Copyright Notice

Copyright 2003 International Interfaces (See full text of copyright notice in Appendix 2.)

The companies and organizations listed above have granted the Open GIS Consortium, Inc. (OGC) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and
distribute copies of the modified version.

This document does not represent a commitment to implement any portion of this specification in any company’s
products.

OGC'’s Legal, IPR and Copyright Statements are found at http://www.opengis.org/legal/ipr.htm.

Permission to use, copy, and distribute this document in any medium for any purpose and without fee or royalty is
hereby granted, provided that you include the above list of copyright holders and the entire text of this NOTICE.

We request that authorship attribution be provided in any software, documents, or other items or products that you
create pursuant to the implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of OGC documents is granted pursuant to this license. However, if
additional requirements (as documented in the Copyright FAQ at http://www.opengis.org/legal/ipr_faqg.htm) are
satisfied, the right to create modifications or derivatives is sometimes granted by the OGC to individuals complying
with those requirements.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE
CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF
SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE PERFORMANCE OR IMPLEMENTATION
OF THE CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to this
document or its contents without specific, written prior permission. Title to copyright in this document will at all times
remain with copyright holders.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth
in subdivision (c)(1)(ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013

OpenGIS® is a trademark or registered trademark of Open GIS Consortium, Inc. in the United States and in other
countries.

Note: This document is not an OGC Standard. Internal and external documents cannot refer to it as such.
Drafts are distributed for review and comment and are subject to change without notice.

How to build a WMS from Free Parts

This example examines a WMS built using Python. This WMS works by keeping a 3600x1800
JPEG image which contains a full map of the world from -180,-90 to 180,90 and sending chunks
of it out in response to map requests by clients.

The list of what's needed to build it is:
« ALinux box (RedHat 7)’
» Python 2.1.1¢1 - get it at Python.org?
« Apache 1.3.20 - get it at Apache.org®
« mod_python 2.7.5 - get it at modpython.org*
« Netpbm - get it at SourceForge®

* A decent JPEG image of the world (note: that's a 1.7 MByte file). One can be
obtained from CubeWerx® by running their CubeWerx Web Demo’. Depending on
your hardware/software setup, you may have to pull in things like Tcl/Tk, JPEG
libraries, etc. in order to build some of this stuff.

Here's the result:

basic-wms2.py --> see Appendix B. Also see the license page®. This could probably also be done
in PERL or Tcl or the programming environment of your choice.

The general flow from a client's perspective is to first ask the WMS to return a list of what map
layers it can draw, then the client can ask for maps by requesting specific layers or combinations
of layers over specific geographic regions. In practice, the hard parts of this are done by people
who set up web pages that provide user interface controls. Two examples of this are the
CubeWerx demo and the NASA Digital Earth viewer®.

These are known as "viewer clients." A viewer client can be as simple as a web browser that you
paste a fully formed WMS request into or as complex as a commercial GIS system that can make
WMS requests based on the context of what a user is doing.

In this example, the viewer client is a Web browser. All examples will be shown as URLs that you
can click on.

http://ww. intl-interfaces. net/cookbook/ WG/ basi c- wrs2/ basi c-
wrs2. py?

WMITVER=1. 0. 0&REQUEST=nap&LAYERS=REL| EF&STYLES=def aul t &SRS=EPSG. 43
26&BBOX=- 2. 197265625, 39. 55078125, 20. 302734375, 50. 80078125

&W DTH=256&HElI GHT=128&FORVAT=PNG

Note: All examples of URLs or other code that are too wide are broken up into separate lines. In
the case of a URL such as this one, if you were to copy it and paste it into a browser, you'd need

" Linux Box from Reddhat@: http://www.redhat.com/

2 Python.org: http.//www.python.org/

3 Apache.org: http://www.apache.org/

4 Modpython.org http://modpython.org/

° SourceForge: http://sourceforge.net/projects/netpbm/

® Cubewerx: http://www.cubewerx.com/

” Cubewerx WMS demo: http.//www.cubewerx.com/demo/cubeview.cqi

8 International-Interfaces license:See the full text of the License for WMS Cookbook and basic-wms2.py in
Appendix 2.

9 NASA Digital Earth viewer: http.//viewer.digitalearth.gov/

to copy each of the lines and tack them together with no white space. The examples will be linked
to the same URL so you can just click on them instead of having to cut and paste.

WMS has a base URI prefix (or URL prefix if you prefer)

http://ww.intl-interfaces. net/cookbook/ WS/ basi c-wns2/ basi c-
wTs2. py?

In order to find out what layers it supplies and what projections it supports, a client makes a
"Capabilities Request." Here's the prefix with a Capabilities request:

http://ww.intl-interfaces. net/cookbook/ WS/ basi c-wrs2/ basi c-
WB2. py?r equest =Get Capabi liti es&mrtver=1.1.1

The response is formatted according to the WMS Appendix A. Comments in that DTD are
considered normative and must be followed by WMS providers. The response has to be valid
XML, meaning that it should pass a validation test’. The response has a MIME type of text/xml.
Let's take a quick look at the parts of the XML document. First there's some XML info:

<?xm version='1.0" encodi ng="UTF-8" standal one="no"?>
<! DOCTYPE WMI_MS_Capabiliti es SYSTEM
"http://ww.di gital earth. gov/wnt/xm /capabilities 1 0 0.dtd">
<WMI_MS_Capabilities version="1.0.0" [
<l ELEMENT Vendor Speci fi cCapabilities EMPTY>

The DOCTYPE entry states that this is a WMT_MS_Capabilities document and that you can find
the DTD for this file at the DigitalEarth website''. The part about VendorSpecificCapabilities
means that this WMS has none.

The next section describes the overall service. (There's a lot of work going on within OGC about
service descriptions and service models'?. The WMS 1.0.0 spec predates most of this work.
Thus, if you look at the 1.0.7 spec or at other materials coming from OGC, you will see different
points on an evolutionary path. The ultimate goal is to develop a service model that can be used
to describe many spatial services.)

<l-- Service Metadata -->
<Servi ce>
<l-- The WMr-defined nane for this type of service -->

<Nane>Cet Map</ Name>
A WMS must be named Get Map. It's stated so in the DTD.

<l-- Hunman-readable title for pick lists -->

<Titl e>Basic Map Server</Title>

<l-- Narrative description providing additional information -->
<Abstract >Basic WWB Map Server built as an exanple for a WHES
cookbook

Cont act: adoyle@ntl-interfaces.com </ Abstract>
<Keywor ds>Denb WWE Cookbook</ Keywor ds>

As a WMS implementer/provider, you pick the Title, Abstract, and Keywords. The Title is meant to
be used in user interfaces software (i.e. in Viewer Clients) as part of a list of map servers that the
Viewer Client can access. Keep it short. Abstract is meant to provide a longer description of the
service. Keep it informative. The Keywords are meant to be useful if someone were searching for
your service. These are hard to select.

"0 XML validation test tool: http://www.stg.brown.edu/service/xmivalic/
" Capabilities 1.0.0 DTD file: http.//www.digitalearth.gov/wmt/xml/capabilities 1 0 0.dtd
"2 About OGC work on service descriptions and service models: http.//www.intl-interfaces.net/servicemodel/

<I-- Top-level address of service or service provider.
See al so onlineResource attributes of <dcpType> children.-->
<Onl i neResour ce>
http://ww. intl-interfaces. net/cookbook/ W85/

</ Onl i neResour ce>

<!-- Fees or access constraints inposed. -->

<Fees>none</ Fees>

<AccessConst r ai nt s>none</ AccessConst r ai nt s>
</ Servi ce>

The OnlinResource should contain a URI that leads to a description of the service. In this case, it
points to this WMS Cookbook. The Fees and AccessConstraints elements are really not well
defined except that the spec states that the string none indicates no constraint exists.

Note that all the elements of the Service section can be gathered into a searchable catalog of
WMS implementations. In such a catalog, it would be possible to look for WMS implementations
that have no associated Fees, or to find those whose Keywords do not include the term "Demo"
and so on. If you searched a catalog and found an entry that interests you, you could use the
OnlineResource to find out more about that implementation. In fact, the rest of the capabilities
document, the Capability section is used in catalogs as well.

The Capability section for basic-wms has three subsections: Request, Exception, and Layer.

<Request >
<Map>
<For mat >
<PNG / >
<JPEG / >
<PPM / >
<TIFF />
</ For mat >
<DCPType>
<HTTP>
<Get onlineResource=
"http://ww. intl-interfaces. net/cookbook/ WS/ basi c-
wns2/ basi c- ns2. py?" />
</ HTTP>
</ DCPType>
</ Map>
<Capabilities>
<For mat >
<WVB_XM. />
</ For mat >
<DCPType>
<HTTP>
<Get onlineResource=
"http://ww. intl-interfaces. net/cookbook/ WS/ basi c-
wns2/ basi c- wrs2. py?" />
</ HTTP>
</ DCPType>
</ Capabilities>
</ Request >

As you can see, the Request section is split into two sections, Map and Capabilities. These
describe the two operations that this WMS supports. For the Map request, it can handle PNG,
JPEG,

PPM, and TIFF return formats, and is listening for Map requests at the URI specified by
onlineResource. These requests must be made using the HTTP Get request (as opposed to
HTTP Put or SOAP or anything else). For the Capabilities request, it can return WMS_XML (the
tag "XML" was already reserved, hence the WMS_ prefix) and again, listens at the
onlineResource URI.

It's worth noting that the WMS spec allows the onlineResource values for each request type to be
different. Depending on how you set up your WMS implementation, it may be more convenient for
the two to be the same or it may be easier for them to be different. A WMS client should always
start with a Capabilities request to find the Map request URI. Never assume they are the same.
<Excepti on>
<For mat >
<|I Nl MACE />
<BLANK />
</ For mat >
</ Excepti on>

The Exception tag tells about the exception formats a client can ask for when making requests.
The basic-wms advertises that it can return INIMAGE or BLANK style exceptions.

At last we get to the Layer section. This is how the map server tells the clients what kinds of maps
they can request.
<Layer >
<Titl e>Denp Map Server</Title>
<SRS>EPSG 4326</ SRS>
<Lat LonBoundi ngBox m nx="-180" m ny="-90" maxx="180" maxy="90"
/>
<Layer queryabl e="0">
<Nane>RELI| EF</ Name>
<Title>Relief (ETOPQ GTOPO)</Title>

<Abstract>Col ored relief map with political boundaries and
coast | i nes</ Abstract >

</ Layer >
</ Layer >

Our map server says that it has a top level Layer with a Title, SRS, and LatLonBoundingBox, and
a single sub-Layer. Note that the top level Layer has no Name. That means that it's just being
used to gather other layers into a logical group. Instead of that grouping, we could have used the
form below.
<Layer queryabl e="0">

<SRS>EPSG 4326</ SRS>

<Nanme>RELI| EF</ Nanme>

<Title>Relief (ETOPQ GTOPO)</Title>

<Abstract>Colored relief map with political boundaries and
coast | i nes</ Abstract >

<Lat LonBoundi ngBox m nx="-180" m ny="-90" nmaxx="180" maxy="90"
/>

</ Layer >

However, the WMS 1.0.0 DTD (Appendix A) shows that there can only be zero or one Layer
elements inside a Capability. By using the top level grouping Layer, we ensure that later additions
of new Layers will be easier to do. So here's the Layer info again:

<Layer >
<Titl e>Denp Map Server</Title>
<SRS>EPSG 4326</ SRS>
<Lat LonBoundi ngBox m nx="-180" m ny="-90" maxx="180" maxy="90"
/>
<Layer queryabl e="0">
<Nane>RELI| EF</ Name>
<Title>Relief (ETOPQ GTOPO)</Title>
<Abstract>Col ored relief map with political boundaries and
coastlines</ Abstract >
</ Layer >
</ Layer >

The top level Layer has an SRS and a LatLonBoundingBox. These are inherited by the sub Layer
elements. The sub Layer elements can add SRS values to this list by including its own SRS
element. It can replace the LatLonBoundingBox by including one of its own. These
inheritance/replacement rules are given in a table in the DTD in Appendix A. Our single sub Layer
must have a Name and a Title. We also include an Abstract. The queryable="0" attribute says
that our WMS will not respond to Get Feat ur el nf o requests.

In order to actually test this WMS implementation, you can make use of a service offered by
CubeWerx. If you go to their demo page, down at the bottom is a text entry box labeled "URL of
server: " If you enter the prefix of your WMS implementation in there and hit one of the "Go"
buttons on the page, it will query your WMS for its capabilities, fill in the user-interface elements
on the page, and let you exercise your WMS.

Appendix 1. International Interfaces: Basic-

wms2.py file

basic-wns2.py : A very snmall W/ inpl enentation
V2 - renmoved PIL, trying PBMinstead
#

LICENSE -- This is the "M T License"
Copyright (c) 2001 Allan Doyl e

Permission is hereby granted, free of charge, to any person
obt ai ni ng

a copy of this software and associ ated docunentation files (the
"Software"), to deal in the Software without restriction

i ncl udi ng

without limtation the rights to use, copy, nodify, merge
publ i sh,

distribute, sublicense, and/or sell copies of the Software, and
to

permit persons to whomthe Software is furnished to do so,
subject to

the foll owing conditions:

The above copyright notice and this perm ssion notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE | S PROVIDED "AS I'S', W THOUT WARRANTY OF ANY KI ND
EXPRESS OR | MPLI ED, | NCLUDI NG BUT NOT LIM TED TO THE WARRANTI ES

q:tt:tt:tt:ﬂ::tt:ﬂ::tt

MERCHANTABI LI TY, FI TNESS FOR A PARTI CULAR PURPCSE AND

NONI NFRI NGEMENT. | N NO EVENT SHALL THE AUTHORS OR COPYRI GHT
HCOLDERS BE

LI ABLE FOR ANY CLAIM DAMAGES OR OTHER LI ABILITY, WHETHER IN AN
ACTI ON

OF CONTRACT, TORT OR OTHERW SE, ARI SING FROM QUT OF OR IN
CONNECTI ON

WTH THE SOFTWARE OR THE USE OR OTHER DEALI NGS | N THE SOFTWARE

Al'lan Doyl e - adoyle@ntl-interfaces.com
#

This WVB works by keeping a 3600x1800 JPEG i nage whi ch contains
a ful

map of the world from-180,-90 to 180,90 and sendi ng chunks of
it out

in response to map requests by clients.

#

Things are deliberately hardcoded in this W5 to keep it
si npl e.

#

The i mage was generated using the CubeWerx WS deno which you
can find

at http://ww. cubewer x. com
#
Debuggi ng hel p was provided by Jeff de La Beaujardi ere at NASA

The bi g chunks of functionality conme from nod _python and PIL
#

mod_python is avail able from ww. nodpyt hon. org

#

It provides the connection from Apache CE@ to python code
#

from nmod_pyt hon i nport apache

#

Python inports

#

i mport sys

i mport os

i mport string

Open the map i mage once and load it (this may be causing a
nenory | eak)

map = "/ hone/ apache/ ww. i ntl -
i nterfaces. net/ htdocs/i nages/cubeserv-best. pnni

The WVB version that this WVB i npl enents
version = '1.0.0
This is the capabilities XM

Thanks to Jeff de La Beaujardiere of the NASA Digital Earth
program

for a good one that | used as a tenplate

#

capabilities = """<?xm version="1.0" encodi ng="UTF-8"
st andal one="no" ?>

<! DOCTYPE WMI_MS_Capabiliti es SYSTEM
"http://ww.digital earth. gov/wnt/xm /capabilities_ 1 0 0.dtd"
[
<! ELEMENT Vendor Speci fi cCapabilities EMPTY>

1>
<WMI_MS Capabilities version="1.0.0" updat eSequence="0">
<l-- Service Metadata -->
<Servi ce>

<l-- The WMr-defined nane for this type of service -->
<Nane>Cet Map</ Nanme>

<l-- Human-readable title for pick lists -->
<Titl e>Basic Map Server</Title>
<l-- Narrative description providing additional information -->

<Abstract >Basic WWB Map Server built as an exanple for a WHES
cookbook Contact: adoyle@ntl-interfaces.com </ Abstract>

<Keywor ds>Denmo WMS Cookbook</ Keywor ds>

<l-- Top-level address of service or service provider. See also
onl i neResource attributes of <dcpType> children. -->

<Onl i neResour ce>http://ww. intl -
i nterfaces. net/cookbook/ W5/ </ Onl i neResour ce>

<l-- Fees or access constraints inposed. -->
<Fees>none</ Fees>

<AccessConst rai nt s>none</ AccessConstrai nt s>
</ Servi ce>

<Capabi lity>

<Request >

<MVap>

<For mat >

<PNG / >

<JPEG / >

<PPM / >

<TIFF />

</ For mat >

<DCPType>

<HTTP>

<Cet onlineResource="http://ww.intl-
i nterfaces. net/cookbook/ WVB/ basi c- wrs2/ basi c-wrs2. py?" />

</ HTTP>

</ DCPType>

</ Map>
<Capabilities>
<For mat >
<WB_XM. />

</ For mat >
<DCPType>
<HTTP>

<CGet onlineResource="http://ww.intl-
i nterfaces. net/cookbook/ W5/ basi c- wrs2/ basi c-wrs2. py?" />

</ HTTP>

</ DCPType>

</ Capabilities>
</ Request >
<Excepti on>
<For mat >

<I NI MAGE />
<BLANK />

</ For mat >

</ Excepti on>

<Layer >

<Title>Deno Map Server</Title>

<SRS>EPSG 4326</ SRS>

<Lat LonBoundi ngBox m nx="-180" m ny="-90" maxx="180" maxy="90" />
<Layer queryabl e="0">

<Nane>RELI| EF</ Nane>

<Title>Relief (ETOPQ GTOPO)</Title>

<Abstract>Colored relief map with political boundaries and
coast | i nes</ Abstract >

</ Layer >

</ Layer >

</ Capability>

</WMI_M5 _Capabilities>

#it

Nane/value utilities
#

split_args(args)

#

Takes a CA string. Turns it into a |list of nane/val ue pairs.
Nanes with

no val ue are given a None value (a python special value). Al
nanes

are converted to upper case since WVS argunents are case
i nsensitive

#

def split_args(args):

"split_args : take a CA string and return a list with nane/val ue
pairs"

canon_args = {} # Start an enpty list
if args == None: # Return the enpty list if no arg
return canon_args
arglist = args.split('&) # Split into |ist of nane=val ue
string
for arg in arglist: # Now split each name=val ue and
tnp = arg.split('=") # turn theminto sub-lists
if len(tnp) == 1: # with nanme in the first part

canon_args[tnp[0]] = None # and value in the second part
el se:
canon_args[tnp[O] . upper ()] = tnp[1]
return canon_args
send_htm _error(req, s, status)
#
Returns a text/htm response to the client with an error
nessage
packaged inside. The status is raised as an exception which
neatly
bunps us all the way back to the apache server.

#
def send_htm _error(req, s, status):

req.content _type = "text/htm’ # Set the return Content-Type
reg. send_http_header () # Send the HTTP return header
reqg.wite('<p> + s + '</p>") # Wap the nessage in <p></p>

rai se apache. SERVER RETURN, status # return to apache
handl er (req)
#

The nane of this function is dictated by nod python. This is
the entry

point tothe WWB. It is called by apache with the map request.

Afile in the local directory called .htaccess defines sonme of
this.

(O it can be configured into the main apache httpd.conf file)
#

def handl er(req):

"handl er : call ed when apache gets a map request URI"

mod_pyt hon stuff

#
request = req.args # Provides a string with the C3
argunments in it
req.content _type = "text/plain' # Useful if we have to send
nmessages

back to the client. Later we'll
override it with inmage/jpeg

WVB argunent processing

starts here..

canon_args = split_args(reqg.args) # This turns the args into a
pyt hon
1ist

|If there are no argunents in the request, exit. The W/ spec
does not

specify what to return here since technically, unless there's
at | east

a ' REQUEST' paraneter, it's not a WVB request. For now, let's
use HITP_BAD REQUEST and return a nessage
#
if len(canon_args) == 0:
send_htm _error(req, 'No paraneters found'
apache. HTTP_BAD_ REQUEST)
Next | ook at the REQUEST argumnent.
If it's not there, this is also not a W/ request. ..
request = canon_args. get (' REQUEST', None);
i f request == None:
send_htm _error(req, 'No REQUEST paraneter found'
apache. HTTP_BAD REQUEST)
Here are the 3 choices. In the Capabilities XM. we say that the

layer is not queryable, so we should not be getting a
feature_info

request. If we do, we can say HITP_BAD REQUEST... this is
consi st ent

with the W5 1.0.0 spec 6.2.9.4 that says an error response
nmust be

M ME typed.

if request == 'capabilities':
send_capabilities(req, canon_args)
elif request == 'nap':
send_map(req, canon_ar(gs)

elif request == '"feature_info':

send_htm _error(req, 'REQUEST=% is not inplenented:' %
canon_args[' REQUEST'], apache. HTTP_BAD REQUEST)

el se:

send_htm _error(req,' REQUEST=% is not a valid W/ request' %
canon_args[' REQUEST'], apache. HTTP_BAD REQUEST)

version_cnmp(vl, v2)

#

Conpare version strings. Wrks |ike strcnp.

Since versions are dotted strings with 1, 2, or 3 conponents,
we first

check if the strings are actually equal. If not, then we make
sure we have

three conponents to conpare by adding trailing '0" elenments.
Then we

conpare the high-order part, the next part, and the next part.
#

For this WV we only need to know if they are equal or not
equal . This

WVB does not do version negotiation.

#

def version_cnp(vl, v2):

If they are already equal, great

if vl == v2: return O

turn theminto lists

L1 = vl.split('.")

L2 = v2.split('.")

build up things like "1.0" and '1" into '1.0.0
if len(L1l) == 1: L1.append('0Q")

if len(Ll) == 2: L1.append('0Q")

if len(L2) == 1: L2.append('0")

if len(L2) == 2: L2.append('0")

now if they are equal, great

if L1 == L2: return O
if string.atoi(L1[0])
if string.atoi(L1[0])
if string.atoi (L1[1])
if string.atoi(L1[1])

string.atoi (L2[0]): return -1
string.atoi (L2[0]): return 1
string.atoi (L2[1]): return -1
string.atoi (L2[1]): return 1

vV ANV A

if string.atoi (L1[2]) < string.atoi(L2[2]): return -1

if string.atoi(L1[2]) > string.atoi (L2[2]): return 1

send_capabilities(req, args)

#

Sinply sets the Content-Type to 'text/xm' and returns the
Capabilities

string that's included at the top of this file.

#

def send capabilities(req, args):

This is where version negotiation wiuld go. W' Il ignore it for
now

since we only support one version. If the client tries to
version

negotiate, we'll just send our 1.0.0 capabilities back each
time.

Eventually the client will accept this or go away
req.content _type = "text/xm"

req.send_http_header ()

req.wite(capabilities)

rai se apache. SERVER RETURN, apache. K

Projections

#

Currently assune a base world i mage of 3600x1800 with the whol e
wor | d

from-180,-90 to 180, 90

#

No inverse is needed since we don't handle feature_info
requests.

#

def LonToPi x(1on):

returnint ((lon * 10) + 1800 + .5)
def Lat ToPi x(lat):

returnint ((-lat * 10) + 900 + .5)
send_nap(req, args)

#

Checks to see if all the args that it knows about are present
and correct

If so, send a nap
Note: 2001.05.07 adoyle - added .upper() to all references to

found[' FORMAT'] to inprove |eniency for people who use
| ower case ' png

'jpeg’ etc by m stake.

#

def send_map(req, args):

formats {"JPEG : '| ppntojpeg
' PNG | pnntopng',

"TI FF "| pnmtotiff',

"PPM ' '}

These are the required paraneters (W85 1.0.0 Table 6. 3)

required = ['LAYERS' , 'STYLES', 'SRS', 'BBOX', 'WDTH , 'HEI GIT',
" FORMAT']

These are the optional paraneters (WG 1.0.0 Table 6. 3)
optional = [' TRANSPARENT', 'BGCOLOR , ' EXCEPTI ONS']

Loop through the list of required args. If any are mi ssing,
return

an error.

The ones that we start with are the optional ones, set to the
def aul t

found = {' BGCOLOR : ' OxFFFFFF',
" TRANSPARENT' : ' FALSE',
"EXCEPTIONS' : ' I NI MAGE'}

for paramin required:

found[paran] = args. get (param None);

i f found[paran] == None:

send_htm _error(req, 'No ' + param+ ' paraneter found'
apache. HTTP_BAD_ REQUEST)

for paramin optional

found[param = args.get(param found[parani);
Find the 4 values in the BBOX

bbox = found['BBOX'].split(',")

Turn the BBOX val ues into pixel values

for i in (0, 1, 2, 3):

bbox[i] = string.atof (bbox[i]

x0 = LonToPi x(bbox[0])
y0 = Lat ToPi x(bbox[1])
x1 = LonToPi x(bbox[2])
y1l = Lat ToPi x(bbox[3])

get the width/height val ues

width = string.atoi (found[' WDTH])
hei ght = string.atoi (found[' HEIl GHT'])
error =0

Let's do a little checking

if bbox[0] < -180.0 or bbox[0] > 180.0 \
or bbox[1] < -90.0 or bbox[1] > 90.0 \
or bbox[2] < -180.0 or bbox[2] > 180.0 \
or bbox[3] < -90.0 or bbox[3] > 90.0:
error =1

message = "BBOX out of range”

If there's an error, then we have to decide whether to return
an |NIMAGE error (i.e. wite an error nessage on an inage) or

whether to nake a blank inmage. In both cases, ininmage or blank
we

then need to deci de whether we're supposed to do transparency
and

whether the imge format supports it (only PNG does). Then we
have to make sure the result has transparency.
if error and found[' EXCEPTIONS'] == 'I| N MAGE :

Build the image with the text
cnd = 'ppmmake \#% % %' % (found][' BGCOLOR][2:], wi dth,
hei ght) \
+ " "\
e 'ppm abel -background \#888888 -col our \#000000" \
e ' -x 5 -y 20 -text \"o\"" \
% nmessage + fornmats[found[' FORMAT']. upper ()]
deci de whether to nake it transparent
if found[' FORMAT'].upper() == 'PNG and found[' TRANSPARENT'] ==
" TRUE' :
cmd = cnd + ' -force -transparent \#%' % (found[' BGCOLOR][2:])
If we're supposed to return a blank i mage, just nake an inmage
with BGCOLOR as the entire inmge.
elif error and found[' EXCEPTIONS | == ' BLANK :
Build the inage
cnd = 'ppmmake \#% % %' % (found[' BGCOLOR][2:], wi dth,
hei ght) \
o« formats[found[' FORVAT]. upper ()]
deci de whether to make it transparent
if found[' FORMAT'].upper() == 'PNG and found[' TRANSPARENT'] ==
" TRUE' :
cnd = cnd + ' -force -transparent \#%' % (found[' BGCOLOR][2:])
If there was no error, then build the conmand that will return

a new nap that is a rectangle cut fromthe old map and the
scal ed

into the new di nensions.

el se:

cnd = "pnntut -left % -bottom% -right % -top % < %" \
% (x0, y0, x1,y1, map) \

+ " "\
e "pnmscal e -xysize % %" % (w dth, height) \
e "| pnmenooth" + formats[found[' FORVAT']. upper ()]

| f you added a debug=1 (or any debug) paraneter to the request
this bit will return sone debugging info as text instead of the
image. This is not advertised in the capabilities because this
is not neant to be used by WVS clients.

if args.get(' DEBUG, None):

req.send_http_header ()

reqg. wite(' bbox % ' % bbox)

req.wite(' WeH=%x% ' % (w dth, height))

req.wite('x0,y0=%,% ' % (x0,y0))

req.wite('xl,yl=%, %\n'" % (x1,yl))

req.wite(' paranms %\n' % f ound)

req.wite(cmd + "\n")

req. wite(nessage)

rai se apache. SERVER RETURN, apache. K

This executes the conmmand we built above and gathers the out put
of the conmand for reading as a file

pi pe = os.popen(cnd, 'r")

Set the return Content-Type to 'inmage/ <FORVAT>'

req.content _type = "inage/ %" % found[' FORMAT]. 1 ower ()
req.send_http_header () # Send the header
regq. wite(pipe.read()) # Send the inmage

rai se apache. SERVER RETURN, apache. K # exit to apache

