
OGC 10-092r3

Open Geospatial Consortium

Date: 2011-04-04

Reference number of this OGC® project document: OGC 10-092r3

OGC name of this OGC® project document: http://www.opengis.net/doc/IS/netcdf-binary/1.0

Version: 1.0

Category: OGC® Candidate Encoding Standard

Editor: Ben Domenico

NetCDF Binary Encoding Extension Standard:
NetCDF Classic and 64-bit Offset Format

Copyright notice: See the additional copyright and licensing information on the next
page. To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is an OGC Member approved international standard. This document
is available on a royalty free, non-discriminatory basis. Recipients of this document
are invited to submit, with their comments, notification of any relevant patent rights
of which they are aware and to provide supporting documentation.

Document type: OGC® Implementation Standard
Document subtype: Encoding
Document stage: Approved
Document language: English

http://www.opengeospatial.org/legal/

OGC 10-192r3

Copyright:

University Corporation for Atmospheric Research and
National Aeronautics and Space Administration

The organizations listed above have granted the Open Geospatial Consortium (OGC) a
nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this
document and to modify this document and distribute copies of the modified version.

OGC 10-192r3

iii

Table of Contents
1 Scope .. 1
2 Conformance .. 1
3 Normative references ... 1
4 Terms and definitions .. 2
4.1 DEFINITIONS ... 2
4.2 ACRONYMS (AND ABBREVIATED TERMS) .. 2
5 Document Conventions .. 3
5.1 UML NOTATION ... 3
5.2 BNF NOTATION... 3
5.3 NAMESPACE PREFIX CONVENTIONS .. 3
6 netCDF Classic and 64-bit Offset File Formats Extension Standard 4
6.1.1 NETCDF CLASSIC ABSTRACT DATA MODEL ... 6
6.1.2 NETCDF BINARY DATASET FORMAT: COMMON ELEMENTS 6
6.1.3 NETCDF CLASSIC VARIANT ... 11
6.1.4 NETCDF 64-BIT OFFSET VARIANT .. 12
6.1.5 BNF SUPPLEMENTARY NOTES .. 12
Annex A: Conformance Class Abstract Test Suite (Normative) ... 15
A.1 CONFORMANCE TEST CLASS: NETCDF BINARY COMMON 15
A.1.1 REQUIREMENT 1 .. 15
A.1.2 REQUIREMENT 2 .. 15
A.1.3 REQUIREMENT 3 .. 15
A.1.4 REQUIREMENT 4 .. 16
A.1.5 REQUIREMENT 5 .. 16
A.1.6 REQUIREMENT 6 .. 16
A.1.7 REQUIREMENT 7 .. 17
A.1.8 REQUIREMENT 8 .. 17
A.1.9 REQUIREMENT 9 .. 18
A.1.10 REQUIREMENT 10 .. 18
A.1.11 REQUIREMENT 11 .. 19
A.1.12 REQUIREMENT 12 .. 19
A.1.13 REQUIREMENT 13 .. 19
A.1.14 REQUIREMENT 14 .. 20
A.1.15 REQUIREMENT 15 .. 20
A.1.16 REQUIREMENT 16 .. 20
A.1.17 REQUIREMENT 17 .. 21
A.1.18 REQUIREMENT 18 .. 21
A.1.19 REQUIREMENT 19 .. 21
A.1.20 REQUIREMENT 20 .. 22
A.1.21 REQUIREMENT 21 .. 22
A.1.22 REQUIREMENT 22 .. 22
A.2 TEST CLASS: NETCDF BINARY CLASSIC FORMAT .. 23
A.2.1 REQUIREMENT 23 .. 23
A.3 TEST CLASS: NETCDF BINARY 64-BIT OFFSET FORMAT 23
A.3.1 REQUIREMENT 24 .. 23
Annex B: Complete BNF Grammar (Normative) .. 25

OGC 10-192r3

B.1 COMPLETE BNF GRAMMAR FOR NETCDF CLASSIC AND 64-BIT OFFSET
BINARY ENCODING .. 25
Annex C: Revision history .. 30

OGC 10-192r3

v

i. Abstract

This document defines an OGC® Standard for encoding binary representations of space-
time varying geo-referenced data. Specifically, this standard specifies the netCDF classic
and 64-bit offset file binary encoding formats. This standard specifies a set of
requirements that every netCDF classic or 64-bit offset binary encoding must fulfil.

ii. Keywords

ogcdoc, netcdf, space-time, netcdf-classic

iii. Preface

This is an OGC® Standard for encoding binary representations of space-time varying
geo-referenced data.

iv. Document Terms and definitions

This document uses the specification terms defined in Subclause 5.3 of [OGC 06-121r8],
which is based on the ISO/IEC Directives, Part 2, Rules for the structure and drafting of
International Standards. In particular, the word “shall” (not “must”) is the verb form used
to indicate a requirement to be strictly followed to conform to this standard.

v. Submitting organizations

The following organizations submitted this Candidate Implementation Specification to
the Open Geospatial Consortium Inc.

• IMAA-CNR Italy

• METEO-FRANCE

OGC 10-192r3

• Natural Environment Research Council (NERC)

• Northrop Grumman Corporation

• University Corporation for Atmospheric Research (UCAR)

• US National Oceanic and Atmospheric Administration (NOAA)

vi. Submission contact points

All questions regarding this submission should be directed to the editor or the submitters:

CONTACT COMPANY

Ben Domenico, editor Unidata Program Center, UCAR

Russ Rew Unidata Program Center, UCAR

Ethan Davis, Dennis Heimbigner, Ed
Hartnett John Caron

Unidata Program Center, UCAR

vii. Changes to the OGC® Abstract Specification

The OGC® Abstract Specification does not require changes to accommodate this OGC®
standard.

OGC 10-192r3

vii

Foreword

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. Open Geospatial Consortium shall not be held responsible for
identifying any or all such patent rights. However, to date, no such rights have been
claimed or identified.

Recipients of this document are requested to submit, with their comments, notification of
any relevant patent claims or other intellectual property rights of which they may be
aware that might be infringed by any implementation of the specification set forth in this
document, and to provide supporting documentation.

OGC 10-192r3

Introduction

NetCDF (Network Common Data Form) is a data model for array-oriented scientific
data. There is a freely distributed collection of access libraries implementing support for
that data model, and a machine-independent format. Together, the interfaces, libraries,
and format support the creation, access, and sharing of scientific data.

Background information regarding the overall landscape of netCDF standards is
presented in the CF-netCDF Primer, OGC 10-091r3, “CF-netCDF: Core and Extensions.”
This standard is an extension to the core specification for the netCDF Classic data model
in OGC 10-091r3, “NetCDF Core.”

OpenGIS® implementation standard NetCDF Classic Binary Encoding Extension
Standard 10-092r3

1

OGC Binary Encoding Extension Standard:
netCDF Classic and 64-bit Offset Format

1 Scope

This standard specifies the netCDF classic and 64-bit offset file binary encoding formats.
This standard specifies a set of requirements that every netCDF classic or 64-bit offset
binary encoding must fulfil.

2 Conformance

Standardization targets are netCDF classic and 64-bit offset binary dataset encodings.

This document establishes three conformance classes of:

• netCDF common with URI http://www.opengis.net/spec/netcdf-
binary/1.0/conf/common

• netCDF classic with URI http://www.opengis.net/spec/netcdf-binary/1.0/conf/classic

• netCDF 64-bit offset with URI http://www.opengis.net/spec/netcdf-
binary/1.0/conf/64-bit-offset

Requirements and conformance test URIs defined in this document are relative to
http://www.opengis.net/spec/netcdf-binary/1.0.

Annex A (normative) specifies how data are encoded in netCDF classic and 64-bit offset
binary formats. In addition, these encodings must satisfy the tests listed the abstract test
suite for the netCDF core in Annex A of OGC 10-090r3, “NetCDF Core.”

3 Normative references

The NetCDF Classic and 64-bit Binary Encoding Extension is contained within this
document. The specification is identified by OGC URI
http://www.opengis.net/spec/netcdf-binary/1.0.

The document has OGC URL http://www.opengis.net/doc/IS/netcdf-binary/1.0.

The following normative document contains provisions that, through reference in this
text, constitute provisions of this specification. For undated references, the latest edition
of the referenced document (including any amendments) applies.

http://www.opengis.net/spec/netcdf-classic-and-64-bit-offset-binary-encoding/1.0
http://www.opengis.net/doc/IS/netcdf-classic-and-64-bit-offset-binary-encoding/1.0

OGC 10-192r3

2

NetCDF Core Specification. OGC Document 10-091r3.
http://www.opengis.net/doc/IS/netcdf

For this specification, there is one external normative document contain provisions that
are quoted verbatim in this text and hence constitute provisions of this specification.

NASA ESDS-RFC-011v2.00 R. Rew, E. Hartnett, D. Heimbigner, E. Davis, J. Caron:
NetCDF Classic and 64-bit Offset File Formats

http://www.esdswg.org/spg/rfc/esds-rfc-011/ESDS-RFC-011v2.00.pdf

4 Terms and definitions

4.1 Definitions

For purposes of this document, the definitions in OGC 10-090r3, NetCDF Core, apply.

4.2 Acronyms (and abbreviated terms)

Some frequently used abbreviated terms:

API Application Program Interface

BNF Backus-Naur Form

CF Climate and Forecast Conventions

ESDSWG NASA Earth Standards Data Systems Working Groups

ES Earth Sciences

GIS Geographic Information System

HDF5 Hierarchical Data Format version 5

NcML NetCDF Markup Language

NcML-GML NetCDF Markup Language – Geography Markup Language

NetCDF Network Common Data Form

NetCDF-4 NetCDF Release 4

ISO International Organization for Standardization

OGC Open Geospatial Consortium

SPG NASA Standards Process Group

http://www.opengis.net/doc/IS/netcdf
http://www.esdswg.org/spg/rfc/esds-rfc-011/ESDS-RFC-011v2.00.pdf

OGC 10-192r3

3

UML Unified Modeling Language

XML eXtended Markup Language

WFS Web Feature Service

WCS Web Coverage Service

1-D One Dimensional

2-D Two Dimensional

5 Document Conventions

5.1 UML Notation

The diagrams that appear in this standard are presented using the Unified Modeling
Language (UML) static structure diagram.

5.2 BNF Notation

To present the format more formally, we use a BNF grammar notation. In this notation:

• Non-terminals (entities defined by grammar rules) are in lower case.
• Terminals (atomic entities in terms of which the format specification is written)

are in upper case, and are specified literally as US-ASCII characters within
single-quote characters or are described with text between angle brackets
(‘<’ and ‘>’).

• Optional entities are enclosed between braces (‘[’ and ‘]’).
• A sequence of zero or more occurrences of an entity is denoted by ‘[entity ...]’.
• A vertical line character (‘|’) separates alternatives. Alternation has lower

precedence than concatenation.
• Comments follow ‘//’ characters.
• A single byte that is not a printable character is denoted using a hexadecimal

number with the notation ‘\xDD’, where each D is a hexadecimal digit.
• A literal single-quote character is denoted by ‘\'’, and a literal back-slash character

is denoted by ‘\\’.

Following the grammar, a few additional notes are included to specify format
characteristics that are impractical to capture in a BNF grammar, and to note some
special cases for implementers. Comments in the grammar point to the notes and special
cases, and help to clarify the intent of elements of the format.

5.3 Namespace prefix conventions

Since there are no XML schemas used in this standard, there are no namespace mappings

OGC 10-192r3

4

6 netCDF Classic and 64-bit Offset File Formats Extension Standard

This document formally specifies two format variants, the classic binary format and the
64-bit offset format for netCDF data. The NetCDF Classic Data Model is specified in
OGC 10-NCD, “NetCDF Core.”

Following are the requirements for the netCDF classic and 64-bit offset file format.
Understanding the format at this level can make clear which netCDF operations are
expensive, for example adding a new variable to an existing file.

This standard defines two levels of conformance, as shown in the following diagram.

Figure 1 Conformance classes and modules diagram

Referring to Figure 1, the following conformance classes and modules are defined, as
detailed in the following paragraphs. Related conformance test cases are defined in
Annex A.

Most elements of the encoding are common to both the classic binary and 64-bit offset
variants, so there is a common conformance class. NetCDF classic encodings must
satisfy the tests of the common class as well as those of the classic binary class. NetCDF
64-bit-offset encodings must satisfy the tests of the common class as well as those of the
64-bit-offset class.

OGC 10-192r3

5

NetCDF Classic Data Model

(This is a conformance module for both the
two conformance classes)

http://www.opengis.net/spec/netcdf/1.0/conf
/core

certifies the conformance to the abstract
netCDF data model (array-oriented
scientific data) requirement OGC 10-
091r3, “NetCDF Core.”

NetCDF Common Binary

(This is a conformance class)

http://www.opengis.net/spec/netcdf-
binary/1.0/conf/common

certifies the conformance to the
common binary format requirements of
6.1.2

NetCDF Classic Binary

(This is a conformance class)

http://www.opengis.net/spec/netcdf-
binary/1.0/conf/classic

certifies the conformance to the classic
binary format requirement of 6.1.3

NetCDF Binary-64-bit-Offset Format

(This is a conformance class)

http://www.opengis.net/spec/netcdf-
binary/1.0/conf/64-bit-offset

certifies the conformance to the 64-bit
variant binary format requirements of
6.1.4

Three Part File

(This is a conformance module for the
common conformance class)

certifies the requirement for a three part
file requirements of 6.1.2.1

Header

(This is a conformance module for the
common conformance class)

certifies the conformance to the
netCDF header requirements of 6.1.2.2

Fixed-size (non-record) Data

(This is a conformance module for the
common conformance class)

certifies the conformance to the
netCDF fixed-size data requirements of
6.1.2.3

Record Data

(This is a conformance module for the
common conformance class)

certifies the conformance to the
netCDF record data requirements of
6.1.2.4

http://www.opengis.net/spec/netCDF/1.0/conf%20/core
http://www.opengis.net/spec/netCDF/1.0/conf%20/core

OGC 10-192r3

6

Table 1 Conformance class table

6.1.1 NetCDF Classic Abstract Data Model

Requirement 1 http://www.opengis.net/spec/netcdf-binary/1.0/req/common/data-
model

The data shall conform to the netCDF classic abstract model as specified in the document
OGC 10-NCD, “NetCDF Core.” Related conformance test cases are defined in Annex A
of OGC 10-NCD, “NetCDF Core.”

6.1.2 NetCDF Binary Dataset Format: Common Elements

The data shall conform to the netCDF binary file format as specified in the following
sections. Related conformance test cases are defined in section A.1.

6.1.2.1 Three Part File

A classic or 64-bit offset file shall be stored in three parts: the header, the fixed-size (non-
record) data, and the record data. Related conformance test cases are defined in section
A.1.

Requirement 2 http://www.opengis.net/spec/netcdf-binary/1.0/req/common/netcdf-
dataset-components/

A netCDF dataset shall have a header (header) section and a data (data) section.

Requirement 3 http://www.opengis.net/spec/netcdf-binary/1.0/req/common/data-
section-components/

The data section shall have a fixed –size, non-record (non-recs) and record (recs) section

Requirement 4 http://www.opengis.net/spec/netcdf-binary/1.0/req/common/header-
part/

There shall be only one header part per file.

Requirement 5 http://www.opengis.net/spec/netcdf-binary/1.0/req/common/fixed-
size-data-part/

There shall be only one fixed-size data part per file.

Requirement 6 http://www.opengis.net/spec/netcdf-binary/1.0/req/common/record-
data-part/

There shall be only one record data part per file.

OGC 10-192r3

7

Requirement 7 http://www.opengis.net/spec/netcdf-binary/1.0/req/common/BNF-
for-header-non-recore-record/

The header, non-record and record parts shall conform to the BNF grammar segment
given below

netcdf_file = header data

 .

 .

 .

data = non_recs recs

6.1.2.2 The Header

Requirement 8 http://www.opengis.net/spec/netcdf-binary/1.0/req/common/header-
part-specifications/

The header shall specify:

• whether classic or 64-bit offset encoding (magic) is used

• the length of the record dimension (numrecs)

• the list of dimenisons (dim_list)

• the list of global attributes (gatt_list)

• the list of variables (var_list)

Requirement 9 http://www.opengis.net/spec/netcdf-binary/1.0/req/common/BNF-
for-header/

The header shall conform to the BNF grammar segment given below.

header = magic numrecs dim_list gatt_list var_list
magic = 'C' 'D' 'F' VERSION
VERSION = \x01 | // classic format
 \x02 // 64-bit offset format
numrecs = NON_NEG | STREAMING // length of record dimension
dim_list = ABSENT | NC_DIMENSION nelems [dim ...]
gatt_list = att_list // global attributes
att_list = ABSENT | NC_ATTRIBUTE nelems [attr ...]
var_list = ABSENT | NC_VARIABLE nelems [var ...]
ABSENT = ZERO ZERO // Means list is not present
ZERO = \x00 \x00 \x00 \x00 // 32-bit zero
NC_DIMENSION = \x00 \x00 \x00 \x0A // tag for list of dimensions
NC_VARIABLE = \x00 \x00 \x00 \x0B // tag for list of variables
NC_ATTRIBUTE = \x00 \x00 \x00 \x0C // tag for list of attributes
nelems = NON_NEG // number of elements in following sequence
dim = name dim_length

OGC 10-192r3

8

name = nelems namestring
 // Names a dimension, variable, or attribute.
 // Names should match the regular expression
 //([a-zA-Z0-9_]|{MUTF8})([^\x00-\x1F/\x7F-\xFF]|{MUTF8})*
 // For other constraints, see “Note on names”, below.
namestring = ID1 [IDN ...] padding
ID1 = alphanumeric | '_'
IDN = alphanumeric | special1 | special2
alphanumeric = lowercase | uppercase | numeric | MUTF8
lowercase = 'a'|'b'|'c'|'d'|'e'|'f'|'g'|'h'|'i'|'j'|'k'|'l'|'m'|
 'n'|'o'|'p'|'q'|'r'|'s'|'t'|'u'|'v'|'w'|'x'|'y'|'z'
uppercase = 'A'|'B'|'C'|'D'|'E'|'F'|'G'|'H'|'I'|'J'|'K'|'L'|'M'|
 'N'|'O'|'P'|'Q'|'R'|'S'|'T'|'U'|'V'|'W'|'X'|'Y'|'Z'
numeric = '0'|'1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9'

 // special1 chars have traditionally been
 // permitted in netCDF names.
special1 = '_'|'.'|'@'|'+'|'-'
 // special2 chars are recently permitted in
 // names (and require escaping in CDL).
 // Note: '/' is not permitted.
special2 = ' ' | '!' | '"' | '#' | '$' | '%' | '&' | '\'' |
 '(' | ')' | '*' | ',' | ':' | ';' | '<' | '=' |
 '>' | '?' | '[' | '\\' | ']' | '^' | '`' | '{' |
 '|' | '}' | '~'
MUTF8 = <multibyte UTF-8 encoded, NFC-normalized Unicode character>
dim_length = NON_NEG // If zero, this is the record dimension.
 // There can be at most one record dimension.
attr = name nc_type nelems [values ...]
nc_type = NC_BYTE | NC_CHAR | NC_SHORT | NC_INT | NC_FLOAT | NC_DOUBLE
var = name nelems [dimid ...] vatt_list nc_type vsize begin
 // nelems is the dimensionality (rank) of the
 // variable: 0 for scalar, 1 for vector, 2
 // for matrix, ...
dimid = NON_NEG // Dimension ID (index into dim_list) for
 // variable shape. We say this is a "record
 // variable" if and only if the first
 // dimension is the record dimension.
vatt_list = att_list // Variable-specific attributes
vsize = NON_NEG // Variable size. If not a record variable,
 // the amount of space in bytes allocated to
 // the variable's data. If a record variable,
 // the amount of space per record. See “Note on
 // vsize” below.
begin = OFFSET // Variable start location. The offset in
 // bytes (seek index) in the file of the
 // beginning of data for this variable.

6.1.2.3 The Fixed-size (Non-record) Data

Requirement 10 http://www.opengis.net/spec/netcdf-
binary/1.0/req/common/contiguous-for-fixed-size-data

OGC 10-192r3

9

The data for all non-record variables shall be stored contiguously for each variable, in the
same order the variables occur in the header.

Requirement 11 http://www.opengis.net/spec/netcdf-binary/1.0/req/common/block-
values-for-fixed-size-data

All data for a non-record variable shall be stored as a block of values of the same type as
the variable, in row-major order (last dimension varying fastest).

Requirement 12 http://www.opengis.net/spec/netcdf-binary/1.0/req/common/data-
values-for non-record-variable

The fixed-size data shall contain data values for variables that don't have an unlimited
dimension, i.e., for each non-record variable.

Requirement 13 http://www.opengis.net/spec/netcdf-binary/1.0/req/common/data-
row-major

The data for each variable shall be stored contiguously, in row-major order for multi-
dimensional variables.

Requirement 14 http://www.opengis.net/spec/netcdf-binary/1.0/req/common/BNF-
for-fixed-size-data

The fixed-size (non-record) data shall conform to the BNF grammar segment given
below.

non_recs = [vardata ...] // The data for all non-record variables,
 // stored contiguously for each variable, in
 // the same order the variables occur in the
 // header.
vardata = [values ...] // All data for a non-record variable, as a
 // block of values of the same type as the

 // variable, in row-major order (last
 // dimension varying fastest).

Related conformance test cases are defined in section A.1.

6.1.2.4 The Record Data

Requirement 15 http://www.opengis.net/spec/netcdf-binary/1.0/req/common/one-
unlimited-dimension

 There shall be at most one unlimited dimension, the record dimension.

Requirement 16 http://www.opengis.net/spec/netcdf-binary/1.0/req/common/data-
values-for-unlimited-dimension

OGC 10-192r3

10

The record data shall contain data values for variables that have an unlimited dimension.

Requirement 17 http://www.opengis.net/spec/netcdf-
binary/1.0/req/common/current-size-in-header

The current size of the record dimension shall be stored in the header which specifies
how many records the file contains.

Requirement 18 http://www.opengis.net/spec/netcdf-binary/1.0/req/common/all-
data-for-record-part

Each record in the record data part shall contain all the data for that record for each
record variable.

Requirement 19 http://www.opengis.net/spec/netcdf-binary/1.0/req/common/data-
for-each-record

Each record's worth of data for each record variable shall be stored contiguously, in row
major order for multidimensional variables.

Requirement 20 http://www.opengis.net/spec/netcdf-binary/1.0/req/common/record-
size

All records shall be the same size, because they each contain all the data for a particular
record for each record variable.

Requirement 21 http://www.opengis.net/spec/netcdf-binary/1.0/req/common/BNF-
for-record-data

The record data section shall conform to the BNF grammar segment given below.

recs = [record ...] // The data for all record variables are
 // stored interleaved at the end of the
 // file.
record = [varslab ...] // Each record consists of the n-th slab
 // from each record variable, for example
 // x[n,...], y[n,...], z[n,...] where the
 // first index is the record number, which
 // is the unlimited dimension index.
varslab = [values ...] // One record of data for a variable, a
 // block of values all of the same type as
 // the variable in row-major order (last
 // index varying fastest).

Related conformance test cases are defined in section A.1.

OGC 10-192r3

11

6.1.2.5 BNF Definitions

Requirement 22 http://www.opengis.net/spec/netcdf-binary/1.0/req/common/BNF-
definitions

The BNF segments in the previous requirements shall conform to the BNF specifications
in the segment below.

values = bytes | chars | shorts | ints | floats | doubles
string = nelems [chars]
bytes = [BYTE ...] padding
chars = [CHAR ...] padding
shorts = [SHORT ...] padding
ints = [INT ...]
floats = [FLOAT ...]
doubles = [DOUBLE ...]
padding = <0, 1, 2, or 3 bytes to next 4-byte boundary>
 // Header padding uses null (\x00) bytes. In
 // data, padding uses variable's fill value.
 // See “Note on padding” below for a special
 // case.
NON_NEG = <non-negative INT>
STREAMING = \xFF \xFF \xFF \xFF // Indicates indeterminate record
 // count, allows streaming data
OFFSET = <non-negative INT> | // For classic format
 <non-negative INT64> // for 64-bit offset format
BYTE = <8-bit byte> // See “Note on byte data”, below.
CHAR = <8-bit byte> // See “Note on char data”, below.
SHORT = <16-bit signed integer, Bigendian, two's complement>
INT = <32-bit signed integer, Bigendian, two's complement>
INT64 = <64-bit signed integer, Bigendian, two's complement>
FLOAT = <32-bit IEEE single-precision float, Bigendian>
DOUBLE = <64-bit IEEE double-precision float, Bigendian>
 // following type tags are 32-bit integers
NC_BYTE = \x00 \x00 \x00 \x01 // 8-bit signed integers
NC_CHAR = \x00 \x00 \x00 \x02 // text characters
NC_SHORT = \x00 \x00 \x00 \x03 // 16-bit signed integers
NC_INT = \x00 \x00 \x00 \x04 // 32-bit signed integers
NC_FLOAT = \x00 \x00 \x00 \x05 // IEEE single precision floats
NC_DOUBLE = \x00 \x00 \x00 \x06 // IEEE double precision floats
 // Default fill values for each type, may be
 // overridden by variable attribute named
 // ‘_FillValue’, see “Note on fill values”, below
FILL_BYTE = \x81 // (signed char) -127
FILL_CHAR = \x00 // null byte
FILL_SHORT = \x80 \x01 // (short) -32767
FILL_INT = \x80 \x00 \x00 \x01 // (int) -2147483647
FILL_FLOAT = \x7C \xF0 \x00 \x00 // (float) 9.9692099683868690e+36
FILL_DOUBLE = \x47 \x9E \x00 \x00 \x00 \x00 // (double)9.9692099683868690e+36

6.1.3 NetCDF Classic Variant

The netCDF classic format specifies the VERSION byte as \x01, and the OFFSET entity
as a 32-bit offset from the beginning of the file. Related conformance test cases are
defined in section A.2.

OGC 10-192r3

12

Requirement 23 http://www.opengis.net/spec/netcdf-binary/1.0/req/classic/Version-
Offset

A netCDF classic dataset shall conform to all the requirements of the netCDF binary
encoding with the the BNF grammar values for VERSION and OFFSET as given below.

VERSION = \x01 // classic format

OFFSET = <non-negative INT> // classic format

6.1.4 NetCDF 64-bit Offset Variant

The netCDF 64-bit offset format differs from the classic format only in the VERSION
byte, \x02 instead of \x01, and the OFFSET entity, a 64-bit instead of a 32-bit offset from
the beginning of the file. Related conformance test cases are defined in section A.3.

Requirement 24 http://www.opengis.net/spec/netcdf-binary/1.0/req/64-bit-
offset/Version-Offset

A netCDF 64-bit Offset Variant dataset shall conform to all the requirements of the
netCDF binary encoding with the the BNF grammar values for VERSION and OFFSET
as given below.

VERSION = \x02 // 64-bit offset format

OFFSET = <non-negative INT64> // for 64-bit offset format

This small format change permits much larger files, but there are still some practical size
restrictions. Each fixed-size variable and the data for one record's worth of each record
variable are still limited in size to a little less that 4 GiB. The rationale for this limitation
is to permit aggregate access to all the data in a netCDF variable (or a record's worth of
data) on 32-bit platforms.

6.1.5 BNF Supplementary Notes

The following notes apply to the BNF segments in the specifications above.

Note on vsize: This number is the product of the dimension lengths (omitting the record
dimension) and the number of bytes per value (determined from the type), increased to
the next multiple of 4, for each variable. If a record variable, this is the amount of space
per record. The netCDF “record size” is calculated as the sum of the vsize's of all the
record variables.

OGC 10-192r3

13

The vsize field is actually redundant, because its value may be computed from other
information in the header. The 32-bit vsize field is not large enough to contain the size of
variables that require more than 232 - 4 bytes, so 232 - 1 is used in the vsize field for such
variables.

Note on names: Earlier versions of the netCDF C-library reference implementation
enforced a more restricted set of characters in creating new names, but permitted reading
names containing arbitrary bytes. This RFC extends the permitted characters in names to
include multi-byte UTF-8 encoded[7] Unicode[4] and additional printing characters from
the US-ASCII alphabet. The first character of a name must be alphanumeric, a multi-byte
UTF-8 character, or '_' (traditionally reserved for names with meaning to
implementations, such as the “_FillValue” attribute). Subsequent characters may also
include printing special characters, except for '/' which is not allowed in names. Names
that have trailing space characters are also not permitted.

Implementations of the netCDF classic and 64-bit offset format must ensure that names
are normalized according to Unicode NFC normalization rules [5] during encoding as
UTF-8 for storing in the file header. This is necessary to ensure that gratuitous
differences in the representation of Unicode names do not cause anomalies in comparing
files and querying data objects by name.

Note on streaming data: The largest possible record count, 232-1, is reserved to indicate
an indeterminate number of records. This means that the number of records in the file
must be determined by other means, such as reading them or computing the current
number of records from the file length and other information in the header. It also means
that the numrecs�field in the header will not be updated as records are added to the file.

Note on padding: In the special case of only a single record variable of character, byte,
or short type, no padding is used between data values.

Note on byte data: It is possible to interpret byte data as either signed (-128 to 127) or
unsigned (0 to 255). When reading byte data through an interface that converts it into
another numeric type, the default interpretation is signed. There are various attribute
conventions for specifying whether bytes represent signed or unsigned data, but no
standard convention has been established. The variable attribute “_Unsigned” is reserved
for this purpose in future implementations.

Note on char data: Although the characters used in netCDF names must be encoded as
UTF-8, character data may use other encodings. The variable attribute “_Encoding” is
reserved for this purpose in future implementations.

Note on fill values: Because data variables may be created before their values are
written, and because values need not be written sequentially in a netCDF file, default “fill
values” are defined for each type, for initializing data values before they are explicitly
written. This makes it possible to detect reading values that were never written. The
variable attribute “_FillValue”, if present, overrides the default fill value for a variable. If
_FillValue is defined then it should be scalar and of the same type as the variable.

OGC 10-192r3

14

References

NetCDF Climate and Forecast (CF) Metadata Conventions
http://www.cfconventions.org/ or http://cf-pcmdi.llnl.gov/

Unidata UCAR, NetCDF User Guide
http://www.unidata.ucar.edu/netcdf/docs/netcdf.html

Unidata UCAR, NetCDF Reference Implementations
ftp://ftp.unidata.ucar.edu/pub/netcdf/netcdf.tar.

NetCDF C Language Interface Guide
http://www.unidata.ucar.edu/netcdf/docs/netcdf-c/

NetCDF C++ Language Interface Guide
http://www.unidata.ucar.edu/netcdf/docs/netcdf-cxx/

NetCDF FORTRAN Language Interface Guides
http://www.unidata.ucar.edu/netcdf/docs/netcdf-f77/
http://www.unidata.ucar.edu/netcdf/docs/netcdf-f90/
NetCDF Java Language Interface Guide
http://www.unidata.ucar.edu/netcdf-java/

IETF RFC 2616, Hypertext Transfer Protocol – HTTP/1.1. (June 1999)

ISO 8601:2004, Data elements and interchange formats — Information interchange —
Representation of dates and times.

ISO 19101:2002, Geographic information — Reference model

ISO 19107:2003, Geographic Information — Spatial schema

ISO 19111:—1), Geographic Information — Spatial referencing by coordinates

ISO 19123, Abstract Coverage Specification

ISO 19136:2007, Geographic information — Geography Markup Language (GML)

OGC 00-014r1, Guidelines for Successful OGC Interface Specification

http://www.cfconventions.org/
http://cf-pcmdi.llnl.gov/
http://www.unidata.ucar.edu/netcdf/docs/netcdf.html
http://www.unidata.ucar.edu/netcdf/docs/netcdf-c/
http://www.unidata.ucar.edu/netcdf/docs/netcdf-cxx/
http://www.unidata.ucar.edu/netcdf/docs/netcdf-f77/
http://www.unidata.ucar.edu/netcdf/docs/netcdf-f90/
http://www.unidata.ucar.edu/netcdf-java/

OGC 10-192r3

15

Annex A: Conformance Class Abstract Test Suite (Normative)

A.1 Conformance Test Class: netCDF Binary Common

Applies for conformance class netCDF binary with URI
http://www.opengis.net/spec/netcdf-binary/1.0/conf/common

A.1.1 Requirement 1

Test ID Conformance Test for Requirement 1

http://www.opengis.net/spec/netcdf-binary/1.0/conf/common/netcdf-
data-model

Test
purpose

The data shall conform to the netCDF classic abstract model as specified
in OGC 10-NCD, “NetCDF Core.” Related conformance test cases are
defined in Annex A of OGC 10-NCD, “NetCDF Core.”

Test
method

Verify that dataset satisfies the core conformance test cases defined in
Annex A of OGC 10-NCD, “NetCDF Core.”

A.1.2 Requirement 2

Test ID Conformance Test for Requirement 2

http://www.opengis.net/spec/netcdf-binary/1.0/conf/common/netcdf-
dataset-components

Test
purpose

A netCDF dataset shall have a header (header) section and a data (data)
section.

Test
method

Open the dataset and verify that it has a header (header) section and a
data (data) section.

A.1.3 Requirement 3

Test ID Conformance Test for Requirement 3

http://www.opengis.net/spec/netcdf-binary/1.0/conf/common/data-
section-components

OGC 10-192r3

16

Test
purpose

The data section shall have a fixed –size, non-record (non-recs) and
record (recs) section

Test
method

Open the dataset and verify that it has a fixed –size, non-record (non-recs)
and record (recs) section.

A.1.4 Requirement 4

Test ID Conformance Test for Requirement 4

http://www.opengis.net/spec/netcdf-binary/1.0/conf/common/header-
part

Test
purpose

There shall be only one header part per file

Test
method

Open the dataset and verify there is only one header part.

A.1.5 Requirement 5

Test ID Conformance Test for Requirement 5

http://www.opengis.net/spec/netcdf-binary/1.0/conf/common/fixed-size-
data-part

Test
purpose

There shall be only one fixed-size data part per file

Test
method

Open the dataset and verify that there is only one fixed-size data part

A.1.6 Requirement 6

Test ID Conformance Test for Requirement 6

http://www.opengis.net/spec/netcdf-binary/1.0/conf/common/record-
data-part

Test
purpose

There shall be only one record data part per file

OGC 10-192r3

17

Test
method

Open the dataset and verify there is only one record data part.

A.1.7 Requirement 7

Test ID Conformance Test for Requirement 7

http://www.opengis.net/spec/netcdf-binary/1.0/conf/common/BNF-for-
header-non-recore-record

Test
purpose

The header, non-record and record parts shall conform to the BNF
grammar segment given in 6.1.2.

Test
method

Open the dataset and verify that the header, non-record and record parts
shall conform to the BNF grammar segment given in 6.1.2.

A.1.8 Requirement 8

Test ID Conformance Test for Requirement 8

http://www.opengis.net/spec/netcdf-binary/1.0/conf/common/header-
part-specifications

Test
purpose

The header shall specify:

• whether classic or 64-bit offset encoding (magic) is used

• the length of the record dimension (numrecs)

• the list of dimenisons (dim_list)

• the list of global attributes (gatt_list)

• the list of variables (var_list)

Test
method

Open the dataset and verify that the header specifies:

• whether classic or 64-bit offset encoding (magic) is used

• the length of the record dimension (numrecs)

• the list of dimenisons (dim_list)

OGC 10-192r3

18

• the list of global attributes (gatt_list)

• the list of variables (var_list)

A.1.9 Requirement 9

Test ID Conformance Test for Requirement 9

http://www.opengis.net/spec/netcdf-binary/1.0/conf/common/BNF-for-
header

Test
purpose

The header shall conform to the BNF grammar segment given in 6.1.2.2.

Test
method

Open the dataset and verify that the header conforms to the BNF grammar
segment given in 6.1.2.2.

A.1.10 Requirement 10

Test ID Conformance Test for Requirement 10

http://www.opengis.net/spec/netcdf-binary/1.0/conf/common/contiguous-
for-fixed-size-data

Test
purpose

The data for all non-record variables shall be stored contiguously for each
variable, in the same order the variables occur in the header

Test
method

Open the dataset and verify that data for all non-record variables is stored
contiguously for each variable, in the same order the variables occur in the
header.

.

OGC 10-192r3

19

A.1.11 Requirement 11

Test ID Conformance Test for Requirement 11

http://www.opengis.net/spec/netcdf-binary/1.0/conf/common/block-
values-for-fixed-size-data

Test
purpose

All data for a non-record variable shall be stored as a block of values of
the same type as the variable, in row-major order (last dimension varying
fastest).

Test
method

Open the dataset and verify that all data for a non-record variable is stored
as a block of values of the same type as the variable, in row-major order
(last dimension varying fastest).

A.1.12 Requirement 12

Test ID Conformance Test for Requirement 12

http://www.opengis.net/spec/netcdf-binary/1.0/conf/common/data-values-
for non-record-variable

Test
purpose

The fixed-size data shall contain data values for variables that don't have
an unlimited dimension, i.e., for each non-record variable.

Test
method

Open the dataset and verify that the fixed-size data contain data values for
variables that don't have an unlimited dimension, i.e., for each non-record
variable.

A.1.13 Requirement 13

Test ID Conformance Test for Requirement 13

http://www.opengis.net/spec/netcdf-binary/1.0/conf/common/data-row-
major

Test
purpose

The data for each variable shall be stored contiguously, in row-major
order for multi-dimensional variables.

Test Open the dataset and verify that the data for each variable is stored

OGC 10-192r3

20

method contiguously, in row-major order for multi-dimensional variables.

A.1.14 Requirement 14

Test ID Conformance Test for Requirement 14

http://www.opengis.net/spec/netcdf-binary/1.0/conf/common/BNF-for-
fixed-size-data

Test
purpose

The fixed-size (non-record) data shall conform to the BNF grammar
segment given in 6.1.2.3.

Test
method

Open the dataset and verify that the fixed-size (non-record) data conforms
to the BNF grammar segment given in 6.1.2.3.

A.1.15 Requirement 15

Test ID Conformance Test for Requirement 15

http://www.opengis.net/spec/netcdf-binary/1.0/conf/common/one-
unlimited-dimension

Test
purpose

There shall be at most one unlimited dimension, the record dimension.

Test
method

Open the dataset and verify that there is at most one unlimited dimension
and that it is the record dimension.

A.1.16 Requirement 16

Test ID Conformance Test for Requirement 16

http://www.opengis.net/spec/netcdf-binary/1.0/conf/common/data-
values-for-unlimited-dimension

Test
purpose

The record data shall contain data values for variables that have an
unlimited dimension.

Test Open the dataset and verify that the record data contains data values for

OGC 10-192r3

21

method variables that have an unlimited dimension.

A.1.17 Requirement 17

Test ID Conformance Test for Requirement 17

http://www.opengis.net/spec/netcdf-binary/1.0/conf/common/current-
size-in-header

Test
purpose

The current size of the record dimension shall be stored in the header
which specifies how many records the file contains.

Test
method

Open the dataset and verify that the current size of the record dimension is
stored in the header and specifies how many records the file contains.

A.1.18 Requirement 18

Test ID Conformance Test for Requirement 18

http://www.opengis.net/spec/netcdf-binary/1.0/conf/common/all-data-for-
record-part

Test
purpose

Each record in the record data part shall contain all the data for that record
for each record variable.

Test
method

Open the dataset and verify that each record in the record data part
contains all the data for that record for each record variable.

A.1.19 Requirement 19

Test ID Conformance Test for Requirement 19

http://www.opengis.net/spec/netcdf-binary/1.0/conf/common/data-for-
each-record

Test
purpose

Each record's worth of data for each record variable shall be stored
contiguously, in row major order for multidimensional variables.

OGC 10-192r3

22

Test
method

Open the dataset and verify that each record's worth of data for each
record variable is stored contiguously, in row major order for
multidimensional variables.

A.1.20 Requirement 20

Test ID Conformance Test for Requirement 20

http://www.opengis.net/spec/netcdf-binary/1.0/conf/common/record-size

Test
purpose

All records shall be the same size, because they each contain all the data
for a particular record for each record variable.

Test
method

Open the dataset and verify that all records are the same size and that they
each contain all the data for a particular record for each record variable.

A.1.21 Requirement 21

Test ID Conformance Test for Requirement 21

http://www.opengis.net/spec/netcdf-binary/1.0/conf/common/BNF-for-
record-data

Test
purpose

The record data section shall conform to the BNF grammar segment given
in 6.1.2.4.

Test
method

Open the dataset and verify that record data section conforms to the BNF
grammar segment given in 6.1.2.4.

A.1.22 Requirement 22

Test ID Conformance Test for Requirement 22

http://www.opengis.net/spec/netcdf-binary/1.0/conf/common/BNF-
definitions

OGC 10-192r3

23

Test
purpose

The BNF segments in the previous requirements shall conform to the BNF
specifications in 6.1.2.5.

Test
method

Open the dataset and verify that BNF segments in the previous
requirements conform to the BNF specifications in 6.1.2.5.

A.2 Test Class: netCDF Binary Classic Format

Applies for conformance class netCDF binary with URI
http://www.opengis.net/spec/netcdf-binary/1.0/conf/classic

A.2.1 Requirement 23

Test ID Conformance Test for Requirement 23

http://www.opengis.net/spec/netcdf-binary/1.0/conf/classic/Version-Offset

Test
purpose

A netCDF Classic Variant dataset shall conform to all the requirements of
the netCDF Classic encoding with the VERSION and OFFSET
specifications given in 6.1.3.

Test
method

Open the netCDF Classic Variant dataset and verify that it conforms to all
the requirements of the netCDF Classic encoding with the VERSION and
OFFSET specifications given in 6.1.3.

A.3 Test Class: netCDF Binary 64-bit Offset Format

Applies for conformance class netCDF binary with URI
http://www.opengis.net/spec/netcdf-binary/1.0/conf/64-bit-offset

A.3.1 Requirement 24

Test ID Conformance Test for Requirement 24

http://www.opengis.net/spec/netcdf-binary/1.0/conf/64-bit-offset/Version-
Offset

Test
purpose

A netCDF 64-bit Offset Variant dataset shall conform to all the
requirements of the netCDF Classic encoding with the VERSION and
OFFSET specifications given in 6.1.4.

OGC 10-192r3

24

Test
method

Open the netCDF 64-bit Offset Variant dataset and verify that it conforms
to all the requirements of the netCDF Classic encoding with the VERSION
and OFFSET specifications given in 6.1.4.

OGC 10-192r3

25

Annex B: Complete BNF Grammar (Normative)

B.1 Complete BNF Grammar for netCDF Classic and 64-bit Offset Binary Encoding

Note that this BNF grammar and the portions of it in the document body are verbatim
quotes from

 NASA ESDS-RFC-011v2.00 R. Rew, E. Hartnett, D. Heimbigner, E. Davis, J. Caron:
NetCDF Classic and 64-bit Offset File Formats

http://www.esdswg.org/spg/rfc/esds-rfc-011/ESDS-RFC-011v2.00.pdf

To present the format more formally, we use a BNF grammar notation. In this notation:

• Non-terminals (entities defined by grammar rules) are in lower case.
• Terminals (atomic entities in terms of which the format specification is written)

are in upper case, and are specified literally as US-ASCII characters within
single-quote characters or are described with text between angle brackets (‘<’ and
‘>’).

• Optional entities are enclosed between braces (‘[’ and ‘]’).
• A sequence of zero or more occurrences of an entity is denoted by ‘[entity ...]’.
• A vertical line character (‘|’) separates alternatives. Alternation has lower

precedence than concatenation.
• Comments follow ‘//’ characters.
• A single byte that is not a printable character is denoted using a hexadecimal

number with the notation ‘\xDD’, where each D is a hexadecimal digit.
• A literal single-quote character is denoted by ‘\'’, and a literal back-slash character

is denoted by ‘\\’.

Following the grammar, a few additional notes are included to specify format
characteristics that are impractical to capture in a BNF grammar, and to note some
special cases for implementers. Comments in the grammar point to the notes and special
cases, and help to clarify the intent of elements of the format.

netcdf_file = header data
header = magic numrecs dim_list gatt_list var_list
magic = 'C' 'D' 'F' VERSION
VERSION = \x01 | // classic format
 \x02 // 64-bit offset format
numrecs = NON_NEG | STREAMING // length of record dimension
dim_list = ABSENT | NC_DIMENSION nelems [dim ...]
gatt_list = att_list // global attributes

http://www.esdswg.org/spg/rfc/esds-rfc-011/ESDS-RFC-011v2.00.pdf

OGC 10-192r3

26

att_list = ABSENT | NC_ATTRIBUTE nelems [attr ...]
var_list = ABSENT | NC_VARIABLE nelems [var ...]
ABSENT = ZERO ZERO // Means list is not present
ZERO = \x00 \x00 \x00 \x00 // 32-bit zero
NC_DIMENSION = \x00 \x00 \x00 \x0A // tag for list of dimensions
NC_VARIABLE = \x00 \x00 \x00 \x0B // tag for list of variables
NC_ATTRIBUTE = \x00 \x00 \x00 \x0C // tag for list of attributes
nelems = NON_NEG // number of elements in following sequence
dim = name dim_length
name = nelems namestring
 // Names a dimension, variable, or attribute.
 // Names should match the regular expression
 //([a-zA-Z0-9_]|{MUTF8})([^\x00-\x1F/\x7F-\xFF]|{MUTF8})*
 // For other constraints, see “Note on names”, below.
namestring = ID1 [IDN ...] padding
ID1 = alphanumeric | '_'
IDN = alphanumeric | special1 | special2
alphanumeric = lowercase | uppercase | numeric | MUTF8
lowercase = 'a'|'b'|'c'|'d'|'e'|'f'|'g'|'h'|'i'|'j'|'k'|'l'|'m'|
 'n'|'o'|'p'|'q'|'r'|'s'|'t'|'u'|'v'|'w'|'x'|'y'|'z'
uppercase = 'A'|'B'|'C'|'D'|'E'|'F'|'G'|'H'|'I'|'J'|'K'|'L'|'M'|
 'N'|'O'|'P'|'Q'|'R'|'S'|'T'|'U'|'V'|'W'|'X'|'Y'|'Z'
numeric = '0'|'1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9'
 // special1 chars have traditionally been
 // permitted in netCDF names.
special1 = '_'|'.'|'@'|'+'|'-'
 // special2 chars are recently permitted in
 // names (and require escaping in CDL).
 // Note: '/' is not permitted.
special2 = ' ' | '!' | '"' | '#' | '$' | '%' | '&' | '\'' |
 '(' | ')' | '*' | ',' | ':' | ';' | '<' | '=' |
 '>' | '?' | '[' | '\\' | ']' | '^' | '`' | '{' |
 '|' | '}' | '~'
MUTF8 = <multibyte UTF-8 encoded, NFC-normalized Unicode character>
dim_length = NON_NEG // If zero, this is the record dimension.
 // There can be at most one record dimension.
attr = name nc_type nelems [values ...]
nc_type = NC_BYTE | NC_CHAR | NC_SHORT | NC_INT | NC_FLOAT | NC_DOUBLE
var = name nelems [dimid ...] vatt_list nc_type vsize begin
 // nelems is the dimensionality (rank) of the
 // variable: 0 for scalar, 1 for vector, 2
 // for matrix, ...
dimid = NON_NEG // Dimension ID (index into dim_list) for
 // variable shape. We say this is a "record
 // variable" if and only if the first
 // dimension is the record dimension.
vatt_list = att_list // Variable-specific attributes
vsize = NON_NEG // Variable size. If not a record variable,
 // the amount of space in bytes allocated to
 // the variable's data. If a record variable,
 // the amount of space per record. See “Note on
 // vsize” below.
begin = OFFSET // Variable start location. The offset in
 // bytes (seek index) in the file of the
 // beginning of data for this variable.
data = non_recs recs
non_recs = [vardata ...] // The data for all non-record variables,
 // stored contiguously for each variable, in
 // the same order the variables occur in the
 // header.
vardata = [values ...] // All data for a non-record variable, as a
 // block of values of the same type as the

OGC 10-192r3

27

 // variable, in row-major order (last
 // dimension varying fastest).
recs = [record ...] // The data for all record variables are
 // stored interleaved at the end of the
 // file.
record = [varslab ...] // Each record consists of the n-th slab
 // from each record variable, for example
 // x[n,...], y[n,...], z[n,...] where the
 // first index is the record number, which
 // is the unlimited dimension index.
varslab = [values ...] // One record of data for a variable, a
 // block of values all of the same type as
 // the variable in row-major order (last
 // index varying fastest).
values = bytes | chars | shorts | ints | floats | doubles
string = nelems [chars]
bytes = [BYTE ...] padding
chars = [CHAR ...] padding
shorts = [SHORT ...] padding
ints = [INT ...]
floats = [FLOAT ...]
doubles = [DOUBLE ...]
padding = <0, 1, 2, or 3 bytes to next 4-byte boundary>
 // Header padding uses null (\x00) bytes. In
 // data, padding uses variable's fill value.
 // See “Note on padding” below for a special
 // case.
NON_NEG = <non-negative INT>
STREAMING = \xFF \xFF \xFF \xFF // Indicates indeterminate record
 // count, allows streaming data
OFFSET = <non-negative INT> | // For classic format or
 <non-negative INT64> // for 64-bit offset format
BYTE = <8-bit byte> // See “Note on byte data”, below.
CHAR = <8-bit byte> // See “Note on char data”, below.
SHORT = <16-bit signed integer, Bigendian, two's complement>
INT = <32-bit signed integer, Bigendian, two's complement>
INT64 = <64-bit signed integer, Bigendian, two's complement>
FLOAT = <32-bit IEEE single-precision float, Bigendian>
DOUBLE = <64-bit IEEE double-precision float, Bigendian>
 // following type tags are 32-bit integers
NC_BYTE = \x00 \x00 \x00 \x01 // 8-bit signed integers
NC_CHAR = \x00 \x00 \x00 \x02 // text characters
NC_SHORT = \x00 \x00 \x00 \x03 // 16-bit signed integers
NC_INT = \x00 \x00 \x00 \x04 // 32-bit signed integers
NC_FLOAT = \x00 \x00 \x00 \x05 // IEEE single precision floats
NC_DOUBLE = \x00 \x00 \x00 \x06 // IEEE double precision floats
 // Default fill values for each type, may be
 // overridden by variable attribute named
 // ‘_FillValue’, see “Note on fill values”, below
FILL_BYTE = \x81 // (signed char) -127
FILL_CHAR = \x00 // null byte
FILL_SHORT = \x80 \x01 // (short) -32767
FILL_INT = \x80 \x00 \x00 \x01 // (int) -2147483647
FILL_FLOAT = \x7C \xF0 \x00 \x00 // (float) 9.9692099683868690e+36
FILL_DOUBLE = \x47 \x9E \x00 \x00 \x00 \x00 // (double)9.9692099683868690e+36

Note on vsize: This number is the product of the dimension lengths (omitting the record
dimension) and the number of bytes per value (determined from the type), increased to
the next multiple of 4, for each variable. If a record variable, this is the amount of space

OGC 10-192r3

28

per record. The netCDF “record size” is calculated as the sum of the vsize's of all the
record variables.

The vsize field is actually redundant, because its value may be computed from other
information in the header. The 32-bit vsize field is not large enough to contain the size of
variables that require more than 232 - 4 bytes, so 232 - 1 is used in the vsize field for such
variables.

Note on names: Earlier versions of the netCDF C-library reference implementation
enforced a more restricted set of characters in creating new names, but permitted reading
names containing arbitrary bytes. This RFC extends the permitted characters in names to
include multi-byte UTF-8 encoded[7] Unicode[4] and additional printing characters from
the US-ASCII alphabet. The first character of a name must be alphanumeric, a multi-byte
UTF-8 character, or '_' (traditionally reserved for names with meaning to
implementations, such as the “_FillValue” attribute). Subsequent characters may also
include printing special characters, except for '/' which is not allowed in names. Names
that have trailing space characters are also not permitted.

Implementations of the netCDF classic and 64-bit offset format must ensure that names
are normalized according to Unicode NFC normalization rules [5] during encoding as
UTF-8 for storing in the file header. This is necessary to ensure that gratuitous
differences in the representation of Unicode names do not cause anomalies in comparing
files and querying data objects by name.

Note on streaming data: The largest possible record count, 232-1, is reserved to indicate
an indeterminate number of records. This means that the number of records in the file
must be determined by other means, such as reading them or computing the current
number of records from the file length and other information in the header. It also means
that the numrecs�field in the header will not be updated as records are added to the file.

Note on padding: In the special case of only a single record variable of character, byte,
or short type, no padding is used between data values.

Note on byte data: It is possible to interpret byte data as either signed (-128 to 127) or
unsigned (0 to 255). When reading byte data through an interface that converts it into
another numeric type, the default interpretation is signed. There are various attribute
conventions for specifying whether bytes represent signed or unsigned data, but no
standard convention has been established. The variable attribute “_Unsigned” is reserved
for this purpose in future implementations.

Note on char data: Although the characters used in netCDF names must be encoded as
UTF-8, character data may use other encodings. The variable attribute “_Encoding” is
reserved for this purpose in future implementations.

Note on fill values: Because data variables may be created before their values are
written, and because values need not be written sequentially in a netCDF file, default “fill
values” are defined for each type, for initializing data values before they are explicitly

OGC 10-192r3

29

written. This makes it possible to detect reading values that were never written. The
variable attribute “_FillValue”, if present, overrides the default fill value for a variable. If
_FillValue is defined then it should be scalar and of the same type as the variable.

Fill values are not required, however, because netCDF libraries have traditionally
supported a “no fill” mode when writing, omitting the initialization of variable values
with fill values. This makes the creation of large files faster, but also eliminates the
possibility of detecting the inadvertent reading of values that were not written.

OGC 10-192r3

30

Annex C: Revision history

Date Release Author Paragraph
modified

Description

2010-08-27 1.0.0 Ben
Domenico

All Created

2010-12-28 1.0.1 Ben
Domenico

6, Annex A Added leading “.” for relative URIs.
Changed “req” to “conf” in
conformance class URIs.

2010-12-28 1.0.1 Ben
Domenico

2, 3, 5,Annex A Changed conformance class URIs
according to recommendation of
OGC Naming Authority

2010-01-07 1.0.1 Ben
Domenico

5.3 Removed Table 2 because there are
no XML schemas requiring
namespace mappings.

2010-01-07 1.0.1 Ben
Domenico

Table of Contents Updated Table of Contents for page
number changes due to editing.

2011-01-07 1.0.1 Ben
Domenico

All Change document release number r2
to r3

2011-02-16 1.0.1 Ben
Domenico

Various Prepare for publication

	1 Scope
	2 Conformance
	3 Normative references
	4 Terms and definitions
	4.1 Definitions
	4.2 Acronyms (and abbreviated terms)

	5 Document Conventions
	5.1 UML Notation
	5.2 BNF Notation
	5.3 Namespace prefix conventions

	6 netCDF Classic and 64-bit Offset File Formats Extension Standard
	6.1.1 NetCDF Classic Abstract Data Model
	6.1.2 NetCDF Binary Dataset Format: Common Elements
	6.1.2.1 Three Part File
	6.1.2.2 The Header
	6.1.2.3 The Fixed-size (Non-record) Data
	6.1.2.4 The Record Data
	6.1.2.5 BNF Definitions
	6.1.3 NetCDF Classic Variant
	6.1.4 NetCDF 64-bit Offset Variant
	6.1.5 BNF Supplementary Notes

