Due Date: November 18, 2004

Annex B: KLC Architecture

Open Geospatial Consortium

Technology Office

4899 North Old State Road 37
Bloomington, IN 47408

Telephone: +1-812-334-0601
Facsimile: +1-812-334-0625

Request For Quotation

And

Call For Participation

In the

Kentucky Landscape Census

Annex B: KLC Architecture

RFQ Issuance Date: October 18, 2004

Proposal Due Date: November 18, 2004

TABLE OF CONTENTS
4Annex B: KLC Architecture

41
Overview

51.1
KLC Portal Reference Architecture

61.2
Service Oriented Architecture (SOA)

61.2.1
Publish-Find-Bind

71.3
KLC Portal Functionality and System Use Cases

101.4
KLC Portal Reference Model

112
Enterprise Viewpoint

132.1
KLC Concepts

142.2
KLC Goals

152.3
KLC Requirements

162.3.1
KLC Portal Service Requirements

223
Information Viewpoint

223.1
Information Classes

223.1.1
Primary Information

233.1.2
Secondary Information

233.1.3
Tertiary Information

233.2
Geospatial Information Formats

233.2.1
Vector Data

233.2.2
Picture Maps

243.2.3
Coverage/Grid Data

243.3
Data Encoding for Geographic Information

243.4
Management and Control of Data

243.4.1
Data Metadata

243.4.2
Service Metadata

253.4.3
Query Languages

253.5
Application Schemas

253.5.1
GML Application Schemas

253.5.2
Mapping UML to GML Application Schemata

264
Computational Viewpoint

284.1
KLC Portal Interfaces and Data Flow Use Cases

284.1.1
Catalog Interface

294.1.2
WMS Interface

364.1.3
WFS Interface

454.1.4
WCS Interface

505
Engineering Viewpoint

515.1
KLC Portal UML Component Diagrams

536
Technology Viewpoint

546.1
Schema Translation

546.1.1
Schema Translation XQuery Approach

586.1.2
Schema Translation: XSLT Approach

586.1.3
Lessons Learned

60Appendix A: Functionality for KLC Portal

60Appendix B: KLC Portal Architecture References

Annex B: KLC Architecture

1 Overview

The Kentucky Landscape Census (KLC) project plays an important role in the overall realization of the Commonwealth of Kentucky’s part of the U.S. National Map. National Map makes it easier, faster, and less expensive for all levels of government and the public to access geospatial information. KLC provides the architectural framework, and an initial commonwealth-wide system of servers to support the needs of many Kentucky citizens and fit into the National Map.

One of the main objectives of the KLC is to implement a working Portal providing access to geospatial data, maps, and metadata, as well as to define and document an architectural framework for that Portal.

KLC defines three broad classes of Information that can be shared:

· Primary Information that complies with the Framework Data Standards, support metadata standards, and is accessible using service specifications supported by the Portal. (This ‘compliance’ does not mean that the stored data themselves are to be modified to match the U.S.G.S. Framework layers, but that the data served will match.)

· Secondary Information is similar to the Primary Information except that it does not comply with the Framework Data Standards. (This non-compliant data will continue as legacy and newly created data well into the future. The Framework Layers themselves represent a national consensus on the minimum needs and most data providers will have internal needs far in excess of those satisfied by that national consensus.)

· Tertiary Information is similar to the Secondary Information except that it is not accessible through services supported by the Portal. (Off line distribution will continue to be a valuable part of the system due to financial, bandwidth, and processing constraints of many users and providers.)

The architecture presented in this document describes the planned implementation of KLC. The design of the architecture takes into account the reference model of OGC and its broad spectrum of specifications and discussion papers.

This implementation architecture specifies the objectives and behavior of the KLC Portal and identifies its functional components that builds on architectures created for previous OGC testbed and pilot projects. The architecture presented in this annex incorporates technology choices, which have been defined for, or have evolved out of, other interoperability initiatives within OGC.

Note: Since KLC is planned to be a primary data source for the National Map, the technology choices may be influenced by the technology choices made during the implementation of the National Map.
In addition to identifying the general requirement of an effective geospatial portal, this annex highlights how OpenGIS Standards explicitly support the capabilities of the reference architecture. The KLC will be deployed using several OpenGIS® Web Services interface specifications, based on the requirements and corresponding Use Cases that were derived from the KLC User Needs Assessment.

1.1 KLC Portal Reference Architecture

The KLC Portal Reference Architecture specifies four service classes that are needed to procure a comprehensive geospatial portal implementation and it identifies the OpenGIS Interoperability Standards that are applicable to the services. The four service classes are:

· Portal Services –Provide the single point access to the geospatial information on the portal. In addition, these services provide the management and administration of the portal.

· Catalog Services –Used to locate geospatial services and information wherever it is located and provide information on the services and information if finds to the user.

· Portrayal Services –Used to process the geospatial information and prepare it for presentation to the user.

· Data Services – Used to provide geospatial content and data processing.

The KLC Portal Reference Architecture is shown in Figure 1.

[image: image1.png]
Figure 1: KLC Portal Reference Architecture
It is important to understand that the Portal Services and any required Infrastructure Services are the only ones that need be resident on the platform on which the portal is operating. All of the other services can be distributed across the Internet and can be dynamically registered and executed. Also notice that the Portal does not store the geospatial data processed by the distributed services. This loosely coupled service orientation is known as a service oriented architecture, which is described in more detail subsequence section.

The KLC Portal Reference Architecture follows the tenants set forth in the OpenGIS Reference Model (ORM), which is explained in the next section.

1.2 Service Oriented Architecture (SOA)

Service orientation is a way of viewing software assets on the network—fundamentally, the perspective of IT functionality being available as discoverable Services on the network. Essentially, Service orientation provides business users with understandable, high-level business Services they can call upon and incorporate into business processes as needed. The Service orientation vision is therefore one of agility and flexibility for users of technology, coupled with an abstraction layer that hides the complexity of today’s heterogeneous IT environments from those users.

Service-Oriented Architecture (SOA) is an architecture that represents software functionality as discoverable Services on the network. SOAs have been around for many years, but the difference with the SOAs we talk about today is that they are based on standards, in particular, Web Services. Web Services provide standards-based interfaces to software functionality. Producers of these Services may publish information about them in a Service registry, where Service consumers can then look up the Services they need and retrieve the information about those Services they need to bind to them.

Applications designed using SOA can provide the same functionality as that found in a monolithic architecture coupled with the following additional benefits:

· Easier extension of legacy logic to work with new business functionality

· Greater flexibility to change without the need to constantly re-architect for growth

· Cost savings by providing straight-forward integration

Within the SOA context, therefore, the KLC Portal is the ideal mechanism for realizing the Web Services vision of “enter once, use often” by providing a bridge between “separate islands of data and processing services.” The portal does not store any content. Therefore, the geospatial content and services remain with the responsible authority- those agencies or private sector organizations responsible for the collecting and maintaining geospatial content continue to retain control of those activities. The authoritative source for geospatial content and services becomes the Portal as the conduit to disparate and distributed content and services. The OGC reference architecture is a service-oriented architecture based on the now recognized Web Services paradigm of the publish/find/bind pattern and supports the dynamic binding between service/content providers and requestors since sites and applications are frequently changing in a distributed environment. Content and service providers publish their availability to the portal’s catalog making their information “known” to the portal.

1.2.1 Publish-Find-Bind

The core method of communications within the portal is based on service-oriented architecture that follows a service trading paradigm. Service trading is a fundamental concept that addresses the discovery of available service instances. Publishing a capability or offering a service is called “export” (publish). Finding a service request against published offers or discovering services is called “import” (Find). Binding a client to a discovered service is called “service interaction” (Bind). This can also be depicted in an equivalent manner as the “Publish – Find – Bind” (PFB) pattern of service interaction. These fundamental roles and interactions are depicted in Figure 2.

This service trading function is elaborated in a separate document (ISO/IEC 13235-1) and refined somewhat in the Object Management Group (OMG) Trading specification, which is technically aligned with the computational view of the ODP trading function. Most importantly, a broker supports dynamic (i.e. run-time) binding between service providers and requesters, since sites and applications are frequently changing in large distributed systems. A broker registers service offers from provider objects and returns service offers upon request to requestor objects according to some criteria.

[image: image2.png]
Figure 2: Service Trading Communication Structure
In the KLC Portal reference architecture, there are three fundamental roles that are defined to actuate the service trading. They are:

· Broker - a role that registers service offers from service providers and returns service offers upon request to requestor according to some criteria.

· Provider - a role that registers service offers with a broker and provides services to clients.

· Requestor - a role that obtains service offers, satisfying some criteria, from the broker and binds to discovered services provided by the provider.

To export (i.e. publish a service offer), an object gives the broker a description of a service, including a description of the interface at which that service instance is available. To import (i.e. find suitable service offers), an object asks the broker for a service having certain characteristics. The broker checks against the descriptions of services and responds to the requestor with the information required to bind with a service instance. Preferences may be applied to the set of offers matched according to service type, some constraint expression, and various policies. Application of the preferences can determine the order used to return matched offers to the requestor.

1.3 KLC Portal Functionality and System Use Cases

Following up to the KLC System Architecture and Database Review document and the User Needs Analysis (UNA) and Process Flow document, this annex presents the system use cases and associates them to the KLC UNA requirements -- user process flows and functional requirements groupings -- and OpenGIS high-level Web Services (where applicable).

Furthermore, the KLC Portal is envisioned to be made up of seven modules, as indicated below. This document associates the use cases for each module. Most of these modules will probably be designed as an integrated, multi-service client where service-chaining is performed by the client. This way, the integrated client will provide a unified environment that allows a user to visualize and analyze data from several services as well as download the data for use at a local computer.

Table 1 is a summary of all the use cases (tied with an individual module) presented in detail in Appendix A.
	General Use Cases
	Description
	

	Authentication
	Describes the flow of events and rules for the system to decide whether or not the user is entitled to receive the service he is requesting.

	Gazetteer
	Describes the flow of events for specifying or navigating to locations by place names, by explicit numeric coordinates, or by user interface gestures.

	Data / Service Access
	Describes the flow of events for searching for data and/or services in the case when the pre-allocation of data and/or service is intact or the pre-allocated data and/or service don’t meet the user’s needs.

	(1) Admin Tools Module
	
	

	Publish Data
	Describes the flow of events for implementing an online data product.

	Publish Service
	Describes the flow of events for configuring OGC Web Services.

	Pre-allocating Useful Services
	Describes the flow of events for pre-allocating services as ‘default’ or ‘startup’ service in dedicated map windows (modules).

	Pre-Allocating Best Data
	Describes the flow of events for pre-allocating data as ‘default’ or ‘startup’ service in dedicated map windows (modules).

	Register a Data Schema
	Describes the flow of events for implementing a Data Product Specification as the message contents of online service interface.

	Setup Schema Translation
	Describes the flow of events for translating different data models "on-the-fly” using a translating WFS (WFS-X).

	(2) Custom Mapping Module
	
	

	View Area of Interest
	Describes the flow of events for viewing an AOI by utilizing place names.

	Retrieving Imagery
	Describes the Imagery Production functionality, including querying an Imagery Catalog, retrieving imagery from an Imagery Archive, and assembling a Service Chain.

	Service-Chaining for Viewing Imagery
	Describes the sequence of operations that employ registries and service-chains to enable viewing imagery, which includes searching and binding to a CPS service.

	Service-Chaining for Map Rendering
	Describes the sequence of operations by which a client queries a service registry and discovers WFS data. The data in the WFS is rendered by a WMS that supports external feature rendering.

	Service-Chaining for Feature Production
	Describes the functionality that serves to provide retrieval and viewing of feature geometry and attributes, supporting complex querying for features based on geometry and attributes, cartographic portrayal of feature data, and feature analysis.

	Saving a Map
	Describes the functionality of saving the map view (the “map Context XML document”) that a user has created.

	Recalling a Saved Map
	Describes the functionality of loading maps that were either saved locally or remotely.

	Sharing a Map
	Describes the functionality of sharing maps.

	(3) Custom Queries Module
	
	

	Query Feature of Interest
	Describes the sequence of operations by which a user builds and saves custom queries for data layers in the map view involving spatial and attribute queries.

	Saving a Query
	Describes the functionality of saving queries either locally or remotely in the system.

	Recalling a Saved Query
	Describes the functionality of recalling queries that were either saved locally or remotely.

	Sharing a Query
	Describes the functionality of sharing queries that were either saved locally or remotely.

	(4) Data Download / Cost Recovery / Billing Module
	
	

	Data Download by AOI
	Describes the functionality of downloading sets of data by specifying an Area of Interest (AOI).

	Cost Recovery and Billing for Data Ordering
	Describes the functionality of ordering a data product.

	(5) Adjacency and Overlay Evaluation Module
	
	

	Public User “Find” Function
	Describes the functionality of finding zoning information about a particular parcel.

	Parcel Adjacency / Buffer Selection
	Describes the functionality of buffering a feature(s).

	Find by Distance Function
	Describes the functionality of searching for features in the same layer or in another layer that fall within a given distance of the starting feature or that fall at an exact distance from the starting feature.

	Zoom to Lat/Lon Function
	Describes the functionality of getting a specific map view centered at the user specified coordinates and map scale.

	Report Statistics by Area Function
	Describes the functionality of viewing statistics for a specified area.

	(6) Incident and Complaint Tracking Module
	
	

	Create a map/report with spatio-temporal constraints
	Describes the functionality of making a map with spatio-temporal constraints.

	Report Incidents/Complaints
	Describes the functionality of adding an incident/complaint by clicking the location of it on a map.

	Saving a Tracking Search
	Describes the functionality saving tracking searches either locally or remotely in the system.

	Loading a Saved Tracking Search
	Describes the functionality of loading tracking searches that were either saved locally or remotely.

	Sharing a Tracking Search
	Describes the functionality of sharing tracking searches.

	(7) Change Detection Module
	(Separate document being prepared by Space Imaging)
	

Table 1: Summary of KLC Portal Use Cases
See Appendix A for detailed description of each use case and implementation tips and design considerations.

1.4 KLC Portal Reference Model

The structure of this Architecture is loosely based on the Reference Model for Open Distributed Processing (RM-ODP), which was the design baseline for the OpenGIS Reference Model (ORM). The model provides an architecture framework for the ongoing work of the OGC. Further, the ORM provides a framework for the OGC Technical Baseline. The OGC Technical Baseline consists of the currently approved OpenGIS Specifications as well as for a number of candidate specifications that are currently in progress.

The ORM has the following purposes:

· Provides a foundation for coordination and understanding (both internal and external to OGC) of ongoing OGC activities and the Technical Baseline;

· Update/Replacement of parts of the 1998 OpenGIS Guide;

· Describes the OGC requirements baseline for geospatial interoperability;

· Describes the OGC architecture framework through a series of non-overlapping viewpoints: including existing and future elements;

· Regularize the development of domain-specific interoperability architectures by providing examples.

The ORM is a living document that will be revised on a regular basis to continually and accurately reflect the ongoing work of the Consortium. (see http://www.opengis.org/specs/?page=orm. It is encouraged that respondents to this RFQ understand the concepts that are presented in the ORM.

The five views shown in Figure 3 into the KLC Portal Architecture are described in further detail in Sections 2 through 6 of this annex.

[image: image3.wmf]

R

R

e

e

f

f

e

e

r

r

e

e

n

n

c

c

e

e

M

M

o

o

d

d

e

e

l

l

E

E

n

n

t

t

e

e

r

r

p

p

r

r

i

i

s

s

e

e

v

v

i

i

e

e

w

w

p

p

o

o

i

i

n

n

t

t

:

:

a

a

r

r

t

t

i

i

c

c

u

u

l

l

a

a

t

t

e

e

s

s

a

a

“

“

b

b

u

u

s

s

i

i

n

n

e

e

s

s

s

s

m

m

o

o

d

d

e

e

l

l

”

”

t

t

h

h

a

a

t

t

s

s

h

h

o

o

u

u

l

l

d

d

b

b

e

e

u

u

n

n

d

d

e

e

r

r

s

s

t

t

a

a

n

n

d

d

a

a

b

b

l

l

e

e

b

b

y

y

a

a

l

l

l

l

s

s

t

t

a

a

k

k

e

e

h

h

o

o

l

l

d

d

e

e

r

r

s

s

;

;

f

f

o

o

c

c

u

u

s

s

e

e

s

s

o

o

n

n

p

p

u

u

r

r

p

p

o

o

s

s

e

e

,

,

s

s

c

c

o

o

p

p

e

e

,

,

o

o

p

p

e

e

r

r

a

a

t

t

i

i

o

o

n

n

a

a

l

l

o

o

b

b

j

j

e

e

c

c

t

t

i

i

v

v

e

e

s

s

,

,

p

p

o

o

l

l

i

i

c

c

i

i

e

e

s

s

,

,

e

e

n

n

t

t

e

e

r

r

p

p

r

r

i

i

s

s

e

e

o

o

b

b

j

j

e

e

c

c

t

t

s

s

,

,

e

e

t

t

c

c

I

I

n

n

f

f

o

o

r

r

m

m

a

a

t

t

i

i

o

o

n

n

v

v

i

i

e

e

w

w

p

p

o

o

i

i

n

n

t

t

:

:

f

f

o

o

c

c

u

u

s

s

e

e

s

s

o

o

n

n

i

i

n

n

f

f

o

o

r

r

m

m

a

a

t

t

i

i

o

o

n

n

c

c

o

o

n

n

t

t

e

e

n

n

t

t

a

a

n

n

d

d

s

s

y

y

s

s

t

t

e

e

m

m

b

b

e

e

h

h

a

a

v

v

i

i

o

o

r

r

(

(

i

i

.

.

e

e

.

.

d

d

a

a

t

t

a

a

m

m

o

o

d

d

e

e

l

l

s

s

,

,

s

s

e

e

m

m

a

a

n

n

t

t

i

i

c

c

s

s

,

,

s

s

c

c

h

h

e

e

m

m

a

a

s

s

)

)

.

.

C

C

o

o

m

m

p

p

u

u

t

t

a

a

t

t

i

i

o

o

n

n

a

a

l

l

v

v

i

i

e

e

w

w

p

p

o

o

i

i

n

n

t

t

:

:

c

c

a

a

p

p

t

t

u

u

r

r

e

e

s

s

c

c

o

o

m

m

p

p

o

o

n

n

e

e

n

n

t

t

s

s

,

,

i

i

n

n

t

t

e

e

r

r

f

f

a

a

c

c

e

e

s

s

,

,

i

i

n

n

t

t

e

e

r

r

a

a

c

c

t

t

i

i

o

o

n

n

s

s

a

a

n

n

d

d

c

c

o

o

n

n

s

s

t

t

r

r

a

a

i

i

n

n

t

t

s

s

w

w

i

i

t

t

h

h

o

o

u

u

t

t

r

r

e

e

g

g

a

a

r

r

d

d

t

t

o

o

d

d

i

i

s

s

t

t

r

r

i

i

b

b

u

u

t

t

i

i

o

o

n

n

.

.

E

E

n

n

g

g

i

i

n

n

e

e

e

e

r

r

i

i

n

n

g

g

v

v

i

i

e

e

w

w

p

p

o

o

i

i

n

n

t

t

:

:

d

d

e

e

s

s

c

c

r

r

i

i

b

b

e

e

s

s

i

i

n

n

f

f

r

r

a

a

s

s

t

t

r

r

u

u

c

c

t

t

u

u

r

r

e

e

a

a

n

n

d

d

m

m

e

e

c

c

h

h

a

a

n

n

i

i

s

s

m

m

s

s

f

f

o

o

r

r

c

c

o

o

m

m

p

p

o

o

n

n

e

e

n

n

t

t

d

d

i

i

s

s

t

t

r

r

i

i

b

b

u

u

t

t

i

i

o

o

n

n

,

,

d

d

i

i

s

s

t

t

r

r

i

i

b

b

u

u

t

t

i

i

o

o

n

n

t

t

r

r

a

a

n

n

s

s

p

p

a

a

r

r

e

e

n

n

c

c

y

y

a

a

n

n

d

d

c

c

o

o

n

n

s

s

t

t

r

r

a

a

i

i

n

n

t

t

s

s

,

,

a

a

n

n

d

d

b

b

i

i

n

n

d

d

i

i

n

n

g

g

a

a

n

n

d

d

i

i

n

n

t

t

e

e

r

r

a

a

c

c

t

t

i

i

o

o

n

n

.

.

T

T

e

e

c

c

h

h

n

n

o

o

l

l

o

o

g

g

y

y

v

v

i

i

e

e

w

w

p

p

o

o

i

i

n

n

t

t

:

:

d

d

e

e

f

f

i

i

n

n

e

e

s

s

i

i

m

m

p

p

l

l

e

e

m

m

e

e

n

n

t

t

a

a

t

t

i

i

o

o

n

n

a

a

n

n

d

d

d

d

e

e

p

p

l

l

o

o

y

y

m

m

e

e

n

n

t

t

e

e

n

n

v

v

i

i

r

r

o

o

n

n

m

m

e

e

n

n

t

t

u

u

s

s

i

i

n

n

g

g

t

t

e

e

c

c

h

h

n

n

o

o

l

l

o

o

g

g

i

i

e

e

s

s

,

,

s

s

t

t

a

a

n

n

d

d

a

a

r

r

d

d

s

s

a

a

n

n

d

d

p

p

r

r

o

o

d

d

u

u

c

c

t

t

s

s

o

o

f

f

t

t

h

h

e

e

d

d

a

a

y

y

.

.

Figure 3: KLC Portal Reference Model

· Section 2 (Enterprise view) describes the Enterprise Architecture for the KLC Portal. This architecture describes the high-level system concepts.

· Section 3Error! Reference source not found. (Information View) describes the Information Architecture for the KLC Portal. This architecture describes the basic information building blocks of KLC Portal.

· Section 4 (Computational View) describes the Computational Architecture for the KLC Portal. This architecture describes the basic service building blocks of KLC Portal.

· Section 5 (Engineering View) describes the Engineering architecture for the KLC Portal. This architecture describes the core components that are to be deployed and the infrastructure to integrate them into a single environment.

· Section 6 (Technology View) describes the target deployment environment for KLC Portal components in terms of technologies, standards and products.

2 Enterprise Viewpoint

The KLC Portal Enterprise Architecture captures the capabilities that must be present in support of allowing users to view and obtain desired data for a particular area, without needing to know the details of how the data are stored and maintained by independent organizations. The capabilities identified in the enterprise view provide the requirements to be met by the KLC Portal services and information architecture. Success of the KLC Portal is measured by the accuracy of the enterprise view and how well the information and systems architectures support that view. The system concept illustrates the operational setting, major system components, and major interfaces.

Under the current system architecture vision, the Commonwealth Office for Technology (COT) or some other entity at the state level would host the hub of the KLC portal including the web server hardware and software that supports the system. This allows the portal to take advantage of the considerable network and information technology infrastructure already in place (Kentucky GeoNet, Louisville/Jefferson County Information Consortium (LOJIC), and/or Lexington/Fayette Urban Council of Governments (LFUCG) resources for example).

In addition it will allow custom coded functionality to be stored and administered in a central location. The state will also host a data node on the KLC portal as well to provide user access to some suite of data holdings within the portal. Each participating county will also be added as a data serving node on the KLC portal so that local data remains in the jurisdiction and organization of origin. Permissions settings to access data and other administrative functions for each data node will be left to the node administrator(s). In this manner, some level of security for the portal will be provided at the state level via infrastructure already in place, while additional security measures specific to data access can remain under local user group or jurisdictional control.

A registry of available data will be hosted at the state level within the main hub for the portal. This registry will maintain a list of available datasets over all nodes on the KLC portal and provide pointers to this data at each local node. Users need never be aware that they are utilizing data from multiple system nodes within their KLC portal map as the portal architecture will allow for seamless integration of data from all nodes on the portal. The critical point of the proposed architecture is that the KLC portal will not store or maintain the data and its associated services; rather, these are distributed in many computers across the state and perhaps nationwide and maintained by the agency or organization that is responsible for its data and services. The actual mapping, or translation, occurs on the fly upon request of a data set by a user. All that will be required for a user to access data and services provided by the KLC portal is the use of a standard web browser.
Figure 4 represents Users from all sectors of government and society being able to access KLC Portal. The KLC Portal is a common facility across all the Lines of Business in the commonwealth that have a requirement for geospatial data and services. The Users in turn, are able to access information and services from a variety of Providers distributed across the network. These providers can have their data based on different schemas. The portal will transparently map requested data to NSDI Framework.

[image: image4.png]
Figure 4: KLC Portal

The KLC Portal is based on the Internet environment where the applications/clients can have access to one or more data holdings via the Internet. OGC interfaces provide access to the many disparate, geographically distributed geographic data holdings. This includes the use of OGC interfaces on both the client and the server sides. For example, the KLC Portal will provide a standard Web Feature Service (WFS) interface and Web Mapping Service (WMS) interface, which allows external applications to have access to it. It is expected that the National Map will gain access to the KLC WFSs and WMSs. This will be achieved by registering the service at the Portal’s local registry, define a SLDs for the KLC WMSs and use the Portal Portrayal Engine to generate the views.

2.1 KLC Concepts

The Federal Geographic Data Committee and agencies responsible for the framework data themes have developed application schemata in the Unified Modeling Language (UML). These models have been submitted to ANSI INCITS L1 for processing as U.S. National Standards. They will be used to create the GML Application Schemas that are needed in KLC.

This effort is intended to provide an end-to-end pilot demonstration of the KLC online access implementation for the Framework Layers selected. Specifically, this initiative will:

· Engage and integrate data and service providers (federal, state, and local) into a standards based framework for the exchange and exploitation of roads transportation data in support of the KLC.

· Establish five or more nodes on the Internet. The Commonwealth of Kentucky node will host a catalog, a coverage server, a feature server and a map server. Four additional county/city nodes (McLean, Pulaski, Trigg, and Oldham Counties) that will host feature data and map servers in support of the KLC. These data and services will include locally hosted resources (and may include remote resources) associated with the four user groups to benefit from the Portal (parcel/public, planning, transportation, and emergency response & public safety). The Louisville Jefferson County Information Consortium (LoJIC) organization and the Lexington Fayette Urban County Government have been invited to participate in the project as well.

· Perfect the development and use of a translating WFS (WFS-X) to support schema translation for baseline data layers (see “Framework Standards” under Section 2.3).

· Perfect the development and use of a UML to GML Application Schema generation tool to support schema translation for transportation and other application-specific data.

2.2 KLC Goals

The KLC acts as a primary data source for the National Map. It provides access to GOS Framework data based on UML Models developed by that office and submitted to ANSI-INCITS L1 for U.S. national standardization. KLC shares the goals and objectives of the National Map. The goals are listed below:

· To provide fast, low cost, reliable access to Geospatial Data needed for government operations. Note that the KLC Portal is only for data access, query, mapping, and reporting. The KLC Portal is not conceived as a re-write of desktop GIS functionalities.

· To facilitate G2G interactions needed for vertical missions such as Homeland Security. Overall, the KLC Portal will seek to satisfy critical business functions of the four user groups with regard to data access and QRM needs.

· To facilitate the alignment of roles, responsibilities and resources.

· To establish a methodology for obtaining multi-sector input for coordinating, developing and implementing geographic (data and service) information standards to create the consistency needed for interoperability and to stimulate market development of tools.

The Objectives of the KLC Portal are listed below:

· Implement online services for NSDI Framework Data.

· Fulfill and maintain an operational inventory (based on standardized documentation, using FGDC Metadata Standard) of NSDI Framework Data from Federal agencies, and publish the metadata records in the NSDI Clearinghouse network.

· Publish metadata of planned acquisition and update activities for NSDI Framework Data from Federal agencies in the NSDI Clearinghouse network.

· Prototype and deploy data access and web mapping services for NSDI Framework Data from Federal agencies.

· Establish a comprehensive Federal portal to the resources described in the first four components (standards, priority data, planning information, and products and services), as a logical extension to the NSDI Clearinghouse network.

In addition to the Internet environment and the KLC Portal application, Users can access geographic and other information holdings via other types of applications or client environment. There is also the possibility for an application client to access data holdings through multiple access mechanisms. OGC Interfaces can be used at multiple locations in the system architecture. Access is flexible:

1) Standalone - There are many occasions in which a system is deployed and used in a stand-alone mode. In this case, the system has local disk with the ability to store geographic and related information locally. It is also possible to connect these stand-alone systems to a LAN, WAN, or Internet if such connections are available. It is possible for applications running on the Stand-Alone system to utilize OGC interfaces to access and visualize locally-stored GI. This would be useful in cases where multiple data storage formats are used on the same system. It would also be useful for those cases in which an application developed for use on the Web is totally loaded along with the Internet environment on the stand-alone system.

2) Network Accessible is a desktop or similar system that is connected to either a local area network or wide area network. These systems also may or may not have access to the Internet. However, they do have network access to one or more GI data holdings. They can also have their own local GI data holdings. As with the stand-alone system, OGC interfaces can be used on the desktop system as part of the application, thus allowing concurrent access to multiple, heterogeneous data stores.

3) Mobile devices provide the ability to access, visualize, and annotate geographic data. All of the characteristics described for Internet access also apply to mobile device access. The same architecture and technologies used for Internet/Web based deployment can be utilized for deployment of applications and data via Laptop, CD ROM, LAN, WAN, single user workstations and/or even handheld PDAs.

It is worth mentioning here that the KLC Portal application does not store or maintain the data and its associated services; rather, these are distributed in many computers commonwealth and perhaps nationwide and maintained by the agency or organization that is responsible for its data and services. The actual mapping, or translation, occurs on the fly upon request of the data set. For example, the federal government might maintain a service providing interstate highway data, a state might serve data about the highways under its jurisdiction, and a city might serve urban street data. A user should be able to view a map including roads from all of these jurisdictions simultaneously, letting the Portal automatically contact the necessary services and combine the data. Furthermore, the User should be able to view detailed documentation about the data and its provenance(s) if desired.

2.3 KLC Requirements

The KLC Portal is based on the same open standards and specifications that are used in the National Map, the NSDI, and the federal government’s Geospatial One Stop. Three broad classes of standards and specifications are relevant to the Portal and the services it accesses:

1) Framework Standards: There are seven geospatial data themes that are considered to be of fundamental importance to many applications. Known as "Framework Data," these themes are: (1) Elevation, (2) Orthoimagery, (3) Hydrography, (4) Transportation, (5) Government Units (administrative boundaries), (6) Cadastral (property boundaries), and (7) Geodetic Control. Framework Data content standards are now under development by another component of the Geospatial One-Stop initiative (in particular, the GOS Transportation Pilot). Data sources wishing to be classified, as Framework Data shall, at minimum, are able to exchange data in a manner that complies with these emerging standards. The Portal shall be able to access both Framework Data sources and other, non-Framework data.
2) Data Service Specifications: Any services that support access to stored geographic data (repositories), including, but not limited to: map servers (raster-based maps), feature servers (vector-based features), and coverage servers (for imagery and other gridded data, like digital terrain models). The holdings of these servers may or may not be included in registries. OGC’s Web Map Server (WMS), Web Feature Server (WFS), and Web Coverage Server (WCS) are examples of Data Services.
3) Access to data and maps will be provided according to open consensus standards and specifications. For example, the OGC Web Map Service, Web Feature Service, and Web Coverage Service define methods for requesting data via the web in the geographic area of interest. Some organizations will offer only a WMS service, while others will also offer WFS or WCS services. All OpenGIS® Web Services are based on XML.
4) Metadata Standard: Metadata shall be published that provides detailed information about data and services. In particular, data will be documented according to the FGDC Content Standard for Digital Geospatial Metadata (CSDGM). Access to the metadata is through services such as the OGC Catalog Service. Furthermore, The GOS Portal may access or maintain other registries. Currently GOS-TP uses the ISO 191339 metadata XML Schema, which is a profile of the ISO 19115 (Geospatial Metadata Standard)
.
2.3.1 KLC Portal Service Requirements

The KLC Portal Reference Architecture describes a framework within which an organized collection of open standard specifications can be implemented to create spatial content and vendor neutral "plug and play" portal infrastructures.
It is explicitly open, vendor-neutral, and not dependent on any particular GIS, programming language, database, middleware or operating system. Components of portals based on the KLC Portal Reference Architecture – servers, clients, servlets, applets, middleware, databases, applications, etc. – and the external resources that link to them can be commercial-off-the-shelf (COTS), government-off-the-shelf (GOTS), custom, shareware, open source, and/or legacy. These components communicate through the standard interfaces, protocols and schemas defined in the OpenGIS Reference Model (ORM) and referenced throughout this annex.

In Figure 5, the KLC Portal Reference Architecture is presented again this time identifying the particular services that fall within each class of service.

[image: image5.png]
Figure 5: KLC Portal Services Distribution

In the subsequent section, each of the services is discussed along with identifying which OGC Implementation Specification is applicable for that service.

2.3.1.1 Portal Services

The Portal Services are accessible from the Portal Platform (e.g. desktop, laptop, etc.) or servers that have network connectivity. Users may leverage Portal Services to access the distributed Portrayal, Catalog and Data services, depending upon the requirements and designed implementation of the application. The access to these services is provided by client software that is resident on the portal platform. More specifically, when accessed as a World Wide Web application a Client runs on an HTTP server and generates HTML pages to be displayed in the User's web browser (the thin client).

2.3.1.1.1 Viewer Client

The Viewer Client provides a visualization user interface to display and navigate content retrieved from the Portrayal and Data services.

2.3.1.1.2 Discovery Client

The Discovery Client provides means for users to locate needed content and services according to user-defined criteria. More specifically, the Discovery Client enables the portal catalog containing the information about the content and services that have been registered to the portal to be searched and the request displayed to the user. The Discovery Client will also allow the user to select a desired content or service and have the service invoked for presentation in the viewer client.

2.3.1.1.3 Publisher Client

The Publisher Client provides means for portal maintainers and authorized users (e.g., admin users) to publish services or content discovered using the portal catalog. The Publisher Client allows authorized users to register primary information sources, pre-defined symbolization rules, and possibly other information. This published information is then made available to the Discovery Client where the published information can be found and services invoked.

2.3.1.1.4 Gazetteer Client

The Gazetteer Client provides users the ability to navigate through spatially organized features with well-known feature names. Gazetteer Clients allow users to formulate queries to retrieve named features. The Gazetteer Client should utilize the USGS Geographic Names Information System as a primary database of feature names.

2.3.1.1.5 Data Extraction Client

Data Extraction Clients provide users the ability to extract specific content from the Data Services class of services.

2.3.1.1.6 Data Manipulation Client

Data Manipulation Clients provide users the ability to access, modify, add, and delete geospatial content stored at remote Data Services providers.

Note: Only portal maintainers and authorized users (e.g., admin users) will be able to use functionality of the Data Manipulation Client.

2.3.1.1.7 Symbol/Style Management Client

Symbol/Style Management clients allow users to browse the styles available from a given server and obtain and apply a predefined style definition for a particular feature type(s).
2.3.1.1.8 Authentication and Access Control

The KLC Portal will enable Authentication and Access Control that restricts access to an organization’s content and service offerings based on criteria that are controlled locally and documented in the Portal site as a set of rules. At a minimum, the Portal should not prohibit Providers from defining access restrictions. In other words, the Portal must not cause all Users to appear as a single anonymous user when invoking services through the Portal.

Providers may enforce access restrictions at the network TCP/IP level, at the HTTP server level, at the web service component level, or at any other point of the service request's passage through the Provider's network. Providers should not be required to register their access restrictions at the Portal; however, service metadata and dataset metadata should include information about restrictions to minimize failed access requests. Portal participants may select and document appropriate metadata fields for this purpose.

See the general use cases on authentication in Appendix A, which deal with the issue of access to OGC compliant servers in KY outside of the KLC architecture. Moreover, this is to ensure that a non-KLC client cannot circumvent the KLC security framework
2.3.1.1.9 Exposed Services

In addition to the client Portal client access discussed above, the Portal can also be a service provider unto itself by furnishing Exposed Services to users, customers and client software that is external to the portal. Basically, the Portal can be constructed to take advantage of the access that the portal has to the content and services that have been registered to the Portal and expose services of its own. These services can be a reflection of the registered services, where the Portal acts as a single proxy to the many registered services, or the Portal can offer up services that have been specifically constructed to meet some special needs of the organization hosting the Portal.
2.3.1.2 Portrayal Services

Portrayal Services provide specialized capabilities supporting visualization of geospatial information. Portrayal Services are components that, given one or more inputs, produce rendered outputs (e.g., cartographically portrayed maps, perspective views of terrain, annotated images, views of dynamically changing features in space and time, etc.) Portrayal Services can be tightly or loosely coupled with other services such as Data and Processing Services and transform, combine, or create portrayed outputs. Portrayal Services may use styling rules specified during configuration or dynamically at runtime by Application Services.
Portrayal Services provide specialized capabilities supporting visualization of geospatial information. Portrayal Services are components that, given one or more inputs, produce rendered outputs (e.g., cartographically portrayed maps) or leverage the parameters of rendered outputs to coordinate multi-source display (e.g. create scale and view-dependent displays). Portrayal Services are loosely coupled with other services such as Map and Data Services and transform, combine, or create portrayed outputs. Five possible components are identified with the OGC Reference Architecture are described below.
2.3.1.2.1 Map Portrayal

The OpenGIS WMS Specification is a set of protocols that provide access by Web clients to maps rendered by map servers on the Internet. The WMS interface allows the client to query the “capabilities” of a given map server. Based on the capabilities, the WMS interface allows a server to return a Portable Network Graphics (PNG), Graphics Interchange Format (GIF), Joint Photographic Expert Group format (JPEG), or Tagged Image File Format (TIFF) image for a given area of interest and a specified coordinate reference system.

These returned images (pictures) can be viewed in transparency mode, thus allowing for example, the display of roads on top of a satellite image. The WMS interface support user queries of displayed spatial content that indicates the Spatial Reference System (SRS) and Bounding Box of the portion of the Earth to be mapped, and the output width, height and format of the picture.

The WMS can have an addition capability to define styles that control the presentational rules that are to be used when displaying geographic features. This ability to control the display styles in defined in the Styled Layer Descriptors Specification (SLD).

See the section on KLC Portal Interfaces and Data Flow Use Cases, below, for more on the WMS interface and SLD.

2.3.1.2.2 Cascading Map Reference

The Cascading Map Server is a special case of the WMS in that it does not hold any content of its own; rather, it serves as a gateway for other data providers, both OGC-compliant and not. Cascading Map Servers incorporate clients for a number of services. These clients, however, do not have to be just for OpenGIS interfaces. Legacy data providers can be accessed, their content retrieved, adjusted, and re-presented through the OpenGIS® Web Mapping Service interface. As such, the Cascading Map Server can serve a key role in presenting legacy data that may otherwise be inaccessible.

This service communicates with Provider WMS instances (both basic and SLD-enabled) to formulate and possibly execute valid operations to request service metadata, to request maps, or to perform other operations available from the Provider. The Cascading WMS component can transform map formats and map projections. It allows users to discover and select appropriate styles (either named or SLD-based) for each map layer and composes the SLDs so that map portrayal can be requested.

2.3.1.2.3 Symbol/Style Management Service

The Symbol/Style Management Service is a multi-component system that enables map and content retrieval, and includes the capability for creating, storing, and/or retrieving styles and symbols from multiple communities or user groups and combining all these elements of information into an appropriately symbolized map. This service may consist of multiple components including a Style Registry, Style Repository, Symbol Registry, and Symbol Repository presented through a common, standard interface. A formal description of the Symbol/Style Management Service is currently in the change proposal process with the OGC Specification Program as a modification to the Styled Layer Descriptors Specification.

2.3.1.2.4 Map Context Encoding

The OpenGIS Web Map Context Specification allows users to save complex multi-source presentations so they can be retrieved in total in the future so they do not have to be rebuilt from scratch. It is useful to be able to record the state of a WMS client application at a view of interest to a user, and then to restore that state at a later time.

Note: At the time of writing, the OpenGIS Web Map Context Specification applies only to the WMS specification. However, there is an OGC TIE on developing a Context document which encapsulates more than WMS.
2.3.1.2.5 Coverage Portrayal

The Coverage Portrayal Service (CPS) enables users to produce visual pictures from coverage data (such as digital elevation data or Earth image data). The CPS works much like a WMS instance, but includes additional parameters to control the retrieval and/or rendering of coverage data.

Note: At the time of writing the Coverage Portrayal Service is a discussion paper, not yet an adopted OpenGIS Specification.

2.3.1.3 Catalog Services

Catalog Services provide a common mechanism to classify, register, describe, search, maintain and access information about resources available on a network. Resources are network addressable instances of typed data or services. Types of registries are differentiated by their role such as registries for cataloging data types (e.g., types of geographic features, coverages, sensors, and symbols), online data instances (e.g., datasets, repositories, and symbol libraries), service types and online service instances. Catalog services allow:

1) Providers of resources to publish descriptive information about resource types and instances;

2) Requestors of resources to discover information about resource types and instances; and

3) Requestors of resources to access (bind to) resource providers.

See the section on KLC Portal Interfaces and Data Flow Use Cases, below, for more on the Catalog interface.

2.3.1.4 Data Services

Data Services provide access to collections of content in repositories and databases. Resources accessible by Data Services can generally be referenced by a name (identity, address, etc). Given a name, Data Services can then find the resource. Data Services usually maintain indexes to help speed up the process of finding items by name or by other attributes of the item. The OpenGIS Framework defines common encodings and interfaces in which multiple, distributed Data Services are accessed and their contents “exposed” in a consistent manner to other major components. The sections below describe the current set of Data Services of the OpenGIS Framework.

2.3.1.4.1 Feature Services

The OpenGIS WFS Specification supports the query and discovery of geographic features and attributes. In a typical Web-base scenario, WFS delivers GML representations of simple geospatial features in response to queries from HTTP clients. Clients (service requestors) access geographic feature data through a WFS by submitting a request for just those features that are needed for an application. The client generates a request posts it to a WFS instance (a WFS server on the Web). The WFS instance executes the request, returning the results to the client as GML. A GML-enabled client can manipulate or operate on the returned features.

See the section on KLC Portal Interfaces and Data Flow Use Cases, below, for more on the WFS interface.

2.3.1.4.2 Symbology Management

This service is a multi-component system that enables map and content retrieval, and includes the capability for creating, storing, and/or retrieving styles and symbols from multiple communities or user groups and combining all these elements of information into an appropriately symbolized map. This service may consist of multiple components including a Style Registry, Style Repository, Symbol Registry, and Symbol Repository presented through a common, standard interface.

2.3.1.4.3 Gazetteer

A Gazetteer is a directory of features containing some information regarding position. A Gazetteer Service is a network-accessible service that retrieves one or more features (after the ISO feature model), given a query (filter) request. This filter request must support selection by well-known feature attribute values, and especially by published or context-unique identifiers. The queryable feature attributes are any properties that describe the features, including but not limited to feature type, feature name, authority, or identification code. Each instance of a Gazetteer Service has an associated vocabulary of identifiers. Thus, a Gazetteer Service may apply to a given region, such as a country, or some other specialized grouping of features. The returned features will include one or more geometries expressed in an OGC Spatial Reference System. The Gazetteer interface extends the WFS specification by defining additional behavior and formalizing the response schema elements.

The Gazetteer is service is described in the OGC discussion paper “Gazetteer Service Profile of a WFS”.

2.3.1.4.4 Coverage Services

The OpenGIS Web Coverage Service Specification (WCS) supports the networked interchange of geospatial content as "coverages" containing values or properties of geographic locations. Unlike the Web Map Service, which filters and portrays spatial content to return static maps (server-rendered as pictures), the Web Coverage Service provides access to intact (unrendered) geospatial information, as needed for client-side rendering, multi-valued coverages, and input into scientific models and other clients beyond simple viewers.

See the section on KLC Portal Interfaces and Data Flow Use Cases, below, for more on the WCS interface.
3 Information Viewpoint

The information viewpoint describes the basic information building blocks of the Portal and is concerned with the semantics of information and information processing. It defines classes of information that are defined by the Portal. It then enumerates various encodings, formats, and languages of relevance.

The information viewpoint also defines conceptual schemas for geospatial information and methods for defining application schemas. The conceptual, or base, schemas are formal descriptions of the model of any geospatial information. Application schemas are information models for a specific information community. Application schemas are built from the conceptual schemas.

Note: It is possible that the Framework AS will be combined into a GOS Schema, from which the individual layers will be derived. However, we are not aware of any effort to do a Conceptual Schema.

3.1 Information Classes

As mentioned before, the KLC is intended to become a primary data source in the National Map. In this section we describe the major differences between primary, secondary, and tertiary information. According to the FGDC, geospatial information may be placed into one of three broad classes. These classes are defined by policy and by functionality, rather than by the nature of the real-world quantities represented by the information.

3.1.1 Primary Information

Primary Information must comply with the three basic requirements described above at the end of the Enterprise Viewpoint:

· The information complies with FGDC Framework Data.

· The information is accessible using the Service Specifications supported by the KLC Portal.

· The information has been documented according to the supported FGDC Metadata Standard.

Primary Information is that the FGDC has classified as "Framework Data" based on the provider's implementation of GOS policies, specifications and standards. In addition, KLC may define specific types of non-Framework information as of direct relevance to KLC in some other respect.

Examples: the Road Transportation Framework Data theme; metadata about planned data. The KLC Portal shall enable access to Primary Information without explicitly requiring the user to perform a search.

Note: Other data might be available in addition to the framework layers under a NSDI Clearinghouse, for example.

3.1.2 Secondary Information

Secondary Information must comply with two of the three basic requirements described above at the end of the Enterprise Viewpoint:

· The information is accessible using the Service Specifications supported by the KLC Portal.

· The information has been documented according to the supported FGDC Metadata Standard.

Secondary Information is that which (1) is available using OGC Web Service(s) supported by the Portal, and (2) has been documented with published metadata that includes reference(s) to one or more of OGC Web Service that the Portal supports (i.e., WMS, WFS and WCS). The Portal is technically capable of discovering and then directly accessing the service, even though the KLC project has not classified the information as Primary. Example: a WMS providing maps of soil types.

Users will typically need to perform an explicit search in order to discover Secondary Information. The Portal may provide some form of indication in the user interface that distinguishes Primary from Secondary Information.

3.1.3 Tertiary Information

Tertiary Information must comply with one of the three basic requirements described above at the end of the Enterprise Viewpoint:

· The information has been documented according to the supported FGDC Metadata Standard.

· Information whose metadata has been created and published, but that is available only offline or through proprietary online services.

· The Portal can discover the Tertiary Information by searching metadata, but can merely refer users to it (by displaying the metadata record) rather than performing a request on behalf of the user. Example: a dataset that is available only by telephoning an individual and requesting a CD-ROM.

3.2 Geospatial Information Formats

3.2.1 Vector Data

Vector data is the class of data that represents point, line and polygon geospatial features. This data contains detailed geometry and attribute information about individual geospatial features. In the case of KLC, the principal vector data will be the content defined in the FGDC Framework standard. Note that the data needs to be formatted to be displayed in an application. The data is encoded based on a GML 3.0 application schema:

· GML - Geography Markup Language (see description, below)

3.2.2 Picture Maps

Maps are defined as visual portrayals of feature or coverage data--a map is a picture that can be readily viewed by a user. For purposes of The KLC, maps are considered a separate data class from imagery or coverage data and are typically the output from a WMS server that might be connected to a WFS server. Relevant picture map formats for the KLC Portal are:

· PNG - Portable Network Graphics

· GIF - Graphics Interchange Format

· JPEG - Joint Photographic Expert Group format

3.2.3 Coverage/Grid Data

A coverage is an association of points within a spatial/temporal domain to a value (of a defined data type, possibly a complex type). A coverage in the OpenGIS® Specification is a function which can return its value at a geometric point. Scalar fields (such as temperature distribution), terrain models, population distributions, satellite images and digital aerial photographs, bathymetry data, gravitometric surveys, and soil maps can all be regarded as coverages. Coverages usually represent phenomena.

Most Coverages depend on two stored functions. The functions map respectively “to” and “from” a mathematical coordinate space called the Coverage Extent. The first function, the Coverage Generation Function, maps from Earth coordinates to Coverage Extent Coordinates, and provides geolocation. The second, the Schema Mapping, maps from the Coverage Extent to some range of values. In general, both functions must be stored.

3.3 Data Encoding for Geographic Information

The Geography Markup Language (GML) is an XML encoding for the transport and storage of GI, including both the geometry and properties of geographic features
. GML is a set of rules and schemas for encoding geographic information in XML. Because ordinary Web browsers “understand” XML, users with no special GI software can be given access to geoprocessing and semantic processing capabilities delivered through their Web browsers.

GML is usable with all standard XML tools. Of particular note in this respect are the tools designed to filter XML (XSL) and to turn XML into a visual presentation (XSLT). Using the XSL tools, a fully functional GML database can be published into more limited versions. For example, in order to satisfy regulatory requirements, a subset of the data, perhaps with lower fidelity, can be automatically extracted. To share data with a supplier who is also a potential competitor, the data can first be filtered and adjusted on the basis of what the supplier needs to know.

3.4 Management and Control of Data

3.4.1 Data Metadata

Data Metadata is metadata that describes data holdings. The relevant specification for KLC Data Metadata is:

· CSDGM - FGDC Content Standard for Digital Geospatial Metadata

Note: the specification "ISO 19115 Geographic Information - Metadata" is expected to be profiled by FGDC as a new version of its metadata standard. When that has occurred and been deployed in the NSDI Clearinghouse network, The KLC Portal will adopt that specification as well.

3.4.2 Service Metadata

Service Metadata is metadata that describes services. Relevant specifications for The KLC Portal Service Metadata include (but are not limited to):

· WMS - OGC Web Map Service - Capabilities XML

· WFS - OGC Web Feature Service - Capabilities XML

· WCS – OGC Web Coverage Service – Capabilities XML

3.4.3 Query Languages

Most of the services used in the KLC Portal have a queryable interface. To use those interfaces, it is necessary that the client and server have a common understanding of what constitutes a valid query. Standardized query languages provide the common vocabulary and grammar needed to enable this sliver of interoperability. Relevant specifications for The Portal Query Languages are:

· OGC Web Registry Service (CS-W)

· OGC Web Map Service - GetFeatureInfo operation

· OGC Filter Specification (associated with the WFS specification)

3.5 Application Schemas

Application schema is a set of conceptual schema for data required by one or more applications (i.e., describes the structure of GML for a specific application). It contains the descriptions of both geographic data and other related data. Any description is always an abstraction, always partial, and always just one of many possible views. Designers of application schemas may extend or restrict the types defined in the base schemas (i.e., Standard Application Schema) to define appropriate types for an application domain.

In brief, the purpose of an application schema is twofold:

· to provide a computer-readable data description defining the data structure, which makes it possible to apply automated mechanisms for data management;

· to achieve a common and correct understanding of the data, by documenting the data content of the particular application field, thereby making it possible to unambiguously retrieve information from the data.

3.5.1 GML Application Schemas

Feature types for a GML application language are defined in an XML Schema defining the language, known as a GML application schema. The conceptual role of a GML application schema, therefore, is to formally define the members of a catalog of feature types for a particular information community. The operational role is to validate XML instance documents describing information of interest to members of the information community.

Given an existing datasource with, for example, a pre-defined table structure (designed to support the existing primary business processes) and an application domain GML application schema that the WFS should use, the configuration of any general purpose WFS service requires the following:

1. specification of the mapping for each of the element and attribute content in the XML document that is generated in response to a WFS GetFeature request -> the datasource operation that supplies the required information;

2. specification of the mapping for any supported WFS filter request -> an operation on the datasource.

3.5.2 Mapping UML to GML Application Schemata

The goal is to translate between spatial data that conforms to a local data content standard and data that conforms to the national (FGDC) data content standard. In order to achieve this, first, the feature definitions need to match in the two data models, or almost match, and configure software to translate data based on these equivalencies.

Note that some feature definitions are too dissimilar to translate, and, as a result, there is not a one-to-one mapping between an XML Schema and an XML document instance. This also often necessitates creating multiple queries from a single query or mapping a multiple properties to a single property. It is also sometimes necessary to evaluate some of the filter constraints before forwarding the request. Many different document structures may be valid according to a single schema. This ambiguity may have implications for the implementation of a particular WFS instance. The set-up process makes obvious which feature definitions need harmonization.
The detailed steps for a schema translation are as follows:
· Identify a target data content model standard (typically FGDC Framework) for regional/national coordination.

· Develop a UML expression of the target model.

· Develop UML expressions of local data models.

· Convert UML expressions to GML application schemas.

· Change ("harmonize") only those fields that don’t map automatically. Leave other fields “as is” for translation on the fly.

· Implement the schema translation software on local and target WFS servers.

The application schema is derived from an ISO 19103 and ISO 19109 conformant UML application schema. The mapping is done automatically by a UML-to-GML-Application-Schema (UGAS) tool. XMI 1.0 (UML 1.3) is used as the intermediate representation of the UML model. In addition, the UML Application Schema must follow some additional modeling guidelines required by the tool. See http://www.interactive-instruments.de/ugas/ for details.

4 Computational Viewpoint

The computational viewpoint is concerned with the functional decomposition of the system into a set of services that interact at interfaces. This viewpoint captures the details of these components and interfaces without regard to distribution.
The KLC Computational Viewpoint is represented graphically in the Portal Concepts diagram in Figure 3. That figure represents data providers as cylinders near the bottom of the diagram. Each provider supports several online services that are accessed by the Portal.

Note: Although the diagram shows the data and services as tightly coupled, in practice there may be services that have no associated data, or data providers that rely on third-party services; conceptually, however, all of the data of interest are accessed through a service.

Also, providers will need to register their metadata about their offerings by publishing themselves in the Portal’s Registry. The registry provides dataset-level metadata for their holdings.

[image: image6.png]
Figure 6: KLC Computational Viewpoint

In the center of the diagram is the Portal’s application environment, which can be thought of as an assemblage of clients of these various service types. The Portal can make requests to the providers' OGC Web Services distributed throughout the Internet, receive responses, and present those responses to Portal users in an appropriate manner.

The top row of the diagram represents Portal users. The default method of access will be via a standard web browser (a "thin client") operated by a human. Users satisfied with the functions provided by the Portal may not require any other type of access client.

Note: Several vendors are offering desktop GIS applications capable of connecting to the Portal and using the same interfaces to access data. See the use cases on authentication in Appendix A, which deal with the issue of access to OGC compliant servers in KY outside of the KLC architecture. Moreover, this authentication is to ensure that a non-KLC client cannot circumvent the KLC security framework.

The KLC Computational Viewpoint is based on a subset of the output of OGC activities to date and includes concepts described in the draft OpenGIS® Reference Model.

· The OpenGIS® Reference Model establishes the baseline of common interfaces, exchange protocols, and services that have been developed or adopted by the OGC community and describes a framework that can be profiled for use in application domains like KLC. It can be found at: http://www.opengis.org/specs/?page=orm

· OpenGIS® Implementation Specifications provide guidance to application developers on how to build their products to comply with this framework.

· OpenGIS® Services are implementations of services that conform to OpenGIS® Implementation Specifications.

· OpenGIS® Applications are compliant applications that can "plug into" the network of OpenGIS® Services. The GOS Transportation Portal is an example of an OpenGIS® Application.
4.1 KLC Portal Interfaces and Data Flow Use Cases

4.1.1 Catalog Interface

The OpenGIS® Catalog Services Specification version 2
 specifies the interfaces between clients and catalogue services, through the presentation of abstract and implementation-specific models. Catalogue services support the ability to publish and search collections of descriptive information (metadata) for data, services, and related information objects. Metadata in catalogues represent resource characteristics that can be queried and presented for evaluation and further processing by both humans and software. Catalogue services are required to support the discovery and binding to registered information resources within an information community.
Catalogue services support the use of one of several identified query languages to find and return results using well-known content models (metadata schemas) and encodings. It specifies open APIs that provide discovery services, access services and interfaces for catalog managers, including a complete Catalog Query Language. Detailed implementation guidance is provided for establishing and ending a stateful catalog session to: query the catalog server properties, check the status of a request, cancel a request, issue a query, present the query results, and get the schema of a discovered collection.
Moreover, Catalog Services support access to catalogs and registries, which are comprised of collections of metadata and types. (Catalogs and registries are essentially repositories for metadata.) Catalogs contain information about instances of datasets and services. Catalog Services provide a search operation that can return metadata or the names of instances of datasets and services. Registries contain information about types. Types are defined by well-known vocabularies. Registry Services implement a search operation that can return metadata or the names of types.

Catalogs based on the OpenGIS® Catalog Services Specification have the following features:

1) Catalogs enable automated discovery of and automated access to and management of machine-readable metadata describing data that are held in online spatial data repositories (and perhaps off-line data repositories) and also metadata describing online OGC Web Services
.

2) The metadata (for both data and services) registered in catalogs must adhere to certain metadata schema standards (i.e., FGDC, ISO). Other metadata schema standards and data content standards not mandatory but are also important.

3) Whatever schemas are employed to structure the metadata, all metadata involved with Web Services are encoded using the XML.

4) The OpenGIS® Catalog Services Specification defines an SQL-like Common Query Language for search and retrieval of metadata, along with profiles of it for the OLEDB, CORBA, and Web computing environments. The Web profile uses the ANSI/NISO Z39.50 (a.k.a. ISO 23950) protocol, either on its own Internet port, or via HTTP using XML-encoded requests.

5) The data metadata provides information about how to access (view, retrieve, manipulate) the data. The data can be in any raster or vector data format (or even text or video), and they can be held in any data server. However, the data server will not be able to respond automatically to access requests unless the system is online and fitted with interfaces enabling client/server communication. Typically, these will be interoperability interfaces that conform to OpenGIS® Specifications.

6) Spatial catalogs are designed to be distributed. Owner-imposed access control and security will, quite appropriately, limit people's access to some catalogs and cataloged resources, but access will not be arbitrarily limited by closed, proprietary software interfaces.

7) The OGC Catalog Interface is stateful: servers "remember" their clients and fill later requests based on earlier ones. However, the Web (linked by the HTTP protocol) is stateless: servers treat each request independently. The Web profile of the OGC Catalog Interface simulates a stateful session using an HTTP "cookie."

4.1.2 WMS Interface

The OpenGIS® Web Map Service (WMS) Implementation Specification generates “pictures” of georeferenced data and allows a client to overlay map images (raster-based) for display served from multiple WMS services on the Internet. This interface, when implemented in web based GI servers and clients, enables the user to access GI from any number of sources on the web, regardless of vendor brand computing platform.
Independent of whether the underlying data are simple features (such as points, lines and polygons) or coverages (such as grided fields), the WMS produces an image of the data that can be directly viewed in a graphical Web browser or other picture-viewing software. Users can pan and zoom to find an area of interest, and then get a raster image “view” of the data. A major benefit of this approach is to provide useful information while controlling access to detailed and perhaps sensitive GI data and attributes. The displayed maps are only raster images of the source spatial data, which is a benefit if a data provider prefers not to provide the actual data. This approach is also highly beneficial as it can be quickly implemented, does not require high speed access, and provides huge benefit to the end user with little incremental cost.

The WMS specification standardizes three operations (two required and one optional) by which maps are requested by clients, and it standardizes the way that servers describe their data holdings. In addition, the WMS Specification defines a set of query parameters and associated behaviors.
The three operations (requests) are listed below and shown in Figure 7: [image: image18.png]
Figure 7: WMS Interface Operations

1. GetCapabilities (required) - returns the WMS server's service-level metadata, which is a machine-readable (and human-readable), description of the WMS service's information content and acceptable request parameters.
2. GetMap (required) - returns a map image whose geospatial and dimensional parameters are well defined.

3. GetFeatureInfo (optional) - returns information about particular features shown on a map. If a WMS server supports this operation, its maps are said to be "queryable," and a WMS client can request information about features on a map by adding to the map URL additional parameters specifying a location (as an X, Y offset from the upper left corner) and the number of nearby features about which to return information.

A WMS labels its data as one or more “Layers,” each of which is available in one or more “Styles.” Upon request a WMS makes an image of the requested Layer(s), in either the specified or default rendering Style(s). The image request (GetMap) indicates the Spatial Reference System (SRS) and Bounding Box of the portion of the Earth to be mapped, and the output width, height and format of the picture.
In essence, a WMS server can do three things:
1) Produce a map (as a picture, as a series of graphical elements, or as a packaged set of geographic feature data),
2) Answer basic queries about the content of the map, and
3) Tell other programs what maps it can produce and which of those can be queried further.
A WMS client can issue GetMap requests for different maps to several independent Map servers. If each map has the same geographic area and physical dimensions, and if their backgrounds are transparent, then they can be overlaid in a single window to produce a combined map. For example, server A might produce a topography image, server B a map of rivers and lakes, and server C a map of watershed boundaries. Each server maintains the type of data in which it specializes, but the end user can obtain a combined presentation of the three Layers.

4.1.2.1 WMS SLD Enabled Operations

The WMS Specification applies to a WMS service that publishes its ability to produce maps rather than its ability to access specific data holdings. A basic WMS classifies its georeferenced information holdings into "Layers" and offers a finite number of predefined "Styles" in which to display those layers. This basic behavior of a WMS service can be extended to allow user-defined symbolization of feature data instead of named Layers and Styles.
While a WMS currently can provide the user with a choice of style options, the WMS can only tell the user the name of each style. It cannot tell the user what each portrayal will look like on the map. More importantly, the user has no way of defining unique styling rules. The capability for a human or machine client to define these rules requires an extension - a styling language that the WMS client and WMS server can both understand.

The OpenGIS® Styled Layer Descriptor (SLD) Specification describes this extension; it provides the schema for implementing common and consistent communication of map representation, independent of the underlying GIS or database technology. The SLD specification adds the following additional operations that are not available on a basic WMS:
1. DescribeLayer – asks for an XML description of a map layer. The result is the URL of the WFS server containing the data and the feature type names included in the layer.

2. GetLegendGraphic – provides a general mechanism for acquiring legend symbols, beyond the LegendURL reference of WMS Capabilities.

3. GetStyles – used to retrieve user-defined styles from a WMS.

4. PutStyles – used to store user-defined styles into a WMS

In brief, an SLD-enabled WMS retrieves features from a WFS service and applies explicit styling information provided by the user in order to render a map. A WMS client retrieves capabilities from a WMS server. If the WMS server supports SLD, the WMS client allows the user to create custom styles on traditional WMS layers (in SLD terminology, UserStyles for NamedLayers), which then makes an SLD-enabled GetMap request to retrieve a map.

SLD is robust enough to fulfill a wide range of cartographic needs and is terse enough to be useful even using only HTTP GET as a transport method. However, some of the current SLD limitations are: (1) there is no elegant way to specify a thematic or chloropleth map. For example, the user can not encode data in four colors starting with gray and ending with black without specifying the exact data ranges for each color and the exact color value for each range: (2) the ability to create styles lacks a style library service.

In short, the WMS interface provides protocols (mainly, the GetCapabilities, GetMap, GetFeatureInfo and DescribeLayer, the last being defined as part of the SLD specification) in support of the creation and display of registered and superimposed map-like views of information that come simultaneously from multiple sources that are both remote and heterogeneous.

See the OGC WMS Cookbook
 for implementation guidelines and examples.

4.1.2.2 WMS Use Cases

The use cases in this section describe general scenarios that involve WMS services in support of KLC Portal. These should be viewed as context for the requirements listed in the Enterprise, Information, and Engineering viewpoints presented in other sections of this Annex as well as the use cases presented in Appendix A associated with the specific functionality of the KLC Portal.

4.1.2.2.1 WMS GetCapabilities Use Cases

	WMS GetCapabilities Use Case

	Name
	A WMS Client Requests Capabilities XML Document

	Priority
	High

	Description
	This use case allows a WMS Client (or client proxy) to request a server to expose its service metadata [1], its mapping content [2], and capability metadata [3].

	Precondition
	There is a WMS available that provides its capabilities in the form of an XML document that the WMS Client understands.

	Flow of Events – Basic Path

	1.
	WMS Client submits a GetCapabilities request.

	2.
	WMS validates the request.

	3.
	WMS returns the capabilities. These include a list of layers that the WMS Client wants to display.

	4.
	WMS Client accepts the WMS capabilities, parses them and uses the information for subsequent queries (GetFeatureInfo, GetMap, or DesribeLayer, last being defined as part of the SLD specification).

	Flow of Events – Alternative Paths

	2
	If the request is invalid, it is rejected and a service exception report is returned.

	Postcondition
	WMS Clients would generally run the GetCapabilities operation and cache its result for use throughout a session or reuse it for multiple sessions.

[1] Service metadata includes the following: Names, Titles, Online Resource URL. Optionally, Abstract, Keyword List, Contact Information, Fees, and Access Constraints may be provided.

[2] The most critical part of the WMS Capabilities XML is the Layers and Styles it defines.

A single parent Layer encloses any number of additional layers, which may be hierarchically nested as desired. Some properties defined in a parent layer are inherited by the children it encloses. These inherited properties may be either redefined or added to by the child.

A WMS server shall include at least one <Layer> element for each map layer offered. If desired, layers may be repeated in different categories when relevant.

A Layer is said to have been "cascaded" if it was obtained from an originating server and then included in the Capabilities XML of a different server. The second server may simply offer an additional access point for the Layer, or may add value by offering additional output formats or spatial reference systems.

If the optional opaque attribute is missing or has a value of "0," then maps made from that Layer will generally have significant "no-data" areas that a client may display as transparent. Vector features such as points and lines are considered not to be opaque in this context (even though at some scales and symbol sizes a collection of features might fill the map area). A value of "1" indicates that the Layer represents an area-filling coverage of space. For example, a map that represents topography and bathymetry as regions of differing colors will have no transparent areas. The "opaque" declaration should be taken as a hint to the Client to place such a Layer at the bottom of a stack of maps.

[3] Capability metadata includes names the actual operations that are supported by the service instance, the output formats offered for those operations, and the URL prefix for each operation.

4.1.2.2.2 GetFeatureInfo Use Cases

	WMS GetFeatureInfo Use Case

	Name
	A WMS Client Request

	Priority
	Medium (optional request)

	Description
	This use case enables a user to click on a pixel and inquire about the schema and metadata values of the feature(s) represented there [1].

	Precondition
	

	Flow of Events – Basic Path

	1.
	WMS Client submits a GetFeatureInfo request, specifying the layers to be queried [2], the format info [3], the feature count [4], and the x and y [5].

	2.
	WMS validates the request.

	3.
	WMS returns a description for the specific features selected [6].

	4.
	WMS Client accepts the requests and process it for further requests (i.e., GetMap).

	Flow of Events – Alternative Paths

	2
	If the request is invalid, it is rejected and a service exception report is returned [7].

	Postcondition
	

[1] The GetFeatureInfo operation is designed to provide clients of a WMS with more information about features in the pictures of maps that were returned by previous Map requests. The canonical use case for GetFeatureInfo is that a user sees the response of a Map request and chooses a point on that map for which to obtain more information. The basic operation provides the ability for a client to specify which pixel is being asked about, which layer(s) should be investigated, and what format the information should be returned in.

Because the WMS protocol is stateless, the GetFeatureInfo request indicates to the WMS what map the user is viewing by including most of the original GetMap request parameters (all but VERSION and REQUEST). From the spatial context information (BBOX, SRS, WIDTH, HEIGHT) in that GetMap request, along with the X,Y position the user chose, the WMS can (possibly) return additional information about that position.

The actual semantics of how a WMS decides what to return more information about, or what exactly to return is left up to the WMS provider.

[2] GetFeatureInfo is only supported for those Layers for which the attribute queryable="1" (true) has been defined or inherited

[3] The optional INFO_FORMAT indicates what format to use when returning the feature information (i.e., GML).

[4] The optional FEATURE_COUNT parameter states the maximum number of features for which feature information should be returned.

[5] The required X and Y parameters indicate a point of interest on the map. X and Y identify a single point within the borders of the WIDTH and HEIGHT parameters of the embedded GetMap request.

[6] The GetFeatureInfo response is according to the requested INFO_FORMAT if the request is valid, or issue an exception otherwise. The nature of the response is at the discretion of the WMS provider, but it shall pertain to the feature(s) nearest to (X,Y).

[7] For example, a client shall not issue a GetFeatureInfo request for layers for which the attribute queryable="0" (false) has been defined. A WMS should respond with a properly formatted Service Exception response if it encounters that request but does not support it.

4.1.2.2.3 GetMap Use Cases

	WMS GetMap Use Case

	Name
	A WMS Client Requests a Map

	Priority
	High

	Description
	This use case allows a WMS Client (or client proxy) to request multiple servers to craft “map overlays”, possessing the identical spatial reference system, size, scale, and pixel geometry. These overlays can be ordered and placed by the client into a display, and optionally, using transparent pixel technology, the information from several sources can be rendered for immediate viewing (display).

	Precondition
	

	Flow of Events – Basic Path

	1.
	WMS Client submits a GetMap request, specifying the Layers, Styles [1], SRS [2], BBox [3], Format [4], Width and Height [5], Transparent [6], BGColor [7].

	2.
	WMS validates the request.

	3.
	WMS returns the maps generated from the request parameters [8]

	4.
	WMS Client accepts the responses and process it for display.

	Flow of Events – Alternative Paths

	2
	If the request is invalid, it is rejected and a service exception report is returned [9].

	Postcondition
	

[1] Each style Name shall be one that was defined in the <Name> element of a <Style> element that is either directly contained within, or inherited by, the associated <Layer> element in Capabilities XML. (In other words, the Client may not request a Layer in a Style that was only defined for a different Layer.)

[2] If the WMS server has declared SRS=NONE for a Layer then the Layer does not have a well-defined spatial reference system and should not be shown in conjunction with other layers. The Client shall specify SRS=NONE in the GetMap request and the Server may issue a Service Exception otherwise.

[3] If the WMS server has declared that a Layer is not subsettable/resizable, then the Client shall specify exactly the declared Bounding Box values in the GetMap request and the Server may issue a Service Exception otherwise.

[4] Typical output formats include PNG, GIF, JPEG, TIFF, etc. When the data do not cover the entire field of view (such as a network of roads that includes the space between the roads), the background can be made transparent in some output formats.

[5] In the case where the aspect ratio of the BBOX and the ratio width/height are different, the WMS shall stretch the returned map so that the resulting pixels could themselves be rendered in the aspect ratio of the BBOX. In other words, it should be possible using this definition to request a map for a device whose output pixels are themselves non-square, or to stretch a map into an image area of a different aspect ratio.

NOTE: Map distortions will be introduced if the aspect ratio WIDTH/HEIGHT is not commensurate with X, Y and the pixel aspect. Client developers are cautioned to minimize the possibility that users will inadvertently request or unknowingly receive distorted maps.

If the WMS server has declared that a Layer has fixed width and height (it’s not subsettable and resizable, then the Client shall specify exactly those WIDTH and HEIGHT values in the GetMap request and the Server may issue a Service Exception otherwise.

[6] Transparent specifies whether the map background is to be made transparent or not. The ability to return pictures drawn with transparent pixels allows results of different Map requests to be overlaid, producing a composite map. It is strongly recommended that every WMS offer a format that provides transparency for layers which could sensibly be overlaid above others.

NOTE: At the time of this writing, the image/gif format provides transparency and is properly displayed by common web clients. The image/png format provides a range of transparency options.

When TRANSPARENT is set to TRUE and the FORMAT parameter contains a Picture format (e.g., image/gif), then a WMS shall return (when permitted by the requested format) a result where all of the pixels not representing features or data values in that Layer are set to a transparent value. For example, a "roads" layer would be transparent wherever no road is shown. When TRANSPARENT is set to FALSE, those pixels shall be set to the value of BGCOLOR

When the Layer has been declared as "opaque", then significant portions, or the entirety, of the map may not be able to made transparent.

When the FORMAT parameter contains a Graphic Element format, the TRANSPARENT parameter may be included in the request but its value shall be ignored by the WMS.

[7] When FORMAT is a Picture format, a WMS shall render its output on a background whose pixels were initially uniformly of the color encoded in BGCOLOR. When FORMAT is a Graphic Element format (which does not have an explicit background), a WMS should avoid use of the BGCOLOR value for foreground elements because they would not be visible against a background picture of the same color.

When the Layer has been declared as "opaque,” then significant portions, or the entirety, of the map may not show any background at all.

[8] The response to a valid GetMap request shall be a map of the georeferenced information layer requested, in the desired style, and having the specified spatial reference system, bounding box, size, format and transparency.

[9] For example, a server shall throw an exception (code=StyleNotDefined) if an unadvertised Style is requested.

4.1.3 WFS Interface

The OpenGIS® WFS Implementation Specification describes feature data access such that servers and clients can “communicate” at the feature level. The WFS interface also defines simple transaction operations (i.e., Create a Feature, Delete a feature, and Update a feature) on OpenGIS® Simple Features (feature instances). Note, however, that since the KLC Portal will act as a discovery and access gateway for data query, mapping, and reporting, it is not conceived to utilize functionality associated with data editing.

Whereas WMS delivers a picture, WFS implemented in a client supports the dynamic exploitation and access of feature data and associated attributes on the Web from any server product that implements WFS. This capability opens the door to enhanced spatial analysis, modeling and other operations based on the intelligence of the attributed data.

A Web-accessible commercial GIS server with an interface based on the WFS specification provides a similar capability to the WMS except that the actual vector GIS data can be transmitted to the client for further processing. The WFS interface provides the ability to have a common and consistent access mechanism to vector (coordinate) data stores, such as ESRI Shape files, Oracle Spatial tables, and so forth. It allows applications to be built and deployed independent of the underlying GIS technology.

Therefore, a WFS request – like those supported in many GIS and RDBMS packages – consists of a description of the query and data transformation operations that are to be applied to WFS enabled spatial data warehouses on the Web. The request is generated on the client and is posted to a WFS server. The WFS Server “reads” and executes the request returned in a feature set as GML. A GML enabled client then can use the feature set.

The WFS specification standardizes the following operations:

1) GetCapabilities (required for Basic WFS): requests a basic description of the WFS service instance. The service responds with a Capabilities XML document that contains a description of all the operations that the WFS supports and a list of all feature types that it can service.
2) DescribeFeatureType (optional for Basic WFS): requests a detailed description of specific feature types. The response is a GML Application Schema documents specifying the GML encoding for the feature type. Allows the client to infer the format of a GML encoded representation of the feature, which it may use (for example) to form the details of a GetFeature request. For example, DescribeFeatureType (Road) request, gives road and its properties and their types or content models.

3) GetFeature (required for Basic WFS): requests the digital representation of specific feature instances. The request specifies: (a) the feature type(s) of interest, (b) conditions to select the set of instances, and (c) the subset of properties that should be included in the response (using filter expressions (queries). The service responds with a Feature or FeatureCollection(s) (complex object(s)) containing the requested features.

The other two operations (Transaction and LockFeautre) are associated with data editing and are not conceived to be part of the KLC Portal application.

The WFS specification is accompanied by the OpenGIS® Filter Encoding Implementation Specification, which defines a grammar for query filters for the GetFeature request. If a WFS request contains a filter, the WFS server only selects those features that pass through it. A filter is like a WHERE clause in SQL, but written in XML and capable of expressing conditions (i.e., spatial, comparison, logical, arithmetic).
A client is not restricted to requesting information. It can also post new or updated information to a WFS server. This operation is called a "transaction" and it enables data manipulation operations on geographic features (over HTTP) that include the ability to create, delete, update, and/or get (query) features based on spatial and non-spatial constraints.

In brief, the WFS and the Filter Encoding specifications together support the following operations:

· Retrieving the capabilities of a WFS

· Retrieving feature description in the form of GML application schemas

· Retrieving feature instances based on criteria that are expressed as OGC Filters (using only the spatial, comparison, logical, or arithmetic operators defined in the Filter Encoding specification)
The following example outlines, in general terms, the typical interaction sequence of a WFS request:

1. The Web client sends a GetCapabilities request to get a Capabilities XML document from a WFS server, which it then processes.

2. The Web client (optionally) makes a DescribeFeatureType request to a WFS server to get Feature schema – the definition of one or more of the feature types to get the names and types of the properties in order to be able to form meaningful query or transaction requests. Also, it is this stage where Level 0 Profile of GML for WFS is connected with.

3. Based on the definition of the feature type(s) in the received GML Application Schema, the client constructs scripts, data structures, etc. for data processing.

4. The Web client generates a GetFeature request as specified in the Capabilities XML document,

5. The request is posted to a Web (http) server.

6. The WFS server is invoked to read and service the request.

7. The WFS server sends back a Feature or a FeatureCollection. (In the event that an error has occurred, the WFS server’s status report will indicate that fact.)

8. The Web client process the received FeatureCollection and graphically displays the results.

4.1.3.1 Schema Translation WFS (WFS-X)

One of the main objectives of the KLC Portal is to enable service clients to have access to data in a well-defined application schema, i.e., the FGDC Framework Application Schema. Clients are not obliged to translate and store all their contents in the Framework Application Schema. Instead, the translation occurs on the fly once the client submits the query to the remote service. The result of the query is returned to the client as an instance of the Standard Application Schema, as shown in Figure 8.

[image: image7.wmf]internet

Transfer

Encoding Standard

DB

Application

Schema A

DB

Application

Schema B

internet

Transfer

Road Standard

(GML 3.0

Application

Schema)

WFS

(GML 2.x)

WFS

-

X

(GML 3.0)

Query

Global

Query

Local

Result

Local

Result

Global

Figure 8: Schema Translation

See the OGC WFS Cookbook
 for implementation guidelines and examples.

4.1.3.2 WFS Use Cases

The use cases in this section describe general scenarios that involve WFS services in support of KLC Portal. These should be viewed as context for the requirements listed in the Enterprise, Information, and Engineering viewpoints presented in other sections of this Annex as well as the use cases presented in Appendix A associated with the specific functionality of the KLC Portal.

4.1.3.2.1 WFS GetCapabilities Use Case (Basic WFS)

	WFS GetCapabilities Use Case

	Name
	A WFS Client Requests Capabilities XML Document

	Priority
	High (required for a basic WFS)

	Description
	This use case allows a WFS Client to learn about the WFS service itself [1], the capabilities of a WFS service [2], a list of all feature types that a WCS can service [3], and the WCS’s filter capabilities [4].

	Precondition
	There is a WFS available that provides its capabilities in the form of an XML document that the WFS Client understands.

	Flow of Events – Basic Path

	1.
	WFS Client submits an GetCapabilities request.

	2.
	WFS validates the request.

	3.
	WFS returns the capabilities. These include a list of feature types that the WFS Client wants to query.

	4.
	WFS Client accepts the WFS capabilities, parses them and uses the information for subsequent queries (i.e., DescribeFeatureType, GetFeature).

	Flow of Events – Alternative Paths

	2
	If the request is invalid, it is rejected and a service exception report is returned.

	Postcondition
	WFS Clients would generally run the GetCapabilities operation and cache its result for use throughout a session or reuse it for multiple sessions.

[1] The following content can be specified for the service metadata: Name, title, abstract, keyword (to aid catalog searching), HTTP URL (home page), fees, and access constraints.

[2] The capabilities section of the Capabilities XML document specifies the list of requests that the WFS can handle. Two classes of WFS services, based on the capabilities they support, are WFS Basic and WFS Transaction. (Note that there is also a third WFS service class, WFS Translation (WFS-X), which is not part of the WFS specification.)

[3] The feature info section of the Capabilities XML document defines the list of feature types (and operations on each feature type) that are available from a WFS service. The following elements can be used to describe each feature type contained in a feature type list: Name, Title, Abstract, Keyword (to aid catalog searching), SRS (i.e., ‘EPSG:<POSC Code>’, URL format), Operation, , MetadataURL (‘TC211= ISO TC211 19115; 'FGDC' = FGDC CSDGM), and LatLongBoundingBox (facilitates geographic searches by indicating where instances of the particular feature type exist. Since multiple LatLongBoundingBoxes can be specified, a WFS can indicate where various clusters of data may exist. This knowledge aids client applications by letting them know where they should query in order to have a high probability of finding data.)

[4] This is an optional section. If it exists, then the WFS should support the operations advertised/defined in the Filter Encoding Implementation Specification. If the Filter Capabilities Section as part of the GetCapabilities request is not defined, then the client should assume that the server only supports the minimum default set of filter operators as defined in the Filter Encoding Implementation Specification.

4.1.3.2.2 WFS DescribeFeatureType Use Case (Basic WFS)

	WFS DescribeFeatureType Use Case

	Name
	A WFS Client Requests a Description of Specific Feature Types

	Priority
	High (required for a basic WFS)

	Description
	This use case allows a WFS Client to infer the format of a GML encoded representation of a road feature. It uses this information (i.e., feature properties, feature types, feature content models) to form a specific GetFeature request.

	Precondition
	WFS Client has previously obtained the capabilities of the WFS. From inspecting the capabilities document, the client was able to determine what the WFS server’s feature types are.

	Flow of Events – Basic Path

	1.
	WFS Client submits a DescribeFeatureType request [1].

	2.
	WFS is invoked to read and service the request.

	3.
	WFS validates the request and executes it by returning the schema for the Feature or FeatureCollection [2].

	4.
	WFS Client uses the definitions of one or more of the feature types defined in the schema to get the names and types of the properties for forming a specific GetFeature request (or a Transaction request) [3].

	Flow of Events – Alternative Paths

	2
	If the request is invalid, it is rejected and a service exception report is returned.

	3
	If the execution of the request fails for some reason, WFS returns a service exception report.

	Postcondition
	N/A

[1] Indicates what schema description languages can be used to describe the schema of a feature type when a client requests such a description; it will define how feature instances are to be encoded on input and hot they will be generated on output. XMLSCHEMA is the only mandatory language that must be available. The SCHEMALANGUAGES entity can be redefined to include vendor specific formats/languages.

[2] The DescribeFeature request contains zero or more TypeName elements that encode the names of feature types that are to be described. If the content is empty, then that shall be interpreted as requesting a description of all feature types that a WFS can service.

[3] In response to a DescribeFeatureType request, where the value of the output format attribute has been set to XMLSCHEMA, a WFS implementation must be able to present an XML Schema document that is a valid GML application schema and defines the schema of the feature types listed in the request. The document(s) presented by the DescribeFeatureType request may be used to validate feature instances generated by the WFS in the form of feature collections on output or feature instances specified as input for transaction operations.

As specified by GML, the feature schema definition is entirely at the discretion of the particular WFS implementation that is describing its feature types. The only caveats are:

1. Feature geometry must be expressed using the GML geometry description. (geometry.xsd).

2. Spatial Reference Systems must be expressed as defined in the GML Implementation Specification, version 2.1.1.

3. The feature schema must be consistent with the OGC feature model. This means that the feature schema defines properties of the feature. The GML interpretation of this statement is that the elements nested below the root element of a feature type define properties of that feature.

4.1.3.2.3 WFS GetFeature Use Case (Basic WFS)

	WFS GetFeature Use Case

	Name
	A WFS Client Request Feature(s)

	Priority
	High (required for a basic WFS)

	Description
	This use case allows a WFS Client to retrieve one or more feature instances of a Road. These instances conform to a GML 3.0 application schema that is understood by the WFS Client [1].

	Precondition
	WFS Client has previously obtained the capabilities of the WFS. From inspecting the Capabilities XML document, the client was able to determine that the WFS can export Road feature types that the client can understand. In addition, a client application can determine the properties of a feature by making a DescribeFeatureType request before composing a GetFeature request [2].

	Flow of Events – Basic Path

	1.
	WFS Client submits a GetFeature request [3].

The request specifies: (a) that the feature is a Road, (b) to select the Road (or a segment of it) by using the BBOX filter or the other ten spatial operators defined in the OGC Filter Encoding specification, i.e., Crosses, Overlaps, etc. (a filter could also be non-geographic, i.e., select all Roads that are “two lanes”), and (c) to use the geometry property of the Road feature (i.e., LineString) that should be included in the response.

	2.
	WFS is invoked to read and service the request.

	3.
	WFS validates the request and executes it by returning the feature instances matching the request parameters. An XML document, containing the result set, is returned to the client [4].

	4.
	WFS Client accepts the response message and processes the received feature instances. It then provides the information to the end-user by graphically displaying the results (or downloading it to a local repository).

	Flow of Events – Alternative Paths

	2
	If the request is invalid, it is rejected and a service exception report is returned.

	3
	In the event that an error has occurred, the WFS’s status report will indicate that fact.

	Postcondition
	N/A

[1] GetFeature enumerates the formats available for expressing the results of a query. The RESULTFORMATS entity defines the mandatory output format of GML but can be redefined to include additional vendor specific formats.

[2] The DescribeFeatureType operation will generate a GML application schema defining the schema of the feature type. The client can then select the properties to be fetched. In addition, the client can determine which feature properties are mandatory and must be fetched in order for the WFS to be able to generate an instance of the feature type that will validate againt the generated GML application schema. In the event that a WFS encounters a query that does not select all mandatory properties of a feature, the WFS will internally augment the property name list to include all necessary property names. A WFS client must thus be prepared to deal with a situation where it receives more property values than it requests.

[3] The optional maxFeatures attribute can be used to limit the number of features that a GetFeature request retrieves. Once the maxFeatures limit is reached, the result set is truncated at that point.

Also, a GetFeature request can issue a GetFeatureWithLock to indicate to a WFS service to attempt to lock the features that are selected; presumably to update the features.

[4] The format of the response to a GetFeature request is controlled by the outputFormat attribute. The default value for the outputFormat attribute shall be GML2. This will indicate that a WFS must generate a GML document of the result set, and more specifically, the output must validate against the GML application schema generated by the DescribeFeatureType operation (see above).

Any GML document generated by a WFS implementation, in response to a query where the outputFormat is GML2, must reference an appropriate GML application schema document so that the output can be validated. This can be accomplished using the schemaLocation attribute. This attribute provides hints as to the physical location (in the form of a URI) of one or more schema documents which may be used for local validation and schema-validity assessment.

For the GetFeatureWithLock request, a WFS must generate a result that includes the lock identifier.

4.1.3.2.4 GetCapabilities Use Case (WFS-X)

	WFS-X GetCapabilities Use Case

	Name
	A WFS-X Client Requests Capabilities XML Document

	Priority
	High

	Description
	Allows a WFS Client to learn about the capabilities of a WFS-X. In particular, it enables a WFS Client to determine whether a WFS-X supports the Standard Application Schema that the client understands.

	Precondition
	There is a WFS-X available that provides data in an application schema that the WFS Client understands (i.e., Standard Application Schema)

	Flow of Events – Basic Path

	1.
	WFS Client submits an HTTP GET GetCapabilities request.

	2.
	WFS-X validates the request.

	3.
	WFS-X returns the capabilities. These include a list of feature types that the WFS Client wants to query.

	4.
	WFS Client accepts the WFS capabilities, parses them and uses the information for subsequent queries.

	Flow of Events – Alternative Paths

	2
	If the request is invalid, it is rejected and a service exception report is returned.

	Postcondition
	WFS Client knows which feature types (from its own schema) it can query.

WFS Clients would generally run the GetCapabilities operation and cache its result for use throughout a session or reuse it for multiple sessions.

4.1.3.2.5 GetFeature Use Case (WFS-X)

	WFS-X GetFeature Use Case

	Name
	A WFS Client Request Feature(s)

	Priority
	High

	Description
	This use case allows a WFS Client to retrieve one or more feature instances. These instances conform to a GML 3.0 application schema that is understood by the WFS Client

	Precondition
	WFS Client has previously obtained the capabilities of the WFS. From inspecting the capabilities document, the client was able to determine that the WFS can export feature types that the client can understand.

	Flow of Events – Basic Path

	1.
	WFS Client submits a GetFeature request. The feature types and their properties specified are from the schema namespace that WFS Client can work with (i.e., the Standard Application Schema).

	2.
	WFS-X validates the request and executes it by translating it to the standard GML application schema.

	3.
	WFS-X returns the feature instances matching the request parameters, in the schema namespace of the standard application schema.

	4.
	WFS Client accepts the response message and provides the information to the end-user in the standard application schema

	Flow of Events – Alternative Paths

	2
	If the request is invalid, it is rejected and a service exception report is returned.

	3
	If the execution of the request fails for some reason, WFS-X returns a service exception report.

	Postcondition
	N/A

Figure 6 shows the sequence diagram for the WFS-X schema translation operation. The figure also shows the sequence of operations for schema translation. The interaction starts by searching for the appropriate data source. Using the WRS client, users are able to query and search the portal’s registry. Once the data source is located the WFS client is invoked to allow users to formulate queries for accessing the remote data. WFS clients can issue GetCapabilities and DescribeFeatureType requests to enable clients to request a schema definition of any feature type. The returned schema is a subset of the Standard Application Schema based on GML 3.0. Based on parsing the returned schema, the client can issue queries to retrieve subset of the data set. These queries are based on the Standard Application Schema. The WFS-X receives the query and translates it into a query based on the local schema of the data store, which might be different from the Standard Application Schema. The result set from the query is then translated from the local schema to the Standard Application Schema and then forwarded to the Client.

[image: image8.wmf]WFS Client

WRS Client

WRS

 WFS-X (standard

schema view)

RoadDB in

local View

describeFeatureType()

GetFeature(Query Expresion in Global View)

describeFeatureType response (in global view)

GetFeature(Query

Expression in local

view)

GML features in local

view

GML features in global view

GetRecord

Record Description

WFS Serivce

getCapabilities

capabilities document

Figure 9: Schema Translation Sequence Diagram

4.1.4 WCS Interface

The WCS Implementation Specification v1.0.0 specification defines three interface operations that explain how WCS serves to describe, request, and deliver multi-dimensional coverage data over the Web that represent values or properties of geographic locations. Version 1.0.0 of the specification emphasizes "simple” coverages (defined on some regular, rectangular grid or tesselation of space); and anticipates other coverage types as defined in the OpenGIS® Abstract Specification (Topic 6, "The Coverage Type," OGC document #99-106).
The three WCS interface operations are:

1) GetCapabilities (required): this operation is used by a client to request WCS server’s capabilities, which are defined in an XML document conveying general information about the service itself, and specific information about the available data collections from which coverages may be requested. Current limitation (version 1.0.0) of this operation is that there is no ability to retrieve desired parts of the full Capabilities XML document.
2) DescribeCoverage (optional): Client may be able to formulate simple GetCoverage requests based only on the information received from the GetCapabilities XML document (elements defined in the CoverageOfferingBrief provide a summary-level description of coverage data available from a given service). However, in order to make more finely tuned GetCoverage requests, WCS clients will need to obtain further details about a particular coverage, using the DescribeCoverage operation. Current limitation (version 1.0.0) of this operation is that coverage range sets are defined only as single homogenous “range component.” Also, only points at an external description are available even to get basic info like coverage range, observable or value space.
3) GetCoverage (required): this operation allows retrieval of coverages from a coverage layer. A WCS server processes this request from a client and returns a result set to the client. Current limitation (version 1.0.0) of this operation is that there is no ability to retrieve elevation subsets of a coverage beyond current regularly spaced (grid) elevation. Also, there is no ability to retrieve spatial subsets of a coverage, beyond current regularly spaced (grid) elevation.
Both the WMS and the WCS servers provide for the generation and delivery of raster-based information. The WMS server returns an “image maps,” that is, an array of pixel values ready for portrayal. In contrast to the WMS server, where only visualization is accomplished, the WCS server preserve data values from grid coverages (i.e., Elevation, Temperature, etc.) and enables more than picture display (i.e., provides numerical input to models, supports multi-valued coverages, allows client-side rendering). This capability enables analysis involving the evaluation/manipulation/combination of multiple coverages to answer specific questions. These values must be further processed if they are to be portrayed. This access to intact, unprocessed GI is needed for client side processing, multi-valued coverages, and input into scientific models and other clients beyond simple viewers. (The WFS service, by contrast to both the WMS and WCS services, returns a collection of vectors (features) that inform the client of values of interest, such as temperature, ownership, average rainfall, and so on.)

WCS was designed to remain compatible with WMS (i.e., retain similar query and metadata syntax), but it does provide for richer query and metadata such as multi-dimensional data and queries (e.g., time series, multi-band imagery). Other key aspects of WCS are one Layer at a time. Any overlays are on the client-side. Also, there are no styles or legends, nor pixel width or height with WCS.
Some of WCS implementation challenges include the following. Thin clients are inadequate and, as a result, writing a special-purpose coverage client is essential. This might include adding a Web connection to Raster GIS and configuring the browser with a “helper app.” Also, there is no consensus on coverage encodings, which currently may include the following:
· Proprietary formats (ECW, ESRI BIL, etc.)

· Specialized formats (HDF-EOS, DTED, etc.)

· Overly simple formats (PNG, GeoTIFF)

· XML Coverage encodings:

· Earth Science Markup Language

· eXtensible Data Format (XDF)

· GML Coverage encoding

4.1.4.1 WCS Use Cases

The use cases in this section describe general scenarios that involve WCS services in support of KLC Portal. These should be viewed as context for the requirements listed in the Enterprise, Information, and Engineering viewpoints presented in other sections of this Annex as well as the use cases presented in Appendix A associated with the specific functionality of the KLC Portal.

4.1.4.1.1 GetCapabilities Use Case

	WCS GetCapabilities Use Case

	Name
	A WCS Client Requests Capabilities XML Document

	Priority
	High

	Description
	This use case allows a WCS client to get an XML document containing WCS service information and data collections information [1].

	Precondition
	There is a WCS available that provides its capabilities in the form of an XML document that the WCS Client understands.

	Flow of Events – Basic Path

	1.
	WCS Client submits a GetCapabilities request.

	2.
	WCS validates the request.

	3.
	WCS returns the capabilities. These include a list of basic coverage properties that the WCS Client wants to retrieve.

	4.
	WCS Client accepts the WCS capabilities, parses them and uses the information for subsequent requests (DescribeCoverage or GetCoverage).

	Flow of Events – Alternative Paths

	2
	If the request is invalid, it is rejected and a service exception XML message is returned to describe to the client application or its user the reason(s) that the request is invalid.

	3
	If the GetCapabilities operation cannot return descriptions of the WCS server’s available data, this metadata information must be available from a separate source, i.e., image catalog service [2].

	Postcondition
	WCS Client knows which coverage types it can query.

WCS Clients would generally run the GetCapabilities operation and cache its result for use throughout a session or reuse it for multiple sessions.

[1] Coverage properties include service metadata (i.e., access constraints, fees, etc.), service capability (i.e., the requests that the WCS supports, the formats in which exceptions are returned, and any other vendor-specific service capabilities); and content metadata (i.e., the bounding box for the spatial extent).

[2] This is done using XLink pointer that lists the URL of a catalog that clients can search for coverage descriptions (and GML’s remoteSchema for stating the schema of the remote resource) in order to make appropriate DescribeCoverage or GetCoverage requests. This is intended for servers with thousands/millions of coverage offerings, for which searching a catalog is more feasible than fetching a long XML document.

4.1.4.1.2 DescribeCoverage Use Case

	WCS DescribeCoverage Use Case

	Name
	A WFS Client Requests a Description of Coverage(s)

	Priority
	Medium (optional operation)

	Description
	This use case allows a WCS Client to get a full description of one or more coverages served by a particular WCS server. It uses the coverage properties (i.e., coverage type [1], spatial [2] /temporal [3] domain, range [4], internal grid structure of a coverage [5], supported formats [6], interpolation methods [7]) to form a fine-grained GetCoverage request [8].

	Precondition
	WCS Client has previously obtained the capabilities of the WCS. From inspecting the capabilities document, the client was able to determine what the WCS server’s coverage type is.

	Flow of Events – Basic Path

	1.
	WCS Client issues the DescribeCoverage request [9].

	2.
	WCS validates the request and executes it by returning the description for a specified coverage.

	3.
	WCS server responds with XML document that fully describes the identified coverage.

	Flow of Events – Alternative Paths

	2
	If the request is invalid, it is rejected and a service exception XML message is returned to describe to the client application or its user the reason(s) that the request is invalid.

	3
	If the execution of the request fails for some reason, the WCS server returns a service exception report [10].

	Postcondition
	N/A

[1] Coverage type is limited to grid type only in the current WCS specification. Image types (a coverage that is not available in georectified form) are not supported as the WCS spec does not specify how to request, encode, or transmit the additional information (i.e., control points or sensor metadata). Nevertheless, an image CRS can be embedded in the coverage response, available from a separate source, or otherwise known to the client.

[2] A detailed spatial domain of a coverage would entail using (repeatable) GML Polygon, representing the polygon(s) covered by the coverage spatial domain. This is particularly useful for areas that are poorly approximated by a GML Envelope (i.e., satellite image swaths, island groups, other non-convex areas).

For each coverage offering, supported coordinate reference systems (CRSs) can be listed by which the server understands (and respond to) incoming GetCoverage requests.

[3] The temporal domain describes the valid time constraints (the times for which valid data are available) for GetCoverage requests (either as sequence of time instants or continuous).

[4] Range can be defined for the coverage properties (categories, measures, or values) assigned to each location in the domain. Any such property may be scalar -- numeric or text – value (i.e., population density, terrain elevation, yesterday’s max temperature) or a compound -- vector or tensor – value (i.e., income by race, climate pattern, multi-spectral radiance: brightness by wavelength).

Compound values consist of a set of identically defined measurements or observations, reported for each of several values of control variable, or aggregated into several bins (e.g., any independent variable besides those in the domain), which a GetCoverage request may use for constraints. A compound range set may have more than one control parameter or a set of bins, for quantities related to values of several parameters (e.g., counts of wildlife tabulated both by size and species).

Compound valued range set is designed for observations that are identically defined (report the same property expressed in the same reference system). If a set of observations has any semantic variation or any differences in the reference system, then the different kinds of observations belong in different coverages.

[5]This can include information such as the coverage’s native resolution so that the client can formulate grid coverage requests expressed in the internal grid coordinate reference system.

[6] Any output format(s) is acceptable, provided that at least one of the following formats is supported: GeoTIFF, HDF-EOS, DTED, NITF, GML. Other formats need to be listed as part of the DescribeCoverage response.

[7] A WCS server may have the capability to interpolate coverage values over the spatial domain when a request requires resampling, reprojection, or other generalization. A coverage offering may list any of six spatial interpolation methods: (1) nearest neighbor (default); (2) bilinear; (3) bicubic; (4) lost area; (5) barycentirc; and (6) none.

[8] Note that the spatial extent can be specified using the bounding box information from within the Capabilities XML document returned after the GetCapabilities request. However, the intent is to describe the locations in more detail, e.g., in several different CRSs, or several rectangular areas instead of one overall bounding box.

[9] A request that lists no coverages shall be interpreted as requesting descriptions of all coverages that a WCS can serve.

[10] Since server support for DescribeCoverage is optional, therefore, if a server does not support it, it must return an exception rather than the requested list.

4.1.4.1.3 GetCoverage Use Case

	WCS GetCoverage Use Case

	Name
	A WFS Client Requests Coverage(s)

	Priority
	High

	Description
	This use case allows a WCS client to request a coverage (that is, values or properties of a set of geographic locations) bundled in a well-known coverage format.

	Precondition
	Normally run after GetCapabilities and DescribeCoverage replies have shown what request is allowed and what data are available.

	Flow of Events – Basic Path

	1.
	WCS Client submits a GetCoverage request, specifying the following parameters: CRS [1], BBox [2], Time [3], grid size and resolution [4], format, source [5], domain subset [6], range subset [7], interpolation method [8], output CRS and format [9].

	2.
	WCS validates the request and executes it.

	3.
	WCS returns the coverage extracted from the coverage request, with the specified spatial reference system, bounding box, size, and format.

	4.
	WCS Client accepts the response and provides the information to the end-user application.

	Flow of Events – Alternative Paths

	2
	If the request is invalid, it is rejected and a service exception XML message is returned to describe to the client application or its user the reason(s) that the request is invalid.

	3
	If the execution of the request fails for some reason, the WCS server returns a service exception report.

	Postcondition
	N/A

[1] Future versions of WCS spec may address ways to request multiple coverages, combining them according to mathematical or logical operators (Boolean or other ruled-based overlay).

The CRS parameter is required. Note that if the Capabilities XML document lists only “Image” type, then client must request that coverage offering in its internal (local/pixel) coordinate reference system, by specifying ‘CRS=Image’ in the GetCoverage request.

Some WCS servers may support on-the-fly georectification of coverages that are georeferenced but not already georectified. Such servers accept requests expressed in a coverage’s internal pixel/local coordinate system, but are able to express coverage replies in a ground coordinate system (this requires adding a ‘RESPONSE_CRS’ value).

[2] A GetCoverage request may include a 1-D, 2-D, or 3-D spatial constraints.

[3] If the DescribeCoverage XML reply defines a temporal domain on the selected coverage, GetCoverage requests may use a separate TIME parameter to constrain the request in time, thus supplementing a spatial BBOX.

[4] If the Capabilities XML document reports only the Interpolation method “None” for the queried coverage, then GetCoverage request must be for the full native resolution of the data; they may not use RESX, RESY, RESZ, or WIDTH, HEIGHT, DEPTH to change the coverage resolution. In this case, BBOX alone is used for subsetting.

[5] The source (any URI) for the coverage specifies a single coverage available from the WCS server. It’s value must match that of the value obtained from the WCS server’s Capabilities XML document, or from a third-party catalog.

[6] Similar to the domain specified in the DescribeCoverage return description.

Note: In response to a GetCoverage request, a WCS server will return a grid of the requested size covering the requested area. This usually requires interpolating/resampling the coverage values stored on the server. To avoid this, clients should request the coverage in a native CRS stated by the server and select a GML Envelope whose extent exactly matches that of the requested GML Grid (or GML Rectified Grid). For such a request, if the chosen CRS is “Image,” the Envelope and Grid must both describe grids of the same size. For other CRSs, the Envelope and Grid must be related by vector offset values in the coverage description (if supplied in the coverage description).

[7] In the case of a compound range set, client may request subsets by constraining the value of a range axis/parameter.

[8] Any of the six spatial interpolation methods: (1) nearest neighbor (default); (2) bilinear; (3) bicubic; (4) lost area; (5) barycentirc; or (6) none.

[9] Values for these elements must be among the listed in the DescribeCoverage XML reply.

5 Engineering Viewpoint

The Enterprise, Information, and Computation viewpoints describe a system in terms of its purposes, its content, and its functions. The Engineering viewpoint relates these to specific components linked by a communications network. This viewpoint is concerned primarily with the interaction between distinct computational objects: its chief concerns are communication, computing systems, software processes and the clustering of computational functions at physical nodes of a communications network.
Figure 10 shows the engineering view of the KLC Portal. The Portal server is located at the Governor’s Office of Technology. The portal server consists of the Portal Application Environment, the Viewer Client Generator, the WFS Client Generator and the WRS Client Generator (Note: WRS became WC-S). The WFS, WMS, and WCS servers are located TBD in the commonwealth. The Portal will open with access to two remote WMS and WFS data sources: Cities and Counties TBD. The modular nature of the system and the online registry allows additional cities and counties to join the system without requiring any physical changes in the system.

The server of the portal also hosts the Portal’s registry. This is a registry service, which is maintained and operated locally by the Portal service provider. It is accessible by the Publisher Client Generator. It maintains a list of Primary information sources and their service metadata. It may temporarily cache metadata regarding user-discovered Secondary and Tertiary information sources. It may store predefined SLD documents for WMS related services.

[image: image9.png]
Figure 10: KLC Portal Engineering Viewpoint

5.1 KLC Portal UML Component Diagrams

In this section we present the component diagrams of the Portal.

Figure 11 shows the User Interface component diagram. The KLC Portal Application Environment provides the integrated user interface to access the main Portal services. The Discovery Client provides interfaces to search for web resources that are registered in the Portal’s registry. The Viewer Client allows users to create and display maps.

The WFS Client allows users to formulate queries that can be submitted to the accessible WFSs. These queries are based on the OGC Filter Encoding Service.The thin clients enable users to access the following services:

Search and discovery services: users can search for services in the local registry. The Portal has a discovery user interface, which allows them to search for desired services based on the stored metadata as well as capabilities elements.

Map viewing service: the Portal is envisioned to have a powerful and flexible map viewing user interface with the following elements:

· A map showing all of the displayed data types.

· Controls for navigating, zooming and panning the map.

· Menu of active data types, allowing user to toggle displayed state on/off.

· Metadata elements for each active type.

· Link to display full metadata record for each active data type.

· Link to help page(s) appropriate to current application state.

[image: image10.png]
Figure 11: User Interface Package

Figure 12 shows the Discovery Client, which allows users to search and display the metadata through the getRecord and the getResourceByID respectively.

[image: image11.wmf]Discovery

Portal WRS

getRecord

Portal Registry DB.

Metadata in ISO 19139

getResourceByID

Discovery Client

Figure 12: Discovery Package

Once the resources of interest are discovered the user can either invoke the WFS Query Client or the WMS Viewer Client. It is expected that the registry records include the URL to the capabilities document of the discovered WFS or the WMS resources. Figure 13 shows the WFS-X Query Package. The interfaces of the WFS-X are compliant with the WFS specifications. The translation from the local schema to the standard application schema occurs in the background and is transparent to the client application.

[image: image12.wmf]WFS

-

X Query

WFS Client

WFS

-

X

DescribeFeatureType

getCapabilities

GetFeature

Figure 13: WFS Query Package

As shown in Figure 14, when the Viewer Client is launched, the client parses the capabilities document to display information about the layers stored in each WMS resource.

[image: image13.wmf]Viewing

Viewer Client

WMS

getMap

getCapabilities

GetFeatureInfo

WFS

DescribeFeatureType

getCapabilities

GetFeature

Figure 14: Viewing Package

6 Technology Viewpoint

The technology viewpoint is concerned with the underlying infrastructure in a distributed system. It describes the hardware and software components used in a distributed system. The infrastructure, which may be provided by a Distributed Computing Platform (DCP), allows objects to interoperate across computer networks, hardware platforms, operating systems and programming languages.

This section provides an overview of multiple DCPs implementation approaches, followed by a list of the current encodings used, including XML, imagery and well-known binary and text encodings. The Technology viewpoint also summarizes the technologies chosen for the Web Services platform implementations.

Figure 15 shows the technology viewpoint of the KLC Portal Architecture. The Portal’s thin client can run on any standard web browser. The Portal is based on standard HTTP protocol operations, GET and POST, and does not require any additional software to be installed on the end-user machine. In The KLC Portal, Application Services are realized as, or requested from, web pages transferred across a network from the Portal application server and supported by Portal-side capabilities to generate various clients and process requests. Thus, each item in the list below is called a "Client Generator" of some type.

Client Generators process requests from Thin Clients, maintain or transfer state between requests, and return responses to the requesting Thin Client. More specifically, when accessed as a World Wide Web application a Client Generator runs on an HTTP server and generates HTML pages to be displayed in the User's web browser (the thin client). In KLC, Client Generators are termed "Portal-side" components because they run on the computer hosting the Portal, not on the end-user's machine or on the data service provider's machine.

[image: image14.png]
Figure 15: KLC Portal Technology Viewpoint

6.1 Schema Translation

Each WFS-X is able to translate the requested data from the local schema to the Framework Application Schema. Two approaches were developed during a previous OGC initiative (GOS-TP) and KLC will choose one for its use. The first approach uses the XQuery Language, and the second approach uses the XSLT approach.

6.1.1 Schema Translation XQuery Approach

Figure 14 shows the first step in the translation process. The WFS-X client issues queries against the Standard Application Schema view (SAS view) in order to retrieve subsets of the data set. These client queries use the OGC Filter language to describe the subset of the data that the queries are intended to retrieve.

[image: image15.emf]

Standard Application Schema View

LinearReferencingElement

RoadPath RoadSeg RoadPoint

PointAttributeEvent

OGC Filter

query

Figure 16: The Client Query against the SAS View.

An incoming client query undergoes two transformations. First it is translated from an OGC Filter based query against the SAS view, into an equivalent XQuery query against that same view. Then second, the resulting XQuery query is converted into a (still equivalent) XQuery query against the component objects of the SAS view. Figure 15 shows the result of this second step.

[image: image16.emf]

LinearReferencingElement View

RoadPath View

RoadSeg View

RoadPoint View

PointAttributeEvent View

XQuery query

with joins

Figure 17: The Query against the Component Object Views.

The query conversion process treats the connections between the component objects in the SAS view as joins. These joins are inserted into the converted query as XQuery where-clauses, with some accompanying variable renaming. The process of inserting joins is controlled by a set of conversion rules that has to be derived by analysis of the SAS.

Unlike the SAS view, which is only virtual, there are actual queries which produce the component object views. Figure 16 shows the query that produces the component object view for the RoadPath components, for a Jackson County, OR data set.

for $path in document("localhostSQL2000$GEO_JCSTREETS_ROADPATHS")/

GEO_JCSTREETS_ROADPATHS/ROW

let $pathid := $path/ID/text()

let $sourceref := concat(wfs:system-property("onlineResource"), "#gostp:RoadPath/gos:source")

let $mins := concat($path/MINY/text(), ",", $path/MINX/text())

let $maxs := concat($path/MAXY/text(), ",", $path/MAXX/text())

let $envelope := concat($mins, " ", $maxs)

return

<gostp:RoadPath gml:id="{ $pathid }">
 <gml:name>{ $path/NAME/text() }</gml:name>
 <gml:boundedBy>
 <gml:Envelope gml:srsName="EPSG:63266405">
 <gml:coordinates>{ $envelope }</gml:coordinates>
 </gml:Envelope>
 </gml:boundedBy>
 <gos:source xlink:href="{ $sourceref }"/>
 <gostp:lastUpdateDate>2000-10-01T00:00:00-00:00</gostp:lastUpdateDate>
 <gostp:geometry>
 <gml:MultiCurve>
 <gml:curveMember>
 <gml:LineString gml:srsName="EPSG:63266405">
 <gml:coordinates>{

 wfs:get-coords($path/SHAPE/text(), "localhostSDE$geo_jcstreets_roadPaths", "true")

 }</gml:coordinates>
 </gml:LineString>
 </gml:curveMember>
 </gml:MultiCurve>
 </gostp:geometry>
 <gostp:routeNumber>{ $path/ROADNUM/text() }</gostp:routeNumber> {

for $childseg in tokenize($path/COMPOSEDOF/text(), "[,]")

let $childref := concat(wfs:system-property("onlineResource"), concat("gostp:RoadSeg[@gml:id='", $childseg, "']"))return

<gostp:composedOfWholeorPartial xlink:href="{ $childref }">
 <gostp:RoadSeg gml:id="{ $childseg }"/>
 </gostp:composedOfWholeorPartial>
} </gostp:RoadPath>
Figure 18: The RoadPath Component Object View.

Essentially, the component object views are the place where the WFS-X translation takes place. The GML for the result of the query is produced by composing the elements and attributes from the global schema, together with the data that is being referenced by the XQuery variables in the view ($path/ROADNUM/text(), for example).

As inspection of Figure 15 shows, the component object views are written as if they referenced an even lower level view of the data. For example, the RoadPath component object view is written as if it were referencing the schema shown in Figure 16.

 <xs:element name="GEO_JCSTREETS_ROADPATHS">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ROW" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="OBJECTID" type="xs:byte"/>
 <xs:element name="ID" type="xs:byte"/>
 <xs:element name="NAME" type="xs:string"/>
 <xs:element name="ROADNUM" type="xs:short"/>
 <xs:element name="COMPOSEDOF" type="xs:string"/>
 <xs:element name="MINX" type="xs:decimal"/>
 <xs:element name="MINY" type="xs:decimal"/>
 <xs:element name="MAXX" type="xs:decimal"/>
 <xs:element name="MAXY" type="xs:decimal"/>
 <xs:element name="SHAPE" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>
Figure 19: Schema for the Segment Data.

This lower level view (called the "canonical view" in the XML database literature) is another virtual view. The view itself is not actual; the behavior that it represents is implemented by algebraic operators inside the query processing engine, which determine the schema of the tables when they connect to the database containing the local data set.

One issue is that currently the component object views must be written by hand. In the future a tool that uses the schema for the component (which is a subschema of the SAS), together with the schema for the local data, will assist this view generation procedure.

The component object views are not meant to be executed directly, so there is one final step in processing the incoming Query. The compositionality of XQuery allows the incoming user query (which by this point has been converted into an XQuery query against the component object views), and the queries that define the component object views, to be combined together into a single query. It is this final combined query that it executed by the query processing engine.

6.1.2 Schema Translation: XSLT Approach

The Translating Web Feature Service (WFS-X) is designed to accept requests for features in a national schema (FGDC Framework for KLC), connect to data defined by a local schema and return features in the national schema. The data store might be a remote or local WFS. In WFS-X, the translation functionality can be implemented through the use of extensible Stylesheet Language: Transformations (XSLT) along with custom translation code in our WFS. XSLT is primarily designed for transforming one XML document into another and is ideally suited for this application. Currently, the WFS-X supports GetCapabilities, DescribeFeatureType and GetFeature requests. In the future support for Transaction could be added for Transactional WFSs. Our WFS-X primarily support POST to POST conversions, with limited support for POST to GET conversions.

The basic approach is shown in the diagram below. See the text below for a description of the process.

[image: image17.wmf]WFS Client

Local

FeatureCollection

Local

GetFeature

WFS

-

X

Request

Converter

Response

Converter

XSLT

Stylesheets

National

GetFeature

National

FeatureCollection

WFS

1.

2.

3.

4.

5.

6.

7.

Local

Schema

Figure 20: Schema Translation using the XSLT Approach

1. A GetFeature request is received for features in the national schema.

2. The WFS-X uses XSLT style sheets to convert the request from national to local schema. On the surface, this consists of converting national features/properties to local features/properties. Underneath, it is more complicated. The mappings can quite complicated, with features and properties in one schema that aren't represented in another. The mappings aren't necessarily one-to-one either, which often necessitates creating multiple queries from a single query or mapping a multiple properties to a single property. It is also sometimes necessary to evaluate some of the filter constraints before forwarding the request.

3. The transformed request is sent to the local WFS (could be located locally or remotely).

4. The WFS receives the request and returns a feature collection in the local schema.

5. The WFS-X receives the feature collection in the local schema.

6. The features returned from the WFS are converted from the local to the national schema using an XSLT style sheet. This transformation can involve complex transformations, including mapping multiple feature types into a single feature type, transforming relatively flat data into more hierarchical data and constructing missing properties.

7. The feature collection in the national schema is returned to the client.

6.1.3 Lessons Learned

The Transportation Standard Application Schema (SAS) was developed and maintained as a UML model. The XML Schema version of the SAS was generated by the UGAS tool, and then distributed to the WFS-X developers to be installed on the local nodes. Improvements to the SAS were incorporated into the UML model and new XML Schema was generated from there. This was found to be a great improvement over the method of making changes to the XML Schema itself "by hand". First because the generated schema was error free every time. And second because the overall architectural "form" of the generated schema remained constant over the improvements. The end result was both time savings and elimination of the code changes, which would have been required to accommodate the (now eliminated) changes in the schema architecture.

In general, we discovered that schema translation is very possible. It is more difficult when the Local data is not in a GIS or other geospatial system. In this case, the organization involved should consider integration of linear referenced data (not in a GIS) with a geographic representation of roads in a GIS or other geospatial system so that the resultant integrated data can be served via a WFS.

Issues that resulted from the schema translation experiment in the GOS-TP are:
· Developing standard applications schemas in UML does not guarantee interoperability. This is due to the fact the Schemas in UML can be mapped to XML in many different ways.

· It is essential to implement the generated UML models so that errors can be trapped and corrected.

· A formal test suite must be developing to ensure that different implementations of the schemas are compliant with specifications.

· Applications must be developed to allow clients to publish, find, and bind to standard schemas. This means that metadata for application schemas need to be developed.

· We expect that Servers will implement several types of domain standard schemas (e.g., road, rail) that may in turn have different versions. A handshake mechanism between clients and servers need to be implemented.

· Schema translation is memory intensive.

· In case of cascading WFS request to other WFSs, there is the problem of having those remote WFSs support different subset of the interfaces.

· Preparing data sets to be topologically useful is time consuming

· The issue of subseting the global schema, i.e., WFSs may support some parts of the global schema, for example by not supporting some of the optional properties is still unresolved. There is no mechanism to enable servers to implement subsets of the standard schemas and allow clients to discover the implementation.

· We can't get objects that are not features from WFS. That's because features have IDs while objects don't. The Web Object Service has the GetElement, which exactly does that. This interface is not supported by WFS. Therefore GOS-TP had to resolve into making all objects in the model as features. Current WFS support GML 2 while the application schema support.

· While the participants made the wise decision to use the decimal degree versions of EPSG:4326 and EPSG:4269 (EPSG:63266405 and EPSG:62696405 respectively), there were problems with the coordinate order. Both CRSs define the coordinate order to be lat/long. However, in the GIS industry it is often common practice to use the long/lat coordinate order. In order to accommodate the client, some vendors ended up storing data as long/lat.

· It appears that defining Linear Referencing System (LRS) as part of the CRS liar of WPSG datum would greatly simplify applications schemas that use LRS. However this issue is beyond the scope of GOS-TP.

· We have identified several modeling patterns that are essential for direct and automatic generation of GML applications schemas from UML. These patterns need to documented and tested.

There were cases where some of the mandatory properties in the GOS-TP national schema do not have equivalents in the local schemas. In this case the query should not return anything for those properties. However, this leads to XML schema instances that do not comply with the GOS-TP national schema. A possible approach is to make all properties in the GOS-TP national schema optional.

Appendix A: Functionality for KLC Portal

See attached Appendix A.

Appendix B: KLC Portal Architecture References

Refer to the OGC website (http://www.opengis.org/specs/?page=baseline) for the authoritative listing of adopted documents.

Note: Please contact the OGC Tech Desk if you need assistance in gaining access to these documents (techdesk@opengis.org).

OGC Specifications and Supporting Documents Relevant to KLC Portal:

1) OpenGIS® Geography Markup Language (GML) Implementation Specification (version 3.0), available at: http://www.opengis.org/specs/?page=specs
2) OpenGIS® Filter Encoding Implementation Specification, version 1.0, available at: http://www.opengis.org/specs/?page=specs

3) OpenGIS® Style Layered Description (SLD) Implementation Specification, version 1.0, available at: http://www.opengis.org/specs/?page=specs

4) OpenGIS® Web Map Service (WMS) Implementation Specification, version 1.3, available at: http://www.opengis.org/specs/?page=specs

5) OpenGIS® Web Coverage Service Implementation Specification, version 1.0, available at: http://www.opengis.org/specs/?page=specs

6) OpenGIS® Map Context Documents Implementation Specification, version 1.0, available at: http://www.opengis.org/specs/?page=specs

7) OpenGIS® Project Document 02-076r3: Gazetteer Service Profile of the Web Feature Service Implementation Specification, Version 0.9, Rob Atkinson and Jens Fitzke (eds.) , September 2002, <http://www.opengis.org/techno/discussions/02-076r3.pdf>

8) OpenGIS® Web Feature Server (WFS) Implementation Specification, version 1.0, available at: http://www.opengis.org/specs/?page=specs
9) Gazetteer Service Profile of a WFS, available at: https://portal.opengeospatial.org/files/?artifact_id=7175
10) OpenGIS® Catalog Service Implementation Specification, version 2.0, available at: http://www.opengis.org/specs/?page=specs

11) OpenGIS® Project Document 03-024: OWS1 Registry Service, Richard Martell (ed.), January 2003, <not available electronically, please contact creed@opengeospatial.org >
Other OGC Specifications and Supporting Documents

12) OpenGIS® Abstract Specification Topic 11: OpenGIS® Metadata (ISO/TC 211 DIS 19115) May 2001, <http://www.opengis.org/techno/abstract/01-111.pdf>

13) OpenGIS® Abstract Specification Topic 12: OpenGIS® Service Architecture (Version 4.3), Percival, G. (ed.), January 2002, < http://www.opengis.org/techno/abstract/02-112.pdf>

14) OGC Cookbooks website: http://www.opengeospatial.org/resources/?page=cookbooks

ISO Specifications

15) ISO 19101:2002 (Reference Model): http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO+19101:2002

16) ISO 19107 (Spatial Schema) : http://www.isotc211.org/protdoc/DIS/ISO_DIS_19107_(E).pdf
17) ISO 19108 (Temporal Schema) : http://www.isotc211.org/protdoc/DIS/DIS19108.pdf
18) ISO 19109 (Rules for Application Schema) : http://www.isotc211.org/protdoc/DIS/ISO_DIS_19109_(E).pdf
19) ISO 19110 (Methodology for Feature Cataloguing) : http://www.isotc211.org/protdoc/DIS/ISO_DIS_19110_(E).pdf
20) ISO 19111 (Spatial Referencing by Coordinates) : http://www.isotc211.org/protdoc/DIS/DIS19111.pdf

21) ISO 19112 (Spatial Referencing by Geographic Identifiers) : http://www.isotc211.org/protdoc/DIS/ISO_DIS_19112_(E).pdf
22) ISO 19115 (Metadata) : http://www.isotc211.org/protdoc/DIS/ISO_DIS_19115_(E).pdf
23) ISO 19117 (Portrayal) : http://www.isotc211.org/protdoc/DIS/ISO_DIS_19117_(E).pdf
24) ISO 19119 (Services) : http://www.isotc211.org/protdoc/DIS/ISO_DIS_19119_(E).pdf
25) ISO 19123 (Schema for Coverage Geometry and Functions): http://www.isotc211.org/protdoc/211n1227/readme.htm
26) ISO 19125-1 (Simple Features Access - Part 1: Common Architecture): http://www.isotc211.org/protdoc/DIS/DIS19125-1.pdf
27) ISO 19125-2 (Simple Features Access - Part 2: SQL option): http://www.isotc211.org/protdoc/DIS/DIS19125-2.pdf
Other Related Specifications:

28) EPSG, European Petroleum Survey Group Geodesy Parameters, Lott, R., Ravanas, B., Cain, J., Girbig, J.-P., and Nicolai, R., eds., http://www.epsg.org/
29) FGDC-STD-001-1988, Content Standard for Digital Geospatial Metadata (version 2), US Federal Geographic Data Committee, http://www.fgdc.org/metadata/contstan.html
30) ANSI/NISO Z39.50 Application Service Definition and Protocol Specification [ISO 23950 http://lcweb.loc.gov/z3950/agency/document.html]
31) IETF RFC 2109: HTTP State Management Mechanism http://www.w3.org/Protocols/rfc2109/rfc2109
32) IETF RFC 1729: Using the Z39.50 Information Retrieval Protocol in the Internet Environment [ftp://ftp.ietf.org/rfc/rfc1729.txt]
33) Uniform Resource Identifiers (URI): Generic Syntax (RFC 2396) T. Berners-Lee, R. Fielding, L. Masinter, available at: http://www.ietf.org/rfc/rfc2396.txt
34) Extensible Markup Language (XML) 1.0, Second Edition, Tim Bray et al., eds., W3C, 6 October 2000. See http://www.w3.org/TR/2000/REC-xml-20001006
35) XML Schema Part 1: Structures. World Wide Web Consortium (W3C). W3C Recommendation (2 May 2001). Available [online]: http://www.w3.org/TR/xmlschema-1/
36) XML Linking Language (XLink) Version 1.0, DeRose, S., Maler, E., Orchard, D., available at http://www.w3.org/TR/xlink/
37) Web Services Description Language (WSDL) Version 1.2. W3C Working Draft (9 July 2002). World Wide Web Consortium (W3C). Available [online]: http://www.w3.org/TR/wsdl12/
38) Simple Object Access Protocol (SOAP) 1.1, Box, D., et. al., available at http://www.w3.org/TR/SOAP/
39) UDDI – Universal Description, Discovery, and Integration, see http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=uddi-spec
40) Registry Information Model v2.1, OASIS/ebXML Registry Technical Committee (Approved Committee Specification, June 2002). See http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=regrep
41) Registry Services Specification v2.1. OASIS/ebXML Registry Technical Committee (Approved Committee Specification, June 2002). See http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=regrep
Related Supporting Documents:

42) Reference Model of Open Distributed Processing [ISO/IEC 10746]

� ISO 19115 (Geosptial Metadata Standard) defines metadata elements, provides a schema and establishes a common set of metadata terminology, definitions, and extension procedures.

� As with the OpenGIS® Simple Feature Specification, GML utilizes the OpenGIS® Abstract Specification geometry model. However, unlike the Simple Features Specification, the GML Specification includes the ability to handle complex properties.

� The Catalog Services Revision Work Group of the OGC Technical Committee has developed a new revision of the Catalog Services Implementation Specification 2.0 that incorporates, as a profile, a “stateless” Web interface called CS-W that is derived from earlier work on WRS including implementations developed and demonstrated in previous Interoperability Program initiatives. So in addition to the Catalog Service 1.1.1 Implementation Specification, the WRS Interoperability Program Report (Project Document 03-024) comprise the technical baseline for Catalog/Registry services for the KLC Portal.

� Note that a catalog need not provide all of these capabilities. It may provide only automated discovery of metadata about data.

� OGC WMS Cookbook, � HYPERLINK "http://www.opengis.org/resources/?page=cookbooks" \t "_blank" �http://www.opengis.org/resources/?page=cookbooks�

� OGC WFS Cookbook, � HYPERLINK "http://www.opengis.org/resources/?page=cookbooks" \t "_blank" �http://www.opengis.org/resources/?page=cookbooks�

Page 1

_1128282052.doc
[image: image1.png]

Reference Model

Enterprise viewpoint: articulates a “business model” that should be understandable by all stakeholders; focuses on purpose, scope, operational objectives, policies, enterprise objects, etc

Information viewpoint: focuses on information content and system behavior (i.e. data models, semantics, schemas).

Computational viewpoint: captures components, interfaces, interactions and constraints without regard to distribution.

Engineering viewpoint: describes infrastructure and mechanisms for component distribution, distribution transparency and constraints, and binding and interaction.

Technology viewpoint: defines implementation and deployment environment using technologies, standards and products of the day.

_1159189142.psd

_1159191456.psd

_1159191914.psd

_1159192123.psd

_1159189202.psd

_1142253369.psd

_1142352346.psd

_1114360932.ppt

Transfer

Encoding Standard

DB

Application

Schema A

DB

Application Schema B

Transfer

Road Standard

(GML 3.0 Application Schema)

WFS

(GML 2.x)

WFS-X

(GML 3.0)

QueryGlobal

QueryLocal

ResultLocal

ResultGlobal

internet

internet

_1114411342.ppt

Viewing

Viewer Client

WFS

DescribeFeatureType

getCapabilities

GetFeature

 WMS

getMap

getCapabilities

GetFeatureInfo

_1115367506.doc

Standard Application Schema View

LinearReferencingElement

RoadPath

RoadSeg

RoadPoint

PointAttributeEvent

OGC Filter query

_1115368331.doc

[image: image1]

LinearReferencingElement View

RoadPath View

RoadSeg View

RoadPoint View

PointAttributeEvent View

XQuery query with joins

_1114412312.ppt

WFS-X Query

WFS Client

WFS-X

DescribeFeatureType

getCapabilities

GetFeature

_1114411153.ppt

Discovery

Portal WRS

getRecord

Portal Registry DB. Metadata in ISO 19139

getResourceByID

Discovery Client

_1114347246.ppt

WFS Client

WRS Client

WRS

 WFS-X (standard

schema view)

RoadDB in

local View

describeFeatureType()

GetFeature(Query Expresion in Global View)

describeFeatureType response (in global view)

GetFeature(Query

Expression in local

view)

GML features in local

view

GML features in global view

GetRecord

Record Description

WFS Serivce

getCapabilities

capabilities document

_1114360338.ppt

XSLT

Stylesheets

WFS Client

Local

FeatureCollection

Local

GetFeature

WFS-X

Request Converter

Response Converter

National

GetFeature

National

FeatureCollection

WFS

1.

2.

3.

4.

5.

6.

7.

Local

Schema

