

Open Geospatial Consortium Inc.
Date: 2005-05-20

Reference number of this OGC™ project document: OGC 04-021r3

Version: 2.0.0 with Corregendum

Category: OGC™ Implementation Specification

Editors: Douglas Nebert, Arliss Whiteside

OGC™ Catalogue Services Specification

Copyright notice

Copyright © 2005. Open Geospatial Consortium, Inc. All Rights Reserved.
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/

Warning

The technical corrigendum included in Annex E of this document describes the changes
in this revision.

Recipients of this document are invited to submit, with their comments, notification of any
relevant patent rights of which they are aware and to provide supporting documentation.

Document type: OGC™ Publicly Available Standard
Document subtype: Implementation Specification
Document stage: Adopted Revision
Document language: English

http://www.opengeospatial.org/legal/

OGC 04-021r3

ii © OGC 2005 – All rights reserved

NOTICE

Permission to use, copy, and distribute this document in any medium for any purpose and without fee or royalty is hereby
granted, provided that you include the above list of copyright holders and the entire text of this NOTICE.

We request that authorship attribution be provided in any software, documents, or other items or products that you create
pursuant to the implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of OGC documents is granted pursuant to this license. However, if additional
requirements (as documented in the Copyright FAQ at http://www.opengis.org/legal/ipr_faq.htm) are satisfied, the right to
create modifications or derivatives is sometimes granted by the OGC to individuals complying with those requirements.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE
CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF
SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE PERFORMANCE OR IMPLEMENTATION
OF THE CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to this document or
its contents without specific, written prior permission. Title to copyright in this document will at all times remain with
copyright holders.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c)(1)(ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013

OGC™ is a trademark or registered trademark of Open Geospatial Consortium, Inc. in the United States and in other
countries.

OGC 04-021r3

© OGC 2005 – All rights reserved iii

Contents Page

i. Preface ...xiv
ii. Submitting organizations...xiv
iii. Document contributor contact points.. xv
iv. Revision history ..xvi
v. Changes to the OGC™ Abstract Specification..xvi
vi. Future work ..xvi
Foreword ...xvii
Introduction ...xviii
1 Scope... 1
2 Conformance.. 1
3 Normative references .. 1
4 Terms and definitions ... 3
5 Conventions.. 6

5.1 Symbols (and abbreviated terms).. 6
5.2 UML notation.. 7
5.3 Document terms and definitions.. 8

6 Catalogue abstract information model.. 8
6.1 Introduction... 8
6.2 Query language support ... 9

6.2.1 Introduction .. 9
6.2.2 OGC_Common catalogue query language... 9
6.2.3 Extending the Common Catalogue Query Language ... 15
6.2.4 Query language realization.. 16
6.2.5 OGC filter syntax ... 17

6.2.5.1 Introduction.. 17
6.2.5.2 Provider functional extensibility .. 17
6.2.5.3 Precedence .. 18
6.2.5.4 Tight and loose queries.. 18

6.3 Core catalogue schema ... 19
6.3.1 Introduction .. 19
6.3.2 Core queryable properties... 19
6.3.3 Core returnable properties.. 21
6.3.4 Information structure and semantics ... 23

7 General catalogue interface model... 24
7.1 Introduction... 24
7.2 Interface definitions.. 25

7.2.1 Overview ... 25
7.2.2 Catalogue Service class .. 28
7.2.3 OGC_Service class ... 28

7.2.3.1 Introduction.. 28

OGC 04-021r3

iv © OGC 2005 – All rights reserved

7.2.3.2 getCapabilities operation .. 28
7.2.4 Discovery class .. 30

7.2.4.1 Introduction.. 30
7.2.4.2 “query” operation .. 31
7.2.4.3 “present” operation ... 36
7.2.4.4 describeRecordType operation... 39
7.2.4.5 getDomain operation ... 41

7.2.5 Session class .. 43
7.2.5.1 Introduction.. 43
7.2.5.2 “initialize” operation ...43
7.2.5.3 “close” operation.. 44
7.2.5.4 “status” operation..46
7.2.5.5 “cancel” operation ...48

7.2.6 Manager class ... 50
7.2.6.1 Introduction.. 50
7.2.6.2 ”transaction” operation...50
7.2.6.3 harvestResource operation.. 52

7.2.7 Brokered Access class .. 55
7.2.7.1 Introduction.. 55
7.2.7.2 “order” operation .. 55

7.3 Protocol, interface and operation specializations... 57
7.4 Dynamic model.. 57

7.4.1 Introduction .. 57
7.4.2 UML state diagram notation ... 58
7.4.3 Catalogue server state machine... 58
7.4.4 Discovery state .. 59
7.4.5 Access state diagram .. 61
7.4.6 Management state... 63
7.4.7 Explain state diagram .. 64

8 Z39.50 protocol binding .. 65
8.1 Architecture... 65

8.1.1 Introduction .. 65
8.1.2 Supported services.. 65
8.1.3 Core queryable elements.. 65

8.2 General model to Z39.50 protocol binding operations mapping 66
8.3 Z39.50 BER implementation notes..67

8.3.1 Message encoding ... 68
8.3.2 Additional search info .. 69
8.3.3 Order extended service .. 69

8.4 Search/Retrieve Web Service (SRW/SRU) implementation notes 80
9 CORBA/IIOP protocol binding.. 81

9.1 Architecture... 81
9.1.1 Supported services.. 81
9.1.2 Core queryable elements.. 82

9.2 Content types (Catalogue entry types) .. 82
9.3 Supported query languages.. 82
9.4 Result set encodings .. 82

9.4.1 XML... 82
9.4.2 Name-Value pairs ... 82

9.5 General model to CORBA protocol binding operations mapping 83
9.6 Interface definition - IDL ... 84

9.6.1 Introduction .. 84

OGC 04-021r3

© OGC 2005 – All rights reserved v

9.6.2 Enumerations.. 85
9.6.3 Structures and unions .. 85
9.6.4 Definitions for brokered access ... 88
9.6.5 Capabilities ...89
9.6.6 General messages.. 90
9.6.7 Discovery messages... 92
9.6.8 Management messages ... 93
9.6.9 Access messages .. 95
9.6.10 Exceptions ... 95
9.6.11 Catalogue Service interfaces.. 96
9.6.12 Basic interfaces ... 98
9.6.13 Complete IDL ... 98

10 HTTP protocol binding (Catalogue Services for the Web, CSW) 110
10.1 Architectural principles ... 110
10.2 The HTTP protocol... 110

10.2.1 Overview ... 110
10.2.2 Message headers ... 111
10.2.3 Content encoding.. 112
10.2.4 Request methods... 112
10.2.5 Message payload... 112

10.3 Operation request and response encoding.. 113
10.3.1 Introduction .. 113
10.3.2 Simple object access protocol (SOAP).. 114
10.3.3 Namespaces ... 116
10.3.4 Predicate languages.. 116
10.3.5 General model message mapping.. 118
10.3.6 Common request parameters .. 118

10.4 Operations overview ... 119
10.5 GetCapabilities operation .. 121

10.5.1 Introduction .. 121
10.5.2 Operation request... 121
10.5.3 Operation response .. 122
10.5.4 OperationsMetadata section standard contents .. 122
10.5.5 Examples ... 123

10.6 DescribeRecord operation.. 124
10.6.1 Introduction .. 124
10.6.2 KVP encoding ... 124
10.6.3 XML encoding .. 125

10.6.3.1 Overview... 125
10.6.4 Parameter descriptions .. 126

10.6.4.1 NAMESPACE parameter ... 126
10.6.4.2 TypeName parameter.. 126
10.6.4.3 outputFormat parameter .. 127
10.6.4.4 schemaLanguage parameter ... 127

10.6.5 Response.. 127
10.6.6 Examples ... 127

10.7 GetDomain operation ... 128
10.7.1 Introduction .. 128
10.7.2 KVP encoding ... 128
10.7.3 XML encoding .. 129
10.7.4 Parameter descriptions .. 129

10.7.4.1 PropertyName parameter ... 129

OGC 04-021r3

vi © OGC 2005 – All rights reserved

10.7.4.2 ParameterName parameter .. 130
10.7.5 Response.. 130
10.7.6 Examples ... 131

10.8 GetRecords operation... 131
10.8.1 Introduction .. 131
10.8.2 KVP encoding ... 131
10.8.3 XML encoding .. 134
10.8.4 Parameter descriptions .. 134

10.8.4.1 NAMESPACE parameter ... 134
10.8.4.2 resultType parameter .. 135
10.8.4.3 outputFormat parameter .. 135
10.8.4.4 outputSchema parameter.. 135
10.8.4.5 startPosition parameter... 136
10.8.4.6 maxRecords attribute .. 136
10.8.4.7 typeName parameter ... 136
10.8.4.8 ElementName or ElementSetName parameter ... 136
10.8.4.9 Predicate languages ... 136
10.8.4.10 SortBy parameter .. 137
10.8.4.11 DistributedSearch parameter ... 137
10.8.4.12 ResponseHandler parameter .. 137

10.8.5 Response.. 138
10.8.6 Examples ... 140

10.9 GetRecordById operation .. 141
10.9.1 Introduction .. 141
10.9.2 KVP encoding ... 141
10.9.3 XML encoding .. 142
10.9.4 Parameter descriptions .. 142

10.9.4.1 ElementSetName parameter ... 142
10.9.4.2 Id parameter... 143

10.9.5 Response.. 143
10.9.6 Examples ... 143

10.10 Record locking... 143
10.11 Transaction operation .. 143

10.11.1 Introduction .. 143
10.11.2 KVP encoding ... 144
10.11.3 XML encoding .. 144

10.11.3.1 Overview... 144
10.11.3.2 Insert action.. 144
10.11.3.3 Update action ...145
10.11.3.4 Delete action ... 146

10.11.4 Response.. 146
10.12 Harvest operation ... 147

10.12.1 Introduction .. 147
10.12.2 KVP encoding ... 147
10.12.3 XML encoding .. 149
10.12.4 Parameter descriptions .. 149

10.12.4.1 Source parameter... 149
10.12.4.2 ResourceType parameter .. 149
10.12.4.3 ResourceFormat parameter.. 149
10.12.4.4 ResponseHandler parameter .. 149
10.12.4.5 HarvestInterval Parameter ... 150

10.12.5 Response.. 150
10.12.6 Examples ... 150

OGC 04-021r3

© OGC 2005 – All rights reserved vii

10.13 XML Schemas ... 151
11 Specializing general model through protocol bindings and profiles............................... 151

11.1 Introduction... 151
11.2 Interface definitions.. 152
11.3 Query model components... 153

11.3.1 Query language/model ... 153
11.3.2 Common search and retrieval elements ... 153

11.4 Catalogue Application Profiles .. 154
11.5 Structure and format.. 155

11.5.1 Introduction .. 155
11.5.2 System context .. 157
11.5.3 Information models .. 157
11.5.4 External interfaces ... 158

11.6 Compliance .. 158
Annex A (normative) Abstract conformance test suite .. 160
Annex B (informative) Description of Distributed Search .. 161
Annex C (informative) Details of order operation ... 164

C.1 Introduction... 164
C.2 BrokeredAccessRequest ... 164

C.2.1 Message ... 164
C.2.2 Message Parameters: ... 164
C.2.3 Message Operations: None .. 165

C.3 BrokeredAccessResponse .. 165
C.3.1 Response.. 165
C.3.2 Message Parameters: ... 166
C.3.3 Message Operations: None .. 167

C.4 Parameter Type Definitions ... 167
C.4.1 Introduction .. 167
C.4.2 BrokeredAccessRequestType .. 167
C.4.3 CollectionName... 167
C.4.4 OrderItem ...168
C.4.5 OrderSpecification ... 168
C.4.6 OrderStatus... 168
C.4.7 PackageSpecification.. 169
C.4.8 PackagingType ... 169
C.4.9 PaymentMethod ... 170
C.4.10 QueryScope ... 170
C.4.11 Status ... 170
C.4.12 StatusUpdateType .. 171
C.4.13 UserInformation ... 171

Annex D (informative) Sample CSW capabilities document... 172
Annex E (normative) Technical corrigendum 1 ... 177

E.1 All subclauses .. 177
E.2 Subclause 6.3.2 .. 177
E.3 Subclause 10.3.1 .. 177
E.4 Subclause 10.3.4 .. 178
E.5 Subclause 10.3.6 .. 178
E.6 Subclause 10.5.2 .. 178
E.7 Subclause 10.5.4 .. 178
E.8 Subclause 10.5.5 .. 179

OGC 04-021r3

viii © OGC 2005 – All rights reserved

E.9 Subclause 10.6.2 .. 179
E.10 Subclause 10.7.1 .. 179
E.11 Subclause 10.7.3 .. 179
E.12 Subclause 10.7.4.1 ... 179
E.13 Subclause 10.8.2 .. 179
E.14 Subclause 10.8.3 .. 180
E.15 Subclause 10.8.4.2 ... 180
E.16 Subclause 10.11.3.2 ... 181
E.17 Subclause 10.11.3.3 ... 181
E.18 Subclause 10.11.3.4 ... 181
E.19 Subclause 6.2.3 .. 182
E.20 Subclause 6.2.5.3 ... 182
E.21 Subclause 6.2.5.4 ... 182
E.22 Subclause 6.3.3 .. 183
E.23 Subclause 10.5.3 .. 183
E.24 Annex D ... 183
E.25 Subclause 10.6.4.2 ... 184
E.26 Subclause 10.6.6 .. 184
E.27 Subclause 10.8.4.6 ... 185
E.28 Subclause 10.8.6 .. 185
E.29 Subclause 10.9.3 .. 186
E.30 Subclause 10.9.6 .. 186

Bibliography.. 187

OGC 04-021r3

© OGC 2005 – All rights reserved ix

Figures Page

Figure 1 — UML notations .. 7

Figure 2 — Information discovery continuum... 8

Figure 3 — Reference model architecture.. 25

Figure 4 — General OGC catalogue UML static model .. 26

Figure 5 — getCapabilities operation UML static model .. 29

Figure 6 — “query” operation UML static model.. 32

Figure 7 — “present” operation UML static model ... 37

Figure 8 — describeRecordType operation UML static model ... 40

Figure 9 — getDomain operation UML static model... 42

Figure 10 — “initialize” operation UML static model... 44

Figure 11 — “close” operation UML static model... 45

Figure 12 — “status” operation UML static model.. 47

Figure 13 — “cancel” operation UML static model... 49

Figure 14 — “transaction” operation UML static model ... 51

Figure 15 — harvestResource operation UML static model .. 53

Figure 16 — “order” operation UML static model .. 56

Figure 17 — UML state diagram notation ... 58

Figure 18 — Catalogue session state diagram.. 59

Figure 19 — Discovery state diagram (without Status and Cancel) .. 60

Figure 20 — Discovery state diagram (complete).. 61

Figure 21 — Access state diagram... 62

Figure 22 — Order estimation state diagram ... 62

Figure 23 — Order submit state diagram ... 63

Figure 24 — Management state diagram ... 64

Figure 25 — Explain state diagram.. 64

OGC 04-021r3

x © OGC 2005 – All rights reserved

Figure 26 — Z39.50 Protocol binding Sequence Diagram .. 68

Figure 27 — Name-value pair results .. 83

Figure 28 — Catalogue service web .. 110

Figure 29 — Protocol sequence diagram ... 120

Figure 30 — Conceptual architecture... 121

Figure 31 — Relationship of general model, protocol binding, and application profile.................... 152

Figure 32 — Application profiles specify concrete catalogue services ... 154

Figure 33 — Relationships between base specs, profiles, and implementations 155

Figure B.1 — Query network topology resulting in duplicates.. 162

Figure B.2 — Query network topology resulting in a loop.. 162

Tables Page
Table 1 — Common queryable elements ... 20

Table 2 — Composition of compound element “BoundingBox”... 20

Table 3 — Composition of compound element “Association” .. 21

Table 4 — List of common returnable properties .. 22

Table 5 — Attribute of Catalogue Service class .. 28

Table 6 — Definition of getCapabilities operation .. 28

Table 7 — UML attibute in getCapabilities operation request... 29

Table 8 — UML attibutes in getCapabilities operation normal response .. 30

Table 9 — Definition of “query” operation.. 31

Table 10 — UML attributes and roles in “query” operation request ... 33

Table 11 — UML attibutes in SortSpec data type.. 35

Table 12 — UML attibutes in SessionInfo data type ... 35

Table 13 — UML attibutes in QueryExpression data type .. 35

Table 14 — UML attributes and role “query” operation normal response .. 36

Table 15 — Definition of “present” operation ... 37

OGC 04-021r3

© OGC 2005 – All rights reserved xi

Table 16 — UML attributes and role in “present” operation request... 38

Table 17 — UML attributes and role in “present” operation normal response.................................... 39

Table 18 — Definition of describeRecordType operation ... 39

Table 19 — UML attributes and role in describeRecordType operation request................................. 40

Table 20 — UML attributes and role in describeRecordType operation normal response.................. 41

Table 21 — Definition of getValueDomain operation... 41

Table 22 — UML attibute in getDomain operation request... 42

Table 23 — UML attributes and role in getValueDomain operation normal response........................ 42

Table 24 — Definition of “initiaize” operation.. 43

Table 25 — UML role name in “initialize” operation request ... 44

Table 26 — UML role name in “initiaize” operation normal response ... 44

Table 27 — Definition of “close” operation .. 45

Table 28 — UML role name in “close” operation request... 45

Table 29 — UML role name in “close” operation normal response ..46

Table 30 — Definition of “status” operation.. 46

Table 31 — UML attribute and role in “status” operation request... 47

Table 32 — UML attribute and role in “status” operation normal response.. 48

Table 33 — Definition of “cancel” operation .. 48

Table 34 — UML attributes and role in “cancel” operation request .. 49

Table 35 — UML attributes and role in “cancel” operation normal response 50

Table 36 — Definition of “transaction” operation ... 51

Table 37 — UML attributes in “transaction” operation request... 52

Table 38 — UML attributes in “transaction” operation normal response.. 52

Table 39 — harvestResource operation ... 53

Table 40 — UML attributes in harvestResource operation request ... 54

Table 41 — UML attributes in harvestResource operation normal response 54

Table 42 — Definition of “order” operation .. 55

OGC 04-021r3

xii © OGC 2005 – All rights reserved

Table 43 — UML attributes in “order” operation request.. 56

Table 44 — UML attributes in “order” operation normal response... 57

Table 45 — Correspondence of Z39.50 Attributes to general model equivalents 66

Table 46 — General Model to Z39.50 protocol binding operations mapping and obligation 67

Table 47 — Order extended service ... 70

Table 48 — SearchRetrieve request parameters... 80

Table 49 — SearchRetrieve response parameters .. 81

Table 50 — General Model to CORBA protocol binding operations mapping and obligation 84

Table 51 — HTTP message elements .. 111

Table 52 — Selected HTTP Request Methods... 112

Table 53 — HTTP method bindings .. 113

Table 54 — KVP encoding for constraints .. 117

Table 55 — General model to CSW mapping.. 118

Table 56 — KVP encoding of common operation request parameters .. 118

Table 57 — Additional section name value and meaning.. 122

Table 58 — Section names and contents.. 122

Table 59 — Required values of the OperationsMetadata section attributes 123

Table 60 — Optional values of the OperationsMetadata section attributes 123

Table 61 — KVP encoding for DescribeRecord operation request ... 125

Table 62 — KVP encoding for GetDomain operation request... 129

Table 63 — Interface parameters that may be interrogated using GetDomain operation 130

Table 64 — KVP encoding for GetRecords operation request .. 132

Table 65 — Values of the “status” attribute... 140

Table 66 — <searchStatus> Parameters... 140

Table 67 — KVP encoding for GetRecordById operation request.. 142

Table 68 — KVP encoding for Harvest operation request... 148

Table 69 — Structure of an application profile.. 156

OGC 04-021r3

© OGC 2005 – All rights reserved xiii

Table 70 — System context: required subclauses .. 157

Table 71 — Information models: required subclauses... 157

Table 72 — Public interfaces: required subclauses.. 158

Table C.1 — Brokered Access Request Types... 167

Table C.2 — Order Status Codes ... 169

Table 53 — HTTP method bindings .. 177

OGC 04-021r3

xiv © OGC 2005 – All rights reserved

i. Preface

This document explains how Catalogue Services version 2.0 are organised and implemented for the
discovery and retrieval of spatial data and services metadata. The prior public version of this
specification was 1.1.1. Catalogue Services version 2.0 supersedes and deprecates version 1.1.1.

This revision of this document has been significantly improved, largely based on the comments on
document 04-021 received by the Revison Working Group.

ii. Submitting organizations

The following organizations submitted the original document or its revisions to the Open GIS
Consortium, Inc. in response to the OGC Request 6, Core Task Force, Catalogue Working Group, A
Request for Proposals: OpenGIS® Catalogue Interface (OpenGIS® Project Document Number 98-
001r2):

BAE SYSTEMS Mission Solutions (formerly Marconi Integrated Systems, Inc.)
Blue Angel Technologies, Inc.
Environmental Systems Research Institute (ESRI)
Geomatics Canada (Canada Centre for Remote Sensing (CCRS))
Intergraph Corporation
MITRE
Oracle Corporation
U.S. Federal Geographic Data Committee (FGDC)
U.S. National Aeronautics and Space Administration (NASA)
U.S. National Imagery and Mapping Agency (NIMA)

Contributing Entities
The submitting entities were grateful for the contributions from the following companies in the
development and revision of this Interface Specification:

Compusult, Limited
Con terra GmbH
Cubewerx
Galdos Systems, Inc
GEODAN IT bv
Hammon, Jensen, Wallen & Associates, Inc (HJW)
Ionic Software, sa
JRC (Joint Research Centre), European Commission
SICAD GEOMATICS
Traverse Technologies

OGC 04-021r3

© OGC 2005 – All rights reserved xv

iii. Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

Person Company Address Phone Email
Doug Nebert

U.S. Federal
Geographic Data
Committee

USGS National Center,
Mail Stop 590
12201 Sunrise Valley
Drive
Reston, VA 20192

+1 703-648-4151
fax:
+1 703-648-5755

ddnebert@usgs.gov

Arliss Whiteside BAE SYSTEMS
Mission Solutions

10920 Technology Dr.
San Diego, CA
92127-1608 USA

+1 858-592-1608 Arliss.Whiteside@
baesystems.com

Peter Vretanos CubeWerx, Inc. 5 Wexford Blvd.
Toronto, Ontario
M1R 1K9 Canada

+1 416-701-1985 pvretano@cubewer
x.com

Louis Reich NASA (Computer
Sciences Corp)

 +1 301-794-2195 louis.i.reich@gsfc.
nasa.gov

Richard Martell Galdos Systems
Inc.

1155 W Pender St,
Suite 200, Vancouver,
BC V6E 2P4 Canada

+1 604 484-2750 rmartell@galdosinc
.com

Uwe Voges con terra GmbH Martin-Luther-King-
Weg 24
Münster 48155
Germany

+49 251 74 74 402 voges@conterra.de

mailto:louis.i.reich@gsfc.nasa.gov
mailto:louis.i.reich@gsfc.nasa.gov
mailto:rmartell@galdosinc.com
mailto:rmartell@galdosinc.com
mailto:voges@conterra.de

OGC 04-021r3

xvi © OGC 2005 – All rights reserved

iv. Revision history

Date Release Editor Primary clauses modified Description
12Aug1999 1.0 Nebert N/A Original Specification entitled

“Catalogue Interface Implementation
Specification” OGC Document 00-
034

28Mar2001 1.1 Nebert Made fine-grain CORBA
and OLE/COM Annexes to
Informative, added abstract
conformance test suite,
fixed coarse-grain CORBA
IDL

Document only made available to
OGC membership pending passage of
Version 2.0. (OGC Document 01-040)

11Nov2002 1.1.1 Nebert,
Katz,

State diagram changes,
renamed specification and
changed WWW Profile to
Z39.50 Profile, added
introductory words as
required for new format

Document primarily reflects
conversion to newer OGC/ISO
document format

22Dec2003 2.0.0 Nebert All Reorganised and largely rewrote
document.

6Mar2004 2.0.0 Nebert Clauses 6,7, 9,10,11 Edited CORBA, Z39.50, and HTTP to
reflect changes in General Model,
other minor revisions to document

29Mar2004 2.0.0 Whiteside All
14Apr2004 2.0.0 Whiteside All
11May2004 2.0.0 Nebert Merge updates on Clauses

1-5, 6-8, 9, 10, and 11
from separate editors

Responded to all RWG review
comments.

20May2005 2.0.1 See Annex E Technical corrigendum 1

v. Changes to the OGC™ Abstract Specification

The OGC™ Abstract Specification requires minor changes to accommodate the technical contents of
this document to reflect the use of catalogue services to search for and retrieve any type of
information object (data, service instance, service type, schema, style description, etc.) based on its
properties described in “metadata.”

vi. Future work

Future work may include expansion of definitions of ordering capabilities, standing orders or queries,
and transactional interfaces. Individual Application Profiles (see Clause 11) will be submitted as
separate but dependent specifications.

OGC 04-021r3

© OGC 2005 – All rights reserved xvii

Foreword

This version deprecates and replaces Catalogue Service Specification 1.1.1 (OGC Document 02-
087r3).

This document, through its implementation profiles, references several external standards and
specifications as dependencies:

a) Common Object Request Broker Architecture (CORBA/IIOP), Version 2.X, The Object
Management Group (OMG): http://www.omg.org

b) Information and documentation -- Information retrieval (Z39.50) -- Application service
definition and protocol specification:
http://www.iso.ch/iso/en/CatalogDetailPage.CatalogDetail?CSNUMBER=27446&ICS1=35&IC
S2=240&ICS3=30

c) ISO/IEC TR 10000-1:1998. Information Technology – Framework and taxonomy of
International Standardised Profiles – Part 1: General principles and documentation framework.
Technical Report, JTC 1. Fourth edition. Available [online]: <http://www.iso.ch/iso/en/ittf/
PubliclyAvailableStandards/c030726_ISO_IEC_TR_10000-1_1998(E).zip>.

d) ISO/IEC 10746-2:1996. Information Technology – Open Distributed Processing – Reference
Model: Foundations. Common text with ITU-T Recommendation X.902. Available [online]:
<http://www.iso.ch/iso/en/ittf/PubliclyAvailableStandards/s018836_ISO_IEC_107462_
1996(E).zip>.

e) Unified Modeling Language (UML) Version 1.3, The Object Management Group (OMG):
http://www.omg.org/cgi-bin/doc?formal/00-03-01

f) The Extensible Markup Language (XML), World Wide Web Consortium,
http://www.w3.org/TR/1998/REC-xml-19980210

Annex A, the Abstract Conformance Test Suite, is normative to this specification and shall be
implemented when a computing environment requires catalogue services. All other annexes are
informative and provide background information, such as terminology and alternative implementation
approaches.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. The Open Geospatial Consortium, Inc. shall not be held responsible for identifying any
or all such patent rights.

http://www.omg.org/
http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=27446&ICS1=35&ICS2=240&ICS3=30
http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=27446&ICS1=35&ICS2=240&ICS3=30
http://www.omg.org/cgi-bin/doc?formal/00-03-01
http://www.w3.org/TR/1998/REC-xml-19980210

OGC 04-021r3

xviii © OGC 2005 – All rights reserved

Introduction

This document specifies the interfaces between clients and catalogue services, through the
presentation of abstract and implementation-specific models. Catalogue services support the ability to
publish and search collections of descriptive information (metadata) for data, services, and related
information objects. Metadata in catalogues represent resource characteristics that can be queried and
presented for evaluation and further processing by both humans and software. Catalogue services are
required to support the discovery and binding to registered information resources within an
information community.

OGC Implementation Specification OGC 04-021r3

© OGC 2005 – All rights reserved 1

OGC™ Catalogue Services Specification

1 Scope

This OGC™ document specifies the interfaces, bindings, and a framework for defining application
profiles required to publish and access digital catalogues of metadata for geospatial data, services, and
related resource information. Metadata act as generalised properties that can be queried and returned
through catalogue services for resource evaluation and, in many cases, invocation or retrieval of the
referenced resource. Catalogue services support the use of one of several identified query languages
to find and return results using well-known content models (metadata schemas) and encodings. This
OpenGIS® document is applicable to the implementation of interfaces on catalogues of a variety of
information resources.

The target audience for this specification is the community of software developers who are:

a) Implementers of OGC compliant Catalogue servers

b) Implementers of OGC compliant Catalogue clients

2 Conformance

Abstract conformance to the mandatory catalogue service interfaces is described in Annex A. In a
given community, a test suite should include test metadata records with a variety of element values
and a series of queries that would return correct and properly formatted results. Test data and queries
may be included in associated Application Profiles.

3 Normative references

The following normative documents contain provisions that, through reference in this text, constitute
provisions of this part of OGC 03-108. For dated references, subsequent amendments to, or revisions
of, any of these publications do not apply. For undated references, the latest edition of the normative
document referred to applies.

ANSI/NISO Z39.50-2003, Information Retrieval (Z39.50): Application Service Definition and
Protocol Specification (revision of Z39.50-1995)
http://www.iso.ch/iso/en/CatalogDetailPage.CatalogDetail?CSNUMBER=27446&ICS1=35&ICS2=2
40&ICS3=30

IETF RFC 2045 (November 1996), Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies, Freed, N. and Borenstein N., eds.,
<http://www.ietf.org/rfc/rfc2045.txt>

IETF RFC 2141 (May 1997), URN Syntax, R. Moats <http://www.ietf.org/rfc/rfc2141.txt>

http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=27446&ICS1=35&ICS2=240&ICS3=30
http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=27446&ICS1=35&ICS2=240&ICS3=30

OGC 04-021r3

2 © OGC 2005 – All rights reserved

IETF RFC 2396 (August 1998), Uniform Resource Identifiers (URI): Generic Syntax, Berners-Lee,
T., Fielding, N., and Masinter, L., eds., <http://www.ietf.org/rfc/rfc2396.txt>

IETF RFC 2616 (June 1999), Hypertext Transfer Protocol – HTTP/1.1, Gettys, J., Mogul, J., Frystyk,
H., Masinter, L., Leach, P., and Berners-Lee, T., eds., <http://www.ietf.org/rfc/rfc2616.txt>

IANA, Internet Assigned Numbers Authority, MIME Media Types, available at
<http://www.iana.org/assignments/media-types/>

CORBA/IIOP, Common Object Request Broker Architecture, Version 2.X, The Object Management
Group (OMG): http://www.omg.org

ISO/IEC TR 10000-1:1998. Information Technology – Framework and taxonomy of International
Standardised Profiles – Part 1: General principles and documentation framework. Technical Report,
JTC 1. Fourth edition. Available [online]: <http://www.iso.ch/iso/en/ittf/
PubliclyAvailableStandards/c030726_ISO_IEC_TR_10000-1_1998(E).zip>.

ISO/IEC 10746-2:1996. Information Technology – Open Distributed Processing – Reference Model:
Foundations. Common text with ITU-T Recommendation X.902. Available [online]:
<http://www.iso.ch/iso/en/ittf/PubliclyAvailableStandards/s018836_ISO_IEC_107462_
1996(E).zip>.

ISO 4217:2001, Codes for the representation of currencies and funds

ISO 8601:2000(E), Data elements and interchange formats - Information interchange -
Representation of dates and times.

ISO 11180, Postal addressing

ISO 19106:2003, Geographic Information – Profiles

ISO 19115:2003, Geographic Information – Metadata

ISO/DIS 19119, Geographic Information – Services

OASIS/ebXML Registry Services Specification v2.5

OGC 99-054, OpenGIS® Simple Features Specification for CORBA

OGC 99-113, OGC Abstract Specification Topic 13: Catalogue Services

OGC 02-006, OGC Abstract Specification Topic 12: OpenGIS Service Architecture

OGC 02-059, Filter Encoding Implementation Specification

OGC 04-016r2, OWS Common Implementation Specification, January 2004

NOTE This document is currently an OGC Recommendation Paper, but will become an Implementation Specification
with or prior to acceptance of the first Implementation Specification that normatively references this document.

This OWS Common Implementation Specification contains a list of normative references that are also
applicable to this Implementation Specification.

http://www.iana.org/assignments/media-types/
http://www.omg.org/

OGC 04-021r3

© OGC 2005 – All rights reserved 3

OMG UML, Unified Modeling Language, Version 1.3, The Object Management Group (OMG):
http://www.omg.org/cgi-bin/doc?formal/00-03-01

W3C Recommendation January 1999, Namespaces In XML, http://www.w3.org/TR/2000/REC-xml-
names.

W3C Recommendation 6 October 2000, Extensible Markup Language (XML) 1.0 (Second Edition),
http://www.w3.org/TR/REC-xml

W3C Recommendation 2 May 2001: XML Schema Part 0: Primer,
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/

W3C Recommendation 2 May 2001: XML Schema Part 1: Structures,
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/

W3C Recommendation 2 May 2001: XML Schema Part 2: Datatypes,
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

W3C Recommendation (24 June 2003): SOAP Version 1.2 Part 1: Messaging Framework,
http://www.w3.org/TR/SOAP/

In addition to this document, this specification includes several normative XML Schema files. These
are posted online at the URL http://schemas.opengis.net/. These XML Schema files are also bundled
with this document. In the event of a discrepancy between the bundled and online versions of the
XML Schema files, the online files shall be considered authoritative.

4 Terms and definitions

For the purposes of this document, the following terms and definitions apply:

4.1
client
software component that can invoke an operation from a server

4.2
data clearinghouse
collection of institutions providing digital data, which can be searched through a single interface
using a common metadata standard [ISO 19115]

4.3
data level
stratum within a set of layered levels in which data is recorded that conforms to definitions of types
found at the application model level [ISO 19101]

4.4
dataset series
collection of datasets sharing the same product specification [ISO 19113, ISO 19114, ISO 19115]

http://www.omg.org/cgi-bin/doc?formal/00-03-01
http://www.w3.org/TR/2000/REC-xml-names
http://www.w3.org/TR/2000/REC-xml-names
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.w3.org/TR/SOAP/
http://schemas.opengis.net/ows/

OGC 04-021r3

4 © OGC 2005 – All rights reserved

4.5
feature catalogue
catalogue containing definitions and descriptions of the feature types, feature attributes, and feature
relationships occurring in one or more sets of geographic data, together with any feature operations
that may be applied [ISO 19101, ISO 19110]

4.6
geographic dataset
dataset with a spatial aspect [ISO 19115]

4.7
geographic information
information concerning phenomena implicitly or explicitly associated with a location relative to the
Earth [ISO 19128 draft]

4.8
identifier
a character string that may be composed of numbers and characters that is exchanged between the
client and the server with respect to a specific identity of a resource

4.9
interface
named set of operations that characterize the behaviour of an entity [ISO 19119]

4.10
metadata dataset
metadata describing a specific dataset [ISO 19101]

4.11
metadata entity
group of metadata elements and other metadata entities describing the same aspect of data

NOTE 1 A metadata entity may contain one or more metadata entities.

NOTE 2 A metadata entity is equivalent to a class in UML terminology [ISO 19115].

4.12
metadata schema
conceptual schema describing metadata

NOTE ISO 19115 describes a standard for a metadata schema. [ISO 19101]

4.13
metadata section
subset of metadata that defines a collection of related metadata entities and elements [ISO 19115]

4.14
operation
specification of a transformation or query that an object may be called to execute [ISO 19119]

4.15
parameter
variable whose name and value are included in an operation request or response

OGC 04-021r3

© OGC 2005 – All rights reserved 5

4.16
profile
set of one or more base standards and - where applicable - the identification of chosen clauses,
classes, subsets, options and parameters of those base standards that are necessary for accomplishing
a particular function [ISO 19101, ISO 19106]

4.17
qualified name
name that is prefixed with its naming context

EXAMPLE The qualified name for the road no attribute in class Road defined in the Roadmap schema is
RoadMap.Road.road_no. [ISO 19118].

4.18
reporting group
data with common characteristics forming a subset of a dataset

NOTE 1 Common characteristics can include belonging to an identified feature type, feature attribute or feature
relationship; sharing data collection criteria; sharing original source; or being within a specified geographic or temporal
extent.

NOTE 2 A reporting group can be as small as a feature instance, an attribute value, or a single feature relationship. [ISO
19109, ISO 19113].

4.19
request
invocation of an operation by a client

4.20
response
result of an operation, returned from a server to a client

4.21
schema
formal description of a model [ISO 19101, ISO 19103, ISO 19109, ISO 19118]

4.22
server
service instance
a particular instance of a service [ISO 19119 edited]

4.23
service
distinct part of the functionality that is provided by an entity through interfaces [ISO 19119]

capability which a service provider entity makes available to a service user entity at the interface
between those entities [ISO 19104 terms repository]

4.24
service interface
shared boundary between an automated system or human being and another automated system or
human being [ISO 19101]

OGC 04-021r3

6 © OGC 2005 – All rights reserved

4.25
service metadata
metadata describing the operations and geographic information available at a server [ISO 19128
draft]

4.26
state
condition that persists for a period

NOTE The value of a particular feature attribute describes a condition of the feature [ISO 19108].

4.27
transfer protocol
common set of rules for defining interactions between distributed systems [ISO 19118]

4.28
version
version of an Implementation Specification (document) and XML Schemas to which the requested
operation conforms

NOTE An OWS Implementation Specification version may specify XML Schemas against which an XML encoded
operation request or response must conform and should be validated.

5 Conventions

5.1 Symbols (and abbreviated terms)

Some frequently used abbreviated terms:

CORBA Common Object Request Broker Architecture

DCP Distributed Computing Platform

HTTP Hypertext Transfer Protocol

IDL Interface Definition Language

ISO International Organization for Standardization

KVP Keyword Value Pair

MIME Multipurpose Internet Mail Extensions

OGC Open GIS Consortium, also referred to as OpenGIS®

TBD To Be Determined

TBR To Be Reviewed

UML Unified Modeling Language

XML Extensible Markup Language

Z39.50 Service definition for information search and retrieval, also known as ISO 23950

OGC 04-021r3

© OGC 2005 – All rights reserved 7

5.2 UML notation

Some of the diagrams in this document are presented using the Unified Modeling Language (UML)
static structure diagram. The UML notations used in this document are described in Figure 1, below.

Association between classes

role-1 role-2

Association Name
Class #1 Class #2

Association Cardinality

Class Only one

Class Zero or more

Class Optional (zero or one)

1..* Class One or more

n Class Specific number

Aggregation between classes

Aggregate
Class

Component
Class #1

Component
Class #2

Component
Class #n

……….

0..*

0..1

Class Inheritance (subtyping of classes)

Superclass

Subclass #1

…………..

Subclass #2 Subclass #n

Figure 1 — UML notations

In these UML class diagrams, the class boxes with a light background are the primary classes being
shown in this diagram, often the classes from one UML package. The class boxes with a gray
background are other classes used by these primary classes, usually classes from other packages.

In this diagram, the following stereotypes of UML classes are used:

a) <<Interface>> A definition of a set of operations that is supported by objects having this
interface. An Interface class cannot contain any attributes.

b) <<Type>> A stereotyped class used for specification of a domain of instances (objects), together
with the operations applicable to the objects. A Type class may have attributes and associations.

c) <<DataType>> A descriptor of a set of values that lack identity (independent existence and the
possibility of side effects). A DataType is a class with no operations whose primary purpose is to
hold the information.

d) <<CodeList>> A flexible enumeration that uses string values for expressing a list of potential
values. If the list alternatives are completely known, an enumeration shall be used; if the only
likely alternatives are known, a code list shall be used.

OGC 04-021r3

8 © OGC 2005 – All rights reserved

e) <<Enumeration>> A data type whose instances form a list of alternative literal values.
Enumeration means a short list of well-understood potential values within a class.

In this document, the following standard data types are used:

f) CharacterString – A sequence of characters

g) Boolean – A value specifying TRUE or FALSE

h) Integer – An integer number

i) Identifier – Unique identifier of an object

j) URI – An identifier of a resource that provides more information

k) URL – An identifier of an on-line resource that can be electronically accessed

5.3 Document terms and definitions

This document uses the specification terms defined in Subclause 5.3 of [OGC 04-016r2].

6 Catalogue abstract information model

6.1 Introduction

The abstract information model specifies a BNF grammar for a minimal query language, a set of core
queryable attributes (names,definitions,conceptual datatypes), and a common record format that
defines the minimal set of elements that should be returned in the brief and summary element sets

The geospatial community is a very broad-based community that works in many different operational
environments, as shown in the information discovery continuum in Figure 2. On one extreme there
are tightly coupled systems dedicated to well defined functions in a tightly controlled environment. At
the other extreme are Web based services that know nothing about the client. This document provides
a specification that is applicable to the full range of catalogue operating environments.

SimpleFeatures

Domain knowledge

Global Information
Discovery

Information
Exploitation

Google GEO CIP DCS

Heterogeneous Homogeneous

high low

Architectures

Application scope

Figure 2 — Information discovery continuum

OGC 04-021r3

© OGC 2005 – All rights reserved 9

6.2 Query language support

6.2.1 Introduction

The query capabilities of the OGC General Catalogue Model provide a minimum set of data types
and query operations that can be assumed of OGC Compliant Catalogue implementations. In addition,
these Query Capabilities provide a high degree of flexibility enabling alternate styles of query, result
presentation, and the potential support of any geo-enabled query language. This flexibility is provided
by the query operation that contains the parameters needed to select the query result presentation style
and to provide a query expression which includes the actual query with an identification of the query
language used. The query operation, query expression, and other related operations are further
discussed in Clause 7.2.4.

The interoperability goal is supported by the specification of a minimal abstract query (predicate)
language, which must be supported by all compliant OpenGIS Catalogue Services. This query
language supports nested Boolean queries, text matching operations, temporal data types, and
geospatial operators. The minimal query language syntax is based on the SQL WHERE clause in the
SQL SELECT statement. Implementations of query languages that are transformable to the
OGC_Common Catalogue Query Language are the OGC Filter Specification and the CIP and GEO
profiles of Z39.50 Type-1 queries.

The minimal query language assists the consumer in the discovery of datasets of interest at all sites
supporting the OpenGIS Catalogue Services. The ability to specify alternative query languages allows
for evolution and higher levels of interoperability among more tightly coupled communities of
Catalogue Service Providers and Consumers.

6.2.2 OGC_Common catalogue query language

This subclause defines the BNF for the OGC_Common Catalogue Query Language. OGC_Common
is the query language to be supported by all OGC Catalogue Interfaces in order to support search
interoperability.

Assumptions made during the development of OGC_Common Query Language:

a) The query will have a syntax similar to the SQL “Where Clause.”

b) The expressiveness of the query will not require extensions to various current query systems used
in geospatial catalogue queries other than the implementation of some geo operators.

c) The query language is extensible.

d) OGC_Common supports both tight and loose queries. A tight query is defined where if a
catalogue doesn’t support an attribute/column specified in the query, no entity/row can match the
query and the null set is returned. In a loose query, if an attribute is undefined, it is assumed to
match.

BNF definition of OGC_Common Query Language:

<SQL terminal character> ::= <SQL language character>
<SQL language character> ::= <simple Latin letter>
 | <digit>
 | <SQL special character>
<simple Latin letter> ::= <simple Latin upper case letter>

OGC 04-021r3

10 © OGC 2005 – All rights reserved

 | <simple Latin lower case letter>
<simple Latin upper case letter> ::=
 A | B | C | D | E | F | G | H | I | J | K | L | M | N | O
 | P | Q | R | S | T | U | V | W | X | Y | Z
<simple Latin lower case letter> ::=
 a | b | c | d | e | f | g | h | i | j | k | l | m | n | o
 | p | q | r | s | t | u | v | w | x | y | z
<digit> ::=
 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<SQL special character> ::= <space>
 | <double quote>
 | <percent>
 | <ampersand>
 | <quote>
 | <left paren>
 | <right paren>
 | <asterisk>
 | <plus sign>
 | <comma>
 | <minus sign>
 | <period>
 | <solidus>
 | <colon>
 | <semicolon>
 | <less than operator>
 | <equals operator>
 | <greater than operator>
 | <question mark>
 | <left bracket>
 | <right bracket>
 | <circumflex>
 | <underscore>
 | <vertical bar>
 | <left brace>
 | <right brace>
<space> ::= /*space character in character set in use
 In ASCII it would be 40*/
<double quote> ::= "
<percent> ::= %
<ampersand> ::= &
<quote> ::= '
<left paren> ::= (
<right paren> ::=)
<asterisk> ::= *
<plus sign> ::= +
<comma> ::= ,
<minus sign> ::= -
<period> ::= .
<solidus> ::= /
<colon> ::= :
<semicolon> ::= ;
<less than operator> ::= <
<equals operator> ::= =
<greater than operator> ::= >
<question mark> ::= ?
<left bracket> ::= [
<right bracket> ::=]

OGC 04-021r3

© OGC 2005 – All rights reserved 11

<circumflex> ::= ^
<underscore> ::= _
<vertical bar> ::= |
<left brace> ::={
<right brace> ::=}
<separator> ::= { <comment> | <space> | <newline> }...
/* The next section of the BNF defines the tokens available to the
 language. I have deleted the concepts of bit string, hex string and
national character string literal. Keywords have been added to support the
geo literals. */
<token> ::= <nondelimiter token>
 | <delimiter token>
<nondelimiter token> ::= <regular identifier>
 | <key word>
 | <unsigned numeric literal>
<regular identifier> ::= <identifier body>
<identifier body> ::=
<identifier start> [{ <underscore> | <identifier part> }...]
<identifier start> ::= <simple latin letter>
<identifier part> ::= <identifier start>
 | <digit>
<key word> ::= <reserved word>
<reserved word> ::= AND | POINT | LINESTRING | POLYGON | MULTIPOINT
 | MULTILINESTRING | MULTIPOLYGON | EMPTY | DATE
 | TIME | TIMESTAMP | FALSE| TRUE | UNKNOWN | LIKE
 | MINUTE | MONTH | NOT | NULL
<unsigned numeric literal> ::= <exact numeric literal>
 | <approximate numeric literal>
<exact numeric literal> ::=
 <unsigned integer> [<period>[<unsigned integer>]]
 | <period> <unsigned integer>
<unsigned integer> ::= <digit>...
<approximate numeric literal> ::= <mantissa> E <exponent>
<mantissa> ::= <exact numeric literal>
<exponent> ::= <signed integer>
<signed integer> ::= [<sign>] <unsigned integer>
<sign> ::= <plus sign> | <minus sign>
<character string literal> ::=
 <quote> [<character representation>...] <quote>
<character representation> ::= <nonquote character> | <quote symbol>
<quote symbol> ::= <quote><quote>
/*End of non delimiter tokens*/
/* I have limited the delimiter tokens by eliminating, interval strings
and delimited identifiers BNF and simplifying the legal character set to
the characters to a single set so no identification of character set would
be needed decision. */
<delimiter token> ::= <character string literal>
 | <SQL special character>
 | <not equals operator>
 | <greater than or equals operator>
 | <less than or equals operator>
 | <concatenation operator>
 | <double greater than operator>
 | <right arrow>
 | <left bracket>
 | <right bracket>
<character string literal> ::=

OGC 04-021r3

12 © OGC 2005 – All rights reserved

 <quote> [<character representation>...] <quote>
<character representation> ::= <nonquote character> | <quote symbol>
<quote symbol> ::= <quote><quote>
<not equals operator> ::= <>
<greater than or equals operator> ::= >=
<less than or equals operator> ::= <=
/*The following section is intended to give context for identifier and
namespaces. It assumes that the default namespace is specified in the
query request and does not allow any overrides of the namepace */
<identifier> ::=
 <identifier start [{ <colon> | <identifier part> }...]
<identifier start> ::= <simple Latin letter>
<identifier part> ::= <simple Latin letter> | <digit>
<attribute name> ::= <simple attribute name> | <compound attribute name>
<simple attribute name> ::= <identifier>
<compound attribute name> ::= <identifier><period>
 [{<identifier><period>}…]
 <simple attribute name>

/*The rest of the BNF is the real BNF for the query capabilities.*/
<search condition> ::= <boolean value expression>
<boolean value expression> ::= <boolean term>
 | <boolean value expression> OR <boolean term>
<boolean term> ::= <boolean factor>
 | <boolean term> AND <boolean factor>
<boolean factor> ::= [NOT] <boolean primary>
<boolean primary> ::= <predicate> | <routine invocation>
 | <routine invocation>
 | <left paren> <search condition> <right paren>
<predicate> ::= <comparison predicate>
 | <text predicate>
 | <null predicate>
 | <temporal predicate>
 | <classification predicate>
 | <existence_predicate>

/* This set of productions define temporal predicates */
<temporal predicate> ::= <attribute_name> BEFORE <date-time expression>
 | <attribute_name> BEFORE OR DURING <period>
 | <attribute_name> DURING <period>
 | <attribute_name> DURING OR AFTER <period>
 | <attribute_name> AFTER <date-time expression>
<date-time expression ::= <date-time> | <period>

/* This set of productions enables loose or tight queries. For example the
predicate “cloudcover EXISTS” evaluates as true for all record instances
where the attribute cloudcover is a member of the record schema.
Similarly, the predicate “cloudcover DOESNOTEXIST” evaluates as true for
all record instances where the attribute cloudcover is not a member of the
record schema.*/

<existence_predicate> := <attribute_name> EXISTS
 | <attribute_name> DOES-NOT-EXIST

<comparison predicate> ::= <attribute name> <comp op> <literal>
<text predicate> ::= <attribute name> [NOT] LIKE <character pattern>
<null predicate> ::= <attribute name> IS [NOT] NULL

OGC 04-021r3

© OGC 2005 – All rights reserved 13

<character pattern> ::= <character string literal>
 /* In a character pattern the character percent is used as a
wildcard to represent an arbitrary string. This allows LIKE to implement
the effect of many characters matching operations, such as: contains,
begins with, ends with, not contains, not begins with, not ends with, and
so forth. For example:
 attribute like '%contains_this%'
 attribute like 'begins_with_this%'
 attribute like '%ends_with_this'
 attribute like 'd_ve' will match 'dave' or 'dove'
 attribute not like '%will_not_contain_this%'
 attribute not like 'will_not_begin_with_this%'
 attribute not like '%will_not_end_with_this' */
<comp op> ::= <equals operator>
 | <not equals operator>
 | <less than operator>
 | <greater than operator>
 | <less than or equals operator>
 | <greater than or equals operator>
<literal> ::= <signed numeric literal>
 | <general literal>
<signed numeric literal> ::=
 [<sign>] <unsigned numeric literal>
<general literal> ::= <character string literal>
 | <datetime literal>
 | <boolean literal>
 | <geography literal
<boolean literal> ::= TRUE
 | FALSE
 | UNKNOWN
<routine invocation> ::= | <geoop name><georoutine argument list>
 | <relgeoop name><relgeoop argument list>
 | <routine name><argument list>
<routine name> ::= < attribute name>
<geoop name> ::= EQUAL | DISJOINT | INTERSECT | TOUCH | CROSS
 | WITHIN | CONTAINS |OVERLAP | RELATE
<relgeoop name> ::= DWITHIN | BEYOND
<argument list> ::=
 <left paren> [<positional arguments>] <right paren>
<positional arguments> ::=
 <argument> [{ <comma> <argument> }...]
<argument> ::= <literal> | <attribute name>
<georoutine argument list> ::=
<left paren><attribute name><comma><geometry literal><right paren>
<relgeoop argument list> ::= <left paren>
 <attribute name><comma><geometry literal><comma><tolerance>
 <right paren>
<tolerance> ::=
 <unsigned numeric literal><comma><distance units>
<distance units> ::= = “feet” | “meters” | “statute miles” |
 “nautical miles” | “kilometers”
/*this set of units is just an example. The real list of distance unit
must be developed*/
<geometry literal> := <Point Tagged Text>
 | <LineString Tagged Text>
 | <Polygon Tagged Text>
 | <MultiPoint Tagged Text>

OGC 04-021r3

14 © OGC 2005 – All rights reserved

 | <MultiLineString Tagged Text>
 | <MultiPolygon Tagged Text>
 | <GeometryCollection Tagged Text>
 | <Envelope Tagged Text>
<Point Tagged Text> := POINT <Point Text>
<LineString Tagged Text> := LINESTRING <LineString Text>
<Polygon Tagged Text> := POLYGON <Polygon Text>
<MultiPoint Tagged Text> := MULTIPOINT <Multipoint Text>
<MultiLineString Tagged Text> := MULTILINESTRING <MultiLineString Text>
<MultiPolygon Tagged Text> := MULTIPOLYGON <MultiPolygon Text>
<GeometryCollection Tagged Text> :=
 GEOMETRYCOLLECTION <GeometryCollection Text>
<Point Text> := EMPTY | <left paren> <Point> <right paren>
<Point> := <x><space><y>
<x> := numeric literal
<y> := numeric literal
<LineString Text> := EMPTY
| <left paren><Point>{<comma><Point >}…<right paren>
<Polygon Text> := EMPTY
| <left paren><LineString Text>{<comma><LineString Text> }…<right paren>
<Multipoint Text> := EMPTY
| <left paren><Point Text>{<comma><Point Text >}…<right paren>
<MultiLineString Text> := EMPTY
| <left paren><LineString Text>{<comma><LineString Text>}…<right paren>
<MultiPolygon Text> := EMPTY
| <left paren><Polygon Text>{<comma><Polygon Text>}…<right paren>
<GeometryCollection Text> := EMPTY
| <left paren><Geometry Tagged Text>{<comma><Geometry Tagged Text>}…
<right paren>
<Envelope Tagged Text> ::= ENVELOPE <Envelope Text>
<Envelope Text> := EMPTY
| <left paren><WestBoundLongitude><comma>
 <EastBoundLongitude><comma>
 <NorthBoundLatitude><comma>
 <SouthBoundLatitude>< <right paren>
<WestBoundLongitude> := numeric literal
<EastBoundLongitude> := numeric literal
<NorthBoundLatitude> := numeric literal
<SouthBoundLatitude> := numeric literal

<date-time> ::= <full-date> "T" <UTC-time>

<full_date> ::= <date-year> "-" <date-month> "-" <date-day>
<date-year> ::= <digit><digit><digit><digit>
<date-month> ::= <digit><digit>
<date-day> ::= <digit><digit>

<UTC-time> ::= <time-hour> ":" <time-minute> ":" <time-second> "Z"
<time-hour> ::= <digit><digit>
<time-minute> ::= <digit><digit>
<time-second> ::= <digit><digit>[.<digit>...]

<duration> ::= "P" <dur-date> | <dur-time>
<dur-date> ::= <dur-day> | <dur-month> | <dur-year> [<dur-time>]
<dur-day> ::= <digit>... "D"
<dur-month> ::= <digit>... "M" [<dur-day>]
<dur-year> ::= <didit>... "Y" [<dur-month>]

OGC 04-021r3

© OGC 2005 – All rights reserved 15

<dur-time> ::= "T" <dir-hour> | <dur-minute> | <dur-second>
<dur-hour> ::= <digit>... "H" [<dur-minute>]
<dur-minute> ::= <digit>... "M" [<dur-second>]
<dur-second> ::= <digit>... "S"

<period> ::= <date-time> "/" <date-time>
 | <date-time> "/" <duration>
 | <duration> "/" <date-time>

6.2.3 Extending the Common Catalogue Query Language

The Common Catalogue Query Language BNF can be extended by adding new predicates,
operations, and datatypes. The following discussion is an example of extending the BNF to include a
CLASSIFIED-AS operator using the patterns identified in OASIS/ebXML Registry Services
Specification v2.5. This extension could appear in a protocol binding or an Application Profile.

This specification makes no assumptions about how taxonomies are maintained in a catalogue, or
how records are classified according to those taxonomies. Instead, this specification defines a routine,
CLASSIFIED-AS, in order to support classification queries based on taxonomies.

The CLASSIFIED-AS routine takes three arguments. The first argument is the abstract entry point
who classification is being checked The second argument is the key name string that represents a path
expression in the taxonomy. The last argument is the key value string that represents the
corresponding path expression containing key values that are the targets of the query. In both cases,
the first element of the path expression for the key name argument and key value arguments must be
the name of the taxonomy being used. The normal wildcard matching characters, ‘_’ for a single
character and ‘%’ for zero or more characters, may be used in the key value expression which is the
last argument of the CLASSIFIED_AS routine.

The following set of productions define the CLASSIFIED-AS routine.

/* The following example: */
/* */
/* RECORD CLASSIFIED AS KEYNAME=’/GeoClass/Continent/Country/State’ */
/* KEYVALUE=’/GeoClass/North America/%/Ontario’ */
/* */
/* Will find all records in all the Ontario’s in North America. */

The following are the required BNF specializations:

<classop argument list> ::= <left paren> <entry_point> <comma>
 <keyname path> <comma><keyname value> <right paren>

<entry_point> ::= <identifier>1
<keyname path> ::= <solidus><ClassificationName><solidus><identifier>
 [<solidus><identifier>]…
<classop name> ::= CLASSIFIED_AS
<Classification Name> ::= <identifier>

1 The identifier is a valid value of a Type (core queryable properties) that represents an entire catalogue record. For
example, the value DATASET may be used to represent a record in a data catalogue or the value SERVICE may be used to
represent a record in a service catalog. In addition this profile has added the value RECORD to indicate all records
regardless of type.

OGC 04-021r3

16 © OGC 2005 – All rights reserved

<keyvalue path> ::= <solidus><path element>[<solidus><path element>]…
<path element> ::= <character pattern>

 <routine invocation> ::= | <geoop name><georoutine argument list>
 | <relgeoop name><relgeoop argument list>
 | <routine name><argument list>
 | <classop><classop argument list>

Consider the following example:

CLASSIFIED_AS(RECORD, ’/GeoClass/Continent/Country/State’,
'GeoClass/NorthAmerica/%/Ontario')

In this example, we are searching records classified according to the GeoClass taxonomy.
Specifically, we are looking for all catalogue records classified as Continent=NorthAmerica,
Country=any country and State=Ontario. Notice how the wildcard character ‘%’ is used to search
for any Country node.

Here is the same example encoded using XML:

<ogc:Filter xmlns:ogc="http://http://www.opengis.net/ogc">
 <ClassifiedAs>
 <EntryPoint>RECORD/<EntryPoint>
 <KeyName>/GeoClass/Continent/Country/State</KeyName>
 <KeyValue>/GeoClass/NorthAmerica/%/Ontario</KeyValue>
 </ClassifiedAs>
</ogc:Filter>

In order for catalogue clients to be able to determine which taxonomies are available, a catalogue
implementation should advertise the list of available taxonomies in its capabilities document. If a
query is executed against a non-existent taxonomy, then an exception should be raised.

6.2.4 Query language realization

Many OGC service operations have the requirement to pass and process a query as a structure to
perform a request. There are several query languages and messaging mechanisms identified within
OGC specifications. Application Profiles should be explicit about the selected query languages and
any features peculiar to a scope of application. The following items should be addressed in the
preparation of an Application Profile with respect to query language support:

a) Support for “abstract” query against well-known queryable entry points (e.g. OGC Core). Some
specifications promote or require the exposure of well-known field-like objects as common
search targets (queryables), allowing interrogation of a service without prior negotiation on
information content. The mandatory queryable attributes which must be recognised by all OGC
Catalogue Services is discussed in Subclause 6.3.2.

b) Selection of a query language. Some specifications describe one or more query languages that
can be supported. Identify the name and version of required query language(s) anticipated by this
Application Profile for use.

c) Supported data types (e.g. character, integer, coordinate, date, polygon) and operator types (e.g.
inequality, proximity, partial string, spatial, temporal). Query languages may be restricted in their
implementation or extended with functions not described in the base specification. This narrative
should provide lists or reference documents with the enumerated data types and operator types

OGC 04-021r3

© OGC 2005 – All rights reserved 17

required by this Application Profile. In addition, any description of special techniques (e.g.
supporting joins or associations) that are expected by an Application Profile should be described.

The following subclause uses the Filter Encoding of the BNF to illustrate some of the issues involved
in a specific realization of the Common Catalogue Query Language BNF.

6.2.5 OGC filter syntax

6.2.5.1 Introduction

The XML implementation of the BNF in Subclause 6.3.2 may be found in OGC document 02-059,
Filter Encoding Implementation Specification. The intent of the XML encoding of the OGC common
query language is that it be easily parsable using readily available XML parsers and be easily
translatable into a target predicate language such as a SQL where clause or an Xquery predicate.

6.2.5.2 Provider functional extensibility

One feature of the OGC common query language and the XML implementation is that the predicate
language is functionally extensible. This means that functions may be added to the filter predicate
language without having to change the underlying schema. The relevant schema fragment from 02-
059 is:

<xsd:element name="Function"
 type="ogc:FunctionType"
 substitutionGroup="ogc:expression"/>
<xsd:complexType name="FunctionType">
 <xsd:complexContent>
 <xsd:extension base="ogc:ExpressionType">
 <xsd:sequence>
 <xsd:element ref="ogc:expression"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

According to the schema fragment, any function may added to the filter predicate language simply by
specifying its name and including zero or more ogc expressions as content of the <Function>
element which represent the arguments of the function. The following example shows how a function
may be called using the filter syntax:

<Function name=”MAX”>
 <PropertyName>DEPTH</PropertyName>
</Function>

In this example, the MAX() function is invoked to find the maximum value of the property DEPTH.

Any function may be called using the filter syntax as long as the function is advertised in the filter
capabilities section (Clause 16 of OGC 02-059) of an OGC capabilities document.

OGC 04-021r3

18 © OGC 2005 – All rights reserved

6.2.5.3 Precedence

The XML notation does not provide parentheses to indicate operator precedence as specified in the
BNF. The Filter Specification uses the nested structure of the XML notation to indicate this
relationship.

In this example, a more complex scalar predicate is encoded using the logical operators AND and
OR. The example is equivalent to the expression:

((FIELD1=10 OR FIELD1=20) AND (STATUS="VALID").
<Filter xmlns=“http://http://www.opengis.net/ogc”
 xmlns:foo=“http://foo/”>
 <And>
 <Or>
 <PropertyIsEqualTo>
 <PropertyName>foo:FIELD1</PropertyName>
 <Literal>10</Literal>
 </PropertyIsEqualTo>
 <PropertyIsEqualTo>
 <PropertyName>foo:FIELD1</PropertyName>
 <Literal>20</Literal>
 </PropertyIsEqualTo>
 </Or>
 <PropertyIsEqualTo>
 <PropertyName>foo:STATUS</PropertyName>
 <Literal>VALID</Literal>
 </PropertyIsEqualTo>
 </And>
</Filter>

6.2.5.4 Tight and loose queries

The following examples show the implementation of tight and loose queries using the Filter
Grammer.2 In both cases the query is directed to a federation of image catalogs that are compliant to
an application profile where an optional searchable attribute “cloudcover” is defined as the percentage
of the target obscured by clouds.

 In Case 1 the investigator wants to get only images he is sure he can use so he requests only images
where the cloud cover is less than 5 percent. This is the normal case for querying known schema.

<ogc:Filter xmlns:ogc="http://http://www.opengis.net/ogc">
 <ogc:PropertyIsLessThan>
 <ogc:PropertyName>cloudcover</ogc:PropertyName>
 <ogc:Literal>5</ogc:Literal>
 </ogc:PropertyIsLessThan>
</ogc:Filter>

In Case 2 the investigator is aware that 5% cloud cover is very rare over the target area but he
requires only images with less than 5% cloud cover. In this case he wants any images he might be
able to use so he requests images which meets his criteria and images where cloud cover in unknown
because the catalogue has chosen not to include cloudcover in its searchable attribute set.

<ogc:Filter xmlns:ogc="http://http://www.opengis.net/ogc">

2 This capability is included in version 1.1 of the OGC Filter Specification which is currently under development

OGC 04-021r3

© OGC 2005 – All rights reserved 19

 <ogc:Or>
 <ogc:PropertyIsLessThan>
 <ogc:PropertyName>cloudcover</ogc:PropertyName>
 <ogc:Literal>50</ogc:Literal>
 </ogc:PropertyIsLessThan>
 <ogc:PropertyValueDoesNotExist>
 <ogc:PropertyName>cloudcover</ogc:PropertyName>
 </ogc:PropertValueDoesNotExist>
 </ogc:Or>
</ogc:Filter>

6.3 Core catalogue schema

6.3.1 Introduction

Metadata structures, relationships, and definitions -- known as conceptual schemas -- exist for
multiple information communities. For the purposes of interchange of information within an
information community, a metadata schema may be defined that provides a common vocabulary
which supports search, retrieval, display, and association between the description and the object being
described. Although this specification does not require the use of a specific schema, the adoption of a
given schema within an information-sharing community ensures the ability to communicate and
discover information.

The geomatics standardization activity under ISO Technical Committee 211 includes a formal
schema for geospatial metadata that is intended to apply to all types of information. This metadata
standard, ISO 19115:2003 includes a proposal for core metadata elements in common use. ISO Draft
Technical Specification 19139 defines a formal encoding and structure of ISO metadata for exchange.
Where a catalogue service advertises such application schemas, catalogues that handle geographic
dataset descriptions should conform to published metadata standards and encodings, e.g. ISO
19115:2003, and support XML encoding per ISO 19139 or profiles thereof. Service metadata
elements should be consistent with ISO 19119.

6.3.2 Core queryable properties

The goal of defining core queryable properties is to enable simple cross-profile discovery, where the
same queries can be executed against any catalogue service without modification and without detailed
knowledge of the catalogue's information model. This requires a set of general metadata properties
that can be used to characterise any resource. The Binding profile must further specify the ID based
on the native platform ID types. Binding protocols and application profiles should realize these
abstract queryables in their core queryable schemas

Application Profiles may choose to use a single <comma separated list> for a compound datatype or
may label each sub-element for clarity and order flexibility.

The current list is shown in Tables 1, 2 and 3.

OGC 04-021r3

20 © OGC 2005 – All rights reserved

Table 1 — Common queryable elements

Name Definition Data type

Subject
a
 The topic of the content of the resource

 b
 CharacterString

Title
a
 A name given to the resource CharacterString

Abstract
a
 A summary of the content of the resource CharacterString

AnyText A target for full-text search of character data types in a catalogue CharacterString

Format
a
 The physical or digital manifestation of the resource Codelist:

application/xml,
text/html, text/plain

Identifier
 a

 An unambiguous reference to the resource within a given context Identifier

Modified
 c

 Date on which the resource was last changed Date-8601

Type
 a

 The nature or genre of the content of the resource. Type can include
general categories, genres or aggregation levels of content.

Codelist: Dataset,
DatasetCollection,
Service

BoundingBox

d

A bounding box for identifying a geographic area of interest BoundingBox, See Table
2

CRS Coordinate Reference System (Authority and ID) for the
BoundingBox

Identifier
 e

Association Complete statement of a one-to-one relationship Association, See Table 3
a Dublin Core Metadata Element Set, version 1.1:ISO Standard 15836-2003 (February 2003)

b Typically, a Subject will be expressed as keywords, key phrases or classification codes that describe a topic of the
resource. Recommended best practice is to select a value from a controlled vocabulary or formal classification scheme.

c DCMI metadata term <http://dublincore.org/documents/dcmi-terms/>.

d Same semantics as EX_GeographicBoundingBoxclass in ISO 19115.

e If not supplied, the BoundingBox CRS is a Geographic CRS with the Greenwich prime meridian.

Table 2 — Composition of compound element “BoundingBox”

Name Definition Data type

WestBoundLongitude Western-most coordinate of the limit of the dataset extent, expressed in
longitude in decimal degrees (positive east)

numeric

SouthBoundLatitude Southern-most coordinate of the limit of the dataset extent, expressed in
latitude in decimal degrees (positive north)

numeric

EastBoundLongitude Eastern-most coordinate of the limit of the dataset extent, expressed in
longitude in decimal degrees (positive east)

numeric

NorthBoundLatitude Northern-most, coordinate of the limit of the dataset extent, expressed
in latitude in decimal degrees (positive north)

numeric

OGC 04-021r3

© OGC 2005 – All rights reserved 21

Table 3 — Composition of compound element “Association”

Name Definition Data type

Target Referenced resource Identifier
Source Referencing resource Identifier
Relation The name of the description of the relationship CharacterString or Identifier

6.3.3 Core returnable properties

A set of core properties returned from a metadata search is encouraged to permit the minimal
implementation of a catalogue service independent of a companion application profile and to permit
the use of metadata returned from different systems and protocol bindings. The core metadata is
returned as a request for the Common Element Set. The Common Element Set is a new group of
public metadata elements, expressed using the nomenclature and syntax of Dublin Core Metadata,
ISO 15836, but including proper qualifiers to disambiguate certain fields of information. Table 4
provides some interpretation of Dublin Core elements and qualifiers in the context of metadata for
geospatial data and services.

OGC 04-021r3

22 © OGC 2005 – All rights reserved

Table 4 — List of common returnable properties

Dublin Core
metadata

element name

Term used in OGC
queryables

Description
(“Resource” means the thing being described in the metadata)

dc:title Title A name given to the resource. Also known as “Name”.
dc:creator An entity primarily responsible for making the content of the resource.

dc:subject Subject A topic of the content of the resource. This is a place where a Topic
Category or other taxonomy could be applied.

dct:abstract Abstract An account of the content of the resource. This is also known as the
“Abstract” in other aspects of OGC, FGDC, and ISO metadata.

dc:publisher An entity responsible for making the resource available. This would
equate to the Distributor in ISO and FGDC metadata.

dc:contributor An entity responsible for making contributions to the content of the
resource.

dc:date Modified A date of a creation or update event of the metadata resource.

dc:type Type The nature or genre of the content of the resource.

dc:format Format The physical or digital manifestation of the resource.

dc:identifier Identifier An unambiguous reference to the resource within a given context.

dc:source Source A reference to a resource from which the present resource is derived.

dc:language A language of the intellectual content of the resource.

dc:relation Relation, Source,
Target

A reference to a related resource.

dct:spatial Envelope, CRS The spatial extent or scope of the content of the resource.

dc:rights Information about rights held in and over the resource.

The core elements are recommended for a response but do not need to be populated. The support for a
common syntax for the returnable properties as a “common” Summary Element Set is defined in the
protocol binding clauses. All data types for the above elements except for date are CharacterString
The following is an example of a ‘qualified’ core metadata set expressed in XML as per the guidance
of the Dublin Core Metadata Initiative.

<?xml version="1.0" encoding="UTF-8"?>
<cat:Record
 xmlns:cat="http://www.opengis.net/cat"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:dct="http://purl.org/dc/terms/"
 xmlns:csw="http://www.opengis.net/cat/csw"
 xmlns:iso19115TopicCategory="http://www.isotc211.org/"
 xmlns:dcmiBox="http://dublincore.org/documents/2000/07/11/dcmi-box/">

 <dc:creator>U.S. Geological Survey</dc:creator>
 <dc:creator>U.S. Geological Survey</dc:creator>
 <dc:contributor>State of Texas</dc:contributor>
 <dc:publisher>U.S. Geological Survey</dc:publisher>
 <dc:subject>Elevation, Hypsography, and Contours</dc:subject>

OGC 04-021r3

© OGC 2005 – All rights reserved 23

 <iso19115TopicCategory>Elevation</iso19115TopicCategory>
 <dct:abstract>Elevation data collected for the National Elevation
Dataset (NED) based on 30m horizontal and 15m vertical accuracy.
 </dct:abstract>
 <dc:identifier>f264-77d2-09ce-aa39-f0f0</dc:identifier>
 <dc:relation>g</dc:relation>
 <dc:source>h</dc:source>
 <dc:rights>i</dc:rights>
 <dc:format>j</dc:format>
 <dc:type>Service</dc:type>
 <dc:title>National Elevation Mapping Service for Texas</dc:title>
 <dct:modified>2004-03-01</dct:modified>
 <dct:spatial>
 <Box projection="EPSG:4326" name="Geographic">
 <northlimit>34.353</northlimit>
 <eastlimit>-96.223</eastlimit>
 <southlimit>28.229</southlimit>
 <westlimit>-108.44</westlimit>
 </Box>
 </dct:spatial>
 <dc:language>en</dc:language>
</cat:Record>

6.3.4 Information structure and semantics

Some services that implement OGC Implementation Specifications expect a rigid syntax for the
information resources to be returned, whereas others do not. This subclause allows an Application
Profile to be specific about what information content, syntax, and semantics are to be communicated
over the service. The following items should be addressed in an Application Profile.

a) Identify information resource types that can be requested. In the case of a catalogue service, the
information resources being described by the metadata may include geographic data, imagery,
services, controlled vocabularies, or schemas among a wide variety of possible types. This
subclause allows the community to specify or generalise the resource types being described in
metadata for their scope of application.

b) Identify a public reference for the information being returned by the service (e.g. ISO
19115:2003 “Geographic Information – Metadata “). Include any semantic resources including
data content model, dictionary, feature type catalog, code lists, authorities, taxonomies, etc.

c) Identify named groups of properties (element sets) that may be requested of the service (e.g.
“brief,” “summary,” or “full”) and the valid format (syntax) for each element set. Identify valid
schema(s) with respect to a given format to assist in the validation of response messages.

d) Specialise the core queryable properties list by making some optional queryable attributes
mandatory, deleting other optional attributes and adding queryabable attributes that should be
standard across all profile users

e) Optional mapping of queryable and retrievable properties against other public metadata models
or tags.

f) Expected response/results syntax and content Message syntax and schemas (e.g. brief/full,
individual elements).

OGC 04-021r3

24 © OGC 2005 – All rights reserved

7 General catalogue interface model

7.1 Introduction

The General Catalogue Interface Model provides a set of abstract service interfaces that support the
discovery, access, maintenance and organization of catalogues of geospatial information and related
resources. The interfaces specified are intended to allow users or application software to find
information that exists in multiple distributed computing environments, including the World Wide
Web (WWW) environment. All behaviour requiring sessions is expressed by a dynamic model of
conversation state and state transitions. The model expresses the states and messages that trigger the
changes in state.

Implementation design guidance is included in the protocol binding clauses of this specification. Each
protocol binding includes a mapping from the general interfaces, operations, and parameters specified
in this clause to the constructs available in a chosen protocol. Application profiles are intended to
further document implementation choices.

An Application Profile is predicated on the existence of one protocol binding in the base
specification. In the case of the Catalogue Services Specification, a profile could reference CORBA,
Z39.50, or HTTP protocol bindings. In most, but not all, protocol bindings, there may be restrictions
or refinements on implementation of the General Model agreed within an implementation community.
This subclause provides an overview of the portions of the General Catalogue Model that are realised
by Protocol Bindings and Application Profiles.

Figure 3 shows the Reference Architecture assumed for development of the OGC Catalogue
Interface. The architecture is a multi-tier arrangement of clients and servers. To provide a context, the
architecture shows more than just catalogue interfaces. The bold lines illustrate the scope of OGC
Catalogue and Features interfaces.

The Application Client shown in Figure 3 interfaces with the Catalogue Service using the OGC
Catalogue Interface. The Catalogue Service may draw on one of three sources to respond to the
Catalogue Service request: a Metadata Repository local to the Catalogue Service, a Resource service,
or another Catalogue Service,. The interface to the local Metadata Repository is internal to the
Catalogue Service. The interface to the Resource service can be a private or OGC Interface. The
interface between Catalogue Services is the OGC Catalogue Interface. In this case, an Catalogue
Service is acting as both a client and server. Data returned from an OGC Catalogue Service query is
processed by the requesting Catalogue Service to return the data appropriate to the original Catalogue
request. See Annex B for more about Distributed Searching.

OGC 04-021r3

© OGC 2005 – All rights reserved 25

describes

OGC service
interfaces

Catalogue
Service

Resource

OGC Catalogue
interface

Metadata
repository

Application
Client

Distributed
Search

Figure 3 — Reference model architecture

7.2 Interface definitions

7.2.1 Overview

Figure 4 is a general UML model of OGC catalogue service interfaces, in the form of a class diagram.
Operation signatures have been suppressed in this figure for simplicity but are described in detail
below. This model shows the Catalogue Service class plus five other classes with which that class are
associated. A Catalogue Service is a realization of an OGC Service. Each instance of the Catalogue
Service class is associated with two or more of these other classes, depending on the abilities included
in that service instance. Each of these other classes defines one or several related operations that can
be included in a Catalogue Service class instance. The Catalogue Service class directly includes only
the serviceTypeID attribute, with a fixed value for the service type.

OGC 04-021r3

26 © OGC 2005 – All rights reserved

Figure 4 — General OGC catalogue UML static model

In Figure 4 an instance of the CatalogueService type is a composite object that is a high-level
characterization of a catalogue service. Its constituent objects are themselves components that provide
functional behaviours to address particular areas of concern. A protocol binding may realise specific
configurations of these components to serve different purposes (e.g. a read-only catalogue for
discovery, a transactional catalogue for discovery and publication, or a ‘stateful’ catalogue that
supports session management).

The associated classes shown in this figure are mandatory or optional for implementation as indicated
by the association multiplicity in the UML diagram. Therefore, a compliant catalogue service shall
implement the OGC_Service, CatalogueService, and Discovery classes. An application profile or
protocol binding can implement additional classes associated with the Catalogue Service class. A
catalogue implementation shall recognise all operations defined within each included class, and shall
generate a message indicating when a particular operation is not implemented.

The protocol binding clauses of this specification provide more detail on the implementation of these
conceptual interfaces. For example, the names of the classes and operations in this general UML
model are changed in some of the protocol bindings. The names of some operation parameters are
also changed in some protocol bindings.

Application Profiles may further specialise the implementation of these interfaces and their
operations, including adding classes. In general, however, the interfaces and operations described

OGC 04-021r3

© OGC 2005 – All rights reserved 27

here shall have the same semantics and granularity of interaction regardless of the protocol binding
used.

The Catalogue Service class can be associated with the:

a) OGC_Service class, which provides the getCapabilities operation that retrieves catalogue service
metadata. This class is always realised by the Catalogue Service class, and is thus always
implemented by a Catalogue Service implementation.

b) Discovery class, which provides four operations for client discovery of resources registered in a
catalogue. This class has a required association from the Catalogue Service class, and is thus
always implemented by a Catalogue Service implementation. The “query” operation searches the
catalogued metadata and produces a result set containing references to all the resources that
satisfy the query. This operation optionally returns metadata for some or all of the found result
set. The “present” operation returns selected metadata for some or all of the resources referenced
in a specific previous result set. The describeRecordType operation retrieves the type definition
used by metadata of one or more registered resource types. The getDomain operation retrieves
information about the valid values of one or more named metadata properties.

c) Session class, which provides four operations for interactive sessions between a server and a
client. This class has an optional association from the Catalogue Service class; this interface is
implemented by the Catalogue Service implementation. The “initialise” operation initiates an
interactive session, and the “close” operation terminates a session. The “status” operation
retrieves the current status of a previously initiated operation, and the “cancel” operation
terminates a previously initiated operation.

d) Manager class, which provides two operations for inserting, updating, and deleting the metadata
by which resources are registered in a catalogue. This class has an optional association from the
Catalogue Service class; this interface is implemented by the Catalogue Service implementation.
The transaction operation performs a specified set of “insert”, “update”, and “delete” actions on
metadata items stored by a Catalogue Service implementation—this enables a “push” style of
publication. The harvestRecords operation requests the Catalogue Service to retrieve resource
metadata from a specified location, often on a regular basis—this behaviour reflects a ‘pull’ style
of publication.

e) Brokered Access class, which provides the “order” operation for ordering an identified resource
that is registered in a catalogue but is not directly accessible to the client. This class has an
optional association from the Catalogue Service class; this interface is implemented by the
Catalogue Service implementation.

The five classes that can be associated with the Catalogue Service class allow different OGC
catalogue services to provide significantly different abilities. A particular protocol binding is used by
each Application Profile and a particular set of these catalogue service classes is specified by each
Application Profile.

Each of the catalogue classes is described further in the following subclauses. These subclauses
discuss the operations and parameters of each operation in this general model. Specific protocol
bindings or application profiles can define additional parameters. For example, the HTTP Protocol
Binding adds the Service, Request, and Version parameters to all operation requests to be consistent
with other OGC Web Services.

OGC 04-021r3

28 © OGC 2005 – All rights reserved

7.2.2 Catalogue Service class

The Catalogue Service class provides the foundation for an OGC catalogue service. The Catalogue
Service class directly includes only the serviceTypeID attribute, as specified in Table 5. In most
cases, this attribute will not be directly visible to catalogue clients.

Table 5 — Attribute of Catalogue Service class

Name Definition Data type Multipicity

serviceTypeID Identification of catalogue service
type

URI, as specified in IETF
RFC 2396

One (Mandatory)

7.2.3 OGC_Service class

7.2.3.1 Introduction

The OGC_Service class allows clients to retrieve service metadata by providing the
getCapabilities operation. This class is always realised by the Catalogue Service class, and is
thus always implemented by a Catalogue Service instance.

NOTE This getCapabilities operation corresponds to CatalogueService.explainServer operation in OGC Catalogue
version 1.1.1.

7.2.3.2 getCapabilities operation

The getCapabilities operation is more completely specified in Figure 5.

Table 6 — Definition of getCapabilities operation

Definition Allows clients to retrieve service metadata describing Catalogue Service instance
Receives Optional identifier(s) of requested parts of the complete service metadata document
Returns Service metadata document for Catalogue Service instance. Some document contents

depend on the set of classes that are associated with the Catalogue Service class, as
defined by the specific protocol binding, and on other details of that protocol binding.
Other document contents depend on the types of data defined by the specific application
profile, and on other details of that profile.

Exceptions Invalid Parameter Value, Missing Parameter Value
Pre-conditions None
Post-conditions Service metadata document returned to requesting client, either complete or including

selected parts

Figure 5 provides a UML model of the OGC_Service class that shows the complete signature of the
getCapabilities operation, plus classes for the getCapabilities operation request and the
ServiceMetadata operation response. The abstract GetCapabilities and Service Metadata classes are
specialised by each service that uses the OGC_Service class. The detailed contents of both the
CatalogGetCapabilities and CatalogueServiceMetadata classes depend on the protocol binding, and
perhaps also on the Application Profile, and are thus not detailed here.

OGC 04-021r3

© OGC 2005 – All rights reserved 29

OGC_Service

+ getCapabilities(request : GetCapabilities) : ServiceMetadata

<<Interface>>

CatalogGetCapabilities

CatalogServiceMetadata
+ content [0..*] : MD_DataIdentification
+ queryLanguage [0..*] : TBD

 GetCapabilitiesRequest {Abstract}
+ section [0..*] : CharacterString

ServiceMetadata {Abstract}

+ version : CharacterString
+ updateSequence [0..1] : CharacterString

(from OWS Web Service)

Figure 5 — getCapabilities operation UML static model

The GetCapabilities operation request includes one “section” attribute listed and defined in Table 7.

Table 7 — UML attibute in getCapabilities operation request

Name Definition Data type and value Optionality and use

section Name of requested section in
complete service metadata
document

Character String type, not empty
Allowed values specified by each

Application Profile

Zero or more (Optional)
Return complete service metadata

document when omitted

The normal GetCapabilities operation response is a service metadata document that includes the
“section” attibutes listed and defined in Table 8, as selected by the “section” attribute in the operation
request.

OGC 04-021r3

30 © OGC 2005 – All rights reserved

Table 8 — UML attibutes in getCapabilities operation normal response

Name Definition Data type Optionality and use

ServiceIdentification Metadata about this specific
server

SV_ServiceIdentification
in ISO 19119

Zero or one (Optional)
Include when requested

ServiceProvider Metadata about the
organization operating this
server

SV_ ServiceProvider
in ISO 19119

Zero or one (Optional)
Include when requested

OperationMetadata Metadata about an operations
specified by this service,
including the URL(s) for
operation requests

SV_OperationMetadata
in ISO 19119

Zero or more (Optional)
Include when requested
Repeated for each

operation implemented
by this server

Content Metadata about a collection
or type of resource
cataloged by this server

MD_DataIdentification
in ISO 19115 (adapted)

Zero or more (Optional)
Include when requested
Repeated for each

collection and type of
resources cataloged

QueryLanguage Metadata about a query
lanquage supported by this
server, specifying the query
abilities implemented

Character string Zero or more (Optional)
Include when requested
Repeated for each query

lanquage implemented
by this server

NOTE 1 The term “Capabilities XML” document was previously used for what is here called “service metadata”
document. The term “service metadata” is now used because it is more descriptive and is compliant with OGC Abstract
Specification Topic 12 (ISO 19119).

NOTE 2 This general model assumes that operation failure will be signalled to the client in a manner specified by each
protocol binding.

7.2.4 Discovery class

7.2.4.1 Introduction

The Discovery class allows clients to discover resources registered in a catalogue, by providing four
operations named “query”, “present”, describeRecordType, and getDomain. This class has a required
association from the Catalogue Service class, and is thus always implemented by all Catalogue
Service implementations. The Session class can be included with the Discovery class, in associations
with the Catalogue Service class.

The “query” and “present” operations may be executed in a session or stateful context. If a session
context exists, the dynamic model in Subclause 7.4.3 defines the states of the session and the allowed
transitions between states. When the “query” and “present” state does not include a session between a
server and a client, any “memory or shared information” between the client and the server may be
based on private understandings or features available in the protocol binding. The
describeRecordType and getDomain operations do not require a session context. If a session context
exists, the simple request-response dynamic model shown in Subclause 7.4.4 would apply.

OGC 04-021r3

© OGC 2005 – All rights reserved 31

7.2.4.2 “query” operation

The “query” operation is more completely specified in Table 9. Figure 6 provides a UML model of
the “query” operation that shows the complete Discovery class with the QueryRequest and
QueryResponse classes and the classes they use. This UML diagram does not detail the
<<CodeList>> stereotyped classes named ResourceType, QueryScope, ResultType, ElementSet,
ResponseSchema, ReturnFormat, SortOrder, and QueryLanguage. The operation request includes the
attibutes and association role names listed and defined in Table 10 through Table 13. The normal
operation response includes the attibutes and association role names listed and defined in Table 14.

NOTE The query operation corresponds to Discovery.query in OGC Catalogue version 1.1.1.

Table 9 — Definition of “query” operation

Definition Allows clients to ask a catalogue to execute a query that searches the catalogued metadata
and produces a result set containing (zero or more) references to all the registered
resources that satisfy the query. The server may maintain the result set for subsequent
retrieval requests.

Receives Specifications of query constraints and of metadata to be returned
Returns Number of items in result set, and/or selected metadata for some or all of the result set. The

client can specify the maximum number of records for which metadata is returned. When
metadata return is requested, the service implementation shall first sort the result set as
specified by the client. Most of the metadata returned depends on the metadata requested
and on the types of data defined by the specific Application Profile.

Exceptions Missing Parameter Value, Invalid Parameter Value, Nonexistant collection or type
Pre-conditions The client knows the schema of the information model that the catalogue supports and can

thus form valid query expressions.
Post-conditions Response returned to requesting client, containing number of items in result set and/or

selected metadata for some or all of result set

OGC 04-021r3

32 © OGC 2005 – All rights reserved

Figure 6 — “query” operation UML static model

OGC 04-021r3

© OGC 2005 – All rights reserved 33

Table 10 — UML attributes and roles in “query” operation request

Name Definition Data type and value Optionality and use

sessionInfo The core set of parameters
required in each message
exchanged between a client and
server operating in a session
context, where these parameters
support message routing and
session management

SessionInfo, See Table
12

Zero or one (Conditional)
Include when sessions are

supported/required by
protocol binding and/or
result sets are persistent

queryExpression The query language and predicate
expressing query constraints

QueryExpression, See
Table 13

One (Mandatory)

collectionID Specifies the search space for this
query. Search space can be all
catalogue holdings, a previously
named result set, or a named
subspace of the catalogue
holdings

Character String type,
not empty

Specific values that may
be referenced are
application profile or
protocol binding
dependent

Zero or one (Conditional)
Include when required by

protocol binding,
otherwise optional

resourceType A catalogue may contain
references to several different
resource types. This parameter
provides for the selection of one
of those types for processing

CodeList type
a
 One (Mandatory)

queryScope Scope of this query. CodeList type with
allowed values of
“local” and
“distributed”

Zero or one (Optional)
Default value is“local”

hopCount Maximum number of message
hops before distributed search is
terminated. Each catalogue
decrements value by one when
request is received, and does not
forward request if hopCount=0.

Non-negative integer Zero or one (optional)
Default value is “2”
Included only when

queryScope has value
“distributed”

resultType Specifies how client wants result
set presented and the behaviour
of the catalogue as to when a
response is sent

CodeList Type
b
 Zero or one (Conditional)

Default values specified
by protocol binding or
application profile

ResponseElementsC Specifies set name or list of
metadata elements to be
returned in the context of a
specific metadata structure

Either a list of elements
as name/type pairs

OR
CodeList type named

ElementSet with
allowed values of
“brief,” “summary”
“full” and “browse”

Zero or one (Optional)
Default value is “brief”

OGC 04-021r3

34 © OGC 2005 – All rights reserved

Name Definition Data type and value Optionality and use

ResponseSchemaC The name of the “well-known” or
advertised (in the capabilities)
schema of the response

Code List type with one
mandatory value of
“OGCCORE” that
represents the core
catalogue schema.
Other values may be
defined by application
profiles. Examples of
such values might be:
“FGDC”, “ISO-
19119”, ISO-19139”,
ANZLIC

Zero or one (Optional). If
the parameter is not
specified then the default
value is “OGCCORE”.

sortSpec SortField provides sorting
information to the server for
formatting data returned to the
client

SortSpec, See Table 11

Zero or one (Optional)
Default is sorted on ID in

descending order

returnFormat Specifies format (MIME or
Internet media type) for
returning result set metadata

CodeList type
XML
HTML
TXT

Zero or one (Optional)
Default is “XML”
Include when results to be

returned

cursorPosition First result set resource to be
returned for this operation
request

Positive integer Zero or one (Optional)
Default is “1”
Include when results to be

returned
iteratorSize Specifies maximum number of

result set resources to be
returned

Non-negative integer Zero or one (Optional)
Default is “10”
Include when results to be

returned
responseHandler Network location to which the

response will be forwarded
when operation has been
completed, for asynchronour
requests

URL Zero or one (Optional)
If not included, process

request synchronously

a Values and defintitions of resourceType codes:

Data set – the lowest level packaging of Features that have been catalogued

Data set collection – a grouping of data sets that have commonality (ISO 19115: data set series)

Service – a set of interfaces that provide access to or operations on data (e.g. catalogue service)

b Values and definition of resultType codes and behaviours in session based environments:

validate - the QueryResponse is returned as soon as QueryRequest has been determined to be valid. Query processing
continues after the QueryResponse is returned.. Reasons for failure are provided in the diagnostic of QueryResponse.

resultSetID - the QueryResponse is returned as soon as the resultSetID is available and the query has completed processing.

hits- the QueryResponse is returned as soon as the query has completed processing and the number of hits has been
determined. Metadata records are not returned in the QueryResponse

results - the QueryResponse is returned as soon as the query has completed processing and the results have been formatted
for return. Metadata records are returned in the QueryResponse

OGC 04-021r3

© OGC 2005 – All rights reserved 35

Name Definition Data type and value Optionality and use

c The information model of this specification is the core catalogue schema defined in subclause 6.3. It represents the
common part of the information model which all application profiles must support. This specifiecation only supports
'OGCCORE' as the value of the 'responseSchema' parameter and a value of “brief”, “summary” or “full” for the value of the
‘responseElements’ parameter. Additional values for the responseSchema and responseElements parameters may be defined
by application profiles.

Table 11 — UML attibutes in SortSpec data type

Name Definition Data type and value Optionality and use

sortAttName Identifies the result set attribute
type to be sorted on

Character String Zero or one (Optional)
Default is ID as defined by

server
sortOrder How the attributes are to be

ordered by the sort
Code List type with

allowed values of
“ascending” and

“descending”

Zero or one (Optional)
Default is descending

Table 12 — UML attibutes in SessionInfo data type

Name Definition Data type and value Optionality and use

sessionID Unique identifier for this client/server session.
The value is assigned in response to an
“initiate” request. All further messages
within that session will contain that
identifier in the sessionID parameter.

CharacterString One (Mandatory)

destinationID Identifies the target for this message. It can
identify a server, service, or a process
within a service, or a list of services to
which messages may be sent in a distributed
environment.

CharacterString Zero or one
(Conditional)

As required by
protocol binding or
distributed search
environment

requestID Uniquely identifies this message. In the case
of a request message, this identifier can be
used to monitor and control the processing
resulting from the request message.

CharacterString Zero or one
(Optional)

additionalInfo This parameter provides a means of passing
additional data that may only be relevant
within the context of a specific message
exchange.

CharacterString Zero or one
(Optional)

Table 13 — UML attibutes in QueryExpression data type

Name Definition Data type and value Optionality

queryLanguage Specifies the predicate language and version
used in a query expression

Code List, known
values of
“OGC_Common”,
“Filter, Type-1”

One (Mandatory)

predicate The constraint expression for selecting entries
from a catalogue

CharacterString One (Mandatory)

OGC 04-021r3

36 © OGC 2005 – All rights reserved

Table 14 — UML attributes and role “query” operation normal response

Name Definition Data type and value Optionality and use

sessionInfo The core set of parameters required in
each message exchanged between a
client and server operating in a
session context, where these
parameters support message routing
and session management

SessionInfo, See Table
12

Zero or one (Conditional)
Include when sessions are

supported/required by
protocol bindingand/or
result sets are persistent

resultSetID Identifier of the Result Set generated
for the query. Further query, present
and cancel requests for this Result
Set will supply this value through the
collectionID parameter

Character String must
be defined by
protocol binding and
may be further
defined by
application profile

Zero or one (Conditional)
Include when sessions are

supported/required by
protocol binding and/or
result sets are persistent

resultType How the server responded to the query
request.

CodeList type with
allowed values of
“dataset”,
“datasetcollection”
and “service

Zero or one (Optional)

retrievedData A subset of the results of this query
request, organised and formatted as
specified in the presentation,
messageFormat, and sortField
parameters.

ReturnData
Set of resource

descriptions/records

Zero or one (Conditional)
Include when resultType =

Results

cursorPosition Last result set resource returned for this
operation request.

Positive integer Zero or one (Conditional)
Include when results

returned
hits Number of entries in the result set. Non-negative integer One (Mandatory)

NOTE This general model assumes that operation failure will be signalled to the client in a manner specified by each
protocol binding.

7.2.4.3 “present” operation

The “present” operation is more completely specified in Table 15. Figure 7 provides a UML model of
the “present” operation that shows the complete Discovery class with the PresentRequest and
PresentResponse classes and the class they use. This UML diagram does not detail the <<CodeList>>
stereotyped classes named PresentationSetType, ResponseSchema, ReturnFormat, and SortOrder.
The operation request includes the attibutes and association role name listed and defined in Table 16.
The normal operation response includes the attibutes and association role name listed and defined in
Table 17.

OGC 04-021r3

© OGC 2005 – All rights reserved 37

Table 15 — Definition of “present” operation

Definition Allows clients to retrieve selected metadata for some or all of the resources referenced in a
specific previous result set or a list of resource identifiers. This operation can be used
repetitively to retrieve more of the result set, each time retrieving metadata for a maximum
number of the resources listed, starting at a specified position.

Receives Specifications of sorting and of metadata to be returned, optionally including maximum
number of records for which metadata is to be returned

Returns Metadata document containing selected metadata for some or all of the specific result set,
after it is sorted as specified by the client. Most of the metadata returned depends on the
metadata requested and on the types of data defined by the specific Application Profile

Exceptions Missing Parameter Value, Invalid Parameter Value , Unrecognized collection identifier.
Pre-conditions Client has previously performed “search” operation, and the server has provided a result set

identifier that the client can use to perform the present operation.
Post-conditions Metadata document returned to requesting client, containing selected metadata for some or

all of sorted result set

Figure 7 — “present” operation UML static model

OGC 04-021r3

38 © OGC 2005 – All rights reserved

Table 16 — UML attributes and role in “present” operation request

Name Definition Data type and value Optionality and use

sessionInfo The core set of parameters
required in each message
exchanged between a client and
server operating in a session
context, where these parameters
support message routing and
session management

SessionInfo, See
Table 12

Zero or one (Conditional)
Include when sessions are

supported/required by
protocol bindingand/or
result sets are persistent

targetID Unique identifier of result set
from which resources to be
returned or of resources to be
returned

Either resultSetID OR
list of resource IDs

One (Mandatory)

responseElements Specifies set name or list of
metadata elements to be
returned in the context of a
specific metadata structure.

Either a list of
elements as
name/type pairs OR

Codelist type named
PresentationSetType
with allowed values
of “brief,”
“summary” “full”
and “browse”

Zero or one (Optional)
Default is “Brief”
Include when results

returned

responseSchema The name of the “well-known” or
advertised (in the capabilities)
schema of the response

Code List type with
allowed values of
“FGDC”,”ISO-
19115”, ISO19139”,
ANZLIC

Zero or one (Optional)

sortSpec SortField provides sorting
information to the server for
formatting data returned to the
client

SortSpec , See Table
11

Zero or one (Optional)
Default is sorted on ID in

descending order

returnFormat Specifies format (MIME or
Internet media type) for
returning result set metadata.

CodeList type with
allowed values of

XML
HTML
TXT

Zero or one (Optional)
Default is “XML”

cursorPosition First result set resource to be
returned for this operation
request.

Positive integer Zero or one (Optional)
Default is “1”

iteratorSize Specifies maximum number of
result set resources to be
returned.

Non-negative integer Zero or one (Optional)
Default is “10”

OGC 04-021r3

© OGC 2005 – All rights reserved 39

Table 17 — UML attributes and role in “present” operation normal response

Name Definition Data type and value Optionality and use

sessionInfo The core set of parameters required in
each message exchanged between a
client and server operating in a
session context, where these
parameters support message routing
and session management

SessionInfo, See
Table 12

Zero or one (Conditional)
Include when sessions are

supported/required by
protocol bindingand/or
result sets are persistent

retrievedData A subset of the results of this query
request, organised and formatted as
specified in the presentation,
messageFormat, and sortField
parameters.

Record type for the
catalogue or
collection.

One (Mandatory)

cursor Last result set resource returned for
this operation request.

Non-negative integer One (Mandatory)

hits Number of entries in the result set. Non-negative integer One (Mandatory)?

NOTE This general model assumes that operation failure will be signalled to the client in a manner specified by each
protocol binding

7.2.4.4 describeRecordType operation

The describeRecordType operation is more completely specified in Table 18. Figure 8 provides a
UML model of the describeRecordType operation that shows the complete Discovery class with the
DescribeRecordTypeRequest and DescribeRecordTypeResponse classes and the class they use. The
operation request includes the attibutes and association role name listed and defined in Table 19. The
normal operation response includes the attibutes and association role name listed and defined in Table
20.

Note The describeRecordType operation corresponds to CG_Discovery.explainCollection operation in OGC
Catalogue version 1.1.1.

Table 18 — Definition of describeRecordType operation

Definition Allows clients to retrieve type definition(s) used by metadata of one or more registered
resource types

Receives Optional identifications of requested record type(s) and of desired format
Returns Type definition document containing definition(s) of type(s) used by the metadata of one or

more registered resource types. This type definition shall include the structure (schema),
queryables, element sets, and formats of the metadata used for one or more registered
resource types. The contents of the result of this operation depend on the types of metadata
that can currently be used by registered resources.

Exceptions Missing Parameter Value, Invalid Parameter Value, Nonexistent type
Pre-conditions None
Post-conditions Type definition document returned to requesting client, containing definition(s) of type(s)

used by the metadata of one or more registered resource types

OGC 04-021r3

40 © OGC 2005 – All rights reserved

Figure 8 — describeRecordType operation UML static model

Table 19 — UML attributes and role in describeRecordType operation request

Name Definition Data type and value Optionality and use

sessionInfo The core set of parameters required
in each message exchanged
between a client and server
operating in a session context,
where these parameters support
message routing and session
management

SessionInfo, See
Table 12

Zero or one (Conditional)
Include when sessions are

supported/required by
protocol binding and/or
result sets are persistent

 typeName Name of metadata record type(s) for
which type information is to be
returned

Character String type
Values specified by

protocol binding

Zero or more (Optional)
Return all types when

omitted
schemaLanguage The schema language of the

response message
Character String type
Values specified by

protocol binding

Zero or one (Optional)
Use XML Schema when

omitted
outputFormat Document format for output Character String type

Value is MIME type
Zero or one (Optional)
Use application/xml when

omitted.

OGC 04-021r3

© OGC 2005 – All rights reserved 41

Table 20 — UML attributes and role in describeRecordType operation normal response

Name Definition Data type and value Optionality and use

sessionInfo The core set of parameters
required in each message
exchanged between a client and
server operating in a session
context, where these parameters
support message routing and
session management

SessionInfo, See Table
12

Zero or one (Conditional)
Include when sessions are

supported/required by
protocol binding and/or
result sets are persistent

typeName Name of metadata record typefor
which type information is
returned

Character String
Values are names of

metadata record types

One or more (Mandatory)
Include one for each record

type to be returned
schemaLanguage The schema language used to

describe the type
Character String. Non-

empty
Values specified by

protocol binding

One (Mandatory).

7.2.4.5 getDomain operation

The getDomain operation is more completely specified in Table 21. Figure 9 provides a UML model
of the getDomain operation that shows the complete Discovery class with the GetDomainRequest and
GetDomainResponse classes and the class they use. The operation request includes the attibutes listed
and defined in Table 22. The normal operation response includes the attibutes and association role
name listed and defined in Table 23.

Table 21 — Definition of getValueDomain operation

Definition Allows clients to retrieve the domain (allowed values) of a metadata property or request
parameter at the time the request is invoked. The returned information may be static
domain information, but may also be dynamic in that the allowed values are determined at
runtime. The operation does a best attempt at returning information about a metadata
property or request parameter.

Receives Names of one or more requested metadata properties or request parameters.
Returns Descriptions of domains of one or more requested metadata properties or request parameters
Exceptions Missing Parameter Value, Invalid Parameter Name
Pre-conditions None
Post-conditions Descriptions of domains returned to requesting client, containing the domain descriptions

for all the identified metadata properties or request parameters.

OGC 04-021r3

42 © OGC 2005 – All rights reserved

Figure 9 — getDomain operation UML static model

Table 22 — UML attibute in getDomain operation request

Name Definition Data type and value Optionality

parameterName The name of a metadata property
or request parameter

Character string. Non-empty
Allowed values specified by

protocol binding

One (Mandatory)

Table 23 — UML attributes and role in getValueDomain operation normal response

Name Definition Data type and value Optionality and use

parameterName Name or identifier of
metadata property or
request parameter

Character String type, not empty One (Mandatory)

listOfValues Unordered list of domain
values

Data type of list elements depends
on the data type of the parameter
whose domain is being described

Zero or one (Optional)
a

conceptualScheme Reference to an
authoritative list of
domain values for the
specified parameter

Data type of list of values in the
authoritative list depends on the
data type of the parameter whose
domain is being described

Zero or one (Optional)
 a

rangeOfValues Range of domain values
expressed by specifying
a minimum and
maximum value

Data type of the minimum and
maximum values depends on the
data type of the parameter whose
domain is being described

Zero or one (Optional)
 a

a For any single parameter, only one of listOfValues, conceptualScheme or rangeOfValues should be used to describe the
value domain.

OGC 04-021r3

© OGC 2005 – All rights reserved 43

7.2.5 Session class

7.2.5.1 Introduction

The Session class allows use of interactive sessions between a client and a server, by providing four
stateful operations named “initiate”, “close”, “status”, and “cancel”. This class encapsulates the
operations pertaining to session management. This class has an optional association from the
Catalogue Service class, in which case this class is implemented by the Catalogue Service
implementation.

NOTE The four Session operations are patterned after similar Z39.50 services.

7.2.5.2 “initialize” operation

The “initialize” operation is used to establish a session context with a Catalogue Service and is more
completely specified in Table 24. Figure 10 provides a UML model of the “initialize” operation that
shows the complete Session class with the InitiateRequest and InitiateResponse classes and the class
they use. The operation request includes the association role name listed and defined in Table 25. The
normal operation response includes the association role name listed and defined in Table 26.

Table 24 — Definition of “initiaize” operation

Definition Allows clients to initiate an interactive session with a server, and generates a unique
identifier used to track the session

Receives Identifier of operation request
Returns Data describing success or failure of this operation, plus session identifier when successful
Exceptions Missing Parameter Value, Invalid Parameter Value
Pre-conditions Existence of a Catalogue Service instance that supports sessions
Post-conditions Result document returned to requesting client

http://www.niso.org/standards/resources/Z39-50-2003.pdf

OGC 04-021r3

44 © OGC 2005 – All rights reserved

Figure 10 — “initialize” operation UML static model

Table 25 — UML role name in “initialize” operation request

Name Definition Data type Optionality and use

sessionInfo The core set of parameters required in each
message exchanged between a client and
server operating in a session context, where
these parameters support message routing
and session management

SessionInfo, See
Table 12

Zero or one (Conditional)
Include when sessions are

supported/required by
protocol binding and/or
result sets are persistent

Table 26 — UML role name in “initiaize” operation normal response

Name Definition Data type Optionality and use

sessionInfo The core set of parameters required in each
message exchanged between a client and
server operating in a session context, where
these parameters support message routing
and session management

SessionInfo, See
Table 12

Zero or one (Conditional)
Include when sessions are

supported/required by
protocol binding and/or
result sets are persistent

NOTE This general model assumes that operation failure will be signalled to the client in a manner specified by each
protocol binding.

7.2.5.3 “close” operation

The “close” operation is more completely specified in Table 27. Figure 11 provides a UML model of
the “close” operation that shows the complete Session class with the CloseRequest and
CloseResponse classes and the class they use. The operation request includes the association role
name listed and defined in Table 28. The normal operation response includes the association role
name listed and defined in Table 29.

OGC 04-021r3

© OGC 2005 – All rights reserved 45

Table 27 — Definition of “close” operation

Definition Allows clients to terminate an interactive session with a server
Receives Identifiers of session and of operation request
Returns Optional identities of session or request in acknowledgement.
Exceptions Missing Parameter Value, Invalid Parameter Value
Pre-conditions Client has previously initiated identified session
Post-conditions Optional result document returned to requesting client , and results sets created during the

session are deleted and other resources are released.

Figure 11 — “close” operation UML static model

Table 28 — UML role name in “close” operation request

Name Definition Data type Optionality and use

sessionInfo The core set of parameters required in each
message exchanged between a client and
server operating in a session context,
where these parameters support message
routing and session management

SessionInfo, See
Table 12

Zero or one (Conditional)
Include when sessions are

supported/required by
protocol binding and/or
result sets are persistent

OGC 04-021r3

46 © OGC 2005 – All rights reserved

Table 29 — UML role name in “close” operation normal response

Name Definition Data type Optionality and use

sessionInfo The core set of parameters required in each
message exchanged between a client and
server operating in a session context,
where these parameters support message
routing and session management

SessionInfo, See
Table 12

Zero or one (Conditional)
Include when sessions are

supported/required by
protocol binding and/or
result sets are persistent

NOTE This general model assumes that operation failure will be signalled to the client in a manner specified by each
protocol binding.

7.2.5.4 “status” operation

The “status” operation is more completely specified in Table 30. Figure 12 provides a UML model of
the “status” operation that shows the complete Session class with the StatusRequest and
StatusResponse classes and the class they use. The operation request includes the attribute and
association role name listed and defined in Table 31. The normal operation response includes the
attribute and association role name listed and defined in Table 32.

Table 30 — Definition of “status” operation

Definition Allows clients to retrieve current status of specified previously initiated operation in a
session, either currently running or completed

Receives Identifiers of session, previous operation request, and this operation request
Returns Session or request IDs
Exceptions Missing Parameter Value, Invalid Parameter Value
Pre-conditions Client has previously initiated identified session and operation
Post-conditions Result document returned to requesting client

OGC 04-021r3

© OGC 2005 – All rights reserved 47

Figure 12 — “status” operation UML static model

Table 31 — UML attribute and role in “status” operation request

Name Definition Data type and value Optionality and use

sessionInfo The core set of parameters required
in each message exchanged
between a client and server
operating in a session context,
where these parameters support
message routing and session
management

SessionInfo, See
Table 12

Zero or one (Conditional)
Include when sessions are

supported/required by
protocol binding and/or
result sets are persistent

requestIDtoStatus Unique requestID for operation
execution to be obtain status of

Integer
Value of request to

status

Zero or one (Conditional)
Include when sessions are

supported/required by
protocol binding and/or
result sets are persistent

OGC 04-021r3

48 © OGC 2005 – All rights reserved

Table 32 — UML attribute and role in “status” operation normal response

Name Definition Data type and value Optionality and use

sessionInfo The core set of parameters required in
each message exchanged between a
client and server operating in a session
context, where these parameters
support message routing and session
management

SessionInfo, See Table
12

Zero or one (Conditional)
Include when sessions are

supported/required by
protocol binding and/or
result sets are persistent

status Message containing the status
disposition

CharacterString
Values TBD

Zero or one (Conditional)
Include when sessions are

supported/required by
protocol binding and/or
result sets are persistent

NOTE This general model assumes that operation failure will be signalled to the client in a manner specified by each
protocol binding.

7.2.5.5 “cancel” operation

The “cancel” operation is more completely specified in Table 33. Figure 13 provides a UML model of
the “cancel” operation that shows the complete Session class with the CancelRequest and
CancelResponse classes and the class they use. The operation request includes the attibutes and
association role name listed and defined in Table 34. The normal operation response includes the
attibutes and association role name listed and defined in Table 35.

Table 33 — Definition of “cancel” operation

Definition Allows clients to cancel a previously initiated operation in a session, either currently
running or completed. Any partial or completed result set from that operation is discarded.

Receives Identifiers of session, previous operation request, and this operation request
Returns Data describing success or failure of this operation
Exceptions Missing Parameter Value, Invalid Parameter Value
Pre-conditions Client has previously initiated identified session and operation
Post-conditions Search request is cancelled, current result set erased (resources freed) unless otherwise

specified

OGC 04-021r3

© OGC 2005 – All rights reserved 49

Figure 13 — “cancel” operation UML static model

Table 34 — UML attributes and role in “cancel” operation request

Name Definition Data type and value Optionality and use

sessionInfo The core set of parameters required
in each message exchanged
between a client and server
operating in a session context,
where these parameters support
message routing and session
management

SessionInfo, See
Table 12

Zero or one (Conditional)
Include when sessions are

supported/required by
protocol binding and/or
result sets are persistent

requestIDtoCancel Unique requestID for operation
execution to be cancelled

Integer
ID of request to cancel

One (Mandatory)

freeResources If set to FALSE, any partial result
set is not deleted until the client
terminates the session.

Boolean Zero or one (Optional)
Free resources if omitted

OGC 04-021r3

50 © OGC 2005 – All rights reserved

Table 35 — UML attributes and role in “cancel” operation normal response

Name Definition Data type and value Optionality and use

sessionInfo The core set of parameters required
in each message exchanged
between a client and server
operating in a session context,
where these parameters support
message routing and session
management

SessionInfo, See Table
12

Zero or one (Conditional)
Include when sessions are

supported/required by
protocol binding and/or
result sets are persistent

cancelledRequest Unique requestID for operation that
was the target of the cancel request

Integer
ID of request cancelled

One (Mandatory)

diagnostic Text message describing the result of
the cancel request

CharacterString
Values TBD

Zero or one (Optional)

NOTE This general model assumes that operation failure will be signalled to the client in a manner specified by each
protocol binding.

7.2.6 Manager class

7.2.6.1 Introduction

The Manager class allows a client to insert, update and/or delete catalogue content. This class has an
optional association from the CatalogueService class; it is not required that a catalogue service
implement publishing functionality. Two operations are provided: “transaction” and harvestResource.

The “transaction” operation allows a client to formulate a transaction, and send it to the catalogue to
be processed. The transaction may contain metadata records and elements of the information model
that the catalogue understands. To use the transaction operation, the client must know something
about the information model that the catalogue implements.

The “harvestResource” operation, on the other hand, directs the catalogue to retrieve an accessible
metadata record and processes it for inclusion in the catalog, perhaps periodically re-fetching the
metadata records to refresh the information in the catalog. The client does not need to be aware of the
information model of the catalogue when using the “harvestResource” operation, since the catalogue
itself is doing the work required to process the information. The client is simply pointing to where the
metadata resource to be harvested is.

7.2.6.2 ”transaction” operation

The “transaction” operation is more completely specified in Table 36.

Figure 14 provides a UML model of the “transaction” operation that shows the complete Manager
class with the TransactionRequest and TransactionResponse classes and the classes they use. The
operation request includes the attributes listed and defined in Table 37. The normal operation
response includes the attributes listed and defined in Table 38.

OGC 04-021r3

© OGC 2005 – All rights reserved 51

Table 36 — Definition of “transaction” operation

Definition Allows clients to request a specified set of “insert”, “update”, and “delete” actions on the
content managed by a Catalogue Service instance.

Receives Specification of set of “insert”, “update”, and “delete” actions, plus an optional identifier. At
least one action shall be included.

Returns A summary of the transaction results that identifies newly created entries when applicable.
Most contents of the result depend on the types of data defined by the specific protocol
binding and Application Profile.

Exceptions Missing Parameter Value, Invalid Parameter Value, Transaction Failed
Pre-conditions User is authorized to modify catalogue contents
Post-conditions Catalogue entries are inserted, updated, and/or deleted as requested, and the integrity and

consistency of catalogue contents are preserved..

Figure 14 — “transaction” operation UML static model

OGC 04-021r3

52 © OGC 2005 – All rights reserved

Table 37 — UML attributes in “transaction” operation request

Name Definition Data type and value Optionality and use

insert The insert action is used to create new
metadata records in a catalog. Each insert
action may contain one or more new
metadata record instances that are to be
inserted into the catalog.

Any, a container for one or
more metadata record
instances

The schema for metadata
records is defined in the
protocol binding and may
be extended or redefined
in an Applcation Profile

Zero or more
(Optional)

Include when client
wishes to insert one
or more new
catalogue records

update The update action is used to modify existing
records in the catalog. The update action
contains a single new metadata record
instance and a predicate that defines the set
of catalogue records that will be modified.
The predicate may identify zero or more
records that are to be modified by the update
action. The encoding of the predicate is
specified in the protocol binding and may be
further qualified or extended in an
Application Profile.

Any, contains one instance
of a metadata record that
will be used to update
existing records in catalog

The schema of the record is
defined in the protocol
binding and may be
extended or redefined in
an Applcation Profile

Zero or more
(Optional)

Include when client
wishes to modify
one or more
existing catalogue
records

delete The delete action is used to remove one or
more records from a catalog. The records to
be removed are identified by specifying a
predicate with the operation. The predicate
may identify zero or more records that are to
be removed from the catalogue by the delete
action. The encoding of the predicate is
specified in the protocol binding and may be
further qualified or extended in an
Application Profile.

The delete action requires a
constraint predicate that
identifies the records in
the catalogue to be
removed

Zero or one
(Optional)

Include when client
wishes to delete
one or more
existing records
from a catalog

Table 38 — UML attributes in “transaction” operation normal response

Name Definition Data type and value Optionality
transaction

Summary
Summary of transaction results that includes

the numbers of records inserted, updated,
and deleted by the actions specified in the
transaction

TransactionSummaryType
Total number of records

inserted, updated, and
deleted (Integer)

One (Mandatory)

insert
Results

Brief representation of a record created by
the transaction, which must include the
record identifier

May contain a handle that relates newly
created record with the insert action that
created it

InsertResultType
Structure composed of brief

record type (application
profile or protocol binding
dependent) and an optional
handle

Zero or more
(Optional)

Include one for
each record
created

7.2.6.3 harvestResource operation

The harvestResource operation facilitates the retrieval of remote resources from a designated location
and provides for optional transactions on the local catalogue. The harvestResource operation is
described in Table 39.

OGC 04-021r3

© OGC 2005 – All rights reserved 53

Figure 15 provides a UML model of the “harvestResource” operation that shows the complete
Manager class with the HarvestResourceRequest and HarvestResourceResponse classes. The
operation request includes the attributes listed and defined in Table 40. The normal operation
response includes the attributes listed and defined in Table 41.

Table 39 — harvestResource operation

Definition Allows a user to request that a catalogue service attempt to retrieve a resource from a
specified location, and to optionally create one or more entries for that resource. A harvest
attempt may occur periodically if an interval is specified.

Receives A request message containing the source of the resource to be harvested
Returns An acknowledgement that a harvestRequest has been received and validated (if a

responseHandler is specified) or a summary of the harvest results that identifies newly
harvested records (if a responseHandler is not specified). Most contents of the result
depend on the types of data defined by the specific protocol binding and Application
Profile.

Exceptions InvalidRequest, ResourceNotFound
Pre-conditions The user is permitted to modify catalogue contents, unless the scope of the harvest does not

include an insert or update transaction
Post-conditions One or more records are harvested from a remote system and optionally new catalogue

entries are created or existing entries are updated, and the integrity and consistency of the
catalogue contents are preserved

Figure 15 — harvestResource operation UML static model

OGC 04-021r3

54 © OGC 2005 – All rights reserved

Table 40 — UML attributes in harvestResource operation request

Name Definition Data type and value Optionality and use

source Location from which resource to
be retrieved

URL One (Mandatory)

resourceType Identifier of type of resource to be
harvested, if known

URI Zero or one (Optional)
If the parameter is not

specified then the
catalogue should
determine the
resourceType from
the content of the
message

resourceFormat Identifier of media type indicating
the format of resource to be
harvested

CharacterString
Value must be a media type

supported by catalogue

One (Mandatory)

responseHandler Network location to which the
response will be forwarded when
operation has been completed,
for asynchronous requests

URL Zero or one (Optional)
If not included,

process request
synchronously

harvestInterval Time interval between harvest
attempts

Period
Using ISO 8601 Period

syntax (e.g., P6M indicates
an interval of six months)

Zero or one (Optional)
If the parameter is not

specified then the
catalogue should
harvest the resource
once in response to
the request.

Table 41 — UML attributes in harvestResource operation normal response

Name Definition Data type and value Optionality and use
acknowledge

ment
Summary of transaction results, with

contents depending on the protocol
binding and Application Profile (e.g.
total records affected by each action)

Any One (Mandatory)

insertResults Brief representation of a record created
by the transaction, which must include
the record identifier

May contain a handle that relates newly
created record with the insert statement
that created it

InsertResultType
A structure composed of

the brief record type
(application profile or
protocol binding
dependant) and an
optional handle

One or more
(Mandatory)

Include one for each
new record created
in catalog

NOTE This general model assumes that operation failure will be signalled to the client in a manner specified by each
protocol binding.

OGC 04-021r3

© OGC 2005 – All rights reserved 55

7.2.7 Brokered Access class

7.2.7.1 Introduction

The Brokered Access class allows clients to place an order for an identified registered resource, for
use when that resource is a data product that is not directly accessible to clients. This class has an
optional association from the Catalogue Service class, in which case this interface is implemented by
the Catalogue Service implementation.

Not all resources can be accessed directly. Brokered access provides for accessing resources that are
controlled. Controlled resources might include those for which one or more of the following applies:

a) A fee is charged

b) Have security limitations

c) Require additional processing

d) Are not available electronically

NOTE This class is included partially for backwards compatibility. This class may be deprecated in the future to
instead use a general framework for ordering more than catalogued data sets.

7.2.7.2 “order” operation

The single “order” operation is more completely specified in Table 42.

Figure 16 provides a UML model of the “order” operation that shows the complete BrokeredAccess
class with the OrderRequest and OrderResponse classes. The operation request includes the attibutes
listed and defined in Table 43. The normal operation response includes the attibutes listed and defined
in Table 44.

Table 42 — Definition of “order” operation

Definition Allows clients to order a specified product or resource, and negotiate order price and other
factors with ordering service

Receives Identifiers of desired product or resource of this order , user billing information and type of
order

Returns Order modifications, order estimates, order status
Exceptions Missing Parameter Value, Invalid Parameter Value, ResourceNotFound, InvalidUserID
Pre-conditions User registered with order service, resource identifiers known
Post-conditions Response returned to requesting client

OGC 04-021r3

56 © OGC 2005 – All rights reserved

Figure 16 — “order” operation UML static model

Table 43 — UML attributes in “order” operation request

Name Definition Data type and value Optionality

productID Unique identifier for specific
resource being ordered, taken
from catalogue metadata

Character String type, not empty One (Mandatory)

orderType Type of order request OrderType (CodeList), with
allowed values of:
orderEstimate,
orderQuoteAndSubmit,
orderMonitor, and orderCancel

One (Mandatory)

orderID Unique identifier for an order Character String type, not empty One (Mandatory)
orderInformation Specification of current order as

provided by the client
OrderSpecification data type, see

Annex C
One (Mandatory)

userInformation Needed requester identification, for
billing and delivery

UserInformation data type, see
Annex C

One (Mandatory)

OGC 04-021r3

© OGC 2005 – All rights reserved 57

Table 44 — UML attributes in “order” operation normal response

Name Definition Data type and value Optionality

productID Unique identifier for specific
resource being ordered

Character String type, not empty
Values from catalogue metadata

One (Mandatory)

orderType Type of order request OrderType (CodeList), with
allowed values of:

orderEstimate,
orderQuoteAndSubmit,
orderMonitor, and
orderCancel

One (Mandatory)

orderID Unique identifier for this order Character String type, not empty
Value assigned by client

One (Mandatory)

orderStatus Current status of the order CodeList data type
a
 One (Mandatory)

resourceEstimate Estimate of the resources needed to
process and/or deliver the
requested resource. Examples of
these resources are time until
delivery and cost.

Character String type, not empty
Values TBD

One (Mandatory)

orderInformation Specification of current order, as
provided by client or modified by
server during resource estimation

OrderSpecification data type,
see Annex C

One (Mandatory)

a Possible orderStatus values are orderBeingEstimated, orderEstimated, orderBeingQuoted, orderBeingProcessed,
orderCompleted, orderNotValid, and orderCancelled.

7.3 Protocol, interface and operation specializations

The catalogue service specification includes recognized Protocol Bindings, formerly known as
Implementation Profiles. Clause 11 defines the rules by which an Application Profile as a dependent
specification can be written. Protocol Bindings must implement the features present in the General
Model, described in Clause 7 following the optionality expressed there. Protocol Bindings interpret
the general model in the referenced implementation environment. These artifacts are discussed in
detail in Subclause 7.2 and the Protocol Binding clauses of this document.

7.4 Dynamic model

7.4.1 Introduction

The Catalogue Interface defines a stateful session (a stateless interface will be added in future
versions of this Implementation Specification). This subclause defines the states of the session and the
allowed transitions between the states. All other state transitions are disallowed and are consider
errors if exhibited by a server.

A physical server may support more than one session. Each of the sessions are independent when
viewed from the interface defined by this specification.

In the state models below, a transition is typically triggered by a request. Following the messaging
model introduced earlier, a Request is paired with a Response. Generally, a transaction in this model
is bounded by a request-response pair. Note that a transaction can be statused or cancelled while it is
active, i.e., before a response is issued. Once the server has sent a Response, the server treats the

OGC 04-021r3

58 © OGC 2005 – All rights reserved

receipt of a StatusRequest (or CancelRequest) as an error, to which it responds gracefully. Gracefully
means that the server should respond with a StatusResponse (or a CancelResponse) with a diagnostic
indicating that the RequestIDtoStatus (or the RequestIDtoCancel) is not recognised. The server shall
not change state in response to a StatusRequest (or CancelRequest) when the transaction is complete,
i.e., a Response has been sent.

7.4.2 UML state diagram notation

The state diagrams in the following subclauses use the UMLnotation. Figure 17 provides a summary
of the UML notation used in the following subclauses. Transitions are the paths between states. A
transition will occur if the event occurs and the guard condition is true. If a transition occurs, the
Action is completed prior to entering the next state.

Composite states contain multiple sub-states. Both the Sequential Composite State and the
Concurrent Composite State types are used in model for the Catalogue Interface. In a Sequential
Composite State only one sub-state is active at any given time. UML defines that when a transition
enters Concurrent Composite State all of the sub-states are active, although some of the sub-states
may remain in the Initial State. When exiting a composite state, all sub-states are exited as well.

State A State B

Event / Action Event / Action

Event /
 Action

State A State B

Event / Action Event / Action

State A Simple State

Event [guard condition] /
 Action

Transition

Initial State

Final State

Sequential, Composite State

Concurrent, Composite State

Figure 17 — UML state diagram notation

7.4.3 Catalogue server state machine

The top-level state diagram for the Catalogue Interface is shown in Figure 18. After a successful
initialization, the session will be in the Main state. The Main state is a concurrent, composite state,
consisting of four substates: Discovery, Access, Management, and Explain. While in the Main state,
Requests (other than TerminateRequest) may cause transitions internal to the substates. To determine
what transition occurs for the various Requests, the internals of the substates must be examined. (If a
server does not support interfaces associated with a substate, the substate is not present for sessions
with that server. For example, if the server does not support access, then the Access Substate is not
present.)

OGC 04-021r3

© OGC 2005 – All rights reserved 59

When a TerminateRequest is received, the session will transition from the Main state to the end state,
ending all processing associated with the substates of Main. The Catalogue Session state diagram
allows the server to end a session after a designated, configurable duration, i.e., timeout. When a
session times-out, the server closes the session without notification to the client. The server must be
prepared to respond to client requests for a session that has timed out by returning the paired response
containing a diagnostic indicating that the session does not exist.

OGC Catalog Session

Initializing
Sess ion

Discovery Access Management Explain

sess ion es tablished /
 CG_InitSess ionResponse

timeout /
 clean-up sess ion

CG_CancelReques t /
 clean-up sess ion,
 CG_CancelResponse,
 CG_InitSess ionResponse

CG_TerminateReques t /
 clean-up sess ion,
 CG_TerminateResponse

CG_InitSess ionReques t /

CG_StatusRequest /
 CG_StatusResponse

Main

Figure 18 — Catalogue session state diagram

7.4.4 Discovery state

Two views of the Discovery State diagram are provided: Figure 19 shows an abbreviated state
diagram, Figure 20 shows the complete Discovery state diagram. The abbreviated version is only
provided to assist the reader in understanding the complete diagram.

A session can be in the Discovery substate, once a successful initialization has occurred at which time
the Discovery substate will be in the initial state. Upon receiving any QueryRequest, the Discovery
state will transition to the Processing Query state. Transitions leaving the Processing Query state are
dependent upon the resultType that was requested in the QueryRequest that caused entry into the
Processing Query state. The four potential values for resultType are Validate, Result Set ID, Hits,
Results. If a PresentRequest is sent by the client prior to the query completing, the session will
transition to the Processing Query and Formatting Results state. The formatting of records and a
PresentResponse must occur causing a transition to the Processing Query state, prior to completing
the query and sending a QueryResponse, if necessary.

When the query completes and the resultType was not Results, the state will transition to the Idle
state, sending a QueryResponse unless the resultType was Validate, in which case a response has
already been sent. When the resultType was Results, the state will pass to the Formatting Records for
Query state, until the results are ready and a QueryResponse containing the records can be sent.
While in the Idle state, a PresentRequest may be sent by the client, in which case, if a result set is

OGC 04-021r3

60 © OGC 2005 – All rights reserved

present, the state will transition to the Formatting Records state, until the results are ready and a
QueryResponse containing the records can be sent. As will be seen in the next diagram, there need
not be a result set when the Discovery substate is Idle. If no result set is present while in the Idle state
and a PresentRequest is received, the state will not transition and a PresentResponse will be returned
with a diagnostic.

If a QueryRequest is received while in the Idle state, the result set for the session, if present, will be
reset, and the state will transition to the Processing Query state, creating a new result set. A catalogue
session can only have a single result set. (Future enhancements of the Catalogue Interface may allow
multiple result sets to exist in a session.) The result set is also deleted when a TerminateRequest is
received and the Catalogue Interface state, which includes the Discovery substate, transitions from
Main to the end state.

Figure 19 — Discovery state diagram (without Status and Cancel)

The complete Discovery state diagram adds StatusRequest and CancelRequest. The substates of
Discovery remain the same, but additional transitions are present. If a CancelRequest is received
while in the Processing Query state, the session will transition to the Idle state. Depending upon the
value of the freeResources parameter in the CancelRequest, a result set may or may not exist once in
the Idle State. Note that because the client sets the request ID in a request, the client knows the ID
that is used in a status or cancel request.

OGC 04-021r3

© OGC 2005 – All rights reserved 61

Figure 20 — Discovery state diagram (complete)

7.4.5 Access state diagram

The Access State Diagram is shown in Figure 21. A session can be in the Access substate, once a
successful initialization has occurred at which time the Access substate will be in the initial state.
Upon receiving a BrokeredAccessRequest, the Access state will transition to the Processing Request
State. During the Processing Request State, the state of an Order may be modified based on the
contents of the BrokeredAccessRequest. The state of the Order is a separate state machine; see Figure
22 and Figure 23 where order estimation and order submission are diagrammed. Transitions in the
Order state may occur independent of OGC Catalogue Interface requests, e.g., order fulfilled is a
transition that occurs without a BrokeredAccessRequest. The server may delete orders. The server
must be prepared to respond to client request for an order that has been deleted by returning the
paired response containing a diagnostic indicating that the order does not exist.

Once the processing of a BrokeredAccessRequest has completed a response is sent and the state
transitions to Idle. Transition out of the Idle state occurs upon the client sending a
BrokeredAccessRequest in which case the state transitions to Processing Request. When a
TerminateRequest is received, the Catalogue Interface state, which includes the Access substate,
transitions from Main to the end state also closing the Access state.

OGC 04-021r3

62 © OGC 2005 – All rights reserved

Process ing
Reques t

CG_BrokeredAccessReques t /

reques t complete /
 CG_BrokeredAccessResponse

CG_StatusRequest /
 CG_StatusResponse

Access

CG_CancelReques t /
 CG_CancelResponse,
 CG_BrokeredAccessResponse

Idle

CG_BrokeredAccessReques t /

Figure 21 — Access state diagram

Order Estimation

order
cancelled

order being
estimated

order
estimated

order not
valid

CG_BrokeredAccessRequest
 [RequestType = “ orderEstimate”] /
 CG_BrokeredAccessResponse

order not valid during estimation /

CG_BrokeredAccessRequest
 [RequestType = “ orderMonitor”] /
 CG_BrokeredAccessResponseCG_BrokeredAccessRequest

 [RequestType = “ orderCancel”] /
 CG_BrokeredAccessResponse

estimation complete /

order deleted/

order deleted/

order deleted/

CG_BrokeredAccessRequest
 [RequestType = “ orderMonitor”] /
 CG_BrokeredAccessResponse

CG_BrokeredAccessRequest
 [RequestType = “ orderMonitor”] /
 CG_BrokeredAccessResponse

CG_BrokeredAccessRequest
 [RequestType = “ orderMonitor”] /
 CG_BrokeredAccessResponse

Figure 22 — Order estimation state diagram

OGC 04-021r3

© OGC 2005 – All rights reserved 63

Order Submission

order
cancelled

order not
valid

CG_BrokeredAccessRequest
 [RequestType = “ orderQuoteandSubmit”] /
 CG_BrokeredAccessResponse

order not valid
during quotation /

CG_BrokeredAccessRequest
 [RequestType = “ orderMonitor”] /
 CG_BrokeredAccessResponse

CG_BrokeredAccessRequest
 [RequestType = “ orderCancel”] /
 CG_BrokeredAccessResponse

quotation
complete /

order deleted/

order deleted/

order deleted/

order
completed

order being
processed

order being
quoted

order fulfilled /

CG_BrokeredAccessRequest [RequestType = “ orderCancel],
 processing can be cancelled /
 CG_BrokeredAccessResponse

order not valid
during processing /

CG_BrokeredAccessRequest
 [RequestType = “ orderCancel”],
 processing cannot be cancelled /
 CG_BrokeredAccessResponse

CG_BrokeredAccessRequest
 [RequestType = “ orderMonitor”] /
 CG_BrokeredAccessResponse

CG_BrokeredAccessRequest
 [RequestType = “ orderMonitor”] /
 CG_BrokeredAccessResponse

CG_BrokeredAccessRequest
 [RequestType = “ orderMonitor”] /
 CG_BrokeredAccessResponse

CG_BrokeredAccessRequest
 [RequestType = “ orderMonitor”] /
 CG_BrokeredAccessResponse

Figure 23 — Order submit state diagram

7.4.6 Management state

The Management State Diagram is shown in Figure 24. A session can be in the Management substate,
once a successful initialization has occurred at which time the Management substate will be in the
initial state. The requests are independent and paired, i.e., the response upon leaving the Processing
Request state is determined by the request that caused the transition into the Processing Request State.

Once the processing of a request has completed a response is sent and the state transitions to Idle.
Transition out of the Idle state occurs upon the client sending a subsequent management request in
which case the state transitions to Processing Request. When a TerminateRequest is received, the
Catalogue Interface state, which includes the Management substate, transitions from Main to the end
state also closing the Management state.

OGC 04-021r3

64 © OGC 2005 – All rights reserved

Management

request complete /
 CG_CreateCatalogResponse or
 CG_CreateMetadataResponse or
 CG_UpdateCatalogResponse or
 CG_DeleteCatalogResponse

CG_StatusRequest /
 CG_StatusResponse

CG_CancelRequest /
 CG_CancelResponse,
 (CG_CreateCatalogResponse or
 CG_CreateMetadataResponse or
 CG_UpdateCatalogResponse or
 CG_DeleteCatalogResponse)

Processing
Request

CG_CreateCat alogRequest or
CG_CreateMetadat aRequest or
CG_UpdateCatalogRequest or
CG_DeleteCat alogRequest /

Idle

CG_CreateCatalogRequest or
CG_CreateMetadataRequest or
CG_UpdateCatalogRequest or
CG_DeleteCatalogRequest /

Figure 24 — Management state diagram

7.4.7 Explain state diagram

The Explain State Diagram is shown in Figure 25. A session can be in the Explain substate, once a
successful initialization has occurred at which time the Explain substate will be in the initial state.
The requests are independent and paired, i.e., the response upon leaving the Processing Request state
is determined by the request that caused the transition into the Processing Request State.

Once the processing of a request has completed a response is sent and the state transitions to Idle.
Transition out of the Idle state occurs upon the client sending a subsequent explain request in which
case the state transitions to Processing Request. When a TerminateRequest is received, the Catalogue
Interface state, which includes the Explain substate, transitions from Main to the end state also
closing the Explain state.

Process ing
Reques t

Explain

CG_ExplainServerReques t or
CG_ExplainCollectionReques t /

response ready /
CG_ExplainServerResponse or
CG_ExplainCollectionResponse

CG_cancelReques t /
CG_CancelResponse,
(CG_ExplainServerResponse or
CG_ExplainCollectionResponse)

CG_StatusRequest /
 CG_StatusResponse

Idle

CG_ExplainServerRequest or
CG_ExplainCollectionRequest /

Figure 25 — Explain state diagram

OGC 04-021r3

© OGC 2005 – All rights reserved 65

8 Z39.50 protocol binding

8.1 Architecture

8.1.1 Introduction

The Z39.50 Protocol binding uses a message-based client server architecture implemented using the
ANSI/NISO Z39.50 Application Service Definition and Protocol Specification [ISO 23950]. This
protocol binding maps each of the general model operations to a corresponding service specified in
the ANSI/NISO/ISO standard[http://lcweb.loc.gov/z3950/agency/document.html]. For compliance,
clients and servers must support Z39.50 Version 3.

At a minimum, Catalogue Services implemented using the Z39.50 protocol binding must support the
Discovery and Session operation groupings.

The Z39.50 Protocol binding offers the choice of the following transport mechanisms:

a) Directly over TCP where services are encoded using the Basic Encoding Rules (BER) [ISO
8825].

b) Z39.50 – Next Generation Search/Retrieve – Web Service (SRW) or its URL Access Mechanism
(SRU) Version 1.0 [http://lcweb.loc.gov/z3950/agency/zing/srw/index.html].

BER over TCP/IP is the historical implementation of Z39.50 transport, whereas SRW/SRU provides
a transition strategy from legacy Z39.50/BER to a Web Services interface.

8.1.2 Supported services

Each operation specified in this protocol binding corresponds to a Z39.50 Service, and each consists
of paired client requests and server responses in a session-based environment. It is possible to
implement “piggy-back present” wherein session facilities are not required. The Z39.50 Services used
in this protocol binding include the Init, Search, Present, Resource Control, Trigger Resource Control,
Sort, Extended Services and Close.

8.1.3 Core queryable elements

The OGC Catalogue Services specification requires abstract query of a small number of metadata
elements for cross-collection, cross-discipline search. These elements are described using the
following Use Attribute, Structure, and Relation mappings. Namespace prefixes denote Z39.50
profiles [http://lcweb.loc.gov/z3950/agency/profiles/profiles.html].

http://lcweb.loc.gov/z3950/agency/document.html
http://lcweb.loc.gov/z3950/agency/document.html

OGC 04-021r3

66 © OGC 2005 – All rights reserved

Table 45 — Correspondence of Z39.50 Attributes to general model equivalents

General model queryable name Use attribute Data type Valid relations

LatLonBoundingBox BoundingCoordinates
(geo:2060)

Coordinate String
(geo:201)

Overlaps
(geo:7)

CRS3 Any (bib1:1016) Word (bib-1:2), Word
List (bib-1:6)

Equal (bib-1:3)

Keyword ThemeKeyword (geo:2002),
Place Keyword (geo:2042)

Word List (bib-1:6) Equal (bib-1:3)

Title Title (bib-1:4) Word List (bib-1:6) Equal (bib-1:3)
Abstract Abstract (bib-1:62) Word List (bib-1:6) Equal (bib-1:3)
Format Geospatial Data Presentation

Form (geo:3805)
Word List (bib-1:6) Equal (bib-1:3)

DCPType Any (bib1:1016) Word (bib-1:2), Word
List (bib-1:6)

Equal (bib-1:3)

8.2 General model to Z39.50 protocol binding operations mapping

Table 46 provides a mapping between general model operations and the Z39.50 Protocol binding
services. The messages listed under the Z39.50 Protocol binding Service column are representative
operations from the ISO 23950 standard that provide appropriate functionality. Further interpretation
is provided through details in the footnotes. This table is provided to orient the programmer in
correspondence with the general model but does not provide parameter-level mapping. This table also
only depicts the mandatory (Discovery) catalogue services operations and does not declare
equivalence for the optional management and access operations in this version.

3 No specific Use Attribute exists in Z39.50 as a surrogate for Coordinate Reference System. To support this search, the
full-text search (Any) should be applied to include parts of the metdata document that would include authority or namespace
plus the value of the CRS, e.g. EPSG:4326). Servers should therefore support search for word/string matches including
colon as a recognised character.

ftp://ftp.loc.gov/pub/z3950/defs/bib1.txt
http://geochange.er.usgs.gov/pub/tools/metadata/standard/01.html#Place Keyword
http://geochange.er.usgs.gov/pub/tools/metadata/standard/08.html#Geospatial Data Presentation Form
http://geochange.er.usgs.gov/pub/tools/metadata/standard/08.html#Geospatial Data Presentation Form
ftp://ftp.loc.gov/pub/z3950/defs/bib1.txt

OGC 04-021r3

© OGC 2005 – All rights reserved 67

Table 46 — General Model to Z39.50 protocol binding operations mapping and obligation

General model operation Z39.50 BER equivalent SRW equivalent Obligation

Session.initialise initRequest1 Conditional, if
session used

Session.close close2 Conditional, if
session used

OGC_Service.getCapabilities searchRequest3, 4 explainRequest Conditional, if
service
supports
Explain

Session.status triggerResourceControlRequest Optional
Session.cancel triggerResourceControlRequest Optional
Discovery.query searchRequest3 and sortRequest SearchRetrieveRequest Mandatory
Discovery.present presentRequest SearchRetrieveRequest Mandatory
Discovery.describeRecordType SearchRequest6 Inferred by XML

namespace reference
Conditional, if

service
supports
Explain

BrokeredAccess.order ExtendedServicesRequest7 Optional

1 The following init Options are used in this protocol binding: search, present, sort, extended-services,
trigger-resource-control, named result sets, and resource-control.

2 Although Z39.50 permits both the client and server to initiate a Close request, for conformance with
the general model, only the client is permitted to initiate a Close request. In practice, a server may
terminate a session after a reasonable amount of idle client activity.

3 Note that the ResultType values of results and hits are supported in this protocol binding. The
ResultType values of result set ID and validate are unsupported.

4 The OGC_Service.getCapabilities is implemented using a searchRequest on the Explain Database
with ExplainCategory = TargetInfo and DatabaseInfo.

5 The CatalogEntryType and QueryScope parameters in the QueryRequest are implemented in the
Z39.50 Protocol binding as external elements of the SearchRequest.

6 The Discovery.describeRecordType is implemented using a searchRequest on the Explain Database
with ExplainCategory = TargetInfo and RetrievalRecordDetails.

7 Brokered Access is implemented in the Z39.50 Protocol binding using the Order Extended Service
defined in Subclause 8.3.3. The Order Extended Service uses the Z39.50 Extended Service
mechanism.

8.3 Z39.50 BER implementation notes

Z39.50 using Basic Encoding Rules over TCP is implemented using registered profiles listed by the
maintenance agency: [http://lcweb.loc.gov/z3950/agency/profiles/profiles.html]. These profiles
indicate required operations, sets of registered Use Attributes (search fields), Relations (operators),
Z39.50 datatypes, Element Sets (named sets of returned fields/elements), Preferred Syntaxes
(encoding format), and information sets (metadata standards and/or schemas returned). The most

OGC 04-021r3

68 © OGC 2005 – All rights reserved

relevant Community Profiles for the discovery of geospatial data resources are the Geospatial
Metadata Profile, GEO, Version 2.2, and the Catalogue Interoperability Profile, CIP, Version 2.4.

In the context of a managed session, the client transmits request messages to the server and the server
returns response messages to the client directly over TCP as specified in IETF RFC 1729: Using the
Z39.50 Information Retrieval Protocol in the Internet Environment [ftp://ftp.ietf.org/rfc/rfc1729.txt],
where all request and response messages are encoded using BER.

Figure 26 illustrates a typical set of transactions that may occur between a client and server, and
between the server and its interface to an external catalog. The client sends an initRequest message to
the server, the external system processes the initRequest message by initializing a session with the
client and the server returns an initResponse message to the client. This interaction establishes a
session in which all subsequent interactions occur.

Figure 26 — Z39.50 Protocol binding Sequence Diagram

Next the client constructs a query and sends the query in the searchRequest message to the server.
The server runs the search on the external catalogue system, and returns the requested results in the
searchResponse message. If the search was successful, a virtual result set is created and the client
may request records from the result set using the presentRequest message. In the presentRequest, the
client may request any contiguous set of records from the result set (e.g., records 10 through 20). The
server returns the records to the client in the presentResponse message. The client may continue to
perform additional searches and record retrievals, or may close the session with the server by sending
a close message. Optionally, the server may respond with a close message.

8.3.1 Message encoding

For Z39.50 over TCP, messages are encoded using the Basic Encoding Rules (BER) from the ASN.1
specification of Z39.50 available from http://lcweb.loc.gov/z39.50/agency/document.html .

initResponse

initRequest

Client

searchResponse

searchRequest

presentResponse

presentRequest

close

close

Initialise
session

Perform
search

Obtain
records

Close
session

Service

ftp://ftp.ietf.org/rfc/rfc1729.txt
http://lcweb.loc.gov/z39.50/agency/document.html

OGC 04-021r3

© OGC 2005 – All rights reserved 69

8.3.2 Additional search info

This subclause contains the parameters used in the "otherInfo" part of a Z39.50 searchRequest in
order to implement the CatalogEntryType and QueryScope parameters in the QueryRequest of the
General Model.

"otherInfo" in a SearchRequest may be used by the origin to specify the scope of a search, i.e.,
whether the search domain is local to a server or distributed to many servers. This is achieved using
the SearchControl EXTERNAL in otherInfo. SearchControl is defined below using ASN.1 notation.
If otherInfo is not provided, the type of item descriptors to be searched shall be derived from the
query definition and/ or the content of the collection and the default scope of a local search shall be
assumed.

The Search Control structure contains two items: itemDescriptorType which maps to
CatalogEntryType and searchScope which maps to QueryScope. The CIP-Release-B-APDU {Z39.50-
CIP-B-APDU 1} defines the following items:

SearchControl ::= SEQUENCE
 {
 itemDescriptorType [1] IMPLICIT INTEGER
 {
 collectionDescriptorSearch (1),
 productDescriptorSearch (3),
 serviceDescriptorSearch (4),
 catalogDescriptorSearch (5)
 }
 searchScope [2] IMPLICIT INTEGER
 {
 localSearch (1),
 wideSearch (2)
 }
 }

For further information, see Subclause 3.5.2.5 and Appendix E. 6.1. of Catalogue Interoperability
Protocol (CIP) Specification - Release B, CEOS/WGISS/PTT/CIP-B, June 1998, Issue 2.4,
Committee on Earth Observation Satellites (CEOS)
(ftp://harp.gsfc.nasa.gov/incoming/fed/cip_spec24.pdf).

8.3.3 Order extended service

The Order Extended Service, which is a custom Z39.50 Extended Service, allows an origin to order
products previously queried. The Order ES is presented in Table 47.

Further information describing the Order Extended Service can be found in Catalogue Interoperability
Protocol (CIP) Specification - Release B, CEOS/WGISS/PTT/CIP-B, June 1998, Issue 2.4,
Committee on Earth Observation Satellites (CEOS)
(ftp://harp.gsfc.nasa.gov/incoming/fed/cip_spec24.pdf).

ftp://harp.gsfc.nasa.gov/incoming/fed/cip_spec24.pdf
ftp://harp.gsfc.nasa.gov/incoming/fed/cip_spec24.pdf

OGC 04-021r3

70 © OGC 2005 – All rights reserved

Table 47 — Order extended service

ASN.1 definition Meaning

{Z39.50-CIP-Order-ES} DEFINITIONS ::=
BEGIN
IMPORTS OtherInformation, InternationalString, IntUnit
 FROM Z39.50-APDU-1995;

CIPOrder ::= CHOICE

{
esRequest [1] IMPLICIT SEQUENCE{
 toKeep [1] OriginPartToKeep,
 notToKeep [2] OriginPartNotToKeep},
taskPackage [2] IMPLICIT SEQUENCE{
 originPart [1] OriginPartToKeep,
 targetPart [2] TargetPart}
}

The Order Extended Serivce uses the Z39.50 Extended Servi ce Facility.

OriginPartToKeep ::= SEQUENCE
{
action [1] IMPLICIT INTEGER {
 orderEstimate (1),
 orderQuoteAndSubmit (2),
 orderMonitor (3),
 orderCancel (4)},
orderId [2] InternationalString OPTIONAL,
orderSpecification [3] OrderSpecification OPTIONAL,
statusUpdateOption [4] StatusUpdateOption OPTIONAL,
userInformation [5] UserInformation OPTIONAL,
otherInfo [6] OtherInformation OPTIONAL
}

The OriginPartToKeep contains the following:
action, which indicates the type of operation that is requested to be

performed for the order request. The supported operations are the
following:

orderEstimate, which is used to validate and obtain the estimate of an
order specification.

orderQuoteAndSubmit, which is used to quote4 and submit an order
specification.

orderMonitor, which is used to monitor the progress of the processing
of an order request.

orderCancel, which is used to cancel an order request.

4 The estimate for an order is approximate and non-binding, whereas the quote for an order is precise and binding.

OGC 04-021r3

© OGC 2005 – All rights reserved 71

ASN.1 definition Meaning

 orderId, which is the identifier of the order request as provided as input
by the origin.

orderSpecification, which is the specification of the order request as
provided as input by the origin.
Note that, in principle, the order request specified by the origin is
unstructured, i.e. it contains a list of item descriptor identifiers and the
order options related to them, but does not attempt to group them into
packages and delivery units.

statusUpdateOption, which indicates how the origin wishes to be kept
up to date as to the status of the order processing.

userInformation, which contains the personal user information as
provided as input by the origin.

otherInformation, which contains additional information not specified
by the CIP.

OriginPartNotToKeep ::= SEQUENCE
{
orderId [1] InternationalString OPTIONAL,
orderSpecification [2] OrderSpecification OPTIONAL,
userInformation [3] UserInformation OPTIONAL,
otherInfo [4] OtherInformation OPTIONAL
}

The OriginPartNotToKeep5 contains the following:
orderId, which is the identifier of the order request.
orderSpecification, which is the specification of the order request.
userInformation, which contains the personal user information.
otherInformation, which contains additional information not specified

by the CIP.

5 The definitions used in OriginPartNotToKeep are strictly identical to the ones provided in OriginPartToKeep. The former is used as input by the target (which may
overwrite some values as appropriate) for the definition of TargetPart, whereas the latter remains unmodified and is stored in the task package. This duplication therefore
allows the comparison of the order as specified by the origin (OriginPartToKeep) with the order as returned by the target (TargetPart).

OGC 04-021r3

72 © OGC 2005 – All rights reserved

ASN.1 definition Meaning
TargetPart ::= SEQUENCE

{
orderId [1] InternationalString,
orderSpecification [2] OrderSpecification OPTIONAL,
orderStatusInfo [3] OrderStatusInfo OPTIONAL,
userInformation [4] UserInformation OPTIONAL,
otherInfo [5] OtherInformation OPTIONAL
}

The TargetPart contains the following:
orderId, which is the identifier of the order request as provided as

output by the target.
orderSpecification, which is the specification of the order request as

provided as output by the target. This order specification provided by
the target overrides the specification provided as input by the origin in
originPartNotToKeep. It contains the item descriptors and order
options supplied as input, with any necessary modifications or
additions, in a structured manner, i.e. the item descriptors are grouped
into packages and delivery units.

orderStatusInfo, which indicates the status of the order request being
performed6.

userInformation, which contains the personal user information.
otherInfo, which contains additional information not specified by the

CIP
StatusUpdateOption ::= CHOICE

{
manual [1] NULL,
automatic [2] IMPLICIT INTEGER {
 eMail (1)}
}

The StatusUpdateOption provides options for how the user will
receive updates on the status of an extended service request. The
parameters are:

manual the user performs the status request.
automatic where the OHS filing the order provides status updates for

the user via email7.

6 Note the difference between the operationStatus, which is provided in the ES Response, and the orderStatusInfo, which is included in the task package. operationStatus
provides status information for the ES operation as a whole and indicates whether the ES operation has been performed successfully or not by the target. orderStatusInfo
provides status information for the order specified in the task package and indicates the state of the order or the process being performed for an order at the LOHS.
7 This could be expanded in the future to include, for example, automatic update via the origin.

OGC 04-021r3

© OGC 2005 – All rights reserved 73

ASN.1 definition Meaning
UserInformation ::= SEQUENCE

{
userId [1] InternationalString,
userName [2] InternationalString OPTIONAL,
userAddress [3] PostalAddress OPTIONAL,
telNumber [4] InternationalString OPTIONAL,
faxNumber [5] InternationalString OPTIONAL,
emailAddress [6] InternationalString OPTIONAL,
networkAddress [7] InternationalString
 OPTIONAL,
billing [8] Billing OPTIONAL
}

The Userinformation structure is presented by the origin part of a
request to a target. The information provided contains mandatory
fields (the user identifier) and optional fields. The target will allow the
Userinformation structure contents to be used as an input to the
delivery specification for elements which can be altered by the user.
The target will refer to the local database contents for the user and will
use the contents of the database, or the Userinformation structure
depending on the privilege of the user to offer alternative information.
The UserInformation structure consists of the following attributes:

userId the user identifier, the identifier which the user provides as part
of an InitialiseRequest.

userName the full name of the user.
userAddress a structure to hold the users address.
telNumber the users telephone number.
faxNumber the fax number for the user.
emailAddress the electronic mail address for the user.
networkAddress the network address to send files to electronically. For

Internet addresses, the address is written in URL format to allow
directories as well as domain’s to be specified.

billing the method of payment (and hence of billing) available for the
user.

OrderSpecification ::= SEQUENCE
{
orderingCentreId [1] InternationalString,
orderPrice [2] PriceInfo OPTIONAL,
orderDeliveryDate [3] InternationalString
 OPTIONAL,
orderCancellationDate [4] InternationalString OPTIONAL,
deliveryUnits [5] SEQUENCE OF DeliveryUnitSpec,
otherInfo [6] OtherInformation OPTIONAL
}

The OrderSpecification is the specification of the order request and
contains the following:

orderingCentreId, which identifies the ordering centre at which the
order will be performed.

orderPrice, which is the price for the whole order.
orderDeliveryDate, which is the latest date at which the order can be

expected to be delivered to the user.
orderCancellationDate, which is the latest date at which the user can

cancel the order.
deliveryUnits, which contains the definition of the delivery units which

compose the order.
otherInfo, which may be used to provide additional information not

specified by the CIP.

OGC 04-021r3

74 © OGC 2005 – All rights reserved

ASN.1 definition Meaning
DeliveryUnitSpec ::= SEQUENCE

{
deliveryUnitId [1] InternationalString OPTIONAL,
deliveryUnitPrice [2] PriceInfo
 OPTIONAL,
deliveryMethod [3] DeliveryMethod OPTIONAL,
billing [4] Billing OPTIONAL,
packages [5] SEQUENCE OF PackageSpec,
otherInfo [6] OtherInformation OPTIONAL
}

The DeliveryUnitSpec contains the specification of a single delivery
unit (i.e. part of an order that is delivered as a unit):

deliveryUnitId, which is the identifier of the delivery unit.
deliveryUnitPrice, which is the price of the delivery unit.
deliveryMethod, which is the method with which the delivery unit is

delivered to the user.
billing, which is the method with which the user is going to be billed.
packages, which contains the definition of the packages which compose

the delivery unit.
otherInfo, which may be used to provide additional information not

specified by the CIP.
DeliveryMethod ::= CHOICE

{
eMail [1] InternationalString,
ftp [2] FTPDelivery,
mail [3] PostalAddress,
otherInfo [4] OtherInformation
}

The DeliveryMethod defines the method with which a delivery unit is
delivered to the user and is one of the following:

eMail, which specifies the email address that the order will be delivered
to

ftp, which specifies that the order will be delivered via ftp, the type of
transfer and the ftp address

mail, which specifies that the order will be delivered via mail and
provides the postal address

otherInfo, which may be used to provide additional information (such
as an alternative delivery method) not specified by the CIP.

OGC 04-021r3

© OGC 2005 – All rights reserved 75

ASN.1 definition Meaning
FTPDelivery ::= SEQUENCE

{
transferDirection [1] IMPLICIT INTEGER
 {
 push (0),
 pull (1)
 },
ftpAddress [2] InternationalString
}

The FTPMethod defines the method with which a delivery unit is
delivered to the user and is one of the following:

transferDirection, which specifies that the order will be delivered via
e-mail.

ftpAddress, which specifies that the order will be delivered via ftp.

Billing ::= SEQUENCE
 {
 paymentMethod [1] PaymentMethod,
 customerReference [2] IMPLICIT CustomerReference,
 customerPONumber [3] IMPLICIT InternationalString

OPTIONAL
 }

The Billing structure8 contains attributes which describe the method by
which a user will pay for a service, together with supporting
information regarding the payment. The attributes are:

paymentMethod indicates the method of payment used.
customerReference is the customer provided reference for the order.
customerPONumber is the purchase order provided by the customer

for the order.

PaymentMethod ::= CHOICE
 {
 billInvoice [0] IMPLICIT NULL,
 prepay [1] IMPLICIT NULL,
 depositAccount [2] IMPLICIT NULL,
 privateKnown [3] IMPLICIT NULL,
 privateNotKnown [4] IMPLICIT EXTERNAL},
 }

The PaymentMethod structure contains attributes which describe the
method by which a user will pay for a service. The attributes are:

billInvoice indicates that an invoice is to be sent to the user (or payee).
prepay indicates that payment has already been agreed/performed.
depositAccount indicates that there is a deposit account for the

payment.
privateKnown indicates that the payment method is private and known.
privateNotKnown contain private unknown payment method

information.

8 The Billing structure used by the Order Extended Service is derived from the addlBilling structure defined in the Item Order ES.

OGC 04-021r3

76 © OGC 2005 – All rights reserved

ASN.1 definition Meaning

CustomerReference ::= SEQUENCE
 {
 customerId [1] InternationalString,
 accounts [2] SEQUENCE OF InternationalString
 }

The CustomerReference structure contains attributes which provide a
customer reference for the order. The attributes are:

customerId indicates the customer identifier at the LOHS.
accounts is the name of the account(s) available to apply charges to on

behalf of the user.

PostalAddress ::= SEQUENCE
{
streetAddress [1] InternationalString,
city [2] InternationalString,
state [3] InternationalString,
postalCode [4] InternationalString,
country [5] InternationalString
}

PostalAddress contains the postal address for a user and consists of:
streetAddress, which is the street name and number.
city, which is the name of the city (or nearest city).
state, which is the name of the state or county.
postalCode, which is the country specific postal code.
country, which is the name of the country.

PackageSpec ::= SEQUENCE
{
packageId [1] InternationalString OPTIONAL,
packagePrice [2] PriceInfo OPTIONAL,
package [3] CHOICE
 {
 predefinedPackage [1] PredefinedPackage,
 adHocPackage [2] AdHocPackage
 },
packageMedium [4] InternationalString,
packageKByteSise [5] INTEGER,
otherInfo [6] OtherInformation OPTIONAL
}

The PackageSpec contains the specification of a single package (i.e.
part of an order that is delivered on a single medium):

packageId, which is the identifier of the package.
packagePrice, which is the price of the package.
package, which contains the specification of the package. The package

is one of the following:
predefinedPackage, which is a package pre-defined by the data

provider.
adHocPackage, which is a package constructed ad-hoc by the data

provider to fulfil the order request.
packageMedium, which is the medium on which the package will be

delivered to the user.
packageKByteSise, which contains the sise of the package in

kilobytes.
otherInfo, which may be used to provide additional information not

specified by the CIP.

OGC 04-021r3

© OGC 2005 – All rights reserved 77

ASN.1 definition Meaning
PredefinedPackage ::= SEQUENCE

{
collectionId [1] InternationalString,
orderItems [2] SEQUENCE OF OrderItem,
otherInfo [3] OtherInformation OPTIONAL
}

A PredefinedPackage contains the definition of a package that is pre-
defined by the data provider. A PredefinedPackage is a collection that
is stored in advance (i.e. not to fulfil a specific order) on a medium
and is defined as follows:

collectionId, which is the identifier of the pre-packaged collection.
Must be formatted according to the naming convention for collection
identifiers specified in Appendix E.

orderItems, which contains the list of the order items contained in the
package.

otherInfo, which may be used to provide additional information not
specified by the CIP.

AdHocPackage ::= SEQUENCE OF OrderItem An AdHocPackage is a package that is defined ad-hoc by a data
provider to fulfil a specific order. An AdHocPackage contains the list
of the order items contained in the package.

OrderItem ::= SEQUENCE
{
productId [1] InternationalString,
productPrice [2] PriceInfo OPTIONAL,
productDeliveryOptions [3] ProductDeliveryOptions OPTIONAL,
processingOptions [5] ProcessingOptions
 OPTIONAL,
sceneSelectionOptions [6] SceneSelectionOptions OPTIONAL,
orderStatusInfo [7] OrderStatusInfo OPTIONAL,
otherInfo [8] OtherInformation OPTIONAL
}

The OrderItem contains the specification of a single order item (i.e. the
product that is ordered and that is to be delivered):

productId, which is the identifier of the ordered product.
productPrice, which is the price of the product.
productDeliveryOptions, which contains delivery options for the

product.
processingOptions, which specifies the processing options that are to

be applied on the product before delivery.
sceneSelectionOptions, which specifies the selection of the scene from

the whole product that is to be delivered.
orderStatusInfo, which indicates the status of the order item9.
otherInfo, which may be used to provide additional information not

specified by the CIP.

9 Note the difference between the orderStatusInfo in TargetPart, which indicates the state, or the process being performed for, an order as a whole at the LOHS, and the
orderStatusInfo in OrderItem, which indicates the state, or the process being performed for, a specific order item within an order at the LOHS.

OGC 04-021r3

78 © OGC 2005 – All rights reserved

ASN.1 definition Meaning
ProductDeliveryOptions ::= SEQUENCE

{
productByteSise [1] INTEGER
 OPTIONAL,
productFormat [2] InternationalString OPTIONAL,
productCompression [3] InternationalString OPTIONAL,
otherInfo [4] OtherInformation OPTIONAL
}

The ProductDeliveryOptions contains the specification of the options
regarding the delivery of a product:

productByteSise, which contains the sise of the product in bytes.
productFormat, which specifies the format of the product.
productCompression, which specifies the compression mechanism

applied to the product.
otherInfo, which may be used to provide additional information not

specified by the CIP.
ProcessingOptions ::= CHOICE

{
formattedProcessingOptions [1] EXTERNAL,
unformattedProcessingOptions [2] InternationalString
}

The ProcessingOptions specifies the processing options that are to be
applied on the product before delivery and is one of the following:

formattedProcessingOptions, which specifies the processing options
according to the format specified in [ORD].

unformattedProcessingOptions, which specifies the processing
options in a free-text form.

SceneSelectionOptions ::= CHOICE
{
formattedSceneSelectionOptions [1] EXTERNAL,
unformattedSceneSelectionOptions [2] InternationalString
}

The SceneSelectionOptions specifies the selection of the scene from
the whole product that is to be delivered and is one of the following:

formattedSceneSelectionOptions, which specifies the scene selection
options according to the format specified in [ORD].

unformattedSceneSelectionOptions, which specifies the scene
selection options in a free-text form.

PriceInfo ::= SEQUENCE
{
price [1] IntUnit,
priceExpirationDate [2] InternationalString,
additionalPriceInfo [3] InternationalString OPTIONAL
}

The PriceInfo contains the information related to the price of an item:
price, which contains the price of the item.
priceExpirationDate, which specifies the latest date at which the price

provided is valid (i.e. until the expiration date the origin is guaranteed
that the price will not vary. However, after the expiration date the
price may change).

additionalPriceInfo, which may be used to provide a textual
explanation when the price of a item differs from the sum of the
elements which compose this item (e.g. it can be used to explain why
the price of a delivery unit differs from the sum of the prices of the
packages which compose the delivery unit).

OGC 04-021r3

© OGC 2005 – All rights reserved 79

ASN.1 definition Meaning
OrderStatusInfo ::= SEQUENCE

{
orderState [1] CHOICE
 {
 staticState [1] StaticState,
 dynamicState [2] DynamicState
 },
additionalStatusInfo [2] InternationalString OPTIONAL
}

OrderStatusInfo describes the status of an extended service order
request. The different status values are:

orderState indicates the state of the order request or the processing
being performed for the order:

staticState indicates the state of the order when no order request is
being performed.

dynamicState indicates the processing that is currently performed for
an order request.

additionalStatusInfo contains additional status information provided
by the LOHS (e.g. to clarify the meaning of the orderState).

StaticState ::= [1] IMPLICIT INTEGER
{
orderNotValid (1),
orderEstimated (2),
orderCompleted (3)
}

StaticState describes the state of an order when no order request is
active. The possible states are:

orderNotValid indicates that the order has not been successfully
validated.

orderEstimated indicates that the order has been successfully validated
and that an estimate is provided.

orderCompleted indicates that the order has been completed.
DynamicState ::= [2] IMPLICIT INTEGER

{
orderBeingEstimated (4),
orderBeingQuoted (5),
orderBeingProcessed (6),
orderBeingCancelled (7),
orderBeingDeleted (8)
}

END

DynamicState describes the state of an order when an order request is
active and thus being process. The possible states are:

orderBeingEstimated the order is currently being estimated by the
target order handling system.

orderBeingQuoted the order is currently being quoted by the target
order handling system.

orderBeingProcessed the order is currently being processed by the
target order handling system.

orderBeingCancelled the order request which was previously sent to
the target is being cancelled.

orderBeingDeleted the order is being deleted.

OGC 04-021r3

80 © OGC 2005 – All rights reserved

8.4 Search/Retrieve Web Service (SRW/SRU) implementation notes

SRW is the “Search/Retrieve Web Service” variant of Z39.50 that implements a simplified, stateless
approach to catalogue services that preserves core functions of the Information retrieval protocol but
offers them over HTTP. SRW provides Simple Object Access Protocol (SOAP) access to post and
receive messages as formatted XML; SRU is a URL-based access method that employs keyword-
value pairs (KVP) using GET interfaces. SRU supports a simplified predicate language that can be
mapped to the OGC Common Query Language. SRW permits the use of the KVP query or Xpath
expressions for search over SOAP.

SRW defines a web service combining several Z39.50 features, most notably, the Search, Present, and
Sort Services. Additional features/services may be added later or defined later as new web services.
The Z39.50 concepts retained in SRW include result sets, abstract access points, abstract record
schemas, explain, and diagnostics. SRW features which differ from Z39.50 include the result set is
named by the server rather than the client, lack of connections or sessions, and the fact that a
service/server is synonymous with a database or target (services infer a single database). All SRW
records are retrieved according to a single record syntax (XML) and therefore the Z39.50 concept of
record syntax is not meaningful in SRW. The Z39.50 concepts of element set/specification and
schema are represented by XML schemas. Explain information identifies supported access points and
record schemas. Finally, XML is used in place of ASN.1 and BER.

Table 48 represents the request arguments for simplified search using SRW.

Table 48 — SearchRetrieve request parameters

Name Type Obligation Description

query xsi:string Only one of
xQuery or query
must be present

Contains a query expressed in CQL to be processed by
the server. This parameter may only be present if
'xQuery' is not present.

xQuery srw:xcqlType Only one of
xQuery or query
must be present

Contains a query expressed in XCQL to be processed
by the server. This parameter may only be present if
'query' is not present. This parameter is not valid for
SRU.

sortKeys xsi:string Optional Contains a sequence of sort keys to be applied to the
results, if any. The keys are expressed in the simple
string format for sort in SRW.

xSortKeys srw:xsortType Optional Contains a sequence of sort keys to be applied to the
results, if any. The keys are expressed in the XML
format for sort in SRW. This parameter is not valid
for SRU.

startRecord xsi:integer Optional The position within the sequence of matched records
of the first record to be returned. The first position in
the sequence is 1. The value supplied must be
greater than 0. Default value if not supplied is 1.

maximumRecords xsi:integer Optional The number of records requested to be returned. The
value must be 0 or greater. Default value if not
supplied is determined by the server.

recordSchema xsi:string Optional The schema in which any records should be returned.
The value is the URI identifer for the schema. The
default value if not supplied is determined by the
server.

http://lcweb.loc.gov/z3950/agency/zing/cql/cql-syntax.html
http://lcweb.loc.gov/z3950/agency/zing/cql/xcql.html
http://lcweb.loc.gov/z3950/agency/zing/srw/sort.html
http://lcweb.loc.gov/z3950/agency/zing/srw/sort.html#xSort
http://lcweb.loc.gov/z3950/agency/zing/srw/splain-doc.html#maximumRecords
http://lcweb.loc.gov/z3950/agency/zing/srw/splain-doc.html#defaultSchema
http://lcweb.loc.gov/z3950/agency/zing/srw/splain-doc.html#defaultSchema

OGC 04-021r3

© OGC 2005 – All rights reserved 81

Table 49 — SearchRetrieve response parameters

Name Type Obligation Description

numberOfRecords xsi:integer Mandatory The number of records matched by the query. If the query
fails this will be 0.

resultSetId xsi:string Optional The identifier for a result set that was created through the
execution of the query.

resultSetIdleTime xsi:integer Optional The number of seconds in which the created result set will
be destroyed. The result set may be destroyed before this
by the server.

records array of
records

Optional A sequence of records matched by the query, or surrogate
diagnostics.

diagnostics array of
diagnostics

Optional A sequence of non surrogate diagnostics generated during
execution.

nextRecordPosition xsi:integer Optional The next position within the result set after the final record
returned. If there are no remaining records, this value will
be 0.

echoedRequest xsi:string Optional The request parameters echoed back to the client in a simple
XML form.

Explain functionality is further described in the SRW document.

9 CORBA/IIOP protocol binding

9.1 Architecture

This clause describes the CORBA protocol binding. The intention of the CORBA protocol binding is
to follow the General Model closely. This enables the building of lightweight bridges between the
CORBA protocol binding and the Z39.50 Protocol binding or the HTTP protocol binding. The
CORBA protocol binding is described in IDL (interface definition language) of OMG (the Object
Management Group). The interfaces follow the General Model as closely as possible. Table 50
provides a mapping between general model operations and the CORBA Protocol binding services.

9.1.1 Supported services

The core of the CORBA protocol binding consists of only one interface: CatalogServices. The
separate services of the General Model (Discovery, BrokeredAccess, Manager and Session) are
defined in separate interfaces to reflect the General Model. They are all inherited by the central
interface CatalogServices. At a minimum, Catalogue Services implemented using the CORBA
protocol binding must support the Discovery and Session interfaces as described in Table 50. The
Manager- and BrokeredAccess-interfaces are optional.

The operations of CatalogServices, without exception, take a request message as an input parameter
and return a response parameter. All messages are filled with standard or compound CORBA
structures. Name value pairs, an optional way to transfer meta information, are borrowed from the
OMG CORBA 2.3 Dynamic Any specification.

http://lcweb.loc.gov/z3950/agency/zing/srw/result-sets.html
http://lcweb.loc.gov/z3950/agency/zing/srw/result-sets.html#timeout
http://lcweb.loc.gov/z3950/agency/zing/srw/records.html
http://lcweb.loc.gov/z3950/agency/zing/srw/diagnostics.html
http://lcweb.loc.gov/z3950/agency/zing/srw/diagnostics.html
http://lcweb.loc.gov/z3950/agency/zing/srw/sru.html#echoedQuery

OGC 04-021r3

82 © OGC 2005 – All rights reserved

9.1.2 Core queryable elements

The OGC Catalogue Services specification requires an abstract query of a small number of metadata
elements for cross-collection, cross-discipline search (see Core queryable properties).

9.2 Content types (Catalogue entry types)

The content types define the type of resources a catalogue can contain (parameter "ContentType" in
the minimal OGC model). In the former Catalogue Service version the allowed values for this
parameter were restricted to: 'product, collection, catalog, service'. Now we have 'product' (maps to
'dataset' in the general model), 'collection' (maps to 'datasetcollection' in the general model), 'service'
(as in the general model)

9.3 Supported query languages

The CORBA protocol binding supports the following query languages:

c) CQL (Common Query Language)10 (mandatory)

d) OGC Filter Encoding11 (optional)

e) Z39.50 Type-1 (optional)

f) SQL3_SimpleFeature (optional)

9.4 Result set encodings

9.4.1 XML

The default encoding for returning results is XML. The General Model clause describes the common
Summary set fields and XML syntax to be supported by all Protocol Bindings (see subclause 6.3).

9.4.2 Name-Value pairs

Additional, the CORBA profile adds a Name-Value (NV) entry to the message format enumeration
(see 9.6). Specifying NV lets the server return results as name-value pairs. Name-value pairs are
specified in the OMG CORBA 2.3 DynamicAny specification, but to be complete, the definition is
repeated below and in the IDL. Usage of NameValuePair specification from OMG CORBA 2.3
DynamicAny aligns Catalogue Services CORBA Profile with revision 1.1 (draft 3) of Simple Feature
Access for CORBA.

enum MessageFormat {XML, HTML, TXT, NV};
module DynamicAny
{
 struct NameValuePair
 {
 string name;
 any value;

10 Error! Reference source not found.
11 Version 1.0.0

OGC 04-021r3

© OGC 2005 – All rights reserved 83

 };

 typedef sequence<NameValuePair> NameValuePairSeq;
};

So if the server gives the results back as XML in the next example:

<?xml version="1.0"?>
<!DOCTYPE Metadata SYSTEM "min.dtd" >
<Metadata>
 <Title>Countries of Europe</Title>
 <Abstract>This dataset contains the countries of Europe</Abstract>
 <GeographicBoundingBox>
 <westBoundLongitude>-24.17</westBoundLongitude>
 <eastBoundLongitude>40.71</eastBoundLongitude>
 <northBoundLatitude>71.26</northBoundLatitude>
 <southBoundLatitude>27.63</southBoundLatitude>
 </GeographicBoundingBox>
</Metadata>

Name-value pair results are as follows:

id: Metadata
value: NameValuePair

Seq

id: Title
value: Countries

of Europe

id: Abstract
value: This

dataset ...

id: Geographic
BoundingBox

value: NameValuePair
Seq

id: westBound
Longitude

value: -24.17

Figure 27 — Name-value pair results

The advantage is that pure CORBA environments do not have to parse the XML to get the results.
They receive them in a suitable general structure. If the CORBA server is combined with another type
of client, e.g. a Web client, then probably XML (the default) will be preferred.

The any value member can contain any type: standard types as long, double, string, types as
NameValuePair or NameValuePairSeq (this gives the possibility to create recursive structures) or
user-defined types.

9.5 General model to CORBA protocol binding operations mapping

Table 50 provides a mapping between general model operations and the CORBA Protocol binding
services. The CORBA Protocol binding messages are defined in Subclause 9.6. The messages listed
under the CORBA Protocol binding Equivalent column are the operations that provide appropriate
functionality used in the CORBA interfaces. Further interpretation is provided through details in the
footnotes. This table is provided to orient the programmer in correspondence with the general model
but does not provide parameter-level mapping.

OGC 04-021r3

84 © OGC 2005 – All rights reserved

Table 50 — General Model to CORBA protocol binding operations mapping and obligation

General model operation CORBA protocol binding equivalent Obligation

Session.initialize OGC_StatefulService. initSession Conditional, if
session used

Session.close OGC_StatefulService. terminateSession2 Conditional, if
session used

OGC_Service.getCapabilities OGC_Service. explainServer Mandatory
Session.status OGC_StatefulService.status Optional
Session.cancel OGC_StatefulService.cancel Optional
Discovery.query CG_Discovery. query 3 Mandatory
Discovery.present CG_Discovery .present Mandatory
Discovery.describeRecordType CG_Discovery . explainCollection Conditional, if

service supports
Explain

Discovery.getDomain CG_Discovery.getDomain Conditional, if
service supports
getDomain

Manager.transaction CG_Manager. transaction Optional
Manager.harvestRecords -- --
BrokeredAccess.order CG_Access. brokeredAccess Optional

2 Although the CORBA protocol binding permits both the client and server to initiate a
terminateSession request, for conformance with the general model, only the client is permitted to
initiate a terminateSession request. In practice, a server may terminate a session after a reasonable
amount of idle client activity.

3 Note that the ResultType values “results”, “hits”, “resultSetID” and “validate” are supported in this
protocol binding.

9.6 Interface definition - IDL

9.6.1 Introduction

This subclause describes the CORBA IDL. It first describes enumerations and then structures, unions,
and messages, respectively. It concludes with a description of the CatalogServices interface, the core
of the profile, and other interfaces.

All enumerations, structures, unions, messages and interfaces are part of the OGC_CatalogService
module. Module names have to be harmonized across all OGC CORBA specifications and have to be
prefixed by opengis.org.

#pragma prefix "opengis.org"
module OGC_CatalogService
{
...
};

OGC 04-021r3

© OGC 2005 – All rights reserved 85

Throughout the module OGC_CatalogService the IDL types wstring and wchar are used instead of
string and char to allow usage of different character codesets (other than Unicode) for
internationalization (i18n).

In CORBA IDL type definitions for sequences containing different element datatypes are used to
avoid anonymous sequences in IDL mappings for some programming languages.

9.6.2 Enumerations

Enumerations can be modeled by a direct translation of all code-lists of the General Model. The
following enumerations are borrowed literally:

enum AttributeCategory {queriable, presentable, both};
enum CatalogEntryType {product, collection, service};
enum CharacterSet {ASCII, UniCode, ShiftJIS};
enum PredefinedPresentationType {full, summary, brief};
enum QueryLanguage {OGC_Common, OGC_Filter, Z3950_TypeOne
SQL3_SimpleFeature };
enum QueryScope {distributed, locale};
enum ResultType {validate, resultSetID, hits, results};
enum SortOrder {ascending, descending};
enum Status {success, successResultsAvailable, processingNormal,
processingQueued, processingPausedOrSuspended, failure,
failureAccessDenied};

Additional, the CORBA profile adds an NV entry to the message format enumeration (see 9.4.2):

enum MessageFormat {XML, HTML, TXT, NV};

9.6.3 Structures and unions

Most of the structures and unions from the General Model can be translated directly into CORBA
structs and unions. Here the collectionID of the general model is translated as follows:

union CollectionName
 switch(long)
 {
 case 1 : wstring collectionID;
 case 2 : wstring collectionName;
 };

A special capability is present in QueryExpression in the CORBA Profile that allows passing of
parameters that can't be converted to strings but must be bound to variables in string theQuery (e.g.
"?" in JDBC). For example, references or handles for metadata retrieved from related collections in
previous queries. queryParameters might contain a NameValuePairSeq or non ASCII XML Data.
The additional member aligns Catalogue Services query facilities with respective Simple Feature
Access for CORBA query facilities.

struct QueryExpression
{
 wstring theQuery;
 wstring theNamespace;
 QueryLanguage theLanguage;
 any queryParameters;

OGC 04-021r3

86 © OGC 2005 – All rights reserved

};

To allow for globally unique sessionID a long long (Long) is used as datatype instead of long
(Integer).

struct RequestID
{
 long long sessionID;
 long counter;
};
struct SortField
{
 wstring attributeName;
 SortOrder sortOrder;
};

The CORBA protocol binding specifies an any structure member for the retrievedData in a way that
strings (e.g. xml) or name-value pairs or sequences can be stored.

struct ReturnData
{
 MessageFormat encoding;
 any payload;
};

The responseElements in the general model specify a set name or a list of metadata elements to be
returned in the context of a specific metadata structure. In CORBA IDL this is specified by a union
which can represent a sequence of attribute names or alternative a PredefinedPresentationType.

typedef sequence<wstring> StringSeq;
union PresentationDescription
 switch(long)
 {
 case 1 : StringSeq attributes; // TupleType in GM
 case 2 : PredefinedPresentationType presentationType;
 };

The SchemeID structure uses a structure member Schema. This is in the CORBA profile defined as a
sequence of name-value pairs from the OMG CORBA 2.3 DynamicAny module. All names, types,
and used sequences can be specified in name-value pairs. A schema, tuple-type or a dictionary is not
needed here.

typedef DynamicAny::NameValuePairSeq Schema;
struct SchemaID
{
 wstring schemeName;
 Schema schema;
};

The getDomain operation in the general model specifies descriptions of domains of one or more
requested metadata properties or requested parameters in their responseElements which are
implemented as follows:

 // Enumeration for the type of the metadata property or request
parameter

OGC 04-021r3

© OGC 2005 – All rights reserved 87

enum DomainType
 { domainTypeString, domainTypeDate, domainTypeInteger, domainTypeReal,
 domainTypeSpatial };

 // Enumeration for the type how valid values can be described
enum DomainValuesType
 { valueRef, valueRange };

// valid range, composed of lower and upper boundary value
struct ValueRange
{
 wstring lowerValue;
 wstring upperValue;
};
typedef sequence<ValueRange> ValueRangeSeq;

// Definition of the real type by totalDigits and fractionDigits
 struct RealTypeDef
 {
 long totalDigits;
 long fractionDigits;
 };

// type definition of the metadata property or request parameter
union DomainDef
 switch(DomainType)
 {
 case domainTypeString : long length;
 case domainTypeDate : wstring dateFormat;
 case domainTypeInteger : long totalDigits;
 case domainTypeReal : CG_RealTypeDef realTypeDef;
 case domainTypeSpatial : long dimensions;
 };

// definition of valid values (range, value list) of the type
union DomainValueDef
 switch(DomainValuesType)
 {
 case valueRef : StringSeq valueList;
 case valueRange : ValueRangeSeq rangeList;
 };

// definition of domain values (typical value, valid values, value name,
value description) of the type
struct DomainValue
{
 wstring value;
 DomainValueDef valuesDef;
 wstring title;
 wstring description;
 wstring metadataURL;
};
typedef sequence<DomainValue> DomainValueSeq;

// Descriptions of domain of one requested metadata properties or request
parameter
struct Domain

OGC 04-021r3

88 © OGC 2005 – All rights reserved

{
 wstring attributeName;
 DomainDef domainDef;
 DomainValueSeq domainValue;
 };
 typedef sequence<Domain> DomainSeq;

9.6.4 Definitions for brokered access

The General Model defines some code-lists and structures for brokered access. These definitions are
directly translated into their CORBA counterparts:

enum BrokeredAccessRequestType {orderEstimate, orderQuoteAndSubmit,
 orderMonitor, orderCancel};
struct OrderItem
{
 // Note: datatypes not provided by GM
 any productID;
 any productPrice;
 any productDeliveryOptions;
 any processingOptions;
 any sceneSelectionOptions;
};
struct OrderSpecification
{
 // Note: datatypes not provided by GM
 any orderCentreID;
 any orderPrice;
 any orderDeliveryDate;
 any orderCancellationDate;
 any deliveryMethod;
 any package;
};
enum OrderStatus {orderBeingEstimated, orderEstimated,
 orderBeingQuoted, orderBeingProcessed,
 orderCompleted, orderNotValid, orderCancelled};
enum PackagingType {predefinedPackage, adhocPackage};
struct PackageSpecification
{
 // Note: datatypes not provided by GM
 any packageId;
 any packagePrice;
 PackagingType package;
 any packageMedium;
 long packageSize;
};
enum PaymentMethod {credit, cash, purchaseOrder};
enum StatusUpdateType {manual, automatic};
struct UserInformation
{
 wstring userName;
 wstring userAddress;
 wstring phoneNumber;
 wstring faxNumber;
 wstring emailAddress;
 wstring netAddress;

OGC 04-021r3

© OGC 2005 – All rights reserved 89

 PaymentMethod paymentMethod;
};

9.6.5 Capabilities

The capabilities in the General Model are designed with inheritance. In CORBA designing
capabilities as interfaces can reflect this, but this is not useful. Capabilities like messages (see below)
have to be transferred over the network. Therefore, they are defined as either type definitions or
structures.

typedef boolean AllSupportedRequest;
typedef boolean Defaults;
struct DefaultTimeOut
{
 unsigned long long timeOut;
 // used to be OGC_Basic::UomTime, but OGC_Basic is no longer maintained
as normative part of the Catalogue Services Specification
};
typedef boolean Explain;
struct Messaging
{
 CharacterSet characterSet;
 MessageFormat messageFormat;
};
struct Query
{
 wstring version;
 CharacterSet characterSet;
 QueryLanguage queryLanguage;
};
struct Session
{
 wstring language;
 wstring catalogSpecificationVersion;
 CharacterSet characterSet;
};
struct SoftwareInformation
{
 wstring vendor;
 wstring SVversionNumber;
 wstring IFversionNumber;
};
typedef sequence<CollectionName> SupportedCollections;

To be able to make a sequence of different capabilities, a union Capability is created, encompassing
all derived capabilities.

A union normally has a discriminator. This can be a long value, but this is generally not preferred
because you have to remember the value indicating the intended capability. Therefore, an
enumeration of capabilities is included in the CORBA profile.

enum CapabilityType
 { ctAllSupportedRequest, ctDefaults, ctDefaultTimeOut, ctExplain,
ctMessaging, ctQuery, ctSession, ctSoftwareInformation,
ctSupportedCollections
};

OGC 04-021r3

90 © OGC 2005 – All rights reserved

union Capability
 switch(CapabilityType)
 {
 case ctAllSupportedRequest : AllSupportedRequest
allSupportedRequest;
 case ctDefaults : Defaults defaults;
 case ctDefaultTimeOut : DefaultTimeOut timeOut;
 case ctExplain : Explain explain;
 case ctMessaging : Messaging messaging;
 case ctQuery : Query query;
 case ctSession : Session session;
 case ctSoftwareInformation : SoftwareInformation
softwareInformation;
 case ctSupportedCollections : SupportedCollections
supportedCollections;
 };

9.6.6 General messages

The General Model is a message-based model, where messages are designed in the form of a class
hierarchy. In CORBA IDL, the messages are translated as structs. Writing them in the form of
interfaces is not useful. In CORBA, the objects (instances of interfaces) stay on a remote server
machine and are referred to by a client machine. They are not transferred over the network. This is
definitely not the intention for messages.

All messages have the same form as the messages described in the General Model. However,
messages in the form of structs cannot inherit from each other in CORBA. Therefore the Message
class is also included in the CORBA profile and a member of all other messages, called 'base'.

struct Message
{
 long long sessionID;
 wstring destinationID;
 RequestID requestID;
 wstring additionalInfo;
};

All other messages, which in the General Model inherit from Message, have in the CORBA profile
the Message as a structure member. The next messages do not add extra structure members.
Alternatively, they might have been modeled by a typedef. But to be consistent with the rest of the
messages these message have base as a structure member.

Note that the response in the General Model also contains a string structure member diagnostic. This
parameter is not specified in the CORBA profile. Error handling will be handled by exceptions, the
standard CORBA facility. Exceptions are described below. WWW/CORBA bridges can catch these
exceptions and convert them into diagnostic info if necessary.

struct InitSessionRequest
{
 Message base;
};
struct InitSessionResponse
{
 Message base;
};

OGC 04-021r3

© OGC 2005 – All rights reserved 91

struct TerminateRequest
{
 Message base;
};
struct TerminateResponse
{
 Message base;
 Status status;
};

The status and cancel messages add a few structure members in addition to the base structure
member.

struct StatusRequest
{
 Message base;
 RequestID requestIDtoStatus;
};
struct StatusResponse
{
 Message base;
 RequestID requestIDtoStatus;
 Status status;
};
struct CancelRequest
{
 Message base;
 RequestID requestIDtoCancel;
 boolean freeResources;
};
struct CancelResponse
{
 Message base;
 Status status;
 RequestID canceledRequest;
};

The explain server messages add sequence of capabilities to the base message. The capability-type
sequence can be filled with capability-types to specify which capabilities are requested from the
server. The server responds with reporting each capability in a sequence of capabilities.

 typedef sequence<CapabilityType> CapabilityTypeSeq;
 struct ExplainServerRequest
 {
 Message base;
 CapabilityTypeSeq capabilities;
 };
 struct ExplainServerResponse
 {
 Message base;
 CapabilityTypeSeq capabilities;
 };

OGC 04-021r3

92 © OGC 2005 – All rights reserved

9.6.7 Discovery messages

There are four request/response message pairs in the discovery service. To enhance distributed
searching, an additional structure member for the query message is provided. This member is not
included in the General Model. This structure member asynchronous can be set to true to force
asynchronous searching. The query method will return immediately, setting structure member hits in
the response to zero. Query results can be retrieved later on, when the query is ready. The progress of
the query can be examined with the status messages. The query can be cancelled with the cancel
messages.

NOTE 1 This asynchronous behaviour is only specified for the query request message. All other operations (e.g. init,
terminate, status, cancel, explain, present) are not considered as time-consuming and return immediately after processing.

Another structure member, maxLevel, is added to have more control in the range of the distribution.
If one catalogue contains another one, that other one contains a third one, and so on, you will possibly
specify that only two levels of sub-catalogs will be searched. Setting the maxLevel member to two
will force this. Setting maxLevel to -1 forces searching all sub-catalogs.

NOTE 2 If the queryScope is Local there is no distributed search at all.

typedef sequence<SortField> SortFieldSeq;
struct QueryRequest
{
 Message base;
 QueryExpression queryExpression;
 ResultType resultType;
 long iteratorSize;
 long cursor;
 MessageFormat returnFormat;
 PresentationDescription presentation;
 SortFieldSeq sortField;
 QueryScope queryScope;
 CollectionName collectionID;
 CatalogEntryType resourceType;
 boolean asynchronous;
 long maxLevel;
};
struct QueryResponse
{
 Message base;
 ReturnData retrievedData;
 CollectionName resultSetID;
 Status status;
 long hits;
 long cursor;
};
struct PresentRequest
{
 Message base;
 CollectionName resultSetID;
 PresentationDescription presentation;
 SortFieldSeq sortField;
 MessageFormat returnFormat;
 long iteratorSize;
 long cursor;
};

OGC 04-021r3

© OGC 2005 – All rights reserved 93

struct PresentResponse
{
 Message base;
 ReturnData retrievedData;
 long cursor;
 long hits;
 Status status;
};
struct ExplainCollectionRequest
{
 Message base;
 AttributeCategory attributeCategory;
 CollectionName collectionID;
 MessageFormat returnFormat;
};
struct ExplainCollectionResponse
{
 Message base;
 CollectionName collectionID;
 SchemaID dataModel;
 Status status;
};
struct GetDomainRequest
{
 Message base;
 StringSeq attributes;
};

struct GetDomainResponse
{
 Message base;
 DomainSeq attributeDomains;
};

9.6.8 Management messages

The General Model defines messages for managing catalogs. These messages are translated to the
CORBA profile literally.

typedef sequence<DynamicAny::NameValuePairSeq> NameValuePairSeqSeq;

 // Messages for managing functions

 // Insert-Structure for inserting metadata (payload) to a collection
 // of a defined catalogType in a predefined format (encoding)
 struct InsertMetadata
 {
 CollectionName collectionID;
 CatalogEntryType catalogType;

 MessageFormat encoding;

 // the data to insert, e.g. a list of NV-Pairs or ISO19139-
 // XML
 any payload;
 };

OGC 04-021r3

94 © OGC 2005 – All rights reserved

// Update-Structure for updating a certain set (defined by the
// queryExpression) of metadata (payload) of a
// collection/catalogType in a predefined format (encoding)
 struct UpdateMetadata
 {
 CollectionName collectionID;
 CatalogEntryType catalogType;

 MessageFormat encoding;

 QueryExpression queryExpression;

 // the data to insert, e.g. a list of NV-Pairs or ISO19139-
 // XML
 any payload;
 };

 // Delete-Structure for deleting a certain set (defined by the
// queryExpression) of metadata of a
// collection/catalogType in a predefined format (encoding)
 struct DeleteMetadata
 {
 CollectionName collectionID;
 CatalogEntryType catalogType;

 QueryExpression queryExpression;
 };

 // Enumeration for the type of a single manipulation in a
 // transaction
 enum MetadataManipulationType
 { ctInsert, ctUpdate, ctDelete };

 // Structure for the content of a single manipulation in a
 // transaction
 union MetadataManipulation
 switch(MetadataManipulationType)
 {
 case ctInsert : InsertMetadata insertData;
 case ctUpdate : UpdateMetadata updateData;
 case ctDelete : DeleteMetadata deleteData;
 };

 typedef sequence<MetadataManipulation> MetadataManipulationSeq;

 // Struct of a transaction, as a sequence of single manipulations
 struct Transaction
 {
 MetadataManipulationSeq manipulations;
 };

 struct TransactionRequest
 {
 Message base;
 Transaction transactionData;
 };

OGC 04-021r3

© OGC 2005 – All rights reserved 95

 struct TransactionResponse
 {
 Message base;
 Status status;
 // value of -1 means not calculated
 long totalInserted;
 long totalUpdated;
 long totalDeleted;
 // List of newly generated catalogue entry identifiers
 // assigned to the new catalogue entry instances
 NameValuePairSeqSeq newKeyList;
 };

9.6.9 Access messages

The General Model specifies direct access and brokered access. Direct access is provided by
interfaces such as the OGC Simple Features and Coverage interfaces for CORBA. If a catalogue entry
denotes an OGC Feature, a Feature Collection or a Coverage, the meta-information of this entry can
be populated with an ior (interoperable object reference). This meta-information entity is called ior
and is filled with the standard representation of an ior, specified by the OMG (Object Management
Group), the creators of CORBA. In XML this looks like the following (abbreviated) example:

 <ior>IOR:010631002800000049444c3a6f6d672e6f...</ior>

Brokered access is specified by a request and a response message, conform all operations of the
General Model. The messages are listed below.

struct BrokeredAccessRequest
{
 Message base;
 wstring productHandle;
 OrderSpecification orderInformation;
 wstring orderID;
 BrokeredAccessRequestType requestType;
 UserInformation userInformation;
 StatusUpdateType statusOrderUpdateType;
 PackageSpecification packageSpecification;
};
typedef sequence<long> LongSeq;
struct BrokeredAccessResponse
{
 Message base;
 OrderStatus orderStatus;
 LongSeq resourceEstimate;
 CollectionName order;
 wstring orderID;
 Status status;
 BrokeredAccessRequestType requestType;
};

9.6.10 Exceptions

Exceptions are not specified in the General Model because they are profile specific. In CORBA
exceptions are considered as an appropriate way to notify error situations to clients. The CORBA
profile specifies exceptions. The diagnostic structure member of the response messages are not used

OGC 04-021r3

96 © OGC 2005 – All rights reserved

in the CORBA profile, their role is taken over by the exceptions. Some exceptions specify the
diagnostic (w) string as an exception parameter. By other exceptions this is not necessary, as the
exceptions are self-explaining.

exception InvalidRequest{};
exception InvalidSession{};
exception InvalidCollection{ wstring diagnostic; };

The exception InvalidQuery is thrown if the client specifies an invalid query.

NOTE The exception is not thrown if the resultType field is set to validate.

exception InvalidQuery{ wstring diagnostic; };

The exception NotImplemented is defined in cases where the client asks for not-implemented
behavior. This might occur by requesting the optional access or management services.

exception NotImplemented{ wstring diagnostic; };

The NotSupported exception is thrown if the client specifies something in a request parameter that is
not implemented by the server. For example the client can specify its query in Z3950_TypeOne, but
the server can only interpret OGC_Common queries.

exception NotSupported{ wstring diagnostic; };

The last exception, CatalogError, indicates an error when none of the above exceptions is appropriate.

exception CatalogError{ wstring diagnostic; };

9.6.11 Catalogue Service interfaces

The interface Discovery implements methods for discovery: query, present, explainCollection and
getDomain. These methods take a request message as input parameter and return a response message
as output parameter.

 interface Discovery
 {
 QueryResponse query(in QueryRequest request)
 raises(InvalidSession, InvalidQuery, InvalidCollection,
NotSupported, CatalogError);
 PresentResponse present(in PresentRequest request)
 raises(InvalidSession, InvalidCollection, NotSupported,
CatalogError);
 ExplainCollectionResponse explainCollection(in
ExplainCollectionRequest request)
 raises(CatalogError);
 GetDomainResponse getDomain(in GetDomainRequest request)
 raises(CatalogError);
 };

The next interface describes the Manager interface, which defines catalogue management functions.
The operation transaction is taken literally from the General Model. This operation can create, update,
or delete catalogue entries. The appropriate meta information will be provided in the request
messages.

OGC 04-021r3

© OGC 2005 – All rights reserved 97

 interface Manager
 {
 // This operation is used to by a client that has the appropriate
 // user privileges to execute a whole set of insert, update and
 // delete operation of metadata to a catalog.
 TransactionResponse
 transaction(in TransactionRequest request)
 raises(NotImplemented, CatalogError);
 };
The interface Access is the interface for access messages. It describes
only one operation: the brokeredAccess function which has the request as
input and which returns the response. Direct access is provided by
interfaces as the Simple Feature interface and the Coverage interface.
These interfaces are not described here. The client can get a reference to
these interfaces by examining the ior field in the meta-information.
interface Access
{
 BrokeredAccessResponse
 brokeredAccess(in BrokeredAccessRequest request)
 raises(NotImplemented, CatalogError);
};

The OGC_StatefulService interface provides four operations for interactive sessions between a server
and a client. All operations have a comparable form of the operations specified in the General Model.

 interface OGC_StatefulService : OGC_Service
 {
InitSessionResponse initSession(in InitSessionRequest
request)
 raises(CatalogError);
TerminateResponse terminateSession(in TerminateRequest
request)
 raises(InvalidSession, CatalogError);
 StatusResponse status(in StatusRequest request)
 raises(InvalidSession, InvalidRequest,
CatalogError);
 CancelResponse cancel(in CancelRequest request)
 raises(InvalidSession, InvalidRequest,
CatalogError);
 };

The CatalogServices interface is the core of the CORBA profile.

The CatalogServices inherits from the interfaces Discovery, Access and Manager. In this way these
services are realized.

NOTE Access and manager services are optional. If a server does not implement these services it throws the exception
NotImplemented.

The CatalogServices also inherits from OGC_StatefulService that is described below.

 interface CatalogServices : OGC_StatefulService, Discovery, Access,
Manager
 {
 };

OGC 04-021r3

98 © OGC 2005 – All rights reserved

9.6.12 Basic interfaces

Because of the asynchronous behavior of the query operation, a callback notifying the termination of
the query might be useful. The Observer Design Pattern [GAMMA97] describes a standard
mechanism for notifications to one or more clients. We envision that such a mechanism will be useful
for many operations in the OpenGIS world. Therefore the OGC_Observer and the OGC_Subject
interfaces are modeled separately. These interfaces might be moved to an OGC general module, in the
same or a similar form. The next interfaces describe the mechanism.

NOTE They are not mentioned in the General Model, as this is a CORBA specific behaviour.

interface OGC_Observer;
interface OGC_Subject
{
 void attachObserver(in OGC_Observer Observer);
 void detatchObserver(in OGC_Observer Observer);
 void notifyObserver();
};
interface OGC_Observer
{
 void updateSubject(in OGC_Subject ChangedSubject);
};

The CatalogServices interface inherits from OGC_Service. This is envisioned as the basic interface
for all OpenGIS services. As it does not exist yet, the content of this interface is not clear.

interface OGC_Service : OGC_Subject
{
};

 interface OGC_StatefulService : OGC_Service
 {
 InitSessionResponse initSession(in InitSessionRequest request)
 raises(CatalogError);
 TerminateResponse terminateSession(in TerminateRequest request)
 raises(InvalidSession, CatalogError);
 StatusResponse status(in StatusRequest request)
 raises(InvalidSession, InvalidRequest, CatalogError);
 CancelResponse cancel(in CancelRequest request)
 raises(InvalidSession, InvalidRequest, CatalogError);
 };\

9.6.13 Complete IDL

//--

// Module : CORBA protocol binding of the OpenGIS Catalogue Services
Specification 2.0
// described in IDL (interface definition language) of the
OMG (the Object
// Management Group).
//--

// Purpose : The intention of this CORBA protocol binding is to
follow the General
// Model closely.

OGC 04-021r3

© OGC 2005 – All rights reserved 99

//--

// Authors :
// Uwe Voges, con terra GmbH, Germany
// Barend Gehrels, Geodan IT b.v., the Netherlands
// Joined Catalogue Response Team
// Date : july 13, 1999
// july 26, 1999: errata based upon minor GM changes
// july 30, 2000: Juergen Ebbinghaus (SICAD)
// and Barend Gehrels:
// changes based on SICAD Review
// - string -> wstring
// - long SessionID -> long long
// - e.g. sequence<type> TypeSeq
// april 2, 2003: Uwe Voges (con terra)
// added management-/transaction interface
// feb 17, 2004: Uwe Voges (con terra)
// adapted to 2.0 general model: new types for new operations
like
// getDomain,...
// april 29, 2004: Uwe Voges (con terra)
// minor changes for CS 2.0 r2
//--

#pragma prefix "opengis.org"

module DynamicAny
{
 struct NameValuePair
 {
 string name;
 any value;
 };

 typedef sequence<NameValuePair> NameValuePairSeq;
};

module OGC_CatalogService
{
 //---
 // Parameter type definitions
 //---
 enum CG_AttributeCategory {queriable, presentable, both};
 enum CG_BrokeredAccessRequestType {orderEstimate, orderQuoteAndSubmit,
 orderMonitor, orderCancel};
 enum CG_CatalogEntryType {product, collection, service};
 enum CG_CharacterSet {ASCII, UniCode, ShiftJIS};
 union CG_CollectionName
 switch(long)
 {
 case 1 : wstring collectionID;
 case 2 : wstring collectionName;
 };
 enum CG_MessageFormat {XML, HTML, TXT, NV};

 struct CG_OrderItem

OGC 04-021r3

100 © OGC 2005 – All rights reserved

 {
 // Note: datatypes not provided by GM
 any productID;
 any productPrice;
 any productDeliveryOptions;
 any processingOptions;
 any sceneSelectionOptions;
 };

 struct CG_OrderSpecification
 {
 // Note: datatypes not provided by GM
 any orderCentreID;
 any orderPrice;
 any orderDeliveryDate;
 any orderCancellationDate;
 any deliveryMethod;
 any package;
 };

 enum CG_OrderStatus {orderBeingEstimated, orderEstimated,
 orderBeingQuoted, orderBeingProcessed,
 orderCompleted, orderNotValid, orderCancelled};

 enum CG_PackagingType {predefinedPackage, adhocPackage};
 struct CG_PackageSpecification
 {
 // Note: datatypes not provided by GM
 any packageId;
 any packagePrice;
 CG_PackagingType package;
 any packageMedium;
 long packageSize;
 };

 enum CG_PaymentMethod {credit, cash, purchaseOrder};

 enum CG_PredefinedPresentationType {full, summary, brief};

 typedef sequence<wstring> StringSeq;

 union CG_PresentationDescription
 switch(long)
 {
 case 1 : StringSeq attributes; // CG_TupleType in GM
 case 2 : CG_PredefinedPresentationType presentationType; // name
in GM
 };

 enum CG_QueryLanguage {OGC_Common, OGC_Filter, Z3950_TypeOne,
SQL3_SimpleFeature};
 struct CG_QueryExpression
 {
 wstring theQuery;
 wstring theNamespace;
 CG_QueryLanguage theLanguage;
 any queryParameters;

OGC 04-021r3

© OGC 2005 – All rights reserved 101

 };

 enum CG_QueryScope {distributed, locale};

 struct CG_RequestID
 {
 long long sessionID;
 long counter;
 };

 enum CG_ResultType {validate, resultSetID, hits, results};

 struct CG_ReturnData
 {
 CG_MessageFormat encoding;
 any payload;
 // XML,HTML,TXT will return a string
 // NV will return a DynamicAny::NameValuePairSeq (from CORBA 2.3
Dynamic Any)
 };

 typedef DynamicAny::NameValuePairSeq CG_Schema;
 struct CG_SchemaID
 {
 wstring schemeName;
 CG_Schema schema;
 };

 enum CG_SortOrder {ascending, descending};
 struct CG_SortField
 {
 wstring attributeName;
 CG_SortOrder sortOrder;
 };

 enum CG_Status {success, successResultsAvailable, processingNormal,
processingQueued, processingPausedOrSuspended, failure,
failureAccessDenied};

 enum CG_StatusUpdateType {manual, automatic};

 struct CG_UserInformation
 {
 wstring userName;
 wstring userAddress;
 wstring phoneNumber;
 wstring faxNumber;
 wstring emailAddress;
 wstring netAddress;
 CG_PaymentMethod paymentMethod;
 };
 //---
 // Capabilities, 3.2.7.3
 //---
 enum CG_CapabilityType
 { ctAllSupportedRequest, ctDefaults, ctDefaultTimeOut,
 ctExplain, ctMessaging, ctQuery, ctSession,

OGC 04-021r3

102 © OGC 2005 – All rights reserved

 ctSoftwareInformation, ctSupportedCollections };

 typedef boolean CG_AllSupportedRequest;

 typedef boolean CG_Defaults;

 struct CG_DefaultTimeOut
 {
 unsigned long long timeOut;
 };
 typedef boolean CG_Explain;
 struct CG_Messaging
 {
 CG_CharacterSet characterSet;
 CG_MessageFormat messageFormat;
 };

 struct CG_Query
 {
 wstring version;
 CG_CharacterSet characterSet;
 CG_QueryLanguage queryLanguage;
 };

 struct CG_Session
 {
 wstring language;
 wstring catalogSpecificationVersion;
 CG_CharacterSet characterSet;
 };

 struct CG_SoftwareInformation
 {
 wstring vendor;
 wstring SVversionNumber;
 wstring IFversionNumber;
 };

 typedef sequence<CG_CollectionName> CG_SupportedCollections;

 union CG_Capability
 switch(CG_CapabilityType)
 {
 case ctAllSupportedRequest : CG_AllSupportedRequest
allSupportedRequest;
 case ctDefaults : CG_Defaults defaults;
 case ctDefaultTimeOut : CG_DefaultTimeOut timeOut;
 case ctExplain : CG_Explain explain;
 case ctMessaging : CG_Messaging messaging;
 case ctQuery : CG_Query query;
 case ctSession : CG_Session session;
 case ctSoftwareInformation : CG_SoftwareInformation
softwareInformation;
 case ctSupportedCollections : CG_SupportedCollections
supportedCollections;
 };

OGC 04-021r3

© OGC 2005 – All rights reserved 103

 //---
 // DomainType
 //---

 // Enumeration for the type of the metadata property or request
parameter
 enum CG_DomainType
 { domainTypeString, domainTypeDate, domainTypeInteger,
domainTypeReal,
 domainTypeSpatial };

 // Enumeration for the type how possible values can be described
 enum CG_DomainValuesType
 { valueRef, valueRange };

 // valid range, composed of lower and upper boundary value
 struct CG_ValueRange
 {
 wstring lowerValue;
 wstring upperValue;
 };
 typedef sequence<CG_ValueRange> CG_ValueRangeSeq;

 // Definition of the real type by totalDigits and fractionDigits
 struct CG_RealTypeDef
 {
 long totalDigits;
 long fractionDigits;
 };

 // type definition of the metadata property or request parameter
 union CG_DomainDef
 switch(CG_DomainType)
 {
 case domainTypeString : long length;
 case domainTypeDate : wstring dateFormat;
 case domainTypeInteger : long totalDigits;
 case domainTypeReal : CG_RealTypeDef realTypeDef;
 case domainTypeSpatial : long dimensions;
 };

 // definition of valid values (range, value list) of the type
 union CG_DomainValueDef
 switch(CG_DomainValuesType)
 {
 case valueRef : StringSeq valueList;
 case valueRange : CG_ValueRangeSeq rangeList;
 };

 // definition of domain values (typical value, valid values, value
name, value description)
 // of the type
 struct CG_DomainValue
 {
 wstring value;
 CG_DomainValueDef valuesDef;

OGC 04-021r3

104 © OGC 2005 – All rights reserved

 wstring title;
 wstring description;
 wstring metadataURL;
 };
 typedef sequence<CG_DomainValue> CG_DomainValueSeq;

 // Description of domain of one requested metadata property or request
parameter
 struct CG_Domain
 {
 wstring attributeName;
 CG_DomainDef domainDef;
 CG_DomainValueSeq domainValue;
 };
 typedef sequence<CG_Domain> CG_DomainSeq;

 //---
 // Messages
 //---
 struct CG_Message
 {
 long long sessionID;
 wstring destinationID;
 CG_RequestID requestID;
 wstring additionalInfo;
 };
 struct CG_InitSessionRequest
 {
 CG_Message base;
 };
 struct CG_InitSessionResponse
 {
 CG_Message base;
 };
 struct CG_TerminateRequest
 {
 CG_Message base;
 };
 struct CG_TerminateResponse
 {
 CG_Message base;
 CG_Status status;
 };
 typedef sequence<CG_CapabilityType> CG_CapabilityTypeSeq;
 struct CG_ExplainServerRequest
 {
 CG_Message base;
 CG_CapabilityTypeSeq capabilities;
 };
 struct CG_ExplainServerResponse
 {
 CG_Message base;
 CG_CapabilityTypeSeq capabilities;
 };
 struct CG_StatusRequest
 {
 CG_Message base;

OGC 04-021r3

© OGC 2005 – All rights reserved 105

 CG_RequestID requestIDtoStatus;
 };
 struct CG_StatusResponse
 {
 CG_Message base;
 CG_RequestID requestIDtoStatus;
 CG_Status status;
 };
 struct CG_CancelRequest
 {
 CG_Message base;
 CG_RequestID requestIDtoCancel;
 boolean freeResources;
 };
 struct CG_CancelResponse
 {
 CG_Message base;
 CG_Status status;
 CG_RequestID canceledRequest;
 };
 typedef sequence<CG_SortField> CG_SortFieldSeq;
 struct CG_QueryRequest
 {
 CG_Message base;
 CG_QueryExpression queryExpression;
 CG_ResultType resultType;
 long iteratorSize;
 long cursor;
 CG_MessageFormat returnFormat;
 CG_PresentationDescription presentation;
 CG_SortFieldSeq sortField;
 CG_QueryScope queryScope;
 CG_CollectionName collectionID;
 CG_CatalogEntryType catalogType;
 boolean asynchronous;
 long maxLevel;
 };
 struct CG_QueryResponse
 {
 CG_Message base;
 CG_ReturnData retrievedData;
 CG_CollectionName resultSetID;
 CG_Status status;
 long hits;
 long cursor;
 };
 struct CG_PresentRequest
 {
 CG_Message base;
 CG_CollectionName resultSetID;
 CG_PresentationDescription presentation;
 CG_SortFieldSeq sortField;
 CG_MessageFormat returnFormat;
 long iteratorSize;
 long cursor;
 };
 struct CG_PresentResponse

OGC 04-021r3

106 © OGC 2005 – All rights reserved

 {
 CG_Message base;
 CG_ReturnData retrievedData;
 long cursor;
 long hits;
 CG_Status status;
 };
 struct CG_ExplainCollectionRequest
 {
 CG_Message base;
 CG_AttributeCategory attributeCategory;
 CG_CollectionName collectionID;
 CG_MessageFormat returnFormat;
 };
 struct CG_ExplainCollectionResponse
 {
 CG_Message base;
 CG_CollectionName collectionID;
 CG_SchemaID dataModel;
 CG_Status status;
 };

 struct CG_GetDomainRequest
 {
 CG_Message base;
 StringSeq attributes;
 };

 struct CG_GetDomainResponse
 {
 CG_Message base;
 CG_DomainSeq attributeDomains;
 };

 // Messages for access
 struct CG_BrokeredAccessRequest
 {
 CG_Message base;
 wstring productHandle;
 CG_OrderSpecification orderInformation;
 wstring orderID;
 CG_BrokeredAccessRequestType requestType;
 CG_UserInformation userInformation;
 CG_StatusUpdateType statusOrderUpdateType;
 CG_PackageSpecification packageSpecification;
 };

 typedef sequence<long> LongSeq;
 struct CG_BrokeredAccessResponse
 {
 CG_Message base;
 CG_OrderStatus orderStatus;
 LongSeq resourceEstimate;
 CG_CollectionName order;
 wstring orderID;
 CG_Status status;
 CG_BrokeredAccessRequestType requestType;

OGC 04-021r3

© OGC 2005 – All rights reserved 107

 };

 typedef sequence<DynamicAny::NameValuePairSeq> NameValuePairSeqSeq;

 // Messages for managing functions

 // Insert-Structure for inserting metadata (payload) to a collection
 // of a defined catalogType in a predefined format (encoding)
 struct CG_InsertMetadata
 {
 CG_CollectionName collectionID;
 CG_CatalogEntryType catalogType;

 CG_MessageFormat encoding;

 // the data to insert, e.g. a list of NV-Pairs or ISO19139-XML
 any payload;
 };

 // Update-Structure for updating a certain set (defined by the
queryExpression) of metadata
 // (payload) of a collection/catalogType in a predefined format
(encoding)
 struct CG_UpdateMetadata
 {
 CG_CollectionName collectionID;
 CG_CatalogEntryType catalogType;

 CG_MessageFormat encoding;

 CG_QueryExpression queryExpression;

 // the data to replace, e.g. a list of NV-Pairs or ISO19139-XML
 any payload;
 };

 // Delete-Structure for deleting a certain set (defined by the
queryExpression) of metadata
 // of a collection/catalogType
 struct CG_DeleteMetadata
 {
 CG_CollectionName collectionID;
 CG_CatalogEntryType catalogType;

 CG_QueryExpression queryExpression;
 };

 // Enumeration for the type of a single manipulation in a transaction
 enum CG_MetadataManipulationType
 { ctInsert, ctUpdate, ctDelete };

 // Structure for the content of a single manipulation in a transaction
 union CG_MetadataManipulation
 switch(CG_MetadataManipulationType)
 {
 case ctInsert : CG_InsertMetadata insertData;
 case ctUpdate : CG_UpdateMetadata updateData;

OGC 04-021r3

108 © OGC 2005 – All rights reserved

 case ctDelete : CG_DeleteMetadata deleteData;
 };
 typedef sequence<CG_MetadataManipulation> MetadataManipulationSeq;

 // Struct of a transaction, as a sequence of single manipulations
 struct CG_Transaction
 {
 MetadataManipulationSeq manipulations;
 };

 struct CG_TransactionRequest
 {
 CG_Message base;
 CG_Transaction transactionData;
 };
 struct CG_TransactionResponse
 {
 CG_Message base;
 CG_Status status;

 // value of -1 means not calculated
 long totalInserted;
 long totalUpdated;
 long totalDeleted;

 // List of newly generated catalogue entry identifiers
 // assigned to the new catalogue entry instances
 NameValuePairSeqSeq newKeyList;
 };

 //---
 // Exceptions
 //---
 exception InvalidSession{};
 exception InvalidRequest{};
 exception InvalidCollection{ wstring diagnostic; };
 exception InvalidQuery{ wstring diagnostic; };
 exception NotImplemented{ wstring diagnostic; };
 exception NotSupported{ wstring diagnostic; };
 exception CatalogError{ wstring diagnostic; };

 //---
 // Interfaces
 //---
 interface OGC_Observer;
 interface OGC_Subject
 {
 oneway void attachObserver(in OGC_Observer Observer);
 oneway void detachObserver(in OGC_Observer Observer);
 oneway void notifyObserver();
 };
 interface OGC_Observer
 {
 void updateSubject(in OGC_Subject ChangedSubject);
 };

 interface OGC_Service : OGC_Subject

OGC 04-021r3

© OGC 2005 – All rights reserved 109

 {
 CG_ExplainServerResponse explainServer(in CG_ExplainServerRequest
request)
 raises(CatalogError);
 };

 interface OGC_StatefulService : OGC_Service
 {
 CG_InitSessionResponse initSession(in CG_InitSessionRequest request)
 raises(CatalogError);
 CG_TerminateResponse terminateSession(in CG_TerminateRequest
request)
 raises(InvalidSession, CatalogError);
 CG_StatusResponse status(in CG_StatusRequest request)
 raises(InvalidSession, InvalidRequest, CatalogError);
 CG_CancelResponse cancel(in CG_CancelRequest request)
 raises(InvalidSession, InvalidRequest, CatalogError);
 };

 interface CG_Discovery
 {
 CG_QueryResponse query(in CG_QueryRequest request)
 raises(InvalidSession, InvalidQuery, InvalidCollection,
NotSupported, CatalogError);
 CG_PresentResponse present(in CG_PresentRequest request)
 raises(InvalidSession, InvalidCollection, NotSupported,
CatalogError);
 CG_ExplainCollectionResponse explainCollection(in
CG_ExplainCollectionRequest request)
 raises(CatalogError);
 CG_GetDomainResponse getDomain(in CG_GetDomainRequest request)
 raises(CatalogError);
 };
 interface CG_Access
 {
 // Direct access is provided by the IOR fields in the meta-
information
 // itself
 // Brokered access
 CG_BrokeredAccessResponse
 brokeredAccess(in CG_BrokeredAccessRequest request)
 raises(NotImplemented, CatalogError);
 };
 interface CG_Manager
 {
 // This operation is used to by a client that has the appropriate
user
 // privileges to execute a whole set of insert, update and delete
operation
 // of metadata to a catalog.
 CG_TransactionResponse
 transaction(in CG_TransactionRequest request)
 raises(NotImplemented, CatalogError);
 };

 interface CG_CatalogServices : OGC_StatefulService, CG_Discovery,
CG_Access, CG_Manager

OGC 04-021r3

110 © OGC 2005 – All rights reserved

 {
 };
};

10 HTTP protocol binding (Catalogue Services for the Web, CSW)

10.1 Architectural principles

The purpose of this clause is to describe the request and response messages that are common to all
web-based catalogue services. The basic message exchange pattern is illustrated in Figure 28.

Figure 28 — Catalogue service web

The interaction between a client and a server is accomplished using a standard request-response
model of the HTTP protocol. That is, a client sends a request to a server using HTTP, and expects to
receive a response to the request or an exception message.

Request and response messages are encoded as keyword-value pairs within a request URI or using an
XML entity-body. Requests may also be embedded in a messaging framework such as SOAP.

10.2 The HTTP protocol

10.2.1 Overview

The Hypertext Transfer Protocol (HTTP) is a generic, stateless, application-level protocol that is
widely used to exchange information on the web. The HTTP/1.1 specification is published by the
Internet Engineering Task Force (IETF) as RFC 2616: http://www.ietf.org/rfc/rfc2616. The "http"
URI scheme is used to locate network resources using the HTTP protocol; consult Section 3.2 of RFC
2616 and RFC 2396 for details. The general syntax of the scheme is summarised below for
convenience:

http://www.ietf.org/rfc/rfc2616

OGC 04-021r3

© OGC 2005 – All rights reserved 111

 http_URL = "http:" "//" host [":" port] [abs_path ["?" query]]

HTTP messages have a simple line-oriented structure. The three basic parts of a message are
summarised in Table 51 (RFC 2616, 4.1):

Table 51 — HTTP message elements

Start line Indicates what to do for a request or what happened for a response.
Header fields Zero or more header fields, each consisting of a name and a value separated by a colon (:). Four

categories of headers provide metainformation about the message: general, request, response,
and entity. The headers part ends with a blank line.

Body An optional body containing the message content that conforms to some Internet media type.

Note that URIs are generally case-sensitive except for the scheme and host names; furthermore, if the
port number is not specified it is equivalent to the default TCP port number (80). As noted in Section
3 of RFC 2396, certain special characters are reserved within various URI components; if the data
within a URI component conflicts with the reserved purpose it must be escaped before forming the
URI.

This subclause clarifies some aspects of HTTP usage for catalogue application profiles that employ
the protocol to exchange request and response messages. In many cases this means turning a
SHOULD level requirement into a SHALL level requirement; what results is effectively an HTTP
profile for OGC catalogue services.

10.2.2 Message headers

The standard headers are defined in Section 14 of RFC 2616. Some of these are of particular
significance to catalogue operations.

Any HTTP/1.1 message containing an entity-body shall include a Content-Type header field defining
the media type of that body (RFC 2616, 7.2.1); the charset parameter shall also be specified for text.

EXAMPLES 1

 Content-Type: application/xml; charset=utf-8
 Content-Type: application/octet-stream
 Content-Type: multipart/related; boundary="part-boundary";
 start="<urn:uuid:e3fec7a9-cc5d-45ba-87a5-8a2a27f6fb5b>"
 type="application/xml"

A user agent may use the Accept request header to declare a set of preferred Internet media types for
the response. The IANA registry of media types is available online:
http://www.iana.org/assignments/media-types/.

EXAMPLES 2

 Accept: application/xml
 Accept: application/xhtml+xml, text/html; q=0.5

http://www.iana.org/assignments/media-types/

OGC 04-021r3

112 © OGC 2005 – All rights reserved

10.2.3 Content encoding

The Content-Encoding entity-header may be used to indicate any additional content encodings that
have been applied to the entity body, usually for the purpose of data compression or encryption. This
header shall be included if a non-identity encoding has been applied.

EXAMPLE 1

 Content-Encoding: gzip

A user agent may specify a preferred content encoding using the Accept-Encoding header. If no such
request-header is included, the server shall use the "identity" encoding.

EXAMPLE 2

 Accept-Encoding: gzip;q=1.0, identity; q=0.5

10.2.4 Request methods

The HTTP/1.1 specification defines eight methods for manipulating and retrieving representations of
resources. Within an application profile abstract catalogue operations shall be mapped to one or more
of these methods; these mappings should be consistent with HTTP/1.1 semantics. The methods that
are most relevant to catalogue services are summarised in Table 52 below:

Table 52 — Selected HTTP Request Methods

Method Name Semantics

GET Used to retrieve whatever information (in the form of an entity) is identified by the Request-URI
POST Used to request that the origin server accept the entity enclosed in the request as data to be

processed by the resource identified by the Request-URI in the Request-Line

The Request-URI is a Uniform Resource Identifier that identifies the target resource to which the
request is applied; it has the following syntax:

 Request-URI = "*" | absoluteURI | abs_path ["?" query] | authority

10.2.5 Message payload

An application profile shall specify allowable payloads that constitute the body of a request or
response message (if applicable). Entities shall conform to a registered Internet media type, but there
is otherwise no restriction on the content; the actual payload is dependent upon the information model
supported by a profile. Representations of catalogue entries must be defined such that they may
substitute for the element csw:AbstractRecord defined in the record.xsd schema.

The common CSW record syntax is an XML-based encoding of Dublin Core metadata terms; it
encompasses the core metadata properties specified in Subclause 6.3.2. The XML encoding of those
properties is defined by the following XML-Schema fragment:

 <xsd:element name="Record"
 type="csw:RecordType"
 substitutionGroup="csw:AbstractRecord"/>
 <xsd:complexType name="RecordType">

OGC 04-021r3

© OGC 2005 – All rights reserved 113

 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This type extends DCMIRecordType to add the gml:boundedBy spatial
 property, the value of which is a bounding envelope, expressed
 using GML 3 syntax (ISO 19136).
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="csw:DCMIRecordType">
 <xsd:sequence>
 <xsd:element ref="gml:boundedBy" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

Brief, summary, and full element sets for the core queryables are defined in the records.xsd XML
Schema referenced in Subclause 10.13.

10.3 Operation request and response encoding

10.3.1 Introduction

Only the GET and POST methods are employed in the HTTP binding. Table 53 summarizes the
allowed HTTP method bindings and request data encodings for all CSW requests; optional method
bindings and data encodings are enclosed in parentheses.

Table 53 — HTTP method bindings

Request HTTP method
binding(s)

Data encoding(s)a,b

GetCapabilities GET (POST) KVP (XML)
DescribeRecord POST (GET) XML (KVP)
GetDomain POST (GET) XML (KVP)
GetRecords POST (GET) XML (KVP)
GetRecordById GET (POST) KVP (XML)
Harvest POST XML (KVP)
Transaction POST XML
a XML = application/xml using POST (with a charset parameter if

necessary—UTF-8 is strongly recommended)
b KVP = URL-encoded key/value pairs using GET or application/x-

www-form-urlencoded using POST

OGC 04-021r3

114 © OGC 2005 – All rights reserved

Operation HTTP method
binding(s)

Data encoding(s)a,b

GetCapabilities GET (POST) KVP (XML)
DescribeRecord POST (GET) XML (KVP)
GetDomain POST (GET) XML (KVP)
GetRecords POST (GET) XML (KVP)
GetRecordById GET (POST) KVP (XML)
Harvest POST XML (KVP)
Transaction POST XML
a XML = application/xml using POST (with a charset parameter if

necessary: UTF-8 is strongly recommended)
b KVP = URL-encoded key/value pairs using GET or application/x-

www-form-urlencoded using POST

10.3.2 Simple object access protocol (SOAP)

This subclause specifies the use of SOAP messages for communication between a catalogue client
and a CSW.

The Simple Object Access Protocol (SOAP) is a communication protocol for communication between
applications. It defines a format for sending messages between communicating applications via the
Internet and specifically using HTTP. Soap is platform independent, language independent and SOAP
messages are encoded using XML. This means that SOAP provides a way to communicate between
applications running on different operating systems, with different technologies and programming
languages.

A SOAP message is an ordinary XML document containing the following elements:

a) A required Envelope element that identifies the XML document as a SOAP message

b) An optional Header element that contains header information

c) A required Body element that contains call and response information

d) An optional Fault element that provides information about errors that occurred while processing
the message

All the elements above are declared in the default namespace for the SOAP envelope:

 http://www.w3.org/2003/05/soap-envelope

and the default namespace for SOAP encoding and data types is:

 http://www.w3.org/2003/05/soap-encoding

The SOAP specification defines a number of syntax rules. Among the most important are:

a) A SOAP message shall be encoded using XML

b) A SOAP message shall use the SOAP Envelope namespace

http://www.w3.org/2003/05/soap-encoding

OGC 04-021r3

© OGC 2005 – All rights reserved 115

c) A SOAP message shall use the SOAP Encoding namespace

d) A SOAP message shall not contain a DTD reference

e) A SOAP message shall not contain XML Processing Instructions

The following XML fragment illustrates a skeleton SOAP message:

<?xml version="1.0"?>
<soap:Envelope
 xmlns:soap=http://www.w3.org/2003/05/soap-envelope
 soap:encodingStyle="http://www.w3.org/2003/05/soap-encoding">

 <soap:Header>
 ...
 ...
 </soap:Header>

 <soap:Body>
 ...
 ...
 <soap:Fault>
 ...
 ...
 </soap:Fault>
 </soap:Body>

</soap:Envelope>

A client may send CSW requests to a compatible catalogue using the body of a SOAP envelope. The
client simply encodes the CSW request as the content of the <soap:Body> element in the request
message.

The CSW may then response by generating a SOAP message where the response to the client’s
request is the content of the <soap:Body> element.

In the event the an exception is encountered while processing a CSW request encoded in a SOAP
envelope, the CSW server must generate a SOAP response message where the content of the
<soap:Body> element is a <soap:Fault> element. The following skeleton XML fragment must be
used when generating the <soap:Body> element in the event that the CSW server encounters an
exception:

<soap:Body>
 <soap:Fault>
 <soap:faultcode>soap:Server</soap:faultode>
 <soap:faultstring>A server exception was
encountered.</soap:faultstring>
 <soap:faultactor>http://www.url_of_CSW_server.com/</soap:faultactor>
 <soap:detail>
 <ows:ExceptionReport>
 …
 </ows:ExpetionReport>
 </soap:detail>
 </soap:Fault>
</soap:Body>

http://www.w3.org/2003/05/soap-envelope

OGC 04-021r3

116 © OGC 2005 – All rights reserved

The <soap:faultcode> element must have the content soap:Server indicating that this is a server
exception. The <soap:faultstring> element must have the content “Server exception was
encountered.”. This fixed string is used since the details of the exception will be specified in the
<soap:detail> element using an <ows:ExceptionRecport> element as defined in document [OGC
04-016r2].

The <soap:detail> element must contain an <ows:ExceptionReport> element detailing the specific
exception that the server encountered.

The use of the <soap:Header> element is not discussed in this version of this specification.

10.3.3 Namespaces

Namespaces [W3C Recommendation January 1999] are used to discriminate XML vocabularies from
one another. For the CSW there are two normative namespace definitions, namely:

 (http://www.opengis.net/cat/csw) - for the CSW interface vocabulary
 (http://www.opengis.net/ogc) - for the OGC Filter vocabulary

A given CSW implementation will make use of one or more XML Schemas describing the metadata
that is being manipulated and these schemas will, in turn, use one or more namespaces (e.g.
http://www.someserver.com/myns).

10.3.4 Predicate languages

The general model allows catalogue clients to specify the predicate language used to constrain
operations. The HTTP protocol binding schemas define two predicate languages, based on the BNF in
Subclause 6.2.2, that may be used. The two predicate languages are:

a) CQL_TEXT is a text encoding of the BNF.

b) FILTER is an XML encoding of the BNF grammar and is normatively defined in the Filter
Encoding Implementation Specification, version 1.1.0 [OGC 04-095]. All CSW implementations
are required to support this filter syntax.

Table 54 defines the parameters required to specify a predicate in keyword-value pair encoded CSW
operation requests.

http://www.opengis.net/ogc
http://www.someserver.com/myns

OGC 04-021r3

© OGC 2005 – All rights reserved 117

Table 54 — KVP encoding for constraints

Keyword
 b

 Description Data type and value Optionality

CONSTRAINT_LANGUAGE Identifies the
predicate
language used
for the value of
the Constraint

Code List with
allowed values:

CQL_TEXT, used to
indicate CQL.

FILTER, used to
indicate OGC Filter.

Zero or one
(Optional)

a

Must be specified
with the
Constraint

CONSTRAINT_LANGUAGE_VERSION Identifies the
version of the
predicate
language used.

Character String

Zero or one
There is no default

as the parameter
is specified if
required to
indicate which
version of a
specification the
value of the
constraint
parameter
conforms to.

Constraint Text of query
constraint in the
predicate
language
identified by the
CONSTRAINT
_LANGUAGE

Character String Zero or one
(Optional)

Must be specified
with the
CONSTRAINT
_LANGUAGE

a The CONSTRAINT_LANGUAGE parameter contains the same information as the contents of the <Constraint>
element in XML encoding.

b Parameter keywords, for KVP encoding, are case insensitive.

The following XML schema fragments define how the predicate language may be XML encoded in
CSW operations that allow constraints to be defined (Query, Update and Delete):

<xsd:complexType name="QueryConstraintType" id="QueryConstraintType">
 <xsd:choice>
 <xsd:element ref="ogc:Filter"/>
 <xsd:element name="CqlText" type="xsd:string"/>
 </xsd:choice>
 <xsd:attribute name="version" type="xsd:string" use="required">
 </xsd:attribute>
</xsd:complexType>

The version parameter may be used to specify a version number indicating which version of a
specification the constraint conforms to. For example, in the XML encoding, if the <ogc:Filter>
element is being used, the version parameter could be set to “1.0.0” indicating that the filter conforms
to version 1.0.0 of the Filter Encoding Implementation Specification [OGC 02-059].

OGC 04-021r3

118 © OGC 2005 – All rights reserved

10.3.5 General model message mapping

Table 55 maps the general model operations, defined in Clause 7, to the Catalogue Service for the
Web (CSW) operations. This table does not list the general model operations that are not mapped to
CSW operations.

Table 55 — General model to CSW mapping

General Model Operation CSW Operation

OGC_Service.getCapabilities OGC_Service.GetCapabilities
Discovery.query CSW-Discovery.GetRecords
Discovery.present CSW-Discovery.GetRecordById
Discovery.describeRecordType CSW-Discovery.DescribeRecord
Discovery.getDomain CSW-Discovery.GetDomain
Manager.transaction CSW-Publication.Transaction
Manager.hervestRecords CSW-Publication.Harvest

10.3.6 Common request parameters

All CSW operation requests except for GetCapabilities shall include the three parameters specified in
Table 20 of [04-016r2]. Only one of these parameters is included in the general catalogue model, the
others are specific to the HTTP protocol binding.

In KVP encoding, these common parameters in CSW operation requests are encoded as shown in
Table 56. Note that the parameter names in all KVP encodings must be handled in a case insensitive
manner.

Table 56 — KVP encoding of common operation request parameters

Keyword Datatype and value Optionality Parameter in general model

REQUEST Character String type
Value is operation name (e.g.,

“DescribeRecord”)

One (Mandatory) (none)

service Character String type
Fixed values of “CSW”

One (Mandatory) serviceId

version Character String type
Fixed value of “2.0.0”

One (Mandatory) (none)

In XML encoding, all operation request elements, except for GetCapabilities, are extended from the
following XML Schema fragment:

 <xsd:complexType name="RequestBaseType">
 <xsd:complexContent>
 <xsd:extension base="ows:RequestBaseType">
 <xsd:attribute name="service" type="xsd:string"
 use="optional" default="CSW"/>
 <xsd:attribute name="version" type="xsd:string"
 use="required" fixed="2.0.0"/>
 </xsd:extension>

OGC 04-021r3

© OGC 2005 – All rights reserved 119

 </xsd:complexContent>
 </xsd:complexType>

The “service” parameter is used to indicate that the request is a CSW request. This parameter must be
specified for all CSW requests. The “version” parameter is used to indicate that the associated CSW
request conforms to this specification. This is indicated by setting the value of the version parameter
to 2.0.0. This XML Schema fragment does not include a “request” attribute, since the name of the
operation requested is always the name of the XML element encoding the request.

10.4 Operations overview

Figure 29 shows the request/response message pairs for all the operations defined for the web
catalogue service (CSW). There are three classes of operations: service operations which are
operations a client may use to interograte the service to determine its capabilities; discovery
operations which a client may use to determine the information model of the catalogue and query
catalogue records; and management operations which are used to create or change records in the
catalogue.

OGC 04-021r3

120 © OGC 2005 – All rights reserved

Figure 29 — Protocol sequence diagram

Figure 30 depicts a conceptual architecture to illustrate the relationship of these interfaces to service
consumers and producers. The arrows represent the CSW requests that producers and consumers of
metadata may generate. For example, to create metadata, a metadata producer may invoke the
Transaction request or the Harvest request. Similarly, a consumer of metadata may invoke the
GetRecords request to query the catalogue.

OGC 04-021r3

© OGC 2005 – All rights reserved 121

Figure 30 — Conceptual architecture

10.5 GetCapabilities operation

10.5.1 Introduction

The mandatory GetCapabilities operation allows CSW clients to retrieve service metadata from a
server. The response to a GetCapabilities request shall be an XML document containing service
metadata about the server. This subclause specifies the XML document that a CSW server must
return to describe its capabilities.

10.5.2 Operation request

The GetCapabilities operation request is defined in Subclause 7.2 of the OGC Web Services Common
Specification 1.0 [OGC 05-008]. CSW servers shall implement the request, service, Sections,
AcceptVersions and AcceptFormats operation request parameters, and may implement the
updateSequence parameter. If the updateSequence parameter is not implemented, a catalogue server
shall always return the most up-to-date version of the capabilities document. All CSW servers shall
implement the HTTP GET transfer using the keyword-value pair encoding of the GetCapabilities
operation. Servers may optionally implement the HTTP POST transfer using XML encoding only.

The value of the service parameter shall be “CSW” or the identifier of a specific CSW Application
Profile as specified in that profile. The common service metadata elements that may be included in a
Capabilities document are specified in Subclause 7.4 of OGC 05-008; a catalogue service that
implements the CSW binding may also include the elements listed in Table 57. An application profile
may introduce additional service information items as needed by extending the csw:CapabilitiesType
definition.

OGC 04-021r3

122 © OGC 2005 – All rights reserved

Table 57 — Additional section name value and meaning

Section name Meaning

Filter_Capabilities A Filter_Capabilities section must be included in the service metadata to describe which
elements of the predicate language are supported. All CSW implementations must support
at least the following filter operators:

• logical operators: And, Or, Not
• comparison operators: PropertyIsEqualTo, PropertyIsNotEqualTo,

PropertyIsLessThan, PropertyIsGreaterThan, PropertyIsLessThanOrEqualTo,
PropertyIsGreaterThanOrEqualTo, PropertyIsLike

• spatial operators: BBOX.

10.5.3 Operation response

The service metadata document shall contain the sections specified in Table 58. Depending on the
values in the Sections parameter of the GetCapabilities operation request, any combination of these
sections can be requested and returned. If the Sections parameter is not specified, then all sections
shall be returned.

Table 58 — Section names and contents

Section name Contents

ServiceIdentification Metadata about a specified CSW implementation. The contents and schema of this
section shall be as specified in Subclause 7.4.3 and owsServiceIdentification.xsd of
[OGC 04-016r2].

ServiceProvider Metadata about the organization offering the CSW service. The contents and schema of
this section shall be as specified in Subclauses 7.4.4 and owsServiceProvide.xsd of
[OGC 04-016r2].

OperationsMetadata Metadata about the CSW operations offered by a specific CSW implementation,
including the URLs for operation requests. The contents and schema of this section
shall be as specified in Subclauses 7.4.5 and owsOperationsMetadata.xsd of [OGC 04-
016r2]. The specific operations that may be listed in the OperationsMetadata section
are specified in subclause 10.5.4 or this document.

Filter_Capabilities Metadata about the filter capabilities of the server if the server implements the Filter
predicate encoding as defined in [OGC 02-059]..

10.5.4 OperationsMetadata section standard contents

The OperationsMetadata element shall list all operations implemented by the service, as described in
Subclause 7.4.5 of OGC 05-008. An application profile may restrict the <ExtendedCapabilities>
element to provide additional computational metadata (e.g., WSDL service descriptions, OWL-S
resource definitions). liant with this specification. Table 60 lists the optional values of
OperationsMetadata section attributes for additional operations that a CSW may offer. If a specified
server implementation offers one or more of these operations, they shall be listed in the
OperationsMetadata section of the capabilities document. In both tables, the “Attribute name” column
uses dot-separator notation to specify parts of a parent item. The “Attribute value” column references
an operation parameter, and the meaning of including that value is listed in the right column.

Table 59

OGC 04-021r3

© OGC 2005 – All rights reserved 123

Table 59 specifies the required values of OperationsMetadata section attributes for operations that a
CSW server shall implement to be minimally compliant with this specification. Table 60 lists the
optional values of OperationsMetadata section attributes for additional operations that a CSW may
offer. If a specified server implementation offers one or more of these operations, they shall be listed
in the OperationsMetadata section of the capabilities document. In both tables, the “Attribute name”
column uses dot-separator notation to specify parts of a parent item. The “Attribute value” column
references an operation parameter, and the meaning of including that value is listed in the right
column.

Table 59 — Required values of the OperationsMetadata section attributes

Attribute name Attribute value Meaning of attribute value

OperationsMetadata.Operation.name GetCapabilities The GetCapabilities operation is implemented by
this server.

OperationsMetadata.Operation.name DescribeRecord The DescribeRecord operation is implemented by
this server.

OperationsMetadata.Operation.name GetRecords The GetRecords operation is implemented by this
server.

Table 60 — Optional values of the OperationsMetadata section attributes

Attribute name Attribute value Meaning of attribute value

OperationsMetadata.Operation.name GetRecordById The GetRecordById operation is implemented by
this server.

OperationsMetadata.Operation.name GetDomain The GetDomain operation is implemented by this
server.

OperationsMetadata.Operation.name Harvest The Harvest operation is implemented by this
server.

OperationsMetadata.Operation.name Transaction The Transaction operation is implemented by this
server.

In addition to the items listed in Table 60, there are many optional values of “name” attributes and
“value” elements in the OperationsMetadata section, primarily for recording the domain of various
parameters and quantities. For example, the domain of the exceptionCode parameter could record all
the codes implemented for each operation by that specific server. Similarly, each of the
GetCapabilities operation request parameters might have its domain recorded. For example, the
domain of the Sections parameter could record all the sections implemented by that specific server.

10.5.5 Examples12

KVP Encoding:

 http://www.someserver.com/wrs.cgi?REQUEST=GetCapabilities&SERVICE=CSW&A
CCEPTVERSION=2.0.0,0.7.2&outputFormat=application/xml

XML Encoding:

12 All examples in clause 10 are informative. In addition, the examples do not include all the XML syntax required to
validate. This is done intentionally so as not to obfuscate the examples with XML syntax.

OGC 04-021r3

124 © OGC 2005 – All rights reserved

 <GetCapabilities service="CSW">
 <AcceptVersions>
 <Version>2.0.0</Version>
 <Version>0.7.2</Version>
 </AcceptVersions>
 <AcceptFormats>
 <OutputFormat>application/xml</OutputFormat>
 </AcceptFormats>
 </GetCapabilities>

Example response:

Annex D includes a sample capabilities document for a CSW server that supports only the default
message payload. As described in clause 10.2.5, the default message payload is the core queryable
elements defined by the csw:Record element; this default may be overridden in an application
profile. The csw:Record element is the root element of the XML encoding of the core queryable
element and is define in the schema file record.xsd.

10.6 DescribeRecord operation

10.6.1 Introduction

The mandatory DescribeRecord operation allows a client to discover elements of the information
model supported by the target catalogue service. The operation allows some or all of the information
model to be described.

10.6.2 KVP encoding

Table 62 specifies the keyword-value pair (KVP) encoding for the DescribeRecord operation request.
This encoding is suitable for the HTTP GET binding.

NOTE To reduce the need for readers to refer to other parts of this document, the first three parameters listed below are
copied from Table 56 in Subclause 10.3.5 of this document.

OGC 04-021r3

© OGC 2005 – All rights reserved 125

Table 61 — KVP encoding for DescribeRecord operation request

Keyword
 c

 Data type and value Optionality and use Parameter in
general model

REQUEST Character String
Fixed value of DescribeRecord, case

insensitive

One (Mandatory)
 a

 (none)

service Character String
Fixed value of CSW

One (Mandatory) serviceId

version Character String
Fixed value of 2.0.0

One (Mandatory) (none)

NAMESPACE List of Character String, comma separated
Used to specify namespace(s) and their

prefix(es)
Format is [prefix:]url. If prefix is not

specified, then this is the default
namespace.

One (Mandatory)
 b

Include declarations for

each namespace used in
a TypeName

(none)

TypeName List of Character String, comma separated
One or more qualified type names to be

described

Zero or one (Optional)
Default action is to

describe all types
known to server

typeName

outputFormat Character String
A MIME type indicating the format that the

output document should have

Zero or one (Optional)
Default value is

application/xml

returnFormat

schemaLanguage Character String Zero or one (Optional)
Default value is

XMLSCHEMA

schemaLanguage

a The REQUEST parameter contains the same information as the name of the < DescribeRecord> element in XML
encoding.

b The NAMESPACE parameter contains the same information as the xmlns attributes which may be used to define and
bind namespaces in XML encoding.

c Parameter keywords are case insensitive for KVP encoding.

10.6.3 XML encoding

10.6.3.1 Overview

The following XML-Schema fragment defines the XML encoding for the DescribeRecord operation
request:

 <xsd:element name="DescribeRecord" type="csw:DescribeRecordType"/>
 <xsd:complexType name="DescribeRecordType">
 <xsd:complexContent>
 <xsd:extension base="csw:RequestBaseType">
 <xsd:sequence>
 <xsd:element name="TypeName" type="csw:TypeNameType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="outputFormat" type="xsd:string"

OGC 04-021r3

126 © OGC 2005 – All rights reserved

 use="optional"
 default="application/xml"/>
 <xsd:attribute name="schemaLanguage" type="xsd:anyURI"
 use="optional"
 default="http://www.w3.org/XML/Schema"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="TypeNameType">
 <xsd:simpleContent>
 <xsd:extension base="xsd:NCName">
 <xsd:attribute name="targetNamespace"
 type="xsd:anyURI"
 use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

10.6.4 Parameter descriptions

10.6.4.1 NAMESPACE parameter

The DescribeRecord operation depends on namespace declarations in order to know exactly which
types to describe.

For XML encoded DescribeRecord requests, the namespace declarations are specified using standard
XML conventions (xmlns attributes) and described in the document "Namespaces in XML"
[http://www.w3.org/TR/1999/REC-xml-names-19990114].

For the KVP encoding, namespace declarations are specified using the NAMESPACE parameter.
The NAMESPACE parameter is a comma separated list of namespace declarations of the form
alias:namespace.

The following is an example delcaration:

 ...NAMESPACE=gml:http://www.opengis.org/gml,wfs:http://www.opengis.org/
wfs...

The value of the NAMESPACE parameter must be properly escaped for url encoding, which is not
shown in this example for the sake of clarity

10.6.4.2 TypeName parameter

The TypeName parameter specifies a list of type names that are to be described by the catalogue.

Every type name must be fully qualified in order to indicate the target namespace for the type
definition. If no type names are provided, then entire schemas from the target namespace are returned.
For XML-encoded DescribeRecord requests, the namespace declarations are specified using the
targetNamespace attribute of the TypeName element.

If the DescribeRecord request is XML encoded, then namespaces must be declared according to the
conventions of XML. If the DescribeRecord request is KVP encoded, then the namespaces
referenced must be declared using the NAMESPACE parameter.

OGC 04-021r3

© OGC 2005 – All rights reserved 127

10.6.4.3 outputFormat parameter

The outputFormat parameter specifies the MIME type of the response document. The default output
format attribute is the MIME type application/xml. All supported output formats must be declared in
the Capabilities document.

10.6.4.4 schemaLanguage parameter

The schemaLanguage parameter is used to specify the schema language that should be used to
describe the specified types. The default value is XMLSCHEMA, which indicates that the XML-
Schema, schema description language should be used. Other schemas lanaguages are possible as long
as they are declared in the Capabilities document.

10.6.5 Response

The following XML Schema fragment defines the response to a DescribeRecord operation when the
schemaLanguage parameter is set to the value XMLSCHEMA.

 <xsd:element name="DescribeRecordResponse"
 type="csw:DescribeRecordResponseType"/>
 <xsd:complexType name="DescribeRecordResponseType">
 <xsd:sequence>
 <xsd:element name="SchemaComponent"
 type="csw:SchemaComponentType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="SchemaComponentType" mixed="true">
 <xsd:sequence>
 <xsd:any namespace="##any" processContents="lax"/>
 </xsd:sequence>
 <xsd:attribute name="targetNamespace" type="xsd:anyURI"
 use="required"/>
 <xsd:attribute name="parentSchema" type="xsd:anyURI"
 use="optional"/>
 <xsd:attribute name="schemaLanguage" type="xsd:anyURI"
 use="required"/>
 </xsd:complexType>

The <DescribeRecordResponse> element is a container for zero or more <SchemaComponent>
elements, each of which contains the description of one or more type names in the requested schema
language. The <SchemaComponent> element may contain any content so that schema language
descriptions other than XML Schema may be accommodated. For example, the content could be SQL
DDL.

10.6.6 Examples

KVP encoded example

http://www.someserver.com/csw/csw.cgi?request=DescribeRecord&version=2.0.0&
outputFormat=application/xml&schemaLanguage=XMLSCHEMA&typeName=csw:Record&n
amespace=csw:http://www.opengis.org/cat/csw

XML encoded example

OGC 04-021r3

128 © OGC 2005 – All rights reserved

<csw:DescribeRecord version="2.0.1"
 outputFormat="application/xml"
 schemaLanguage="http://www.w3.org/2001/XMLSchema">

 <csw:TypeName
 targetNamespace="http://www.opengis.org/cat/csw">Record</csw:TypeName>

</csw:DescribeRecord>

10.7 GetDomain operation

10.7.1 Introduction

The optional GetDomain operation is used to obtain runtime information about the range of values of
a metadata record element or request parameter. The runtime range of values for a property or request
parameter is typically much smaller than the value space for that property or parameter based on its
static type definition. For example, a property or request parameter defined as a 16bit positive integer
in a database may have a value space of 65535 distinct integers but the actual number of distinct
values existing in the database may be much smaller.

This type of runtime information about the range of values of a property or request parameter is
useful for generating user interfaces with meaningful pick lists or for generating query predicates that
have a higher chance of actually identifying a result set.

It should be noted that the GetDomain operation is a “best-effort” operation. That is to say that a
catalogue tries to generate useful information about the specified request parameter or property if it
can. It is entirely possible that a catalogue may not be able to determine anything about the values of
a property or request parameter beyond the basic type; in this case only a type reference or a type
description will be returned.

10.7.2 KVP encoding

Table 64 specifies the keyword-value pair encoding for the GetDomain operation request.

NOTE To reduce the need for readers to refer to other parts of this document, the first three parameters listed below are
copied from Table 56 in Subclause 10.3.5 of this document.

OGC 04-021r3

© OGC 2005 – All rights reserved 129

Table 62 — KVP encoding for GetDomain operation request

Keyword
 b

 Data type and value Optionality and use Parameter in
general model

REQUEST Character String
Fixed value of "GetDomain", case insensitive

One (Mandatory)
 a

 (none)

service Character String
Fixed values of “CSW”

One (Mandatory) serviceId

version Character String
Fixed value of "2.0.0"

One (Mandatory) (none)

ParameterName List of Character String, comma separated
Unordered list of names of requested

parameters, of the form
OperationName.ParameterName

Zero or one
(Conditional)

Include when
PropertyName not
included

parameterName

PropertyName List of Character String, comma separated
Unordered list of names of requested

properties, from the information model that
the catalogue is using

Zero or one
(Conditional)

Include when
ParameterName not
included

parameterName

a The REQUEST parameter contains the same information as the name of the <GetDomain> element in XML encoding.

b Parameter keywords are case insensitive for KVP encoding.

10.7.3 XML encoding

The following XML-Schema fragment defines that XML encoding for the GetDomain operation
request:

<xsd:element name="GetDomain" type="csw:GetDomainType"/>
<xsd:complexType name="GetDomainType">
 <xsd:complexContent>
 <xsd:extension base="csw:RequestBaseType">
 <xsd:sequence>
 <xsd:choice>
 <xsd:element name="PropertyName" type="xsd:anyURI" />
 <xsd:element name="ParameterName" type="xsd:anyURI" />
 </xsd:choice>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

10.7.4 Parameter descriptions

10.7.4.1 PropertyName parameter

The PropertyName parameter is used to specify the name of a property that is defined in the
information model for which value domain information is desired. An example of a property name
might be the name of one of the core queryable properties described in Subclause 6.3.2. The
PropertyName value may be specified using an absolute or a relative URI; the precise syntax or
permissible values are defined in an application profile.

OGC 04-021r3

130 © OGC 2005 – All rights reserved

10.7.4.2 ParameterName parameter

The ParameterName parameter is used to specify the name of an interface parameter for which
value domain information is desired. Table 63 defines the list of interface parameters that may be
interrogated using the GetDomain operation.

Table 63 — Interface parameters that may be interrogated using GetDomain operation

Parameter Name

GetRecords.resultType
GetRecords.outputFormat
GetRecords.outputRecType
GetRecords.typeName
GerRecords.ElementSetName
GetRecords.ElementName
GetRecords.CONSTRAINTLANGUAGE
GetRecordsById.ElementSetName
DescribeRecord.typeName
DescribeRecord.schemaLanguage

10.7.5 Response

The following XML-Schema fragment defines the response to a GetDomain operation.

 <xsd:element name="GetDomainResponse" type="csw:GetDomainResponseType">
 <xsd:complexType name="GetDomainResponseType">
 <xsd:sequence>
 <xsd:element name="DomainValues"
 type="csw:DomainValuesType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="DomainValuesType">
 <xsd:sequence>
 <xsd:choice>
 <xsd:element name="PropertyName" type="xsd:QName"/>
 <xsd:element name="ParameterName" type="xsd:QName"/>
 </xsd:choice>
 <xsd:choice minOccurs="0">
 <xsd:element name="ListOfValues"
 type="csw:ListOfValuesType"/>
 <xsd:element name="ConceptualScheme"
 type="csw:ConceptualSchemeType" />
 <xsd:element name="RangeOfValues"
 type="csw:RangeOfValuesType" />
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="type" type="xsd:QName" use="required" />
 <xsd:attribute name="uom" type="xsd:anyURI" use="optional" />
 </xsd:complexType>

OGC 04-021r3

© OGC 2005 – All rights reserved 131

 <xsd:complexType name="ListOfValuesType">
 <xsd:sequence>
 <xsd:element name="Value" type="xsd:anyType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="ConceptualSchemeType">
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string"/>
 <xsd:element name="Document" type="xsd:anyURI"/>
 <xsd:element name="Authority" type="xsd:anyURI"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="RangeOfValuesType">
 <xsd:sequence>
 <xsd:element name="MinValue" type="xsd:anyType"/>
 <xsd:element name="MaxValue" type="xsd:anyType"/>
 </xsd:sequence>
 </xsd:complexType>

The response is composed of one or more <DomainValues> elements. The domain values may be a
list of enumerated values (i.e. <ListOfValues>), one or more ranges of values (i.e.
<RangeOfValues>), or a reference to some authoritative vocabulary (i.e. <ConceptualScheme>).
An example of an authoritative vocabulary might be a standard list of animal and plant species names.

If the only child element of the <DomainValue> element is the <PropertyName> or
<ParameterName> element, this shall be taken to mean that the catalogue was unable to determine
anything about the specified property or parameter.

10.7.6 Examples

KVP encoded example:

http://www.someserver.com/csw/csw.cgi?request=GetDomain&version=2.0.0¶
meterName=GetRecords.outputFormat

XML encoded example:

<csw:GetDomain version="2.0.0">
 <csw:ParameterName>GetRecords.outputFormat</csw:ParameterName>
</csw:GetDomain>

10.8 GetRecords operation

10.8.1 Introduction

The primary means of resource discovery in the general model are the two operations search and
present. In the HTTP protocol binding these are combined in the form of the mandatory GetRecords
operation, which does a search and a piggybacked present.

10.8.2 KVP encoding

Table 68 specifies the keyword-value pair encoding for the GetRecords operation request. This
encoding is suitable for the HTTP GET binding.

OGC 04-021r3

132 © OGC 2005 – All rights reserved

NOTE To reduce the need for readers to refer to other parts of this document, the first three parameters listed below are
copied from Table 56 in Subclause 10.3.5 of this document.

Table 64 — KVP encoding for GetRecords operation request

Keyword
 d

 Data type and value Optionality and use Parameter in
general model

REQUEST Character String
Fixed value of GetRecord, case

insensitive

One (Mandatory)
 a

 (none)

service Character String
Fixed values of “CSW”

One (Mandatory) serviceId

version Character String
Fixed value of 2.0.0

One (Mandatory) (none)

NAMESPACE List of Character String, comma
separated

Used to specify a namespace and
its prefix

Format must be [<prefix>:]<url>. If
the prefix is not specified then
this is the default namespace.

Zero or one (Optional)
 b

Include value for each

distinct namespace
used by all qualified
names in the request.

If not included, all
qualified names are in
default namespace

(none)

resultType CodeList with allowed values:
”hits”, “results” or ”validate”

Zero or one (Optional)
Default value is ”hits”

resultType

OGC 04-021r3

© OGC 2005 – All rights reserved 133

Keyword
 d

 Data type and value Optionality and use Parameter in
general model

outputFormat Character String
Value is Mime type
The only value that must be

supported is application/xml.
Other suppored values may
include text/html and text/plain

Zero or one (Optional)
Default value is

application/xml

returnFormat

outputSchema Defined in a profile. Zero or one (Optional)
Default value is

csw:Record.

responseSchema

startPosition Positive Integer Zero or one (Optional)
Default value is 1

cursorPosition

maxRecords Positive Integer Zero or one (Optional)
Default values is 10

iteratorSize

typeNames List of Character String, comma
separated

Unordered List of object types
implicated in the query

One (Mandatory) collectionID

ElementSetName
OR
ElementName

List of Character String Zero or one (Optional)
Default action is to

present all metadata
elements

responseElements

CONSTRAINTLANGUAGE CodeList with allowed values:
CQL_TEXT or FILTER

Zero or one (Optional)
 c

Include when

Constraint included

queryLanguage

Constraint Character String
Predicate expression specified in

the language indicated by the
CONSTRAINTLANGUAGE
parameter

Zero or one (Optional)
Default action is to

execute an
unconstrained query

predicate

SortBy List of Character String, comma
separated

Ordered list of names of metadata
elements to use for sorting the
response

Format of each list item is
metadata_elemen_ name:A
indicating an ascending sort or
metadata_ element_name:D
indicating descending sort

Zero or one (Optional)
Default action is to

present the records in
the order in which
they are retrieved

sortField
and
sortOrder

DistributedSearch Boolean Zero or one (Optional)
Default value is FALSE

queryScope

hopCount Integer Zero or one (Optional)
Include only if

DeistributeSearch
parameter is included

Default value is 2

queryScope

OGC 04-021r3

134 © OGC 2005 – All rights reserved

Keyword
 d

 Data type and value Optionality and use Parameter in
general model

ResponseHandler URL Zero or one (Optional)
If not included, process

request synchronously

responseHandler

a The REQUEST parameter contains the same information as the name of the < GetRecords> element in XML encoding.

b The NAMESPACE parameter contains the same information as the xmlns attributes which may be used for encoding
namespace information in XML encoding.

c The CONSTRAINTLANGUAGE parameter contains the same information as the root element of the content of the
<Constraint> element indicates the predicate language being used in XML encoding.

d Parameter keywords are case insensitive for KVP encoding.

10.8.3 XML encoding

The following XML-Schema fragment defines the XML encoding of the GetRecords operation
request:

<xsd:element name="GetRecords" type="csw:GetRecordsType"
 id="GetRecords"/>
<xsd:complexType name="GetRecordsType" id="GetRecordsType">
 <xsd:complexContent>
 <xsd:extension base="csw:RequestBaseType">
 <xsd:sequence>
 <xsd:element name="DistributedSearch"
 type="csw:DistributedSearchType"
 minOccurs="0"/>
 <xsd:element name="ResponseHandler"
 type="xsd:anyURI"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:choice>
 <xsd:element ref="csw:AbstractQuery"/>
 <xsd:any processContents="strict"
 namespace="##other" />
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="requestId" type="xsd:anyURI"
 use="optional" />
 <xsd:attribute name="resultType" type="csw:ResultType"
 use="optional" default="hits"/>
 <xsd:attributeGroup ref="csw:BasicRetrievalOptions"/>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

10.8.4 Parameter descriptions

10.8.4.1 NAMESPACE parameter

The NAMESPACE parameter is included in the KVP encoding to allow clients to bind any
namespace prefixes that might be used for qualified names specified in other parameters. For
example, the typeName parameter may include qualified names of the form namespace prefix:name.

OGC 04-021r3

© OGC 2005 – All rights reserved 135

The value of the NAMESPACE parameter is a comma separated list of character strings of the form
[namespace prefix:]namespace url. Not including the name namespace prefix binds the specified
URL to the default namespace. As in XML, only one default namespace may be bound.

This parameter is not required for the XML encoding since XML includes a mechanism for binding
namespace prefixes.

10.8.4.2 resultType parameter

The resultType parameter may have the value “hits”, “results”, or “validate”; the value determines
whether the catalogue service returns just a summary of the result set, includes one or more records
from the result set, or validates the request message and processes it asynchronously.

If the resultType parameter is set to “hits”, the catalogue service shall return a
<GetRecordsResponse> element containing an empty <SearchResults> element that indicates the
estimated size of the result set. Optional attributes may or may not be set accordingly.

If the resultType parameter is set to “results”, the catalogue service must include any matching
records within the <SearchResults> element, up to the maximum number of records specified in the
request.

If the resultType parameter is set to “validate”, the catalogue service must validate the request and
return an <Acknowledgement> message if validation succeeds; a <ServiceExceptionReport> is
returned if validation fails. If the catalogue supports asynchronous query processing, the
acknowledgement response must include a RequestId element that may be subsequently used to
retrieve the result set when processing is complete.

10.8.4.3 outputFormat parameter

The outputFormat parameter is used to control the format of the output that is generated in response
to a GetRecords request. Its value must be a MIME type. The default value, “application/xml”,
means that the output shall be an XML document. All registries shall at least support XML as an
output format. Other output formats may be supported and may include output formats such as TEXT
(MIME type text/plain), or HTML (MIME type text/html). The list of output formats that a CSW
instance provides must be advertised in the Capabilities document.

In the case where the output format is application/xml, the CSW must generate an XML document
that validates against a schema document that is specified in the output document via the
xsi:schemaLocation attribute defined in XML.

10.8.4.4 outputSchema parameter

The outputSchema parameter is used to indicate the schema of the output that is generated in
response to a GetRecords request. The default value for this parameter shall be OGCCORE
indicating that the schema for the core returnable properties (as defined in subclause 6.3.3) shall be
used. Application profiles may define additional values for outputSchema and may redefine the
default value but all profiles must support the value OGCCORE.

Examples values for the outputSchema parameter might be FGDC, or ISO19119, ISO19139 or
ANZLIC. The list of supported output schemas must be advertised in the capabilities document.

OGC 04-021r3

136 © OGC 2005 – All rights reserved

10.8.4.5 startPosition parameter

The startPosition paramater is used to indicate at which record position the catalogue should start
generating output. The default value is 1 meaning it starts at the first record in the result set.

10.8.4.6 maxRecords attribute

The maxRecords parameter is used to define the maximum number of records that should be
returned from the result set of a query. If it is not specified, then 10 records shall be returned. If its
value is set to zero, then the behavior is indentical to setting “resultType=HITS” as described in
Subclause 10.8.4.2.

10.8.4.7 typeName parameter

The typeName parameter is a list of record type names that define a set of metadata record element
names which will be constrained in the predicate of the query. In addition, all or some of the these
names may be specified in the query to define which metadata record elements the query should
present in the response to the GetRecords operation.

10.8.4.8 ElementName or ElementSetName parameter

The ElementName parameter is used to specify one or more metadata record elements that the query
should present in the response to the a GetRecords operation. Well known sets of element may be
named, in which case the ElementSetName parameter may be used (e.g.brief, summary or full).

If neither parameter is specified, then a CSW shall present all metadata record elements.

As mentioned in Subclause 10.8.4.4, if the outputFormat parameter is set to application/xml, then
the response to the GetRecords operation shall validate against a schema document that is referenced
in the response using the xmlns attributes. If the set of metadata record elements that the client
specifies in the query in insufficient to generate a valid XML response document, a CSW may
augment the list of elements presented to the client in order to be able to generate a valid document.
Thus a client application should expect to receive more than the requested elements if the output
format is set to XML.

10.8.4.9 Predicate languages

Each request encoding (XML and KVP) has a specific mechanism for specifying the predicate
language that will be used to constrain a query.

In the XML encoding, the element <Constraint> is used to define the query predicate. The root
element of the content of the <Constraint> element defines the predicate language that is being used.
Two possible root elements are <ogc:Filter> for the OGC XML filter encoding, and <csw:CqlText>
for a common query language string. An example predicate specification in the XML encoding is:

 <Constraint>
 <CqlText>prop1!=10</CqlText>
 </Constraint>

In the KVP encoding, the parameter CONSTRAINTLANGUAGE is used to specify the predicate
language being used.

OGC 04-021r3

© OGC 2005 – All rights reserved 137

The Constraint parameter is used to specify the actual predicate. For example, to specify a CQL
predicate, the following parameters would be set in the KVP encoding:

 ...CONSTRAINTLANGUAGE=CQL_TEXT&CONSTRAINT=”prop1!=10”...

10.8.4.10 SortBy parameter

The result set may be sorted by specifying one or more metadata record elements upon which to sort.

In KVP encoding, the SORTBY parameter is used to specify the list of sort elements. The value for
the SORTBY parameter is a comma-separated list of metadata record element names upon which to
sort the result set. The format for each element in the list shall be either element name:A indicating
that the element values should be sorted in ascending order or element name:D indicating that the
element values should be sorted in descending order.

For XML encoded requests, the <ogc:SortBy> element is used to specify a list of sort metadata
record elements. The attribute sortOrder is used to specify the sort order for each element. Valid
values for the sortOrder attribute are ASC indicating an ascending sort and DESC indicating a
descending sort.

10.8.4.11 DistributedSearch parameter

The DistributedSearch parameter may be used to indicate that the query should be distributed. The
default query behaviour, if the DistributedSearch parameter is set to FALSE (or is not specified at
all), is to execute the query on the local server. In the XML encoding, if the <DistributedSearch>
element is not specified then the query is executed on the local server.

The hopCount parameter controls the distributed query behaviour by limiting the maximum number
of message hops before the search is terminated. Each catalogue decrements this value by one when
the request is received and does not propagate the request if the hopCount=0.

10.8.4.12 ResponseHandler parameter

The ResponseHandler parameter is a flag that indicates how the GetRecords operation should be
processed by a CSW.

If the parameter is not present, then the GetRecords operation is processed synchronously meaning
that the client sends the GetRecords request to a CSW and waits to receive a valid response or
exception message. The CSW immediately processes the GetRecords request while the client waits
for a response. The problem with this mode of operation is that the client may timeout waiting for the
CSW to process the request.

If the ResponseHandler parameter is present, the GetRecords operation is processed
asynchronously. In this case, the CSW responds immediately to a client's request with an
acknowledgment message that tells the client that the request has been received and validated, and
notification of completion will be sent to the URI specified as the value of the ResponseHandler
parameter. The following XML Schema fragment defines the acknowledgement message:

 <xsd:element name="Acknowledgement" type="csw:AcknowledgementType"/>
 <xsd:complexType name="AcknowledgementType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This is a general acknowledgement response message for all

OGC 04-021r3

138 © OGC 2005 – All rights reserved

 requests that may be handled in an asynchronous manner.
 Echo-Request - Echoes the submitted request message
 RequestId - identifier for polling purposes (if no response
 handler is available, or the URL scheme is
 unsupported)
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="Echo-Request"
 type="csw:Echo-RequestType" />
 <xsd:element name="RequestId"
 type="xsd:anyURI" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="timeStamp" type="xsd:dateTime" use="required"/>
 </xsd:complexType>
 <xsd:complexType name="Echo-RequestType">
 <xsd:sequence>
 <xsd:any namespace="##any" processContents="lax" />
 </xsd:sequence>
 </xsd:complexType>

The acknowlegment message echos the client's request, using the <EchoedRequest> element, and
may include an optionally generated request identifier using the <RequestId> element.

The GetRecords request may then be processed at some later time, taking as much time as is required
to complete the operation. When the operation is completed, a <csw:GetRecordsResponse> message
or exception message (if a problem was encountered) is sent to the URI specified as the value of the
ResponseHandler parameter using the protocol encoded therein. Common protocols include ftp and
mailto.

10.8.5 Response

The following XML-Schema fragment defines the XML format response to a GetRecords operation:

 <xsd:element name="GetRecordsResponse"
 type="csw:GetRecordsResponseType"
 id="GetRecordsResponse"/>
 <xsd:complexType name="GetRecordsResponseType">
 <xsd:sequence>
 <xsd:element name="RequestId"
 type="xsd:anyURI" minOccurs="0"/>
 <xsd:element name="SearchStatus"
 type="csw:RequestStatusType"/>
 <xsd:element name="SearchResults"
 type="csw:SearchResultsType"/>
 </xsd:sequence>
 <xsd:attribute name="version" type="xsd:string" use="optional"/>
 </xsd:complexType>
 <xsd:complexType name="RequestStatusType" id="RequestStatusType">
 <xsd:attribute name="status"
 type="csw:StatusType" use="required"/>
 <xsd:attribute name="timestamp"
 type="xsd:dateTime" use="optional"/>
 </xsd:complexType>
 <xsd:simpleType name="StatusType" id="StatusType">
 <xsd:restriction base="xsd:string">

OGC 04-021r3

© OGC 2005 – All rights reserved 139

 <xsd:enumeration value="complete"/>
 <xsd:enumeration value="subset"/>
 <xsd:enumeration value="interim"/>
 <xsd:enumeration value="none"/>
 <xsd:enumeration value="processing"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="SearchResultsType" id="SearchResultsType">
 <xsd:sequence>
 <xsd:element ref="csw:AbstractRecord"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="requestId" type="xsd:anyURI"
 use="optional"/>
 <xsd:attribute name="resultSetId"
 type="xsd:anyURI"
 use="optional"/>
 <xsd:attribute name="elementSet"
 type="csw:ElementSetType"
 use="optional"/>
 <xsd:attribute name="recordSchema"
 type="xsd:anyURI"
 use="optional"/>
 <xsd:attribute name="numberOfRecordsMatched"
 type="xsd:nonNegativeInteger" use="required"/>
 <xsd:attribute name="numberOfRecordsReturned"
 type="xsd:nonNegativeInteger" use="required"/>
 <xsd:attribute name="nextRecord"
 type="xsd:nonNegativeInteger" use="required"/>
 <xsd:attribute name="expires"
 type="xsd:dateTime"
 use="optional"/>
 </xsd:complexType>

The <GetRecordsResponse> element is a container for the response of the GetRecords operation.
Three levels of detail may be contained in the response document.

The <RequestId> element may be used to correlate the response to a GetRecords request for which
a value was defined for the requestId attribute.

The <SearchStatus> element must be present and indicates the status of the response. The status
attribute is used to indicate the completion status of the GetRecords operation. Table 65 shows the
possible values for the status attribute.

OGC 04-021r3

140 © OGC 2005 – All rights reserved

Table 65 — Values of the “status” attribute

Value Description

complete The request was successfully completed and valid results are available or have been returned.
subset The request was successfully completed and partial valid results are available or have been

returned. In this case subsequest queries with new start positions may be used to see more
results.

interim The request was successfully completed and partial results are available or have been returned but
the results may not be valid. For example, an intermediate server in a distributed search may
have failed cause the partial, invalid result set to be generated.

processing The request is still processing. When completed, the response will be sent to the specified
response handler.

none No records found.

The <SearchResults> element is a generic XML container for the actual response to a GetRecords
request. The content of the <SearchResults> element is the set of records returned by the
GetRecords operation. The actual records returned by the catalogue should substitute for the element
<csw:AbstractRecord>. Table 66 describes the attributes that can appear on the <SearchResults>
element.

Table 66 — <searchStatus> Parameters

Parameters Description

resultSetId A server-generated identifier for the result set. May be used in subsequent
GetRecords operations to further refine the result set. If the server does not
implement this capability then the attribute should be omitted.

elementSet The element set returned (brief, summary or full).
recordSchema A reference to the type or schema of the records returned.
rumberOfRecordsMatched Number of records found by the GetRecords operation.
numberOfRecordsReturned Number of records actually returned to client. This may not be the entire result

set since some servers may limit the number of records returned to limit the
size of the response package transmitted to the client. Subsequent queries may
be executed to see more of the result set. The nextRecord attribute will indicate
to the client where to begin the next query.

nextRecord Start position of next record. A value of 0 means all records have been returned.
expires An ISO 8601 format date indicating when the result set will expire. If this value

is not specified then the result set expires immediately.

10.8.6 Examples

KVP encoded example

http://www.someserver.com/csw/csw.cgi?request=GetRecords&version=2.0.0&out
putFormat=application/xml&outputSchema=csw:Record&namespace=csw:http://www
.opengis.org/cat/csw&ResponseHandler="mailto:pvretano@cubewerx.com"&typeNa
me=csw:Record&elementSetName=brief&constraintlanguage=CQLTEXT&constrain="c
sw:AnyText Like '%polution%'"

XML encoded request

OGC 04-021r3

© OGC 2005 – All rights reserved 141

<csw:GetRecords version="2.0.1"
 outputFormat="application/xml"
 outputSchema="csw:Record">
 <csw:ResponseHandler>
 ftp://www.myserver.com/pub/MyQuery_Resp.xml
 </csw:ResponseHandler>
 <csw:Query typeName="csw:Record">
 <csw:ElementSetName>brief</csw:ElementSetName>
 <csw:Constraint>
 <ogc:Filter>
 <ogc:PropertyIsLike wildCard="%" singleChar="_" escape="\">
 <ogc:PropertyName>
 /csw:Record/csw:AnyText
 </ogc:PropertyName>
 <ogc:Literal>%polution%</ogc:Literal>
 </ogc:PropertyIsLike>
 </ogc:Filter>
 </csw:Constraint>
 </csw:Query>
</csw:GetRecords>

10.9 GetRecordById operation

10.9.1 Introduction

The mandatory GetRecordById request retrieves the default representation of catalogue records
using their identifier. The GetRecordById operation is an implementation of the Present operation
from the general model. This operation presumes that a previous query has been performed in order to
obtain the identifiers that may be used with this operation. For example, records returned by a
GetRecords operation may contain references to other records in the catalogue that may be retrieved
using the GetRecordById operation. This operation is also a subset of the GetRecords operation,
and is included as a convenient short form for retrieving and linking to records in a catalogue.

10.9.2 KVP encoding

Table 74 specifies the keyword value pair encoding for the GetRecordById operation request.

NOTE To reduce the need for readers to refer to other parts of this document, the first three parameters listed below are
copied from Table 56 in Subclause 10.3.5 of this document.

OGC 04-021r3

142 © OGC 2005 – All rights reserved

Table 67 — KVP encoding for GetRecordById operation request

Keyword
 b

 Data type and value Optionality and use Parameter in
general model

REQUEST Character String
Fixed value of “GetRecordById”, case

insensitive.

One (Mandatory)
 a

 (none)

service Character String
Fixed values of “CSW”

One (Mandatory) serviceId

version Character String
Fixed value of “2.0.0”

One (Mandatory) (none)

ElementSetName CodeList with allowed values:
“brief”, “summary” or “full”

Zero or one (Optional)
Default value is “summary”

responseElements

Id Comma separated list of anyURI One (Mandatory)
a The REQUEST parameter contains the same information as the name of the < GetRecordById> element in XML
encoding.

b Parameter keywords are case insensitive for KVP encoding

10.9.3 XML encoding

The following XML-Schema fragment defines the XML encoding for the GetRecordById operation
request:

<xsd:element name="GetRecordById" type="csw:GetRecordByIdType"/>
<xsd:complexType name="GetRecordByIdType">
 <xsd:complexContent>
 <xsd:extension base="csw:RequestBaseType">
 <xsd:sequence>
 <xsd:element name="Id" type="xsd:anyURI" maxOccurs="unbounded"/>
 <xsd:element ref="csw:ElementSetName" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

10.9.4 Parameter descriptions

10.9.4.1 ElementSetName parameter

The ElementSetName parameter is used to specify a named, predefined set of metadata record
elements from each source record that should be presented in the response to the operation. The
predefined set names of brief, summary and full are meant to represent different level of detail of the
source record with brief representing the least amount of detail and full representing all the metadata
record elements. The sets of metadata record element names that correspond to brief, summary and
full shall be defined in an Application Profile.

OGC 04-021r3

© OGC 2005 – All rights reserved 143

10.9.4.2 Id parameter

The Id parameter is a comma-separated list of record identifiers for the records that a CSW must
return to the client. In the XML encoding, one or more <Id> elements may be used to specify the
record identifier to retrieve.

If any of the identifiers specified in the operation is invalid, then the operation should fail and an
exception message should be returned as described in Subclause 10.3.2.3.

10.9.5 Response

The following XML Schema fragment defines the response to a GetRecordById request:

 <xsd:element name="GetRecordByIdResponse"
 type="csw:GetRecordByIdResponseType"/>
 <xsd:complexType name="GetRecordByIdResponseType"/>
 <xsd:sequence>
 <xsd:element ref="csw:AbstractRecord" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>

This is simply the list of requested records. The response records should substitute for the element
<csw:AbstractRecord>.

10.9.6 Examples

KVP encoded request:

http://www.someserver.com/csw/csw.cgi?request=GetRecordById&version=2.0.0&i
d=REC-10,REC-11,REC-12

XML encoded request:

<csw:GetRecordById version="2.0.1">
 <csw:Id>REC-10</csw:Id>
 <csw:Id>REC-11</csw:Id>
 <csw:Id>REC-12</csw:Id>
</csw:GetRecordById>

10.10 Record locking

This specification does not define a locking interface, instead relying on the underlying repository to
mediate concurent access to catalogue records. A profile of this specification may define a locking
interface if it is found to be needed.

10.11 Transaction operation

10.11.1 Introduction

The optional Transaction operation defines an interface for creating, modifying and deleting
catalogue records. The specific payload being manipulated must be defined in a profile.

OGC 04-021r3

144 © OGC 2005 – All rights reserved

10.11.2 KVP encoding

There is no KVP encoding for transaction operation request, because there is no convenient way to
encode the transaction payloads using keyword-value pairs. In addition, the actual text of a
transaction message may be very long, again making it inconvenient to use KVP encoding.

10.11.3 XML encoding

10.11.3.1 Overview

The following XML schema fragment defines the XML encoding of the Transaction operation
request:

 <xsd:element name="Transaction" type="csw:TransactionType"/>
 <xsd:complexType name="TransactionType">
 <xsd:complexContent>
 <xsd:extension base="csw:RequestBaseType">
 <xsd:sequence>
 <xsd:choice minOccurs="1" maxOccurs="unbounded">
 <xsd:element name="Insert" type="csw:InsertType"/>
 <xsd:element name="Update" type="csw:UpdateType"/>
 <xsd:element name="Delete" type="csw:DeleteType"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="requestId" type="xsd:anyURI"
 use="optional"/>
 <xsd:attribute name="verboseResponse"
 type="xsd:boolean"
 use="optional" default="false"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

The <Transaction> element defines an atomic unit of work and is a container for one or more insert,
update and/or delete actions.

The requestId attribute may be used by a client application to associate a user-defined identifier with
the operation.

The verboseResponseattribute is a boolean that may be used by a client to indicate to a server the
amount of detail to generate in the rsponse. A value of FALSE means that a CSW should generate a
terse or brief transaction response. A value of TRUE, or the absence of the attribute, means that the
normal detailed transaction response should be generated. The schema of transaction response is
defined in Subclause 10.11.4.

10.11.3.2 Insert action

The following XML-Schema fragment defines an insert action:

<xsd:complexType name="InsertType" id="InsertType">
 <xsd:sequence>
 <xsd:any processContents="strict" namespace="##other"
 maxOccurs="unbounded" />
 </xsd:sequence>

OGC 04-021r3

© OGC 2005 – All rights reserved 145

 <xsd:attribute name="handle" type="xsd:ID" use="optional"/>
</xsd:complexType>

The <Insert> element is a container for one or more records that are to be inserted into the catalogue.
The schema of the record(s) must conform to the schema of the information model that the catalogue
supports as described using the DescribeRecord operation.

The handle attribute is an additional parameter not defined in the general model. It is used in the
XML encoding to associate a mnemonic name with each action contained in a <Transaction>
element for the purpose of error handling. If a CSW encounters an error processing a transaction
request and the handle attribute is defined, the CSW can localize the source of the problem for the
client by specifying the handle in the exception response.

10.11.3.3 Update action

The following XML Schema fragment defines an update action:

<xsd:complexType name="UpdateType" id="UpdateType">
 <xsd:sequence>
 <xsd:choice>
 <xsd:any processContents="strict" namespace="##other" />
 <xsd:sequence>
 <xsd:element ref="csw:RecordProperty" maxOccurs="unbounded"/>
 <xsd:element ref="csw:Constraint"/>
 </xsd:sequence>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="handle" type="xsd:ID" use="optional"/>
</xsd:complexType>

The <csw:Update> element is used to specify values to be used to change existing information in the
catalogue. If the <csw:Update> element contains a child element declared in some other namespace
(i.e., not “http://www.opengis.net/cat/csw”), then the corresponding record in the catalogue shall be
replaced. The record type must be defined in an application profile. If individual record property
values are specified in the <Update> element, using the <csw:RecordProperty> element, then those
individual property values of the catalogue record shall be updated.

The <csw:RecordProperty> element contains a <csw:Name> element and a <csw:Value> element.
The <csw:Name> element is used to specify the name of the record property to be updated. The
value of the <csw:Name> element may be a path expression to identify complex properties. The
<csw:Value> element contains the value that will be used to update the record in the catalogue.

The number of records affected by an <csw:Update> action is determined by the contents of the
<csw:Constraint> element. The <csw:Constraint> element is defined in Subclause 10.3.7 and is
used to define the set of catalogue records that the update operation will affect. In order to prevent all
records in a catalogue from inadvertently being updated, the <csw:Constraint> element must be
specified.

The optional typeName attribute may be used to specify the collection name from which records will
be updated.

The handle attribute is described in Subclause 10.11.3.2.

OGC 04-021r3

146 © OGC 2005 – All rights reserved

10.11.3.4 Delete action

The following XML Schema fragment defines an delete action:

<xsd:complexType name="DeleteType" id="DeleteType">
 <xsd:sequence>
 <xsd:element ref="csw:Constraint" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="typeName" type="xsd:anyURI" use="optional"/>
 <xsd:attribute name="handle" type="xsd:ID" use="optional"/>
</xsd:complexType>

The <Delete> element contains a <csw:Constraint> element (see Subclause 10.3.7) that identifies a
set of records that are to be deleted from the catalogue. The <csw:Constraint> element must be
specified in order to prevent every record in the catalogue from inadvertently being deleted.

The typeName attribute is used to specify the collection name from which records will be deleted.

The handle attribute is described in Subclause 10.11.3.2.

10.11.4 Response

The following XML Schema fragment defines the response that must be generated after a CSW
server executes a transaction request:

 <xsd:element name="TransactionResponse"
 type="csw:TransactionResponseType"/>
 <xsd:complexType name="TransactionResponseType">
 <xsd:sequence>
 <xsd:element name="TransactionSummary"
 type="csw:TransactionSummaryType"/>
 <xsd:element name="InsertResult"
 type="csw:TransactionResultType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="version" type="xsd:string" use="optional"/>
 </xsd:complexType>

 <xsd:complexType name="TransactionSummaryType">
 <xsd:sequence>
 <xsd:element name="totalInserted"
 type="xsd:nonNegativeInteger"
 minOccurs="0"/>
 <xsd:element name="totalUpdated"
 type="xsd:nonNegativeInteger"
 minOccurs="0"/>
 <xsd:element name="totalDeleted"
 type="xsd:nonNegativeInteger"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="requestId" type="xsd:anyURI" use="optional"/>
 </xsd:complexType>

 <xsd:complexType name="TransactionResultType">
 <xsd:sequence>

OGC 04-021r3

© OGC 2005 – All rights reserved 147

 <xsd:element ref="csw:AbstractRecord" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="handleRef" type="xsd:anyURI" use="optional"/>
 </xsd:complexType>

The transaction response message conveys two pieces of information. First, it reports a summary of
the transaction by indicating the number records created, updated or deleted by the transaction.
Second, the transaction response message indicates the results of each insert operation found in the
transaction in the form of the <InsertResult> element.

The <InsertResult> element may appear zero or more times in the transaction response. It is used to
report to the client a brief representation of each new record, including the record identifier, created in
the catalogue. The records must be reported in the same order in which the <Insert> elements appear
in a transaction request and must map 1-to-1. Optionally, the handle attribute may be used to correlate
a particular <Insert> element in the Transaction request with an <InsertResult> element found in the
transaction response.

10.12 Harvest operation

10.12.1 Introduction

The general model defines two operations in the Manager class that may be used to create or update
records in the catalogue. They are the transaction operation and the harvestRecords operation. The
transaction operation may be used to "push" data into the catalogue and is defined in Subclause
10.11. This subclause defines the optional Harvest operation, which is an operation that "pulls" data
into the catalogue. That is, this operation only references the data to be inserted or updated in the
catalogue, and it is the job of the catalogue service to resolve the reference, fetch that data, and
process it into the catalogue.

The Harvest operation had two modes of operation, controlled by a flag in the request. The first
mode of operation is a synchronous mode in whice the CSW receives a Harvest request from the
client, processes it immediately, and sends the results to the client while the client waits. The second
mode of operation is asynchronous in that the server receives a Harvest request from the client, and
sends the client an immediate acknowledgement that the request has been successfully received. The
server can then process the Harvest request whenever it likes, taking as much time as is required and
then send the results of the processing to a URI specified in the original Harvest request. This latter
mode of operation is included to support Harvest requests that could run for a period of time longer
than most HTTP timeout’s will allow.

Processing a Harvest request means that the CSW resolves the URI pointing to the metadata
resource, parses the resource, and then creates or modifies metadata records in the catalogue in order
to register the resource. This operation may be performed only once or periodically depending on
how the client invokes the operation.

10.12.2 KVP encoding

Table 76 specifies the keyword-value pair encoding for the Harvest operation request.

NOTE To reduce the need for readers to refer to other parts of this document, the first three parameters listed below are
copied from Table 56 in Subclause 10.3.5 of this document.

OGC 04-021r3

148 © OGC 2005 – All rights reserved

Table 68 — KVP encoding for Harvest operation request

Keyword
 c

 Data type and value Optionality and use Parameter in
general model

REQUEST Character String
Fixed value of HarvestRecords, case

insensitive

One (Mandatory)
 a

 (none)

service Character String
Fixed values of “CSW”

One (Mandatory) serviceId

version Character String
Fixed value of 2.0.0

One (Mandatory) (none)

NAMESPACE List of Character String, comma separated
Used to specify a namespace and its prefix
Format must be [prefix:]url. If the prefix is

not specified then this is the default
namespace.

Zero or one (Optional)
 b

Include value for each
distinct namespace
used by all qualified
names in the request.

If not included, all
qualified names are in
default namespace

(none)

Source URI
Reference to the source from which the

resource is to be harvested

One (Mandatory) Source

ResourceType URI
Referenence to the type of resource being

harvested

Zero or one (Optional)
 d

 If not included, see

Subclause 10.12.4.2

Type

ResourceFormat Character String
MIME type indicating format of the

resource being harvested

Zero or one (Optional)
Default value is

application/xml

resourceFormat

ResponseHandler URL
A reference to a person or entity that the

CSW should respond to when it has
completed processing Harvest request
anynchronously

Zero or one (Optional)
If not included, process

request synchronously

responseHandler

HarvestInterval Period
Must conform to ISO8601 Period syntax.

Zero or one (Optional)
If not specified, then

harvest only once in
response to the
request.

harvestInterval

a The REQUEST parameter contains the same information as the name of the <Harvest> element in XML encoding.

b The NAMESPACE parameter contains the same information as the xmlns attributes which may be used to convey
namespace information in XML encoding.

c Parameter keywords are case insensitive for KVP encoding.

d If not specified, the server will have to determine the type by some other means. For example, schema references in the
document being harvested.

OGC 04-021r3

© OGC 2005 – All rights reserved 149

10.12.3 XML encoding

The following XML-Schema fragment defines the XML encoding for a Harvest operation request:

 <xsd:element name="Harvest" type="csw:HarvestType"/>
 <xsd:complexType name="HarvestType">
 <xsd:complexContent>
 <xsd:extension base="csw:RequestBaseType">
 <xsd:sequence>
 <xsd:element name="Source" type="xsd:anyURI"/>
 <xsd:element name="ResourceType" type="xsd:anyURI"
 minOccurs="0"/>
 <xsd:element name="ResourceFormat" type="xsd:string"
 minOccurs="0" default="application/xml"/>
 <xsd:element name="HarvestInterval" type="xsd:duration"
 minOccurs="0"/>
 <xsd:element name="ResponseHandler" type="xsd:anyURI"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

10.12.4 Parameter descriptions

10.12.4.1 Source parameter

The Source parameter is used to specify a URI reference to the metadata resource to be harvested.

10.12.4.2 ResourceType parameter

The ResourceType parameter is a reference to a schema document that defines the structure of the
resource being harvested. This is an optional parameter and if it not specified then the catalogue must
employee other means to determine the type of resource being harvested. For example, the catalogue
may use schema references in the input document to determine the resource type, or perhaps parse the
root element to determine the type of metadata being harvested (e.g. <fgdc:metadata> is the root
element of an FGDC document).

10.12.4.3 ResourceFormat parameter

The ResourceFormat paramter is used to indicate the encoding used for the resource being
harvested. This parameter is included to support the harvesting of metadata resources available in
various formats such as plain text, XML or HTML. The values of this parameter must be a MIME
type. If the parameter is not specified then the default value of application/xml should be assumed.

10.12.4.4 ResponseHandler parameter

The ResponseHandler parameter is a flag that indicates how the Harvest operation should be
processed by a CSW server.

If the parameter is not present, then the Harvest operation is processed synchronously meaning that
the client sends the Harvest request to a CSW and then waits to receive a HarvestResponse or
exception message. The CSW immediately processes the Harvest request, while the client waits for a

OGC 04-021r3

150 © OGC 2005 – All rights reserved

response. The problem with this mode of operation is that the client may timeout waiting for the
server to process the request.

If the parameter is present, the Harvest operation is processed asynchronously. In this case, the server
responds immediately to a client’s request with an acknowledgement message as defined in Subclause
10.8.4.13. The acknowlegment message echos the client’s request, using the <EchoedRequest>
element, and may include an optionally generated request identifier using the <RequestId> element.
The acknowledgement message tells the client that the request has been received and notification of
completion will be send to the URL specified as the value of the ResponseHandler parameter. The
Harvest request may then be processed at some later time taking as much time as is required to
complete the operation. When the operation is completed, a HarvestResponse message or exception
message (if a problem was encountered) is sent to the URL specified as the value of the
ResponseHandler parameter.

10.12.4.5 HarvestInterval Parameter

The HarvestInterval parameter is used to specify the period of time, in ISO 8601 period format, that
should elapse before a CSW attempts to re-harvest the specified resource thus refreshing it copy of a
resouce.

If no HarvestInterval parameter is specified then the resource is harvested only once in response to
the Harvest request.

10.12.5 Response

The Harvest operation can respond in one of two ways depending on the presence or absence of the
ResponseHandler parameter.

If the ResponseHandler parameter is present, then the CSW server should verify the request syntax
and immediately respond to the client with a acknowledgment message as defined in Subclause
10.12.4.4. Later, after the server has processed the request, it should generate a HarvestResponse
message and send it to the URI specified by the ResponseHandler parameter using the protocol
encoded therein. Common protocols are ftp for sending the response to ftp server and mailto which
may be used to send the response to an email address.

If the ResponseHandler parameter is not present, then the CSW server should process the Harvest
request immediately and respond to the waiting client with a HarvestResponse message.

The following XML-Schema fragment defines the HarvestResponse message:

<xsd:element name="HarvestResponse" type="csw:TransactionResponseType"/>

If the Harvest attempt is successful, the response may include summary representations of the newly
created or modified catalogue object(s). The response is the same as the TransactionResponse.

10.12.6 Examples

KVP encoded example:

http://www.myserver.com/csw/csw.cgi?request=Harvest&version="2.0.0"&source
=http://www.yourserver.com/metadata.xml&resourcetype=FGDC&resourceformat=a
pplication/xml&responsehandler=mailto:pvretano@cubewerx.com&harvestinterva
l=P2W

OGC 04-021r3

© OGC 2005 – All rights reserved 151

XML encoded example:

<csw:Harvest version="2.0.0">

 <csw:Source>http://www.yourserver.com/metadata.xml</csw:Source>
 <csw:ResourceType>FGDC</csw:ResourceType>
 <csw:ResourceFormat>application/xml</csw:ResourceFormat>
 <csw:HarvestInterval>P2W</csw:HarvestInterval>
 <csw:ResponseHandler>
ftp://ftp.myserver.com/HarvestResponses>/csw:ResponseHandler>
</csw:Harvest>

10.13 XML Schemas

The CSW abilities specified in this Clause directly and indirectly use several newly specified XML
Schemas, included in the zip file with this document. These new XML Schema files are named:

CSW-discovery.xsd
CSW-publication.xsd
sort.xsd
records.xsd
rec-dcmes.xsd
rec-dcterms.xsd

After this document is approved, these new XML Schema files will be posted at the URL
http://schemas.opengis.net/ for electronic access. In the event of a discrepancy between the attached
and online versions of the XML Schema files, the online files shall be considered authoritative.

These new XML Schemas build on the XML Schemas defined in the Filter Encoding
Implementation Specification [OGC 02-059], and the OWS Common Implementation
Specification [OGC 04-016r2], and described in those documents.

11 Specializing general model through protocol bindings and profiles

11.1 Introduction

This subclause provides an overview of the core elements of the General Catalogue Model and how
these may be used in protocol bindings and application profiles.

The General Catalogue Model consists of an abstract model and a General Interface Model. The
abstract query model specifies a BNF grammar for a minimal query syntax and a set of core search
attributes (names, definitions, conceptual datatypes).The General Interface Model specifies a set of
service interfaces that support the discovery, access, maintenance and organization of catalogues of
geospatial information and related resources; these interfaces may be bound to multiple application
protocols, including the HTTP protocol that underlies the World Wide Web. This specification also
specifies bindings to CORBA/IIOP and Z39.50. Furthermore, all behaviour requiring sessions is

OGC 04-021r3

152 © OGC 2005 – All rights reserved

expressed by a dynamic model of conversation state and state transitions. The model expresses the
states and messages that trigger the changes in state.

Implementations are constrained by the protocol binding clauses of this specification. Each protocol
binding includes a mapping from the general interfaces, operations, and parameters specified in this
clause to the constructs available in a chosen protocol. Application profiles are intended to further
document implementation choices.

An Application Profile is based on one of the protocol bindings in the base specification. In the case
of the Catalogue Services Specification, a profile could reference CORBA/IIOP, Z39.50, or the
HTTP/1.1 protocol bindings. In most, but not all, protocol bindings, there may be restrictions or
refinements on implementation agreed within an implementation community. A graphic model of the
relationships is shown in Figure 31.

Figure 31 — Relationship of general model, protocol binding, and application profile

11.2 Interface definitions

The various elements of the General Catalogue Interface Model provide functional behaviours and
capabilities to address particular areas of concern. A protocol binding may realise specific
configurations of these components to serve different purposes (e.g. a read-only catalogue for
discovery, a transactional catalogue for discovery and publication, or a ‘stateful’ catalogue that also
supports session management).

A compliant protocol binding of the catalogue service is required to implement the OGC_Service,
Catalogue Service, and Discovery classes. A protocol binding may also include any of the optional
classes associated with the Catalogue Service class. A compliant implementation of a protocol
binding must recognise all operations defined within each class included in the protocol binding, and
shall generate a service exception report indicating when a particular operation is not implemented (in
such cases the operation is abstract—an implementation is not required).

The protocol binding clauses of this specification provides more detail on the implementation of the
general interfaces. In effect, each binding maps these interfaces to a particular application protocol.
For example, the names of the classes and operations in this general UML model are changed in some
of the protocol bindings. The names of some operation parameters are also changed in some protocol
bindings. However, the interfaces and operations specified in all Protocol Bindings shall be consistent
with the semantics and granularity of interaction specified in the General Interface Model.

Application profiles, which will appear as separate documents may further specialise the
implementation of these interfaces and their operations, including adding classes and parameters.
However, the application profile is a specialization of the parent protocol binding, in that the names
of the operations and the parameters cannot be changed.

mapsTo

General
model

1Protocol
binding

Application
profile
(Interop

agreement) uses

OGC 04-021r3

© OGC 2005 – All rights reserved 153

11.3 Query model components

11.3.1 Query language/model

Many OGC service operations have the requirement to pass and process a query as a structure to
perform a search. There are several query languages and messaging mechanisms identified within
OGC specifications. Binding protocols and application profiles should be explicit about the selected
query languages and any features peculiar to a scope of application. The following items should be
addressed in specialization of a Protocol Binding or an Application profile with respect to query
language support:

a) Support for “abstract” queries, against well-known access points (e.g. core search properties).
Some specifications promote or require the exposure of well-known field-like objects as common
search targets (queryables), allowing interrogation of a service without prior negotiation on
information content. The mandatory queryable attributes which must be recognised by all OGC
Catalogue Services is discussed in Subclause TBD.

b) Selection of a query language. Identify the name and version of required query language(s)
anticipated by this Protocol Binding or Application Profile for use.

c) Supported data types (e.g. character, integer, coordinate, date, polygon) and operator types (e.g.
inequality, proximity, partial string, spatial, temporal). Query languages may be restricted in their
implementation or extended with functions not described in the base specification. This would
need to be done if the base query language did not support a data type required by the OGC
Common Query Language discussed in Clause 6 such as envelope.

In addition, an application profile may extend the OGC CQL or Filter syntax with functions not
described in the base specification through use of the “function “construct in CQL and the “Filter “
language. Use of this construct is discussed in Subclause TBD of this document. If an application
protocol uses this extension method, the profile documentation should include an updated BNF
grammar in addition to lists or reference documents with the enumerated data types and operator
types required by this Application Profile. In addition, any description of special techniques (e.g.
supporting joins or associations) that are expected by an Application Profile should be described.

11.3.2 Common search and retrieval elements

The abstract information model is discussed in Clause 6; this model consists of a small set of abstract
search elements and the specification of a common “summary” element set to allow queries across
protocol bindings and even from outside the OGC domain. Each Protocol Binding should specialize
this model by:

a) Specify the syntax of the globally unique Identifiers including any registration authority
information

b) Map the core search (queryable) elements into a concrete syntax based on the chosen record
format(s)

c) Define a “summary”element set that corresponds to the “summary” element set in the Catalogue
general model

OGC 04-021r3

154 © OGC 2005 – All rights reserved

An application profile is expected to fully specify the conceptual information model adopted by the
user community. This process and resulting artefacts are further discussed in Subclause 6.2.5 and the
remainder of this clause.

11.4 Catalogue Application Profiles

ISO TR 10000-1:1998 describes a general framework for functional standardization and defines the
concept of a profile. A profile identifies the use of particular options available in one or more base
standards and it also provides a basis for developing conformance tests; a compliant profile must not
contradict the base specifications or otherwise give rise to non-conforming conditions. An application
profile specifies the use of an application-layer protocol (e.g., Z39.50, HTTP/1.1, CORBA/IIOP) in
order to provide for the structured transfer of information between systems (ISO/IEC TR 10000-
2:1998).

A catalogue application profile binds a set of functional components (with interfaces specified as part
of a protocol binding) to an abstract information model—expressed using UML—that has one or
more concrete representations of catalogue content. Each representation is an Internet media type that
conforms to a schema defined using some schema language (e.g., ASN.1, XML Schema, RDF
Schema). An application profile specifies a set of functional components that are provided by a
conforming implementation (Figure 32).

Figure 32 — Application profiles specify concrete catalogue services

An application profile is derived from one or more base specifications in order to address particular
needs or requirements. The general OGC catalogue model defines common behaviours and interfaces
that have general utility, but in practice there is no single solution that fits everyone’s needs.
Catalogue application profiles specify refinements or extensions that are targeted toward specific
implementation communities; for these communities it is the application profile that represents the
standard for conformance. Following ISO 19106, a Level 1 profile is defined as a pure subset of one
or more ISO standards; a Level 2 profile includes allowable extensions and may also depend on non-
ISO specifications.

Clause 10 in the ISO 19119 standard distinguishes platform-neutral from platform-specific
specifications and assumes that one of the former will constitute the basis for one or more of the

OGC 04-021r3

© OGC 2005 – All rights reserved 155

latter. That is, a single platform-neutral specification will give rise to multiple platform-specific
specifications, each of which is bound to a particular distributed computing protocol. The OGC
catalogue framework upholds this basic distinction: the general interface model is a platform-neutral
description of catalogue operations; each application profile is platform-specific—it makes use of one
of the protocol bindings defined in the catalogue specification.

The relationships between base specifications, application profiles, and catalogue service
implementations are illustrated in Figure 33. The platform-neutral specification is one of the base
specifications with which the application profile complies. A given catalogue implementation in turn
conforms to one or more application profiles. The relationships shown in Figure 33 are consistent
with the standard terms defined in ISO 10746 (Information technology – Open Distributed
Processing) and ISO 9646-1 (Information technology – Open Systems Interconnection –
Conformance testing methodology and framework – Part 1: General concepts)13.

Figure 33 — Relationships between base specs, profiles, and implementations

Note that in the figure application profiles will reflect differing degrees of “thickness”. For example,
if a profile employs a very simple conceptual model that embodies a limited set of simple properties
then its ‘native’ representation may include little more than the common search and retrieval
elements. Profiles that utilize more sophisticated models will define a native representation that
provides more information; in this case the common search and retrieval elements must be mapped to
the catalogue information model.

11.5 Structure and format

11.5.1 Introduction

All application profiles must be structured as shown in Table 69. This organization complies with
clause 12.3 of ISO 19106 (Geographic information – Profiles). A profile may introduce additional
(sub)clauses as required.

13 This usage is also closely aligned with the notion of profiles expressed in Appendix 16 of the Z39.50 information retrieval
standard: “The overall goal of profiles is to improve interoperability between systems conforming to a specific profile. The
implication is that an implementor does not “implement the standard” but rather, configures a Z39.50 client and/or Z39.50
server to conform to one or more profiles.”

conformsTocompliesWith

Platform-
specific

spec

1..* 1..*

catalogue
implementation

Platform-
neutral

spec

application profile +
protocol binding

base
specification

OGC 04-021r3

156 © OGC 2005 – All rights reserved

Table 69 — Structure of an application profile

Clause Title

Preface
Submitting organizations
Revision history
Changes to the OpenGIS Catalogue Services Specification
Future work
Forward

(front
matter)

Introduction
1 Scope
2 Conformance
3 Normative references
4 Terms and definitions
5 Symbols and abbreviations
6 System context

 6.1 Application domain
 6.2 Essential use cases

7 Information models
 7.1 Capability classes
 7.2 Catalogue information model
 7.3 Supported data bindings
 7.4 Service information model
 7.5 Native language support

8 External interfaces
 8.1 Imported protocol bindings
 8.2 Interface A
 8.3 Interface B
 . . .
 8.i Query facilities
 8.j General implementation guidance
 8.k Security considerations

Annex A Abstract test suite (normative)
Annex B Design rationale (informative)

Clauses 6 through 8 convey the particulars of the application profile in terms of three ‘views’ (these
correspond to the following standard ODP viewpoints: Enterprise, Information, and Computational).
The three views describe various aspects of the catalogue service with respect to the base
specifications; taken together they constitute the basic application architecture. The essential content
of these views is summarized in the following subclauses; additional guidance can be found in the
annotated profile template (OGC Document 03-101).

OGC 04-021r3

© OGC 2005 – All rights reserved 157

11.5.2 System context

This view focuses on the purpose, scope, and policies of the catalogue service (i.e., what is the system
used for). It documents special requirements14 and describes the context of use as suggested in
Table 70.

Table 70 — System context: required subclauses

Subclause Topical content

Application domain The subject domain being addressed—identify whether this profile has a specific
disciplinary focus (e.g. oceanography), or is of interest to a broader community
(e.g. research, public access, or libraries)

The prospective stakeholders or community of practice

Essential use cases What the system should be able to do, what it will be used for, who will use it
Typical scenarios that encompass a series of interactions between users and the

catalogue system being described in order to fulfill the needs of stakeholders. The
inclusion of narrative use cases with accompanying interaction and/or sequence
diagrams is recommended

11.5.3 Information models

This view primarily focuses on the information structures and the semantics of information
processing (i.e., what the system is about); it describes the public information model that is employed
by the catalogue service and the interfaces through which it is accessed. The syntax for all supported
representations of the catalogued resources must also be defined (Table 71).

Table 71 — Information models: required subclauses

Subclause Topical content

Capability classes Capabilities provided by the application profile, including a high-level summary of
the interfaces provided (and conformance classes/levels if these are distinguished)

Catalogue
information model

Kinds of information objects managed by the catalogue using UML notation—a
catalogue may offer discovery and publication support for many different types of
information resources (services, data sets, schemas, style sheets, reference
documents, software components, ontologies, thesauri, etc.)

Mappings to the common XML Record format
Supported data

formats
Supported representations of the information objects using an appropriate syntax, one

of which must be designated as the default representation
Supported element sets (schemas) for each format

Service information
model

Content model and syntax for service information

Native language
support

How the catalogue service supports multiple languages and character encodings (i.e.
internationalization and localization issues)

14 Clause 7 of ISO 19106 stipulates that a profile must clearly identify the specific user requirements that are satisfied by the
profile.

OGC 04-021r3

158 © OGC 2005 – All rights reserved

11.5.4 External interfaces

This view primarily focuses on documenting the externally visible behaviour of the system, including
the interfaces provided by its components and the supported protocol binding(s). This view must
define the request and response message structures as part of the operation signatures; it also
documents supported query facilities and any relevant security considerations (Table 72). Most of the
request and response message elements are imported with the protocol binding, but a (Level 2) profile
may introduce extensions to meet more specialized requirements.

Table 72 — Public interfaces: required subclauses

Subclause Topical content
Imported protocol

binding
How the interfaces or functions specified for the profile are related to the imported

protocol binding.
Interface

specifications
Syntax and semantics of the operations provided by each interface, including relevant

preconditions, postconditions, and other usage constraints
Formal, language-independent interface specifications that admit multiple

programming language bindings (e.g. W3C WSDL, OMG IDL)
Error conditions that can be raised and how they’re handled
Any restrictions or variations on the use of the supported protocol binding (e.g.

CORBA/IIOP, Z39.50, HTTP/1.1)
Query facilities Supported query languages (e.g. OGC CQL/Filter, SQL-92, XPath, XQuery, etc.)

extensions or restrictions to any of the above languages
Implementation

guidance
Any additional information (typically non-normative) that may be helpful to

implementers
Security

considerations
Information regarding the provision of security functions: authentication, access

control, message integrity, confidentiality, non-repudiation, audit trails

The inclusion of a UML diagram is recommended to provide an overview of the interfaces provided
by a given service type, where each type provides a different—perhaps overlapping—set of interfaces
(e.g. a read-only catalogue, a catalogue that allows a ‘push’ style of publication).

11.6 Compliance

A compliant application profile shall:

a) Include the (sub)clauses indicated in Table 72 (additional clauses MAY also be included);

b) Define the supported catalogue information model using UML as the conceptual schema
language;

c) Define a set of mappings for the common XML record format data format;

d) Specify the ‘native’ representation of information model elements (additional representations
MAY also be specified);

e) Define any extensions to the imported protocol binding.

f) Indicate how the elements of the general model are related to the corresponding elements of the
profile-specific interfaces;

OGC 04-021r3

© OGC 2005 – All rights reserved 159

g) Include a conformance test suite (web-based services can do so using the OGC CITE notation).

OGC 04-021r3

160 © OGC 2005 – All rights reserved

Annex A
(normative)

Abstract conformance test suite

EDITOR’S NOTE In a future version, this annex will specify conformance checking
requirements for each protocol binding.

OGC 04-021r3

© OGC 2005 – All rights reserved 161

Annex B
(informative)

Description of Distributed Search

To enable Distributed Searching, the following items are needed:

a) A multi-tier Reference Architecture as provided by this specification (as defined in Subclause
7.1)

b) A data model to define how searches are to be distributed as defined by an information
community

c) Messages with elements applicable to Distributed Searching as provided by this specification

To support distributed searching, a community develops a data model that determines how a search
will be distributed to coordinated data servers. The OGC Catalogue General Model allows data model
neutrality with respect to distributed searching.

Several of the Discovery messages defined in Subclause 10.8 contain elements that pertain to
distributed searching. The query message contains elements that allow the client to request certain
search behaviour with respect to distribution. The request and response messages define elements that
allow for the retrieval and comprehension of a distributed result set. The request and response
messages contain elements that allow for understanding the status of distributed searches.

Distributed searches can cause specific problems that should be addressed in detail by an application
profile. These problems result from the possibility that within one distributed, or cascading, query a
catalogue service node may be approached multiple times, resulting in duplication results or, even
worse, in loops causing the whole distributed system to potentially fail. Other problems are caused by
duplicate metadata entries that are served by different catalogue services.

Figure B.1 displays a case resulting in duplicates due to the same catalogue service node being
queried twice.

OGC 04-021r3

162 © OGC 2005 – All rights reserved

Figure B.1 — Query network topology resulting in duplicates

Unnecessary duplicates are a nuisance for the user but do not normally cause the system to fail. More
problematic are loops, as shown in Figure B.2.

Figure B.2 — Query network topology resulting in a loop

In this case the loop causes infinite recursion – the same query is sent again and again resulting in
system failure and/or timeout.

OGC 04-021r3

© OGC 2005 – All rights reserved 163

It is important to notice that both of these problems can be solved by restricting the search hierarchy
to two levels – one client queries a number of catalogue services that are allowed to cascade once.
Generally speaking one method to avoid these problems is to control the network topology manually.
Before a query is issued, the query topology is checked for duplicates or loops.

To allow an automatic solution to this problem, mechanisms should be specified in Application
Profiles of the Catalogue Specification. To make sure that one catalogue node is not approached more
than once within one query, whether this happens in a loop or not, one may wish to track the nodes
already accessed. A cascading catalogue service would make sure that the list of already accesses
nodes of the query gets added its own identifier – most likely as a URI. By the same mechanism, a
counter could be implemented, reflecting the number of catalogue services the query already passed.
This could help restricting the search depth of one query. An application profile could state the
maximum number of cascadings a query would traverse.

A possible solution to the problem of duplicates of metadata entries is to define unique identifiers for
metadata entries that are applicable to a whole network, e.g. based on a combination of the server
URL and the file identifier specific to the catalogue. Node-specific File identifiers alone are not the
solution to the problem, as different catalogues can use the same ID without referring to the same
dataset.

OGC 04-021r3

164 © OGC 2005 – All rights reserved

Annex C
(informative)

Details of order operation

C.1 Introduction

This annex provides the details of the Order operation messages from OGC Catalogue Specification
1.1.1. It is included here as background for profiles or protocol bindings that have maintained
backwards compatibility with these more detailed specifications. Note the message and parameter
names are the names from Catalogue Version 1.1.1.

C.2 BrokeredAccessRequest

C.2.1 Message

The BrokeredAccessRequest is a service requesting data that cannot be made available directly.

BrokeredAccessRequest ::= sessionID destinationID requestID additionalInfo
 productHandle orderInformation orderID requestType
 userInformation statusOrderUpdateType

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= RequestID

additionalInfo ::= CharacterString

productHandle ::= CharacterString

orderInformation ::= OrderSpecification

orderID ::= CharacterString

requestType ::= BrokeredAccessRequestType

userInformation ::= UserInformation

statusOrderUpdateType ::= StatusUpdateType

C.2.2 Message Parameters:

productHandle: Type = CharacterString

OGC 04-021r3

© OGC 2005 – All rights reserved 165

The product handle is the identifier for a specific product taken from the catalogue metadata for that
product.

orderInformation: Type = OrderSpecification

For BrokeredAccessRequestType = orderEstimate or OrderQuoteAndSubmit,the specification of the
current order request as provided as by the client or modified by the server during the estimation
process.

For BrokeredAccessRequestType = orderMonitor or orderCancel, OrderSpecification is ignored and
may not be supplied.

orderID: type = CharacterString

The orderID parameter provides a unique identifier for an order in progress. This ID can be used to
inquire about the status of the order as it is being processed. For BrokeredAccessRequestType =
orderMonitor or orderCancel, orderID shall be supplied. For requestType = orderEstimate or
OrderQuoteAndSubmit, orderID shall be empty.

requestType: Type = BrokeredAccessRequestType

The request type parameter identifies the type of service the client needs from the server. Valid values
are estimate, submit, monitor and cancel. Estimate is used to check if the order is valid and to request
an estimate of resources required to fill the order. Submit is a request to order and deliver the
products(s). Monitor provides the current status of the order. Cancel requests that the order be
cancelled. The server must grant cancellation of the order. BrokeredAccessRequestType is formally
defined in Subclause C.4.2.

userInformation: Type = UserInformation

To receive products it is necessary to provide requester identification, billing and delivery data as part
of the order. This parameter is used to provide that data.

statusOrderUpdateType : Type = StatusUpdateType

How a given client likes to be kept informed about the status of a given order.

C.2.3 Message Operations: None

C.3 BrokeredAccessResponse

C.3.1 Response

The server generates the BrokeredAccessResponse message in response to a BrokeredAccessRequest.

BrokeredAccessResponse ::= sessionID destinationID requestID additionalInfo diagnostic format
orderStatus resourceEstimate order orderID status requestType

sessionID ::= Integer

destinationID ::= CharacterString

OGC 04-021r3

166 © OGC 2005 – All rights reserved

requestID ::= RequestID

additionalInfo ::= CharacterString

diagnostic ::= CharacterString

format ::= MessageFormat

orderStatus ::= OrderStatus

resourceEstimate ::= CharacterString

order ::= CollectionName

orderID ::= CharacterString

status ::= Status

requestType ::= BrokeredAccessRequestType

orderInformation ::= OrderSpecification

C.3.2 Message Parameters:

orderStatus Type ::= OrderStatus

This parameter indicates the status of the order. The status of the order is different than the status of
an Access message. The status of the message is reported in the response in the status parameter. The
OrderStatus type is formally defined in Subclause C.4.6 of this specification.

resourceEstimate: Type = CharacterString

This parameter reports back on the resources needed to process and/or deliver the requested resource.
Examples of these resources are time until delivery and cost.

order: Type = CollectionName

The order parameter returns a name or id of the requested product object online. This parameter can
be used for direct access (such as through simple features) to the online product. The CollectionName
type is formally defined in Subclause C.4.3 of this specification.

orderID: type = CharacterString

The orderID parameter provides a unique identifier for an order in progress. This ID can be used to
inquire about the status of the order as it is being processed. This number is generated by the server in
response to a BrokeredAccessRequest where requestType = orderEstimate or OrderQuoteAndSubmit

status: Type = Status

The Status parameter conveys the status of the requested product. The Status type is formally defined
in Subclause C.4.11.

OGC 04-021r3

© OGC 2005 – All rights reserved 167

requestType: Type = BrokeredAccessRequestType

The request type parameter identifies the type of service the client needs from the server.
BrokeredAccessRequestType is formally defined in Subclause C.4.2.

orderInformation: Type ::= OrderSpecification

For BrokeredAccessRequestType = orderEstimate or OrderQuoteAndSubmit, the specification of the
current order request as provided as by the client or modified by the server during the estimation
process. .

For BrokeredAccessRequestType = orderMonitor or orderCancel, OrderSpecification is ignored and
may not be supplied.

C.3.3 Message Operations: None

C.4 Parameter Type Definitions

C.4.1 Introduction

This annex provides definitions for all of the parameter data types used in Request-Response Message
Pairs. These definitions assume the use of the OGC well known data types where applicable.

C.4.2 BrokeredAccessRequestType

Recommended Implementation Type: Code_List

Used By: BrokeredAccessRequest

BrokeredAccessRequestType is a code list for identifying the nature of a brokered access request.
Valid values for this type are shown in Table C.1.

Table C.1 — Brokered Access Request Types

Value Explanation

orderEstimate Validate and obtain the estimate of an order specification
orderQuoteAndSubmit Obtain a quote and subsequently submit an order specification
orderMonitor Monitor the progress of an order request
orderCancel Cancel an order request

C.4.3 CollectionName

Recommended Implementation Type: Union data

Used By: BrokeredAccessResponse

Collection Name is a type that identifies a catalogue data resource. It can point to a catalog, catalogue
entry, named catalogue subspace, named catalogue superspace or a result set. This type is a “C” union
of two base types:

OGC 04-021r3

168 © OGC 2005 – All rights reserved

collection ID (character string)

collection Name (character string).

C.4.4 OrderItem

Recommended Implementation Type: Data Structure

Used by: GC_BrokeredAccessRequestType

This data structure contains the specification of a single order item (i.e. e. the product that is ordered
and that is to be delivered):

a) productId, which is the identifier of the ordered product.

b) productPrice, which is the price of the product.

c) productDeliveryOptions, which contains delivery options for the product.

d) processingOptions, which specifies the processing options that are to be applied on the product
before delivery.

e) sceneSelectionOptions, which specifies the selection of the scene from the whole product that is
to be delivered.

C.4.5 OrderSpecification

Recommended Implementation Type: Data Structure

Used By: BrokeredAccessRequest

The specification of the order request as provided as input by the client if
BrokeredAccessRequestType = orderEstimate or OrderQuoteAndSubmit.

The structure contains the following information about the product specification:

a) orderCentreID – identifies the order center at which the order will be performed

b) orderPrice –the price for the whole order

c) orderDeliveryDate - the latest date at which the order can be expected to be delivered to the user.

d) orderCancellationDate – the latest date at which the user can cancel the order.

e) deliveryMethod – how the order will be delivered to the user: e-mail, ftp or mail.

f) package – contains the definition of how the packages which compose the order

C.4.6 OrderStatus

Recommended Implementation Type: Code_List

OGC 04-021r3

© OGC 2005 – All rights reserved 169

Used By: BrokeredAccessResponse

OrderStatus is a code list for identifying the status of an order. Valid values for this type are:

Table C.2 — Order Status Codes

Value Explanation

orderBeingEstimated the order is currently being estimated by the target order handling system.
An Estimate is an approximation only.

orderEstimated indicates that the order has been successfully validated and that an
estimate is provided.

orderBeingQuoted the order is currently being quoted by the target order handling system.
A Quote shall be considered contractually binding.

orderBeingProcessed the order is currently being processed by the target order handling
system.

orderCompleted processing of order has been completed.
orderNotValid the order has not been successfully validated.
orderCancelled the order has been cancelled

C.4.7 PackageSpecification

Recommended Implementation Type: Data Structure

Used By: BrokeredAccessRequest, OrderSpecification, PackagingType

The specification of a single package or multiple packages.

The structure contains the following information about the packaging order:

a) packageId – the identifier of the ordered package

b) packagePrice –the price for the package

c) package – the detailed information concerning the specification of package. (See packagingType)

d) packageMedium –the medium on which the package will be delivered to a user.

e) packageSize – the size of the package in kilobytes.

C.4.8 PackagingType

Recommended Implementation Type: Code List

Used By: PackageSpecification, BrokeredAccessRequest

The specification of the packaging method used to deliver an order to a user.

a) predefinedPackage: A package predefined by the given catalogue service

OGC 04-021r3

170 © OGC 2005 – All rights reserved

b) adhocPackage: A package constructed of OrderItems to fulfill a particular order

C.4.9 PaymentMethod

Recommended Implementation Type: Code_List

Used By: UserInformation

This code list contains the payment methods for an order secured through using a Access operation.
The supported methods are the following:

a) credit

b) cash

c) purchaseOrder

C.4.10 QueryScope

Recommended Implementation Type: Code_List

Used By: QueryRequest

QueryScope is a code list describing the size of the search space for a query. Current valid values for
this type are:

distributed

local

The Reference Architecture for the OGC Catalogue allows for catalogue requests to be distributed to
multiple catalogs. The architecture allows for a Catalogue to accept a request from a client and
distribute the request to other Catalogs. For the OGC Catalogue Service, Distributed Catalogue
Searching is defined as a service that involves services of multiple Catalogue Servers, in addition to
the primary client-server interaction. A catalogue server may be able to perform Distributed
Searching by propagating secondary catalogue service requests to other catalogue servers. See Annex
D for more explanation.

C.4.11 Status

Recommended Implementation Type: Code_List

Used By: BrokeredAccessResponse

Status is a code list for representing the current status of a resource or request. The valid values for
this type are the following:

a) success: the request has been processed without error.

b) successResultsAvailable: the request has been processed without error and outputs of the
processing can be retrieved.

OGC 04-021r3

© OGC 2005 – All rights reserved 171

c) processingNormal: the requested operations have begun but are not completed. No errors have
been identified.

d) processingQueued: the requested operations have begun but are not completed. No errors have
been identified. The processing has been temporally suspended and will resume when other
processing has been completed.

e) processingPausedOrSuspended: the requested operations have begun but are not completed. No
errors have been identified. The processing has been temporally suspended and will resume when
triggered by an external event.

f) failure: the request could not be completed due to errors being encountered. On a best effort basis
the server has returned to the state prior to the request.

g) failureAccessDenied : the request could not be completed because the privileges of the client did
not permit the operation. On a best effort basis the server has returned to the state prior to the
request.

C.4.12 StatusUpdateType

Recommended Implementation Type: Code List

Used By: OrderStatusUpdateType

This parameter defines how the user requesting the order desires to be kept informed about the order
processing.

a) manual: The user performs the status request using the Catalogue Interface

b) automatic: The OHS filling the order provides status updates for the user via email

C.4.13 UserInformation

Recommended Implementation Type: Data Structure

Used By: BrokeredAccessRequest

This parameter type is a data structure used to provide information about the user.

a) userName: (type = Character String) – name of the user

b) userAddress: (type = CharacterString) – billing, home or delivery address of user

c) phoneNumber: (type = CharacterString) – home or office phone number for user

d) faxNumber: (type = CharacterString) – home or office fax number for user

e) emailAddress: (type = CharacterString) – e-mail address for the user

f) NetAddress: (type = CharacterString) – Address of the users’ primary computer.

g) PaymentMethod: (type = PaymentMethod) – defines the payment method

OGC 04-021r3

172 © OGC 2005 – All rights reserved

Annex D
(informative)

Sample CSW capabilities document

<csw:Capabilities
 version="2.0.1"
 updateSequence="0"
 xmlns:ows="http://www.opengis.net/ows"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:csw="http://www.opengis.net/csw"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://www.opengis.net/ows
 http://www.pvretano.com/schemas/common/0.2.0/owsCommon.xsd
 http://www.opengis.net/ogc
 http://www.pvretano.com/schemas/filter/1.0.0/filterCapabilities.xsd
 http://www.opengis.net/csw
 http://www.pvretano.com/schemas/csw/0.2.0/CSW-discovery.xsd
 http://www.w3.org/1999/xlink
 http://www.pvretano.com/schemas/gml/3.0.0/xlink/xlinks.xsd">
 <ows:ServiceIdentification>
 <ows:ServiceType>CSW</ows:ServiceType>
 <ows:ServiceTypeVersion>0.7.8</ows:ServiceTypeVersion>
 <ows:ServiceTypeVersion>2.0.0</ows:ServiceTypeVersion>
 <ows:Title>CubeWerx CSW</ows:Title>
 <ows:Abstract>
 A catalogue service that conforms to the HTTP protocol
 binding of the OpenGIS Catalogue Service specification
 version 2.0.0.
 </ows:Abstract>
 <ows:Keywords>
 <ows:Keyword>CSW</ows:Keyword>
 <ows:Keyword>CubeWerx</ows:Keyword>
 <ows:Keyword>geospatial</ows:Keyword>
 <ows:Keyword>catalogue</ows:Keyword>
 </ows:Keywords>
 <ows:Fees>NONE</ows:Fees>
 <ows:AccessConstraints>NONE</ows:AccessConstraints>
 </ows:ServiceIdentification>
 <ows:ServiceProvider>
 <ows:ProviderName>CubeWerx Inc.</ows:ProviderName>
 <ows:ProviderSite xlink:href="http://www.cubewerx.com"/>
 <ows:ServiceContact>
 <ows:IndividualName>Panagiotis A. Vretanos</ows:IndividualName>
 <ows:PositionName>Senior Developer</ows:PositionName>
 <ows:ContactInfo>
 <ows:Phone>
 <ows:Voice>+1-819-771-8303</ows:Voice>
 <ows:Facsimile>+1-819-771-8303</ows:Facsimile>

OGC 04-021r3

© OGC 2005 – All rights reserved 173

 </ows:Phone>
 <ows:Address>
 <ows:DeliveryPoint>200 rue Montcalm</ows:DeliveryPoint>
 <ows:DeliveryPoint>Suite R-13</ows:DeliveryPoint>
 <ows:City>Gatineau</ows:City>
 <ows:AdministrativeArea>Quebec</ows:AdministrativeArea>
 <ows:PostalCode>J8Y 3B5</ows:PostalCode>
 <ows:Country>CANADA</ows:Country>
 <ows:ElectronicMailAddress>
 pvretano@cubwerx.com
 </ows:ElectronicMailAddress>
 </ows:Address>
 <ows:OnlineResource xlink:href="mailto:pvretano@cubewerx.com"/>
 </ows:ContactInfo>
 </ows:ServiceContact>
 </ows:ServiceProvider>
 <ows:OperationsMetadata>
 <ows:Operation name="GetCapabilities">
 <ows:DCP>
 <ows:HTTP>
 <ows:Get xlink:href="http://www.cubewerx.com/cwcsw.cgi?"/>
 <ows:Post xlink:href="http://www.cubewerx.com/cwcsw.cgi"/>
 </ows:HTTP>
 </ows:DCP>
 </ows:Operation>
 <ows:Operation name="DescribeRecord">
 <ows:DCP>
 <ows:HTTP>
 <ows:Get xlink:href="http://www.cubewerx.com/cwcsw.cgi?"/>
 <ows:Post xlink:href="http://www.cubewerx.com/cwcsw.cgi"/>
 </ows:HTTP>
 </ows:DCP>
 <ows:Parameter name="typeName">
 <ows:Value>csw:Record</ows:Value>
 </ows:Parameter>
 <ows:Parameter name="outputFormat">
 <ows:Value>application/xml</ows:Value>
 </ows:Parameter>
 <ows:Parameter name="schemaLanguage">
 <ows:Value>XMLSCHEMA</ows:Value>
 </ows:Parameter>
 </ows:Operation>
 <ows:Operation name="GetRecords">
 <ows:DCP>
 <ows:HTTP>
 <ows:Get xlink:href="http://www.cubewerx.com/cwcsw.cgi?"/>
 <ows:Post xlink:href="http://www.cubewerx.com/cwcsw.cgi"/>
 </ows:HTTP>
 </ows:DCP>
 <ows:Parameter name="TypeName">
 <ows:Value>csw:Record</ows:Value>
 </ows:Parameter>
 <ows:Parameter name="outputFormat">
 <ows:Value>application/xml</ows:Value>
 <ows:Value>text/html</ows:Value>
 <ows:Value>text/plain</ows:Value>
 </ows:Parameter>

OGC 04-021r3

174 © OGC 2005 – All rights reserved

 <ows:Parameter name="outputSchema">
 <ows:Value>csw:Record</ows:DefaultValue>
 </ows:Parameter>
 <ows:Parameter name="resultType">
 <ows:Value>hits</ows:DefaultValue>
 <ows:Value>results</ows:Value>
 <ows:Value>validate</ows:Value>
 </ows:Parameter>
 <ows:Parameter name="ElementSetName">
 <ows:Value>brief</ows:Value>
 <ows:Value>summary</ows:Value>
 <ows:Value>full</ows:Value>
 </ows:Parameter>
 <ows:Parameter name="CONSTRAINTLANGUAGE">
 <ows:Value>Filter</ows:Value>
 </ows:Parameter>
 </ows:Operation>
 <ows:Operation name="GetRecordById">
 <ows:DCP>
 <ows:HTTP>
 <ows:Get xlink:href="http://www.cubewerx.com/cwcsg.cgi?"/>
 <ows:Post xlink:href="http://www.cubewerx.com/cwcsg.cgi"/>
 </ows:HTTP>
 </ows:DCP>
 <ows:Parameter name="ElementSetName">
 <ows:Value>brief</ows:Value>
 <ows:Value>summary</ows:Value>
 <ows:Value>full</ows:Value>
 </ows:Parameter>
 </ows:Operation>
 <ows:Operation name="GetDomain">
 <ows:DCP>
 <ows:HTTP>
 <ows:Get xlink:href="http://www.cubewerx.com/cwcsg.cgi?"/>
 <ows:Post xlink:href="http://www.cubewerx.com/cwcsg.cgi"/>
 </ows:HTTP>
 </ows:DCP>
 <ows:Parameter name="ParameterName">
 <ows:Value>GetRecords.resultType</ows:Value>
 <ows:Value>GetRecords.outputFormat</ows:Value>
 <ows:Value>GetRecords.outputRecType</ows:Value>
 <ows:Value>GetRecords.typeNames</ows:Value>
 <ows:Value>GetRecords.ElementSetName</ows:Value>
 <ows:Value>GetRecords.ElementName</ows:Value>
 <ows:Value>GetRecords.CONSTRAINTLANGUAGE</ows:Value>
 <ows:Value>GetRecordById.ElementSetName</ows:Value>
 <ows:Value>DescribeRecord.typeName</ows:Value>
 <ows:Value>DescribeRecord.schemaLanguage</ows:Value>
 </ows:Parameter>
 </ows:Operation>
 <ows:Operation name="Harvest">
 <ows:DCP>
 <ows:HTTP>
 <ows:Get xlink:href="http://www.cubewerx.com/cwcsg.cgi?"/>
 <ows:Post xlink:href="http://www.cubewerx.com/cwcsg.cgi"/>
 </ows:HTTP>
 </ows:DCP>

OGC 04-021r3

© OGC 2005 – All rights reserved 175

 <ows:Parameter name="ResourceType">
 <ows:Value>csw:Record</ows:DefaultValue>
 <ows:Value>fgdc:metadata</ows:Value>
 <ows:Value>wfs:Capabilities</ows:Value>
 <ows:Value>wms:Capabilities</ows:Value>
 </ows:Parameter>
 <ows:Parameter name="ResourceFormat">
 <ows:Value>application/xml</ows:DefaultValue>
 <ows:Value>text/plain</ows:Value>
 </ows:Parameter>
 </ows:Operation>
 <ows:Operation name="Transaction">
 <ows:DCP>
 <ows:HTTP>
 <ows:Get xlink:href="http://www.cubewerx.com/cwcsg.cgi?"/>
 <ows:Post xlink:href="http://www.cubewerx.com/cwcsg.cgi"/>
 </ows:HTTP>
 </ows:DCP>
 </ows:Operation>
 <ows:Parameter name="service">
 <ows:Value>CSW</ows:DefaultValue>
 </ows:Parameter>
 <ows:Parameter name="version">
 <ows:Value>2.0.1</ows:DefaultValue>
 <ows:Value>2.0.0</ows:Value>
 </ows:Parameter>
 <ows:ExtendedCapabilities></ows:ExtendedCapabilities>
 </ows:OperationsMetadata>
 <ogc:Filter_Capabilities>
 <ogc:Spatial_Capabilities>
 <ogc:Spatial_Operators>
 <ogc:BBOX/>
 <ogc:Equals/>
 <ogc:Intersect/>
 <ogc:Touches/>
 <ogc:Crosses/>
 <ogc:Contains/>
 <ogc:Overlaps/>
 </ogc:Spatial_Operators>
 </ogc:Spatial_Capabilities>
 <ogc:Scalar_Capabilities>
 <ogc:Logical_Operators/>
 <ogc:Comparison_Operators>
 <ogc:Simple_Comparisons/>
 <ogc:Like/>
 <ogc:Between/>
 <ogc:NullCheck/>
 </ogc:Comparison_Operators>
 <ogc:Arithmetic_Operators>
 <ogc:Simple_Arithmetic/>
 <ogc:Functions>
 <ogc:Function_Names>
 <ogc:Function_Name nArgs="1">COUNT</ogc:Function_Name>
 <ogc:Function_Name nArgs="1">DISTINCT</ogc:Function_Name>
 <ogc:Function_Name nArgs="1">MIN</ogc:Function_Name>
 <ogc:Function_Name nArgs="1">MAX</ogc:Function_Name>
 <ogc:Function_Name nArgs="1">UPPER</ogc:Function_Name>

OGC 04-021r3

176 © OGC 2005 – All rights reserved

 </ogc:Function_Names>
 </ogc:Functions>
 </ogc:Arithmetic_Operators>
 </ogc:Scalar_Capabilities>
 </ogc:Filter_Capabilities>
</csw:Capabilities>

OGC 04-021r3

© OGC 2005 – All rights reserved 177

Annex E
(normative)

Technical corrigendum 1

E.1 All subclauses
Replace every occurrence of “text/xml” with “application/xml”.

E.2 Subclause 6.3.2
In Table 1 and the title for Table 2 change “Envelope” to “BoundingBox”.

In Table 1 change the text in the “Data type” column for the following elements:

Format – Codelist: application/xml, text/html, text/plain
Type – Codelist: Dataset, DatasetCollection, Service

E.3 Subclause 10.3.1
Change the first sentence to:

Only the GET and POST methods are employed in the HTTP binding. Table 53 summarizes the
allowed HTTP method bindings and request data encodings for all CSW requests; optional method
bindings and data encodings are enclosed in parentheses.

Replace Table 53 with the following table:

Table 53 — HTTP method bindings

Request HTTP method
binding(s)

Data encoding(s)a,b

GetCapabilities GET (POST) KVP (XML)
DescribeRecord POST (GET) XML (KVP)
GetDomain POST (GET) XML (KVP)
GetRecords POST (GET) XML (KVP)
GetRecordById GET (POST) KVP (XML)
Harvest POST XML (KVP)
Transaction POST XML
a XML = application/xml using POST (with a charset parameter if

necessary—UTF-8 is strongly recommended)
b KVP = URL-encoded key/value pairs using GET or application/x-

www-form-urlencoded using POST

OGC 04-021r3

178 © OGC 2005 – All rights reserved

E.4 Subclause 10.3.4
Replace the second item in the list of predefined predicate languages with:

b) FILTER is an XML encoding of the BNF grammar and is normatively defined in the Filter
Encoding Implementation Specification, version 1.1.0 [OGC 04-095]. All CSW implementations
are required to support this filter syntax.

Replace the schema fragment with the following:

<xsd:complexType name="QueryConstraintType" id="QueryConstraintType">
 <xsd:choice>
 <xsd:element ref="ogc:Filter"/>
 <xsd:element name="CqlText" type="xsd:string"/>
 </xsd:choice>
 <xsd:attribute name="version" type="xsd:string" use="required">
 </xsd:attribute>
</xsd:complexType>

E.5 Subclause 10.3.6
Append the following sentence to the end of the second paragraph:

Note that the parameter names in all KVP encodings must be handled in a case insensitive manner.

E.6 Subclause 10.5.2
Change the first sentence to:

The GetCapabilities operation request is defined in Subclause 7.2 of the OGC Web Services Common
Specification 1.0 [OGC 05-008].

Change the last sentence of the second paragraph to:

The common service metadata elements that may be included in a Capabilities document are
specified in Subclause 7.4 of OGC 05-008; a catalogue service that implements the CSW binding
may also include the elements listed in Table 57. An application profile may introduce additional
service information items as needed by extending the csw:CapabilitiesType definition.

In Table 57 replace the text in the “Meaning” column with the following text:

A Filter_Capabilities section must be included in the service metadata to describe which elements of the
predicate language are supported. All CSW implementations must support at least the following filter operators:

• logical operators: And, Or, Not
• comparison operators: PropertyIsEqualTo, PropertyIsNotEqualTo, PropertyIsLessThan,

PropertyIsGreaterThan, PropertyIsLessThanOrEqualTo, PropertyIsGreaterThanOrEqualTo, PropertyIsLike
• spatial operators: BBOX

E.7 Subclause 10.5.4
Change the first paragraph to:

OGC 04-021r3

© OGC 2005 – All rights reserved 179

The OperationsMetadata element shall list all operations implemented by the service, as described in
Subclause 7.4.5 of OGC 05-008. An application profile may restrict the <ExtendedCapabilities>
element to provide additional computational metadata (e.g., WSDL service descriptions, OWL-S
resource definitions).

E.8 Subclause 10.5.5
Move the sample capabilities document to a new informative Annex D.

E.9 Subclause 10.6.2
In Table 61 change the “Optionality and Use” for the NAMESPACE parameter to:

One (Mandatory) b. Include declarations for each namespace used in a TypeName.

E.10 Subclause 10.7.1
Replace the last sentence in the final paragraph with:

It is entirely possible that a catalogue may not be able to determine anything about the values of a
property or request parameter beyond the basic type; in this case only a type reference or a type
description will be returned.

E.11 Subclause 10.7.3
Replace the schema fragment with the following:

<xsd:element name="GetDomain" type="csw:GetDomainType"/>
<xsd:complexType name="GetDomainType">
 <xsd:complexContent>
 <xsd:extension base="csw:RequestBaseType">
 <xsd:sequence>
 <xsd:choice>
 <xsd:element name="PropertyName" type="xsd:anyURI" />
 <xsd:element name="ParameterName" type="xsd:anyURI" />
 </xsd:choice>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

E.12 Subclause 10.7.4.1
Append the following sentence to the end of the first paragraph:

The PropertyName value may be specified using an absolute or a relative URI; the precise syntax or
permissible values are defined in an application profile.

E.13 Subclause 10.8.2
In Table 64 update the column entries for the resultType parameter as follows:

OGC 04-021r3

180 © OGC 2005 – All rights reserved

resultType CodeList with allowed values:
“hits”, “results”, “validate”

Zero or one (Optional)
Default value is “hits”

resultType

In Table 64 change the default value of the outputSchema parameter to “csw:Record”.

E.14 Subclause 10.8.3
Replace the schema fragment with the following:

<xsd:element name="GetRecords" type="csw:GetRecordsType"
 id="GetRecords"/>
<xsd:complexType name="GetRecordsType" id="GetRecordsType">
 <xsd:complexContent>
 <xsd:extension base="csw:RequestBaseType">
 <xsd:sequence>
 <xsd:element name="DistributedSearch"
 type="csw:DistributedSearchType"
 minOccurs="0"/>
 <xsd:element name="ResponseHandler"
 type="xsd:anyURI"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:choice>
 <xsd:element ref="csw:AbstractQuery"/>
 <xsd:any processContents="strict"
 namespace="##other" />
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="requestId" type="xsd:anyURI"
 use="optional" />
 <xsd:attribute name="resultType" type="csw:ResultType"
 use="optional" default="hits"/>
 <xsd:attributeGroup ref="csw:BasicRetrievalOptions"/>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

E.15 Subclause 10.8.4.2
Replace the entire text of the subclause with the following text:

The resultType parameter may have the value “hits”, “results”, or “validate”; the value determines
whether the catalogue service returns just a summary of the result set, includes one or more records
from the result set, or validates the request message and processes it asynchronously.

If the resultType parameter is set to “hits”, the catalogue service shall return a
<GetRecordsResponse> element containing an empty <SearchResults> element that indicates the
estimated size of the result set. Optional attributes may or may not be set accordingly.

If the resultType parameter is set to “results”, the catalogue service must include any matching
records within the <SearchResults> element, up to the maximum number of records specified in the
request.

OGC 04-021r3

© OGC 2005 – All rights reserved 181

If the resultType parameter is set to “validate”, the catalogue service must validate the request and
return an <Acknowledgement> message if validation succeeds; a <ServiceExceptionReport> is
returned if validation fails. If the catalogue supports asynchronous query processing, the
acknowledgement response must include a RequestId element that may be subsequently used to
retrieve the result set when processing is complete.

E.16 Subclause 10.11.3.2
Replace the schema fragment with the following:

<xsd:complexType name="InsertType" id="InsertType">
 <xsd:sequence>
 <xsd:any processContents="strict" namespace="##other"
 maxOccurs="unbounded" />
 </xsd:sequence>
 <xsd:attribute name="handle" type="xsd:ID" use="optional"/>
</xsd:complexType>

E.17 Subclause 10.11.3.3
Replace the UpdateType definition in the schema fragment with the following:

<xsd:complexType name="UpdateType" id="UpdateType">
 <xsd:sequence>
 <xsd:choice>
 <xsd:any processContents="strict" namespace="##other" />
 <xsd:sequence>
 <xsd:element ref="csw:RecordProperty" maxOccurs="unbounded"/>
 <xsd:element ref="csw:Constraint"/>
 </xsd:sequence>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="handle" type="xsd:ID" use="optional"/>
</xsd:complexType>

Change the second sentence in the paragraph following the schema fragment to:

If the <csw:Update> element contains a child element declared in some other namespace (i.e., not
“http://www.opengis.net/cat/csw”), then the corresponding record in the catalogue shall be replaced.
The record type must be defined in an application profile.

E.18 Subclause 10.11.3.4
Replace the schema fragment with the following type definition:

<xsd:complexType name="DeleteType" id="DeleteType">
 <xsd:sequence>
 <xsd:element ref="csw:Constraint" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="typeName" type="xsd:anyURI" use="optional"/>
 <xsd:attribute name="handle" type="xsd:ID" use="optional"/>
</xsd:complexType>

Change the first sentence in the paragraph following the schema fragment to:

OGC 04-021r3

182 © OGC 2005 – All rights reserved

The <Delete> element contains a <csw:Constraint> element (see Subclause 10.3.7) that identifies a
set of records that are to be deleted from the catalogue.

E.19 Subclause 6.2.3

Replace the Filter example with the following:
<ogc:Filter xmlns:ogc="http://http://www.opengis.net/ogc">
 <ClassifiedAs>
 <EntryPoint>RECORD/<EntryPoint>
 <KeyName>/GeoClass/Continent/Country/State</KeyName>
 <KeyValue>/GeoClass/NorthAmerica/%/Ontario</KeyValue>
 </ClassifiedAs>
</ogc:Filter>

E.20 Subclause 6.2.5.3

Replace the Filter example with the following:
<Filter xmlns=“http://http://www.opengis.net/ogc”
 xmlns:foo=“http://foo/”>
 <And>
 <Or>
 <PropertyIsEqualTo>
 <PropertyName>foo:FIELD1</PropertyName>
 <Literal>10</Literal>
 </PropertyIsEqualTo>
 <PropertyIsEqualTo>
 <PropertyName>foo:FIELD1</PropertyName>
 <Literal>20</Literal>
 </PropertyIsEqualTo>
 </Or>
 <PropertyIsEqualTo>
 <PropertyName>foo:STATUS</PropertyName>
 <Literal>VALID</Literal>
 </PropertyIsEqualTo>
 </And>
</Filter>

E.21 Subclause 6.2.5.4

Replace the two Filter examples with the following:
<ogc:Filter xmlns:ogc="http://http://www.opengis.net/ogc">
 <ogc:PropertyIsLessThan>
 <ogc:PropertyName>cloudcover</ogc:PropertyName>
 <ogc:Literal>5</ogc:Literal>
 </ogc:PropertyIsLessThan>
</ogc:Filter>

[...]

<ogc:Filter xmlns:ogc="http://http://www.opengis.net/ogc">
 <ogc:Or>
 <ogc:PropertyIsLessThan>
 <ogc:PropertyName>cloudcover</ogc:PropertyName>
 <ogc:Literal>50</ogc:Literal>
 </ogc:PropertyIsLessThan>
 <ogc:PropertyValueDoesNotExist>

OGC 04-021r3

© OGC 2005 – All rights reserved 183

 <ogc:PropertyName>cloudcover</ogc:PropertyName>
 </ogc:PropertValueDoesNotExist>
 </ogc:Or>
</ogc:Filter>

E.22 Subclause 6.3.3

Declare a namespace for the “cat” prefix in example record, and delete the “>” character after the
iso19115TopicCategory namespace prefix declaration:

<?xml version="1.0" encoding="UTF-8"?>
<cat:Record
 xmlns:cat="http://www.opengis.net/cat"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:dct="http://purl.org/dc/terms/"
 xmlns:csw="http://www.opengis.net/csw"
 xmlns:iso19115TopicCategory=”http://www.isotc211.org/”
 xmlns:dcmiBox=”http://dublincore.org/documents/2000/07/11/dcmi-box/“>
 <dc:creator>U.S. Geological Survey</dc:creator>
[...]

Replace the <dc:coverage> element and content with the following XML fragment beginning with
<dct:spatial>:

<dct:spatial>
 <Box projection="EPSG:4326" name="Geographic">
 <northlimit>34.353</northlimit>
 <eastlimit>-96.223</eastlimit>
 <southlimit>28.229</southlimit>
 <westlimit>-108.44</westlimit>
 </Box>
</dct:spatial>

E.23 Subclause 10.5.3
Delete the “Contents” section name reference and row from Table 58.

In Table 58, delete the last sentence in the “Contents” column for Filter_Capabilities (since it is a
required element).

E.24 Annex D

Rename the <ows:DefaultValue> elements with <ows:Value> in the “outputFormat” parameter
section of the GetRecords operation in the capabilities response example:

<ows:Parameter name="outputFormat">
 <ows:Value>application/xml</ows:Value>
 <ows:Value>text/html</ows:Value>
 <ows:Value>text/plain</ows:Value>
</ows:Parameter>

OGC 04-021r3

184 © OGC 2005 – All rights reserved

Rename the <ows:DefaultValue> elements with <ows:Value> in the “outputSchema” parameter
section and replace the “ows:record” with “csw:Record”:

<ows:Parameter name="outputSchema">

<ows:Value>csw:Record</ows:Value>
</ows:Parameter>

Rename the <ows:DefaultValue> elements with <ows:Value> in the “resultType” parameter
section:

<ows:Parameter name="resultType">

<ows:Value>hits</ows: Value>
<ows:Value>results</ows:Value>
<ows:Value>validate</ows:Value>

</ows:Parameter>

Rename the <ows:DefaultValue> elements with <ows:Value> in the “ResourceType” parameter
section of the Harvest operation; replace the “ows:record” with “csw:Record”

<ows:Parameter name="ResourceType">
<ows:Value>csw:Record</ows:DefaultValue>
<ows:Value>fgdc:metadata</ows:Value>

Rename the <ows:DefaultValue> elements with <ows:Value> in the “ResourceFormat” parameter
section:

<ows:Parameter name="ResourceFormat">
<ows:Value>application/xml</ows:Value>
<ows:Value>text/plain</ows:Value>

</ows:Parameter>

Rename the <ows:DefaultValue> elements with <ows:Value> in the “service” and “version”
parameter sections of the OperationsMetadata section:

<ows:Parameter name="service">

<ows:Value>CSW</ows:Value>
</ows:Parameter>
<ows:Parameter name="version">

<ows:Value>2.0.1</ows:Value>
<ows:Value>2.0.0</ows:Value>

</ows:Parameter>

Remove the <csw:Contents> element from the capabilities response example.

E.25 Subclause 10.6.4.2

Replace the last sentence in the second paragraph with the following:
For XML-encoded DescribeRecord requests, the namespace declarations are specified using the
targetNamespace attribute of the TypeName element.

E.26 Subclause 10.6.6

Replace the KVP encoded example with the following:
http://www.someserver.com/csw/csw.cgi?request=DescribeRecord&version=2.0.0&
outputFormat=application/xml&schemaLanguage=XMLSCHEMA&typeName=csw:Record&n
amespace=csw:http://www.opengis.org/cat/csw

OGC 04-021r3

© OGC 2005 – All rights reserved 185

“csw:record” was replaced with “csw:Record” and the “http://www.opengis.org/csw” namespace was
replaced with “http://www.opengis.org/cat/csw”.

Replace the DescribeRecord XML encoded example with the following:

<csw:DescribeRecord version="2.0.1"
 outputFormat="application/xml"
 schemaLanguage="http://www.w3.org/2001/XMLSchema">
 <csw:TypeName
 targetNamespace="http://www.opengis.org/cat/csw">Record</csw:TypeName>
</csw:DescribeRecord>

A attribute “targetNamespace” attribute was added to the <csw:TypeName> element – this is
mandatory – and “csw:record” was replaced with the bareword “Record”.

E.27 Subclause 10.8.4.6

Replace the subclause reference at the end of the paragraph from “10.8.4.3 “ to “10.8.4.2”.

E.28 Subclause 10.8.6

Replace the KVP encoded example with the following:

http://www.someserver.com/csw/csw.cgi?request=GetRecords&version=2.0.0&out
putFormat=application/xml&outputSchema=csw:Record&namespace=csw:http://www
.opengis.org/cat/csw&ResponseHandler="mailto:pvretano@cubewerx.com"&typeNa
me=csw:Record&elementSetName=brief&constraintlanguage=CQLTEXT&constrain="c
sw:AnyText Like '%polution%'"

Two occurrences of “csw:record” were replaced with “csw:Record” and the namespace
“http://www.opengis.org/csw” was replaced with “http://www.opengis.org/cat/csw”. The filter
property name “csw:AnyTextLike” was replaced with “csw:AnyText Like” (space added).

Replace the XML encoded example with the following:

<csw:GetRecords version="2.0.1"
 outputFormat="application/xml"
 outputSchema="csw:Record">
 <csw:ResponseHandler>
ftp://www.myserver.com/pub/MyQuery_Resp.xml</csw:ResponseHandler>
 <csw:Query typeName="csw:Record">
 <csw:ElementSetName>brief</csw:ElementSetName>
 <csw:Constraint>
 <ogc:Filter>
 <ogc:PropertyIsLike wildCard="%" singleChar="_" escape="\">
 <ogc:PropertyName>
 /csw:Record/csw:AnyText
 </ogc:PropertyName>
 <ogc:Literal>%polution%</ogc:Literal>
 </ogc:PropertyIsLike>
 </ogc:Filter>
 </csw:Constraint>
 </csw:Query>

OGC 04-021r3

186 © OGC 2005 – All rights reserved

</csw:GetRecords>

Three occurrences of “csw:record” were replaced with “csw:Record”.

E.29 Subclause 10.9.3
Replace the schema fragment with the following:

<xsd:element name="GetRecordById" type="csw:GetRecordByIdType"/>
<xsd:complexType name="GetRecordByIdType">
 <xsd:complexContent>
 <xsd:extension base="csw:RequestBaseType">
 <xsd:sequence>
 <xsd:element name="Id" type="xsd:anyURI"
 maxOccurs=”unbounded”/>
 <xsd:element ref="csw:ElementSetName" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

E.30 Subclause 10.9.6

Replace the KVP encoded request example to the following:

http://www.someserver.com/csw/csw.cgi?request=GetRecordById&version=2.0.0&i
d=REC-10,REC-11,REC-12

In the XML example change the value of the version attribute to “2.0.1”.

OGC 04-021r3

© OGC 2005 – All rights reserved 187

Bibliography

[1] ISO/IEC 8825:1990, Information technology -- Open Systems Interconnection --
Specification of Basic Encoding Rules for Abstract Syntax Notation One (ASN.1)

[2] ISO/IEC TR 10000-1:1998, Information technology – Framework and taxonomy of
International Standardised Profiles – Part 1: General principles and documentation
framework.

[3] ISO/IEC TR 10000-2:1998, Information technology – Framework and taxonomy of
International Standardised Profiles – Part 2: Principles and Taxonomy for OSI Profiles

[4] ISO 19101:2002, Geographic information -- Reference model

[5] ISO 19103 (DTS), Geographic information - Conceptual schema language, (Draft Technical
Specification)

[6] ISO 19106:2002 (DIS), Geographic information - Profiles

[7] ISO 19108:2002, Geographic information - Temporal schema

[8] ISO 19109:2002 (DIS), Geographic information - Rules for application schema

[9] ISO 19110:2001 (DIS), Geographic information - Methodology for feature cataloguing

[10] ISO 19113:2002, Geographic information - Quality principles

[11] ISO 19114:2001, (DIS) Geographic information - Quality evaluation procedures

[12] ISO 19118:2002, (DIS) Geographic information - Encoding

[13] ISO 23950:1998, Information and documentation -- Information retrieval (Z39.50) --
Application service definition and protocol specification

	1 Scope
	2 Conformance
	3 Normative references
	4 Terms and definitions
	5 Conventions
	5.1 Symbols (and abbreviated terms)
	5.2 UML notation
	5.3 Document terms and definitions
	6 Catalogue abstract information model
	6.1 Introduction
	6.2 Query language support
	6.2.1 Introduction
	6.2.2 OGC_Common catalogue query language
	6.2.3 Extending the Common Catalogue Query Language
	6.2.4 Query language realization
	6.2.5 OGC filter syntax
	6.2.5.1 Introduction
	6.2.5.2 Provider functional extensibility
	6.2.5.3 Precedence
	6.2.5.4 Tight and loose queries

	6.3 Core catalogue schema
	6.3.1 Introduction
	6.3.2 Core queryable properties
	6.3.3 Core returnable properties
	6.3.4 Information structure and semantics

	7 General catalogue interface model
	7.1 Introduction
	7.2 Interface definitions
	7.2.1 Overview
	7.2.2 Catalogue Service class
	7.2.3 OGC_Service class
	7.2.3.1 Introduction
	7.2.3.2 getCapabilities operation

	7.2.4 Discovery class
	7.2.4.1 Introduction
	7.2.4.2 “query” operation
	7.2.4.3 “present” operation
	7.2.4.4 describeRecordType operation
	7.2.4.5 getDomain operation

	7.2.5 Session class
	7.2.5.1 Introduction
	7.2.5.2 “initialize” operation
	7.2.5.3 “close” operation
	7.2.5.4 “status” operation
	7.2.5.5 “cancel” operation

	7.2.6 Manager class
	7.2.6.1 Introduction
	7.2.6.2 ”transaction” operation
	7.2.6.3 harvestResource operation

	7.2.7 Brokered Access class
	7.2.7.1 Introduction
	7.2.7.2 “order” operation

	7.3 Protocol, interface and operation specializations
	7.4 Dynamic model
	7.4.1 Introduction
	7.4.2 UML state diagram notation
	7.4.3 Catalogue server state machine
	7.4.4 Discovery state
	7.4.5 Access state diagram
	7.4.6 Management state
	7.4.7 Explain state diagram

	8 Z39.50 protocol binding
	8.1 Architecture
	8.1.1 Introduction
	8.1.2 Supported services
	8.1.3 Core queryable elements

	8.2 General model to Z39.50 protocol binding operations mapping
	8.3 Z39.50 BER implementation notes
	8.3.1 Message encoding
	8.3.2 Additional search info
	8.3.3 Order extended service

	8.4 Search/Retrieve Web Service (SRW/SRU) implementation notes

	9 CORBA/IIOP protocol binding
	9.1 Architecture
	9.1.1 Supported services
	9.1.2 Core queryable elements

	9.2 Content types (Catalogue entry types)
	9.3 Supported query languages
	9.4 Result set encodings
	9.4.1 XML
	9.4.2 Name-Value pairs

	9.5 General model to CORBA protocol binding operations mapping
	9.6 Interface definition - IDL
	9.6.1 Introduction
	9.6.2 Enumerations
	9.6.3 Structures and unions
	9.6.4 Definitions for brokered access
	9.6.5 Capabilities
	9.6.6 General messages
	9.6.7 Discovery messages
	9.6.8 Management messages
	9.6.9 Access messages
	9.6.10 Exceptions
	9.6.11 Catalogue Service interfaces
	9.6.12 Basic interfaces
	9.6.13 Complete IDL

	10 HTTP protocol binding (Catalogue Services for the Web, CSW)
	10.1 Architectural principles
	10.2 The HTTP protocol
	10.2.1 Overview
	10.2.2 Message headers
	10.2.3 Content encoding
	10.2.4 Request methods
	10.2.5 Message payload

	10.3 Operation request and response encoding
	10.3.1 Introduction
	10.3.2 Simple object access protocol (SOAP)
	10.3.3 Namespaces
	10.3.4 Predicate languages
	10.3.5 General model message mapping
	10.3.6 Common request parameters

	10.4 Operations overview
	10.5 GetCapabilities operation
	10.5.1 Introduction
	10.5.2 Operation request
	10.5.3 Operation response
	10.5.4 OperationsMetadata section standard contents
	10.5.5 Examples

	10.6 DescribeRecord operation
	10.6.1 Introduction
	10.6.2 KVP encoding
	10.6.3 XML encoding
	10.6.3.1 Overview

	10.6.4 Parameter descriptions
	10.6.4.1 NAMESPACE parameter
	10.6.4.2 TypeName parameter
	10.6.4.3 outputFormat parameter
	10.6.4.4 schemaLanguage parameter

	10.6.5 Response
	10.6.6 Examples

	10.7 GetDomain operation
	10.7.1 Introduction
	10.7.2 KVP encoding
	10.7.3 XML encoding
	10.7.4 Parameter descriptions
	10.7.4.1 PropertyName parameter
	10.7.4.2 ParameterName parameter

	10.7.5 Response
	10.7.6 Examples

	10.8 GetRecords operation
	10.8.1 Introduction
	10.8.2 KVP encoding
	10.8.3 XML encoding
	10.8.4 Parameter descriptions
	10.8.4.1 NAMESPACE parameter
	10.8.4.2 resultType parameter
	10.8.4.3 outputFormat parameter
	10.8.4.4 outputSchema parameter
	10.8.4.5 startPosition parameter
	10.8.4.6 maxRecords attribute
	10.8.4.7 typeName parameter
	10.8.4.8 ElementName or ElementSetName parameter
	10.8.4.9 Predicate languages
	10.8.4.10 SortBy parameter
	10.8.4.11 DistributedSearch parameter
	10.8.4.12 ResponseHandler parameter

	10.8.5 Response
	10.8.6 Examples

	10.9 GetRecordById operation
	10.9.1 Introduction
	10.9.2 KVP encoding
	10.9.3 XML encoding
	10.9.4 Parameter descriptions
	10.9.4.1 ElementSetName parameter
	10.9.4.2 Id parameter

	10.9.5 Response
	10.9.6 Examples

	10.10 Record locking
	10.11 Transaction operation
	10.11.1 Introduction
	10.11.2 KVP encoding
	10.11.3 XML encoding
	10.11.3.1 Overview
	10.11.3.2 Insert action
	10.11.3.3 Update action
	10.11.3.4 Delete action

	10.11.4 Response

	10.12 Harvest operation
	10.12.1 Introduction
	10.12.2 KVP encoding
	10.12.3 XML encoding
	10.12.4 Parameter descriptions
	10.12.4.1 Source parameter
	10.12.4.2 ResourceType parameter
	10.12.4.3 ResourceFormat parameter
	10.12.4.4 ResponseHandler parameter
	10.12.4.5 HarvestInterval Parameter

	10.12.5 Response
	10.12.6 Examples

	10.13 XML Schemas

	11 Specializing general model through protocol bindings and profiles
	11.1 Introduction
	11.2 Interface definitions
	11.3 Query model components
	11.3.1 Query language/model
	11.3.2 Common search and retrieval elements

	11.4 Catalogue Application Profiles
	11.5 Structure and format
	11.5.1 Introduction
	11.5.2 System context
	11.5.3 Information models
	11.5.4 External interfaces

	11.6 Compliance

