
Implementing OGC Web Map Service Client Applications
Using JSP, JSTL and XMLC

Hao Ding , Richard Pascoe & Neville Churcher

Department of Computer Science

University of Canterbury. Christchurch, New Zealand
Phone: +64 3 364-2362 Fax: +64 3 364-2569

Email: hdi12@student.canterbury.ac.nz , {richard, neville}@cosc.canterbury.ac.nz

Presented at SIRC 2002 – The 14th Annual Colloquium of the Spatial Information Research Centre
University of Otago, Dunedin, New Zealand

December 3-5th
 2002

ABSTRACT

Java technologies are widely used in web application development. In this paper are
described three approaches to developing Java-based web applications and our
experiences with applying each to the development of client that interact with
servers implementing the OGC (Open GIS Consortium) Web Map Service (WMS)
specification. Also described is the installation and configuration of open source
software that implements the WMS specification. The paper is concluded with some
preliminary insights into when one of the three approaches to WMS client
implementation is more suited to another.

Keywords and phrases: WMS, JSP, JSTL, XMLC, map layer, web map server

1.0 INTRODUCTION

Of the many technologies, such as Common Gateway Interface (CGI), Active Server Pages (ASP), JavaServer
Pages (JSP), that are used to develop web applications, three are of particular interest to the research presented
here. These three technologies or approaches to developing clients that utilise web services are JavaServer Pages
(JSP), JSP with the use of tags from the JSP Standard Tag Library (JSTL), and the eXtensible Markup Language
Compiler (XMLC).

JSP is a more convenient way to write Java servlets, and allows the insertion of Java code directly into static
HTML (Hypertext Markup Language) pages. JSTL (SUN, 2002) is a new technology released in March 2002 by
SUN. JSTL is based on JSP, but uses standard functional tags instead of Java code to manipulate dynamic
content in a JSP page. Therefore, web designers who do not know Java can still develop JSP pages efficiently.
Enhydra XMLC (Enhydra, 2002) provides an object-oriented mechanism for generating dynamic web pages
from static template HTML pages, which entirely separates the web page appearance design from the
development of dynamic content.

OGC Web Map Service (WMS) is an interoperable web mapping system. It provides common interfaces to
connect with the client application and dynamically process geo-referenced data such as geographic maps and
features coded using Geography Markup Language (GML) documents.

The objective of the research presented here is to evaluate the efficacy of three Java based technologies for
implementing clients that interact with servers implementing the OGC WMS. GIS applications are often
different from common web applications such as on-line stores, because they involve geographic data handling.
For each approach, a client is implemented that achieves a series of tasks with different contexts in order to
compare various aspects of the three approaches, including how easily they make the development of clients that
handle geographic data and utilise the functionality provided by the WMS.

The remainder of this paper is structured as follows. In the next section, we introduce OGC WMS. The OGC
WMS client application is described in section 3.0. A set of evaluation criteria and implementation tasks are
described in section 4.0 and section 5.0. In section 6.0, the three technologies (JSP, JSTL and XMLC) are
introduced with a simple example. The recent implementation, including building local systems and developing

client applications, are described in section 7.0. Finally, conclusions and future directions are presented in
section 8.0.

2.0 OGC WEB MAP SERVICE

The OGC Web Map Service specification defines a set of functions that clients may use to interact with WMS
providers (servers). Any client making requests that conform to the specification can interact with any server that
implements the WMS service. In effect, this creates an interoperable, distributed web mapping system. A simple
and typical example of the structure of a web mapping application is actually a web-based client/server
architecture, as illustrated in Figure 1.

Figure 1: The typical structure of a web mapping application

In a typical web mapping scenario, the client application requests desired information from the web map server.
The map server retrieves from the database the appropriate layers of geo-feature data for the specified spatial
domain and generates a map, which is a simple graphic image (i.e., a GIF or PNG) that can be viewed directly in
a graphical web browser or other pictorial software. The client and web map server interact using Hypertext
Transfer Protocol (HTTP).

Before the creation of the OGC WMS specification (OGC, 2001), each map server might implement different
functions: as a consequence, a client that successfully interacts with one map server would in most cases, be
unable to interact with another. The OGC WMS specification offers a standard client-server interaction protocol
that each map server implements as a common interface for accepting requests and returning responses. Thus,
the same client is able to access to all available OGC web map servers over the Internet. The interoperable web
mapping structure is illustrated in Figure 2, where each map server is accessed by the client through the common
interface. In a distributed OGC WMS, a WMS server can also run as a WMS client that requests capabilities and
maps from other WMS servers.

Figure 2: Standard interoperable web mapping structure

An OGC web map server implements three functions: GetCapabilities, GetMap, and Ge tFeatureInfo. The
GetCapabilities function provides the client with a map server’s service metadata, specifying its capabilities.
The GetMap function specifies map request parameters that enable the client to request an image map. Finally,
the GetFeatureInfo function allows the client to request more information about features at a specific location in
the map.

3.0 OGC WMS CLIENT APPLICATIONS

An OGC WMS client application is a program that communicates with the OGC WMS servers using the three
functions GetCapabilities, GetMap, and GetFeatureInfo, as noted earlier in section 2.0. More specifically, in a
typical OGC WMS client/server interaction, the client firstly requests GetCapabilities from the map server in
order to determine what the map server can do and what maps the map server can provide. The client then
requests GetMap with the map server’s capabilities information in order to get a map image. Finally, the client
can request GetFeatureInfo by specifying a point on the map to receive more geographic feature information.

In response to a GetCapabilities request, the OGC web map server produces an eXtensible Markup Language
(XML) document containing the web map server’s service metadata, describing all the operations it supports,
and providing information about the available maps. The client application has to parse the XML capabilities
document to retrieve the necessary information used to request a map. The Document Object Model (DOM)

Client Web Map Server Database
HTTP

Web Map Server 1

Web Map Server 3

Client

Database 1

Web Map Server 2 Database 2

Database 3

HTTP

HTTP

HTTP

(http://www.w3.org/DOM/) is a widely used and efficient XML parser, which was utilised in our
implementation. The DOM represents an XML document as a tree of nodes that can be easily traversed and
edited with its standard interfaces.

With the capabilities information, the client can request a map image from the map server. The GetMap request
usually includes some necessary parameters such as Layers, Styles, Bounding Box (BBox), Spatial Reference
System (SRS), map output Width and Height, and the Format of the image. Layers specify the information to be
shown on the map (for example, roads, rivers, towns, and so on). Styles are defined to depict Layers, for
example, lines represent roads, circles represent towns, and so on. BBox is a set of four coordinate values (minX,
minY, maxX, maxY) indicating a rectangular area on the earth to be mapped. SRS is the projected coordinate
system to be used. (Please see OGC WMS specification (OGC, 2001) for a detailed description.)

After getting a map, the client can request feature data of a specific point on the map using the GetFeatureInfo
function. The response from the WMS server will be one of the three output formats: a Geography Markup
Language (GML) file, a plain text file, or a Hypertext Markup Language (HTML) file. GML was selected as the
feature data output format for the research presented here. GML is a type of encoding based on the XML
specifying the geographic feature information. Geographic features include points, lines, polygons, and so on,
which are clearly defined in the OGC Simple Features Specification (OGC, 1999). The client application parses
the GML and displays the feature information in the web browser.

4.0 EVALUATION CRITERIA

To evaluate the performance of three approaches to implementing the OGC WMS client applications, a set of
criteria were developed:

? Ease of parsing XML/GML: Parsing XML/GML documents is an important task to be achieved by these

clients, since WMS and more significantly WFS (Web Feature Service), will utilis e XML/GML to transfer
information. The ease with which clients that process XML/GML can be implemented will be influential in
determining which approach is adopted for client development.

? Map handling: Retrieving and organis ing image maps is another key issue that needs to be addressed in a
WMS client application. The maps could be retrieved from one server or different servers, could present a
common area or different extents on the earth, or may be overlapped for display to the user. In addition,
changing the order of overlapping maps may result in different effects.

? Multiple servers interaction: In a distributed system, a client may wish to allow information from different
servers to be retrieved and then merged into a single cohesive response for display to the user. The issue to
be addres sed here is the extent to which the implementation of such processing within a client is supported
by the three approaches.

? Interface layout: WMS client applications use the web browser as the user interface. How easily a client
can generate dynamic web pages with the three approaches is an important issue need to be considered.

? Execution speed: Speed is a factor that always been used to measure the efficiency of an application or a
program. The issues to be addressed here include the speed of compiling, the speed of request handling, and
the speed of pages loading.

? Ease of revision: It is normal to modify an established page and application by adding or cutting some
components and functions during the development. The issue addressed here is to critique how easily the
client can make changes or upgrades based on the previous work with the three approaches.

5.0 IMPLEMENTATION TASKS

A series of OGC WMS client application implementation tasks were designed to compare the three approaches
against the evaluation criteria described previously in Section 4.0. These tasks are briefly described next; the
three approaches being investigated for implementing the client that performs these tasks will be described in the
next section.

A map server typically provides geographic information for a specified spatial extent and this information is
typically divided into thematic layers. The extent covered by the WMS server and the thematic layers available
are described by the metadata within the map servers capabilities XML document.

In the first task, the client interacts with a single web map server. The client application requests the capabilities
XML document using the GetCapabilities function, mentioned earlier, and parses this document to retrieve
metadata describing the layers that users may select for retrieval using the GetMap function. The WMS server

will combine the requested layers into a single picture or map. The resulting map should be presented an HTTP
image map so that the user can click on a specific point of the map to get more feature information using the
GetFeatureInfo function.

In the second task, the client continues to interact with a single WMS, but multiple GetMap requests will be sent
if more than one Layer is selected by the user — one request per Layer. Thus, if the user selects three Layers (for
example, roads, lakes, and airports), three separate maps will be requested. Because the maps are requested for
the same extent, they can be overlapped in a user specified order, unlike task one where the server determines the
order, to make a new map. Each single-Layer map must be transparent so that one map will not be hidden by
those on top of it when they overlap. Map overlapping is illustrated in Figure 3. The user can make a custom
map using the single-Layer maps, and the map combination is performed by the client application.

In the third task, the client connects with multiple web map servers, and each map server has different
capabilities. The client application must send GetCapabilities requests to each WMS and parse each capabilities
XML document individually. When the user selects Layers belonging to different map servers, each map server
will return a map, and these maps may represent different extents of the earth. Only maps of the same extent can
be transparently overlapped by the client application, which is a variation from task 2. When the user clicks a
specific point on the combined map, the feature data about that point could include data from multiple maps that
are from different map servers. The client application must request GetFeatureInfo to each of those map servers,
parse each GML document, and display all feature data in the web browser.

Figure 3: Map overlapping

6.0 JSP, JSTL, and XMLC

JSP, JSTL, and XMLC are all Java-based technologies for web application development. In this section, we
briefly introduce each of them and demonstrate their differences using a simple example.

JSP is based on Java servlet technology, which enables you to mix static HTML with dynamically generated
content. A JSP page is basically an HTML page with inline Java code that manipulates dynamical content and
specific tags in addition to the regular HTML tags. The embedded Java code is expressed using script elements.
A JSP page is processed by a JSP container. When the web browser makes a request for a JSP page, the JSP
container in the web server first compiles the JSP page into a servlet, which is a Java program. Then the JSP
container compiles the servlet with more business logic Java code (i.e. JavaBeans), and finally the JSP container
executes the compiled servlet class to produce a generated web page to the web browser. Therefore, a JSP page
is actually another way to write a servlet without having to be a Java programming expert (Bergsten, 2002).

JSTL is based on JSP technology, so a JSTL page is also a JSP page. JSTL is a collection of HTML-like tags
that allow users to produce dynamic web pages without utilising Java code (Bayern, 2002). JSTL includes tags
for many common tasks such as looping over data, performing conditional operations, importing and processing
data from other web pages, simple XML manipulating, database accessing, and text formatting (SUN, 2002).
With these standard tags, JSP page authors do not need to create their own custom tags to realise these functions,
and web page designers without Java knowledge can also easily edit the JSP page. JSTL also supports an
Expression Language (EL) that is inspired by both ECMAScript (JavaScript) and the XPATH expression
languages, which means that JSP pages ought to have easier access to the data required. The JSTL expressions
look like “${expression}”. For example, instead of the Java/JSP expression, such as

<%= session.getAttribute(“layer”).getTitle() %>

JSTL can access the data using JSTL expression

<c:out value= “${sessionScope.layer.title}”/>

XMLC is a very different method from JSP and JSTL. XMLC provides a Java based object-oriented mechanism
for creating dynamic content from static HTML (XML) documents (WebReference, 2000). Web page authors

Map 1 with Layer 1

Map 2 with Layer 2

Combined Map with Layer 1 and 2

can design attractive static HTML pages, adding “id” attributes and mock-up content into the elements that will
be manipulated later. XMLC then compiles the template HTML pages and converts them to Java classes, where
the HTML pages are represented using the DOM. The generated classes can be accessed, and the attributes,
content, and nested tags of the elements with “id” attributes can be replaced or removed by Java programs using
standard DOM manipulation APIs to create dynamic web pages (Enhydra, 2002).

In the following listings, we show a very simple page that will be generated using the three approaches. The page
gets a parameter named “result” from a request. If the value of the parameter is “win”, the page will print out “It
is good news! We win.” and the word “good” will be displayed in red font. If the parameter is “lose”, the
sentence displayed in the page will be “It is bad news! We lose.” and the word “bad” will be displayed using a
blue font. (Only the “body” code of the page is listed; other parts are omitted.)

The page generated using JSP and JSTL is shown in Listing 1. Each line of JSTL code in the right side
corresponds to the JSP code in the left. In Listing 2, we show how to use XMLC to generate the same page. It is
a template page with mock-up content. The elements and are identified with the “id” attribute.

Listing 1: JSP and JSTL example
……
<body>
It is a
<% String result = request.getParameter(“result”);
 if(result.equals(“win”)) {
%>
good
<% } if(result.equals(“lose”)) {
%>
bad
<% }
%>
news! We <%= result %>
</body>
……

……
<body>
It is a
<c:set var=“result” value=“${param.result}”/>
<c:if test= “${result==‘win’}”>
 good
</c:if>
<c:if test= “${result==‘lose’}”>
 bad
</c:if>

news! We <c:out value=”${result}”/>
</body>
……

Listing 2: Template HTML page
……
<body>
It is a good or bad news! We win or lose
</body>
……

If the name of the page file in Listing 2 is game.html , XMLC will create a Java class named game.class after
compiling the HTML file. This class presents the HTML page in the corresponding DOM, which can be used by
other Java programs to modify the page content. Listing 3 is a manipulation Java program using a servlet to get
the requested parameter, modify page content, and output the generated page. The highlighted code shows how
to access the identified element and set its attribute and text content.

Listing 3: Manipulation class
public class gameMan extends HttpServlet{
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {

 response.setContentType(“text/html”);
 PrintWriter out = response.getWriter();
 String result = request.getParameter(“result”); // Get request parameter

 game game = new game(); // Create an instance of the HTML page object
 HTMLFontElement state = game.getElementState(); // Get a reference to the element

 if(result.equals(“win”) {

 state.setColor(“red”); // Change the “colour” attribute of element
 game.setTextState(“good”); // Change text within tags
 }
 if(result.equals(“lose”)) {
 state.setColor(“blue”); // Change the “colour” attribute of element
 game.setTextState(“bad”); // Change text within tags
 }
 game.setTextResult(result); // Change text within tags
 out.println(game.toDocument()); // Print out the modified page
 }
}

7.0 IMPLEMENTATION

For the purpose of testing, a local web mapping system has been installed and configured using in part open
source software and in part an OGC WMS client application which we have implemented three times, once for
each approach being investigated, to accomplish the first task described in section 3.0. In this section, we briefly
introduce both.

7.1 System Building
The local web mapping system architecture for this research is illustrated in Figure 4, where the WMS
components and the message flows among them are described.

Figure 4: Local web mapping system architecture

Viewer client is actually a series of HTML pages running inside a Web browser that can interact directly with a
map server via the HTTP profile of the OGC Web Mapping Interface. WMS client manages the interactions
with OGC web mapping interfaces via HTTP, and dynamically generates HTML that can run in the Web
Browser. WMS server is a map server that provides three OGC Web Mapping Interfaces (GetCapability,
GetMap, and GetFeatureInfo). WMS server accepts requests from WMS client and viewer client in the form of
HTTP URL strings, and returns results encoded as XML, GIF, GML, and so on. The database stores geo-feature
data that can be accessed and utilised by the WMS server to generate GML documents or draw maps.

As illustrated in Figure 4, the user interacts locally with Viewer Client and submits HTTP GET/POST requests
to the WMS client. The web server in the WMS client accepts user requests and parses them before forwarding
them to the application server. The application server then processes these requests in an application, and returns
dynamically generated HTML pages to the web browser. The details on how the application works were
described in section 3.0. In real practice, GetCapabilities and GetFeatureInfo are requested from a Java program,
and a GetMap request is embedded in the HTML pages in the form of to fetch
an image map from the map server and display it directly in the web browser.

Based on the architecture described previously, the web mapping system can be built using some open source
software. In this practice, the system is built as illustrated in Figure 5.

Application

Server

Web Browser

Database

HTML Page

Web Server

 Map Server

OGC Web
Mapping
Interface

GetCapabilities Request

Viewer Client

WMS Client

WMS Server

HTTP GET/POST

GML Response

XML Response
GetFeatureInfo Request

HTML Pages

Any web browser supporting HTML 4.0, such as Internet Explorer or Netscape Navigator, can be used as client
viewer. The WMS client uses Jakarta Tomcat (http://jakarta.apache.org/tomcat) as a web server and JSP/servlet
container. The latest release, Tomcat 4.0, is able to implement the Java servlet 2.3 and JavaServer Pages 1.2
specifications.

Figure 5: Practical web mapping system

The WMS server was set up using the University of Minnesota (UMN)’s MapServer 3.6
(http://mapserver.gis.umn.edu), which supports OGC WMS specification 1.1.0 (OGC, 2001). MapServer
consists of only one executable file named “mapserv”, which is a CGI program running in the Apache HTTP
web server (http://www.apache.org) that knows how to handle WMS requests. In the practise, when multiple
map servers are needed (such as in the third task described in section 4.0), several Apache web servers can
simultaneously run MapServers on different ports. MapServer must be compiled together with the PROJ.4
(http://www.remotesensing.org/proj), which is a cartographic projections library, for OGC WMS compliance.
MapServer also uses GD library (http://www.boutell.com/gd) to render GIFs or PNGs. Each MapServer needs a
mapfile (a control file with the suffix .map), which is a configuration file defining display and query parameters
and the data source to be used. A mapfile must include information about where to get the spatial data, how to
draw the map, and what layer metadata and spatial information must be included in the WMS capabilities
document. Listing 4 is part of the mapfile we set up for the MapServer with UMN MapServer demo dataset for
Itasca country. The sample interfaces been implemented are shown in section 6.2.

Listing 4: Sample mapfile fragment
NAME DEMO
EXTENT 388013.643812817 5200395.13465842 500802.348432817 5313156.99196842
PROJECTION # Project definition
 "init=epsg:26915"
END
LAYER # Layer definitions
 NAME lakespy2
 CONNECTIONTYPE postgis
 CONNECTION "user=hdi12 dbname=mygisdb host=localhost port=5432"
 DATA "the_geom from lakespy2"
 TYPE POLYGON
 STATUS OFF
 CLASS
 COLOR 49 117 185
 END
 DUMP TRUE # allow GML export
 METADATA
 WMS_TITLE "Lakes and Rivers"
 WMS_ABSTRACT "DLG lake and river polygons for Itasca County.”
 WMS_SRS "EPSG:26915"
 END
END # lakes
…… # More layers definitions

HTTP URL Requests

Apache Web Server

Web Browser
PostgreSQL / PostGIS

 HTML Page

Tomcat Web Server

JSP/Servlets
HTTP URL Requests

Responses

Viewer Client

WMS Client

WMS Server HTML Pages

Minnesota
MapServer

External Map Server
(e.g. NASA Map Server)

Responses

GIS Dataset

Database

GD
Proj.4

HTTP GET/POST

MapServer uses PostGIS (http://postgis.refractions.net) as a vector database to store geo-feature data. PostGIS is
an extension to the PostgreSQL (http://www.postgresql.org) object-relational database system that allows GIS
objects to be stored in the database. PostGIS supports the “simple features” defined by the OGC (OGC, 1999).
These simple features are Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, and
GeomCollection. Vector format data is a coordinate-based data structure that represents the location and shape of
feature and boundaries precisely, and can be used directly by MapServer to draw maps or generate GML files.

The vector datasets to be stored in the PostGIS can be converted from shapefiles. The shapefile format is
published by Environmental Systems Research Institute (ESRI) for simple vector data with attributes. An ESRI
shapefile consists of three files with the same basename:

? .shp – the main file holding the actual vertices that describe shapes .
? .shx – the index file holding index data pointing to the structures in the main file.
? .dbf – the dBase table holding the feature attributes.

PostGIS provides a tool called “shp2pgsql” to create a SQL file from a shapefile. The SQL file holds SQL
commands such as “create table” and “insert data”, which can be executed directly by PostGIS. One shapefile
corresponds to one PostGIS table, containing the points, lines, or polygons to display as map layers.

In the application described as follows, the shapefiles were acquired from the Minnesota MapServer demo
application datasets, which are for Itasca County located in north central Minnesota. An external OGC web map
server such as the NASA (National Aeronautics and Space Administration) map server
(http://wmt.digitalearth.gov/cgi-bin/wmt.cgi?) was also used in the practice to test the client application.

7.2 Client Application

The client application we implemented connects to one web map server. The user can select one map server from
the index page to connect with as shown in Figure 6. Once the user selects a map server (for example, UMN
MapServer Itasca Demo), the GetCapabilities request is sent to that map server to get its service capabilities. In
Figure 7, the map layers parsed from the UMN MapServer capabilities XML are listed on the left. Users can
choose Layers they are interested in from the list and click the “submit” button, using the GetMap function to
request an image map from the map server. The map created in Figure 7 displays country boundary, lakes and
rivers, highways, and airports. The map displayed can be zoomed in, zoomed out, and scrolled. In Figure 8, the
map is zoomed in and scrolled right and up. When users click the map itself, GetFeatureinfo is sent and the
feature information on that point will be shown under the map (This function has not been added yet). The three
clients implemented to demonstrate each approach to client development presented identical user interface (web
pages).

Figure 6: Index page

Figure 7: Layer list and map viewer

Figure 8: Zoom in and scroll the map

8.0 CONCLUSIONS AND FUTURE WORK

The primary comparison of the three technologies (JSP, JSTL and XMLC) is summaris ed in Table 1, which lists
both some advantages and disadvantages of the three technologies. These factors affect the efficiency of the
OGC WMS client application implementation, including web page interface design, realization of OGC WMS
functionalities, and code debugging. Some of our findings during the implementation of the first task using the
three technologies are summarised below.

For the XML/GML parsing issue, JSTL’s XML tags enable XML documents to be parsed within web page to
simply display XML-based data, but manipulation of those data still needs to be performed in back-end Java
programs to prevent page complexity. When using traditional JSP and XMLC, all XML documents parsing tasks
are performed in back-end Java programs.

Regarding map handling , one client request can retrieve a map with multiple layers from a single map server,
and the order of the layers displayed in the map is determined by the order of the layer names in the list that

appeared in the request. Requesting such an image map and placing it into a web page are very simple tasks
using each of the three approaches. Zooming in/out or scrolling through a map is realized by changing the
Bounding Box values and submitting a new request, which are done in the back-end Java program. The map can
then be inserted into the page using the query URL as the image resource. This strategy can be used in all three
approaches.

Concerning interface layout, compared with JSP’s mix of Java and HTML, JSTL makes the web page cleaner by
using standard tags instead of Java code to control dynamical content. However, some functions such as method
calling with arguments, which can easily be achieved using Java codes, are not supported in JSTL expression
language. XMLC separates all data control from the page; the disadvantages of JSP and JSTL have mostly
disappeared in XMLC.

In addressing the execution speed issue, a slight delay is encountered when a user requests a JSP page for the
first time, because JSP and JSTL have to compile the JSP page before processing the request. In contrast, XMLC
parses and interprets the page prior to run-time. The difference in the speed of request handling and page loading
among the clients developed using the three approaches is very subtle.

Table 1: Primary comparison of JSP, JSTL, and XMLC
 JSP JSTL XMLC
Web page compilation At run time At run time Prior to run time
Dynamical data control Within the page Within the page Within Java program
Markup language and Java code Mixed Separated Separated

Future work will include utilising the three approaches in implementing more complex tasks as described in
section 5.0. Several main issues will be explored according to the evaluation criteria described in Section 4.0,
including:

? How to make use of JSTL’s XML tags in a WMS capabilities document and in GML document parsing
and display?

? How do the three approaches deal with multiple overlapping image maps?
? Does one approach facilitate more than the others development of clients that simultaneously interact

with multiple web map servers with different extent information?
? How does back-end business logic Java code support front-end web map interface development in the

three approaches?
? Does one approach allows for easier debugging of clients during development?

The aims are to highlight advantages and disadvantages of three approaches (JSP, JSTL and XMLC) to help
OGC WMS client application developers match appropriate technology to various client functionalities
implementation.

REFERENCES
Bayern, Shawn (2002) JSTL in Action. August 2002, Manning Publications Co. Chapter 1 – Chapter 2

Bergsten, Hans (2002) JavaServer Pages, 2nd Edition, August 2002, O’Reilly, Chapter 3.

Enhydra XMLC (2002) Homepage of Enhydra XMLC. <http://xmlc.engydra.org>.

Open GIS Consortium Inc. (2001) Web Map Service Implementation Specification 1.1.0. Open GIS project
document: OGC 01-047r2 , June 2001.

Open GIS Consortium Inc. (1999) OpenGIS Simple Feature Specification For SQL Version 1.1. Open GIS
project document 99-049, May 1999.

Sun Microsystems, Inc. (2002) JavaServer Pages™ Standard Tag Library (JSTL) Specification Version 1.0.
March 2002.

WebReference.com (2000) Dynamically generating HTML pages with XMLC. November 9, 2000.
<http://webreference.com/xml/column23/>

