Open GIS Consortium, Inc.
OpenGIS" Simple Features Specification
For SQL

Revision 1.1

OpenGlIS Project Document 99-049
Release Date: May 5, 1999

WARNING: The Open GIS Consortium (OGC) releases this specification to the public without

warranty. It is subject to change without notice. This specification is currently under active revision
by the OGC Technical Committee

Requests for clarification and/or revision can be made by contacting the OGC at
revisions@opengis.org.

Copyright 1997, 1998, 1999 Environmental Systems Research Ingtitute
Copyright 1997, 1998, 1999 IBM Corporation

Copyright 1997, 1998, 1999 Informix Software, Inc.

Copyright 1997, 1998, 1999 Maplnfo Corporation

Copyright 1997, 1998, 1999 Oracle Corporation

The companies listed above have granted the Open GIS Consortium, Inc. (OGC) a nonexclusive, royalty-free, paid up, worldwide
license to copy and distribute this document and to modify this document and distribute copies of the modified version.

Each of the copyright holders list above has agreed that no person shall be deemed to have infringed the copyright, in the included
material of any such copyright holder by reason of having used the specification set forth herein or having conformed any computer
software to the specification.

NOTICE
Theinformation contained in this document is subject to change without notice.

The material in this document detailsan Open GIS Consortium specification in accordance with the license and notices set forth on
this page. This document does not represent a commitment to implement any portion of this specification in any compats/'s produc

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OPEN GIS CONSORTIUM

AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. The Open GIS Consortium and the companies list above shall not be liable for errors contained herein or
for incidental or consequential damages in connection with the furnishing, performance or use of this material.

The copyright holders list above acknowledge that the Open GIS Consortium (acting itself or through its designees) iateaitl shall
times be the sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks,
trademarks, or other special designations to indicate compliance with these materials.

This document contains information, which is protected by copyright. All Rights Reserved. No part of this work covereddiy copyr
herein may be reproduced or used in any form or by any fegnaphic, electronic, or mechanical, including photocopying,
recording, taping, or information storage and retrieval sysfiemithout permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in subdivision
(c)(1)(ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013

OpenGIS® is a trademark or registered trademark of Open GIS Consortium, Inc. in the United States and in other countries.

Table of Contents

LT o] N O SRR 0-1
0.1 SUBMITTING COMPANIES.....eiiiiutitteauittaeautetaaataeesaasseasaassseesaassseeaasssessasseeeaasseesaannseeesanseeeaan 01
0.2 SUBMISSION CONTACT POINTS. ...etiiiuiiieeiieeeeeaiteeessteeeeesisseesasseeesasseeesasseessansseesaannseeesnnneeeean 01
0.3 DOCUMENT CONVENTIONS ...uttteeeutteeeeutetaesteeeesausseesaauseeesaasseeesasseessassseessasseessaasssessansseesannes 0-2
0.4 REVISION HISTORYeiiiiiiiiiieeiiteee ettt et e e ettt e ettt e e st e e e s sbe e e s aabe e e e aanseeeeannseeesanneeeeeanneeaaan 0-2
0.5 EDITORIAL INOTES ...ttt itttee ettt ettt ettt ettt e ettt e e ettt e e s abe e e e e ae e e e e anseeeesanbeeeeeanneeesanneeaeanes 0-3

1 OVERVIEW ettt ettt ettt et e et e e s e e s at e e s as e e e st e eseeesnteesnteesnneeenns 1-1
O R N = e 7 Yo IR PRSP 1-1

2 ARCHITECTURE......ii ittt ettt st st e et e e ae e e s st e e s ate e s beeeseeesneeesnseeenreeenenan 2-1
2.1 GEOMETRY OBJIECT IMODELuuutiiiiiiiieeeeiteeeeeitee e s et ee e e siteea e aseseeaaaaseessanneeessansseeesanneeeeannneeeean 2-1

211 (7S] 00 | PSR 2-2
212 GEOMELIY COECHION. ...ttt b e b b sr e sreenne e 2-4
213 01 | TP 2-4
214 T o | USSR 2-4
2.15 L8 0 PRI 2-5
2.1.6 LineSring, Ling, LINEArRING.........oo ittt s n 2-5
217 IMUITTCUIVE. ...ttt et e et e et e e e e be e e e e asaeeeeaateeesanaeeeeeanbeeeeanraeanns 2-6
218 IMUTEELINESIIING .ttt ettt et et b e n e e n e e b e e neeneene 2-7
2.19 S = Lo TP RPN 2-7
Nt O T o /o o O SO U O T RSP OPPTOPRTOTPR 2-8
A 0 R /[0 (1S U = Vot RS 2-10
22112 MUITIPOIYGON ..ottt 2-10
2113 Relational OpEralOrS.ceieeieeiieeiiieriee sttt ettt sar e st b e r e n e e neeneeneeneeneen 2-12
2.2 ARCHITECTURE—SQL92 MPLEMENTATION OF FEATURE TABLESccctuiiiiiieeiieaeiiieeeinnes 2-20
221 Feature Table Metadata VIBWSoooiiiiiiie et 2-21
222 Geometry Columns Metadatal VIEWS...........coiuieriieiiriinie e 2-21
223 Spatial Reference System INformation VIEWS...........oiviiiiiiiniieieeeeeeeeeee e 2-21
224 Feature TableS and VIBWS........coouei ittt 2-22
225 Geometry and GEOmELriC EIement VIBWS.........cciiiiiiiiieiee e 2-22
226 NOtES 0N SQLO2 AALA TYPES......eeuveeureeiee ettt ettt ettt e 2-23
227 Notes on ODBC Access to Geometry Values stored in Binary form..........cccoceeeeveeneene 2-24
2.3 ARCHITECTURE—SQL92WITH GEOMETRY TYPESIMPLEMENTATION OF FEATURE TABLES.... 2-24
231 Feature Table Metadata VIBWSooiiiiiiiee e 2-24
232 Geometry Columns Metadatal VIEWS...........coouieriieiiriiiie sttt 2-24
233 Spatial Reference System INformation VIEWS...........ooviiiiiiiiiiiieeeeeeeee e 2-24
2.34 Feature TableS and VIBWS........cooei it 2-25

235 Background Information on SQL Abstract Data TYPESceevveereereereeniereesee e 2-25
2.36 Scope of this OpenGIS Geometry Types SPeCifiCation...........ccoveevieiieie e 2-25
237 SOL Geometry TYPe HI€rarChycoieiieiiiiiie it 2-26
2.38 Geometry Values and Spatial Reference SyStems.... ..o 2-27
2.39 ODBC Access to Geometry Valuesin the SQL with Geometry Typescase.........ccoveennee 2-28
3 COMPONENT SPECIFICATIONS ...ttt ettt n e bbb nnees 31
3.1 COMPONENTS—SQL92 MPLEMENTATION OF FEATURE TABLES.....ccuuiiiiiiiiiieieieeeeie e 3-1
311 Spatial Reference System INfOrmation...........cooeeiiiiieiie i 31
3.1.2 Geometry Columns Metadatal VIEW..........cceeiieiieiieiee ettt st 32
313 Feature TablesS and VIBWS.........coueiiiiiieiesieert et 34
314 GEOMELIY TADIES OF VIBWScoiiiitie ittt an e eaneea 34
3.15 (007 =1 (o TP PTR PR 37
3.2 COMPONENTS—SQL92WITH GEOMETRY TYPESIMPLEMENTATION OF FEATURE TABLES......... 3-7
321 Spatial Reference System INformation VIEW..........coiieiiiiiiiie i 37
322 Geometry Columns Metadatal VIEW..........cceeiieiieiieiie ettt 3-8
3.23 SOL GEOMELIY TYPES. ...ttt ettt ettt ettt ettt et b e bbb bbb e reenne s 3-8
324 Feature TablesS and VIBWS.cc.oiiiaieieeee ettt 3-10
3.25 L Textual Representation Of GEOMELIY.........ccuirieiereeiesiesee e 311
3.26 L Functions for Constructing a Geometry Value given its Well-known Text
REPIESENTALION. ...ttt ettt ettt b et b e bt e s b e e sb e sb e e sb e e sbe e s ae e s ae e ebe e nen e s enn e nn e 312
3.2.7 QL Functions for Constructing a Geometry Value given its Well-known Binary
REPIESENTALION. ...ttt ettt b e bt b e s b e e sb e sb e e sb e sbe e sbe e s e et eae e nen e e s enn e nn e 3-14
3.28 QL functions for obtaining the Well-known Text Representation of a Geometry 3-15
3.29 QL functions for obtaining the Well-known Binary Representation of a Geometry........ 3-15
3210 SQL FUNCtionS 0N TYPE GEOMELIY.....ccivieiteetieiieesieesteesteesteestee st e sbeesbeesreesreesreesreesreesneens 3-16
3211 SQL FUNCtionS ON TYPE POIMLoiiiiiieiiieiieeie ettt ne e 317
3212 SQL FUNCHONS ON TYPE CUMVEottt ettt ettt n e ne b nneenneenne e 3-17
3213 SQL Functions on TYPE LINESITING ...ccueeiveeieiiiieiieesiee et 3-18
3214 SQL FUNCtions 0N TYPE SUMACE.ciiiiieiieeie ettt 3-18
3.215 SQL Functions on TYPE POIYGON........coiiiiiiiiiieiie e 3-19
3216 QL Functionson Type GEOMCOHECHION.cceeiieiieiieiie e 3-19
3217 SQL Functions on TYPE MUITICUIVE..........couiiiieiietieieerieeste ettt 3-19
3218 SQL Functionson Type MUltiSUITACE.........c.eeiiiiieiie e 3-20
3219 QL functionsthat test Spatial RAAtiONShIPSccvvvviiiiiieeee e 3-20
3220 QL Functionsfor Distance RElatioNSNiPS.eeiveerrierieerierieesiee st 3-22
3221 QL Functionsthat implement Spatial OPerators...........coeereereeieeiieniesiesee e 3-23
3.222 0L Function usage and Referencesto GEOMELIYcooeereereereereesee e see e 3-24
3.3 THEWELL-KNOWN BINARY REPRESENTATION FOR GEOMETRY (WKBGEOMETRY)............... 3-24
331 COMPONENT OVEIVIEW.eeiiieeiieeeite ettt ettt ettt b e bt b e nbe e seebeenbeenneenneenneas 3-24
3.32 ComPONENt DESCIIPLIONc.ueeiureieeieiee ettt b e bt sne s b b e sbeenneennees 3-24
3.4 WELL-KNOWN TEXT REPRESENTATION OF SPATIAL REFERENCE SYSTEMS.......uuvvviiriineenennen, 3-28
341 COMPONENT OVEIVIEW.eeiiieieieeeite ettt ettt s ettt st e bt e b e e neebeenbeenseenneas 3-28
3.4.2 ComPONENt DESCIIPLIONcueiiueiiieieiee ettt ettt sbe s b e b sbeesneenneas 3-28
4 SUPPORTED SPATIAL REFERENCE DATA ...ttt 4-1

4.1 SUPPORTED LINEAR UNITS
4.2 SUPPORTED ANGULAR UNITS
4.3 SUPPORTED SPHEROIDS,
4.4 SJPPORTED GEODETIC DATUMS
4.5 SJUPPORTED PRIME MERIDIANS.
4.6 SJPPORTED M AP PROJECTIONS
4.7 MaP PROJECTION PARAMETERS

5 REFERENCES ...ttt s st e en e e re e 51

Page i

O Preface

0.1 Submitting Companies

The following companies submitted this implementation specification in response to the OGC
Request 1, Open Geodata Moddl Working Group, A Request for Proposals: OpenGI S Features

(OpenGI S Project Document Number 96-021):

* Environmental Systems Research Institute, Inc.
* IBM Corporation.

* Informix Software, Inc.

* Maplinfo Corporation.

e Oracle Corporation.

0.2 Submission Contact Points

All questions about the joint submission should be directed to:

David Beddoe

ESRI-Washington DC.

2070 Chain Bridge Road, Suite 180
Vienna, VA 22182

Phone: (703) 506-9515

Email: dbeddoe@esri.com

Paul Cotton

IBM Corporation

1150 Eglinton Ave.
Toronto, Ontario M3C 1H7
Canada
cotton@vnet.ibm.com

Robert Uleman

Informix Software, Inc.

300 Lakeside Drive, Suite 2700
Oakland, CA 94612
uleman@informix.com

Page 0-1

OpenGI S Simple Features Specification for SQL, Revisionl.1

Sandra Johnson

Maplnfo Corp.

OneGlobal View

Troy N.Y. 12180-8399
sandra_johnson@mapinfo.com

Dr. John R. Herring

Oracle Corporation

196 VanBuren Street

Herndon, Virginia 22070, USA
phone: 1 703 736 8124

fax: 1703 708 7233
jrherrin@us.oracle.com

0.3 Document Conventions

The Couri er Newfont has been used to indicate SQL or other code segments.

0.4 Revision History

Revision 1.0 includes the following changes from Revision O:

* Replaced the term ‘byte stream’ with ‘representation’. The source for this change was proposal #1
from Revision Request 97-402.

* Made several minor corrections concerning typographical errors, fixed the definition of the
GEOMETRY_COLUMNS table to remove foreign key constraints that accessed
INFORMATION_SCHEMA, fixed several functions to replace Balean return values with integer
returns, and made a clarification on the example in section 3.1.3. The source for these changes was
Revision Request 97-403.

Revision 1.1 includes the following changes from Revision 1.0:

* Function name consistency

« Consistent use of UML notation for section 2 (Architecture)

» 18 character function name limits

» Explicit specification of ETYPE codes for SQL numeric representation

* Clarify handling of mixed spatial references in SQL functions

e Fix errors in diagrams

* Misc. typographical errors

* Remove Spatial Reference Data not present in EPSG 1.3 sptémific

When problems were identified, such as inconsistent function names or function names that exceed 18
characters, the correction was made to conform to the SQL/MM specification.

Page 0-2

0.5 Editorial Notes

1 Overview

The purpose of this specification isto define a standard SQL schema that supports storage, retrieval, query
and update of ssmple geospatial feature collections viathe ODBC API. A smple feature is defined by the
OpenGlI S Abstract specification to have both spatial and non-spatial attributes. Spatial attributes are
geometry valued, and simple features are based on 2D geometry with linear interpolation between vertices.

1.1 Approach

Simple geospatia feature collections will conceptually be stored as tables with geometry valued columnsin
aRdational DBMS (RDBMS), each feature will be stored asarow in atable. The non-spatia attributes of
features will be mapped onto columns whose types are drawn from the set of standard ODBC/SQL 92 data
types. The spatial attributes of features will be mapped onto columns whose SQL data types are based on
the underlying concept of additional geometric datatypesfor SQL. A table whose rows represent Open GIS
features shal be referred to asafeatur e table. Such atable shall contain one or more geometry valued
columns. Feature table implementations are described for two target SQL environments: SQL 92 and

SQL 92 with Geometry Types.

In the SQL 92 environment, a geometry-valued column isimplemented as a Foreign Key referenceinto a
geometry table. A geometry value is stored using one or more rows in the geometry table. The geometry
table may be implemented using either standard SQL numeric types or SQL binary types, schemas for both
alternatives are described.

The term SQL 92 with Geometry Typesis used to refer to a SQL92 environment that has been extended
with a set of Geometry Types. In this environment a geometry-valued column isimplemented as a column
whose SQL type is drawn from the set of Geometry Types. This specification describes a sandard set of
QL Geometry Types based on the OpenGIS Geometry Model, together with the SQL functions on those
types. This specification does not attempt to standardize any part of the mechanism by which the Geometry
Types are added to and maintained in the SQL environment: The standard SQL 3 mechanism for extending
the type system of a SQL database is through the definition of user defined Abstract Data Types.
Commercial implementations of SQL92 environments with user defined type support are available as of
mid 1997. The SQL 3 gtandard should be ratified in 1998.

Both the SQL 92 and the SQL 92 with Geometry Types implementations extend the SQL92 Information
Schemain auniform manner so asto support standard Metadata Queries that return:

1. Thelist of featuretablesin a database.

2. Thelist of geometry columns for any feature table in the database.

Page 1-1

OpenGI S Simple Features Specification for SQL, Revisionl.1

3.

The Spatial Reference System for any geometry column in the database.

Both the SQL 92 and the SQL 92 with Geometry Types implementations are accessed from ODBC using
the support already built into ODBC for fetching and storing standard integer, character and binary ODBC

SQL types

In order to be compliant with this OpenGIS ODBC/SQL specification for geospatial feature collections,
implementers shall choose to implement any one of three alternatives (1a, 1b or 2) described in this
specification:

1

SQL 92 implementation of feature tables
a) using numeric SQL types for geometry storage and ODBC access.
b) using binary SQL types for geometry storage and ODBC access.

SQL 92 with Geometry Types implementation of feature tables supporting both textual and binary
ODBC access to geometry.

Theremainder of this specification is structured as follows:

Chapter 2 describes the architecture of the system for both the SQL92 environment and for the SQL 92
with Geometry Types environment. It begins with a Distributed Computing Platform neutral
conceptual object model for Geometry. Upon this object model, the detailed specification for geometry
values, geometry types and the SQL functionsthat operate upon geometry typesis based.

Chapter 3 specifies the architectura components of the system for the SQL 92 environment and for the
SQL 92 with Geometry Types environment.

Chapter 4 details supported spatial reference system data for use with this specification.

Chapter 5 contains the references utilized by the specification.

Page 1-2

2 Architecture

2.1 Geometry Object Model

This section describes the object model for geometry. It is Distributed Computing Platform neutral and uses
OMT notation. The object model for geometry is shown in Figure 2.1. The base Geometry class has
subclasses for Point, Curve, Surface and Geometry Collection. Each geometric object is associated with a
Spatial Reference System, which describes the coordinate space in which the geometric object is defined.

Figure 2.1 is based on extending the Geometry Mode specified in the OpenGIS Abstract Specification with
specialized 0, 1 and two-dimensional collection classes named MultiPoint, MultiLineString and
MultiPolygon for modelling geometries corresponding to collections of Points, LineStrings and Polygons
respectively. MultiCurve and MultiSurface are introduced as abstract superclasses at this RFP that
generalize the collection interfaces to handle Curves and Surfaces. The figure shows aggregation lines
between the leaf collection classes and their element classes, the aggregation lines for non-leaf collection
classes are described in the text.

The attributes, methods and assertions for each geometry class are described bel ow. In describing methods,
thisis used to refer to the receiver of the method (the object being messaged). The scope of the methods
and attributes is based on the scope of RFP1 (SimpleFeatures).

Page 2-1

OpenGI S Simple Features Specification for SQL, Revisionl.1

Geometry SpatialReferenceSystem
Point Curve Surface GeometryCollection
1+ | 2+ g
S
LineString Polygon MultiSurface! MultiCurve MultiPoint
1+
2& 1+
Line LinearRing MultiPolygon MultiLineString
1+

Figure 2.10 Geometry ClassHierar chy

2.1.1 Geometry

Geometry istheroot class of the hierarchy. Geometry is an abstract (non-ingtantiabl€) class.

The ingtantiable subclasses of Geometry defined in this specification arerestricted to 0, 1 and two-
dimensional geometric objects that exist in two-dimensiona coordinate space (0?).

All instantiable geometry classes described in this specification are defined so that valid instances of a
geometry class are topologically closed (i.e. all defined geometries include their boundary).

2.1.1.1 Basic Methods on Geometry

Dimension ():Integer—The inherent dimensiontbfs Geometry object, which must be less than or equal

to the coordinate dimension. This specification is restricted to geometries in two-dimensional coordinate
space.

GeometryType ():String —Returns the name of the instantiable subtype of Geometry of thitsich
Geometry instance is a member. The name of the instantiable subtype of Geometry is returned as a string.

SRID ():Integer—Returns the Spatial Reference System IEhifeiGeometry.

Envelope():Geometry—The minimum bounding box this Geometry, returned as a Geometry. The
polygon is defined by the corner points of the bounding box ((MINX, MINY), (MAXX, MINY), (MAXX,
MAXY), (MINX, MAXY), (MINX, MINY)).

AsText():String —Exportghis Geometry to a specific well-known text representation of Geometry.

Page 2-2

Chapter 2 Architecture

AsBinary():Binary—Exportshis Geometry to a specific well-known binary representation of Geometry.

IsEmpty():Integer —Returns 1 (TRUE) this Geometry is the empty geometry . If true, tiigs
Geometry represents the empty point Setfor the coordinate space.

IsSimple():Integer —Returns 1 (TRUE) this Geometry has no anomalous geometric points, such as self
intersection or self tangency. The description of each instantiable geometric class will include the specific
conditions that cause an instance of that class to be classified as not simple.

Boundary():Geometry —Returns the closure of the combinatorial bounddhysdteometry. The

combinatorial boundary is defined as described in section 3.12.3.2 of [1]. Because the result of this function
is a closure, and hence topologically closed, the resulting boundary can be represented using
representational geometry primitives as discussed in [1], section 3.12.2.

2.1.1.2 Methods for testing Spatial Relations between geometric objects :

The methods in this section are defined and described in more detail following the description of the sub
types of Geometry.

Equals(anotherGeometry:Geometry):Integer — Returns 1 (TRU)sfGeometry is ‘spatially equal’ to
anotherGeometry.

Digoint(anotherGeometry:Geometry):Integer— Returns 1 (TRUE)sf{Geometry is ‘spatially disjoint’
from anotherGeometry.

I nter sects(anotherGeometry:Geometry):Integer— Returns 1 (TRUH) sfGeometry ‘spatially intersects’
anotherGeometry.

Touches(anotherGeometry:Geometry):Integer— Returns 1 (TRUE sfGeometry ‘spatially touches’
anotherGeometry.

Crosses(anotherGeometry:Geometry):Integer— Returns 1 (TRUH)sfGeometry ‘spatially crosses’
anotherGeometry.

Within(anotherGeometry:Geometry):Integer — Returns 1 (TRUjsfGeometry is ‘spatially within’
anotherGeometry.

Contains(anotherGeometry:Geometry):Integer — Returns 1 (TRU#)sfGeometry ‘spatially contains’
anotherGeometry.

Overlaps(anotherGeometry:Geometry):Integer — Returns 1 (TRU#)sfGeometry ‘spatially overlaps’
anotherGeometry.

Relate(anotherGeometry:Geometry, intersectionPatternMatrix:String):Integer— Returns 1 (TRWE) if
Geometry is spatially related to anotherGeometry, by testing for intersections between the Interior,
Boundary and Exterior of the two geometries as specified by the values in the intersectionPatternMatrix.

2.1.1.3 Methods that support Spatial Analysis

Distance(anotherGeometry:Geometry):Double—Returns the shortest distance between any two points in
the two geometries as calculated in the spatial reference systeisi@éometry.

Page 2-3

OpenGI S Simple Features Specification for SQL, Revisionl.1

Buffer (distance:Double):Geometry—Returns a geometry that represents all points whose distance from
this Geometry is less than or equal to distance. Calculations are in the Spatial Reference Syitem of
Geometry.

ConvexHull():Geometry—Returns a geometry that represents the convex th Gleometry.

I nter section(anotherGeometry:Geometry):Geometry—Returns a geometry that represents the point set
intersection othis Geometry with anotherGeometry.

Union(anotherGeometry:Geometry):Geometry—Returns a geometry that represents the point set union of
this Geometry with anotherGeometry.

Differ ence(anotherGeometry:Geometry):Geometry—Returns a geometry that represents the point set
difference ofthis Geometry with anotherGeometry.

SymDiffer ence(anotherGeometry:Geometry):Geometry—Returns a geometry that represents the point set
symmetric difference dhis Geometry with anotherGeometry.

2.1.2 Geometry Collection

A GeometryCollection is a geometry that is a collection of 1 or more geometries.

All the elements in a GeometryCollection must be in the same Spatial Reference. This is also the Spatial
Reference for the GeometryCollection.

GeometryCollection places no other constraints on its elements. Subclasses of GeometryCollection may

restrict membership based on dimension and may also place other constraints on the degree of spatial
overlap between elements.

2.1.2.1 Methods

NumGeometries():Integer—Returns the number of geometriethie GeometryCollection.

GeometryN(N:integer):Geometry—Returns the Nth geometrthis GeometryCollection.

2.1.3 Point

A Point is a 0-dimensional geometry and represents a single location in coordinate space. A Point has a x-
coordinate value and a y-coordinate value.

The boundary of a Point is the empty set.

2.1.3.1 Methods

X():Double—The x-coordinate value fahis Point.

Y ():Double—The y-coordinate value fahis Point.

2.1.4 MultiPoint

A MultiPoint is a 0 dimensional geometric collection. The elements of a MultiPoint are restricted to Points.
The points are not connected or ordered.

Page 2-4

Chapter 2 Architecture

A MultiPoint is smpleif no two Pointsin the MultiPoint are equal (have identical coordinate values).

The boundary of a MultiPoint is the empty set.

2.1.5 Curve

A Curveisaone-dimensional geometric object usually stored as a sequence of points, with the subtype of
Curve specifying the form of the interpolation between points. This specification defines only one subclass
of Curve, LineString, which uses linear interpolation between points.
Topologically a Curve isaone-dimensional geometric abject that isthe homeomorphicimage of ared,
closed, interval D = [a, b] = {x /R [Ja<= x <= b} under amapping f:[a,b] - 0?asdefinedin[1],
section 3.12.7.2.
A Curveissimpleif it doesnot pass through the same point twice ([1], section 3.12.7.3)
[Jc [JCurve, [a, b] = c.Domain,

c.IsSmple = (Ox1,x2 [J(a, b] X1 #x2 [J f(x1) zf (x2)) (X1, x2 J[a, b) x1 #x2 [7 f(x1) #f(x2))
A Curveisclosed if itsstart point is equal to its end point. ([1], section 3.12.7.3)
The boundary of a closed Curveis empty.
A Curvethat issimple and closed isa Ring.
The boundary of a non-closed Curve consists of itstwo end points. ([1], section 3.12.3.2).

A Curveis defined astopologically closed.

2.1.5.1 Methods

Length():Double—The length dhis Curve in its associated spatial reference.

StartPoint():Point—The start point dhis Curve.

EndPoaint():Point—The end point dhis Curve.

IsClosed():Integer—Returns 1 (TRUE) fhis Curve is closed (StartPoint () = EndPoint ()).

IsRing():Integer—Returns 1 (TRUE) ihis Curve is closed (StartPoint () = EndPoint ()) #msl Curve
is simple (does not pass through the same point more than once).
2.1.6 LineString, Line, LinearRing

A LineString is a Curve with linear interpolation between points. Each consecutive pair of points defines a
line segment.

A Line is a LineString with exactly 2 points.
A LinearRing is a LineString that is both closed and simple. The curve in Figure 2.2—(3) is a closed

LineString that is a LinearRing. The curve in Figure 2.2—(4) is a closed LineString that is not a
LinearRing.

Page 2-5

OpenGI S Simple Features Specification for SQL, Revisionl.1

20!

(€] @ (©) 4
simple non-simple closed closed
simple non-simple

Figure2.20 (1) asmpleLineString, (2) a non-simple LineString, (3) asmple, closed LineString (a
LinearRing), (4) anon-simple closed LineString

2.1.6.1 Methods

NumPoaints():Integer—The number of pointsthis LineString.

PointN(N:Integer):Point—Returns the specified point Ntirs Linestring.

2.1.7 MultiCurve

A MultiCurve is a one-dimensional GeometryCollection whose elements are Curves (Figure 2.3).

MultiCurve is a non-instantiable class in this specification, it defines a set of methods for its subclasses and

is included for reasons of extensibility.

A MultiCurve is simple if and only if all of its elements are simple, the only intersections between any two

elements occur at points that are on the boundaries of both elements.

The boundary of a MultiCurve is obtained by applying the ‘mod 2’ union rule: A point is in the boundary
of a MultiCurve if it is in the boundaries of an odd number of elements of the MultiCurve. ([1], section

3.12.3.2).

A MultiCurve is closed if all of its elements are closed. The boundary of a closed MultiCurve is always

empty.

A MultiCurve is defined as topologically closed.

Page 2-6

Chapter 2 Architecture

2.1.7.1 Methods

IsClosed():Integer—Returns 1 (TRUE) ihis MultiCurve is closed (StartPoint () = EndPoint () for each
curve inthis MultiCurve)

Length():Double—The Length ahis MultiCurve which is equal to the sum of the lengths of the element
Curves.

2.1.8 MultiLineString

A MultiLineString is a MultiCurve whose elements are LineStrings.

e, S,

(@) @ ©)]

simple non-simple closed
non-simple

Figure 2.30 (1) asmple MultiLineString, (2) a non-simple MultiLineString with 2 elements, (3) a
non-simple, closed M ultiLineString with 2 elements

The boundaries for the MultiLineStrings in Figure 2.3 arél {81, e2}, (21 {s1, el}, (31 O

2.1.9 Surface

A Surface is a two-dimensional geometric object.

The OpenGIS Abstract Specification defines a simple Surface as consisting of a single ‘patch’ that is
associated with one ‘exterior boundary’ and 0 or more ‘interior’ boundaries. Simple surfaces in three-
dimensional space are isomorphic to planar surfaces. Polyhedral surfaces are formed by ‘stitching’ together
simple surfaces along their boundaries, polyhedral surfaces in three-dimensional space may not be planar as
a whole ([1], sections 3.12.9.1, 3.12.9.3).

The boundary of a simple Surface is the set of closed curves corresponding to its ‘exterior’ and ‘interior
boundaries. ([1], section 3.12.9.4).

Page 2-7

OpenGI S Simple Features Specification for SQL, Revisionl.1

The only instantiable subclass of Surface defined in this specification, Polygon, isasimple Surface that is
planar.

2.1.9.1 Methods

Area():Double—The area dhis Surface, as measured in the spatial reference systiins Stirface.

Centroid():Point—The mathematical centroid fbis Surface as a Point. The result is not guaranteed to
be onthis Surface.

PointOnSurface():Point—A point guaranteed to be tis Surface.

2.1.10 Polygon

A Polygon is a planar Surface, defined by 1 exterior boundary and O or more interior boundaries. Each
interior boundary defines a hole in the Polygon.

The assertions for polygons (the rules that define valid polygons) are:
1. Polygons are topologically closed.

2. The boundary of a Polygon consists of a set of LinearRings that make up its exterior and interior
boundaries.

3. No two rings in the boundary cross, the rings in the boundary of a Polygon may intersect at a Point but

only as a tangent :

[JP [7Polygon, [Jcl, c2 [7P.Boundary(), c1 #c2, [7p, q [JPoint, p,q [7cl, p Zq,[p [Jc2 [J q [Jc2]
4. A Polygon may not have cut lines, spikes or punctures:

[JP [7Polygon, P = Closure(Interior(P))
5. The Interior of every Polygon is a connected point set.

6. The Exterior of a Polygon with 1 or more holes is not connected. Each hole defines a connected
component of the Exterior.

In the above assertions, Interior, Closure and Exterior have the standard topological definitions. The
combination of 1 and 3 make a Polygon a Regular Closed point set.

Polygons are simple geometries.

Figure 2.4 shows some examples of Polygons. Figure 2.5 shows some examples of geometric objects that
violate the above assertions and are not representable as single instances of Polygon. The objects shown in

Figure 2.5—(1) and 2.5—(4) can be represented as 2 separate Polygons.

Page 2-8

Chapter 2 Architecture

‘og

@) 2) (3)

Figure 2.40 Examples of Polygonswith 1, 2 and 3 ringsrespectively.

0o el

1))] (3) (4)

Figure 2.500 Examples of objects not representable as a singleinstance of Polygon. (1) and (4) can be
represented as 2 separ ate Polygons.

Page 2-9

OpenGI S Simple Features Specification for SQL, Revisionl.1

2.1.10.1 Methods

Exterior Ring():LineString—Returns the exterior ringthis Polygon.
Numlinterior Ring():Integer—Returns the number of interior ringshirs Polygon.

Interior RingN(N:Integer):LineString—Returns the Nth interior ring tors Polygon as a LineString.

2.1.11 MultiSurface

A MultiSurface is a two-dimensional geometric collection whose elements are surfaces. The interiors of
any two surfaces in a MultiSurface may not intersect. The boundaries of any two elements in a
MultiSurface may intersect at most at a finite number of points.

MultiSurface is a non-instantiable class in this specification, it defines a set of methods for its subclasses

and is included for reasons of extensibility. The instantiable subclass of MultiSurface is MultiPolygon,
corresponding to a collection of Polygons.

2.1.11.1 Methods

Area():Double—The area dhis MultiSurface, as measured in the spatial reference systéns of
MultiSurface.

Centroid():Point—The mathematical centroid fbis MultiSurface. The result is not guaranteed to be on
this MultiSurface.

PointOnSurface():Point—A Point guaranteed to be ths MultiSurface.

2.1.12 MultiPolygon

A MultiPolygon is a MultiSurface whose elements are Polygons..

The assertions for MultiPolygons are :

1. The interiors of 2 Polygons that are elements of a MultiPolygon may not intersect.
M [JMultiPolygon, [7Pi, Pj [JM.Geometries(), i, Interior(Pi) n Interior(Pj) = [J

2. The Boundaries of any 2 Polygons that are elements of a MultiPolygon may not ‘cross’ and may touch
at only a finite number of points. (Note that crossing is prevented by assertion 1 above).

M [JMultiPolygon, Z7Pi, Pj [JM.Geometries(), [/ci [JPi.Boundaries(), ¢j 7 Pj.Boundaries()
ci nci={p1, , pK | pi7Point, 1 <=i <=k}

3. A MultiPalygon is defined as topol ogically closed.

4. A MultiPolygon may not have cut lines, spikes or punctures, a MultiPolygon isa Regular, Closed point
Set:

M [JMultiPolygon, M = Closure(Interior(M))

5. Theinterior of a MultiPolygon with morethan 1 Polygon is not connected, the number of connected
components of the interior of a MultiPolygon isequal to the number of Polygons in the MultiPolygon.

Page 2-10

Chapter 2 Architecture

The boundary of a MultiPolygon is a set of closed curves (LineStrings) corresponding to the boundaries of
its element Polygons. Each Curve in the boundary of the MultiPolygon isin the boundary of exactly 1
element Polygon, and every Curve in the boundary of an element Polygon isin the boundary of the
MultiPolygon.

Thereader isreferred to work by Worboys, et. a (7, 8) and Clementini, et. a (5, 6) for work on the
definition and specification of MultiPolygons.

Figure 2.6 shows 4 examples of valid MultiPolygonswith 1, 3, 2 and 2 polygon elements respectively.

D
AR N

(@) (@) (©) 4

Figure 2.600 Examples of M ultiPolygons
Figure 2.7 shows examples of geometric objects not representabl e as single instances of MultiPolygons.
Note that the subclass of Surface named Polyhedral Surface described in the[1], isafaceted surface whose

facets are Polygons. A Polyhedral Surface isnot a Multi Polygon because it violates the rule for
MultiPolygons that the boundaries of the e ement Polygons intersect only at a finite number of points.

Page 2-11

OpenGI S Simple Features Specification for SQL, Revisionl.1

(@) @ (©)

Figure 2.70 Geometric objectsnot representable as a sngleinstance of a M ultiPolygon.

2.1.13 Relational Operators

This section provides a more detailed specification of the relational operators on geometries.

2.1.13.1 Background

The Relational Operators are Boolean methods that are used to test for the existence of a specified
topological spatial relationship between two geometries. Topological spatia relationships between two
geometric objects have been atopic of extensive study in the literature [4,5,6,7,8,9,10]. The basic approach
to comparing two geometriesisto make pair-wise tests of the intersections between the Interiors,
Boundaries and Exteriors of the two geometries and to classify the relationship between the two geometries
based on the entries in the resulting ‘intersection’ matrix.

The concepts of Interior, Boundary and Exterior are well defined in general topology. For a review of these
concepts the user is referred to Egenhofer, et al [4]. These concepts can be applied in defining spatial
relationships between two-dimensional objects in two-dimensional Sp&cén(order to apply the

concepts of Interior, Boundary and Exterior to 1 and 0 dimensional objédfs ancombinatorial topology
approach must be applied. ([1], section. 3.12.3.2). This approach is based areghedadefinitions of the
boundaries, interiors and exteriors for simplicial complexes [12] and yields the following results:

The boundary of a geometry is a set of geometries of the next lower dimension. The boundary of a Point or
a MultiPoint is the empty set. The boundary of a non-closed Curve consists of its two end Points, the
boundary of a closed Curve is empty. The boundary of a MultiCurve consists of those Points that are in the
boundaries of an odd number of its element Curves. The boundary of a Polygon consists of its set of Rings.
The boundary of a MultiPolygon consists of the set of Rings of its Polygons. The boundary of an arbitrary
collection of geometries whose interiors are disjoint consists of geometries drawn from the boundaries of
the element geometries by application of the ‘mod 2’ union rule ([1], section 3.12.3.2).

Page 2-12

Chapter 2 Architecture

The domain of geometric objects considered is those that are topologically closed. Theinterior of a
geometry consists of those pointsthat are |eft when the boundary points are removed. The exterior of a
geometry consists of pointsnot in theinterior or boundary.

Studies on the relationships between two geometries both of maximal dimension in 0* and (2 considered
pair-wise intersections between the Interior and Boundary sets and led to the definition of a 4 Intersection
Modée [8]. The model was extended to consider the exterior of the input geometries, resulting in anine
intersection model [11] and further extended to include information on the dimension of the results of the
pair-wise intersectionsresulting in adimensionally extended nine intersection modd [5]. These extensons
allow the moddl to express spatial relationships between points, lines and areas, including areas with holes
and multi component linesand areas [6].

2.1.13.2 The Dimensionally Extended Nine-Intersection Model

Given ageometry a, let [(a), B(a) and E(a) represent the Interior, Boundary and Exterior of arespectively.
The intersection of any two of I(a), B(a) and E(a) can result in a set of geometries, x, of mixed dimension.
For example, the intersection of the boundaries of two polygons may consist of apoint and aline. Let
dim(x) return the maximum dimension (-1, 0, 1, or 2) of the geometriesin x, with anumeric value of -1
corresponding to dim(7). A dimensionally extended nine-intersection matrix (DE-9IM) then hasthe form:

Interior Boundary Exterior
Interior dim(l(a) 1 (b)) dimi(@nBb)) dim((a)nE(b))
Boundary dimB@nl()) dimB@nBML) dimB(@)nE(b)
Exterior dmE@nI() dimE@nNBDL) dimE@)nE(b)

Table2.10 The DE-9IM

For regular, topologically closed input geometries, computing the dimension of the intersection of the
Interior, Boundary and Exterior sets does not have as a prerequisite the explicit computation and
representation of these sets. For exampleto compute if theinteriors of two regular closed polygons
intersect, and to ascertain the dimension of thisintersection, it is not necessary to explicitly represent the
interior of the two polygons (which are topologically open sets) as separate geometries. In most cases the
dimension of theintersection value at a cell is highly constrained given the type of the two geometries. For
example, inthe Line-Area case the only possible values for the Interior-Interior cell are drawn from {-1, 1}
and in the Area-Area case the only possible values for the Interior-Interior cell are drawn from {-1, 2}. In
such cases no work beyond detecting the intersection isrequired.

Figure 2.8 shows an example DE-9IM for the case where a and b are two polygons that overlap.

Page 2-13

OpenGI S Simple Features Specification for SQL, Revisionl.1

Interior Boundary Exterior
Interior 2 1 2
Boundary 1 0 1
Exterior 2 1 2

Figure 2.80 An exampleinstance and its DE-9IM

A spatial relationship predicate can be formulated on two geometries that takes as input a pattern matrix
representing the set of acceptable values for the DE-9IM for the two geometries. If the spatia relationship
between the two geometries corresponds to one of the acceptable val ues asrepresented by the pattern
matrix, then the predicate returns TRUE.
The pattern matrix consists of a set of 9 pattern-values, one for each cell in the matrix. The possible pattern-
valuespare{T, F, *, 0, 1, 2} and their meaningsfor any cell where x isthe intersection set for the cdll are
asfollows:

p=T=>dmXx) 40,1, 2}, i.e x 2J

p=F=>dmXx)=-1,iex=0

p=*=>dimXx) {-1,0, 1, 2}, i.e. Don’t Care

p=0=>dimXx)=0

p=1=>dimXx)=1

p=2=>dimX) =2

The pattern matrix can be represented as an array or list of nine characters in row major order. As an
example the following code fragment could be used to test for ‘Overlap’ between two areas:

char * overlapMatrix = ‘T*T***T**";

Geometry* a, b;

Boolean b = a->Relate(b, overlapMatrix);

Page 2-14

Chapter 2 Architecture

2.1.13.3 Named Spatial Relationship predicates based on the DE-9IM

The Relate predicate based on the pattern matrix has the advantage that clients can test for alarge number
of spatial relationships and fine tune the particular relationship being tested. It has the disadvantage that it
isalower level building block and does not have a corresponding natural language equivalent. Users of the
proposed system include I T devel opers using the COM API from alanguage such as Visual Basic, and

interactive SQL users who may wish, for example, to select all features ‘spatially within’ a query polygon
in addition to more spatially ‘sophisticated’ GIS developers.

To address the needs of such users a set of named spatial relationship predicates have been defined in [5,6]
for the DE-9IM. The five predicates are named Disjoint, Touches, Crosses, Within and Overlaps. The
definition of these predicates [5,6] is given below. In these definitions the term P is used to refer to O
dimensional geometries (Points and MultiPoints), L is used to refer to one-dimensional geometries
(LineStrings and MultiLineStrings) and A is used to refer to two-dimensional geometries (Polygons and
MultiPolygons).
Digoint
Given two (topologically closed) geometrieandb,

aDigoint(b) = anb=0
Expressed in terms of the DE-9IM:

aDigaint(b) = (I(a)nl(b) =) T((a) n B(b) = 7) (B(a) nl(b) = L7) (B(a) n B(b) = LJ)
= a.Relate(b, ‘FF*FF****")

Touches

The Touches relation between two geometriesaand b appliesto the A/A, L/L, L/A, PIA and P/L groups of
relationships but not to the P/P group. It isdefined as:

a.Touches(b)- (I(@)nl(b) = J) J(a n b) 20
Expressed in terms of the DE-9IM:

a.Touches(b)- (I(a)nl(b) = 7) T((B(@) n I(b) 7) [7(1(a) nB(b) 27) (B(a)1B(b) 7))
= a.Relate(b, ‘FT**+) 73 Relate(b, ‘F*T***) [Ja.Relate(b, ‘F+*T+H)

Figure 2.9 shows some examples of the Touchesrelation.

Page 2-15

OpenGI S Simple Features Specification for SQL, Revisionl.1

Polygon/Polygon

(@ (b) D<>

LineString/LineString

@ ‘%\‘; ® / \2

Polygon/LineString

<:/</»

Polygon/Point

&

LineString/Point

/

Figure 2.90 Examples of the Touches reationship
Crosses
The Crosses relation appliesto P/L, P/A, L/L and L/A situations. It is defined as:

a.Crosses(b) = (dim(1(a) n (b)) < max(dim(I(a)), dim(1(b)))) Z(a n b Za) O(a n b #b)
Expressed in terms of the DE-9IM:
Casea [/P,b JLor Casea [JP,b [JAor Casea [JL, b [JA:
a.Crosses(b) = (1(a) n I(b)) L(I(@) n E(b) #[]) = a.Relate(b, TT***)
Casea /L, b/JL:
a.Crosses(b)= dim(l(a)n1(b)) = 0 = a.Relate(b, ‘Q********").

Figure 2.10 shows some exampl es of the Crosses rel ation.

Page 2-16

Chapter 2 Architecture

Polygon/LineString

LineString/LineString

Figure 2.1000 Examples of the Crosses relationship
Within
The Within relation is defined as:
aWithin(b) = (a nb=a) J(I(a) nl(b) =)
Expressed in terms of the DE-9IM:
aWithin(b) — (1(a)nl(b) #) [(1(a) nE(b) =) [I(B(a) nE(b) =)) = a.Relate(b, THF*+F*+)

Figure 2.11 shows some examples of the Within relation.

Page 2-17

OpenGI S Simple Features Specification for SQL, Revisionl.1

Polygon/Polygon

@) (@

LineString/LineString

A~/

Polygon/LineString

&

Polygon/Point

(0

Figure 2.1100 Examples of the Within reationship
Overlaps
The Overlapsrelation is defined for A/A, L/L and P/P Stuations.
Itis defined as:
a.Overlaps(b) = (dim(I(a)) = dim(I(b)) = dim(I(a) nI(b))) (@ n b Za) [J(a n b #b)
Expressed in terms of the DE-9IM:
Casea [JP,b JPor Casea [JA b JA:
a.Overlaps(b) = (1(a) Nl(b)2) O(1(a) NE(b)Z) (E@) nl(b)2) = a.Relate(b, TT++T*)
Casea /L, bJL:
a.Overlaps(b)= (dim(I(a) nl(b) = 1) (I(a) NE(b)}2)) (E(a) nl(b)zJ) = a.Relate(b, ‘1*T*+T**)

Figure 2.12 shows some exampl es of the Overlapsrelation.

Page 2-18

Chapter 2 Architecture

Polygon/Polygon

LineString/LineString

el
s2

sl

Figure 2.1200 Examples of the Overlapsrelationship
The following additiona named predicates are also defined for user convenience:
Contains
a.Contains(b) = b.Within(a)
I nter sects
a.Intersects(b) < /a.Digoint(b)
Based on the above operators the following methods are defined on Geometry:

Equals(anotherGeometry:Geometry):Integer—Returns 1 (TRUHjisfGeometry is ‘spatially equal’ to
anotherGeometry.

Digoint(anotherGeometry:Geometry):Integer— Returns 1 (TRUE)sf{Geometry is ‘spatially disjoint’
from anotherGeometry.

I nter sects(anotherGeometry:Geometry):Integer— Returns 1 (TRUH)sfGeometry ‘spatially intersects’
anotherGeometry.

Touches(anotherGeometry:Geometry):Integer— Returns 1 (TRUE sfGeometry ‘spatially touches’
anotherGeometry.

Crosses(anotherGeometry:Geometry):Integer— Returns 1 (TRUH)jsfGeometry ‘spatially crosses’
anotherGeometry.

Page 2-19

OpenGI S Simple Features Specification for SQL, Revisionl.1

Within(anotherGeometry:Geometry):Integer— Returns 1 (TRUB)jsfGeometry is ‘spatially within’
anotherGeometry.

Contains(anotherGeometry:Geometry):Integer— Returns 1 (TRUH)sfGeometry ‘spatially contains’
anotherGeometry.

Overlaps(anotherGeometry:Geometry):Integer— Returns 1 (TRUBE)jsfGeometry ‘spatially overlaps’
anotherGeometry.

Relate(anotherGeometry:Geometry, intersectionPatternMatrix:String):Integer— Returns 1 (TRWE) if
Geometry is spatially related to anotherGeometry, by testing for intersections between the Interior,
Boundary and Exterior of the two geometries.

2.2 Architecture—SQL92 Implementation of Feature Tables

A SQL 92 implementation of OpenGI S simple geospatial feature collections defines a schema for storage of
feature table, geometry and spatial reference system information. The SQL 92 implementation does not
define SQL functions for access, maintenance, or indexing of geometry, as these functions cannot be
uniformly implemented across database systems using the SQL 92 standard.

The figure bel ow describes the database schema necessary to support the OpenGI'S simple feature data
modd. A featuretable or view corresponds to an OpenGI S feature class. Each feature view contains some
number of features represented as rows in the view. Each feature contains some number of geometric
attribute values represented as columnsin the feature view. Each geometric column in afeature view is
associated with a particular geometric view or table that contains geometry instances in a single spatia
reference system. The correspondence between the feature instances and the geometry instances shal be
accomplished through aforeign key that is stored in the geometry column of the feature table. This foreign
key references the GID primary key of the geometry table.

GEOVETRY_COLUWNS SPATI AL_REFERENCE_SYSTEMS

~F_TABLE_CATALOG

-SRI D

-E- F_TABLE_SCHEMA AUTH_NAMVE
-F_TABLE_NAME AUTH_SRI D
—~F_GEQVETRY_COLUWN SRTEXT

G TABLE_CATALOG

G _TABLE_SCHEMA

G_TABLE_NAME

STORAGE_TYPE
GEOVETRY_TYPE
COORD_DI MENSI ON
MAX_PPR

SRI D

Feature Table/View

<Attributes>
-GID (Geometry Column)
<Attributes>

GEOVETRY_COLUWNS

GEOMETRY_COLUMNS

H-G D
ESEQ
ETYPE
SEQ
X1

Y1

X<MAX_PPR>
Y<MAX_PPR>

or

GID

XMIN

YMIN

XMAX

YMAX
WKB_GEOMETRY

Figure 2.130 Schema for feature tablesunder SQL 92

Page 2-20

Chapter 2 Architecture

Depending upon the type of storage specified by the geometry metadata, Geometry instances shall be
stored as either arrays of coordinate values or as binary values using an OpenGI S defined Well-Known
Binary Representation for Geometry. In the former case, SQL numeric types are used for the coordinates
and client sde functions are needed to build OpenGIS geometry objects from the retrieved coordinate
numeric values. In the latter case clients may feed the retrieved well-known binary representation directly
into the Geometry factory of the client side computing environment (e.g., an OLE/COM or CORBA
geometry factory) or choose to access the individual coordinate values by unpacking the well-known
representation.

2.2.1 Feature Table Metadata Views

A featuretableis any table having 1 or more foreign key reference to a geometry table or view. The set of
feature tables in a database can be determined using the above rule from the TABLES,
REFERENTIAL_CONSTRAINTS and COLUMNS metadata views in the SQL92
INFORMATION_SCHEMA. The set of feature tables can also be determined by issuing a query over the
GEOMETRY_COLUMNS metadata view described below.

2.2.2 Geometry Columns Metadata Views

Each geometry column will be represented asarow in the sandard COLUMNS metadata view in the
SQL92 INFORMATION_SCHEMA. Spatial Reference System Identity is however not a standard part of
the SQL92 INFORMATION_SCHEMA. To represent this information we introduce an additional
metadata view named GEOMETRY_COLUMNS.

The GEOMETRY_COLUMNS table or view consists of arow for each geometry column in the database.
The data stored for each geometry column includes:

» theidentity of the feature table of which it isamember,

e the gpatial reference system 1D,

» thetype of geometry for the column,

* thecoordinate dimenson for the column,

* theidentity of the geometry table that storesitsinstances, and

» theinformation necessary to navigate the geometry tables in the case of normalized geometry storage.

2.2.3 Spatial Reference System Information Views

Every geometry column is associated with a Spatial Reference System. The Spatial Reference System
identifies the coordinate system for al geometries stored in the column, and gives meaning to the numeric
coordinate values for any geometry instance stored in the column. Examples of commonly used Spatial
Reference Systems include ‘Latitude Longitude’, and ‘UTM Zone 10'.

The SPATIAL_REFERENCE_SYSTEMS table stores information on each Spatial Reference System in
the database. The columns of this table are the Spatial Reference System Identifier (SRID), the Spatial
Reference System Authority Name (AUTH_NAME) , the Authority Specifati&pReference System
Identifier (AUTH_SRID) and the Well-known Text description of the Spatial Reference System
(SRTEXT). The Spatial Reference System Identifier (SRID) constitutes a unigue integer key for a Spatial
Reference System within a database.

Page 2-21

OpenGI S Simple Features Specification for SQL, Revisionl.1

Interoperability between clientsis achieved viathe SRTEXT column which stores the Well-known Text
representation for a Spatial Reference System as described in Section 3.4.
2.2.4 Feature Tables and Views

A Featureis an object with geometric attributes [1]. Features are stored asrows in tables, each geometric
attribute is aforeign key reference to a geometry table or view. Relationships between Features are defined
as FOREIGN KEY references between feature tables.

2.2.5 Geometry and Geometric Element Views

There are two implementations for storing geometriesin SQL92: using a normalized geometry SQL 92
schema, and using a binary geometry SQL92 schema. The binary geometry schema uses the Well-known
Binary Representation for Geometry (WKBGeometry) described in section 3.3. The normalized geometry
implementation defines fixed width SQL92 tables such asthe example in Figure 2.14. Each primitive
element in the geometry is distributed over some number of adjacent rowsin thetable ordered by a
sequence number (SEQ), and identified by a primitive type (ETY PE). Each geometry identified by a key
(GID), consigts of a collection of e ements numbered by an element sequence (ESEQ).

Therulesfor geometric entity representation in the normaized SQL92 schema are defined as follows:
* ETYPE designates the geometry type.
» Geometries may have multiple elements. The ESEQ value identifies the individual elements.

* Anédement may be built up from multiple parts (rows). The rows and their proper sequence are
identified by the SEQ vdue.

* Polygons may contain holes, as described in the geometry object modd.

* Polygon rings must close when assembled from an ordered list of parts. The SEQ value designates the
part order.

* Coordinate pairsthat are not used must be set to Nil in complete sets (both X and Y). Thisisthe only
way to identify the end of list of coordinates.

» For geometries that continue onto an additional row (as defined by an constant element sequence
number or ESEQ) the last point of onerow is equal to the first point of the next.

e Thereisnolimit on the number of eementsin the geometry, or the number of rowsin a element.

Page 2-22

Chapter 2 Architecture

(0,60) (30,60) (60,60) SEQ1

(40,20 / (45,20)

50,15;
GID3 GID 4 (50.19)
(0,30) (60,30) (45,15)
ESEQ 1 ESEQ 2
m @//' / seQz
GID1 GID 2 (405 (505)

(0,0) (30,0) (60,0)

GID | ESEQ | ETYPE | SEQ [XO | YO | X1 | Y1 | X2 | Y2 | X3 | Y3 | X4 | Y4

30| 0 0 0

10 | 10 | 10 20| 10| 10 10

30| 0 | 30 60| 0 |30 O

40 | 5 | 40 45 | 15 | 50 15

50 | 15 | 50 Nil | Nil | Nil ~ Nil

30 (3| 0 30

w oW oW ow [| w | w
S S N
3 8 o B|8 |8 |8
3 8 &8 & |8 |8 |8
8 8 o B|8 |8 |8

30 | 30 |30 60 [30 | 30 30

Figure 2.140 Example of geometry table for Polygon Geometry using SQL

The binary geometry implementation isillustrated in Table 2.2, and uses the same GID as akey, but stores
the geometry using the Well-known Binary Representation for Geometry (WKBGeometry) described in
section 3.3. The geometry table includes the minimum bounding rectangle for the geometry as well asthe
WKBGeometry for the geometry. This permits construction of spatial indexes without accessing the actual
geometry structure, if desired.

GID XMIN YMIN | XMAX | YMAX GEOMETRY
1 0 0 30 30 < WKBGeometry>
2 30 0 60 30 < WKBGeometry >
3 0 30 30 60 < WKBGeometry >
4 30 30 60 60 < WKBGeometry >

Table 2.20 Example of geometry table for above Polygon Geometry using the Well-known Binary
Repr esentation for Geometry.

2.2.6 Notes on SQL92 data types

There are various ways to store the same values in arelational database. For example, thereare usualy
several ways to store numbers. In this specification, the use of a storage alternative is not meant to be
binding. Since the storage type of any column is available in the data dictionary, and such casting operators
between similar types are available, any particular implementation may use alternative storage formats as
long as cagting operations would not lead to difficulties.

Page 2-23

OpenGI S Simple Features Specification for SQL, Revisionl.1

2.2.7 Notes on ODBC Access to Geometry Values stored in Binary form.

ODBC provides standard mechanisms to bind character, numeric and binary data val ues.

This section describes the process of retrieving geometry values for the case where the binary storage
aternative is chosen.

The WKB_GEOMETRY column in the geometry table for a geometry column surfacesin ODBC as one of
the ODBC hinary SQL datatypes (SQL_BINARY, SQL_VARBINARY, or SQL_LONGVARBINARY).
An application binds to this column using the ODBC 2.0 C datatype SQL_C_BINARY.

For example, the application would use the SQL_C_BINARY value for the fCType parameter of
SQLBindCal (or SQLGetData) in order to describe the application data buffer that will receive the fetched
Geometry data value. Similarly, a dynamic parameter whose value is a Geometry would be described using
the SQL_C_BINARY valuefor the fCType parameter of SQL BindParameter.

Thisallows binary values to be both retrieved from and inserted into the geometry tables.

2.3 Architecture—SQL92 with Geometry Types Implementation of Feature
Tables

2.3.1 Feature Table Metadata Views

A featuretableis any table having one or more columns whose SQL Typeis drawn from the set of
Geometry SQL Types defined in section 3.2.3. The set of feature tables in a database can be determined
from the TABLES and COLUMNS metadata views in the SQL92 INFORMATION_SCHEMA. The set of
feature tables can aso be determined by querying the GEOMETRY _COLUMNS metadata view as
described bel ow.

2.3.2 Geometry Columns Metadata Views

Each geometry column will be represented asarow in the sandard COLUMNS metadata view in the
SQL92 INFORMATION_SCHEMA. Spatial Reference System Identity is however not a standard part of
the SQL92 INFORMATION_SCHEMA. To represent this information we introduce an additional
metadata view named GEOMETRY_COLUMNS.

The GEOMETRY _COLUMNS table or view consists of arow for each geometry column in the database.
The data stored for each geometry column includes the identity of the feature table of which it isamember,
the spatial reference system ID, the type of geometry for the column, and the coordinate dimension.

The columnsin the GEOMETRY _COLUMNS metadata view for the SQL 92 with Geometry Types
environment are a subset of the columnsin the GEOMETRY_COLUMNS view defined for the SQL 92
environment.

2.3.3 Spatial Reference System Information Views

Every geometry column is associated with a Spatial Reference System. The Spatial Reference System
identifies the coordinate system for al geometries stored in the column, and gives meaning to the numeric
coordinate values for any geometry instance stored in the column. Examples of commonly used Spatial
Reference Systems include ‘Latitude Longitude’, and ‘UTM Zone 10'.

The SPATIAL_REFERENCE_SYSTEMS table stores information on each Spatial Reference System in
the database. The columns of this table are the Spatial Reference System Identifier (SRID), the Spatial

Page 2-24

Chapter 2 Architecture

Reference System Authority Name (AUTH_NAME) , the Authority Specific Spatial Reference System
Identifier (AUTH_SRID) and the Well-known Text description of the Spatial Reference System
(SRTEXT). The Spatial Reference System Identifier (SRID) constitutes a unique integer key for a Spatial
Reference System within a database.

Interoperability between clientsis achieved viathe SRTEXT column which stores the Well-known Text
representation for a Spatial Reference System as described in section 3.4.

The Spatial Reference System Information View for the SQL 92 with Geometry Types implementation is
identical to the Spatial Reference System Information View for the SQL 92 implementation.
2.3.4 Feature Tables and Views

A Featureis an object with geometric attributes [1]. Feature are stored in tables, each geometric attributeis
stored in a geometric column whose type is drawn from the set of SQL Geometry Types described in
section 3.2.3. Relationships between Features are defined as FOREIGN KEY references between feature
tables.

2.3.5 Background Information on SQL Abstract Data Types

Theterm Abstract Data Type (ADT) refers to adata type that extends the SQL type system.

ADT types can be used to define the column types for tables, this allows values stored in the columns of a
table to beinstances of ADTSs.

SQL functions may be declared to take ADT values as arguments, and return ADT values asresults.

An ADT may be defined as a subtype of another ADT, referred to asits supertype. Thisallows an instance
of the subtype to be stored in any column where an instance of the supertype is expected and allows an
instance of the subtype to be used as an argument or return value in any SQL function that is declared to
use the super type as an argument or return value.

The above definition of ADTsis value based, and value based ADTs with the above properties are defined
as part of the current draft SQL3 standard.

SQL implementations that support Abstract Data Types may also support the concept of References to
Abstract Data Type instances that are stored asrows in a table whose type corresponds to the type of the
Abstract Data Type. The terms RowT ype and Reference to RowType are also used to describe such types.
The above concepts of Types that support tables whose rows are ingtances of the Type and that support
Referencesto Type ingtances are also part of the current draft SQL 3 standard.

This specification allows Geometry Types to be implemented as either pure value based Types or as Types
that support persistent References.

2.3.6 Scope of this OpenGIS Geometry Types specification

This specification does not attempt to standardize and does not depend upon any part of the mechanism by
which Types are added and maintained in the SQL environment including

* Thesyntax and functionality provided for defining types
* Thesyntax and functionality provided for defining SQL functions

* Thephysical storage of type instancesin the database

Page 2-25

OpenGI S Simple Features Specification for SQL, Revisionl.1

* The specific terminology used to refer to types, for example, ADT.

This specification does sandardize:

e Thenames and geometric definitions of the OpenGIS SQL Types for Geometry.

e Thenames, signatures and geometric definitions of the OpenGIS SQL Functions for Geometry.

The types for geometry are defined in black box terms, i.e. all access to information about a geometry type
instanceis through SQL functions. No attempt is made to distinguish functions that may access type
instance attributes (such as the dimension of a geometry instance) from functions that may compute values
given atype instance (such asthe centroid of a polygon). In particular, a SQL3 implementation of this
specification would be free to nominate any set of functions as observer methods on attributes of an
Abstract Data Type in SQL 3 aslong as the signatures of the SQL functions described in this specification
are preserved.

This specification does not place any requirements on when or how or who defines the Geometry Types. In
particular, a compliant system may be shipped to the database user with the set of Geometry Types and
Functions already built into the RDBMS server, or with the set of Geometry Types and Functions supplied
to the database user as a dynamically loaded extension to the RDBMS server or in any other manner not
mentioned in this specification.

2.3.7 SQL Geometry Type Hierarchy

The SQL Geometry Types are organized into atype hierarchy based on the Open GIS Geometry Model and
are shown in the figure bel ow.

Geometry
Point Curve Surface GeometryCollection
LineString Polygon MultiSurface| MultiCurve MultiPoint

MultiPolygon MultiLineString

Figure 2.150 SQL Geometry TypeHierarchy

Page 2-26

Chapter 2 Architecture

Theroot type, named Geometry, has subtypes for Point, Curve, Area and GeometryCollection. A
GeometryCollection isa Geometry that isa collection of possibly heterogeneous Geometries. MultiPoint,
MultiCurve and Multi Surface are specific subtypes of GeometryCollection used to manage homogenous
collections of Points, Curves and Surfaces. The O dimensional geometric Types are Point and MultiPoint.
The one-dimensional geometric Types are Curve and MultiCurve together with their subclasses. The two-
dimensional geometric Types are Surface and Multi Surface together with their subclasses.

SQL functions are defined to construct instances of the above types given well-known textual or binary
representations of the types. SQL functions defined on the types implement the methods described in the
Geometry Modd of section 2.1.

2.3.8 Geometry Values and Spatial Reference Systems

In order to model Spatial Reference System information each geometry value in the SQL 92 with
Geometry Typesimplementation is associated with a Spatial Reference System. Capturing this association
at thelevel of theindividual geometry value allows literal geometry values that are not yet part of a column
in the database, to be associated with a Spatial Reference System. Examples of such geometry values are
geometry values that are used as a parameter to a spatial query or ageometry value that is part of an insert
statement. Capturing this association at the level of the individual geometry value also allows functions that
take two geometry values to check for compatible spatial reference systems.

A geometry value is associated with a Spatial Reference System by storing the Spatial Reference System
Identity (SRID) for the Spatial Reference System as a part of the geometry value. As explained in the
Spatial Reference System Metadata views, each Spatia Reference System in the database isidentified by a
unique value of SRID.

The SRID for ageometry is assigned to it at construction time. This allows the SQL 92 with Geometry
Typesimplementation to ensure that

1. thegeometry values being inserted into a geometry column match the Spatial Reference System
declared for the geometry column

2. queriesthat spatially join columns from different tables operate on geometry columns with compatible
Spatial Reference Systems.

If either of these conditions are violated, arun time SQL error is generated. These compatible spatial
reference system checks are not possible in the SQL 92 implementation.

The SRID function, defined on the Geometry type, returnstheinteger SRID of a geometry value.

In al operations on the Geometry type, geometric calculations shall be donein the spatial reference system
of thefirst geometric object. Returned objects shall bein the spatia reference system of the first geometric
object unless explicitly stated otherwise.

Before a geometry can be constructed and inserted into a table, the corresponding row for its SRID must
exist inthe SPATIAL_REFERENCE_SY STEMStable, else construction of the geometry will fail. When
defining atable, a SQL check constraint can be used to enforce the rule that all geometriesin a geometry
column have the same SRID asthat defined for the column in the GEOMETRY_COLUMNS table. The
following exampl e shows the definition of a table, named Countries, with two columns named Name and
Geometry of type VARCHAR and POLY GON respectively.

CREATE TABLE Countries (
Name VARCHAR(200) NOT NULL PRI MARY KEY,
Location Pol ygon NOT NULL,

Page 2-27

OpenGI S Simple Features Specification for SQL, Revisionl.1

CONSTRAI NT spatial _reference

CHECK (SRI D(Geonetry) in (SELECT SRID from GEOVETRY_COLUWNS wher e
F_TABLE_CATALOG = <cat al og> and F_TABLE_SCHEMA = <schema> and
F_TABLE_NAME = ‘Countries’ and F_GEOMETRY_COLUMN = ‘Location’))

)

We expect that most implementations will use Stored Procedures similar to those shown below for the
purpose of adding and dropping geometry columns to and from a feature table.

The AddGeometryColumn(FEATURE_TABLE _CATALOG, FEATURE_TABLE_SCHEMA, FEATURE_TABLE NAME,
GEOMETRY_COLUMN_NAME, SRID) procedure will :

1. ensurethat an entry for the SRID existsin the SPATIAL_REFERENCE_SY STEMStable.

2. add an entry to the GEOMETRY _COLUMNS table that storesthe SRID for the geometry column.
3. add the geometry column to the feature table using a SQL ALTER TABLE statement

4. addthe Spatial Reference Check Congraint to the feature table

The DropGeometr yColumn(FEATURE_TABLE_CATALOG, FEATURE_TABLE_SCHEMA,
FEATURE_TABLE_NAME, GEOMETRY_COLUMN_NAME) stored procedure will :

1. dropthe spatial reference Check Constraint on the feature table
2. drop the entry from the GEOMETRY_COLUMNS table

3. drop the geometry column from the feature table

2.3.9 ODBC Access to Geometry Values in the SQL with Geometry Types case
Spatial dataare accessed using the SQL query language extended with SQL functions on Geometry Types
as described in section 3.2.3. The SQL pass through capabilities of ODBC allow a client to pass these or
any extended SQL statements containing RDBM S specific SQL extensionsto aserver. (Applicationsare

freeto send any SQL statementsto an RDBMS even if the statement is not described within the ODBC
conformance levels).

Geometry columns are implemented using the Geometry data types described above.

GI S applicationswill be able to determine the existence of a Geometry column based on the Geometry data
type or one of its subtypes using one or more of the following ODBC programming techniques:

The SQLTypelnfo function can be used to determine both the TY PE_NAME and the underlying
SQL_DATA_TYPE of an ODBC SQL Type.

The SQL Columns catal og function can be used to determine the TY PE_NAME and the underlying
SQL_DATA_TYPE of acolumnin atable.

The SQLDescribeCol and SQLColAttributes functions can be used to determine a column’s data type and
description.

An ODBC client application uses either one of two SQL functions

GeomFromText ([in] String, [in] Integer) : Geometry, or

Page 2-28

Chapter 2 Architecture

GeomFromWKB([in] Binary,[in] Integer) : Geometry

or their type specific versions (for example, PolygonFromText and PolygonFromWKB) to pass geometry
valuesinto the database from a client application that represents them using either the well-known text or
the well-known binary representations.

The input argumentsto the above functions are ODBC standar d character, binary and integer data types
(SQL_C _CHAR, SQL_C BINARY, SQL_C_INTEGER) and clients bind to these parameters using
standard ODBC binding methods.

An ODBC client application uses either one of two SQL functions

AsText([in]Geometry) : String, or

AsBinary([in]|Geometry) : Binary

to extract geometry values from the database as either text or well-known binary values.

The output arguments to the above functions are ODBC standar d character and binary data types
(SQL_C _CHAR, SQL_C BINARY) and clients bind to these parameters using sandard ODBC binding
methods.

The above SQL functions are described in sections 3.2.8 and 3.2.9.

Page 2-29

3 Component Specifications

In order to be compliant with this OpenGIS ODBC/SQL specification for geospatial feature collections an
implementer shall choose to implement the components described in this section for any one of three
alternatives (1a, 1b or 2) listed below and described in this specification:

1. SQL92implementation of feature tables
a) using numeric SQL types for geometry storage and ODBC access.
b) using binary SQL types for geometry storage and ODBC access.

2. SQL92 with Geometry Types implementation of feature tables supporting both textual and binary
ODBC access to geometry.

The components for the SQL 92 implementation of feature tables are described in section 3.1. Alternatives
1a) and 1b) listed above differ only in the implementation of the geometry table component as described in
section 3.1.4.

The components for the SQL 92 with Geometry Types implementation of feature tables are described in
section 3.2.

3.1 Components—SQL92 Implementation of Feature Tables

The components of the ODBC OpenGlI S specification for feature table implementation in a SQL92
environment consists of the tables or views discussed in this section. Since the existence of some unknown
tableisprerequisite for a view, most of the definitions bel ow are stated as CREATE TABLE statements.
Viewsthat create the samelogical structure are equally compliant. Table names and column names have
been restricted to 18 charactersin length to allow for the widest possible implementation.

3.1.1 Spatial Reference System Information

3.1.1.1 Component Overview

The Spatial Reference Systems table, which isnamed SPATI AL_REF_SYS, stores information on each
gpatial reference system used in the database.

Page 3-1

OpenGI S Simple Features Specification for SQL, Revisionl.1

3.1.1.2 Table or View Constructs

The following CREATE TABLE statement creates an appropriately structured Spatial Reference Systems
table.

CREATE TABLE SPATI AL_REF_SYS
(

SRI D I NTEGER NOT NULL PRI MARY KEY,
AUTH_NAVE VARCHAR (256),

AUTH_SRI D | NTEGER,

SRTEXT VARCHAR (2048)

)

3.1.1.3 Field Description
The meanings of the attributes in the view are as follows:

* SRl D—an integer value that uniquely identifies each Spatial Reference System within a database.

e AUTH_NAME—the name of the gandard or standards body that is being cited for this reference system.
EPSG would be avalid AUTH_NAVE

e AUTH_SRI D-thelD of the Spatial Reference System as defined by the Authority cited in AUTH_NAME.
e SRTEXT—The Well-known Text representation of the Spatial Reference System.

3.1.1.4 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.1.2 Geometry Columns Metadata View

3.1.2.1 Component Overview

The Geometric Columns Metadata view provides metadata information on the spatial reference for each
geometry column in the database.

3.1.2.2 Table or View Constructs

The followingCREATE TABLE statement creates an appropriately structured table. This should be either an

actual table or an updateable view so that insertion of reference system information can be done directly
with SQL.

CREATE TABLE GEOVETRY_COLUWNS (

F_TABLE_CATALOG VARCHAR(256) NOT NULL,
F_TABLE_SCHEMA VARCHAR(256) NOT NULL,
F_TABLE_NAME VARCHAR(256) NOT NULL,
F_GEOVETRY_COLUWN VARCHAR(256) NOT NULL,
G TABLE_CATALOG VARCHAR(256) NOT NULL,
G TABLE_SCHEMA VARCHAR(256) NOT NULL,
G TABLE_NAME VARCHAR(256) NOT NULL,
STORAGE_TYPE | NTEGER,

Page 3-2

Chapter 3 Component Specifications

GEQVETRY_TYPE | NTEGER,
COORD_DI MENSI ON | NTEGER,
MAX_PPR | NTEGER,
SRI D I NTEGER REFERENCES ~SPATI AL_REF_SYS,

CONSTRAI NT GC_PK PRI MARY KEY
(F_TABLE_CATALOG, F_TABLE_SCHEMA, F_TABLE_NAME, F_GEOMETRY_COLUWN)

3.1.2.3 Field Description

Thefields in the Geometric Complex Information view are:

e F_TABLE_CATALOG F_TABLE_SCHEMA, F_TABLE_NAME—the fully qualified name of the feature table
containing the geometry column.

* F_GEQVETRY_COLUWN—the name of the column in the feature table that is the geometry column. This
column will contain a foreign key reference into the geometry table for a SQL92 implementation.

e G_TABLE_CATALOG G TABLE SCHEMA, G TABLE_NAME—the name of the geometry table and its
schema and catalog. The geometry table implements the geometry column.

e STORAGE_TYPE—thetype of storage being used for this geometry column.

0 = normalized geometry SQL92 implementation.
1 = binary geometry SQL92 implementation (Well-known Binary Representation for Geometry).

* CEOMETRY_TYPE—the type of geometry values stored in this column. The use of a non-leaf geometry
class name from the Geometry Object Model described in section 3.1 for a geometry column implies
that domain of the column corresponds to instances of the class and all of its subclasses.

GEQOVETRY

PO NT

CURVE

LI NESTRI NG

SURFACE

POLYGON

COLLECTI ON

MULTI PO NT

MULTI CURVE

MULTI LI NESTRI NG
MULTI SURFACE
MULTI POLYGON

PRPOO~NOODMWNEFO

e COORD_DI MENSI ON—the number of ordinates used in the complex, usually corresponds to the number
of dimensions in the spatial reference system.

* MAX_PPR—(This value contains data for the normalized SQL92 geometry implementation only) points
per row, the number of points stored as ordinate columns in the geometry table.

* SRID—the ID of the spatial reference system used for the coordinate geometry in this table. It is a
foreign key reference to tt8PATI AL_REF_SYS table.

Page 3-3

OpenGI S Simple Features Specification for SQL, Revisionl.1

3.1.2.4 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returnsfor ODBC.

3.1.3 Feature Tables and Views

The basic restriction in this specification for feature tables is that for each geometric attribute they include
geometry viaaFOREI GN KEY reference to a geometry table. Feature-to-feature re ations would similarly
be defined as FOREI GN KEY references. By [1], features are Simply objects that have geometric attributes.
In SQL92, these geometric attributes are stored in the geometry tables.

The general format of a feature table would be as follows:

CREATE TABLE <f eat ur e- nane> (
<FI D nanme> <FI D type>,
<feature attributes> <other FID type> REFERENCES <ot her feature vi ew>,
(other FID based attributes for feature relations)
(other attributes for feature)
<geometry attribute 1> <GID type>,
(other geometric attributes for feature)
PRIMARY KEY <FID name>,
(other geometric attributes foreign key statements)
FOREIGN KEY <geometric attribute 1> REFERENCES <geometry-table-name-1>,
FOREIGN KEY <FID relation name> REFERENCES <FEATURE table> <other FID name>,

(other geometric attributes foreign key statements)

)

The geometric attribute Foreign Key reference applies only for the case where the geometry table stores
geometry in binary form. Inthe case where geometry is stored in normalized form there may be multiple
rows in the geometry table corresponding to a single geometry value. In this case the geometry attribute
reference may be captured by a constraint that checks that the geometry column value stored in the Feature
Table corresponds to the GID value for somerow in the Geometry Table.

The foreign key reference to the geometry table name creates an entry in the data dictionary that tiesthis
table to that geometry table. Thisis sufficient to identify thistable as a feature table. Foreign keys also
define feature-to-feature relations. Alternatively, applications may check the GEOVETRY_COLUMNS view,
where al geometry columns and their associated feature tables and geometry tables are listed.

3.1.4 Geometry Tables or Views

3.1.4.1 Component Overview

Each Geometry View stores geometry instances corresponding to a geometry column in afeature table.
Geometries may be stored asindividual ordinate values, using SQL types, or as binary objects, using the
OpenGIS Well-known Binary Representation for Geometry. Table schemas for both implementations are
provided.

Page 3-4

Chapter 3 Component Specifications

3.1.4.2 Geometry stored using ODBC/SQL numeric types

3.1.4.3 Table or View Constructs

The following CREATE TABLE statement creates an appropriately structured table for geometry stored as
individual ordinate values using SQL types. Implementations should either use thistable format or provide
stored procedures to create, populate and maintain this table.

CREATE TABLE <t abl e name> (

[C D) NUMVBER NOT NULL,
ESEQ | NTEGER NOT NULL,
ETYPE | NTEGER NOT NULL,
SEQ | NTEGER NOT NULL,
X1 <ordinate type>,
Y1 <ordinate type>,

. <repeated for each ordinate, repeated for each point>

X<max_ppr > <ordinate type>,
Y<max_ppr > <ordinate type>,
<attribute name> <attribute type>

CONSTRAI NT G D_PK PRI MARY KEY (G D, ESEQ SEQ
)

3.1.4.4 Field Descriptions :

Thefields of ageometric view are:
e @ DO identity of this geometry
* ESEQ—identifies multiple components within a geometry

* ETYPE—element type of this primitive element for the geometry. The following values are defined for
ETYPE:

1 = Point
2 = LineString
3 = Polygon

* SEQ—identifies the sequence of rows to define a geometry component
* X1—first ordinate of first point

* Yl—second ordinate of first point

e .0 (repeated for each ordinate, for this point)

e .0 (repeated for each coordinate, for this row)

Page 3-5

OpenGI S Simple Features Specification for SQL, Revisionl.1

e X<MAX_PPR>—first ordinate of last point,. The maximum number of points per kW ‘PPR’ is
consistent with the information in tt&QVETRY_COLUMNS table.

* Y<MAX_PPR>—second ordinate of last point

o .0 (repeated for each ordinate, for this last point)

e <ATTRI BUTE>0 other attributes can be carried in the geometry view for specific feature schema

3.1.4.5 Geometry stored using ODBC/SQL binary types

3.1.4.6 Table or View Constructs

The followingCREATE TABLE statement creates an appropriately defined table for geometry stored using
the OpenGIS Well-known Binary Representation for Geometry defined in section 4.3. Implementations
should either use this table format or provide stored procedures to create, populate and maintain this table.

CREATE TABLE <t abl e name> (
[C D)
XM N
YM N
XNVAX
YMAX
WKB_GEOVETRY

<attribute name>

)

NUMVBER NOT NULL PRI MARY KEY,
<ordinate type>,

<ordinate type>,

<ordinate type>,

<ordinate type>,

VARBI NARY,

<attribute type>

3.1.4.7 Field Descriptions

The fields of a geometric view are:

* d D—identity of this geometry

e XM N—the minimum x-coordinate of the geometry bounding box

* YM N—the minimum y-coordinate of the geometry bounding box

* XMAX—the maximum x-coordinate of the geometry bounding box

* YMAX—the maximum y-coordinate of the geometry bounding box

* WKB_GEQVETRY—the well-known binary representation of the geometry

e <ATTR BUTE>—o0ther attributes can be carried in the geometry view for specific feature schema

3.1.4.8 Exceptions, Errors, and Error Codes

Error handling will use the standard SQL status returns for ODBC.

Page 3-6

Chapter 3 Component Specifications

3.1.5 Operators
No SQL92 spatial operators are defined as part of this specification.

3.2 Components—SQL92 with Geometry Types Implementation of Feature
Tables
The components of the ODBC OpenGlI S specification for feature table implementation in a SQL 92 with
Geometry Types environment consists of the tables or views, SQL types and SQL functions discussed in
this section.
Since the exigtence of some unknown tableis prerequisite for a view, most of the definitions below are
stated as CREATE TABLE statements. Views that create the samelogical structure are equally compliant.

3.2.1 Spatial Reference System Information View

3.2.1.1 Component Overview

This component isidentical to the corresponding Component described for the SQL 92 implementation:

3.2.1.2 Table or View Constructs

The following CREATE TABLE statement creates an appropriately structured Spatial Reference Systems
table.

CREATE TABLE SPATI AL_REF_SYS
(

SRI D I NTEGER NOT NULL PRI MARY KEY,
AUTH_NAVE VARCHAR (256),

AUTH_SRI D | NTEGER,

SRTEXT VARCHAR (2048)

)

3.2.1.3 Field Description
The meanings of the attributes in the view are as follows:

* SRI D—an integer value that uniquely identifies each Spatial Reference System within a database.

e AUTH_NAME—the name of the standard or standards body that is being cited for this reference system.
EPSG would be aalid AUTH_NAME

e AUTH_SR D—the ID of the Spatial Reference System as defined by the Authority citedih NAVE.
e SRTEXT—The Well-known Text representation of the Spatial Reference System.

3.2.1.4 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

Page 3-7

OpenGI S Simple Features Specification for SQL, Revisionl.1

3.2.2 Geometry Columns Metadata View

3.2.2.1 Component Overview

The Geometric Columns Information view provides metadatainformation on the spatial reference for each
geometry column in the database. The columnsfor thisview in the SQL 92 with Geometry Types
implementation are a subset of the columnsin the SQL 92 implementation.

3.2.2.2 Table or View Constructs

The following CREATE TABLE statement creates an appropriately structured table. This should be either an
actual table or an updateable view so that insertion of reference system information can be done directly
with SQL.

CREATE TABLE GEOVETRY_COLUWNS (
F_TABLE_CATALOG VARCHAR(256) NOT NULL,
F_TABLE_SCHEMA VARCHAR(256) NOT NULL,
F_TABLE_NAME VARCHAR(256) NOT NULL,
F_GEOVETRY_COLUWN VARCHAR(256) NOT NULL,
COORD_DI MENSI ON | NTEGER,
SRI D | NTEGER REFERENCES SPATI AL_REF_SYS,

CONSTRAI NT GC_PK PRI MARY KEY
(F_TABLE_CATALOG, F_TABLE_SCHEMA, F_TABLE NAME, F_GEOMETRY_COLUMN)

)

3.2.2.3 Field Description

Thefields in the Geometric Complex Information view are:

F_TABLE CATALOG F_TABLE_SCHEMA, F_TABLE NAME—the fully qualified name of the feature
table containing the geometry column.

F_GEQVETRY_COLUWN—the name of the geometry column in the feature table.

COORD_DI MENSI ON—the coordinate dimension for the geometry values in this column, which will be
equal to the number of dimensions in the spatial reference system.

SRI D—the ID of the spatial reference system used for the coordinate geometry in this table. It is a
foreign key reference to tI8PATI AL_REFERENCES table.

3.2.2.4 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns for ODBC.

3.2.3 SQL Geometry Types

3.2.3.1 Component Overview

The SQL Geometry Types extend the set of available SQL92 types to include Geometry Types.

Page 3-8

Chapter 3 Component Specifications

3.2.3.2 Language Constructs

The SQL language will support a subset of the following set of SQL Geometry Types. { Geonet ry, Poi nt ,
Curve, Li neStri ng, Surface, Pol ygon, Geonet ryCol | ecti on, Ml ti Curve, Mul tiLineString,
Mul ti Surface, Ml ti Pol ygon, Ml ti Poi nt }. The permissible type subsets that an implementer may
choose to implement are described in Table 3.1 below.

An implementation must preserve the subtype rel ationshi ps between geometry types shown in Figure 3.1
bel ow for the types that are implemented. An implementation that implements 2 types A and B where B is
an immediate subtype of A in Figure 3.1 isfree to introduce additional types C, outside the scope of this
specification, between A and B aslong as A continues to be a supertype of B.

Geometry
Point Curve Surface GeomCollection
LineString Polygon MultiSurface| MultiCurve MultiPoint

MultiPolygon MultiLineString

Figure 3.10 Subtype relationships between Types

Geonet ry, Curve, Surface, Ml ti Curve and Ml ti Surf ace are defined to be non-instantiable types.
No constructors are defined for these types.

Theremaining seven types are defined to be ingantiable. An implementation may support only a subset of
these seven types as instantiable as defined in the table below

TypelLevel | Available Types Instantiable Types

1 Geonetry, Point, Curve, Poi nt, LineString, Polygon,
Li neStri ng, Surface, Polygon, CeonCol | ecti on
Geontol | ection

2 Geonetry, Point, Curve, Poi nt, LineString, Polygon,
Li neStri ng, Surface, Polygon, Mul ti Point,
Geontol | ection, MiltiPoint, Mul ti Li neString, Mul tiPol ygon

Mul'ti Curve, MiltiLineString,
Mul ti Surface, MiltiPol ygon

Page 3-9

OpenGI S Simple Features Specification for SQL, Revisionl.1

3 Geonetry, Point, Curve, Poi nt, LineString, Polygon,
Li neStri ng, Surface, Polygon, CGeonCol | ection, MiltiPoint,
Geontol | ection, MiltiPoint |, Mul tiLineString, MiltiPolygon

Mul ti Curve, MiltilLineString,
Mul ti Surface, MiltiPol ygon

Table 3.10 Available and instantiable types by implementation type level
Any implemented SQL geometry type may be used as the type for a column. Declaring a column to be of a
particular type implies that any instance of the type or of any of its subtypes may be stored in the column.

3.2.4 Feature Tables and Views

3.2.4.1 Component Overview

The basic restriction in this specification for feature tablesis that each geometric attributeis modeled using
a column whose type corresponds to a SQL Geometry Type as defined in section 3.2.3. Feature-to-feature
relations are defined as FOREI GN KEY references.

3.2.4.2 Table or View Constructs

The general format of a featuretable in the SQL 92 with Geometry Typesimplementation shall be as
follows:

CREATE TABLE <f eat ur e- nane> (

<FI D nanme> <FI D type>,

<feature attributes> <other FID type> REFERENCES <ot her feature view>,
(other FID based attributes for feature relations)
(other attributes for feature)

<geometry attribute 1> <Geometry type>,
(other geometric attributes for feature)

PRIMARY KEY <FID name>,

FOREIGN KEY <FID relation name> REFERENCES <FEATURE table> <other FID name>

CONSTRAINT SRS_1 CHECK (SRID(<geometry attribute 1>) in (SELECT SRID from
GEOMETRY_COLUMNS where F_TABLE_CATALOG = <catalog> and
F_TABLE_SCHEMA = <schema> and F_TABLE_NAME = <feature-name> and
F_GEOMETRY_COLUMN = <geometry attribute 1>))

... (spatial reference constraints for other geometric attributes)

)

The use of a SQL Geometry Type for one of the columnsin the table identifies this table as a feature table.
Alternatively, applications may check the GEOVETRY_COLUWNS view, where all geometry columns and
their associated feature tables and geometry tables are listed.

3.2.4.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

Page 3-10

Chapter 3 Component Specifications

3.2.5 SQL Textual Representation of Geometry

3.2.5.1 Component Overview

Each Geometry Type has a Well-known Text representation that may be used both to construct new
instances of the type and to convert existing instances to textual form for alphanumeric display.
3.2.5.2 Language Constructs

The Well-known Text representation of Geometry is defined below; the notation {} * denotes O or more
repetitions of the tokens within the braces, the braces do not appear in the output token list. The text
representation of the instanti able geometric types implemented shall conform to this grammar.

<CGeonetry Tagged Text> :=
<Poi nt Tagged Text>

| <LineString Tagged Text>
| <Pol ygon Tagged Text >

| <MultiPoint Tagged Text>
I

I

I

<Mul tiLineString Tagged Text>
<Mul ti Pol ygon Tagged Text >
<CGeonetryCol | ection Tagged Text>
<Poi nt Tagged Text> :=
PO NT <Poi nt Text>
<LineString Tagged Text> :=
LI NESTRI NG <Li neString Text>
<Pol ygon Tagged Text> :=
POLYGON <Pol ygon Text >
<Mul ti Poi nt Tagged Text> :=
MULTI PO NT <Ml ti point Text>
<Mul ti LineString Tagged Text> :=
MULTI LI NESTRI NG <Mul ti Li neString Text>
<Mul ti Pol ygon Tagged Text> : =
MULTI POLYGON <Mul ti Pol ygon Text >
<CGeonetryCol | ection Tagged Text> : =
GEOVETRYCOLLECTI ON <GeonetryCol | ection Text>
<Point Text> := EMPTY | (<Point>)

<Point> := <x> <y>
<x> := doubl e precision literal
<y> := double precision literal

<LineString Text> := EMPTY

| (<Point > {, <Point > }*)
<Pol ygon Text > : = EMPTY

| (<LineString Text > {, < LineString Text > }*)
<Mul ti poi nt Text> := EMPTY

| (<Point Text > {, <Point Text > }*)

<Mul tiLineString Text> := EMPTY

Page 3-11

OpenGI S Simple Features Specification for SQL, Revisionl.1

| (<LineString Text > {, < LineString Text > }*)
<Mul ti Pol ygon Text> := EMPTY

| (< Polygon Text > {, < Polygon Text > }*)
<GeonetryCol | ection Text> := EMPTY
| (<Geonmetry Tagged Text> {, <Geonetry Tagged Text> }*)

The above grammar has been designed to support a compact and readable textual representation of
geometric instances. The representation of a geometry that consists of a set of homogeneous components
does not include the tags for each embedded component.

3.2.5.3 Examples

Examples of SQL textual representations of Geometry Types are shown below. The coordinates are shown
as integer values; coordinates may be any double precision value.

Geometry Type SQL Text Literal Representation Comment

Point ‘POINT (10 10) aPoint

LineString ‘LINESTRING (10 10, 20 20, 30 40)’ alineString with 3 points

Polygon ‘POLYGON ((10 10, 10 20, 20 20, aPolygon with 1 exterior
20 15, 10 10)) ring and O interior rings

Multipoint ‘MULTIPOINT (10 10, 20 20y a MultiPoint with 2 point

MultiLineString ‘MULTILINESTRING ((10 10, 20 20), a MultiLineString with
(15 15, 30 15)) 2 linestrings

Multi Polygon ‘MULTIPOLYGON (aMultiPolygon with 2
((10 10, 10 20, 20 20, 20 15, 10 10)), polygons
((60 60, 70 70, 80 60, 60 60)))

GeomCaollection ‘GEOMETRYCOLLECTION (POINT (10 10), a GeometryCollection
POINT (30 30), consisting of 2 Point values
LINESTRING (15 15, 20 20))Y and aLineString value

3.2.6 SQL Functions for Constructing a Geometry Value given its Well-known
Text Representation

3.2.6.1 Component Overview

The functions are used to construct Geometry instances from their text representations.

3.2.6.2 Language Constructs

The GeomFromText function, takes a geometry textual representation (a <Geometry Tagged Text> as
described in the grammar above), and a Spatial Reference System ID (SRID) and creates an instance of the
appropriate geometry type. This function plays therole of the Geometry factory in SQL.

An implementation shall substitute an SQL type suitable for representing text data (e.g., VARCHARfor the
type String below.

Page 3-12

Chapter 3 Component Specifications

Geontr onrext (Construct aGeonet ry vaue given its well-

geonet ryTaggedText String, known textual representation.
SRID Integer) : Ceonetry

Thereturn type of the Geonet r y function isthe Geonet r y supertype. For construction of Geonet ry
values to be stored in columns restricted to a particular subtype, an implementation shall aso provide a
type specific construction function for each instantiable subtype as described in the table below.

Poi nt Fronrext (

poi nt TaggedText String, SRID Integer): Point | ConstructaPoint

Li neFr onirext (Construct aLi neString
l'i neStringTaggedText String,
SRID Integer) : LineString

Pol yFr onirext (
pol ygonTaggedText Stri ng,
SRID I nteger): Pol ygon

Construct aPol ygon

MPoi nt Fr onTText (nul ti Poi nt TaggedText String, Construct aMul t i Poi nt
SRID Integer): MiltiPoint

M.i neFr onTText (ConstructaMul ti Li neString
mul ti Li neStringTaggedText String,
SRID Integer): MiltilLineString

MPol yFr onText (Construct aMul t i Pol ygon
mul ti Pol ygonTaggedText String,
SRID Integer): MiltiPolygon

CGeonCol | Fr omTxt (Construct aGeonet ryCol | ecti on
geonet ryCol | ecti onTaggedText String,
SRID Integer): GeonCol |l ection

As an optional feature, an implementation may also support ‘buildirRplgfgon or Mul ti Pol ygon
values given an arbitrary collection of possibly intersecting rings or closebt r i ng values.
Implementations that support this feature should include the following functions:

BdPol yFr onTText (Construct aPol ygon given an arbitrary
mul ti Li neStringTaggedText Stri ng, collection of closed linestrings as a
SRID Integer): Pol ygon Mul ti Li neStri ng text representation.
BdMPol yFr omrext (Construct aMul t i Pol ygon given an
mul tiLineStringTaggedText String, arbitrary collection of closed linestrings asa
SRID Integer): MiltiPolygon Mul ti Li neStri ng text representation.

3.2.6.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.6.4 Example

The following example shows the use of Boé ygon type specific constructor:

I NSERT | NTO Countries (Nane, Location)
VALUES (‘Kenya’, PolygonFromText(‘POLYGON ((Xy, Xy, X Y, ..., XV))’, 14))

Page 3-13

OpenGI S Simple Features Specification for SQL, Revisionl.1

3.2.7 SQL Functions for Constructing a Geometry Value given its Well-known
Binary Representation

3.2.7.1 Component Overview

The functions are used to construct geometry instances from their well-known binary representations.

3.2.7.2 Language Constructs

The GeonFr onKB function, takes a well-known binary representation of geometry (WKBGeonet ry as
described in section 3.3) and a Spatial Reference System ID (SRI D) and creates an instance of the
appropriate geometry type. This function plays therole of the Geometry Factory in SQL. An
implementation shall substitute an SQL type used to represent binary values for thetype Bi nar y in the
definitions bel ow.

Geontr om/\KB Construct aGeonet ry vaue given its well-known

(WKBCeonetry Binary, binary representation.
SRID Integer) : Ceonetry

Thereturn type of the Geonet ry function isthe Geonet r y supertype. For construction of Geonet ry
values to be stored in columns restricted to a particular subtype, an implementation shall also provide a
type specific construction function for each instantiabl e subtype as described in the table below (the well-
known binary representations for each Geonet r y type are as described in section 3.3).

Poi nt FromAKB (VWKBPoi nt Binary, SRID Integer): Point)
Construct a Poi nt

Li neFr omM\KB(WKBLi neStri ng Bi nary, Construct aLi neStri ng
SRID Integer) : LineString

Pol yFr om\KB(WKBPol ygon Binary, SRI D Integer): Polygon
y (y9 y ger) yg Construct aPol ygon

MPoi nt Fr omAKB (WWKBMul ti Poi nt Bi nary, Construct aMul t i Poi nt
SRID Integer): MiltiPoint

M.i neFromAKB (WKBMul ti Li neString Binary, Construct a
SRID Integer): MiltiLineString Mul tiLineString

MPol yFromAKB (VWKBMuI ti Pol ygon Bi nary, Construct aMul t i Pol ygon
SRID Integer): MiltiPolygon

GeontCol | Fr om/\KB Construct a

(WKBCeonet ryCol | ecti on Binary, Geonet ryCol | ecti on

SRID I nteger): GeonCol |l ection

As an optional feature, an implementation may also support the ‘buildifg! gtjon or Mul t i Pol ygon
values given an arbitrary collection of possibly intersecting rings or closebt r i ng vaues.
Implementations that support this feature should include the following functions:

BdPol yFromAKB _ Construct aPol ygon given an arbitrary
(WKBMul ti LineString Binary, collection of closed linestrings as a
SRID Integer): Polygon Mul ti Li neStri ng binary representation.

Page 3-14

Chapter 3 Component Specifications

BdMPol yFr omAKB Construct aMul t i Pol ygon given an
(WKBMUl ti LineString Binary, arbitrary collection of closed linestrings asa
SRID Integer): MiltiPolygon Mul ti Li neStri ng binary representation.

3.2.7.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.7.4 Examples

The following example shows the use of the binary Pol ygon type specific constructor in Dynamic SQL,
the: wkb and : sri d parameters are bound to application program variables containing the binary
representation of a Pol ygon and of the SRI D respectively :

I NSERT | NTO Countries (Nane, Location)
VALUES (‘Kenya’, PolygonFromWKB(:wkb, :srid))

3.2.8 SQL functions for obtaining the Well-known Text Representation of a
Geometry

3.2.8.1 Component Overview

Thisfunction returns the well-known textual representation for a Geornret ry.

3.2.8.2 Language Constructs

The AsText function takes a single argument of type Geonet ry and returnsits well-known textual
representation. Thisfunction appliesto all subtypes of Geonret ry.

AsText (g Ceonetry) : String Returnsthe well-known textual representation

3.2.8.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.8.4 Examples

The following example shows the use of the AsText function to extract the name and textual
representation of geometry of all countries whose names begin with the letter K.

| SELECT Name, AsText(Location) FROM Countries WHERE Name LIKE ‘K%’

3.2.9 SQL functions for obtaining the Well-known Binary Representation of a
Geometry

3.2.9.1 Component Overview

Thisfunction returns the well-known binary representation for a Geonet ry

Page 3-15

OpenGI S Simple Features Specification for SQL, Revisionl.1

3.2.9.2 Language Constructs

The AsBi nary function takes a single argument of type Geonet ry and returnsits well-known binary
representation. Thisfunction appliesto all subtypes of Geonret ry.

AsBinary (g Ceonetry)

Bi nary

Returns the well-known binary representation

3.2.9.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.9.4 Example

The following example shows the use of the AsBi nary function to extract the name and well-known
binary representation of geometry for al countries whose names begin with the letter K.

| SELECT Name, AsBinary(Location) FROM Countries WHERE Name LIKE ‘K%’

3.2.10 SQL Functions on Type Geometry

3.2.10.1 Component Description

In al operations on the Geometry type, geometric calculations shall be donein the spatial reference system
of thefirst geometric object. Returned objects shall bein the spatial reference system of the first geometric
object unless explicitly stated otherwise.

Thefollowing SQL functions apply to all subtypes of Geornret ry.

3.2.10.2 Language Constructs

Di mensi on(g Geonetry) I nt eger Returnsthe dimension of the Geonet r y, which isless than or
equal to the dimension of the coordinate space.

Geonet ryType(g Geonetry) : String | Returnsthe name of the instantiable subtype of Geonet ry of
which thisinstanceisamember, asa St ri ng.

AsText (g Ceonetry) String Returnsthe well-known textual representation

AsBi nary(g Geonetry) Bi nary Returns the well-known binary representation

SRID(g Geonetry) : Integer

Returnsthe Spatial Reference System ID for thisGeonet ry.

| sEnpty(g Ceonetry)

I nt eger

Thereturntypeis| nt eger , with areturn value of 1 for TRUE, O
for FALSE, and —1 folUNKNOWN corresponding to a function
invocation orNULL arguments.

TRUE if this Geonet ry corresponds to the empty set.

Page 3-16

Chapter 3 Component Specifications

I sSimpl e(g Geonetry)

: Integer

Thereturntypeis| nt eger , with areturn value of 1 for TRUE, O
for FALSE, and —1 folUNKNOWN corresponding to a function
invocation orNULL arguments.

TRUE if this Geonet ry is simple, as defined in the Geometry
Model.

Boundary(g Ceonetry)

Geonetry

Returns &eoret ry that is the combinatorial boundarygpfis
defined in the Geometry Model.

Envel ope(g CGeonetry)

Ceonetry

Returns the rectangle boundig@s aPol ygon. The polygon is
defined by the corner points of the bounding box ((MINX,

MINY),(MAXX, MINY), (MAXX, MAXY), (MINX,
MAXY), (MINX, MINY)).

3.2.10.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.11 SQL Functions on Type Point

3.211.1 Component Description

The following SQL functions are defined on Poi nt .

3.2.11.2 Language Constructs

X(p Point) : Double Precision | Returnthe x-coordinate &oi nt p as aDoubl e Preci si on
number

Y(p Point) : Double Precision | Returnthe y-coordinate &oi nt p as aDoubl e Preci sion
number

3.2.11.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.12 SQL Functions on Type Curve

3.2.12.1 Component Overview

The following SQL functions apply to all subtypes of Cur ve.

3.2.12.2 Language Constructs

StartPoint(c Curve) : Point Return aPoi nt containing the first point af

EndPoi nt (¢ Curve) : Point Return aPoi nt containing the last point af

Page 3-17

OpenGI S Simple Features Specification for SQL, Revisionl.1

I sd osed(c Curve) : Integer

Thereturntypeis| nt eger , with areturn value of 1 for
TRUE, O for FALSE, and —1 folUNKNOWN corresponding to a
function invocation oMNULL arguments.

ReturnTRUE if ¢ is closed, i.e., if
StartPoi nt(c) = EndPoi nt(c)

I sRing(c Curve) : Integer

The return type i nt eger , with a return value of 1 for
TRUE, O for FALSE, and —1 folUNKNOWN corresponding to a
function invocation oMNULL arguments.

ReturnTRUE if ¢ is aRi ng, i.e., ifc is closed and simple. A
simple curve does not pass through the same point more t
once.

han

Length(c Curve) : Double Precision

Return the length af

3.2.12.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.13 SQL Functions on Type LineString

3.2.13.1 Component Overview

Thefollowing SQL functionsapply toLi neStr i

3.2.13.2 Language Constructs

ng.

NurmPoi nt s(l LineString) : Integer

Return the number of points in theneSt r i ng.

Poi nt N(I LineString, n Integer) : Point Return aPoi nt containing poinh of |

3.2.13.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.14 SQL Functions on Type Surface

3.2.14.1 Component Overview

The following SQL functions apply to all subtypes of Sur f ace.

3.2.14.2 Language Constructs

Centroid(s Surface) : Point

Return the centroid af, which may lie outside

Poi nt OnSur face(s Surface) : Point

Return aPoi nt guaranteed to lie on the surface

Area(s Surface) : Double Precision

Return the area af

Page 3-18

Chapter 3 Component Specifications

3.2.14.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.15 SQL Functions on Type Polygon

3.2.15.1 Component Overview

Thefollowing SQL functions apply to Pol ygon.

3.2.15.2 Language Constructs

Exteri orR ng(p Polygon) : LineString Return the exterior ring of p.

Num nteriorRi ng(p Polygon) : |nteger Return the number of interior rings.

InteriorR ngN(p Polygon, n Integer) : LineString | Returnthenthinterior ring. The order of
ringsis not geometrically significant.

3.2.15.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.16 SQL Functions on Type GeomCollection

3.2.16.1 Component Overview

Thefollowing SQL functions apply to GeontCol | ect i on and all of its subtypes.

3.2.16.2 Language Constructs

NurmCeonetri es(g CeonCol | ection) : Integer Return the number of geometriesin the
collection.
Ceonet ryN(g Geontol | ecti on, Return the nth geometry in the collection. The
n Integer) : Ceonetry order of the elementsin the collection is not
geometrically significant.

3.2.16.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.17 SQL Functions on Type MultiCurve

3.2.17.1 Component Overview

Thefollowing SQL functions apply to all subtypes of Mul ti Cur ve.

Page 3-19

OpenGI S Simple Features Specification for SQL, Revisionl.1

3.2.17.2 Language Constructs

I sd osed(nc MultiCurve) : Integer

Thereturntypeis| nt eger , with areturn value of 1
for TRUE, O for FALSE, and —1 folUNKNOWN
corresponding to a function invocation RoLL
arguments.

ReturnTRUE if nt is closed.

Length(nmc MultiCurve) : Doubl e Precision

Return the length afc.

3.2.17.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.18 SQL Functions on Type MultiSurface

3.2.18.1 Component Overview

The following SQL functions apply to all subtypes of Mul ti Sur f ace.

3.2.18.2 Language Constructs

Centroid(nms MiltiSurface) : Point

Return the centroid ofs, which may lie outsides

Poi nt OnSur face(nms Multi Surface) : Point

Return a Point guaranteed to lie on the multi surfage

Area(ms Multi Surface) : Double Precision

Return the area ofs

3.2.18.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.19 SQL functions that test Spatial Relationships

3.2.19.1 Component Overview

The following functions test named spatial relationships between two geometries. The specific definitions
of these spatial relationshipsin terms of the DE-9IM may be found in section 2.1.13.2.

3.2.19.2 Language Constructs:

Equal s(gl Geonetry, g2 CGeonetry) : Integer

The return type i§ nt eger , with a return value
of 1 for TRUE, O for FALSE, and -1 for
UNKNOWN corresponding to a function
invocation orNULL arguments.

TRUE if g1 and g2 are equal.

Page 3-20

Chapter 3

Component Specifications

Di sjoint (gl Geonetry, g2 Ceonetry) I nt eger

Thereturntypeis| nt eger , with areturn value
of 1 for TRUE, O for FALSE, and -1 for
UNKNOWN corresponding to a function
invocation orNULL arguments.

TRUE if theintersection of g1 and g2 isthe
empty set.

Touches(gl Geonetry, g2 Ceonetry) I nt eger

The return type i§ nt eger , with a return value
of 1 for TRUE, O for FALSE, and -1 for
UNKNOWN corresponding to a function
invocation orNULL arguments.

TRUE if the only pointsin common between
gl and g2 liein the union of the boundaries
of g1 and g2.

Wthin(gl Geonetry, g2 Geonetry) I nt eger

The return type i§ nt eger , with a return value
of 1 for TRUE, O for FALSE, and -1 for
UNKNOWN corresponding to a function
invocation orNULL arguments.

TRUE if g1 is completely contained in g2.

Overl aps(gl Geonetry, g2 Geonetry) I nt eger

The return type i§ nt eger , with a return value
of 1 for TRUE, O for FALSE, and -1 for
UNKNOWN corresponding to a function
invocation orNULL arguments.

TRUE if theintersection of g1 and g2 results
in avalue of the same dimension asg1 and
g2 that isdifferent from both g1 and g2.

Crosses(gl Ceonetry, g2 Ceonetry) I nt eger

The return type i§ nt eger , with a return value
of 1 for TRUE, O for FALSE, and -1 for
UNKNOWN corresponding to a function
invocation orNULL arguments.

TRUE if theintersection of g1 and g2 results
in a value whose dimension isless than the
maximum dimension of g1 and g2 and the
intersection value includes pointsinterior to
both g1 and g2, and the intersection valueis
not equal to either g1 or g2.

Intersects(gl Geonetry,
| nt eger

g2 Geonetry)

The return type i§ nt eger , with a return value
of 1 for TRUE, O for FALSE, and -1 for
UNKNOWN corresponding to a function
invocation orNULL arguments.

Convenience predicate: TRUE if the
intersection of g1 and g2 isnot empty.

Intersects(gl, g2) = Not (Disjoint(gl, g2))

Page 3-21

OpenGI S Simple Features Specification for SQL, Revisionl.1

Contai ns(gl Ceonetry, g2 Geonetry) : Integer | Thereturntypeisl nt eger,withareturnvalue
of 1 for TRUE, O for FALSE, and -1 for
UNKNOWN corresponding to a function
invocation orNULL arguments.

Convenience predicate: TRUE if g2 is
completely contained in g1.

Containg(gl, g2) - Within(g2, g1)

The following function tests if the specified spatial relationship between two geometry values exists, where
the spatial relationship is expressed as a string encoding the acceptabl e values for the DE-9IM between the
two geometries, as described in the Geometry Object Model.

Rel ate(gl Ceonetry, g2 Geonetry, The return type is nt eger , with a return

patternMatrix String) : Integer value of 1 forTRUE, 0 for FALSE, and —1 for
UNKNOWN corresponding to a function
invocation onNULL arguments.

ReturnsTRUE if the spatial relationship
specified by thepat t er nVat r i x holds.

3.2.19.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.19.4 Example Queries

The functions and predicates in this section alow the expression of detailed spatia relationship queries.

Return all parcels that intersect a specified polygon:

SELECT Parcel . Name, Parcel.ld FROM Parcel s
WHERE | nt er sect s(Parcel s. Locati on, Pol ygonFromW\KB(:wkb, : srid)) =1

Return all parcels completely contained in a specified polygon:

SELECT Parcel . Nane, Parcel.ld FROM Parcel s
WHERE W t hi n(Parcel s. Location, PolygonFromAKB(:wkb, :srid)) =1

The following adjacency query may be used to select all parcels that are ‘adjacent’ to a query parcel and
share one or more boundary lines with a query parcel while excluding parcels that share only corner points.

SELECT Parcel . Name, Parcel.|ld FROM Parcel s
WHERE Touches(Parcels. Location, PolygonFromKB(:wkb, :srid)) =1 and
Over | aps(Boundary(Parcels. Location), Boundary(PolygonFromAKB(: wkb,

isrid))) =1

3.2.20 SQL Functions for Distance Relationships

3.2.20.1 Component Overview

The distance function can be used to calculate the distance between two valueSairtgpey.

Page 3-22

Chapter 3 Component Specifications

3.2.20.2 Language Constructs

Di st ance(gl Geonetry, Return the distance between g1 and g2.
g2 Geonetry) : Doubl e Precision

3.2.20.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.20.4 Example Query

SELECT Airport.Nane FROM Airports
VWHERE Di st ance(Poi nt Fronilext (: poi nt TaggedText, :srid), Airport.Location) < 2000

3.2.21 SQL Functions that implement Spatial Operators

3.2.21.1 Component Overview

These functions implement set-theoretic and constructive geometry operations on geometry values. These
operations are defined for all types of Geonet ry.

3.2.21.2 Language Constructs

Intersection (gl Geonetry, Return aGeonet ry that isthe set intersection of
g2 Geonetry) : Geonetry geometries g1 and g2.
Di fference (gl Ceonetry, Return aGeonet ry that isthe closure of the set
g2 Ceonetry) : Geonetry difference of gl and g2.
Union (gl Geonetry, Return aGeonret ry that isthe set union of g1 and g2.
g2 Geonetry) : Ceometry
SynDi f ference(gl Geonetry, Return aGeonret ry that isthe closure of the set
g2 Geonetry) : Ceonetry symmetric difference of g1 and g2 (logical XOR of
space).
Buffer (gl Georr_et_ry, Return as Georret ry defined by buffering a distance d
d Double Precision) : Ceometry around g1, whered isin the distance units for the Spatial
Reference of g1.
ConvexHul | (g1l Geometry) : Geonetry Return aGeormret ry that isthe convex hull of g1.
3.2.21.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.21.4 Example Query

The following query returns the name of the state and the fragment(s) of the state that fall within the query
polygon for each state that intersects the query polygon.

SELECT States. Nane, |ntersection(PolygonFromAKB(: wkb, :srid), States.Location)
FROM St at es

Page 3-23

OpenGI S Simple Features Specification for SQL, Revisionl.1

|V\HERE I nt ersect s(Pol ygonFr omA\KB(: wkb, :srid), States.Location)

3.2.22 SQL Function usage and References to Geometry

The SQL Functions that operate on Geometry Types have been defined above to take geometry values as
arguments. This conformsto the model for value based ADTs under SQL 3.

Asdescribed in section 2.3.5, a SQL Type may also support the concept of persistent referencesto
instances of the Type. To support the latter type of implementation, a reference to a geometry type instance,
REF(Geonet ry) , may be used in place of a Geometry value in the SQL functions defined in this section.

3.3 The Well-known Binary Representation for Geometry (WKBGeometry)

3.3.1 Component Overview

The Well-known Binary Representation for Geometry (WKBGeonet ry), provides a portable representation
of aGeonet ry value as a contiguous stream of bytes. It permits Geonet ry values to be exchanged
between an ODBC client and an SQL database in binary form.

3.3.2 Component Description

The Well-known Binary Representation for Geometry is obtained by seriaizing a geometry instance asa
sequence of numeric types drawn from the set {Unsi gned | nt eger , Doubl e} and then serializing each
numeric type as a sequence of bytes using one of two well defined, standard, binary representations for
numeric types (NDR, XDR). The specific binary encoding (NDR or XDR) used for a geometry
representation is described by a one byte tag that precedes the seridized bytes. The only difference between
the two encodings of geometry is one of byte order, the XDR encoding is Big Endian, the NDR encoding is
Little Endian.

3.3.2.1 Numeric Type Definitions

An Unsi gned | nt eger isa32-hit (4-byte) data type that encodes a nonnegative integer in therange [0,
4294967295].

A Doubl e isa64-bit (8-byte) double precision data type that encodes a double precision number using the
|EEE 754 double precision format

The above definitions are common to both XDR and NDR.

3.3.2.2 XDR (Big Endian) Encoding of Numeric Types

The XDR representation of an Unsi gned | nt eger isBig Endian (most significant byte first).

The XDR representation of aDoubl e is Big Endian (sign bit isfirst byte).

3.3.2.3 NDR (Little Endian) Encoding of Numeric Types

The NDR representation of an Unsi gned | nt eger isLittle Endian (least significant byte first).

The NDR representation of aDoubl e is Little Endian (sign bit islast byte).

Page 3-24

Chapter 3 Component Specifications

3.3.2.4 Conversion between the NDR and XDR representations of
WKBGeometry

Conversion between the NDR and XDR data types for Unsi gned | nt eger and Doubl e numbersisa
simple operation involving reversing the order of bytes within each Unsi gned | nt eger or Doubl e
number in the representation.

3.3.2.5 Relationship to other COM and CORBA data transfer protocols

The XDR representation for Unsi gned | nt eger and Doubl e numbers described above is aso the
standard representation for Unsi gned | nt eger and for Doubl e number in the CORBA Standard Stream
Format for Externalized Object Data that is described as part of the CORBA Externalization Service
Specification [15].

The NDR representation for Unsi gned | nt eger and Doubl e humber described aboveis aso the
standard representation for Unsi gned | nt eger and for Doubl e number inthe DCOM protocols that is
based on DCE RPC and NDR [16].

3.3.2.6 Description of WKBGeometry Representations

The Well-known Binary Representation for Geometry is described below. The basic building block is the
representation for aPoi nt , which consists of two Doubl e numbers. The representations for other
geometries are built using the representations for geometries that have already been defined.

/1 Basic Type definitions

/1 byte : 1 byte

/1 uint32 : 32 bit unsigned integer (4 bytes)
/1 doubl e : double precision nunber (8 bytes)

/1 Building Blocks : Point, LinearRing

Poi nt {
doubl e x;
doubl e vy;
b

LinearRing {
ui nt 32 nunPoi nt s;
Poi nt poi nt s[nunPoi nt s] ;

}

enum wkbGeonet ryType {
wkbPoi nt = 1,
wkbLi neString = 2,
wkbPol ygon = 3,
wkbMul ti Point = 4,
wkbMul ti LineString = 5,
wkbMul ti Pol ygon = 6,
wkbGeonetryCol l ection = 7

}s

enum wkbByt eOr der {

Page 3-25

OpenGI S Simple Features Specification for SQL, Revisionl.1

WkbXDR = 0,
WKbNDR = 1
b
VWKBPoi nt {
byte
ui nt 32
Poi nt
}
WKBLi neString {
byte
ui nt 32
ui nt 32
Poi nt
}
VWKBPol ygon {
byte
ui nt 32
ui nt 32
Li near Ri ng
}
WKBMul ti Poi nt {
byte
ui nt 32
ui nt 32
WKBPoi nt
}
WKBMul ti LineString {
byte
ui nt 32
ui nt 32
WKBLi neString
}
wkbMul ti Pol ygon {
byte
ui nt 32
ui nt 32
VKBPol ygon
}
WKBGeomnetry {
uni on {
V\KBPoi nt

/1 Big Endian
/1 Little Endian

byt eOr der;
wkbType;
poi nt ;

byt eOr der;
wkbType;
nunPoi nt s;

poi nt s[nunPoi nt s] ;

byt eOr der;
wkbType;
nunRi ngs;

ri ngs[nunRi ngs] ;

byt eOr der;
wkbType;
num wkbPoi nt s;

WKBPoi nt s[num wkbPoi nt s] ;

byt eOr der;
wkbType;

num wkbLi neStri ngs;
WKBLi neStri ngs[num wkbLi neStri ngs];

byt eOr der;
wkbType;

num wkbPol ygons;
wkbPol ygons[num wkbPol ygons] ;

VWKBLi neStri ng

VKBPol ygon

WKBGeonet ryCol | ecti on
WKBMuI t i Poi nt
WKBMul ti Li neString

poi nt;
l'inestring;
pol ygon;

col l ection;
npoi nt ;

m i nestring;

Il

Il

Il

Il

Il

Il

Page 3-26

Chapter 3 Component Specifications

WKBMuI t i Pol ygon npol ygon;

}s

WKBGeomnet ryCol | ection {

byte byt e_order;
ui nt 32 wkbType; 17
ui nt 32 num wkbGeonetri es;

VWKBGeonet ry wkbGeonet ri es[num wkbGeonetri es];

}

Figure 3.2 shows a pictorial representation of the Well-known Representation for aPol ygon with one
outer ring and oneinner ring.

WKB Polygon

B=1| T=3 INR=2|NP=3 X1 | Y1 [X2 | Y2 | X3 | Y3 [NP=3[X1 | Y1 | X2 | Y2 | X3 [Y3

Figure 3.20 Well-known Binary Representation for a Geonet ry valuein NDR format (B=1) of type
Polygon (T=3) with 2 linear rings (NR = 2) each ring having 3 points (NP = 3).
3.3.2.7 Assertions for Well-known Binary Representation for Geometry

The Well-known Binary Representation for Geometry is designed to represent instances of the geometry
types described in the Geometry Object Model and in the OpenGIS Abstract Specification. Any
VKBGeonet ry instance must satisfy the assertionsfor thetype of Geonet ry that it describes. These
assertions may be found in the section 2.1.

These assertionsimply the following for Rings, Polygons and MultiPolygons:

3.3.2.8 Linear Rings

Rings are simple and closed, which meansthat Linear Rings may not self-touch.

Page 3-27

OpenGI S Simple Features Specification for SQL, Revisionl.1

3.3.2.9 Polygons

No two Linear Rings in the boundary of a Polygon may cross each other, the Linear Ringsin the boundary
of a polygon may intersect at most at a single point but only as a tangent.

3.3.2.10 MultiPolygons

1. Theinteriorsof 2 Polygons that are elements of a MultiPolygon may not intersect.

2. TheBoundaries of any 2 Polygons that are elements of a MultiPolygon may touch at only afinite
number of points.

For more details on the above assertions and for the assertions for each geometry type the reader isreferred
to the Geometry Object Modd section of this specification.

3.4 Well-known Text Representation of Spatial Reference Systems

3.4.1 Component Overview

The Well-known Text Representation of Spatial Reference Systems provides a standard textual
representation for spatial reference system information.

3.4.2 Component Description

The definitions of the well-known text representation are modeled after the POSC/EPSG coordinate system
data mode.

A spatial reference system, also referred to as a coordinate system, is a geographic (latitude-longitude), a
projected (X,Y), or ageocentric (X,Y,Z) coordinate system.

The coordinate system is composed of several objects. Each object has a keyword in upper case (for
example, DATUMor UNI T) followed by the defining, comma-delimited, parameters of the object in brackets.
Some objects are composed of objects so theresult isanested structure. Implementations are free to
substitute standard brackets () for square brackets[] and should be prepared to read both forms of
brackets.

The EBNF (Extended Backus Naur Form) definition for the string representation of a coordinate system is
as follows, using square brackets, see note above:

<coordi nate systenr = <projected cs> | <geographic cs> | <geocentric cs>

<projected cs> = PROJCS['<name>‘, <geographic cs>, <projection>, {<parameter>,}* <linear
unit>]

<projection> = PROJECTION['<name>‘]

<parameter> = PARAMETER['<name>‘, <value>]

<value> = <number>

A data set’s coordinate system is identified by the PROICS keyword if the data arein projected coordinates,
by GEOGCS if in geographic coordinates, or by GEOCCS if in geocentric coordinates.

The PROJCS keyword is followed by all of the ‘pres’ which define the projected coordinate system. The

first piece of any object is always the name. Several objects follow the projected coordinate system name:
the geographic coordinate system, the map projection, O or more parameters, and the linear unit of measure.
All projected coordinate systems are based upon a geographic coordinate system so we will describe the

Page 3-28

Chapter 3 Component Specifications

pieces specific to a projected coordinate system first. Asan example, UTM zone 10N on the NAD83 datum
is defined as:

PROJCS['NAD_1983_UTM_Zone_10N’,
<geographic cs>,
PROJECTION[Transverse_Mercator],
PARAMETER(['False_Easting’,500000.0],
PARAMETER(['False_Northing’,0.0],
PARAMETER['Central_Meridian’,-123.0],
PARAMETER(['Scale_Factor’,0.9996],
PARAMETER(['Latitude_of_Origin’,0.0],
UNIT['Meter’,1.0]]

The name and several objects define the geographic coordinate system object in turn: the datum, the prime
meridian, and the angular unit of measure.

<geographic cs> = GEOGCSJ['<name>‘, <datum>, <prime meridian>, <angular unit>]

<datum> = DATUM['<name>‘, <spheroid>]

<spheroid> = SPHEROID['<name>‘, <semi-major axis>, <inverse flattening>]

<semi-major axis> = <number> NOTE: semi-major axisis measured in meters and must be > 0.
<inverse flattening> = <number>

<prime meridian> = PRIMEM['<name>', <longitude>]

<longitude> = <number>

The geographic coordinate system string for UTM zone 10 on NAD83 is

GEOGCS['GCS_North_American_1983’,
DATUM['D_North_American_1983’,
SPHEROID['GRS_1980",6378137,298.257222101]],
PRIMEM['Greenwich’,0],
UNIT['Degree’,0.0174532925199433]]

The UNI T object can represent angular or linear unit of measures.

<angular unit> = <unit>
<linear unit> = <unit>
<unit> = UNIT['<name>‘, <conversion factor>]

<conversion factor> = <number>

<conversi on fact or > specifies number of meters (for alinear unit) or number of radians (for an
angular unit) per unit and must be greater than zero.

So the full string representation of UTM Zone 10N is

PROJCS['NAD_1983_UTM_Zone_10N’,
GEOGCS['GCS_North_American_1983’,
DATUM[‘D_North_American_1983',SPHEROID['GRS_1980’,6378137,298.257222101]],
PRIMEM[‘Greenwich’,0],UNIT['‘Degree’,0.0174532925199433]],
PROJECTION[Transverse_Mercator’],PARAMETER['False_Easting’,500000.0],
PARAMETER(['False_Northing’,0.0],PARAMETER[‘Central_Meridian’,-123.0],
PARAMETER(['Scale_Factor’,0.9996],PARAMETER['Latitude_of_Origin’,0.0],
UNIT['Meter’,1.0]]

A geocentric coordinate system is quite Smilar to a geographic coordinate system. It is represented by

| <geocentric cs> = GEOCCS['<name>‘, <datum>, <prime meridian>, <linear unit>]

Page 3-29

4 Supported Spatial Reference Data

4.1 Supported Linear Units

Meter
Foot (International)
U.S. Foot

M odified American Foot

Clarke's Foot
Indian Foot
Link

Link (Benoit)
Link (Sears)
Chain (Benoit)
Chain (Sears)
Yard (Indian)
Yard (Sears)
Fathom
Nautical Mile

4.2 Supported Angular Units
Radian
Decimal Degree
Decimal Minute
Decimal Second
Gon
Grad

4.3 Supported Spheroids

1.0

0.3048
12/39.37
12.0004584/39.37
12/39.370432
12/39.370141
7.92/39.370432
7.92/39.370113
7.92/39.370147
792/39.370113
792/39.370147
36/39.370141
36/39.370147
1.8288

1852.0

1.0
17180
(17180)/60
(17180)/36000
7200

7200

Name Semi-major Axis
Airy 6377563.396
Modified Airy 6377340.189
Austraian 6378160
Bess 6377397.155
Modified Bessel 6377492.018
Bessel (Namibia) 6377483.865
Clarke 1866 6378206.4
Clarke 1866 (Michigan) 6378693.704
Clarke 1880 (Arc) 6378249.145
Clarke 1880 (Benoit) 6378300.79
Clarke 1880 (IGN) 6378249.2
Clarke 1880 (RGS) 6378249.145
Clarke 1880 (SGA) 6378249.2

I nver se Flattening
299.3249646
299.3249646
298.25
299.1528128
299.1528128
299.1528128
294.9786982
294.978684677
293.466307656
293.466234571
293.46602
293.465
293.46598

Page 4-1

OpenGI S Simple Features Specification for SQL, Revisionl.1

4.4 Supported Geodetic Datums

Page 4-2

Everest 1830

Everest 1975

Everest (Sarawak and Sabah)
Modified Everest 1948
GEM10C

GRS 1980

Helmert 1906

International 1924
Krasovsky

NWL9D

OSU_86F

OSU_91A

Plessis 1817

Sphere (radius = 1.0)

Sphere (radius = 6371000 m)
Struve 1860

War Office

WGS 1984

Adindan

Afgooye

Agadez

Austraian Geodetic Datum 1966
Austraian Geodetic Datum 1984
Ain el Abd 1970
Amersfoort

Aratu

Arc 1950

Arc 1960

Ancienne Triangulation Francaise
Barbados

Batavia

Beduaram

Beijing 1954

Reseau National Belge 1950
Reseau National Belge 1972
Bermuda 1957

Bern 1898

Bern 1938

Bogota

Bukit Rimpah

Camacupa

Campo Inchauspe

Cape

Carthage

Chua

Conakry 1905

Corrego Alegre

Cote dlvoire

Datum 73

Deir ez Zor

Deutsche Hauptdrei ecksnetz
Douala

European Datum 1950
European Datum 1987
Egypt 1907

European Reference System 1989
Fahud

Gandgjika 1970

Garoua

6377276.345 300.8017
6377301.243 300.8017
6377298.556 300.8017
6377304.063 300.8017
6378137 298.257222101
6378137 298.257222101
6378200 298.3
6378388 297.0
6378245 298.3
6378145 298.25
6378136.2 298.25722
6378136.3 298.25722
6376523 308.64
1 0
6371000 0
6378297 294.73
6378300.583 296
6378137 298.257223563

Lisbon

Loma Quintana

Lome

Luzon 1911

Mahe 1971

Makassar

Madongo 1987

Manoca

Massawa

Merchich

Militar-Geographische Institute
Mhast

Minna

Monte Mario

M’poral oko

NAD Michigan

North American Datum 1927
North American Datum 1983
Nahrwan 1967

Naparima 1972

Nord de Guerre

NGO 1948

Nord Sahara 1959

NSWC 9Z-2

Nouvelle Triangul ation Francaise
New Zealand Geodetic Datum 1949
OS (SN) 1980

OSGB 1936

OSGB 1970 (SN)

Padang 1884

Palestine 1923

Pointe Noire

Provisional South American Datum 1956

Pulkovo 1942

Qatar

Qatar 1948

Qornoq

RT38

South American Datum 1969
Sapper Hill 1943
Schwarzeck

Geocentric Datum of Australia 1994 Segora

Guyane Francaise Serindung

Herat North Stockholm 1938

Hito XVIII 1963 Sudan

Hu Tzu Shan Tananarive 1925

Hungarian Datum 1972 Timbaa 1948

Indian 1954 TM65

Indian 1975 TM75

Indonesian Datum 1974 Tokyo

Jamaica 1875 Trinidad 1903

Jamai ca 1969 Trucia Coast 1948

Kalianpur Voirol 1875

Kandawala Voirol Unifie 1960

Kertau WGS 1972

Kuwait Oil Company WGS 1972 Transit Broadcast Ephemeris

La Canoa WGS 1984

Lake Yacare

Leigon Y of f

Liberia 1964 Zanderij

4.5 Supported Prime Meridians

Greenwich 0°0'0"
Bern 7°26'22.5"E
Bogota 74° 4'51.3" W
Brussels 4°22'4 71" E
Ferro 17°40'0" W
Jakarta 106° 48'27.79" E
Lisbon 9° 7'54.862" W
Madrid 3°41'16.58" W
Paris 2°20'14.025"E
Rome 12°27'8.4"E
Stockholm 18°3'29"E

4.6 Supported Map Projections

Cylindrical Projections
Cassini

Gauss-Kruger

Mercator

Oblique Mercator (Hotine)
Transverse Mercator

4.7 Map Projection Parameters

central_meridian
scale_factor

standard_parallel_1

standard_parallel_2
longitude_of_center

latitude_of_center
latitude_of_origin
false_easting
false_northing
azimuth

longitude_of_point_1

latitude_of_point_1

longitude_of_point_2

latitude_of_point_2

Conic Prgjections
Albers conic equal-area
Lambert conformal conic

Azimuthal or Planar Projections

Polar Stereographic
Stereographic

the line of longitude chosen as the origin of x-coordinates.
used generally to reduce the amount of distortion in a map projection.
a line of latitude that has no distortion generally. Also used for ‘latitude of
true scale.’
a line of latitude that has no distortion generally.
the longitude which defines the center point of the map projection.
the latitude which defines the center point of the map projection.
the latitude chosen as the origin of y-coordinates.
added to x-coordinates. Used to give positive values.
added to y-coordinates. Used to give positive values.
the angle east of north which defines the center line of an oblique
projection.
the longitude of the first point needed for a map projection.
the latitude of the first point needed for a map projection.
the longitude of the second point needed for a map projection.
the latitude of the second point needed for a map projection.

5 References

10.

11.

The OpenGI'S Abstract Specification: An Object Model for Interoperable Geoprocessing, Revision 1,
OpenGlI S Consortium, Inc, OpenGI S Project Document Number 96-015R1, 1996.

OpenGlI S Project Document 96-025: Geodetic Reference Systems, OpenGI'S Consortium, Inc, October
14, 1996.

POSC (Petrotechnical Open Software Consortium) Epicentre Mode V2.1,
fttp://posc.org/public/geodetic, July 1995.

Clementini, Eliseo, Di Felice, P., van Oostrom, p., A Small Set of Formal Topological Relationships
Suitable for End-User Interaction, in D. Abel and B. C. Ooi (Ed.), Advances in Spatial Databases—
Third International Symposium. SSD '93. LNCS 692. Pp. 277-295. Springer-Verlag. Singapore
(1993).

Clementini E. and Di Felice P., A Comparison of Methods for Representing Topological
Relationships, Information Sciences 80, 1-34, 1994,

Clementini, Eliseo, Di Felice, P., A Model for Representing Topological Relationships Between
Complex Geometric Features in Spatial Databases, Information Sciences 90 (1-4):121-136 , 1996.

Clementini E., Di Felice P and Califano, G. Composite Regions in Topological Queries, Information
Systems, v 20, no 6, pp 33-48, 1995.

Egenhofer, M.F. and Franzosa, Point Set Topological Spatial Relations, International Journal of
Geographical Information Systems, vol 5, no 2, 161-174, 1991.

Egenhofer, M.J., Clementini, E. and Di Felice, P., Topological relations between regions with holes,
International Journal of Geographical Information Systems, vol 8, no 2, pp 129—142, 1994.

Egenhofer, M.J. and Herring, J., A mathematical framework for the definition of topological
relationships. Preedings of the Fourth International Symposium on Spatial Data Handling,
Columbus, Ohi, pp. 803-813.

Egenhofer M.J. and Herring, J., Categorizing binary topological relationships between regions, lines
and points in geographic databases, Tech. Report., Department of Surveying Engineering, University
of Maine, Orono, ME 1991.

Page 5-1

OpenGI S Simple Features Specification for SQL, Revisionl.1

12. Egenhofer. M.J. and Sharma, J., Topological Relations between regionsin 02 and Z2, Advancesin
Spatial Databases—Third International Symposium, SSD '93, vol. 692, Lecture Notes in Computer
Science, pp. 36-52, Springer Verlag, Singapore (1993).

13. Worboys, M.F. and Bofakos, P. A Canonical model for a class of areal spatial objects, Advances in
Spatial Databases—Third International Symposium, SSD '93, vol. 692, Lecture Notes in Computer
Science, pp. 36-52, Springer Verlag, Singapore (1993).

14. Worboys, M.F. A generic model for planar geographical objects, International Journal of Geographical
Information Systems, 1992, vol 6, no 5, 353-372.

15. http://www.omg.org/corba/sectrans.htm : CORBAservices : Common Object Services Specification,
Ch 8. Externalization Service Specification, OMG.

16. http://www.microsoft.com/oledev : Distributed Component Object Model Protocol Specification—
DCOM 1.0, Microsoft Corporation.

Page 5-2

