be generated. The image CS (see Image coordinate system) applies to the image. Width-1
specifies the maximum value of the x-axis in the image CS, and Height-1 specifies the maximum
value of the y-axis in the image CS.

If the request is for an image format, the returned picture, regardless of its MIME type, shall have
exactly the specified width and height in pixels.

72

Projection

The mandatory Projection parameter specifies a projection to apply for generating the 3D view(s). A
projection contains the specification of the virtual camera and projection parameters as defined in
3D projections, Table 39 and Table 40.

ImageLayers

The ImageLayers parameter contains a list of references to one or more image layers as advertised
by the 3DPS in it’s service metadata, e.g., one of those listed in Table 35.

Formats

The mandatory Formats parameter specifies a list of image formats as ows:MimeType, see
Subclause 10.5 of [OWS Common]. The length of this list shall be equal to the length of the list in the
ImageLayers parameter. The order of the list shall correlate with the list in the ImageLayers
parameter, meaning that format n shall be applied for encoding the data of image layer n. Each
entry in this list shall refer to a MIME type as described in the service’s metadata (see Table 42).

Qualities

The optional Qualities parameter specifies a list of integers, which describe the visual quality of the
output for each requested image layer and format . Values are between 0 and 100. Empty values are
possible and refer to the default value (100). If the list is empty, the default value is applied for all of
the requested image layers.

The Qualities parameter is mainly useful for COLOR images; for other image layer types, the
compression algorithms can generate invalid data. Additionally, the Qualities parameter is only
useful for output formats that support image compression. If a requested output format does not
support different qualities, the 3DPS shall ignore the parameter for this format.

10.4.4. Exceptions

The optional Exceptions parameter defined by core:AbstractGetPortrayal states the format in which
to report errors during processing a GetView request. In addition to the parameter values defined
by core:AbstractGetPortrayal, this View Extension adds the special value ``inimage'' to the list of
possible parameter values.

If the Exceptions parameter is set to ``inimage'', the service shall, upon detecting an error, return
an object of the MIME type specified in the Formats parameter whose content includes text
describing the nature of the error. In the case of a picture format, the error message shall be drawn
on the returned picture.

10.5. GetView response
The normal response to a valid GetView operation request shall be

a. if a single image layer is requested: a document of the MIME type as specified in the Formats
parameter of the GetView request,

73

b. if multiple 3D views or image layers are requested: a multipart/mixed message containing
image layers of the MIME type as specified in the Formats parameter for each image layer.

10.5.1. MIME multipart response

If multiple portrayals and/or image layers are requested, they shall be responded as MIME
multipart/mixed content in an HTTP response according to Section 5.1.3 of [RFC 2046]. Each
responded image layer shall be encoded as one part of that message as follows.

The parts of this multipart/mixed message are separated by the string
``3DPS_MULTIPART_MESSAGE_BOUNDARY'', which is also indicated in the Content-Type header of
the multipart response message. According to [IETF RFC 2046], a multipart message also ends with
the message’s boundary string.

Each part of the multipart response shall be a document of a MIME type as specified for this image
layer in the request’s Formats parameter. Each part contains a header that declares the MIME type
of this message part.

If multiple Portrayal elements and/or ImageLayer elements are requested, the resulting image
layers in the GetView multipart response shall have the same order as in the GetView request.

In the case that not all requested image layers can be generated, a 3DPS service shall not respond
any image layer, but shall respond with an appropriate exception message.

A 3DPS client that requests multiple image layers needs to be capable to parse the multipart
response and to extract the message parts.

10.6. GetView exceptions
A GetView request may return any of the exception reports defined in core:AbstractGetPortrayal
and/or as specified in Clause 8 of [OWS Common].

Requirement 16: http://www.opengis.net/spec/3DPS/1.0/req/service/view/exception/
common

A GetView request, upon encountering an error, shall return any of the exception
reports defined in core:AbstractGetPortrayal and/or as specified in Clause 8 of [OWS
Common].

Dependency: 3DPS Core (http://www.opengis.net/spec/3DPS/1.0/conf-class/core), OWS
Common 2.0

10.7. Binding Extensions for the GetView operation

10.7.1. HTTP/GET + KVP binding

This clause specifies the KVP encoding for the GetView operation.

EXAMPLE: A possible GetView request might look like this:
http://hostname:port/path?SERVICE=3DPS&VERSION=1.0

74

http://www.opengis.net/spec/3DPS/1.0/req/service/view/exception/common
http://www.opengis.net/spec/3DPS/1.0/req/service/view/exception/common
http://www.opengis.net/spec/3DPS/1.0/conf-class/core

&REQUEST=GetView&CRS=EPSG:26916&BOUNDINGBOX=202759.0,3310170.0,30.0,213200.0,3320896.
0,100.0
&SPATIALSELECTION=contains_center&LAYERS=all&STYLES=&OVERALLSTYLES=foggy,abstract
&BACKGROUND=skybox&PORTRAYALS=WIDTH=1024;HEIGHT=1024;
&Projection=Perspective,210000,332000,50,211000,332000,30,0,0,1,60,,0.01,1000.0
&IMAGELAYERS=COLOR;FORMATS=image/jpeg;QUALITIES=85&EXCEPTIONS=INIMAGE

Servers may implement HTTP/GET transfer of the GetView operation request, using KVP encoding.
The KVP encoding of the GetView operation request shall use the parameters specified in Table 47.
The parameters listed in Table 47 shall be as specified in Table 45 and Table 46.

Table 47. view:GetView operation request URL parameters

Namea Optionality
and use

Definition
and format

Example

service Mandatory Service type
identifier

service=3DPS

request Mandatory Operation
name

request=GetView

version Mandatory Standard and
schema
version for
this
operation

version=1.0

crs Mandatory CRS to apply
to
BoundingBox
and
Viewpoint(s)

crs=EPSG:26916

boundingBox Optional,
include when
spatial
selection by
bounding
box desired

Bounding
box
surrounding
desired
subset of
layer(s), in
desired CRS

boundingbox=202759.0,3310170.0,30.0,
213200.0,3320896.0,100.0

spatialSelection Optional,
include when
spatial
selection
desired

Indicates
method of
selecting
objects with
BoundingBox

spatialselection=contains_center

75

Namea Optionality
and use

Definition
and format

Example

layers Mandatory Identifier(s)
of desired
data layer(s)

layers=dem,bldgs

styles Optional,
include when
named layer
style desired

Identifier(s)
of desired
layer style(s)

styles=default,default

overallStyles Optional,
include when
image style
desired

Identifier(s)
of desired
overall image
style(s)

overallstyles=foggy,abstract

background Optional,
include when
background
desired

Identifier of
desired
background

background=skybox

backgroundColor Optional,
include when
background
color desired

Background
color desired

backgroundcolor=0xFF0000

transparentBackg
round

Optional,
include when
transparent
background
desired

Non-data
parts shall be
transparent

transparentBackground=true

76

Namea Optionality
and use

Definition
and format

Example

portrayals Mandatory List of
specifications
of Width
(one), Height
(one),
Projection
(one),
ImageLayers
(one or
more),
Formats (one
or more),
Qualities
(one or more)

portrayals=
WIDTH=1024;HEIGHT=1024;
PROJECTION=
Perspective,
202000,3310000,200,
202000,3305000,200,
0,0,1,
60,,
0.01,1000.0;
IMAGELAYERS=COLOR,DEPTH;
FORMATS=image/jpeg,image/png%3Bmode=32bi
t;
QUALITIES=100,100
@
WIDTH=768;HEIGHT=768;
PROJECTION=
Perspective,
202000,3310000,200,
202000,3305000,200,
0,0,1,
60,,
0.01,1000.0;
IMAGELAYERS=COLOR,DEPTH;
FORMATS=image/png,image/png;
QUALITIES=100,100 b

exceptions Optional,
include when
default XML
not desired

Format of
exceptions

exceptions=INIMAGE

a All parameter names listed here are using mostly lower case letters. However, any parameter
name capitalization shall be allowed in KVP encoding, see Subclause 11.5.2 of [OWS Common].
b The value for this field shall be encoded as specified in KVP encoding of the Portrayals parameter

BoundingBox

The value of the optional BoundingBox parameter is a list of comma-separated real numbers as
described in Subclause 10.2.3 of [OWS Common]. The units, ordering, and direction of increment of
the X and Y axes are as defined by the request’s CRS parameter.

Layers

The mandatory Layers parameter shall be a comma-separated list of Layer identifiers as advertised
in the service metadata’s Contents section.

77

Styles

The Styles parameter shall be a comma-separated list of Style identifiers as advertised in the
service’s metadata Contents section.

KVP encoding of the Portrayals parameter

The Portrayals parameter lists one or multiple items of Portrayal type (see Table 46) and shall be
encoded in conformance to the following grammar (using EBNF, Extended Backus-Naur Form
notation [ISO/IEC 14977]):

Portrayals = Portrayal, {"@", Portrayal};
Portrayal = "WIDTH=", ‘image width’,
 ";HEIGHT=", ‘image height’,
 ";PROJECTION=", Projection,
 ";IMAGELAYERS=", ImageLayerList,
 ";FORMATS=", FormatList,
 [";QUALITIES=" QualityList];

Projection = ProjectionIdentifier, {",", ProjectionParameterValue};
ProjectionIdentifier = "Perspective" | "Orthographic" |
 ? name of other supported projection ?;
ProjectionParameterValue = empty | ? URL encoded value ?;

ImageLayerList = ImageLayer, {",", ImageLayer};
ImageLayer = "COLOR" | "DEPTH" | "OBJECTID" | "NORMAL" | "MASK" |
 ? service-specific image layer identifier ?;

FormatList = Format, {",", Format};
Format = ? URL encoded MIME type ?;

QualityList = (Quality | empty), {",", (Qualitiy | empty)};
Quality = ? quality value ?;

KVP encoding of the Portrayal components

The Portrayal components are encoded as follows:

a. An ``at'' symbol (@) shall be used to separate one Portrayal value from the next.

b. A semicolon (;) shall be used to separate one Portrayal parameter from another.

c. An equal sign (=) shall be used to separate a Portrayal parameter name from its value.

d. All Portrayal parameter values shall be encoded using the standard Internet practice for
encoding URLs [RFC 1738].

URL encoding according to [RFC 1738] is required for parameter values.

EXAMPLE: The encoding of the parameterized MIME type image/png;mode=32Bit'' is

image%2Fpng%3Bmode=32Bit''.

KVP encoding of the Projection parameter

78

The Projection parameter (which is a component of a Portrayal) shall be encoded as comma
separated list of tuple values. The size of this tuple shall be the same as the number of the
parameters of this projection plus one (the preceding Projection Identifier). The order of the
projection’s parameter values shall be the same as in the service metadata. For optional projection
parameters (see Table 39 and Table 40) the values can be empty. In this case, the service has to use
default values, ignore parameters, or compute values.

10.7.2. GetView request XML encoding (optional)

A 3DPS services may implement HTTP/POST transfer of the GetView operation request using XML
encoding. In Annex B: XML Schemas (normative) specifies the contents and structure of a GetView
operation request encoded in XML.

EXAMPLE: An example GetView operation request XML-encoded for HTTP/POST is:

<?xml version="1.0" encoding="UTF-8"?>
<view:GetView
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:core="http://www.opengis.net/3dps/1.0/core"
 xmlns:view="http://www.opengis.net/3dps/1.0/view"
 xsi:schemaLocation="http://www.opengis.net/3dps/1.0/view ../viewGetView.xsd"
 xmlns:ows="http://www.opengis.net/ows/1.1"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 service="3DPS" request="GetView" version="1.0">
 <core:CRS>EPSG:1234</core:CRS>
 <ows:BoundingBox>
 <ows:LowerCorner>0.0 0.0 0.0</ows:LowerCorner>
 <ows:UpperCorner>100.0 100.0 100.0</ows:UpperCorner>
 </ows:BoundingBox>
 <core:SpatialSelection>contains_center</core:SpatialSelection>
 <core:Layers>
 <ows:Identifier>dem</ows:Identifier>
 <ows:Identifier>bldgs</ows:Identifier>
 </core:Layers>
 <core:Styles>
 <ows:Identifier>nice</ows:Identifier>
 <ows:Identifier>default</ows:Identifier>
 </core:Styles>
 <core:OverallStyles>
 <ows:Identifier>fog</ows:Identifier>
 <ows:Identifier>abstract</ows:Identifier>
 </core:OverallStyles>
 <view:BackgroundColor>0xFF0000</view:BackgroundColor>
 <view:Exceptions>INIMAGE</view:Exceptions>
 <view:Portrayals>
 <view:Portrayal>
 <view:Width>1024</view:Width>
 <view:Height>1024</view:Height>
 <view:PerspectiveProjection>
 <view:POC>100 100 100</view:POC>

79

 <view:POI>101 101 101</view:POI>
 <view:Up>0 0 1</view:Up>
 <view:FOVX>80</view:FOVX>
 <view:FOVY>60</view:FOVY>
 <view:NearPlane>0.0001</view:NearPlane>
 <view:FarPlane>10000.0</view:FarPlane>
 </view:PerspectiveProjection>
 <view:ImageLayers>
 <ows:Identifier>COLOR</ows:Identifier>
 <ows:Identifier>DEPTH</ows:Identifier>
 <ows:Identifier>OBJECTID</ows:Identifier>
 </view:ImageLayers>
 <view:Formats>
 <view:Format>image/jpeg</view:Format>
 <view:Format>image/png; mode=32bit</view:Format>
 <view:Format>text/xml</view:Format>
 </view:Formats>
 <view:Qualities>80,,</view:Qualities>
 </view:Portrayal>
 <view:Portrayal>
 <view:Width>1024</view:Width>
 <view:Height>1024</view:Height>
 <view:OrthographicProjection>
 <view:POC>100 100 100</view:POC>
 <view:POI>101 101 101</view:POI>
 <view:Up>0 0 1</view:Up>
 <view:Left>-100</view:Left>
 <view:Right>-100</view:Right>
 <view:Bottom>-100</view:Bottom>
 <view:Top>100</view:Top>
 <view:NearPlane>0.0001</view:NearPlane>
 <view:FarPlane>10000.0</view:FarPlane>
 </view:OrthographicProjection>
 <view:ImageLayers>
 <ows:Identifier>COLOR</ows:Identifier>
 <ows:Identifier>DEPTH</ows:Identifier>
 <ows:Identifier>OBJECTID</ows:Identifier>
 </view:ImageLayers>
 <view:Formats>
 <view:Format>image/jpeg</view:Format>
 <view:Format>image/png; mode=32bit</view:Format>
 <view:Format>text/xml</view:Format>
 </view:Formats>
 <view:Qualities>80,,</view:Qualities>
 </view:Portrayal>
 </view:Portrayals>
</view:GetView>

80

Chapter 11. Info Extension

11.1. Introduction
The Info Extension specifies capabilities that allow a client to request information about features
within a portrayal from a 3DPS service. The canonical use case for the Info Extension is that a user
explores the response, e.g., of a GetView or GetScene request, and points at an object within the
portrayal for which to obtain more information.

For this, the Info Extension specifies three specialized operations that are based on an abstract
GetFeatureInfo operation and that implement three different methods to identify the selected
feature:

• GetFeatureInfoByRay

• GetFeatureInfoByPosition

• GetFeatureInfoByObjectId

The actual method of how the 3DPS decides which features are selected and what kind of
information is returned is left to the 3D Portrayal Service implementation. The GetFeatureInfo
operation response can be restricted to a feature identifier with the parameter IdOnly. The feature
identifier may be used to access a Web Feature Service (WFS) for further information pertaining
that feature. The GetFeatureInfo operation is only supported for those Layers for which the
attribute queryable has been defined or inherited as ``true''. A client should not issue a
GetFeatureInfo request for other layers. A 3D Portrayal Service shall respond with a properly
formatted OperationNotSupported exception if it receives a GetFeatureInfo request it does not
support. Also, a list of layers shall be provided with the GetFeatureInfo request so that the search
for attribute information can be restricted to selected datasets.

11.2. Modifications to service capabilities

11.2.1. Modifications to ServiceIdentification

A service announces support of the Info Extension to a client by adding the URL identifying this
extension to the list of supported extensions delivered in the Capabilities document.

Requirement 17: http://www.opengis.net/spec/3DPS/1.0/req/service/info/extension-
identifier

A 3DPS service implementing conformance class info of this Info Extension shall include
the following URI in a Profile element of the ServiceIdentification section in a
GetCapabilities response: http://www.opengis.net/spec/3DPS/1.0/extension/info/1.0

Dependency: 3DPS Core (http://www.opengis.net/spec/3DPS/1.0/conf-class/core) and one
of Scene (http://www.opengis.net/spec/3DPS/1.0/conf-class/scene) or View
(http://www.opengis.net/spec/3DPS/1.0/conf-class/view)

81

http://www.opengis.net/spec/3DPS/1.0/req/service/info/extension-identifier
http://www.opengis.net/spec/3DPS/1.0/req/service/info/extension-identifier
http://www.opengis.net/spec/3DPS/1.0/extension/info/1.0
http://www.opengis.net/spec/3DPS/1.0/conf-class/core
http://www.opengis.net/spec/3DPS/1.0/conf-class/scene
http://www.opengis.net/spec/3DPS/1.0/conf-class/view

11.2.2. Modifications to OperationsMetadata

Requirement 18: http://www.opengis.net/spec/3DPS/1.0/req/service/info/operations-
metadata-getfeatureinfo

A 3DPS service implementing conformance class info of this Info Extension shall include
an ows:Operation element in the OperationsMetadata section in a GetCapabilities
response for each of the implemented GetFeatureInfo operations and set its name
attribute to a value as defined in Table 48.

Dependency: 3DPS Core (http://www.opengis.net/spec/3DPS/1.0/conf-class/core)

Table 48. Possible values of name attributes of OperationsMetadata section elements

Value of Operation attribute
name

Meaning of attribute value

GetFeatureInfoByRay The GetFeatureInfoByRay operation is implemented by this
service

GetFeatureInfoByPosition The GetFeatureInfoByPosition operation is implemented by this
service

GetFeatureInfoByObjectId The GetFeatureInfoByObjectId operation is implemented by this
service

Requirement 19: http://www.opengis.net/spec/3DPS/1.0/req/service/info/operations-
metadata-getfeatureinfo-formats

A 3DPS service implementing conformance class info of this Info Extension shall include
for each implemented GetFeatureInfo operation a list of output formats offered for that
operation as ows:MimeType, advertised as ows:Value elements of an ows:Parameter
element of the ows:Operation element of this operation, see Subclause 10.5 of [OWS
Common].

Dependency: 3DPS Core (http://www.opengis.net/spec/3DPS/1.0/conf-class/core)

EXAMPLE: A partial example of an OperationsMetadata element is as follows:

82

http://www.opengis.net/spec/3DPS/1.0/req/service/info/operations-metadata-getfeatureinfo
http://www.opengis.net/spec/3DPS/1.0/req/service/info/operations-metadata-getfeatureinfo
http://www.opengis.net/spec/3DPS/1.0/conf-class/core
http://www.opengis.net/spec/3DPS/1.0/req/service/info/operations-metadata-getfeatureinfo-formats
http://www.opengis.net/spec/3DPS/1.0/req/service/info/operations-metadata-getfeatureinfo-formats
http://www.opengis.net/spec/3DPS/1.0/conf-class/core

<OperationsMetadata>
 <Operation name="GetCapabilities">
 <DCP>
 <HTTP>
 <Get xlink:href="http://example.com/transform?"/>
 </HTTP>
 </DCP>
 <Parameter name="Format">
 <Value>text/xml</Value>
 </Parameter>
 </Operation>
 <Operation name="GetFeatureInfoByRay">
 <DCP>
 <HTTP>
 <Get xlink:href="http://example.com/transform?"/>
 <Post xlink:href="http://example.com/transform?"/>
 </HTTP>
 </DCP>
 <Parameter name="Format">
 <Value>text/xml</Value>
 <Value>text/plain</Value>
 <Value>text/html</Value>
 </Parameter>
 <Parameter name="Exceptions">
 <Value>text/xml</Value>
 <Value>text/plain</Value>
 <Value>text/html</Value>
 </Parameter>
 </Operation>
</OperationsMetadata>

11.2.3. Additions to Layer structure

The Info Extension provides an info:InfoLayerExtension component to add a queryable attribute to
the core:Layer structure.

Requirement 20: http://www.opengis.net/spec/3DPS/1.0/req/service/info/layer-extension

A 3DPS service implementing conformance class info of this Info Extension shall extend
the core:Layer Extensions structure by zero or one InfoLayerExtension structure as
defined in Figure 18 and Table 49

Dependency: 3DPS Core (http://www.opengis.net/spec/3DPS/1.0/conf-class/core)

Figure 18. 3DPS info:InfoLayerExtension UML class diagram

83

http://www.opengis.net/spec/3DPS/1.0/req/service/info/layer-extension
http://www.opengis.net/spec/3DPS/1.0/conf-class/core

Table 49. Components of info:InfoLayerExtension structure

Names Definition Data type and value Multiplicity and
use

queryable
Queryable

Flag indicating if feature
info can be requested from
this layer

Boolean type
true'' means the layer is
queryable, false'' means
layer is not queryable,
default is ``false''

Zero or one
(optional)

11.3. AbstractGetFeatureInfo request

Requirement 21: http://www.opengis.net/spec/3DPS/1.0/req/service/info/
abstractGetFeatureInfo

An info:AbstractGetFeatureInfo request shall consist of an info:AbstractGetFeatureInfo
structure as defined in Figure 19 and Table 50.

Figure 19. 3DPS info:AbstractGetFeatureInfo operation request UML class diagram

Table 50. Additional components of info:AbstractGetFeatureInfo request

Names Definition Data type and value Multiplicity and
use

request
request

Operation name string, not empty
Value is one of
GetFeatureInfoByRay'',
GetFeatureInfoByPosition'',
``GetFeatureInfoByObjectI
d''

One (mandatory)

84

http://www.opengis.net/spec/3DPS/1.0/req/service/info/abstractGetFeatureInfo
http://www.opengis.net/spec/3DPS/1.0/req/service/info/abstractGetFeatureInfo

Names Definition Data type and value Multiplicity and
use

layers
Layers

List of layers to retrieve
the data from

StringList One (mandatory)

featureCount
FeatureCount

Number of features to
return information from.

PositiveInteger type
Default is ``1''

Zero or one
(optional)

idOnly
IdOnly

restrict feature
information to feature id

Boolean type
Default is ``false''

Zero or One
(optional)

format
Format

Format encoding of the
result

ows:MimeType, see [OWS
Common] Subclause 10.5

One (mandatory)

exceptions
Exceptions

Format in which operation
exceptions are returned

ows:MimeType, see [OWS
Common] Subclause 10.5

Zero or one
(optional)

11.3.1. Layers

The Layers parameter specifies a list of layer identifiers from which the service spatially selects
features based on the coordinate, and collects attribute information from. The order in which the
layers are listed in the Layers parameter determines the order in which the feature information
will be displayed in the GetFeatureInfo response. Each entry in the Layers list shall refer to a layer
identifier as described in the service metadata.

11.3.2. FeatureCount

The optional FeatureCount parameter specifies the maximum number of features per layer for
which feature information shall be returned. The parameter value shall be a positive integer. The
default value is ``1'' if this parameter is omitted or is other than a positive integer.

11.3.3. IdOnly

The optional IdOnly parameter can be used to restrict the GetFeatureInfo response to the unique
feature identifier only (value is true''). The feature identifier can be used, e.g., to request
further information of the feature from a Web Feature Server. Default value is false''.

11.3.4. Format

The mandatory Format parameter specifies the target encoding of the returned attribute
information provided as ows:MimeType, see Subclause 10.5 of [OWS Common]. Available formats
are described in the service metadata.

11.3.5. Exceptions

The optional Exceptions parameter specifies the behavior of the service upon detecting an error,
e.g., invalid request or internal service error. The default value is ``text/xml''. The value shall be
one of the MIME types offered in the service metadata parameter value.

85

11.4. GetFeatureInfoByRay request
GetFeatureInfoByRay allows a client to request information about features by selecting them
through a virtual ray, set up from the virtual camera to a 3D point or 2D point in a 3D scene or 3D
view, respectively.

It is assumed that, when performing the ray cast, the scene may not be accurately reproduced
inside the service instance for the benefit of item selection. Thus, the request does not feature the
additional options of the View or Scene profile to aid in reproduction. Rather, some amount of error
should be assumed when using this request.

The GetFeatureInfoByRay request is derived from the AbstractGetFeatureInfo request and inherits
all its parameters. Additional parameters are defined for setting up an intersection ray.

Requirement 22: http://www.opengis.net/spec/3DPS/1.0/req/service/info/
getfeatureinfobyray/request An info:GetFeatureInfoByRay request shall consist of an
info:GetFeatureInfoByRay structure as defined in Figure 19, Table 50, and Table 51.

Table 51. Additional components of info:GetFeatureInfoByRay request

Names Definition Data type and value Multiplicity and
use

request
Request

Operation name string
Value is fixed to
``GetFeatureInfoByRay''

One (mandatory)

crs
CRS

CRS to apply to BoundingBox
and Projection parameters

anyURI One (mandatory)

width
Width

Width of output image that the
request refers to, in pixels

PositiveInteger type,
positive value

One (mandatory)

height
Height

Height of output image that the
request refers to, in pixels

PositiveInteger type One (mandatory)

projection
Projection

Camera specification and
projection parameters

ProjectionBase type
Supported projection
types are specified in
service metadata

One (mandatory)

imagePosition
ImagePosition

Discrete pixel position for
which to search for features to
return information from

Position2D type in image
CS, see Table 6

One (mandatory)

11.4.1. Width, Height

The Width and Height parameters specify the size in integer pixels of the view that describes the
ray cast.

11.4.2. Projection

The Projection parameter specifies a projection to apply to the ray cast. A projection contains the
specification of the virtual camera and projection parameters as defined in 3D projections, Table 39

86

http://www.opengis.net/spec/3DPS/1.0/req/service/info/getfeatureinfobyray/request
http://www.opengis.net/spec/3DPS/1.0/req/service/info/getfeatureinfobyray/request

and Table 40.

11.4.3. ImagePosition

The ImagePosition parameter specifies the 2D pixel position for which to analyze the scene and for
where to retrieve information for. The parameter value is a list of two integer numbers describing
the X, Y coordinates of the pixel in image CS.

11.5. GetFeatureInfoByPosition request
The GetFeatureInfoByPosition operation finds features based on a location, usually determined in
the portrayal by clicking on, or close to, an object. The service locates the closest FeatureCount
features and returns the associated feature attributes to the client.

The GetFeatureInfoByPosition request is derived from the AbstractGetFeatureInfo request and
inherits all its parameters. Additional parameters are defined to support locating nearby features.

Requirement 23: http://www.opengis.net/spec/3DPS/1.0/req/service/info/
getfeatureinfobyposition/request

An info:GetFeatureInfoByPosition request shall consist of an
info:GetFeatureInfoByPosition structure as defined in Figure 19, Table 50, and Table 52.

Table 52. Additional components of info:GetFeatureInfoByPosition request

Namesa Definition Data type and value Multiplicity and
use

request
Request

Operation name string
Value is fixed to
``GetFeatureInfoByPositio
n''

One (mandatory)

crs
CRS

CRS of the coordinates anyURI One (mandatory)

coordinate
Coordinate

Location coordinates used
to search for features

Position3D type, see Table
6, coordinate order in CRS
space

One (mandatory)

tolerance
Tolerance

Tolerance in meter A floating-point number Zero or one
(optional)

11.5.1. CRS

The CRS parameter’s value is defined in Subclause 10.3 of [OWS Common] and [OGC 04-046r3].
When using a 2D CRS, then the height reference is taken from the layer’s vertical datum.

11.5.2. Coordinate

The Coordinate parameter specifies a geolocation within the scene from which feature information
will be retrieved. The parameter value is a list of comma separated floating point numbers
describing a geoposition in CRS coordinates. This location should be within or at the border of a

87

http://www.opengis.net/spec/3DPS/1.0/req/service/info/getfeatureinfobyposition/request
http://www.opengis.net/spec/3DPS/1.0/req/service/info/getfeatureinfobyposition/request

feature geometry for accuracy reasons, but it does not need to. The 3D Portrayal Service shall
detect the feature(s) whose geometry is covering the location or which are close to the location.

11.5.3. Tolerance

Optionally, a tolerance in meter may be specified which guides the service in determining the range
in which features should be located. It is provisional only, i.e., the service may return features
outside that range even when specified, and it also may use an implementation-defined default if
not specified.

11.6. GetFeatureInfoByObjectId request
Some (mostly 3D) formats allow for inclusion of object identifiers. Such identifiers may then be
used to obtain feature attributes directly. Except through the specified IdOnly mechanism, the
details of how precisely object identifiers are obtained in the client are left unspecified. When an
object identifier is obtained and further information is sought, the GetFeatureInfoByObjectId
operation can be used directly to request additional information.

The GetFeatureInfoByObjectId request is derived from the AbstractGetFeatureInfo request and
inherits all its parameters. Additional and refined parameters are defined to specify a list of desired
identifiers.

Requirement 24: http://www.opengis.net/spec/3DPS/1.0/req/service/info/
getfeatureinfobyobjectid/request

An info:GetFeatureInfoByObjectId request shall consist of an info:GetFeatureInfoByRay
structure as defined in Figure 19, Table 50, and Table 53.

Table 53. Additional components of info:GetFeatureInfoByObjectId request

Names Definition Data type and value Multiplicity and
use

request
Request

Operation name string
Value is fixed to
``GetFeatureInfoByPositio
n''

One (mandatory)

objectId
ObjectId

Identifier of the selected
feature(s)

URI One or more
(mandatory)

featureCount
FeatureCount

Number of features to
return information from.

Integer type, default is the
number of ObjectId
identifiers provided.

Zero or one
(optional)

11.6.1. ObjectID

Unique identifier(s) of the selected feature(s).

11.6.2. FeatureCount

If FeatureCount is specified, it shall correspond to the number of object identifiers provided.

88

http://www.opengis.net/spec/3DPS/1.0/req/service/info/getfeatureinfobyobjectid/request
http://www.opengis.net/spec/3DPS/1.0/req/service/info/getfeatureinfobyobjectid/request

Otherwise, FeatureCount shall be assumed to equal the cardinality of the ObjectId identifiers.

11.7. GetFeatureInfo response
The normal response to a valid GetFeatureInfo operation request shall be a document in which the
attribute information of each identified feature is listed. The response is a document encoded in the
MIME type as specified in the Format parameter.

Requirement 25: http://www.opengis.net/spec/3DPS/1.0/req/service/info/response

To a valid GetFeatureInfo request, a 3DPS service implementing conformance class info
of this Info Extension shall respond a FeatureInfo as defined in Table 54, Table 55, Table
56 and Table 57.

Dependency: 3DPS Core (http://www.opengis.net/spec/3DPS/1.0/conf-class/core)

NOTE
A FeatureInfoList can contain multiple more than one FeatureAttributeList
elements, which allows, e.g., for grouping feature attributes by their topic or
domain.

Table 54. Components of info:FeatureInfo structure

Names Definition Data type and value Multiplicity and
use

featureInfoList
FeatureInfoList

List containing
information of one feature

FeatureInfoList type One or more
(mandatory)
Include one for
each feature that
was found

Table 55. Components of info:FeatureInfoList structure

Names Definition Data type and value Multiplicity and
use

featureId
FeatureId

Feature identifier that may
be used to directly request
an underlying feature
database (e.g., OGC WFS)

string, not empty Zero or one
(optional)
Include if feature
identifier is
available

objectId
ObjectId

Object identifier, as used
by this server a

string, not empty Zero or one
(optional)
Include if object
identifier is
available

typeName
TypeName

Name of the feature’s type string, not empty Zero or one
(optional)
Include if a type
name is available

89

http://www.opengis.net/spec/3DPS/1.0/req/service/info/response
http://www.opengis.net/spec/3DPS/1.0/conf-class/core

Names Definition Data type and value Multiplicity and
use

featureAttributeList
FeatureAttributeLis
t

Group of feature attributes FeatureAttributeList data
type, not empty, see Table
56

Zero or more
(optional)
Include when
attributes available
for this feature

a The object identifiers can be assumed valid only for this server. In that sense, it differes from a
feature identifier, which should be unique across multiple servers' data stores.

Table 56. Components of info:FeatureAttributeList structure

Names Definition Data type and value Multiplicity and
use

attribute
Attribute

Feature attribute name
and value

FeatureAttribute type, not
empty, see Table 57

One or more
(mandatory)

Table 57. Components of info:FeatureAttribute structure

Names Definition Data type and value Multiplicity and
use

name
Name

Attribute name string, not empty One (mandatory)

value
Value

Attribute value string, might be empty One (mandatory)

11.7.1. FeatureInfo encoding

FeatureInfo XML encoding

Example: An example XML-encoded FeatureInfo response is:

90

<FeatureInfo xmlns="http://www.opengis.net/3dps/1.0/info">
 <FeatureInfoList featureType="buildings">
 <ObjectId>496376</ObjectId>
 <FeatureId>BLDG_0003000e0080fce9</FeatureId>
 <FeatureAttributeList>
 <FeatureAttribute name="id">34891270</FeatureAttribute>
 <FeatureAttribute name="objkey">1123 Hochschulgebaeude</FeatureAttribute>
 <FeatureAttribute name="strkey">2390</FeatureAttribute>
 <FeatureAttribute name="hsno">1</FeatureAttribute>
 <FeatureAttribute name="description">Alte Universitaet</FeatureAttribute>
 </FeatureAttributeList>
 <FeatureAttributeList>
 <FeatureAttribute name="sockelhoehe">2.500000</FeatureAttribute>
 <FeatureAttribute name="traufhoehe">15.000000</FeatureAttribute>
 <FeatureAttribute name="height">115.347270</FeatureAttribute>
 </FeatureAttributeList>
 </FeatureInfoList>
</FeatureInfo>

FeatureInfo HTML encoding

A GetFeatureInfo operation response may look like this encoded in text/html:

91

<html>
 <head></head>
 <body>
 <table>
 <tr>
 <th>Buildings</th>
 </tr>
 <tr>
 <th></th>
 <th>id</th>
 <th>objkey</th>
 <th>strkey</th>
 <th>hsno</th>
 <th>description</th>
 <th>sockelhoehe</th>
 <th>traufhoehe</th>
 <th>height</th>
 </tr>
 <tr>
 <td>1</td>
 <td>34891270</td>
 <td>1123 Hochschulgebaeude</td>
 <td>2390</td>
 <td>1</td>
 <td>Alte Universitaet</td>
 <td>2.500000</td>
 <td>15.000000</td>
 <td>115.347270</td>
 </tr>
 </table>
 </body>
</html>

11.7.2. GetFeatureInfo exceptions

When a 3DPS encounters an error while processing a GetFeatureInfo request, it shall return an
exception report message as specified in Clause 8 of [OWS Common]. The allowed standard
exception codes shall include those listed in Table 58. For each listed exceptionCode, the contents of
the ``locator'' parameter value shall be filled as specified in the right column of the table.

11.7.3. Exception codes

Table 58. Exception codes of the GetFeatureInfo operations.

exceptionCode value Meaning of code ``locator'' value

OperationNotSupporte
d

Request is for an operation that is not supported
by this service

Name of operation not
supported

92

exceptionCode value Meaning of code ``locator'' value

MissingParameterValue Operation request does not include a parameter
value, and this service did not declare a default
value for that parameter

Name of missing
parameter

InvalidParameterValue Operation request contains an invalid
parameter value

Name of parameter
with invalid value

OptionNotSupported Request is for an option that is not supported by
this service

Identifier of option not
supported

CRSNotSupported Operation request contains a value in the CRS
parameter which is not supported by the service

Name of unsupported
CRS

UnknownLayer Operation request contains an identifier in the
Layers parameter which is unknown to the
service

Identifier of invalid
layer

FormatNotSupported Operation request contains a MIME type in the
Format parameter which is not supported by the
service

Name of unsupported
format

ExceptionNotSupported Operation request contains a value in the
Exception parameter which is not supported by
the service

Name of unsupported
exception format

NoApplicableCode No other exceptionCode specified by this service
and service applies to this exception

None, omit ``locator''
parameter

93

Chapter 12. Annex A: Conformance Class
Abstract Test Suite (normative)
Tests and requirement identifiers below are relative to http://www.opengis.net/spec/3DPS/1.0/
testing.

References to XML schema read either ows:Type or core:Type and refer to http://www.opengis.net/
ows/2.0 or http://www.opengis.net/3dps/1.0/core, respectively.

12.1. Conformance class: core

Conformance class: core

The OGC URI identifier of this conformance class is: http://www.opengis.net/spec/3DPS/1.0/conf-
class/core

Test identifier http://www.opengis.net/spec/3DPS/1.0/testing/conf-class/core

Test purpose Verify that the service implements the ``core'' 3DPS conformance class.

Test method Verify that the service declares and implements the core conformance class by
evaluating the GetCapabilities response. Verify that the requests and responses
to a supported operation are syntactically correct. Verify that the service
supports the view conformance class, the scene conformance class or both.

12.2. Tests for requirements of the core requirements
class
Most core requirements are actually requirements against extensions to this standard. They are
therefore not included here.

GetCapabilities request

Requirement 1

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/core/getcapabilities/request/
structure

Test purpose Test that the server can handle GetCapabilities requests.

Test method Send a valid GetCapabilities request to the server under test. Test passes if a
valid document of the type core:CapabilitiesType is returned.

GetCapabilities response

Requirement 2

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/core/getcapabilities/
response/structure

Test purpose Test that the GetCapabilities response conforms to the specification.

Test method Verify that the GetCapabilities response is valid according to the declared
schema and that the root element conforms to core:CapabilitiesType.

94

http://www.opengis.net/spec/3DPS/1.0/testing
http://www.opengis.net/spec/3DPS/1.0/testing
http://www.opengis.net/ows/2.0
http://www.opengis.net/ows/2.0
http://www.opengis.net/3dps/1.0/core
http://www.opengis.net/spec/3DPS/1.0/conf-class/core
http://www.opengis.net/spec/3DPS/1.0/conf-class/core
http://www.opengis.net/spec/3DPS/1.0/testing/conf-class/core
http://www.opengis.net/spec/3DPS/1.0/req/service/core/getcapabilities/request/structure
http://www.opengis.net/spec/3DPS/1.0/req/service/core/getcapabilities/request/structure
http://www.opengis.net/spec/3DPS/1.0/req/service/core/getcapabilities/response/structure
http://www.opengis.net/spec/3DPS/1.0/req/service/core/getcapabilities/response/structure

GetResourceById request

Requirement 3

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/core/getResourceById/
request

Test purpose Test that the GetResourceById response conforms to the specification.

Test method Verify the service’s core:GetResourceById against [OGC 06-121r9] Section A.3.3
with the additional constraints laid out in this section.'

GetResourceById response

Requirement 4

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/core/getResourceById/
response

Test purpose Test that the response is formed as expected.

Test method Request data from the service and validate its inner structure and the service
response’s MIME type to match the requested MIME type.'

12.3. Conformance class: scene

Conformance class: scene

The OGC URI identifier of this conformance class is: http://www.opengis.net/spec/3DPS/1.0/conf-
class/scene

Test identifier http://www.opengis.net/spec/3DPS/1.0/testing/profile/scene

Test purpose Verify that the service implements the ``scene'' 3DPS conformance class.

Test method Verify that the service declares and implements the GetScene operation. Verify
that GetScene declares at least one format. Verify conformance test
{TestPrefix}/conf-class/core.

12.4. Tests for requirements of the scene requirements
class

NOTE These tests require an instance that has some content.

Modifications to service identification

Requirement 5

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/scene/extension-identifier

Test purpose Test that an instance declares its implementation of the scene requirements
class.

Test method Verify that the GetCapabilities response includes the declaration of a profile
element {SpecElementPrefix}/extension/scene/1.0

95

http://www.opengis.net/spec/3DPS/1.0/req/service/core/getResourceById/request
http://www.opengis.net/spec/3DPS/1.0/req/service/core/getResourceById/request
http://www.opengis.net/spec/3DPS/1.0/req/service/core/getResourceById/response
http://www.opengis.net/spec/3DPS/1.0/req/service/core/getResourceById/response
http://www.opengis.net/spec/3DPS/1.0/conf-class/scene
http://www.opengis.net/spec/3DPS/1.0/conf-class/scene
http://www.opengis.net/spec/3DPS/1.0/testing/profile/scene
http://www.opengis.net/spec/3DPS/1.0/req/service/scene/extension-identifier

Test for Operations Metadata

Requirement 6

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/scene/operations-metadata-
getscene

Test purpose Test that operations metadata is complete.

Test method Verify that the GetCapabilities response includes an operation named
`GetScene'. Verify that the operation declares the parameters given in Table 24
and Table 32 are declared.

Layer extension test

Requirement 7

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/scene/layer-extension

Test purpose Ensure that the layer extensions for scene-based portrayal are declared.

Test method Verify that at least one layer includes a maximum of one
scene:SceneLayerExtension element in its Extensions element.

Mime types

Requirement 8

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/scene/mimetypes

Test purpose Test that declared MIME types conform to the specification.

Test method Verify that there are MIME types available for each layer. Verify that for each
parameterized MIME type, there is a corresponding unparameterized MIME.

Portrayal capabilities declaration test

Requirement 9

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/scene/portrayalcapabilities-
extension

Test purpose Test that portrayal capabilities are declared properly.

Test method Verify that the GetCapabilities response contains an extension element
scene:ScenePortrayalCapabilitiesExtension.

Response

Requirement 11

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/scene/getscene/response

Test purpose Test that the response is formed as expected.

Test method Request data from all layers from the service in all declared MIME types,
individually. Verify that each response is formed according to the provisions of
the format associated with the MIME type used for that response, or is an
error. Verify that at least one response is not an error.

96

http://www.opengis.net/spec/3DPS/1.0/req/service/scene/operations-metadata-getscene
http://www.opengis.net/spec/3DPS/1.0/req/service/scene/operations-metadata-getscene
http://www.opengis.net/spec/3DPS/1.0/req/service/scene/layer-extension
http://www.opengis.net/spec/3DPS/1.0/req/service/scene/mimetypes
http://www.opengis.net/spec/3DPS/1.0/req/service/scene/portrayalcapabilities-extension
http://www.opengis.net/spec/3DPS/1.0/req/service/scene/portrayalcapabilities-extension
http://www.opengis.net/spec/3DPS/1.0/req/service/scene/getscene/response

12.5. Conformance class: view

Conformance class: view

The OGC URI identifier of this conformance class is: http://www.opengis.net/spec/3DPS/1.0/conf-
class/view

Test identifier http://www.opengis.net/spec/3DPS/1.0/testing/profile/view

Test purpose Verify that the service implements the ``view'' 3DPS conformance class.

Test method Verify that the service declares and implements the GetView operation. Verify
that GetView declares at least one format. Verify conformance test
{TestPrefix}/conf-class/core.

12.6. Tests for requirements of the view requirements
class

Modifications to service identification

Requirement 12

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/view/extension-identifier

Test purpose Test that an instance declares its implementation of the view requirements
class.

Test method Verify that the GetCapabilities response includes the declaration of a profile
element {SpecElementPrefix}/extension/view/1.0

Test for Operations Metadata

Requirement 13

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/view/operations-metadata-
getview

Test purpose Test that operations metadata is complete.

Test method Verify that the GetCapabilities response includes an operation named
"GetView". Verify that the operation declares the parameters given in Table 24
and Table 45 are declared.

Portrayal capabilities declaration test

Requirement 14

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/view/portrayalcapabilities-
extension

Test purpose Test that portrayal capabilities are declared properly.

Test method Verify that the GetCapabilities response contains an extension element
view:ViewPortrayalCapabilitiesExtension.

Test exception use in response

Requirement 16

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/view/exception/common

97

http://www.opengis.net/spec/3DPS/1.0/conf-class/view
http://www.opengis.net/spec/3DPS/1.0/conf-class/view
http://www.opengis.net/spec/3DPS/1.0/testing/profile/view
http://www.opengis.net/spec/3DPS/1.0/req/service/view/extension-identifier
http://www.opengis.net/spec/3DPS/1.0/req/service/view/operations-metadata-getview
http://www.opengis.net/spec/3DPS/1.0/req/service/view/operations-metadata-getview
http://www.opengis.net/spec/3DPS/1.0/req/service/view/portrayalcapabilities-extension
http://www.opengis.net/spec/3DPS/1.0/req/service/view/portrayalcapabilities-extension
http://www.opengis.net/spec/3DPS/1.0/req/service/view/exception/common

Test exception use in response

Test purpose Test that the response is formed as expected.

Test method Request data from all layers from the service in all declared MIME types,
individually. Verify that each response is formed according to the provisions of
the format associated with the MIME type used for that response, or is an
error. Verify that at least one response is not an error.

12.7. Conformance class: info

Conformance class: info

The OGC URI identifier of this conformance class is: http://www.opengis.net/spec/3DPS/1.0/conf-
class/info

Test identifier http://www.opengis.net/spec/3DPS/1.0/testing/profile/info

Test purpose Verify that the service implements the ``info'' 3DPS conformance class.

Test method Verify that the service declares and implements one of GetFeatureInfoByRay,
GetFeatureInfoByPosition or GetFeatureInfoByObjectID operations. Verify
conformance test {TestPrefix}/conf-class/core. Verify either conformance test
conf-class/scene or conf-class/view or both.

12.8. Tests for requirements of the info requirements
class

Modifications to service identification

Requirement 17

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/info/extension-identifier

Test purpose Test that an instance declares its implementation of the info requirements
class.

Test method Verify that the GetCapabilities response includes the declaration of a profile
element {SpecElementPrefix}/extension/info/1.0

Test for Operations Metadata

Requirement 18

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/info/operations-metadata-
getfeatureinfo

Test purpose Test that operations metadata contains at least one info-request operation

Test method Verify that the GetCapabilities response includes at least one operation
mentioned in Table 48.

Test for feature information formats

Requirement 19

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/info/operations-metadata-
getfeatureinfo-formats

98

http://www.opengis.net/spec/3DPS/1.0/conf-class/info
http://www.opengis.net/spec/3DPS/1.0/conf-class/info
http://www.opengis.net/spec/3DPS/1.0/testing/profile/info
http://www.opengis.net/spec/3DPS/1.0/req/service/info/extension-identifier
http://www.opengis.net/spec/3DPS/1.0/req/service/info/operations-metadata-getfeatureinfo
http://www.opengis.net/spec/3DPS/1.0/req/service/info/operations-metadata-getfeatureinfo
http://www.opengis.net/spec/3DPS/1.0/req/service/info/operations-metadata-getfeatureinfo-formats
http://www.opengis.net/spec/3DPS/1.0/req/service/info/operations-metadata-getfeatureinfo-formats

Test for feature information formats

Test purpose Test that feature information formats are declared

Test method Verify that each operation from Table 48 in the operations metadata declares a
format parameter and one or more possible values.

Test for the layer extension

Requirement 20

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/info/layer-extension

Test purpose Test that the layer extension is used

Test method Verify that at least one layer includes a maximum of one
scene:SceneLayerExtension element in its Extensions element.

Test the abstract feature info generalization

Requirement 21

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/info/abstractGetFeatureInfo

Test purpose Test that all feature info operations extend AbstractGetFeatureInfo

Test method Verify that each operation from Table 48 declared in the operations metadata
also declares the parameters listed in Table 50.

Test GetFeatureInfoByRay request structure

Requirement 22

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/info/getfeatureinfobyray/
request

Test purpose Test that the request structure conforms to this standard

Test method Verify that the request structure as declared is consistent with Figure 19, Table
51 and Table 50. Verify that all parameters are declared.

Test GetFeatureInfoByPosition request structure

Requirement 23

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/info/
getfeatureinfobyposition/request

Test purpose Test that the request structure conforms to this standard

Test method Verify that the request structure as declared is consistent with Figure 19, Table
52 and Table 50. Verify that all parameters are declared.

Test GetFeatureInfoByObjectId request structure

Requirement 24

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/info/
getfeatureinfobyobjectid/request

Test purpose Test that the request structure conforms to this standard

Test method Verify that the request structure as declared is consistent with Figure 19, Table
53 and Table 50. Verify that all parameters are declared.

99

http://www.opengis.net/spec/3DPS/1.0/req/service/info/layer-extension
http://www.opengis.net/spec/3DPS/1.0/req/service/info/abstractGetFeatureInfo
http://www.opengis.net/spec/3DPS/1.0/req/service/info/getfeatureinfobyray/request
http://www.opengis.net/spec/3DPS/1.0/req/service/info/getfeatureinfobyray/request
http://www.opengis.net/spec/3DPS/1.0/req/service/info/getfeatureinfobyposition/request
http://www.opengis.net/spec/3DPS/1.0/req/service/info/getfeatureinfobyposition/request
http://www.opengis.net/spec/3DPS/1.0/req/service/info/getfeatureinfobyobjectid/request
http://www.opengis.net/spec/3DPS/1.0/req/service/info/getfeatureinfobyobjectid/request

Test exception use in response

Requirement 25

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/info/response

Test purpose Test that the response is formed as expected.

Test method Request feature info from all queryable layers from the service in all declared
MIME types, individually. Verify that each response is formed according to the
provisions of the format associated with the MIME type used for that response,
or is an error. Verify that at least one response is not an error.

100

http://www.opengis.net/spec/3DPS/1.0/req/service/info/response

Chapter 13. Annex B: XML Schemas
(normative)
The XML schema documents corresponding to XML 3DPS queries and responses are to be found in
http://schemas.opengis.net/3dps/1.0. The schema content is being repeated here as a convenience
to the reader. The schemas on http://schemas.opengis.org are considered normative.

All these XML Schema Documents contain documentation of the meaning of each element and
attribute, and this documentation shall be considered normative as specified in Subclause 11.6.3 of
[OWS Common].

The XML schemas are being developed jointly with the standard documents, and care has been
taken that every well-formed (in the XML sense) example validates against the schema.

The XML schema documents use (i.e. import) and build on the OWS common XML Schema
Documents specified in [OWS Common], named:

• ows19115subset.xsd

• owsCommon.xsd

• owsDataIdentification.xsd

• owsExceptionReport.xsd

• owsGetCapabilities.xsd

• owsOperationsMetadata.xsd

• owsServiceIdentification.xsd

• owsServiceProvider.xsd

13.1. core schema

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.opengis.net/3dps/1.0/core">
 <xs:import namespace="http://www.opengis.net/ows/2.0"
schemaLocation="http://schemas.opengis.net/ows/2.0/owsContents.xsd"/>
 <xs:import namespace="http://www.opengis.net/ows/2.0"
schemaLocation="http://schemas.opengis.net/ows/2.0/owsDataIdentification.xsd"/>
 <xs:import namespace="http://www.opengis.net/ows/2.0"
schemaLocation="http://schemas.opengis.net/ows/2.0/owsCommon.xsd"/>
 <xs:complexType name="AbstractGetPortrayalType" abstract="true">
 <xs:complexContent>
 <xs:extension base="RequestBaseType">
 <xs:sequence>
 <xs:element name="CRS" type="xs:anyURI" minOccurs="1" maxOccurs="1"/>
 <xs:element name="BoundingBox" type="ows:BoundingBoxType" minOccurs="1"
maxOccurs="1"/>
 <xs:element name="SpatialSelection" type="xs:string" minOccurs="0"

101

http://schemas.opengis.net/3dps/1.0
http://schemas.opengis.net/3dps/1.0
http://schemas.opengis.net/3dps/1.0
http://schemas.opengis.net/3dps/1.0
http://schemas.opengis.net/3dps/1.0
http://schemas.opengis.org

maxOccurs="1"/>
 <xs:element name="Layers" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="Styles" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="Background" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="LODs" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="LODSelection" type="xs:string" minOccurs="0" maxOccurs=
"1"/>
 <xs:element name="OverallStyles" type="xs:string" minOccurs="0"
maxOccurs="1"/>
 <xs:element name="DeliveryOptions" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="Exceptions" type="xs:string" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="CapabilitiesType">
 <xs:complexContent>
 <xs:extension base="ows:CapabilitiesBaseType">
 <xs:sequence>
 <xs:element name="Contents" type="ContentsType" minOccurs="0" maxOccurs=
"1"/>
 <xs:element name="PortrayalCapabilities" type="PortrayalCapabilitiesType"
minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="RequestBaseType" abstract="true">
 <xs:sequence>
 <xs:sequence minOccurs="0" maxOccurs="1" ObjectID="1624"/>
 </xs:sequence>
 <xs:attribute name="service" use="required" type="xs:string"/>
 <xs:attribute name="request" use="required" type="xs:string"/>
 <xs:attribute name="version" use="required" type="xs:string"/>
 </xs:complexType>
 <xs:complexType name="DeliveryOptionType">
 <xs:complexContent>
 <xs:extension base="ows:DescriptionType">
 <xs:sequence>
 <xs:element ref="ows:Identifier" minOccurs="1" maxOccurs="1"/>
 <xs:element name="Format" type="ows:MimeType" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="ViewpointHintType">
 <xs:complexContent>
 <xs:extension base="ows:DescriptionType">
 <xs:sequence>

102

 <xs:element name="POC" type="Position3DType" minOccurs="1" maxOccurs="1"/>
 <xs:element name="POI" type="Position3DType" minOccurs="1" maxOccurs="1"/>
 <xs:element name="UP" type="Position3DType" minOccurs="1" maxOccurs="1"/>
 <xs:element name="FOVX" type="xs:double" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:simpleType name="Section">
 <xs:restriction base="xs:string">
 <xs:enumeration value="ServiceIdentification"/>
 <xs:enumeration value="ServiceProvider"/>
 <xs:enumeration value="OperationsMetadata"/>
 <xs:enumeration value="Languages"/>
 <xs:enumeration value="Contents"/>
 <xs:enumeration value="PortrayalCapabilities"/>
 <xs:enumeration value="All"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="PortrayalCapabilitiesType">
 <xs:sequence>
 <xs:element name="AvailableSpatialSelection" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="AvailableLODSelection" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="SupportsBoundingBoxConversion" type="xs:boolean" minOccurs="0"
maxOccurs="1"/>
 <xs:element name="AvailableLODScheme" type="LODSchemeType" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="ViewpointHint" type="ViewpointHintType" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="DeliveryOption" type="DeliveryOptionType" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="OverallStyle" type="OverallStyleType" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="Background" type="BackgroundType" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:sequence minOccurs="0" maxOccurs="1" ObjectID="1624"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="LODSchemeType">
 <xs:complexContent>
 <xs:extension base="ows:DescriptionType">
 <xs:sequence>
 <xs:element ref="ows:Identifier" minOccurs="1" maxOccurs="1"/>
 <xs:element name="LOD" type="xs:QName" minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="LayerType">

103

 <xs:complexContent>
 <xs:extension base="ows:DescriptionType">
 <xs:sequence>
 <xs:element ref="ows:Identifier" minOccurs="1" maxOccurs="1"/>
 <xs:element name="AvailableCRS" type="xs:anyURI" minOccurs="1"
maxOccurs="unbounded"/>
 <xs:element name="AvailableLOD" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="DeliveryOption" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="Layer" type="LayerType" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:sequence minOccurs="0" maxOccurs="1"/>
 <xs:element name="AvailableStyle" type="StyleType" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="WGS84BoundingBox" type="ows:WGS84BoundingBoxType"
minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="Metadata" type="ows:MetadataType" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="BoundingBox" type="ows:BoundingBoxType" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="GetResourceByIdType">
 <xs:complexContent>
 <xs:extension base="RequestBaseType">
 <xs:sequence>
 <xs:element name="ResourceID" type="xs:anyURI" minOccurs="1" maxOccurs="1"/>
 <xs:element name="OutputFormat" type="xs:string" minOccurs="1" maxOccurs=
"1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="Position3DType">
 <xs:sequence>
 <xs:element name="X1" type="xs:double" minOccurs="1" maxOccurs="1"/>
 <xs:element name="X2" type="xs:double" minOccurs="1" maxOccurs="1"/>
 <xs:element name="X3" type="xs:double" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ContentsType">
 <xs:complexContent>
 <xs:extension base="core:OWSContentsBaseRestrictionType">
 <xs:sequence minOccurs="0" maxOccurs="1">
 <xs:element name="Layer" type="LayerType" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>

104

 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="GetCapabilitiesType">
 <xs:complexContent>
 <xs:extension base="ows:GetCapabilitiesType">
 <xs:sequence/>
 <xs:attribute name="service" use="optional" type="xs:string"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="OverallStyleType">
 <xs:complexContent>
 <xs:extension base="ows:DescriptionType">
 <xs:sequence>
 <xs:element ref="ows:Identifier" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="BackgroundType">
 <xs:complexContent>
 <xs:extension base="ows:DescriptionType">
 <xs:sequence>
 <xs:element ref="ows:Identifier" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="StyleType">
 <xs:complexContent>
 <xs:extension base="ows:DescriptionType">
 <xs:sequence>
 <xs:element ref="ows:Identifier" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="Position2DType">
 <xs:sequence>
 <xs:element name="X1" type="xs:double" minOccurs="1" maxOccurs="1"/>
 <xs:element name="X2" type="xs:double" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="OWSContentsBaseRestrictionType">
 <xs:complexContent>
 <xs:extension base="ows:ContentsBaseType">
 <xs:sequence/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:schema>

105

13.2. scene schema

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.opengis.net/3dps/1.0/scene">
 <xs:import namespace="http://www.opengis.net/ows/2.0"
schemaLocation="http://schemas.opengis.net/ows/2.0/ows19115subset.xsd"/>
 <xs:import namespace="http://www.opengis.net/ows/2.0"
schemaLocation="http://schemas.opengis.net/ows/2.0/owsCommon.xsd"/>
 <xs:import namespace="http://www.opengis.net/3dps/1.0/core"
schemaLocation="http://www.opengis.net/3dps/1.0/core"/>
 <xs:complexType name="SceneLayerExtensionType">
 <xs:sequence>
 <xs:element name="AvailableFormat" type="ows:MimeType" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="AvailableOffset" type="core:Position3DType" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="AvailableOffsetMode" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="GetSceneType">
 <xs:complexContent>
 <xs:extension base="core:AbstractGetPortrayalType">
 <xs:sequence>
 <xs:element name="Offset" type="core:Position3DType" minOccurs="0"
maxOccurs="1"/>
 <xs:element name="OffsetMode" type="ows:string" minOccurs="0" maxOccurs=
"1"/>
 <xs:element name="Format" type="ows:MimeType" minOccurs="1" maxOccurs="1"/>
 <xs:element name="Viewpoints" type="xs:string" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="ScenePortrayalCapabilitiesExtensionType">
 <xs:sequence>
 <xs:element name="SupportsArbitraryOffset" type="xs:boolean" minOccurs="0"
maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="SceneLayerExtension" type="scene:SceneLayerExtensionType"/>
</xs:schema>

13.3. view schema

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

106

targetNamespace="http://www.opengis.net/3dps/1.0/view">
 <xs:import namespace="http://www.opengis.net/ows/2.0"
schemaLocation="http://schemas.opengis.net/ows/2.0/owsCommon.xsd"/>
 <xs:import namespace="http://www.opengis.net/ows/2.0"
schemaLocation="http://schemas.opengis.net/ows/2.0/ows19115subset.xsd"/>
 <xs:import namespace="http://www.opengis.net/ows/2.0"
schemaLocation="http://schemas.opengis.net/ows/2.0/owsDomainType.xsd"/>
 <xs:import namespace="http://www.opengis.net/ows/2.0"
schemaLocation="http://schemas.opengis.net/ows/2.0/owsDataIdentification.xsd"/>
 <xs:import namespace="http://www.opengis.net/3dps/1.0/core"
schemaLocation="http://www.opengis.net/3dps/1.0/core"/>
 <xs:complexType name="ViewLayerExtensionType">
 <xs:sequence/>
 </xs:complexType>
 <xs:element name="Projection" type="view:ProjectionBaseType"/>
 <xs:complexType name="GetViewType">
 <xs:complexContent>
 <xs:extension base="core:AbstractGetPortrayalType">
 <xs:sequence>
 <xs:element name="BackgroundColor" type="xs:string" minOccurs="0"
maxOccurs="1"/>
 <xs:element name="TransparentBackground" type="xs:boolean" minOccurs="0"
maxOccurs="1"/>
 <xs:element name="Portrayals" type="PortrayalListType" minOccurs="1"
maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="PortrayalListType">
 <xs:sequence>
 <xs:element name="Portrayal" type="PortrayalType" minOccurs="1"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="PerspectiveProjectionType">
 <xs:complexContent>
 <xs:extension base="ProjectionBaseType">
 <xs:sequence>
 <xs:element name="POC" type="core:Position3DType" minOccurs="1"
maxOccurs="1"/>
 <xs:element name="POI" type="core:Position3DType" minOccurs="1"
maxOccurs="1"/>
 <xs:element name="UP" type="core:Position3DType" minOccurs="1" maxOccurs=
"1"/>
 <xs:element name="FOVX" type="xs:double" minOccurs="0" maxOccurs="1"/>
 <xs:element name="FOVY" type="xs:double" minOccurs="0" maxOccurs="1"/>
 <xs:element name="NearPlane" type="xs:double" minOccurs="0" maxOccurs="1"/>
 <xs:element name="FarPlane" type="xs:double" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>

107

 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="ViewPortrayalCapabilitiesExtensionType">
 <xs:sequence>
 <xs:element name="farPlaneHint" type="xs:double" minOccurs="1" maxOccurs="1"/>
 <xs:element name="nearPlaneHint" type="xs:double" minOccurs="1" maxOccurs="1"/>
 <xs:element name="supportsMultipleViews" type="xs:boolean" minOccurs="1"
maxOccurs="1"/>
 <xs:element name="AvailableImageLayer" type="ImageLayerType" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="AvailableProjection" type="AvailableProjectionType"
minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="OrthographicProjectionType">
 <xs:complexContent>
 <xs:extension base="ProjectionBaseType">
 <xs:sequence>
 <xs:element name="POC" type="core:Position3DType" minOccurs="1"
maxOccurs="1"/>
 <xs:element name="POI" type="core:Position3DType" minOccurs="1"
maxOccurs="1"/>
 <xs:element name="UP" type="core:Position3DType" minOccurs="1" maxOccurs=
"1"/>
 <xs:element name="Left" type="xs:double" minOccurs="0" maxOccurs="1"/>
 <xs:element name="Right" type="xs:double" minOccurs="0" maxOccurs="1"/>
 <xs:element name="Bottom" type="xs:double" minOccurs="0" maxOccurs="1"/>
 <xs:element name="Top" type="xs:double" minOccurs="0" maxOccurs="1"/>
 <xs:element name="NearPlane" type="xs:double" minOccurs="0" maxOccurs="1"/>
 <xs:element name="FarPlane" type="xs:double" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="ProjectionBaseType">
 <xs:sequence>
 <xs:element ref="ows:Identifier" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ImageLayerType">
 <xs:complexContent>
 <xs:extension base="ows:DescriptionType">
 <xs:sequence>
 <xs:element name="Identifier" type="ows:CodeType" minOccurs="1"
maxOccurs="1"/>
 <xs:element name="AvailableFormat" type="ows:MimeType" minOccurs="1"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

108

 <xs:complexType name="AvailableProjectionType">
 <xs:complexContent>
 <xs:extension base="ows:DescriptionType">
 <xs:sequence>
 <xs:element ref="ows:Identifier" minOccurs="1" maxOccurs="1"/>
 <xs:element name="ProjectionParameter" type="ProjectionParameterType"
minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="ProjectionParameterType">
 <xs:complexContent>
 <xs:extension base="ows:DomainType">
 <xs:sequence/>
 <xs:attribute name="required" use="optional" type="xs:boolean"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="PortrayalType">
 <xs:sequence>
 <xs:element name="Width" type="ows:int" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="Height" type="ows:int" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="ImageLayers" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="Formats" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="Qualities" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element ref="Projection" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="PerspectiveProjection" type="view:PerspectiveProjectionType"
substitutionGroup="Projection"/>
 <xs:element name="OrthographicProjection" type="view:OrthographicProjectionType"
substitutionGroup="Projection"/>
</xs:schema>

13.4. info schema

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.opengis.net/3dps/1.0">
 <xs:import namespace="http://www.opengis.net/3dps/1.0/view"
schemaLocation="http://www.opengis.net/3dps/1.0/view"/>
 <xs:import namespace="http://www.opengis.net/ows/2.0"
schemaLocation="http://schemas.opengis.net/ows/2.0/owsCommon.xsd"/>
 <xs:import namespace="http://www.opengis.net/3dps/1.0/core"
schemaLocation="http://www.opengis.net/3dps/1.0/core"/>
 <xs:complexType name="InfoLayerExtensionType">
 <xs:sequence/>
 <xs:attribute name="queryable" use="optional" type="xs:boolean"/>

109

 </xs:complexType>
 <xs:complexType name="AbstractGetFeatureInfoType" abstract="true">
 <xs:complexContent>
 <xs:extension base="core:RequestBaseType">
 <xs:sequence>
 <xs:element name="Layers" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="FeatureCount" type="xs:positiveInteger" minOccurs="0"
maxOccurs="1"/>
 <xs:element name="IdOnly" type="xs:boolean" minOccurs="0" maxOccurs="1"/>
 <xs:element name="Format" type="ows:MimeType" minOccurs="1" maxOccurs="1"/>
 <xs:element name="Exceptions" type="ows:MimeType" minOccurs="0"
maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="GetFeatureInfoByRayType">
 <xs:complexContent>
 <xs:extension base="AbstractGetFeatureInfoType">
 <xs:sequence>
 <xs:element name="CRS" type="xs:anyURI" minOccurs="1" maxOccurs="1"/>
 <xs:element name="Height" type="xs:positiveInteger" minOccurs="1"
maxOccurs="1"/>
 <xs:element name="Width" type="xs:positiveInteger" minOccurs="1"
maxOccurs="1"/>
 <xs:element name="Projection" type="view:ProjectionBaseType" minOccurs="1"
maxOccurs="1"/>
 <xs:element name="ImagePosition" type="core:Position2DType" minOccurs="1"
maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="GetFeatureInfoByPositionType">
 <xs:complexContent>
 <xs:extension base="AbstractGetFeatureInfoType">
 <xs:sequence>
 <xs:element name="CRS" type="xs:anyURI" minOccurs="1" maxOccurs="1"/>
 <xs:element name="Coordinate" type="core:Position3DType" minOccurs="1"
maxOccurs="1"/>
 <xs:element name="Tolerance" type="xs:float" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="GetFeatureInfoByObjectIdType">
 <xs:complexContent>
 <xs:extension base="AbstractGetFeatureInfoType">
 <xs:sequence>
 <xs:element name="ObjectId" type="xs:anyURI" minOccurs="1"
maxOccurs="unbounded"/>

110

 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:schema>

111

Chapter 14. Annex C: Tiling in scene-based
3D portrayal (informative)
Implementing tiling and refinement in scene-based portrayal

This standard intentionally does not define a way to delay-load tiles or other parts of a scene as the
client is advancing within the portrayal. Part of the reason is that it is simply too early to describe
the underlying techniques in sufficient detail to enable interoperability.

An often-used technique is to tile bigger scenes to achieve manageable chunks, and delay-load them
as appropriate. This is often combined with refinement of geometries and/or image material, and
performed using preprocessing.

This specification avoids assumptions about how a valid response looks like where possible. As a
consequence, is is possible to answer to a request with a collection of LOD nodes acting as a spatial
index that control the delay-loading of scene parts.

Such scenes may then refer to service invocations using core:GetResourceById operation
invocations or resources defined outside of the service delivering the scene. That is, a delay-loading
regime has to be mapped to the provisions of the format and then executed by causing delay-
loading in the client. Intentionally, there is no limitation regarding the underlying methods.

However, there is the deliveryOption mechanism (DeliveryOption) which shall be used to avoid
exposing uncommon practises to clients which are not prepared to handle them.

112

Chapter 15. Annex D: X3D (informative)
Extensible 3D (X3D)

The data comprising a 3D scene portrayal may come from different data sources and layers. For
example, modern 3D geo-visualizations commonly include both the landscape of the real world and
real-world objects such as trees, buildings. For real-time portrayal, these resources must be
organized and composed into a data structure that can be rendered at at least 24 frames per second
and respond to user input. The most well-known and widely adopted of the Web 3D technologies
are the ISO set of languages, specifically the international standards of Virtual Reality Modeling
Language (VRML) and its successor, Extensible 3D (X3D).

Extensible 3D (X3D) is an open and royalty-free International Standard for the description of such
portrayals (ISO/IEC IS 19775-1:2013 http://www.web3d.org/documents/specifications/19775-1/V3.3/
index.html). X3D generally refers to a suite of standards developed by the not-for profit Web3D
Consortium (web3d.org). An X3D scene graph can be equivalently encoded as XML (ISO/IEC 19776-
1), utf-8 (ISO/IEC 19776-2) and binary (ISO/IEC 19776-3). Runtime X3D scene graphs can be
manipulated programmatically through the Scene Access Interface (SAI; ISO/IEC 19775-2). This API
is bound to several languages including the standards for ECMAScript (ISO/IEC 19777-1) and Java
(ISO/IEC 19777-2).

These scene graph languages are quite expressive in that a small number of basic elements (nodes)
can be combined according to rules (content model) to create innumerable permutations and
visualization possibilities. Consider the fundamental case of terrain: TIN-type geometry’s explicit
triangulation means more data to transmit, but it is faster to load and render in the client. The
GRID-type structure is more compact to transmit because its connectivity is implicit, but it must be
calculated to triangles on the client before rendering. These two types of geometry data structures
are both supported by X3D portrayal, each in several forms. The TIN geometry type can be directly
represented as an IndexedFaceSet (or IndexedTriangleSet), while the GRID-type can be represented
by the ElevationGrid or the GeoElevationGrid. Authors must use the application and interface
requirements to determine the composition of their scene for real-time delivery and portrayal.

One important set of nodes is defined in the Geospatial Component (Clause 25,
http://www.web3d.org/documents/specifications/19775-1/V3.3/Part01/components/geodata.html).
The Geospatial component includes conventions that are defined by the Spatial Reference Model
(see ISO/IEC 18026) including support for 23 standard ellipsoids and a number of nodes that can use
spatial reference frames for modeling purposes. These new standard components enable
applications to handle double precision coordinates and geometry in different projections as well
as to manage multiple levels of detail (LODs) of geospatial data. The spatial reference frames
supported by X3D 3.3 are geocentric, geodetic and UTM. The following nodes comprise the
Geospatial component:

• GeoCoordinate

• GeoElevationGrid

• GeoLocation

• GeoLOD

• GeoMetadata

113

http://www.web3d.org/documents/specifications/19775-1/V3.3/index.html
http://www.web3d.org/documents/specifications/19775-1/V3.3/index.html
http://www.web3d.org/documents/specifications/19775-1/V3.3/Part01/components/geodata.html

• GeoOrigin

• GeoPositionInterpolator

• GeoProximitySensor

• GeoTouchSensor

• GeoTransform

• GeoViewpoint

The Geospatial component allows for the mashup of responses from different services in that
common coordinates can be used the GetScene response. The X3D specification requires that the
client software perform the conversion to Cartesian computer graphics coordinates, subtracting
any offset required to gain precision as specified in the GeoOrigin node. The Geospatial nodes also
help create better interactive experiences in the 3D viewing client.

One important concept to note is that X3D is a modular standard when it comes to conformance.
Related nodes are grouped into Components, which are detailed in each Clause of the specification.
Components can be combined and supported at different levels of conformance, standardized as
Profiles. Profiles enable tool builders to only implement the subset of the language they need for
their application. In addition, X3D scenes contain header statements that designate the required
node set to load the content, for example:

source~~ PROFILE Interactive COMPONENT Geospatial source~~

Table 59. summarized from the Annex of X3D 3.3 19775-1:

Core profile Absolute minimal file definitions required by X3D

Interchange profile Exchange of geometry and animations between authoring
systems

Interactive profile Implementing a lightweight playback engine that supports rich
graphics and interactivity MPEG-4 interactive profile Providing
the base point of interoperability with the MPEG-4 standard

CADInterchange profile Distillation of computer-aided design (CAD) data to downstream
applications, appropriately supporting Geometry and
Appearance capabilities data for CAD

MedicalInterchange profile Exchange of polygonal geometry, volumetric data and
accompanying documentation between medical imaging systems

Immersive profile Implementing immersive virtual worlds with complete
navigational and environmental sensor controls

Full profile The Full profile of X3D is comprised of all features of the
standard

15.1. REFERENCES
[1] Reddy, M., Iverson, L., Leclerc, Y.G.: Under the hood of GeoVRML 1.0. In: Proceedings of the fifth
symposium on Virtual reality modeling language (Web3D-VRML), pp. 23-28 (2000)

[2] McCann, M., Puk, R., Hudson, A., Melton, R., Brutzman, D.: Proposed enhancements to the x3d

114

geospatial component. In: Proceedings of the 14th International Conference on 3D Web Technology,
pp. 155-158 (2009)

[3] Yoo, B., Brutzman, D.: X3D earth terrain-tile production chain for georeferenced simulation. In:
Proceedings of the 14th International Conference on 3D Web Technology, pp. 159-166 (2009)

[4] Oliveira, N., Rocha, J.G.: Web 3D Service Implementation. In: Computational Science and Its
Applications-ICCSA, pp. 538-549 (2013)

[5] Oliveira, N., Rocha, J.G.: Tiling 3d terrain models. Computational Science and Its Applications-
ICCSA, pp. 550-561 (2013)

[6] Reitz, T., Krämer, M., Thum, S.: A processing pipeline for X3D earth-based spatial data view
services. In: Proceedings of the 14th Int. Conf. on 3D Web Technology, pp. 137-145 (2009)

115

Chapter 16. Annex E: Revision History
Table 60. Document revision history.

Date Releas
e

Editor Paragraph
modified

Description

09/2013 - Simon Thum all Initial revision

10.02.2014 - Benjamin Hagedorn Scope,
overview,
abbreviations

continued editing

16.02.2014 - Benjamin Hagedorn all Updated to latest document
template

through 2014 - all all Various (see git history)

12.12.2014 - Simon Thum all Prepare for OAB review

02.01.2015 - Mike McCann Annex D Added Annex on X3D
Geospatial

05/2015 - Simon Thum all Prepare for submission to SWG

07/2015 - Simon Thum
Benjamin Hagedorn

all Prepare for OAB review

27.08.2015 - Simon Thum all Version for public comments

18.02.2016 - Benjamin Hagedorn all Prepare for submission to TC

08.03.2016 - Benjamin Hagedorn all Minor changes (update UML
diagrams)

11.08.2016 - Benjamin Hagedorn
Ralf Gutbell

all Prepare for publishing

17.03.2017 - Benjamin Hagedorn all Prepare for publishing

12.09.2017 - Benjamin Hagedorn all Switch format to OGC
AsciiDoctor template

116

	15-001r4
	Table of Contents
	Chapter 1. Scope
	Chapter 2. Conformance
	Chapter 3. References
	Chapter 4. Terms and Definitions
	Chapter 5. Conventions
	5.1. Use of the terms "3D scene" and "3D view"
	5.2. Abbreviated terms
	5.3. UML notation
	5.4. Data dictionary tables
	5.5. Namespace prefix conventions

	Chapter 6. 3D Portrayal Service Overview
	6.1. Overview
	6.2. Historical background
	6.3. Design of this standard
	6.4. Interoperability scenarios

	Chapter 7. 3DPS Service Model
	7.1. 3DPS operation types
	7.2. 3DPS service handling
	7.3. Coordinate systems
	7.3.1. Coordinate reference systems
	7.3.2. Image coordinate system

	Chapter 8. 3DPS Core
	8.1. Shared aspects
	8.1.1. Position2D data structure
	8.1.2. Position3D data structure

	8.2. GetCapabilities operation (mandatory)
	8.2.1. GetCapabilities request
	8.2.2. GetCapabilities response
	8.2.3. GetCapabilities exceptions

	8.3. Binding for the GetCapabilities operation
	8.3.1. GetCapabilities request HTTP/GET + KVP encoding
	8.3.2. GetCapabilities response XML encoding (mandatory)

	8.4. AbstractGetPortrayal operation (abstract)
	8.4.1. AbstractGetPortrayal request
	8.4.2. AbstractGetPortrayal response
	8.4.3. AbstractGetPortrayal exceptions

	8.5. GetResourceById operation (optional)
	8.5.1. Obtaining ResourceId URIs
	8.5.2. Categories of resources
	8.5.3. GetResourceById request
	8.5.4. GetResourceById response
	8.5.5. GetResourceById exceptions

	Chapter 9. Scene Extension
	9.1. Introduction
	9.2. Modifications to service capabilities
	9.2.1. Modifications to ServiceIdentification
	9.2.2. Modifications to OperationsMetadata
	9.2.3. Additions to Layer structure
	9.2.4. AvailableOffset
	9.2.5. AvailableOffsetMode
	9.2.6. Additions to PortrayalCapabilities structure

	9.3. GetScene request
	9.3.1. Offset
	9.3.2. OffsetMode
	9.3.3. Format
	9.3.4. Viewpoints
	9.3.5. Delivery Options

	9.4. GetScene response
	9.5. GetScene exceptions
	9.6. Binding Extensions for the GetScene operation
	9.6.1. HTTP/GET + KVP binding

	Chapter 10. View Extension
	10.1. Introduction
	10.2. Concepts
	10.2.1. Image layer concept
	10.2.2. 3D projections
	10.2.3. Extensibility

	10.3. Modifications to service capabilities
	10.3.1. Modifications to ServiceIdentification
	10.3.2. Modifications to OperationsMetadata
	10.3.3. Additions to Layer structure
	10.3.4. Additions to PortrayalCapabilities structure

	10.4. GetView request
	10.4.1. BackgroundColor
	10.4.2. TransparentBackground
	10.4.3. Portrayals
	10.4.4. Exceptions

	10.5. GetView response
	10.5.1. MIME multipart response

	10.6. GetView exceptions
	10.7. Binding Extensions for the GetView operation
	10.7.1. HTTP/GET + KVP binding
	10.7.2. GetView request XML encoding (optional)

	Chapter 11. Info Extension
	11.1. Introduction
	11.2. Modifications to service capabilities
	11.2.1. Modifications to ServiceIdentification
	11.2.2. Modifications to OperationsMetadata
	11.2.3. Additions to Layer structure

	11.3. AbstractGetFeatureInfo request
	11.3.1. Layers
	11.3.2. FeatureCount
	11.3.3. IdOnly
	11.3.4. Format
	11.3.5. Exceptions

	11.4. GetFeatureInfoByRay request
	11.4.1. Width, Height
	11.4.2. Projection
	11.4.3. ImagePosition

	11.5. GetFeatureInfoByPosition request
	11.5.1. CRS
	11.5.2. Coordinate
	11.5.3. Tolerance

	11.6. GetFeatureInfoByObjectId request
	11.6.1. ObjectID
	11.6.2. FeatureCount

	11.7. GetFeatureInfo response
	11.7.1. FeatureInfo encoding
	11.7.2. GetFeatureInfo exceptions
	11.7.3. Exception codes

	Chapter 12. Annex A: Conformance Class Abstract Test Suite (normative)
	12.1. Conformance class: core
	12.2. Tests for requirements of the core requirements class
	12.3. Conformance class: scene
	12.4. Tests for requirements of the scene requirements class
	12.5. Conformance class: view
	12.6. Tests for requirements of the view requirements class
	12.7. Conformance class: info
	12.8. Tests for requirements of the info requirements class

	Chapter 13. Annex B: XML Schemas (normative)
	13.1. core schema
	13.2. scene schema
	13.3. view schema
	13.4. info schema

	Chapter 14. Annex C: Tiling in scene-based 3D portrayal (informative)
	Chapter 15. Annex D: X3D (informative)
	15.1. REFERENCES

	Chapter 16. Annex E: Revision History

