
OpenGIS Simple Features Test Protocol for CORBA

i

Open GIS Consortium, Inc.

OpenGIS Simple Features Test Protocol

For CORBA

Release Date: July 24, 2001

Draft Date: July 23, 2001

OpenGIS Simple Features Test Protocol for CORBA

2

1 Overview

This document describes the conformance testing guidelines that the Open GIS Consortium will use in the
testing of software implementations for conformance to its specification entitled Open GIS Simple Features
for CORBA, Revision 1.0.

The Open GIS Consortium, Inc. (OGC) maintains a brand (in the form of a certification mark) that cannot
be used in connection with a software product by any organization unless they have submitted a software
product to OGC’s conformance testing, successfully completed this testing, and received a certificate
stating such success. Organizations that have earned the certification mark may use it in ways defined
within this document. This set of rules ensures that users who buy products that are branded can be sure
that the products carrying the certification mark have been submitted to a testing process. The primary
purpose of the conformance testing process is to protect the value of the OpenGIS® brand as an element of
OGC’s program to promote interoperability between diverse geoprocessing systems.

This document defines the following:
• A general description of the conformance tests and the scope of the tests
• A description of the test data
• A description of the test queries
• A description of allowable adaptations and guidelines for documenting these

adaptations

OpenGIS Simple Features Test Protocol for CORBA

3

2 Test Description and Scope

According to the OpenGIS Simple Features Specification for CORBA, Revision 1.0 specification (hereafter
referred to as “the specification”), there are two modules.

FEATURE MODULE

GEOMETRY MODULE

The specification reads:

The purpose of this specification is to provide interfaces to allow GIS software engineers to
develop applications that expose functionality required to access and manipulate geospatial
information comprising features with ‘simple’ geometry using OMG’s CORBA technology.

And:

The specification is broad enough to allow maximal flexibility in implementation. In particular, it
has been designed with two implementation models is mind:

• the exposure of existing (legacy) geospatial data and applications whether they be
RDBMS or proprietary file repositories through some form of object ‘wrapping’.

• the development of new distributed object-oriented GIS applications.

This was undertaken to ensure that the OpenGIS Interoperability specification provides a low cost
entry point for existing players in the GIS marketplace while allowing a natural progression
towards implementations based on the increasingly popular and powerful distributed and object-
oriented technologies such as Java and the Internet. In particular, care was taken to ensure that
the powerful aspects of the O-O programming paradigm were exploitable through this
specification.

Test suite software is provided to verify conformance of:

1. Feature module interfaces, that enable to access features in a server independent way.

2. Geometry module interfaces that address geometries and Spatial Reference System.

The test suite software is provided as a Java application program. The source code for program is included,
as it is necessary to modify the code for implementation-specific calls.

The test scripts check that all mandatory features have been implemented, and can be called, but they do
not check that the returned values are correct. In general, the scope of the tests is to exercise each functional
aspect of the specification at least once. The test questions and answers are defined to test that the specified
functionality exists and is operable. Care has been taken to ensure that the tests are not at the level of rigor
that a product quality control process or certification test might be. However, because some of the answers
are further examined for reasonableness (for example, the area of a polygon is tested for correctness to two
or three significant figures).

Unfortunately, the test scripts cannot be completely implementation independent. Small modifications
must be made for a specific implementation. For example, each ORB products may have different method
name and manners to calling methods. OGC recognizes that this test suite software will probably have to
be adapted to work with software products seeking conformance.

The following sections further describe each test alternative.

OpenGIS Simple Features Test Protocol for CORBA

4

2.1 Feature Module

The specification reads:

Real world entities such as “Roads” are typically represented as features comprising a set of
spatial and non-spatial attribute values (e.g., a geometry such as a line string representing the
road’s spatial extent, a string representing its name, etc.). Features may have an associated set of
operations or behavior. Features are also referred to as feature instances.

System engineers categorize representations of these real world entities as feature types. A feature
type defines the set of properties (and possibly behavior) that characterize features of that type. A
property has a name and type. Properties may be of any (IDL) type, including simple types
(shorts, longs, floats, strings etc.), constructed types (structs, unions, sequences) and object
references (including references to other features). Every feature is of primarily one type (systems
using type inheritance may allow features to be of multiple types – the use of inheritance, whether
single or multiple, is an implementation issue).

Feature collections are groups of features constructed for various purposes. Feature collections
come in two fundamental flavors. Feature collections supporting the concept of “containment”
own their constituent features i.e. the persistence of the member features is affected through the
collection. If a feature is removed from its containing feature collection (without being moved to
another) it ceases to exist. Other feature collections provide support for organizing and managing
existing features without owning them i.e. features that are contained in other feature collections
but which are grouped in some way towards a particular end: e.g. to scope a query. Features are
contained in one and only one container feature collection, although they may be, by reference,
members of other, non-containing, feature collections. A client’s primary access to a given feature
will typically be through a feature collection.

2.2 Geometry Module

The specification reads:

Interoperable geoprocessing requires the unambiguous exposure of geometric entities. The set of
interfaces included in this proposal provides a means through which various geoprocessors may
expose geometric entities to each other. The interfaces are based on the following abstract model.

All geometric entities belong to an abstract class of ‘geometries’. All have a number of common
characteristics e.g. all have spatial extent, all use some form of spatial reference system, etc.

Geometries are categorized by their dimension as zero-dimensional geometries (points), one-
dimensional geometries (curves) and two-dimensional geometries (surfaces). This model can be
extended to three dimensions (solids), four dimensions (hyper-solids) and higher dimensions if
necessary.

Additionally, individual (‘simple’) geometries may be aggregated to form composite geometries or
geometry collections. These geometry collections form a separate category of geometries. In
general, geometry collections may be composed from geometries of different dimensionality
(heterogeneous collections). Geometry collections, which comprise only geometries of a single
dimension (homogenous collections), are specializations of this general type. Geometry
collections may, of course, be further restricted by various implementations.

All Geometries are capable of exposing their underlying coordinate geometries in the form of
Well-known Structures (WKSs). The semantics of the coordinates (i.e. the mapping between

OpenGIS Simple Features Test Protocol for CORBA

5

coordinates in coordinate space and real world locations) is provided by a Spatial Reference
System (SRS).

2.3 Option of Test Items

The specification reads:

The specification is broad enough to allow maximal flexibility in implementation.
The purpose of this test is to confirm interoperability of candidate implementations and they are
tested if the minimum interfaces for interoperability are implemented.
This specification includes some interfaces and methods for client convenience or future
enhancement as well as the essential interfaces.
To support these additional interfaces and methods, however, seems to place unreasonable
obligations on server implementation. And SFCORBA should be aligned with SFSQL and
SFCOM. For this reason, the following interfaces and methods are option so that OpenGIS
compliance does not demand its implementation. For details of each interfaces and methods, see
section 4.

2.4 Test Suite Program

As mentioned above, the test suite software is provided as a Java application program. The source code for
program is included, as it is necessary to modify the code for implementation-specific calls and
environment. After modifying java source file, it is necessary to compile them and create java – class files
to be run the test suite program. Note that the test suite software is based on JDK version 1.2.1. The
following steps describe the process of running the test:

Install Candidate Server Implementation

Installation of the candidate implementation will be specific to that implementation. No guidelines are
given on the process for installing Server implementation.

Run the test program

The test program may be run as an executable. Submitting organizations may choose to run the test. The
dialog shown below will be displayed, enabling the testing personnel to select the interface to e tested.

Choose the Tests You Wish to Perform

Testing personnel can use the check boxes to select the components of the candidate implementation to be
tested.

Press the "Run Tests" Button

When the test program is run, the selected tests are performed, and the dialog displays a message indicating
success or failure for each test.

The dialog has some TABs (See following figures.) and initial settings for the test can be made at each
TAB.

OpenGIS Simple Features Test Protocol for CORBA

6

Testing personnel can set Host Name and Port Number to connect available ORB for test.

The Feature interfaces can be tested by using this dialog. Testing personnel can choose
ContainerFeatureCollectionFactory or ContainerFeatureCollection to bind with the Server.

OpenGIS Simple Features Test Protocol for CORBA

7

Testing personnel can specify the name of implementation’s SpatialReferenceSystemFactory and WKT for
creating. The Spatial Reference System to be created here will be used in the test for Geometry interfaces
later.

The methods of SpatialReferenceComponentFactory interface can be tested from here. Before the test, it is
necessary to specify the name of implementation’s SpatialReferenceComponentFactory.

OpenGIS Simple Features Test Protocol for CORBA

8

If candidate server implementation supports FeatureTypeFactory, the test for this interface can be done
from here.

To test Geometry interfaces, it is necessary to specify the name of each implementation’s Factory. Before
this test, it is necessary to create Spatial Reference System for Geometry at the SRS TAB.

OpenGIS Simple Features Test Protocol for CORBA

9

3 Test Data

The data is a synthetic data set, developed, by hand, to exercise the functionality of the specification. It is a
set of features that make up a map (see Figure 1) of a fictional location called Blue Lake. This section
describes the test data in detail.

Goose
Island

Northing

Blue
 Lake

State
Forest

Ashton

5

5

M a i n S t r e e t

bridge

Easting

Joe’s Blue Lake Vicinity Map

Black

Brown

Red

Red

Blackponds75

Figure 1: Test Data Concept (Joe’s Blue Lake Vicinity Map

3.1 Test Data Semantics

The semantics of this data set are as follows:

A rectangle of the Earth is shown in UTM coordinates. Horizontal coordinates take meaning from POSC
Horizontal Coordinate System #32214. Note 500,000 meters false Easting, and WGS74. Units are meters.
(See http://www.petroconsultants.com/epsgweb/epsg.htm)

• Blue Lake (which has an island named Goose Island) is the prominent feature.

• There is a watercourse flowing from North to South. The portion from the top neat line to the lake is

called Cam Stream. The portion from the lake to the bottom neat line has no name (Name value is
“Null”)

OpenGIS Simple Features Test Protocol for CORBA

10

• There is an area place named Ashton.

• There is a State Forest whose administrative area includes the lake and a portion of Ashton. Roads

form the boundary of the State Forest. The “Green Forest” is the State Forest minus the lake.

• Route 5 extends across the map. It is two lanes where shown in black. It is four lanes where shown in

Red.

• There is a major divided highway, Route 75, shown in a double black line, one line for each part of the

divided highway. These two lines are seen as a multi-line.

• There is a bridge (Cam Bridge) where the road goes over Cam Stream, a point feature.

• Main Street shares some pavement with Route 5, and is always four lanes wide.

• There are two buildings along Main Street; each can be seen either as a point or as a rectangle

footprint.

• There is a one-lane road forming part of the boundary of the State Forest, shown in brown.

• The are two fish ponds, which are seen as a collective, not as individuals; that is, they are a multi-

polygon.

3.2 Test Data Points and Coordinates

Figure 2 depicts the points that are used to represent the map.

Goose
Island

1

38

37

35

36

34

33 32
3130

16

15

2

13

14

17

18
20

19

21

22

23
24

25

3

26

2728

29

4

11

1

12

10
9

5

6

7

8

10 20 30 40 50 60 70 80

10

20

30

40

Points (units are meters)
39

41

40

42

43

47

44

48
46

50

45
49

Figure 2: Points in the Blue Lake data set.

OpenGIS Simple Features Test Protocol for CORBA

11

The following table gives these coordinates associated with each point.

Point Easting Northing Point Easting Northing
1 0 48 26 52 31
2 38 48 27 52 29
3 62 48 28 50 29
4 72 48 29 52 30
5 84 48 30 62 34
6 84 42 31 66 34
7 84 30 32 66 32
8 84 0 33 62 32
9 76 0 34 64 33

10 28 0 35 59 13
11 0 0 36 59 18
12 0 18 37 67 18
13 44 41 38 67 13
14 41 36 39 10 48
15 28 26 40 10 21
16 44 31 41 10 0
17 52 18 42 16 48
18 48 6 43 16 23
19 73 9 44 16 0
20 78 4 45 24 44
21 66 23 46 22 42
22 56 30 47 24 40
23 56 34 48 26 44
24 70 38 49 28 42
25 50 31 50 26 40

The following gives entire test data in Well Known Text (WKT) format, as supplied in the file sample.txt:

"PROJCS['UTM_ZONE_14N', GEOGCS['World Geodetic System 72',DATUM['WGS_72', SPHEROID
['NWL_10D', 6378135, 298.26]],PRIMEM['Greenwich', 0], UNIT['Meter', 1.0]],
PROJECTION['Transverse_Mercator'], PARAMETER['False_Easting', 500000.0],
PARAMETER['False_Northing', 0.0], PARAMETER['Central_Meridian', -99.0],
PARAMETER['Scale_Factor', 0.9996], PARAMETER['Latitude_of_origin', 0.0],UNIT['Meter',1.0]]"

17

101,"Blue Lake","POLYGON((52 18, 66 23, 73 9, 48 6, 52 18), (59 18, 67 18, 67 13,59 13, 59 18))"

102,"Route 5","LINESTRING(0 18, 10 21, 16 23, 28 26, 44 31)"

103,"Route 5","LINESTRING(44 31, 56 34, 70 38)"

104,"Route 5","LINESTRING(70 38, 72 48)"

105,"Main Street","LINESTRING(70 38, 84 42)"

106,"Dirt Road by Green Forest","LINESTRING(28 26, 28 0)"

109,"Green Forest","MULTIPOLYGON(((28 26, 28 0, 84 0, 84 42, 28 26), (52 18, 66 23,73 9, 48 6, 52 18)), �

((59 18, 67 18, 67 13, 59 13, 59 18)))"

110,"Cam Bridge","POINT(44 31)"

111,"Cam Stream","LINESTRING(38 48, 44 41, 41 36, 44 31, 52 18)"

112,"Cam Stream","LINESTRING(76 0, 78 4, 73 9)"

113,"123 Main Street","GEOMETRYCOLLECTION(POINT(52 30), POLYGON((50 31, 54 31, 5429, 50 29, 50 31)))"

114,"215 Main Street","GEOMETRYCOLLECTION(POINT(64 33), POLYGON((66 34, 62 34, 6232, 66 32, 66 34)))"

OpenGIS Simple Features Test Protocol for CORBA

12

115,"Neat Line","POLYGON((0 0, 0 48, 84 48, 84 0, 0 0))"

117,"Ashton","POLYGON((62 48, 84 48, 84 30, 56 30, 56 34, 62 48))"

118,"Goose Island","POLYGON((67 13, 67 18, 59 18, 59 13, 67 13))"

119,"Route 75","MULTILINESTRING((10 48, 10 21, 10 0), (16 0, 10 23, 16 48))"

120,"Stock Pond","MULTIPOLYGON(((24 44, 22 42, 24 40, 24 44)), ((26 44, 26 40,28 42, 26 44)))"

OpenGIS Simple Features Test Protocol for CORBA

13

4 Conformance Items

This section details the tests that are to be executed. Each test constitutes a Conformance Item in the
terminology of the Conformance Testing Program document. The ID in the following tables is used to
reference the specific Conformance Item:

4.1 Feature
ID Functionality Tested Description Result
 Interfaces Methods Required
F1 Feature feature_type, get_geometry,

property_exists, get_property,
set_property, delete_property,
get_property_sequence,
get_property_iterator, destroy,

mandatory

F2 FeaturePropertySet next, next_n, destroy, reset mandatory
F3 FeatureFactory create_feature, create_features mandatory
F4 name, property_def_exists,

get_property_def,
get_property_def_sequence,
get_property_def_iterator, destroy

mandatory

F5

FeatureType

get_parents, get_children option
F6 FeatureTypeFactory create option
F7 PropertyDefIterator next, next_n, destroy, reset mandatory
F8 number_features, add_element, merge,

insert_element_at, replace_element_at,
remove_element_at,
remove_all_elements, create_iterator,

mandatory

F9

FeatureCollection

feature_type, get_geometry,
property_exists, get_property,
set_property, delete_property,
get_property_sequence,
get_property_iterator, destroy,

mandatory

F10 FeatureCollectionFactory create, createFromCollection,
createFromSequence

mandatory

F11 FeatureIterator next, next_n, advance, current,
get_geometry, get_property,
get_property_sequence,
get_property_iterator, reset, more,
destroy,

mandatory

F12 number_features, add_element, merge,
insert_element_at, replace_element_at,
remove_element_at,
remove_all_elements, create_iterator,

mandatory

F13 create_feature, create_features mandatory
F14

ContainerFeatureCollectio
n

feature_type, get_geometry,
property_exists, get_property,
set_property, delete_property,
get_properties_sequence,
get_property_iterator, destroy,

mandatory

F15 ContainerFeatureCollectio
nFactory

create, createFromCollection,
createFromSequence,
createFromFeatureData

mandatory

F16 ql_types, default_ql_type, option
F17

QueryEvaluator
evaluate, query_by_properties option

A “passed”
or “Failed”
message is
displayed at
the end of
test.

OpenGIS Simple Features Test Protocol for CORBA

14

F18 ql_types, default_ql_type option
F19 evaluate, query_by_properties option
F20 number_features, add_element, merge,

insert_element_at, replace_element_at,
remove_element_at,
remove_all_elements, create_iterator,

option

F21

QueryableFeatureCollectio
n

feature_type, get_geometry,
property_exists, get_property,
set_property, delete_property,
get_property_sequence,
get_property_iterator, destroy,

option

F22 ql_types, default_ql_type option
F23 evaluate, query_by_properties option
F24 number_features, add_element, merge,

insert_element_at, replace_element_at,
remove_element_at,
remove_all_elements, create_iterator,

option

F25 create_feature, create_features option
F26

QueryableContainerFeatur
eCollection

feature_type, get_geometry,
property_exists, get_property,
set_property, delete_property,
get_property_sequence,
get_property_iterator, destroy,

option

F27 QueryResultSetIterator get_metadata, advance, get_record,
get_record_as_feature,
get_property_by_index,
get_property_by_name,
get_string_by_index,
get_string_by_name,
get_float_by_index,
get_float_by_name,
get_double_by_index,
get_double_by_name,
get_long_by_index,
get_long_by_name,
get_short_by_index,
get_short_by_name,
get_boolean_by_index,
get_boolean_by_name,
get_decimal_by_index,
get_decimal_by_name,
get_byte_stream_by_index,
get_byte_stream_by_name,
get_geometry_by_index,
get_geometry_by_name, destroy

option

F28 QueryResultSetMetaData get_property_count, get_schema_name,
get_property_name, get_property_type,
get_property_type_name, is_read_only,
is_writable, is_case_sensitive,
is_searchable, is_signed, is_currency

option

4.2 Spatial Reference System
ID Functionality

Tested
Description Result

S1 SpatialReferenceSyst Interfaces Methods

OpenGIS Simple Features Test Protocol for CORBA

15

AngularUnit name, authority, code,
alias, abbreviation,
remarks,
well_known_text,
radians_per_unit

LinearUnit name, authority, code,
alias, abbreviation,
remarks,
well_known_text,
meters_per_unit

Ellipsoid name, authority, code,
alias, abbreviation,
remarks,
well_known_text,
semi_major_axis,
semi_minor_axis,
inverse_flattening,
axis_unit

HorizontalDatum name, authority, code,
alias, abbreviation,
remarks,
well_known_text,
base_ellipsoid

PrimeMeridian name, authority, code,
alias, abbreviation,
remarks,
well_known_text,
longitude, angular_units

SpatialReferenceSystem name, authority, code,
alias, abbreviation,
remarks, well_known_text

GeodeticSpatialReferenceSyst
em

name, authority, code,
alias, abbreviation,
remarks, well_known_text

GeograhicCoordinateSystem name, authority, code,
alias, abbreviation,
remarks,
well_known_text, usage,
horizontal_datum,
angular_unit,
prime_meridian

Parameter name, authority, code,
alias, abbreviation,
remarks,
well_known_text, units,
value

 em Methods

ParamterList name, authority, code,
alias, abbreviation,
remarks,
well_known_text,
number_parameters,
get_default_parameters,
set_parameters,
get_parameters

A “passed”
or “Failed”
message is
displayed at
the end of
test.

OpenGIS Simple Features Test Protocol for CORBA

16

Projection name, authority, code,
alias, abbreviation,
remarks,
well_known_text, usage,
classification, forward,
inverse, parameters,
angular_units,
linear_units,
base_ellipsoid

ProjectedCoordinateSystem name, authority, code,
alias, abbreviation,
remarks,
well_known_text, usage,
geographic_coordinate_sy
stem, linear_units,
base_projection,
parameters, forward,
inverse

S2 GeographicTransfor
m Interface
(option)

GeographicTransform name, authority, code,
alias, abbreviation,
remarks,
well_known_text,
source_gcs, target_gcs,
forward, inverse,

S3 SpatialReferenceSyst
emFactory Interface

A SpatialReferenceSystem is created from WKT by using
creat_from_WKT method.

S4 SpatialReferenceCo
mponentFactory
Interface

Each SpatialReferenceComponent are created from EPSG
ID using following methods.
authority,
create_projected_coordinate_system,
create_geographic_coordinate_system,
create_projection,
create_geographic_transform,
create_horizontal_datum,
create_ellipsoid,
create_prime_meridian,
create_linear_unit,
create_angular_unit

A “passed”
or “Failed”
message is
displayed at
the end of
test.

4.3 Geometry
ID Functionality

Tested
Description Result

The following methods are tested:
Interfaces Methods

G1 Geometry
Interface
(Mandatory) Point copy, dimension, range_envelope,

spatial_reference_system,
is_empty, is_simple, is_closed,
export, destroy, coordinates

A “passed”
or “Failed”
message is
displayed at
the end of
test.

OpenGIS Simple Features Test Protocol for CORBA

17

MultiPoint copy, dimension, range_envelope,
spatial_reference_system,
is_empty, is_simple, is_closed,
export, destroy, number_elements,
add_element, merge,
insert_element_at,
replace_element_at,
remove_element_at,
remove_all_elements,
retrieve_element_at, create_iterator

LineString copy, dimension, range_envelope,
spatial_reference_system,
is_empty, is_simple, is_closed,
export, destroy, num_points,
get_point_by_index,
get_point_by_index_as_WKS,
set_point_by_index,
set_point_by_index_as_WKS,
insert_point_by_index,
insert_point_by_index_as_WKS,
append_point,
append_point_with_WKS,
delete_point_by_index, length,
start_point, end_point,
start_point_as_WKS,
end_point_as_WKS, is_planar,
value, value_as_WKS

MultiLineString copy, dimension, range_envelope,
spatial_reference_system,
is_empty, is_simple, is_closed,
export, destroy, length,
number_elements, add_element,
merge, insert_element_at,
replace_element_at,
remove_element_at,
remove_all_elements,
retrieve_element_at, create_iterator

LinearPolygon copy, dimension, range_envelope,
spatial_reference_system,
is_empty, is_simple, is_closed,
export, destroy, area, centroid,
centroid_as_WKS,
point_on_surface,
point_on_surface_as_WKS,
is_planar, exterior_ring,
exterior_ring_as_WKS,
interior_rings,
interior_rings_as_WKS

test.

OpenGIS Simple Features Test Protocol for CORBA

18

 MultiLinearPolygon copy, dimension, range_envelope,
spatial_reference_system,
is_empty, is_simple, is_closed,
export, destroy, area,
number_elements, add_element,
merge, insert_element_at,
replace_element_at,
remove_element_at,
remove_all_elements,
retrieve_element_at, create_iterator

Point export_WKBGeometry
LineString export_WKBGeometry
LinearPolygon export_WKBGeometry
MultiPoint export_WKBGeometry
MultiLineString export_WKBGeometry

G2 Geometry
Methods
(option)

MultiLinearPolygon export_WKBGeometry

<SpatialOperator> boundary, buffer, covex_hull,
distance, difference, intersection,
symmetric_difference, union_op

<SpatialRelation> contains, crosses, disjoint, equals,
intersects, overlaps, touches, within

G3 Geometry
Methods
(option)

<SpatialRelation2> relate

GeometryFactory create, create_from_WKS
PointFactory create_from_Point,

create_from_WKSPoint
LineStringFactory create_from_LineString,

create_from_WKSLineString
LinearPolygonFactory create_from_LinearPolygon,

create_from_WKSLinearPolygon
MultiPointFactory create_from_MultiPoint,

create_from_WKSMultiPoint
MultiLineStringFactory create_from_MultiLineString,

create_from_WKSMultiLineString

G4 GeometryFactory
Methods
(mandatry)

MultiLinearPolygonFac
tory

create_from_MultiLinearPolygon,
create_from_WKSMultiLinearPoly
gon

GeometryFactory create_from_WKB
PointFactory create_from_WKBPoint

LineStringFactory create_from_WKBLineString
LinearPolygonFactory create_from_WKBLinearPolygon
MultiPointFactory create_from_WKBMultiPoint
MultiLineStringFactory create_from_WKBLineString

G5 GeometryFactory
Methods
(option)

MultiLinearPolygonFac
tory

create_from_WKBMultiLinearPol
ygon

	1	Overview
	2	Test Description and Scope
	2.1	Feature Module
	2.2	Geometry Module
	Option of Test Items
	Test Suite Program

	3	Test Data
	3.1	Test Data Semantics
	Test Data Points and Coordinates

	4	Conformance Items

