

Copyright Notice
Copyright 2003 International Interfaces (See full text of copyright notice in Appendix 2.)

The companies and organizations listed above have granted the Open GIS Consortium, Inc. (OGC) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and
distribute copies of the modified version.

This document does not represent a commitment to implement any portion of this specification in any company’s
products.

OGC’s Legal, IPR and Copyright Statements are found at http://www.opengis.org/legal/ipr.htm.

Permission to use, copy, and distribute this document in any medium for any purpose and without fee or royalty is
hereby granted, provided that you include the above list of copyright holders and the entire text of this NOTICE.

We request that authorship attribution be provided in any software, documents, or other items or products that you
create pursuant to the implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of OGC documents is granted pursuant to this license. However, if
additional requirements (as documented in the Copyright FAQ at http://www.opengis.org/legal/ipr_faq.htm) are
satisfied, the right to create modifications or derivatives is sometimes granted by the OGC to individuals complying
with those requirements.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE
CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF
SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE PERFORMANCE OR IMPLEMENTATION
OF THE CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to this
document or its contents without specific, written prior permission. Title to copyright in this document will at all times
remain with copyright holders.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth
in subdivision (c)(1)(ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013

OpenGIS® is a trademark or registered trademark of Open GIS Consortium, Inc. in the United States and in other
countries.

Note: This document is not an OGC Standard. Internal and external documents cannot refer to it as such.
Drafts are distributed for review and comment and are subject to change without notice.

How to build a WMS from Free Parts
This example examines a WMS built using Python. This WMS works by keeping a 3600x1800
JPEG image which contains a full map of the world from -180,-90 to 180,90 and sending chunks
of it out in response to map requests by clients.

The list of what's needed to build it is:

• A Linux box (RedHat 7)1

• Python 2.1.1c1 - get it at Python.org2

• Apache 1.3.20 - get it at Apache.org3

• mod_python 2.7.5 - get it at modpython.org4

• Netpbm - get it at SourceForge5

• A decent JPEG image of the world (note: that's a 1.7 MByte file). One can be
obtained from CubeWerx6 by running their CubeWerx Web Demo7. Depending on
your hardware/software setup, you may have to pull in things like Tcl/Tk, JPEG
libraries, etc. in order to build some of this stuff.

Here's the result:

basic-wms2.py --> see Appendix B. Also see the license page8. This could probably also be done
in PERL or Tcl or the programming environment of your choice.

The general flow from a client's perspective is to first ask the WMS to return a list of what map
layers it can draw, then the client can ask for maps by requesting specific layers or combinations
of layers over specific geographic regions. In practice, the hard parts of this are done by people
who set up web pages that provide user interface controls. Two examples of this are the
CubeWerx demo and the NASA Digital Earth viewer9.

These are known as "viewer clients." A viewer client can be as simple as a web browser that you
paste a fully formed WMS request into or as complex as a commercial GIS system that can make
WMS requests based on the context of what a user is doing.

In this example, the viewer client is a Web browser. All examples will be shown as URLs that you
can click on.

http://www.intl-interfaces.net/cookbook/WMS/basic-wms2/basic-
wms2.py?
WMTVER=1.0.0&REQUEST=map&LAYERS=RELIEF&STYLES=default&SRS=EPSG:43
26&BBOX=-2.197265625,39.55078125,20.302734375,50.80078125
&WIDTH=256&HEIGHT=128&FORMAT=PNG

Note: All examples of URLs or other code that are too wide are broken up into separate lines. In
the case of a URL such as this one, if you were to copy it and paste it into a browser, you'd need

1 Linux Box from Reddhat : http://www.redhat.com/
2 Python.org: http://www.python.org/
3 Apache.org: http://www.apache.org/
4 Modpython.org http://modpython.org/
5 SourceForge: http://sourceforge.net/projects/netpbm/
6 Cubewerx: http://www.cubewerx.com/
7 Cubewerx WMS demo: http://www.cubewerx.com/demo/cubeview.cqi
8 International-Interfaces license:See the full text of the License for WMS Cookbook and basic-wms2.py in
Appendix 2.
9 NASA Digital Earth viewer: http://viewer.digitalearth.gov/

to copy each of the lines and tack them together with no white space. The examples will be linked
to the same URL so you can just click on them instead of having to cut and paste.

WMS has a base URI prefix (or URL prefix if you prefer)

http://www.intl-interfaces.net/cookbook/WMS/basic-wms2/basic-
wms2.py?

In order to find out what layers it supplies and what projections it supports, a client makes a
"Capabilities Request." Here's the prefix with a Capabilities request:

http://www.intl-interfaces.net/cookbook/WMS/basic-wms2/basic-
wms2.py?request=GetCapabilities&wmtver=1.1.1

The response is formatted according to the WMS Appendix A. Comments in that DTD are
considered normative and must be followed by WMS providers. The response has to be valid
XML, meaning that it should pass a validation test10. The response has a MIME type of text/xml.
Let's take a quick look at the parts of the XML document. First there's some XML info:

<?xml version='1.0' encoding="UTF-8" standalone="no"?>

<!DOCTYPE WMT_MS_Capabilities SYSTEM

 "http://www.digitalearth.gov/wmt/xml/capabilities_1_0_0.dtd">

<WMT_MS_Capabilities version="1.0.0" [

 <!ELEMENT VendorSpecificCapabilities EMPTY>

The DOCTYPE entry states that this is a WMT_MS_Capabilities document and that you can find
the DTD for this file at the DigitalEarth website11. The part about VendorSpecificCapabilities
means that this WMS has none.

The next section describes the overall service. (There's a lot of work going on within OGC about
service descriptions and service models12. The WMS 1.0.0 spec predates most of this work.
Thus, if you look at the 1.0.7 spec or at other materials coming from OGC, you will see different
points on an evolutionary path. The ultimate goal is to develop a service model that can be used
to describe many spatial services.)

<!-- Service Metadata -->

<Service>

 <!-- The WMT-defined name for this type of service -->

 <Name>GetMap</Name>

A WMS must be named GetMap. It's stated so in the DTD.

<!-- Human-readable title for pick lists -->

 <Title>Basic Map Server</Title>

 <!-- Narrative description providing additional information -->

 <Abstract>Basic WMS Map Server built as an example for a WMS
cookbook

 Contact: adoyle@intl-interfaces.com.</Abstract>

 <Keywords>Demo WMS Cookbook</Keywords>

As a WMS implementer/provider, you pick the Title, Abstract, and Keywords. The Title is meant to
be used in user interfaces software (i.e. in Viewer Clients) as part of a list of map servers that the
Viewer Client can access. Keep it short. Abstract is meant to provide a longer description of the
service. Keep it informative. The Keywords are meant to be useful if someone were searching for
your service. These are hard to select.

10 XML validation test tool: http://www.stg.brown.edu/service/xmlvalid/
11 Capabilities 1.0.0 DTD file: http://www.digitalearth.gov/wmt/xml/capabilities 1 0 0.dtd
12 About OGC work on service descriptions and service models: http://www.intl-interfaces.net/servicemodel/

<!-- Top-level address of service or service provider.

See also onlineResource attributes of <dcpType> children.-->

<OnlineResource>

 http://www.intl-interfaces.net/cookbook/WMS/

 </OnlineResource>

 <!-- Fees or access constraints imposed. -->

 <Fees>none</Fees>

 <AccessConstraints>none</AccessConstraints>

</Service>

The OnlinResource should contain a URI that leads to a description of the service. In this case, it
points to this WMS Cookbook. The Fees and AccessConstraints elements are really not well
defined except that the spec states that the string none indicates no constraint exists.

Note that all the elements of the Service section can be gathered into a searchable catalog of
WMS implementations. In such a catalog, it would be possible to look for WMS implementations
that have no associated Fees, or to find those whose Keywords do not include the term "Demo"
and so on. If you searched a catalog and found an entry that interests you, you could use the
OnlineResource to find out more about that implementation. In fact, the rest of the capabilities
document, the Capability section is used in catalogs as well.

The Capability section for basic-wms has three subsections: Request, Exception, and Layer.

<Request>

 <Map>

 <Format>

 <PNG />

 <JPEG />

 <PPM />

 <TIFF />

 </Format>

 <DCPType>

 <HTTP>

 <Get onlineResource=

 "http://www.intl-interfaces.net/cookbook/WMS/basic-
wms2/basic-ms2.py?" />

 </HTTP>

 </DCPType>

 </Map>

 <Capabilities>

 <Format>

 <WMS_XML />

 </Format>

 <DCPType>

 <HTTP>

 <Get onlineResource=

 "http://www.intl-interfaces.net/cookbook/WMS/basic-
wms2/basic-wms2.py?" />

 </HTTP>

 </DCPType>

 </Capabilities>

 </Request>

As you can see, the Request section is split into two sections, Map and Capabilities. These
describe the two operations that this WMS supports. For the Map request, it can handle PNG,
JPEG,

PPM, and TIFF return formats, and is listening for Map requests at the URI specified by
onlineResource. These requests must be made using the HTTP Get request (as opposed to
HTTP Put or SOAP or anything else). For the Capabilities request, it can return WMS_XML (the
tag "XML" was already reserved, hence the WMS_ prefix) and again, listens at the
onlineResource URI.

It's worth noting that the WMS spec allows the onlineResource values for each request type to be
different. Depending on how you set up your WMS implementation, it may be more convenient for
the two to be the same or it may be easier for them to be different. A WMS client should always
start with a Capabilities request to find the Map request URI. Never assume they are the same.

<Exception>
 <Format>
 <INIMAGE />
 <BLANK />
 </Format>
</Exception>

The Exception tag tells about the exception formats a client can ask for when making requests.
The basic-wms advertises that it can return INIMAGE or BLANK style exceptions.

At last we get to the Layer section. This is how the map server tells the clients what kinds of maps
they can request.

 <Layer>

 <Title>Demo Map Server</Title>

 <SRS>EPSG:4326</SRS>

 <LatLonBoundingBox minx="-180" miny="-90" maxx="180" maxy="90"
/>

 <Layer queryable="0">

 <Name>RELIEF</Name>

 <Title>Relief (ETOPO/GTOPO)</Title>

 <Abstract>Colored relief map with political boundaries and
coastlines</Abstract>

 </Layer>

 </Layer>

Our map server says that it has a top level Layer with a Title, SRS, and LatLonBoundingBox, and
a single sub-Layer. Note that the top level Layer has no Name. That means that it's just being
used to gather other layers into a logical group. Instead of that grouping, we could have used the
form below.

 <Layer queryable="0">

 <SRS>EPSG:4326</SRS>

 <Name>RELIEF</Name>

 <Title>Relief (ETOPO/GTOPO)</Title>

 <Abstract>Colored relief map with political boundaries and
coastlines</Abstract>

 <LatLonBoundingBox minx="-180" miny="-90" maxx="180" maxy="90"
/>

 </Layer>

However, the WMS 1.0.0 DTD (Appendix A) shows that there can only be zero or one Layer
elements inside a Capability. By using the top level grouping Layer, we ensure that later additions
of new Layers will be easier to do. So here's the Layer info again:

 <Layer>

 <Title>Demo Map Server</Title>

 <SRS>EPSG:4326</SRS>

 <LatLonBoundingBox minx="-180" miny="-90" maxx="180" maxy="90"
/>

 <Layer queryable="0">

 <Name>RELIEF</Name>

 <Title>Relief (ETOPO/GTOPO)</Title>

 <Abstract>Colored relief map with political boundaries and
coastlines</Abstract>

 </Layer>

 </Layer>

The top level Layer has an SRS and a LatLonBoundingBox. These are inherited by the sub Layer
elements. The sub Layer elements can add SRS values to this list by including its own SRS
element. It can replace the LatLonBoundingBox by including one of its own. These
inheritance/replacement rules are given in a table in the DTD in Appendix A. Our single sub Layer
must have a Name and a Title. We also include an Abstract. The queryable="0" attribute says
that our WMS will not respond to GetFeatureInfo requests.

In order to actually test this WMS implementation, you can make use of a service offered by
CubeWerx. If you go to their demo page, down at the bottom is a text entry box labeled "'URL of
server: " If you enter the prefix of your WMS implementation in there and hit one of the "Go"
buttons on the page, it will query your WMS for its capabilities, fill in the user-interface elements
on the page, and let you exercise your WMS.

Appendix 1. International Interfaces: Basic-
wms2.py file

basic-wms2.py : A very small WMS implementation

V2 - removed PIL, trying PBM instead

#==
========

LICENSE -- This is the "MIT License"

Copyright (c) 2001 Allan Doyle

Permission is hereby granted, free of charge, to any person
obtaining

a copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction,
including

without limitation the rights to use, copy, modify, merge,
publish,

distribute, sublicense, and/or sell copies of the Software, and
to

permit persons to whom the Software is furnished to do so,
subject to

the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE

LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION

WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

#==
========

Allan Doyle - adoyle@intl-interfaces.com

This WMS works by keeping a 3600x1800 JPEG image which contains
a full

map of the world from -180,-90 to 180,90 and sending chunks of
it out

in response to map requests by clients.

Things are deliberately hardcoded in this WMS to keep it
simple.

The image was generated using the CubeWerx WMS demo which you
can find

at http://www.cubewerx.com

Debugging help was provided by Jeff de La Beaujardiere at NASA

#--

The big chunks of functionality come from mod_python and PIL

mod_python is available from www.modpython.org

It provides the connection from Apache CGI to python code

from mod_python import apache

Python imports

import sys

import os

import string

Open the map image once and load it (this may be causing a
memory leak)

map = "/home/apache/www.intl-
interfaces.net/htdocs/images/cubeserv-best.pnm"

The WMS version that this WMS implements

version = '1.0.0'

This is the capabilities XML

Thanks to Jeff de La Beaujardiere of the NASA Digital Earth
program

for a good one that I used as a template

capabilities = """<?xml version='1.0' encoding="UTF-8"
standalone="no" ?>

<!DOCTYPE WMT_MS_Capabilities SYSTEM

"http://www.digitalearth.gov/wmt/xml/capabilities_1_0_0.dtd"

 [

<!ELEMENT VendorSpecificCapabilities EMPTY>

]>

<WMT_MS_Capabilities version="1.0.0" updateSequence="0">

<!-- Service Metadata -->

<Service>

<!-- The WMT-defined name for this type of service -->

<Name>GetMap</Name>

<!-- Human-readable title for pick lists -->

<Title>Basic Map Server</Title>

<!-- Narrative description providing additional information -->

<Abstract>Basic WMS Map Server built as an example for a WMS
cookbook Contact: adoyle@intl-interfaces.com.</Abstract>

<Keywords>Demo WMS Cookbook</Keywords>

<!-- Top-level address of service or service provider. See also
onlineResource attributes of <dcpType> children. -->

<OnlineResource>http://www.intl-
interfaces.net/cookbook/WMS/</OnlineResource>

<!-- Fees or access constraints imposed. -->

<Fees>none</Fees>

<AccessConstraints>none</AccessConstraints>

</Service>

<Capability>

<Request>

<Map>

<Format>

<PNG />

<JPEG />

<PPM />

<TIFF />

</Format>

<DCPType>

<HTTP>

<Get onlineResource="http://www.intl-
interfaces.net/cookbook/WMS/basic-wms2/basic-wms2.py?" />

</HTTP>

</DCPType>

</Map>

<Capabilities>

<Format>

<WMS_XML />

</Format>

<DCPType>

<HTTP>

<Get onlineResource="http://www.intl-
interfaces.net/cookbook/WMS/basic-wms2/basic-wms2.py?" />

</HTTP>

</DCPType>

</Capabilities>

</Request>

<Exception>

<Format>

<INIMAGE />

<BLANK />

</Format>

</Exception>

<Layer>

<Title>Demo Map Server</Title>

<SRS>EPSG:4326</SRS>

<LatLonBoundingBox minx="-180" miny="-90" maxx="180" maxy="90" />

<Layer queryable="0">

<Name>RELIEF</Name>

<Title>Relief (ETOPO/GTOPO)</Title>

<Abstract>Colored relief map with political boundaries and
coastlines</Abstract>

</Layer>

</Layer>

</Capability>

</WMT_MS_Capabilities>

"""

Name/value utilities

split_args(args)

Takes a CGI string. Turns it into a list of name/value pairs.
Names with

no value are given a None value (a python special value). All
names

are converted to upper case since WMS arguments are case
insensitive

def split_args(args):

"split_args : take a CGI string and return a list with name/value
pairs"

 canon_args = {} # Start an empty list

 if args == None: # Return the empty list if no arg

return canon_args

 arglist = args.split('&') # Split into list of name=value
string

 for arg in arglist: # Now split each name=value and

 tmp = arg.split('=') # turn them into sub-lists

 if len(tmp) == 1: # with name in the first part

 canon_args[tmp[0]] = None # and value in the second part

else:

canon_args[tmp[0].upper()] = tmp[1]

return canon_args

send_html_error(req, s, status)

Returns a text/html response to the client with an error
message

packaged inside. The status is raised as an exception which
neatly

bumps us all the way back to the apache server.

def send_html_error(req, s, status):

 req.content_type = 'text/html' # Set the return Content-Type

 req.send_http_header() # Send the HTTP return header

 req.write('<p>' + s + '</p>') # Wrap the message in <p></p>

raise apache.SERVER_RETURN, status # return to apache

handler(req)

The name of this function is dictated by mod_python. This is
the entry

point to the WMS. It is called by apache with the map request.

A file in the local directory called .htaccess defines some of
this.

(Or it can be configured into the main apache httpd.conf file)

def handler(req):

"handler : called when apache gets a map request URI"

mod_python stuff

 #

request = req.args # Provides a string with the CGI

arguments in it

req.content_type = 'text/plain' # Useful if we have to send
messages

back to the client. Later we'll

override it with image/jpeg

WMS argument processing

starts here...

canon_args = split_args(req.args) # This turns the args into a
python

list

If there are no arguments in the request, exit. The WMS spec
does not

specify what to return here since technically, unless there's
at least

a 'REQUEST' parameter, it's not a WMS request. For now, let's

use HTTP_BAD_REQUEST and return a message

 #

if len(canon_args) == 0:

send_html_error(req, 'No parameters found',
apache.HTTP_BAD_REQUEST)

Next look at the REQUEST argument.

If it's not there, this is also not a WMS request...

request = canon_args.get('REQUEST', None);

if request == None:

send_html_error(req, 'No REQUEST parameter found',

apache.HTTP_BAD_REQUEST)

Here are the 3 choices. In the Capabilities XML we say that the

layer is not queryable, so we should not be getting a
feature_info

request. If we do, we can say HTTP_BAD_REQUEST... this is
consistent

with the WMS 1.0.0 spec 6.2.9.4 that says an error response
must be

MIME typed.

if request == 'capabilities':

send_capabilities(req, canon_args)

elif request == 'map':

send_map(req, canon_args)

elif request == 'feature_info':

send_html_error(req, 'REQUEST=%s is not implemented:' %

canon_args['REQUEST'], apache.HTTP_BAD_REQUEST)

else:

send_html_error(req,'REQUEST=%s is not a valid WMS request' %

canon_args['REQUEST'], apache.HTTP_BAD_REQUEST)

version_cmp(v1, v2)

Compare version strings. Works like strcmp.

Since versions are dotted strings with 1, 2, or 3 components,
we first

check if the strings are actually equal. If not, then we make
sure we have

three components to compare by adding trailing '0' elements.
Then we

compare the high-order part, the next part, and the next part.

For this WMS we only need to know if they are equal or not
equal. This

WMS does not do version negotiation.

def version_cmp(v1, v2):

If they are already equal, great

if v1 == v2: return 0

turn them into lists

L1 = v1.split('.')

L2 = v2.split('.')

build up things like '1.0' and '1' into '1.0.0'

if len(L1) == 1: L1.append('0')

if len(L1) == 2: L1.append('0')

if len(L2) == 1: L2.append('0')

if len(L2) == 2: L2.append('0')

now if they are equal, great

if L1 == L2: return 0

if string.atoi(L1[0]) < string.atoi(L2[0]): return -1

if string.atoi(L1[0]) > string.atoi(L2[0]): return 1

if string.atoi(L1[1]) < string.atoi(L2[1]): return -1

if string.atoi(L1[1]) > string.atoi(L2[1]): return 1

if string.atoi(L1[2]) < string.atoi(L2[2]): return -1

if string.atoi(L1[2]) > string.atoi(L2[2]): return 1

send_capabilities(req, args)

Simply sets the Content-Type to 'text/xml' and returns the
Capabilities

string that's included at the top of this file.

def send_capabilities(req, args):

This is where version negotiation would go. We'll ignore it for
now

since we only support one version. If the client tries to
version

negotiate, we'll just send our 1.0.0 capabilities back each
time.

Eventually the client will accept this or go away

req.content_type = 'text/xml'

req.send_http_header()

req.write(capabilities)

raise apache.SERVER_RETURN, apache.OK

Projections

Currently assume a base world image of 3600x1800 with the whole
world

from -180,-90 to 180,90

No inverse is needed since we don't handle feature_info
requests.

def LonToPix(lon):

return int ((lon * 10) + 1800 + .5)

def LatToPix(lat):

return int ((-lat * 10) + 900 + .5)

send_map(req, args)

Checks to see if all the args that it knows about are present
and correct

If so, send a map.

Note: 2001.05.07 adoyle - added .upper() to all references to

found['FORMAT'] to improve leniency for people who use
lowercase 'png'

'jpeg' etc by mistake.

def send_map(req, args):

formats = {'JPEG' : '| ppmtojpeg',

'PNG' : '| pnmtopng',

'TIFF' : '| pnmtotiff',

'PPM' : ' '}

These are the required parameters (WMS 1.0.0 Table 6.3)

required = ['LAYERS', 'STYLES', 'SRS', 'BBOX', 'WIDTH', 'HEIGHT',
'FORMAT']

These are the optional parameters (WMS 1.0.0 Table 6.3)

optional = ['TRANSPARENT', 'BGCOLOR', 'EXCEPTIONS']

Loop through the list of required args. If any are missing,
return

an error.

The ones that we start with are the optional ones, set to the
default

found = {'BGCOLOR' : '0xFFFFFF',

'TRANSPARENT' : 'FALSE',

'EXCEPTIONS' : 'INIMAGE'}

for param in required:

found[param] = args.get(param, None);

if found[param] == None:

send_html_error(req, 'No ' + param + ' parameter found',

apache.HTTP_BAD_REQUEST)

for param in optional:

found[param] = args.get(param, found[param]);

Find the 4 values in the BBOX

bbox = found['BBOX'].split(',')

Turn the BBOX values into pixel values

for i in (0, 1, 2, 3):

bbox[i] = string.atof(bbox[i]

x0 = LonToPix(bbox[0])

y0 = LatToPix(bbox[1])

x1 = LonToPix(bbox[2])

y1 = LatToPix(bbox[3])

get the width/height values

width = string.atoi(found['WIDTH'])

height = string.atoi(found['HEIGHT'])

error = 0

Let's do a little checking

if bbox[0] < -180.0 or bbox[0] > 180.0 \

or bbox[1] < -90.0 or bbox[1] > 90.0 \

or bbox[2] < -180.0 or bbox[2] > 180.0 \

or bbox[3] < -90.0 or bbox[3] > 90.0:

error = 1

message = "BBOX out of range"

If there's an error, then we have to decide whether to return

an INIMAGE error (i.e. write an error message on an image) or

whether to make a blank image. In both cases, inimage or blank,
we

then need to decide whether we're supposed to do transparency
and

whether the image format supports it (only PNG does). Then we

have to make sure the result has transparency.

if error and found['EXCEPTIONS'] == 'INIMAGE':

Build the image with the text

cmd = 'ppmmake \#%s %s %s' % (found['BGCOLOR'][2:], width,
height) \

 + ' | ' \

• 'ppmlabel -background \#888888 -colour \#000000' \

• ' -x 5 -y 20 -text \"%s\"' \

% message + formats[found['FORMAT'].upper()]

decide whether to make it transparent

if found['FORMAT'].upper() == 'PNG' and found['TRANSPARENT'] ==
'TRUE':

cmd = cmd + ' -force -transparent \#%s' % (found['BGCOLOR'][2:])

If we're supposed to return a blank image, just make an image

with BGCOLOR as the entire image.

elif error and found['EXCEPTIONS'] == 'BLANK':

Build the image

cmd = 'ppmmake \#%s %s %s' % (found['BGCOLOR'][2:], width,
height) \

• formats[found['FORMAT'].upper()]

decide whether to make it transparent

if found['FORMAT'].upper() == 'PNG' and found['TRANSPARENT'] ==
'TRUE':

cmd = cmd + ' -force -transparent \#%s' % (found['BGCOLOR'][2:])

If there was no error, then build the command that will return

a new map that is a rectangle cut from the old map and the
scaled

into the new dimensions.

else:

cmd = "pnmcut -left %s -bottom %s -right %s -top %s < %s" \

% (x0,y0,x1,y1, map) \

 + ' | ' \

• "pnmscale -xysize %s %s" % (width, height) \

• "| pnmsmooth" + formats[found['FORMAT'].upper()]

If you added a debug=1 (or any debug) parameter to the request

this bit will return some debugging info as text instead of the

image. This is not advertised in the capabilities because this

is not meant to be used by WMS clients.

if args.get('DEBUG', None):

req.send_http_header()

req.write('bbox %s ' % bbox)

req.write('WxH=%sx%s ' % (width, height))

req.write('x0,y0=%s,%s ' % (x0,y0))

req.write('x1,y1=%s,%s\n' % (x1,y1))

req.write(' params %s\n' % found)

req.write(cmd + '\n')

req.write(message)

raise apache.SERVER_RETURN, apache.OK

This executes the command we built above and gathers the output

of the command for reading as a file

pipe = os.popen(cmd, 'r')

Set the return Content-Type to 'image/<FORMAT>'

req.content_type = "image/%s" % found['FORMAT'].lower()

 req.send_http_header() # Send the header

 req.write(pipe.read()) # Send the image

raise apache.SERVER_RETURN, apache.OK # exit to apache

