
SWE Common Data Model OGC 08-094

Open Geospatial Consortium Inc.

Date: 2010-02-15

Reference number of this OGC® project document: OGC 08-094

Version: 2.0.0

Category: OGC® Standard

 Editor: Alexandre Robin

OGC® SWE Common Data Model
Encoding Standard

Copyright notice

Copyright © 2010 Open Geospatial Consortium, Inc.
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. It is distributed for review and comment. It
is subject to change without notice and may not be referred to as an OGC Standard.

Recipients of this document are invited to submit, with their comments, notification
of any relevant patent rights of which they are aware and to provide supporting
documentation.

Document type: OGC® Publicly Available Standard
Document subtype: Encoding
Document stage: Draft
Document language: English

http://www.opengeospatial.org/legal/

OGC 08-094 SWE Common Data Model

(Page intentionally left blank)

ii Copyright © 2010 Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

Contents

i. Preface ... ix

ii. Submitting Organizations.. ix

iii. Submission Contact Points ..x

iv. Revision History ...x

v. Future Work ...x

vi. Changes to the OGC® Abstract Specification ..x

1 Scope 1

2 Conformance...2

3 Normative References ..3

4 Terms and Definitions ..4

5 Conventions...6
5.1 Abbreviated terms ..6
5.2 UML notation ..7
5.3 Finding requirements and recommendations ...7

6 Requirements Class: Core Concepts (normative core) ..9
6.1 Introduction ..9
6.2 Data Representation ...9

6.2.1 Boolean..10
6.2.2 Categorical ..10
6.2.3 Numerical (continuous) ...11
6.2.4 Countable (discrete) ..11
6.2.5 Textual ...12
6.2.6 Constraints ...12

6.3 Nature of Data ..13
6.3.1 Human readable information ...13
6.3.2 Robust semantics ...13
6.3.3 Time, space and projected quantities ..14

6.4 Data Quality ...15
6.4.1 Simple quality information ...15

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

iii

OGC 08-094 SWE Common Data Model

6.4.2 Nil Values ..15
6.4.3 Full lineage and traceability ..16

6.5 Data Structure ..16
6.6 Data Encoding ...17

7 UML Conceptual Models (normative) ...18
7.1 Package Dependencies ...18
7.2 Requirements Class: Basic Types and Simple Components Packages20

7.2.1 Relationship with GML Value Objects ...22
7.2.2 Basic Data Types ...22
7.2.3 Attributes shared by all data components ...23
7.2.4 Attributes shared by all simple data components ..25
7.2.5 Boolean Class ..27
7.2.6 Text Class ..28
7.2.7 Category Class...28
7.2.8 Count Class ...29
7.2.9 Quantity Class ...30
7.2.10 Time Class ...31
7.2.11 Requirements applicable to all range classes ..33
7.2.12 CategoryRange Class ..33
7.2.13 CountRange Class ...34
7.2.14 QuantityRange Class ...35
7.2.15 TimeRange Class...35
7.2.16 Quality Union ..35
7.2.17 NilValues Class ...36
7.2.18 AllowedTokens Class ..38
7.2.19 AllowedValues Class ..38
7.2.20 AllowedTimes Class ...39
7.2.21 Unions of simple component classes ..40

7.3 Requirements Class: Aggregate Components Package40
7.3.1 DataRecord Class ..41
7.3.2 DataChoice Class ..42
7.3.3 Vector Class ..44

7.4 Requirements Class: Block Components Package ..45
7.4.1 DataArray Class ..46
7.4.2 Matrix Class ..50
7.4.3 DataStream Class ..51

iv Copyright © 2010 Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

7.5 Requirements Class: Simple Encodings Package ..52
7.5.1 TextEncoding Class...53
7.5.2 XMLEncoding Class ...55

7.6 Requirements Class: Advanced Encodings Package ...55
7.6.1 BinaryEncoding Class ...55

8 XML Implementation (normative) ..58
8.1 Requirements Class: XML Encoding Principles ...58

8.1.1 XML Encoding Conventions ..58
8.1.2 IDs and Linkable Properties ..59
8.1.3 Extensibility Points ...60

8.2 Requirements Class: Basic Types and Simple Components Schemas61
8.2.1 Base Abstract Complex Types ..61
8.2.2 Boolean Element ...64
8.2.3 Text Element ...64
8.2.4 Category Element ..65
8.2.5 Count Element ...67
8.2.6 Quantity Element...67
8.2.7 Time Element ..69
8.2.8 CategoryRange Element ..71
8.2.9 CountRange Element...72
8.2.10 QuantityRange Element ..72
8.2.11 TimeRange Element ..73
8.2.12 Quality Element Group ...74
8.2.13 NilValues Element ..75
8.2.14 AllowedTokens Element ...77
8.2.15 AllowedValues Element ..78
8.2.16 AllowedTimes Element ...80
8.2.17 Simple Component Groups ...81

8.3 Requirements Class: Aggregate Components Schema ..81
8.3.1 DataRecord Element ...82
8.3.2 DataChoice Element ..84
8.3.3 Vector Element ..85

8.4 Requirements Class: Block Components Schema ...87
8.4.1 DataArray Element ..87
8.4.2 Matrix Element ..91
8.4.3 DataStream Element ..92

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

v

OGC 08-094 SWE Common Data Model

8.5 Requirements Class: Simple Encodings Schema ..94
8.5.1 General Encoding Rules ..95
8.5.2 AbstractEncoding Element ..97
8.5.3 TextEncoding Element ..98
8.5.4 Text Encoding Rules ...99
8.5.5 XMLEncoding Element ..106
8.5.6 XML Encoding rules ...107

8.6 Requirements Class: Advanced Encodings Schema ..111
8.6.1 BinaryEncoding Element ..112
8.6.2 Binary Encoding Rules..114

Annex A (normative) Abstract Conformance Test Suite ..121
A.1 Conformance Test Class: Core Concepts ..121
A.2 Conformance Test Class: Simple Components UML Package124
A.3 Conformance Test Class: Aggregate Components UML Package132
A.4 Conformance Test Class: Block Components UML Package134
A.5 Conformance Test Class: Simple Encodings UML Package135
A.6 Conformance Test Class: Advanced Encodings UML Package135
A.7 Conformance Test Class: XML Encoding Principles ..136
A.8 Conformance Test Class: Basic Types and Simple Components Schemas138
A.9 Conformance Test Class: Aggregate Components Schema140
A.10 Conformance Test Class: Block Components Schema141
A.11 Conformance Test Class: Simple Encodings Schema142
A.12 Conformance Test Class: Advanced Encodings Schema147

Annex B (informative) Relationship with other ISO models152
B.1 Feature model ..152
B.2 Geometry model ..152
B.3 Coverage model ...152

vi Copyright © 2010 Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

Table of Figures

Figure 5.1 – UML Notation .. 7

Figure 7.1 – Internal Package Dependencies .. 18

Figure 7.2 – External Package Dependencies ... 19

Figure 7.3 – Simple Data Components ... 21

Figure 7.4 – Range Data Components .. 21

Figure 7.5 – TimePosition Data Type ... 22

Figure 7.6 – Basic types for pairs of scalar types ... 23

Figure 7.7 – AbstractDataComponent Class ... 23

Figure 7.8 – AbstractSimpleComponent Class ... 25

Figure 7.9 – Boolean Class ... 27

Figure 7.10 – Text Class ... 28

Figure 7.11 – Category Class .. 29

Figure 7.12 – Count Class ... 30

Figure 7.13 – Quantity Class .. 30

Figure 7.14 – Time Class .. 31

Figure 7.15 – CategoryRange Class .. 34

Figure 7.16 – CountRange Class .. 34

Figure 7.17 – QuantityRange Class .. 35

Figure 7.18 – TimeRange Class .. 35

Figure 7.19 – Quality Union ... 36

Figure 7.20 – NilValues Class .. 37

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

vii

OGC 08-094 SWE Common Data Model

Figure 7.21 – AllowedTokens Class ... 38

Figure 7.22 – AllowedValues Class .. 38

Figure 7.23 – AllowedTimes Class ... 39

Figure 7.24 – Simple component unions .. 40

Figure 7.25 – Aggregate Data Components .. 41

Figure 7.26 – DataRecord Class ... 42

Figure 7.27 – DataChoice Class .. 43

Figure 7.28 – Vector Class.. 44

Figure 7.29 – Array Components.. 46

Figure 7.30 – DataArray Class .. 47

Figure 7.31 – Matrix Class.. 50

Figure 7.32 – DataStream Class .. 51

Figure 7.33 – Simple Encodings ... 53

Figure 7.34 – TextEncoding Class .. 53

Figure 7.35 – XMLEncoding Class .. 55

Figure 7.36 – BinaryEncoding Class .. 56

viii Copyright © 2010 Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

i. Preface

The primary focus of the SWE Common Data Model is to define and package sensor
related data in a self-describing and semantically enabled way. The main objective is to
obtain interoperability, first at the syntactic level, and later at the semantic level (by using
ontologies and probably semantic mediation) so that sensor data can be better understood
by machines, processed automatically in complex workflows and easily shared between

 that is intended to be used
and referenced by other SWE encoding and service standards.

g Standard to the Open Geospatial
equest for Comment (RFC):

anisation (CSIRO) Australia

 GmbH

search Association (SURA)

• Botts Innovative Research, Inc. (BIRI)

intelligent sensor web nodes.

This standard is one of several implementation specifications produced under OGC’s
Sensor Web Enablement (SWE) activity. This is a revision of a first edition which was
previously integrated to the SensorML standard specification (OGC 07-000). The SWE
Common Data Models are now defined in a separate document

ii. Submitting Organizations

The following organizations submitted this Encodin
Consortium Inc. as a R

• Spot Image, S.A.

• University of Alabama in Huntsville (UAH)

• Commonwealth Scientific and Industrial Research Org

• University of Muenster - Institute for Geoinformatics

• International Geospatial Services Institute GmbH (iGSI)

• 52° North Initiative for Geospatial Open Source Software

• Southeastern Universities Re

• Oracle USA

• US Department of Homeland Security (DHS)

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

ix

OGC 08-094 SWE Common Data Model

iii. Submission Contact Points

All questions regarding this submission should be directed to the editor or the submitters:

Contact Company Email

Alexandre Robin Spot Image, S.A. alexandre.robin at spotimage.fr

Michael E. Botts University of Alabama in Huntsville mike.botts at nsstc.uah.edu

Johannes Echterhoff iGSI johannes.echterhoff at igsi.eu

Ingo Simonis iGSI ingo.simonis at igsi.eu

Peter Taylor CSIRO peter.taylor at csiro.au

Arne Broering 52° North Initiative broering at 52north.org

Luis Bermudez SURA bermudez at sura.org

John Herring Oracle USA john.herring at oracle.com

Barry Reff US DHS barry.reff at dhs.gov

iv. Revision History

Date Release Author Paragraph modified Description

08/20/08 2.0 draft Alexandre Robin All Initial draft version

10/30/08 2.0 draft Ingo Simonis All General revision

10/30/09 2.0 draft Alexandre Robin All Draft candidate standard

11/04/09 2.0 draft Peter Taylor Clauses 6 and 7 Additional examples, minor edits

11/10/09 2.0 draft Alexandre Robin All General revision, added section 8

01/15/10 2.0 draft Alexandre Robin All Clarifications to requirements

v. Future Work

- More harmonization with GML foreseen

- Development of profiles for commonly used data structures (such as CSML)

vi. Changes to the OGC® Abstract Specification

The OGC® Abstract Specification does not require changes to accommodate this OGC®
Standard.

x Copyright © 2010 Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

xi

Foreword

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. Open Geospatial Consortium Inc. shall not be held
responsible for identifying any or all such patent rights. However, to date, no such rights
have been claimed or identified. Recipients of this document are requested to submit,
with their comments, notification of any relevant patent claims or other intellectual
property rights of which they may be aware that might be infringed by any
implementation of the specification set forth in this document, and to provide supporting
documentation.

This document deprecates and replaces clauses 8 “SWE Common Conceptual Models”
and 9 “SWE Common XML Encoding and Examples” of the first edition of OGC®
Sensor Model Language Specification (OGC 07-000) from which they were extracted.
Additionally these clauses have been technically revised and explanations have been
improved. These clauses will be removed from version 2.0 of the SensorML standard.

The main changes from version 1.0 (part of SensorML 1.0) are additions of new features
such as:

- The DataChoice component providing support for variant (disjoint union) data type
- The DataStream object improving support for real-time (never-ending) streams
- The XMLBlock encoding providing support for simple XML encoded data
- Support for definition of NIL values and associated reasons
- The CategoryRange class to define ranges of ordered categorical quantities

Additionally, some elements of the language have been removed and replaced by soft-
typed equivalent defined using RelaxNG and/or Schematron. The list is given below:

- Position, SquareMatrix
- SimpleDataRecord, ObservableProperty
- ConditionalData, ConditionalValue
- Curve, NormalizedCurve

The derivation from GML has also been improved by making all elements substitutable
for GML AbstractValue (and thus transitively for GML AbstractObject) so that they can
be used directly by GML application schemas. The GML encoding rules as defined in
ISO 19136 have also been used to generate XML schemas from the UML models with
only minor modifications.

This release is not fully backward compatible with version 1.0 (which was part of the
SensorML 1.0 standard) even though changes were kept to a minimum.

SWE Common Data Model: An Implementation Specification

1 Scope

This specification defines low level data models for exchanging sensor related data
between nodes of the OGC® Sensor Web Enablement (SWE) framework. These models
allow to present datasets in a self describing and semantically enabled way.

More precisely, the SWE Common model is used to define the representation, nature,
structure and encoding of sensor related data. These four pieces of information, essential
for fully describing a data stream, are further defined in paragraph §6.

This model is intended to be used for describing static data (files) as well as dynamically
generated datasets (on the fly processing), data subsets, process and web service inputs
and outputs and real time streaming data. All categories of sensor observations are in
scope ranging from simple in-situ temperature data to satellite imagery and full motion
video streamed out of an aircraft.

The SWE Common language is an XML implementation of this model and is used by
other existing OGC® Sensor Web Enablement standards such as Sensor Model Language
(SensorML), Sensor Observation Service (SOS), Sensor Alert Service (SAS) and Sensor
Planning Service (SPS). The Observations and Measurements Standard (O&M) also
references the SWE Common data model, although the observation model defined in the
O&M specification is decoupled from this standard. One goal of the SWE Common data
model is thus to maintain the functionality required by all these related specifications.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

1

OGC 08-094 SWE Common Data Model

2 Conformance

This standard has been written to be compliant with the OGC Specification Model – A
Standard for Modular Specification (OGC 08-131r3). Extensions of this standard shall
themselves be conformant to the OGC Specification Model.

Conformance with this specification shall be checked using all the relevant tests specified
in Annex A. The framework, concepts, and methodology for testing, and the criteria to be
achieved to claim conformance are specified in ISO 19105: Geographic information —
Conformance and Testing. In order to conform to this OGC™ encoding standard, a
standardization target shall implement the core conformance class, and choose to
implement any one of the other conformance classes (i.e. extensions).

Additionally, it is highly recommended that XML based implementations of this standard
implement requirement classes from clause §8 “XML Implementation (normative)” of
this standard instead of defining new XML encodings.

2 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

3 Normative References

The following normative documents contain provisions which, through reference in this
text, constitute provisions of document OGC 08-094. For dated references, subsequent
amendments to, or revisions of, any of these publications do not apply. However, parties
to agreements based on this document are encouraged to investigate the possibility of
applying the most recent editions of the normative documents indicated below. For
undated references, the latest edition of the normative document referred to applies.

- OGC 08-131r3 – The Specification Model – A Standard for Modular Specification
- ISO/IEC 11404:2007 – General-Purpose Datatypes
- ISO/IEC 14977:1996 – Syntactic Metalanguage - Extended BNF
- ISO 8601:2004 – Representation of Dates and Times
- ISO 19103:2005 – Conceptual Schema Language
- ISO 19111:2007 – Spatial Referencing by Coordinates
- ISO 19136:2007 – Geographic Markup Language
- Unified Code for Units of Measure (UCUM) – Version 1.8, July 2009
- Unicode Technical Std #18 – Unicode Regular Expressions, Version 13, Aug. 2009
- The Unicode Standard, Version 5.2, October 2009
- Extensible Markup Language (XML) – Version 1.0 (Fourth Edition), August 2006
- XML Schema – Version 1.0 (Second Edition), October 2004
- IEEE 754:2008 – Standard for Binary Floating-Point Arithmetic
- IETF RFC 2045 – Multipurpose Internet Mail Extensions (MIME) Part One:

Format of Internet Message Bodies, November 1996

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

3

OGC 08-094 SWE Common Data Model

4 Terms and Definitions

For the purpose of this document, the following terms and definitions apply:

Feature (OGC 07-097)

Abstraction of a real world phenomenon perceived in the context of an application.
Features may but need not contain geospatial properties. In this general sense, a feature
corresponds to an “object” in analysis and design models.

Measurement System (or Procedure)

System used to estimate values of feature properties. A measurement system is usually
composed of at least one sensor that initially transforms a real world phenomenon into
digital information after which further processing can be done. A procedure is a more
general concept that also encapsulates the method that is used to collect particular
measurements (see OGC 07-022).

Observation (OGC 07-022)

Act of observing a property or phenomenon, with the goal of producing an estimate of the
value of the property.

Property

Concept that is a characteristic of one or more feature types, the value for which may be
estimated by application of some procedure in an observation.

Sensor

Entity that provides information about an observed property at its output. A sensor uses a
combination of physical, chemical or biological means in order to estimate the underlying
observed property. At the end of the measuring chain electronic devices produce signals
to be processed.

Sensor Network

A collection of sensors and processing nodes, in which information on properties
observed by the sensors may be transferred and processed. Note: A particular type of a
sensor network is an ad hoc sensor network.

Sensor Data

4 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

List of digital values produced by a measurement system that represent estimated values
of one or more measured properties of one or more features. Sensor data is usually
available in the form of data streams or computer files.

Sensor Related Data

List of numerical values produced by a measurement system that contains auxiliary
information that is not directly related to the value of measured properties. Examples of
auxiliary data values are sensor status, quality of measure, quality of service, etc… When
such data is measured, it is sometimes considered sensor data as well.

Data Component

Element of sensor data definition corresponding to an atomic or aggregate data type. A
data component is a part of the overall dataset definition which can be seen as a
hierarchical tree of data components.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

5

OGC 08-094 SWE Common Data Model

5 Conventions

5.1 Abbreviated terms

In this document the following abbreviations and acronyms are used or introduced:

API Application Program Interface

GPS Global Positioning System

ISO International Organization for Standardization

OGC Open Geospatial Consortium

SAS Sensor Alert Service

SensorML Sensor Model Language

SI Système International (International System of Units)

SOS Sensor Observation Service

SPS Sensor Planning Service

SWE Sensor Web Enablement

TAI Temps Atomique International (International Atomic Time)

UML Unified Modeling Language

UTC Coordinated Universal Time

XML eXtended Markup Language

1D One Dimensional

2D Two Dimensional

3D Three Dimensional

6 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

5.2 UML notation

The diagrams that appear in this standard are presented using the Unified Modeling
Language (UML) static structure diagram. The UML notations used in this standard are
described in the diagram below.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

7

Association between classes

role-1 role-2

Association Name
Class #1 Class #2

Association Cardinality

Class Only one

Class Zero or more

Class Optional (zero or one)

1..* Class One or more

n Class Specific number

Aggregation between classes

Aggregate
Class

Component
Class #1

Component
Class #2

Component
Class #n

……….

0..*

0..1

Class Inheritance (subtyping of classes)
Superclass

Subclass #1

…………..

Subclass #2 Subclass #n

Figure 5.1 – UML Notation

5.3 Finding requirements and recommendations

For clarity, each normative statement in this standard is in one and only one place and is
set in a bold font. If the statement of the requirement or recommendation is repeated for
clarification, the “bold font” home of the statement is considered the official statement of
the normative requirement or recommendation. In this sense, all requirements in this
standard are listed in the Table of Requirements at the beginning of this standard.

In this standard, all requirements are associated to tests in the abstract test suite in Annex
A. The reference to the requirement in the test case is done by a requirements label (in the
form “Req #”, where “#” is a number) associated to the “bold font” home of the statement
described above. Recommendations are not tested and are not labeled, although they still
use a bold font for their unique home statement.

OGC 08-094 SWE Common Data Model

Requirements classes are separated into their own clauses and named, and specified
according to inheritance (direct dependencies). The Conformance test classes in the test
suite are similarly named to establish an explicit and mnemonic link between
requirements classes and conformance test classes.

8 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

6 Requirements Class: Core Concepts (normative core)

6.1 Introduction

The generic SWE Common data model defined by this standard aims at providing
verbose information to robustly describe sensor related datasets. We define Sensor Data
as data resulting from the observation of properties of virtual or real world objects (or
features) by any type of Measurement System (See the Observation and Measurements
specification OGC 07-022r1 for a more complete description of the observation model
used in SWE).

Sensor related datasets however are not limited to sensor observation values, but can also
include auxiliary information such as status or ancillary data. In the following sections,
we will use the term ‘property’ in a broader sense, which does not necessarily imply
“property measured by a sensor”.

A dataset is composed of Data Components whose values need to be put into context in
order to be fully understood and interpreted, by either humans or machines. The SWE
Common Data Model provides several pieces of information that are necessary to achieve
this goal. More precisely, the SWE Common Data Model covers the following aspects of
datasets description:

- Representation
- Nature of data and semantics (by using identifiers pointing to external semantics)
- Quality
- Structure
- Encoding

This requirement class constitutes the core of this standard. The concepts defined in this
section shall be correctly implemented by all models or software seeking compliance
with this standard.

Req 1 A conformant model or software shall implement the concepts defined in the
core of this standard in a way that is consistent with their definition.

6.2 Data Representation

Data representation deals with how property values are represented and stored digitally.
Each component (or field) in a dataset carries a value that represents the state of a
property. This representation will vary depending on the nature of the method used to
capture the data and/or the target usage. For instance, a fluid temperature can be

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

9

OGC 08-094 SWE Common Data Model

represented as a decimal number expressed in degrees Celsius (i.e. 25.4 °C), or as a
categorical value taken from a list of possible choices (such as “freezing, cold, normal,
warm, hot”).

The following types of representations have been identified: Boolean, Categorical,
Continuous Numerical, Discrete Countable and Textual. The paragraphs below explain
basic features of each of these representation types.

6.2.1 Boolean

A Boolean representation of a property can take only two values which should be
“true/false” or “yes/no”. In a sense, this type of representation is a particular case of the
categorical representation with only two predefined options.

Examples

Motion detectors output can be represented by a boolean value – TRUE if there is motion in the room, FALSE
otherwise.

On/Off status of a measurement system can be represented by a boolean value – TRUE if the system in on, FALSE
if the system is off.

Req 2 A boolean representation shall at least consist of a boolean value.

The “Boolean” data type detailed in clause §7.2.5 is used to define a data component with
a Boolean representation.

6.2.2 Categorical

A categorical representation is a type of discrete representation of a property that only
allows picking a value from a well defined list of possibilities (i.e. categories). This list is
called a code space in this standard, following ISO 19103 terminology.

The different possible values constituting a code space are usually listed explicitly in an
out-of-band dictionary or ontology. This is necessary because each value should be
defined formally and unambiguously, so that it can be interpreted correctly.

Examples

Biological or chemical species data is usually represented by a categorical data component that can leverage on
existing controlled vocabulary.

A camera mode can be represented by a categorical value – AUTO_FOCUS, MANUAL_FOCUS, etc…

Req 3 A categorical representation shall at least consist of a category identifier and
information describing the value space of this identifier.

10 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

The “Category” data type detailed in clause §7.2.7 is used to define a data component
with a categorical representation.

6.2.3 Numerical (continuous)

Perhaps the most used representation of a property value, especially in the science and
technical communities, is the numerical one, as the majority of properties measured by
sensors can be represented by numbers.

Numerical representation is often used for continuous values and, in this case, the
representation consists of a decimal (often floating point) number associated to a scale or
unit of measure. The unit specification is mandatory even for quantities such as ratios that
have no physical unit (in this case a scale factor is provided such as 1, 1/100 for percents,
1/1000 for per thousands, etc.).

Examples

Temperature measurements can be represented by a number associated to a unit such as degrees Celsius or
Fahrenheit – 23.51°C, 94°F

A velocity vector is composed of several values (usually 2 or 3) associated to a unit of speed – [1.0 2.0 3.0] m/s.

Req 4 A continuous numerical representation shall at least consist of a decimal
number and the scale (or unit) used to express this number.

The “Quantity” data type detailed in clause §7.2.9 is used to define a data component
with a decimal representation and a unit of measure.

6.2.4 Countable (discrete)

Discrete countable properties are also of interest and are most accurately captured with a
numerical integer representation. They do not require a unit since the unit is always the
unit of count (i.e. the person if we are counting persons, the pixel if we are counting
pixels, etc). Note that continuous properties can also be represented as integers with
certain combinations of scale and precision. This case should not be confused with the
countable properties described here.

Examples

Array indices and sizes are countable properties with no unit.

There are numerous other countable properties such as number of persons, number of bytes, number of frames, etc.
for which the unit is obvious from the definition of the property itself.

A discrete countable representation should not be confused with a continuous numerical
representation whose scale and precision allow encoding the property value as an integer.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

11

OGC 08-094 SWE Common Data Model

Req 5 A countable representation shall at least consist of an integer number.

The “Count” data type detailed in clause §7.2.8 is used to define a data component with
an integer representation and no unit of measure.

6.2.5 Textual

A textual representation is useful for providing human readable data, expressed in natural
language, as well as various alpha numeric tokens that cannot be assigned to well-defined
categories.

Examples

Comments or notes written by humans (ex: data annotations, quality assessments).

Machine generated messages for which there is no taxonomy (ex: automatic alert messages).

Alphanumeric identifier schemes leading to a large number of possibilities that cannot be explicitly enumerated (ex:
UUID, ISBN code, URN).

Req 6 A textual representation shall at least consist of a character string.

The “Text” data type detailed in clause §7.2.6 is used to define a data component with a
textual representation.

6.2.6 Constraints

Constraints can be added to some representation types to further restrict the set of
possible values allowed for a given property:

- A Boolean representation cannot be restricted further since it is already limited to
only two possibilities.

- A numerical representation can be constrained by a list of allowed values and/or
bounded or unbounded intervals. A decimal representation can also be constrained
by the number of significant digits after the decimal point.

- A categorical representation can be constrained by a list of possible choices, which
should be a subset of the list of possibilities defined by the code space.

- A textual representation can be constrained by a pattern expressed in a well known
language such as regular expression syntax.

These constraints apply only to the value of the data component to which they are
associated. They shall not be used to express constraints on other data components or on
any other information than the value.

Examples

A decimal representation of an angular property such as latitude can be constrained to the [-90° 90°] interval.

12 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

A temperature reading produced by a sensor can be constrained to the [-50°C +250°C] range.

6.3 Nature of Data

We define “Nature of data” as the information needed to understand what property the
value represents. It is thus connected to semantics and the semantic details are often
provided by external sources such as dictionaries, taxonomies or ontologies. Note that it
is independent of the type of representation used and it does not include information
about how the data was actually measured or acquired. This lineage information should
be described by other means as explained in clause §6.4.2.

6.3.1 Human readable information

The first means by which nature of data can be communicated is through human readable
text. The data component’s description, which is present in all data types defined in this
specification, can hold any length of text for this purpose. The data component’s label is
used to carry short human readable information (i.e. a short name); this is useful to allow
data consumers to quickly identify the represented property.

It is not recommended to use the concepts of “description” and “label” in a way that they
contain robust semantic information (i.e. that machines can rely upon). The content of
such fields is intended to be interpretable solely by humans.

6.3.2 Robust semantics

All SWE Common data types allow for associating each data component in a dataset with
the definition of the Property that it represents.

Req 7 All data values shall be associated with a clear definition of the property that
the value represents.

It is recommended that a model uses references to out-of-band dictionaries rather than
inline information because semantics are supposed to be shared by multiple datasets.
Using references also helps by providing a framework that is independent from the actual
semantic technology used.

The SWE Common UML models and XML schemas desribed in this standard can be
used in combination with any semantic web technology. It is thus possible to connect a
SWE dataset description to an existing taxonomy provided the external register exposes a
unique identifier for each entry.

These semantic references point to out-of-band semantic information that can be encoded
in various languages, such as the Ontology Web Language (OWL) or GML dictionary.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

13

OGC 08-094 SWE Common Data Model

Req 8 If robust semantics are provided by referencing out‐of‐band information, the
locators or identifiers used to point to this information shall be resolvable by
some well‐defined method.

6.3.3 Time, space and projected quantities

Temporal, spatial and other projected quantities need to be further defined by specifying
the reference frame and axis with respect to which the quantity is expressed. In SWE
Common, any simple component type can be associated to a particular axis of a given
reference frame.

Examples

Satellite location data can be defined as a vector of 3 components, expressed in the J2000 ECI Cartesian frame, the
1st component being associated to the X axis, the 2nd to the Y axis and the 3rd to the Z axis.

Angular velocity data from an Inertial Measurement Unit can be defined as a vector of 3 components, expressed in
the plane reference frame (for instance ENU defined by local East, North, Up directions), the Euler components
being mapped to X, Y, Z respectively.

Relative time data can be given with respect to an arbitrary epoch itself positioned in a well defined reference frame
such as TAI (from the French “Temps Atomique International” = International Atomic Time).

Req 9 A temporal quantity shall be expressed with respect to a well defined
temporal reference frame and this frame shall be specified.

Req 10 A spatial quantity shall be expressed with respect to the axes of a well
defined spatial reference frame and this frame shall be specified.

The “Time” class detailed in clause §7.2.10 is designed for carrying a temporal reference
frame or a time of reference in the case of relative time data.

The “Vector” class detailed in clause §7.3.3 is a special type of record used to assign a
reference frame to all its child-components.

The “Matrix” class defined in clause §7.4.2 allows the definition of higher order tensor
quantities.

This standard does not impose requirements on the type of reference frames that a
standardization target shall support. Standards that are dependent on this specification can
(and often should) however define a minimum set of reference frames that shall be
supported by all implementations.

14 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

6.4 Data Quality

Quality information can be essential to the data consumer and the SWE Common Data
Model provides simple and flexible ways to associate qualitative information with each
component of a dataset.

6.4.1 Simple quality information

Simple quality information can be associated with any scalar data component, in the form
of another scalar or range value. The quality information defined here applies solely to
the value of the associated data component (i.e. the measurement value) and, depending
on its data type, quality can be represented by a numerical, categorical or textual value, or
by a range of values.

This quality information can be static, i.e. constant over the whole dataset, or dynamic
and provided with the data itself. In this case, the quality value is in fact carried by
another component of the dataset (and described in SWE Common as such).

The exact type of quality information provided should be specified via semantic tagging
just like with any other property in SWE Common.

Examples

Examples of quality measures are “absolute accuracy”, “relative accuracy”, “absolute precision”, “tolerance”, and
“confidence level”.

Quality related comments can also describe operating conditions, such as “sensor contained blockage and was
removed” or “engineer on site, values may be affected”. This information can inform the user of potential
inaccuracy in the data across certain periods.

6.4.2 Nil Values

The concept of NIL value is used to indicate that the actual value of a property cannot be
given in the data stream, and that a special code (i.e. reserved value) is used instead. It is
thus a kind of quality information. The reason for which the value is not included is
essential for a good interpretation of the data, so each reserved value is associated to a
well-defined reason. In that sense, a NIL value definition is essentially a mapping
between a reserved value and a reason.

Req 11 A model of a NIL value shall always include a mapping between the selected
reserved value and a well‐defined reason.

Each component of a dataset can define one or several NIL values corresponding to one
or more reasons.

Examples

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

15

OGC 08-094 SWE Common Data Model

In low level satellite imagery with, for instance, 8-bits per channel, the imagery metadata often defines:

- A reserved value to indicate that a pixel value was “Below Detection Limit” usually set to ‘0’

- A reserved value to indicate that a pixel value was “Above Detection Limit” usually set to ‘255’

6.4.3 Full lineage and traceability

Full lineage and traceability is not in the scope of this specification. It is fully addressed
by the OGC® Sensor Model Language Standard, which allows robust definition of
measurement chains, with detailed information about the processing that takes place at
each stage of the chain. This means that complex lineage guarantying full traceability can

 is to say a description of how the data was
obtained (i.e. lineage), to the data itself.

on data
alized in ISO 11404.

ld identifier

ng scalars and aggregates. The

ive at a time are actually

Req gate data structures

ents implementing the representations described in clause 6.2.

be recorded in a SensorML process chain, separately from the data itself.

Datasets can be associated to lineage information described using the Sensor Model
Language by using a metadata wrapper such as the “Observation” object defined in the
OGC® Observations and Measurements Standard (O&M). In this standard, the
“procedure” property of the “Observation” class allows attaching detailed information
about the measurement procedure, that

6.5 Data Structure

Data structure defines how individual pieces of data are grouped, ordered, repeated and
interleaved to form a complete data stream. The SWE Common models are based
structures commonly accepted in computer science and form

Classical aggregate datatypes are defined below:

- Record: consists of a list of fields, each of them being keyed by a fie
and defining its own type that can be any scalar or aggregate structure.

- Array: consists of many elements of the same type, usually indexed by an integer.
The element type can be any data structure includi
array size constitutes the upper bound of the index.

- Choice: consists of a list of alternatives, each of them being keyed by a tag value
and having its own type. Only values for one alternat
present in the data stream described by such a structure.

 12 A conformant model or software shall implement aggre
in a way that is consistent with definitions of ISO 11404.

This standard also defines the concept of “data component” as any part of the structure of
a dataset, aggregate or not. It is thus the superset of all the aggregate structures described
above and of all scalar elem

16 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

Examples

A dataset representing a time series of observations acquired by a mobile sensor can be encoded with various
methods depending on the requirements:

- XML encoding can be used when data needs to be easily styled to other markup formats (such as HTML) or when
precise error localization (in the case of an error in the stream) is needed.

- ASCII encoding can be used to achieve a good compromise between readability and size efficiency.

- Binary encoding can be used (eventually with embedded compression) when pure performance (i.e. size but also
reading and writing throughput) is the main concern.

A data component can be both a data descriptor and a data container:

- A data component used as a data descriptor defines the structure, representation,

- A data component used as a data container equally defines the dataset but also
includes the actual property values.

 This
allows verbose metadata to be used in order to robustly define the content and meaning of

s any of the
encodings methods to be selected and used based on a particular requirement, such as

Req g methods shall be applicable to any arbitrarily complex data
structures as long as they are made of the data components described in
clause 6.5.

semantics, quality, and other metadata of a data set but does not include the actual
data values.

6.6 Data Encoding

A key concept of the SWE Common Data Model is the ability to separate data values
themselves from the description of the data structure, semantics and representation.

a dataset while still being able to package the data values in very efficient manners.

Data encoding methods define how the data is packed as blocks that can efficiently be
transferred or stored using various protocols and formats. Different methods allow
encoding the data as XML, text (CSV like), binary and even compressed or encrypted
formats in a way that is agnostic to a particular structure. This allow

performance, re-use of tools, alignment with existing standards and so on.

 13 All encodin

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

17

OGC 08-094 SWE Common Data Model

7 UML Conceptual Models (normative)

This standard defines normative UML models with which all future separate extensions
should be compliant. The standardization target types for the UML conformance classes
are:

- Software implementations seeking compliance to this standard
- Encoding models derived from the conceptual models of this standard

7.1 Package Dependencies

The following packages are defined by the SWE Common Data Model:

«Application Schema»
SWE Common Data Model 2.0

«Leaf»
Aggregate Components

«Leaf»
Block Components

«Leaf»
Simple Encodings

«Leaf»
Property Definition

«Leaf»
Simple Components

«Leaf»
Basic Types

«Leaf»
Adv anced Encodings

«import»

«import»

«import»

«import» «import»

«import»

«import»

«import»

«import»

«import»

Figure 7.1 – Internal Package Dependencies

18 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

This standard also has dependencies on external packages defined by other standards,
namely ISO 19103 and ISO 19136, as show below:

Primitiv e

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

19

«Leaf»
Property Definition

«Leaf»
Simple Components

«Leaf»
Basic Types

basicTypesv alueObjectsdictionary

gmlBase

Implementation

(from ISO 19136)(from ISO 19136)

(from ISO 19136)

(from ISO 19136)

(from ISO 19103) (from ISO 19103)

«Leaf»
Simple Encodings

«import»

Figure 7.2 – External Package Dependencies

OGC 08-094 SWE Common Data Model

7.2 Requirements Class: Basic Types and Simple Components Packages

Data components are the most essential part of the SWE Common Data Model. They are
used to describe all types of data structures, whether they represent data stream contents,
tasking messages, alert messages or process inputs/outputs.

The “Simple Components” UML package contains classes modeling simple data
components, that is to say scalar components and range components (i.e. value extents).
These classes implement concepts defined in the core section of this standard.

Req 14 An implementation passing the “Simple Components UML Package”
conformance test class shall first pass the core conformance test class.

The “Basic Types” UML package from which the “Simple Components” package is
dependent is included in this requirement class.

Req 15 A compliant encoding or software shall correctly implement all UML classes
defined in the “Simple Components” and “Basic Types” packages.

Data types from the “Primitive” and “Implementation” packages of the ISO 19103
standard are used directly which makes this requirement class dependent on it. These data
types are “CharacterString”, “Boolean”, “Real”, “Integer”, “Date”, “Time”, “DateTime”,
“GenericName”, “ScopedName”.

Req 16 A compliant encoding or software shall correctly implement all UML classes
defined in ISO 19103 that are used in this standard.

Classifiers (i.e. classes and data types) from the “basicTypes”, “valueObjects” and
“dictionary” packages of the ISO 19136 (GML) standard are also used. These packages
are thus dependencies of this requirement class. The GML classifiers used are
“AbstractValue”, “URI”, “Definition”.

Req 17 A compliant encoding or software shall correctly implement all UML classes
defined in ISO 19136 (GML) that are used in this standard.

Classes of the “Simple Components” package are designed to collect information about
nature, representation and quality of data as introduced in previous sections. These
include six scalar types – Boolean, Text, Category, Count, Quantity, and Time – as well
as four range types – CategoryRange, CountRange, QuantityRange and TimeRange.

As an overview, conceptual models of the six scalar component types are shown on the
following UML class diagram:

20 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

AbstractDataComponent

«Type»
AbstractSimpleComponent «Type»

Text«Type»
Boolean «property»

+ referenceFrame: URI [0..1]
+ axisID: CharacterString [0..1]
+ quality: Quality [0..*]
+ nilValues: NilValues [0..1]

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

21

«Type»
Quantity

«property»
+ uom: UnitReference
+ constraint: AllowedValues [0..1]
+ value: Real [0..1]

«property»
+ constraint: AllowedTokens [0..1]
+ value: CharacterString [0..1]

«Type»
Category

«property»
+ codeSpace: Definition [0..1]
+ constraint: AllowedTokens [0..1]
+ value: CharacterString [0..1]

«Type»
Time

«property»
+ localFrame: URI [0..1]
+ referenceTime: DateTime [0..1]
+ uom: UnitReference
+ constraint: AllowedTimes [0..1]
+ value: TimePosition [0..1]

«Type»
Count

«property»
+ constraint: AllowedValues [0..1]
+ value: Integer [0..1]

«property»
+ value: Boolean [0..1]

Figure 7.3 – Simple Data Components

Classes representing the four range data components are shown on the diagram below:

AbstractDataComponent

«Type»
AbstractSimpleComponent

«property»
+ referenceFrame: URI [0..1]
+ axisID: CharacterString [0..1]
+ quality: Quality [0..*]
+ nilValues: NilValues [0..1]

«Type»
CountRange

«property»

«Type»
QuantityRange

«Type»
TimeRange

«Type»
CategoryRange

«property» «property» «property»
+ uom: UnitReference
+ constraint: AllowedValues [0..1]
+ value: RealPair [0..1]

+ referenceTime: Real [0..1]
+ uom: UnitReference
+ constraint: AllowedTimes [0..1]
+ value: TimePair [0..1]

+ codeSpace: Definition [0..1]
+ constraint: AllowedTokens [0..1]
+ value: TokenPair [0..1]

+ constraint: AllowedValues [0..1]
+ value: IntegerPair [0..1]

Figure 7.4 – Range Data Components

OGC 08-094 SWE Common Data Model

Details and requirements about each of these classes are given in the following sections.

7.2.1 Relationship with GML Value Objects

SWE Common data components are enhanced versions of GML value objects. They are
used to associate robust metadata information described in clauses §6.2 to §6.4 to the
actual property value. As with GML value objects, this can be done in two ways:

- Scalar data components can contain the property value inline. In order to achieve
this, the “value” attribute of the data component object is filled with the property
value. In GML, value objects take this value directly as text content.

- Data components can be used as descriptors for a data structure which values are
given separately (i.e. for example encoded in Text, Binary or XML in the “values”
attribute of a “DataArray” object). This is similar to the way GML value objects
are used to specify range parameters of the “DataBlock” class.

All SWE Common classes representing data components are sub-classes of the GML
“AbstractValue” class (see Figure 7.7), which enables the use of these classes within
other GML application schemas. They are especially intended to be used for describing
range parameters in the GML coverage sub-schema.

7.2.2 Basic Data Types

This requirement class also includes requirements for the “Basic Types” UML package.
This package defines low level data types that are used as property types by classes
defined in the other packages.

The first derived data type defined in this package allows expressing a temporal position
value as shown on the diagram below:

«Union»
TimeIso8601 «Union»

TimePosition
«property»

«property»+ byDate: Date
+ byTime: Time
+ byDateTime: DateTime
+ byIndeterminateValue: TM_IndeterminateValue

+ byReal: Real
+ byTimeIso8601: TimeIso8601

Figure 7.5 – TimePosition Data Type

By using this data type, a time position can be expressed in five different ways:

- A simple calendar date split into year, month and day of month.
- A time with a time zone, split into hours, minutes and seconds.

22 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

- A combination of date and time with a time zone, split into year, month, day, hours,
minutes and seconds.

- A decimal value expressed in a temporal unit such as seconds, milliseconds, etc.
- An indeterminate value used to specify special temporal values such as ‘now’.

All these time position values are expressed relative to an epoch that is either implicitly
or explicitly defined elsewhere (i.e. by a separate property than the one carrying the time
position value).

The other data types defined in this package all relate to defining pairs of data types
defined in ISO 19103:

«DataType»
TimePair

«DataType»
RealPair

«DataType»
IntegerPair

«DataType»
TokenPair

«property» «property» «property» «property»
+ item: TimePosition [2] + item: Real [2] + item: Integer [2] + item: CharacterString [2]

Figure 7.6 – Basic types for pairs of scalar types

7.2.3 Attributes shared by all data components

All SWE Common data component classes carry standard attributes inherited
(transitively) from the “AbstractDataComponent” and “AbstractSWEValue” classes (The
“AbstractSWEValue” class is actually defined in the “Basic Types” package but is shown
here for clarity). The class hierarchy is shown on the following UML diagram:

AbstractObject

«type»
valueObjects::AbstractValue

(from ISO 19136 - GML)

«Type»
Basic Types::AbstractSWEValue

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

23

«Type»
AbstractDataComponent

«property»
+ definition: URI [0..1]
+ optional: Boolean [0..1] = false
+ updatable: Boolean [0..1] = false

«property»
+ extension: Any [0..*]
+ description: CharacterString [0..1]
+ name: GenericName [0..1]
+ identifier: ScopedName [0..1]

Figure 7.7 – AbstractDataComponent Class

OGC 08-094 SWE Common Data Model

The “extension” attribute is used as a container for future extensions. Each extension
should put its content in a separate extension property. It is available by inheritance to all
sub-classes of “AbstractSWEValue”. This extension point can be used at runtime (i.e. at
the instance level in the case of XML encoding) to add new extended properties to an
existing class.

Req 18 A compliant implementation shall not generate errors when the content of
an “extension” attribute is unknown.

The optional “name” and “description” attributes can be used to provide human readable
information describing what property the component represents. The “name” is meant to
hold a short descriptive name whereas “description” can carry any length of plain text.
These two fields should not be used to specify robust semantic information (see 0).
Instead, the “definition” attribute described below should be used for that purpose.

The optional “identifier” attribute allows assigning a unique identifier to the component,
so that it can be referenced later on. It can be used, for example, when defining a
universal constant.

The “definition” attribute provides a resolvable reference (generally a URI but usually a
URL or a URN) to the component semantics. It should point to controlled terms that are
defined in online dictionaries, registries or ontologies. These terms provide the formal
textual definition agreed upon by one or more communities, eventually illustrated by
pictures and diagrams as well as additional semantic information such as relationships to
units and other concepts, ontological mappings, etc.

Examples

The definition may indicate that the value represents an atmospheric temperature using a URN such as
“urn:ogc:def:property:OGC:AtmosphericTemperature” referencing the complete definition in a register.

The definition may also be a URL linking to a concept defined in an ontology such as “http//www.my-org.com/
/ontologies/observedProperties/atmospheric.owl#temperature”

The name could be “Atmospheric Temperature”, which allows quick identification by human data consumers.

The description could be “Temperature of the atmosphere measured by the exterior thermometer” which adds
contextual details.

The “optional” attribute is an optional flag indicating if the component value can be
omitted in the data stream. It is only meaningful if the component is used as a schema
descriptor (i.e. not for a component containing an inline value). It is ‘false’ by default.

The “updatable” attribute is an optional flag indicating if the component value is fixed or
can be updated. It is only applicable if the data component is used to define the input of a
process (i.e. when used to define the input or parameter of a service, process or sensor,
but not when used to define the content of a dataset). It is ‘false’ by default.

24 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

Examples

The “updatable” flag can be used to identify what parameters of a system are changeable. The exact semantics
depends on the context. For example:

- In SensorML process chains, the “updatable” flag is used to identify process parameters that can accept an
incoming connection (and thus can get changed while the process is in execution).

- In a SensorML System it is used to indicate whether or not a system parameter is changeable, either by an operator
(i.e. by turning a screw or inserting a jumper) or remotely by sending a command.

- In the Sensor Planning Service it is used to indicate if tasking parameters are changeable by the client (i.e. by using
the Update operation) after a task has been submitted.

7.2.4 Attributes shared by all simple data components

As shown on Figure 7.3, classes modeling simple data components inherit attributes from
the “AbstractSimpleComponent” class from which they are directly derived. This abstract
class is shown again below:

AbstractDataComponent

«Type»
AbstractSimpleComponent

«property»
+ referenceFrame: URI [0..1]
+ axisID: CharacterString [0..1]
+ quality: Quality [0..*]
+ nilValues: NilValues [0..1]

Figure 7.8 – AbstractSimpleComponent Class

The definition attribute inherited from the “AbstractDataComponent” class is mandatory
on this class and thus on all its descendants.

Req 19 The “definition” attribute shall be specified by all instances of concrete
classes derived from “AbstractSimpleComponent”.

It provides two attributes allowing the association of a data component to a reference
frame and an axis and thus implements core concepts introduced in clause §6.3.3. These
attributes are used for a component which value is the projection of a property along a
temporal or spatial axis.

The “referenceFrame” attribute takes a URI that uniquely identifies the reference frame
relative to which the coordinate value is given.

Req 20 The URI used as the value of the “referenceFrame” attribute shall identify a
coordinate reference system as defined by ISO 19111.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

25

OGC 08-094 SWE Common Data Model

The “axisID” attribute takes a string that uniquely identifies one of the reference frame’s
axes along which the coordinate value is given.

Req 21 The value of the “axisID” attribute shall correspond to the “axisAbbrev”
attribute of one of the coordinate system axes listed in the specified
reference frame definition.

The union of these two attributes thus uniquely identifies one axis of one given reference
frame along which the value of the component is expressed.

A component representing a projected quantity can be defined in isolation or can be
contained within a “Vector” aggregate when it contributes to the specification of a multi-
dimensional quantity (see clause §7.3.3). In this last case the reference frame definition is
usually inherited from the parent “Vector” instance and is thus omitted from the scalar
component itself. However, the “axisID” attribute still needs to be specified.

Req 22 The “axisID” attribute shall be specified by all instances of concrete classes
derived from “AbstractSimpleComponent” and representing a property
projected along a spatial axis.

Req 23 The “referenceFrame” attribute shall be specified by all instances of concrete
classes derived from “AbstractSimpleComponent” and representing a
property projected along a spatial or temporal axis, except if it is inherited
from a parent aggregate (Vector or Matrix).

The optional “quality” attribute is used to provide simple quality information as discussed
in §6.4.1. It is of type “Quality” which is a union of several classes as defined in clause
§7.2.16. Its multiplicity is more than one which means that several quality measures can
be given on for a single data component.

Example

Both precision and accuracy of the value associated to a data component can be specified concurrently (see
http://en.wikipedia.org/wiki/Accuracy_and_precision for a good explanation of the difference between the two).

The optional “nilValues” attribute is used to provide a list (i.e. one or more) of NIL
values as defined in clause §6.4.2. The model of the “NilValues” class is detailed in
clause §7.2.17.

Although this is not shown on Figure 7.8, most concrete sub-classes of
“AbstractSimpleComponent” also define a “constraint” attribute that allows further
restriction of the possible values allowed by the corresponding representation. This
implements concepts defined in clause §6.2.6. These constraints always apply to the
value of the property as represented by the corresponding data component whether this
value is given inline (data container case) or out-of-band (data descriptor case).

26 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

http://en.wikipedia.org/wiki/Accuracy_and_precision

SWE Common Data Model OGC 08-094

Req 24 The property value (formally the representation of the property value)
attached to an instance of a class derived from “AbstractSimpleComponent”
shall satisfy the constraints specified by this instance.

All concrete sub-classes of “AbstractSimpleComponent” also define a “value” attribute.
This attribute is not defined in this abstract class because it has a different primitive type
in each concrete data component class (See following clauses).

Req 25 All concrete classes derived from the “AbstractSimpleComponent” class
(directly or indirectly) shall define an optional “value” attribute and use it as
defined by this standard.

The “value” attribute is always optional on any simple data component in order to allow
for both data descriptor and data container cases:

- When the data component is used as a data container, this attribute always carries
the value of the associated property (formally the representation of the estimated or
asserted value of the property). Quality information, nil values definitions and
constraints thus apply to the value taken by this attribute.

- When the data component is used as a data descriptor, its actual value is provided
out-of-band. In this case, quality information, nil values definitions and constraints
apply to the out-of-band value and not to the “value” attribute. Instead, the “value”
attribute can then be used to specify a default value.

Whether the data component is used as a descriptor or a container depends on the context
and should be explicitly stated by any standard that makes use of the SWE Common Data
Model.

All UML classes in this package that derive from “AbstractSimpleComponent” define a
“value” attribute with the adequate primitive type and whose meaning is the one
explained above.

7.2.5 Boolean Class

The “Boolean” class is used to specify a scalar data component with a Boolean
representation as defined in clause §6.2.1. It derives from “AbstractSimpleComponent”
and is shown below:

AbstractSimpleComponent

«Type»
Boolean

«property»
+ value: Boolean [0..1]

Figure 7.9 – Boolean Class

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

27

OGC 08-094 SWE Common Data Model

The “value” attribute of this class is of the boolean primitive type.

Note: The boolean primitive type is defined in ISO19103 and is not to be confused with
the “Boolean” class defined in this standard. This clause is the only place in this
standard where the ISO 19103 boolean data type is referenced. All other occurrences of
the “Boolean” class in this standard refer to the class defined in this clause.

7.2.6 Text Class

The “Text” class is used to specify a component with a textual representation as defined
in clause §6.2.5. It derives from “AbstractSimpleComponent” and is shown below:

AbstractSimpleComponent

«Type»
Text

«property»
+ constraint: AllowedTokens [0..1]
+ value: CharacterString [0..1]

Figure 7.10 – Text Class

The “constraint” attribute allows further restricting the range of possible values by using
the “AllowedTokens” class defined in clause §7.2.18. This class allows the definition of
the constraint by either enumerating the allowed tokens and/or by specifying a pattern
that the value must match.

The “value” attribute (or the corresponding value in out-of-band data) is a string that
must match the constraint.

Note: The “Text” component can be used to wrap a string representing complex content
such as an expression in a programming language, xml or html content. This practice
should however be used only for systems that don’t require high level of interoperability
since the client must know how to interpret the content. Also care must be taken to
properly escape such content before it is inserted in an XML document or in a SWE
Common data stream.

7.2.7 Category Class

The “Category” class is used to specify a scalar data component with a categorical
representation as defined in clause §6.2.2. It derives from “AbstractSimpleComponent”
and is shown below:

28 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

AbstractSimpleComponent

«Type»
Category

«property»
+ codeSpace: Definition [0..1]
+ constraint: AllowedTokens [0..1]
+ value: CharacterString [0..1]

Figure 7.11 – Category Class

The “codeSpace” attribute is of type “Definition” and allows listing and defining the
meaning of all possible values for this component. It is expected that instances of the
“Definition” class will usually be referenced by implementations of this class since the
code space definition is usually obtained from a remote controlled vocabulary. This type
of implementation is indeed used in the XML encodings defined by this standard.

The “constraint” attribute allows further restricting the list of possible values by using the
“AllowedTokens” class defined in clause §7.2.18. This is usually done by specifying a
limited list of possible values, which have to be extracted from the code space.

Req 26 When an instance of the “Category” class specifies a code space, the list of
allowed tokens provided by the “constraint” property of this instance shall
be a subset of the values listed in this code space.

It is also possible to use this class without a code space, even though it is not
recommended as values allowed in the component would then not be formally defined.
However, as the intent of this class is to always represent a value extracted from a set of
possible options, a constraint shall be defined if no code space is specified.

Req 27 An instance of the “Category” class shall either specify a code space or an
enumerated list of allowed tokens, or both.

The “value” attribute (or the corresponding value in out-of-band data) is a string that
must be one of the items of the code space and also match the constraint.

Req 28 When an instance of the “Category” class specifies a code space, the value of
the property represented by this instance shall be equal to one of the entries
of the code space.

7.2.8 Count Class

The “Count” class is used to specify a scalar data component with a discrete countable
representation as defined in clause §6.2.4. It derives from “AbstractSimpleComponent”
and is shown below:

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

29

OGC 08-094 SWE Common Data Model

AbstractSimpleComponent

«Type»
Count

«property»
+ constraint: AllowedValues [0..1]
+ value: Integer [0..1]

Figure 7.12 – Count Class

The “constraint” attribute can be used to restrict the range of possible values to a list of
inclusive intervals and/or single values using the “AllowedValues” class defined in clause
§7.2.19. Numbers used to define these constraints should be integers and expressed in the
same scale as the count value itself. The “significantFigures” constraint allowed by the
“AllowedValues” class is not applicable to the “Count” class.

The “value” attribute (or the corresponding value in out-of-band data) is an integer that
must be within one of the constraint intervals or exactly one of the enumerated values.

7.2.9 Quantity Class

The “Quantity” class is used to specify a component with a continuous numerical
representation as defined in clause §6.2.3. It derives from “AbstractSimpleComponent”
and is shown below:

AbstractSimpleComponent

«Type»
Quantity

«property»
+ uom: UnitReference
+ constraint: AllowedValues [0..1]
+ value: Real [0..1]

Figure 7.13 – Quantity Class

In addition to attributes inherited from the “AbstractSimpleComponent” class, this class
provides a unit of measure declaration through the “uom” attribute. This unit is essential
for the correct interpretation of data represented as decimal numbers and is thus
mandatory. Quantities with no physical unit still have a scale (such as unity, percent, per
thousands, etc.) that must be specified with this property.

The “constraint” attribute is used to restrict the range of possible values to a list of
inclusive intervals and/or single values using the “AllowedValues” class defined in clause
§7.2.19. Numbers used to define these constraints must be expressed in the same unit as
the quantity value itself. Additionally, it is possible to constrain the number of significant
digits that can be added after the decimal point.

30 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

The “value” attribute (or the corresponding value in out-of-band data) is a real value that
is within one of the constraint intervals or exactly one of the enumerated values, and most
importantly is expressed in the unit specified.

7.2.10 Time Class

The “Time” class is used to specify a component with a date-time representation and
whose value is projected along the axis of a temporal reference frame. This class is also
necessary to specify that a time value is expressed in a calendar system. This class
derives from “AbstractSimpleComponent” and is shown below:

«Type»
Time

«property»
+ referenceTime: DateTime [0..1]
+ localFrame: URI [0..1]
+ uom: UnitReference
+ constraint: AllowedTimes [0..1]
+ value: TimePosition [0..1]

Figure 7.14 – Time Class

Time is treated as a special type of continuous numerical quantity that can be either
expressed as a scalar number with a temporal unit or a calendar date with or without a
time of day. Consequently, this class has all properties of the “Quantity” class, plus some
others that are specific to the treatment of time.

As time is always expressed relative to a particular reference frame, the
“referenceFrame” attribute inherited from the parent class “AbstractSimpleComponent”
shall always be set on instances on this class.

Req 29 The “referenceFrame” attribute inherited from “AbstractSimpleComponent”
shall be set on all instances of the “Time” class.

Note that specifying the frame of reference is required even when using ISO notation
because there can be ambiguities between several universal time references such as UTC,
TAI, GPS, UT1, etc… Differences between these different time reference systems are
indeed in the order of a few seconds (and increasing), that is to say not negligible in
various situations.

Example

J2000 is a well known epoch in astronomy and is equal to:

- January 1, 2000, 11:59:27.816 in the TAI time reference system

- January 1, 2000, 11:58:55.816 in the UTC time reference system

- January 1, 2000, 11:59:08.816 in the GPS time reference system

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

31

OGC 08-094 SWE Common Data Model

These offsets are not constants and depend on the irregular insertion of leap seconds in UTC

The “axisID” attribute inherited from the parent class does not need to be set since a time
reference system always has a single dimension. However it can be set to ‘T’ for
consistency with spatial axes.

The “referenceTime” attribute is used to specify a different time origin than the one
sometimes implied by the “referenceFrame”. This is used to express a time relative to an
arbitrary epoch (i.e. different from the origin of a well known reference frame). The new
time origin specified by “referenceTime” shall be expressed with respect to the reference
frame specified and is of type “DateTime”. This forces the definition of this origin as a
calendar date/time combination.

Req 30 The value of the “referenceTime” attribute shall be expressed with respect to
the system of reference indicated by the “referenceFrame” attribute.

Example

This class can be used to define a value expressed as a UNIX time (i.e. number of seconds elapsed since January 1,
1970, 00:00:00 GMT) by:

- Specifying that the reference frame is the UTC reference system

- Setting the reference time to January 1, 1970, 00:00:00 GMT.

- Setting the unit of measure to seconds

See definitions of some commonly accepted time standards at http://en.wikipedia.org/wiki/Time_standard or
http://stjarnhimlen.se/comp/time.html

The optional “localFrame” attribute allows for the definition of a local temporal frame of
reference through the value of the component (i.e. we are specifying a time origin), as
opposed to the referenceFrame which specifies that the value of the component is in
reference to this frame.

Req 31 The “localFrame” attribute of an instance of the “Time” class shall have a
different value than the “referenceFrame” attribute.

This feature allows chaining several relative time positions. This is similar to what is
done with spatial position in a geopositioning algorithm (and which is also supported by
this standard using the “Vector” class).

Example

In the case of a whiskbroom scanner instrument, the “sampling time” is often expressed relative to the “scan start
time” which is itself given relative to the “mission start time”. It is important to properly identify the chain of time
reference systems at play so that the adequate process can compute the absolute time of every measurement made
(Note that it is often not practical to record the absolute time of each single measurement when high sampling rates
are used).

32 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

http://en.wikipedia.org/wiki/Time_standard
http://stjarnhimlen.se/comp/time.html

SWE Common Data Model OGC 08-094

A model forecast may represent its result times relative to the “run time” of the model for efficient encoding. The
values of the output will be in reference to this base epoch. In this example the “referenceFrame” attribute of the
model time is set to UTC and the “localFrame” set as “ModelTime”. The model result would then define its
“referenceFrame” as “ModelTime”, allowing the time values to be encoded relative to the specified time origin.

The “uom” attribute is mandatory since time is a continuous property that shall always be
expressed in a well defined scale. The only units allowed are obviously time units.

Req 32 The “uom” attribute of an instance of the “Time” class shall specify a base or
derived time unit.

Similarly to the “Quantity” class, the “constraint” attribute allows further restricting the
range of possible time values by using the “AllowedTimes” class defined in clause
§7.2.20.

The “value” attribute (or the corresponding value in out-of-band data) is of type
“TimePosition” (see clause §7.2.2) and must match the constraint.

7.2.11 Requirements applicable to all range classes

This UML package defines four classes “CategoryRange”, “CountRange”,
“QuantityRange” and “TimeRange” that are used for representing extents of property
values. These classes have common requirements that are expressed in this clause.

Note: These classes are intentionally not derived from their scalar counterparts because
they are aggregates of two values and should be treated as such by implementations
(especially by encoding methods defined in this standard).

The “value” attribute of all these classes takes a pair of values (with a datatype
corresponding to the representation) that represent the inclusive minimum and maximum
bounds of the extent. These values must both satisfy the constraints specified by an
instance of the class, and be expressed in the unit specified when applicable.

Req 33 Both values specified in the “value” property of an instance of a class
representing a property range (i.e. “CategoryRange”, “CountRange”,
“QuantityRange” and “TimeRange”) shall satisfy the same requirements as
the scalar value used in the corresponding scalar classes.

7.2.12 CategoryRange Class

The “CategoryRange” class is used to express a value extent using the categorical
representation of a property. It defines the same attributes as the “Category” class and
those should be used in the same way:

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

33

OGC 08-094 SWE Common Data Model

AbstractSimpleComponent

«Type»
CategoryRange

«property»
+ codeSpace: Definition [0..1]
+ constraint: AllowedTokens [0..1]
+ value: TokenPair [0..1]

Figure 7.15 – CategoryRange Class

Req 34 All requirements associated to the “Category” class defined in clause §7.2.7
apply to the “CategoryRange” class.

The “CategoryRange” class also requires that the underlying code space is ordered so
that the range is meaningful.

Req 35 The code space specified by the “codeSpace” attribute of an instance of the
“CategoryRange” class shall define a well‐ordered set of categories.

Example

A “CategoryRange” can be used to specify the approximate time of a geological event by using names of geological
eons, eras or periods such as [Archean - Proterozoic] or [Jurassic - Cretaceous].

The “value” attribute of the “CategoryRange” class takes a pair of tokens representing
the inclusive minimum and maximum bounds of the extent.

7.2.13 CountRange Class

The “CountRange” class is used to express a value extent using the discrete countable
representation of a property. It defines the same attributes as the “Count” class and those
should be used in the same way:

AbstractSimpleComponent

«Type»
CountRange

«property»
+ constraint: AllowedValues [0..1]
+ value: IntegerPair [0..1]

Figure 7.16 – CountRange Class

The “value” attribute of the “CountRange” class takes a pair of integer numbers
representing the inclusive minimum and maximum bounds of the extent.

34 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

7.2.14 QuantityRange Class

The “QuantityRange” class is used to express a value extent using the discrete countable
representation of a property. It defines the same attributes as the “Quantity” class and
those should be used in the same way:

AbstractSimpleComponent

«Type»
QuantityRange

«property»
+ uom: UnitReference
+ constraint: AllowedValues [0..1]
+ value: RealPair [0..1]

Figure 7.17 – QuantityRange Class

The “value” attribute of the “QuantityRange” class takes a pair of real numbers
representing the inclusive minimum and maximum bounds of the extent.

7.2.15 TimeRange Class

The “TimeRange” class is used to express a value extent of a time property. It defines the
same attributes as the “Time” class and those should be used in the same way:

AbstractSimpleComponent

«Type»
TimeRange

«property»
+ referenceTime: DateTime [0..1]
+ localFrame: URI [0..1]
+ uom: UnitReference
+ constraint: AllowedTimes [0..1]
+ value: TimePair [0..1]

Figure 7.18 – TimeRange Class

Req 36 All requirements associated to the “Time” class defined in clause §7.2.10
apply to the “TimeRange” class.

The “value” attribute of the “TimeRange” class takes a pair of values of type
“TimePosition” representing the inclusive minimum and maximum bounds of the extent.

7.2.16 Quality Union

The “Quality” class is a union allowing the use of different representations of quality.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

35

OGC 08-094 SWE Common Data Model

Quality can be indeed be specified as a decimal value, an interval, a categorical value or a
textual statement. In our model, quality objects are in fact data components used in a
recursive way, as shown on the following diagram:

«Union»
Quality

«property»
+ byQuantity: Quantity
+ byQuantityRange: QuantityRange
+ byCategory: Category
+ byText: Text

Figure 7.19 – Quality Union

These different representations of quality are useful to cover most use cases where simple
quality information is provided with the data.

Examples

“Quantity” is used to specify quality as a decimal number such as accuracy, variance and mean, or probability.

“QuantityRange” is used to specify a bounded interval of variation such as a bi-directional tolerance.

“Category” is used for a quality statement based on a well defined taxonomy such as certification levels.

“Text” is used to include a textual quality statement such as a comment written by a field operator.

The “definition” attribute of the chosen quality component helps to further define the type
of quality information given just like any other data component, and the “uom” should be
specified in the case of a decimal quality value or interval.

Note: Reusing data components to specify quality also allows the inclusion of quality
values in the data stream itself. This is useful if the quality is varying and re-estimated for
each measurement. This is for example the case in a GPS receiver where both horizontal
and vertical errors are given along with the geographic position. See the XML
implementation clause for more information on this use case.

7.2.17 NilValues Class

The “NilValues” class is used by all classes deriving from “AbstractSimpleComponent”.
It allows the specification of one or more reserved values that may be included in a data
stream when the normal measurement value is not available (see clause §6.4.2). The
UML model of this class is given below:

36 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

NilValues

«DataType»
Basic Types::NilValue

«property»

+nilValue
1..*«property»

+ reason: URI
+ value: CharacterString

Figure 7.20 – NilValues Class

An instance of the “NilValues” class is composed of one to many “NilValue” objects,
each of which specifies a mapping between a reserved value and a reason.

The mandatory “reason” attribute indicates the reason why a measurement value is not
available. It is a resolvable reference to a controlled term that provides the formal textual
definition of this reason (usually agreed upon by one or more communities).

Req 37 The “reason” attribute of an instance of the “NilValue” class shall contain a
URI that can be resolved to the complete human readable definition of the
reason associated with the NIL value.

The mandatory “value” attribute specifies the data value that would be found in the
stream to indicate that a measurement value is missing for the corresponding reason. The
range of values allowed here is the range of values allowed by the datatype of the parent
data component.

Req 38 The value used in the “value” property of an instance of the “NilValue” class
shall be compatible with the datatype of the parent data component object.

This means that when specifying NIL values for a “Quantity” component, only real
values are allowed (in most implementations, this includes NaN, -INF and +INF) and for
a “Count” component only integer values are allowed.

Consequently, it is also impossible to specify NIL values for a “Boolean” data component
since it allows only two possible values. In this case a “Category” component should be
used.

There are no restrictions on the choice of NIL values for “Category” and “Text”
components since their datatype is String.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

37

OGC 08-094 SWE Common Data Model

7.2.18 AllowedTokens Class

The “AllowedTokens” class is used to express constraints on the value of a data
component represented by a “Text” or a “Category” class. The UML class is shown
below:

AllowedTokens

«property»
+ value: CharacterString [0..*]
+ pattern: CharacterString [0..1]

Figure 7.21 – AllowedTokens Class

This class allows defining the constraint either by enumerating a list of allowed values by
using one or more “value” attributes and/or by specifying a pattern that the value must
match. The value must then either be one of the enumerated tokens or match the pattern.

7.2.19 AllowedValues Class

The “AllowedValues” class is used to express constraints on the value of a data
component represented by a “Count” or a “Quantity” class. The UML class is shown
below:

AllowedValues

«property»
+ value: Real [0..*]
+ interval: RealPair [0..*]
+ significantFigures: Integer [0..1]

Figure 7.22 – AllowedValues Class

This class allows constraints to be defined either by enumerating a list of allowed values
and/or a list of inclusive intervals. To be valid, the value must either be one of the
enumerated values or included in one of the intervals. The numbers used in the “value”
and “interval” properties shall be expressed in the same unit as the parent data
component.

Req 39 The scale of the numbers used in the “enumeration” and “interval”
properties of an instance of the “AllowedValues” class shall be expressed in
the same scale as the value(s) that the constraint applies to.

38 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

If the parent data component instance is used to define a projected quantity (i.e. when the
“axisID” is set), then the constraints given by this class are expressed along the same
spatial reference frame axis.

The number of significant digits can also be specified with the “significantFigures”
property though it is only applicable when used with a decimal representation (i.e. within
the “Quantity” class). This limits the total number of digits that can be included in the
number represented whether a scientific notation is used or not.

Examples

All non-zero digits are considered significant. 123.45 has five significant figures: 1, 2, 3, 4 and 5

Zeros between two non-zero digits are significant. 101.12 has five significant figures: 1, 0, 1, 1 and 2

Leading zeros are not significant. 0.00052 has two significant figures: 5 and 2 and is equivalent to 5.2x10-4 and
would be valid even if the number of significant figures is restricted to 2.

Trailing zeros are significant. 12.2300 has six significant figures: 1, 2, 2, 3, 0 and 0 and would thus be invalid if the
number of significant figures is restricted to 4.

Note: The number of significant figures and/or an interval constraint (i.e. min/max
values) can help a software implementation choosing the best data type to use (i.e. ‘float’
or ‘double’, ‘short’, ‘int’ or ‘long’) to store values associated to a given data component.

7.2.20 AllowedTimes Class

The “AllowedTimes” class is used to express constraints on the value of a data component
represented by a “Time” class. The UML class is shown below:

AllowedTimes

«property»
+ value: TimePosition [0..*]
+ interval: TimePair [0..*]
+ significantFigures: Integer [0..1]

Figure 7.23 – AllowedTimes Class

This class is almost identical to the “AllowedValues” class and in fact all properties are
used in the same way. The only difference with this class is that the “value” and
“interval” properties allow the use of time data types as defined in clause §7.2.2.

The constraints given by this class are expressed along the same time reference frame
axis as the value attached to the parent data component.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

39

OGC 08-094 SWE Common Data Model

7.2.21 Unions of simple component classes

Several useful groups of classes are also defined in this package. These unions can be
used as attribute types and they are shown on the following diagram:

«Union»
AnyScalar

«Union»
AnyNumerical

«Union»
AnyRange

«property» «property» «property»
+ byBoolean: Boolean
+ byCount: Count
+ byQuantity: Quantity
+ byTime: Time
+ byCategory: Category
+ byText: Text

+ byCount: Count
+ byQuantity: Quantity
+ byTime: Time

+ byQuantityRange: QuantityRange
+ byTimeRange: TimeRange
+ byCountRange: CountRange
+ byCategoryRange: CategoryRange

Figure 7.24 – Simple component unions

The “AnyScalar” union groups all classes representing scalar components, numerical or
not. The “AnyNumerical” union includes all classes corresponding to numerical scalar
representations. The “AnyRange” union regroups all range components.

7.3 Requirements Class: Aggregate Components Package

As detailed in the following clauses, this package defines classes modeling aggregate
component types that can be nested to build complex structures from the simple
component types introduced in §7.2.

Req 40 An implementation passing the “Aggregate Components UML Package”
conformance test class shall first pass the “Basic Types and Simple
Components UML Packages” conformance test class.

Req 41 A compliant encoding or software shall correctly implement all UML classes
defined in the “Aggregate Components” package.

Simple component types can be wrapped by aggregates in order to be inserted in a larger
structure. The classes modeling aggregate components defined in this package are
“DataRecord”, “DataChoice” and “Vector” (other aggregates are defines in the “Block
Components” package defined in clause §7.4). The UML model is exposed below:

40 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

41

AbstractSWEValue

«Type»
Simple Components::

AbstractDataComponent

«property»
+ definition: URI
+ optional: Boolean [0..1] = false
+ updatable: Boolean [0..1] = false

«Type»
DataRecord

«Type»
DataChoice

«Type»
Vector

«soft-typed property» «property» «property»
+ field: AbstractDataComponent [1..*] + choiceValue: Category + referenceFrame: URI

+ localFrame: URI [0..1]«soft-typed property»
«soft-typed property»+ item: AbstractDataComponent [2..*]
+ coordinate: AnyNumerical [1..*]

Figure 7.25 – Aggregate Data Components

As with simple component types, all data aggregates inherit attributes from the
“AbstractDataComponent” class. In this case, however, these attributes provide
information about the group as a whole rather than its individual components.

Example

A particular “DataRecord” might represent a standard collection of error codes coming from a GPS device.

A particular “Vector” might represent the linear or angular velocity vector of an aircraft.

In these two cases, the “definition” attribute should reference a semantic description in a registry, so that the data
consumer knows what kind of data the aggregate represents. This semantic description can then be interpreted
appropriately by consuming clients: for example to automatically decide how to style the data in visualization
software.

This requirements class has a parameter that can take one of two possible values: “simple
nesting” or “unlimited nesting”. When “simple nesting” is selected, only DataRecords,
Vectors and data components defined in the Simple Components package can be nested
within other aggregates. When “full nesting” is selected, agregates can be nested within
each other in any order.

7.3.1 DataRecord Class

The “DataRecord” class is modeled on the definition of ‘Record’ from ISO 11404. In this
definition, a record is a composite data type composed of one to many fields, each of
which having its own name and type definition. Thus it defines some logical collection of
components of any type that are grouped for a given purpose.

OGC 08-094 SWE Common Data Model

As shown on the following figure, the “DataRecord” class in SWE Common is based on
a full composite design pattern, such that each one of its “field” can be of a different type,
including simple component types as well as aggregate component types.

AbstractDataComponent

«Type»
DataRecord

«soft-typed property»
+ field: AbstractDataComponent [1..*]

Figure 7.26 – DataRecord Class

The “DataRecord” class derives from the “AbstractDataComponent” class, which is
necessary to enable the full composite pattern in which a “DataRecord” can be used to
group scalar components, but also other records, arrays and choices recursively.

Each “field” attribute can take an instance of any concrete sub-class of
“AbstractDataComponent”, which is the superset of all data component types defined in
this standard. Its stereotype is “soft-typed property” which means that the property will be
fully identified with a name provided by implementations that realize that class. This
name must be unique within a given “DataRecord” instance so that it can be used as a
key to uniquely identify and/or index each one of the record fields.

Req 42 Each “field” attribute in a given instance of the “DataRecord” class shall be
identified by a name that is unique to this instance.

Example

A “DataRecord” can group related values such as “temperature”, “pressure” and “wind speed” into a structure
called “weather measurements”. This feature is often used to organize the data and present it in a clear way to the
user.

Similarly a “DataRecord” can be used to group values of several spectral bands in multi-spectral sensor data.
However, using a “DataArray” may be easier to describe hyper spectral datasets with several hundreds of bands.

Note: The slightly different definition of record found in ISO 19103 provides for its
schema to be specified in an associated “RecordType”. When used as a descriptor, the
“DataRecord” implements the ISO 19103 “RecordType”. When used as a data
container, it is self-describing: the descriptive information is then interleaved with the
record values.

7.3.2 DataChoice Class

The “DataChoice” class (also called Disjoint Union) is modeled on the definition of
‘Choice’ from ISO 11404. It is a composite component that allows for a choice of child

42 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

components. By opposition to records that carry all their fields simultaneously, only one
item at a time can be present in the data when wrapped in a “DataChoice”. The following
diagram shows the “DataChoice” class as implemented in the SWE Common Data
Model:

AbstractDataComponent

«Type»
DataChoice

«property»
+ choiceValue: Category

«soft-typed property»
+ item: AbstractDataComponent [2..*]

Figure 7.27 – DataChoice Class

This class implements a full composite pattern, so that each “item” can be any data
component, including simple and aggregate types.

The “choiceValue” attribute is used to represent the token value that would be present in
the data stream and that indicates the actual choice selection before the corresponding
data can be given (i.e. knowing what choice item was selected ahead of time is necessary
for proper decoding of encoded data streams).

Each “item” attribute can thus take an instance of any concrete sub-class of
“AbstractDataComponent”, which is the superset of all data component types defined in
this standard. Its stereotype is “soft-typed property” which means that the property will be
fully identified with a name provided by implementations that realize that class. This
name must be unique within a given “DataChoice” instance so that it can be used as a
key to uniquely identify and/or index each one of the choice items.

Req 43 Each “item” attribute in a given instance of the “DataChoice” class shall be
identified by a name that is unique to this instance.

The “DataChoice” component is used to describe a data structure (or a part of the
structure) that can alternatively contain different types of objects. It can also be used to
define the input of a service or process that allows a choice of structures as its input.

Examples

NMEA 0183 compatible devices can output several types of sentences in the same data stream. Some sentences
include GPS location, while some others contain heading or status data. This can be described by a “DataChoice”
which items represent all the possible types of sentences output by the device.

A Sensor Planning Service (SPS) can define a choice in the tasking messages that the service can accept, thus
leaving more possibilities to the users.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

43

OGC 08-094 SWE Common Data Model

7.3.3 Vector Class

The “Vector” class is used to express multi-dimensional quantities with respect to a well
defined referenced frame (usually a spatial or spatio-temporal reference frame). This is
done by projecting the quantity on one or several axes that define the reference frame and
assigning a value to each of the axis projections.

The “Vector” class is a special case of a record that takes a collection of coordinates that
are restricted to a numerical representation. Coordinates of a “Vector” can thus only be of
type “Quantity”, “Count” or “Time”. Its UML diagram is shown below:

AbstractDataComponent

«Type»
Vector

«property»
+ referenceFrame: URI
+ localFrame: URI [0..1]

«soft-typed property»
+ coordinate: AnyNumerical [1..*]

Figure 7.28 – Vector Class

This class contains a mandatory “referenceFrame” attribute that identifies the frame of
reference with respect to which the vector quantity is expressed. The coordinates of the
vector correspond to values projected on the axes of this frame.

The “referenceFrame” attribute is inherited by all components of the “Vector”, so that it
shall not be redefined for each coordinate. However the “axisID” attribute shall be
specified for each coordinate, in order to unambiguously indicate what axis of the
reference frame it corresponds to.

Req 44 The “referenceFrame” attribute shall be ommited from all data components
used to define coordinates of a “Vector” instance.

Req 45 The “axisID” attribute shall be specified on all data components used to
define coordinates of a “Vector” instance.

The optional “localFrame” attribute allows identifying the frame of interest, that is to say
the frame we are positioning with the coordinate values associated to this component (by
opposition to the “referenceFrame” that specifies the frame with respect to which the
values of the coordinates are expressed).

Req 46 The “localFrame” attribute of an instance of the “Vector” class shall have a
different value than the “referenceFrame” attribute.

44 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

Correctly identifying the local and reference frame is an important feature that allows
chaining several relative positions, something that is essential to correctly compute
accurate position of remote sensor data.

Note: “Vector” aggregates are most commonly used to describe location, orientation,
velocity, and acceleration within temporal and spatial domains, but can also be used to
express relationships between any two coordinate frames.

Example #1

A location vector is used to locate the origin of a frame of interest (the local frame) relative to the origin of a frame
of reference (the reference frame) through a linear translation. It is composed of three coordinates of type
“Quantity”, each with a definition indicating that the coordinate represents a length expressed in the desired unit.
The definition of the “Vector” itself should also indicate that it is a “location vector”.

In the case of a 3D location vector, each
coordinate u1, u2, u3 represents a distance
along the x, y, z axes respectively.

Frame of
Reference

Local
Frame

x y

 z

 u1 u2

 u3

Example #2

An orientation vector is used to indicate the rotation of the axes of a frame of interest (the local frame) relative to a
frame of reference (the reference frame). It is composed of three coordinates of type “Quantity” with a definition
indicating an angular property. The “Vector” definition should indicate the type of orientation vector such as “Euler
Angles” or “Quaternion”. Depending on the exact definition, the order in which the coordinates are listed in the
vector may matter.

7.4 Requirements Class: Block Components Package

This package defines additional aggregate components for describing arrays of values
that are designed to be encoded as efficient data blocks. These additional aggregate
components are purposely defined in a separate requirement class because they require a
more advanced implementation for handling data values as encoded blocks.

Req 47 An implementation passing the “Block Components UML Package”
conformance test class shall first pass the “Aggregate Components UML
Package” and “Simple Encodings UML Package” conformance test classes.

Req 48 A compliant encoding or software shall correctly implement all UML classes
defined in the “Block Components” package.

The UML models for these additional aggregate components are shown below:

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

45

OGC 08-094 SWE Common Data Model

AbstractSWEValue

«Type»
Simple Components::AbstractDataComponent

«property»
+ definition: URI [0..1]
+ optional: Boolean [0..1] = false
+ updatable: Boolean [0..1] = false

46 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

«Type»
DataArray

«property»

«Type»
Matrix

«property»
+ elementCount: Count
+ encoding: AbstractEncoding [0..1]
+ values: EncodedValues [0..1]

+ referenceFrame: URI
+ localFrame: URI [0..1]
+ elementCount: Count
+ encoding: AbstractEncoding [0..1]
+ values: EncodedValues [0..1]

«soft-typed property»
+ elementType: AbstractDataComponent

«soft-typed property»
+ elementType: AbstractDataComponent

Figure 7.29 – Array Components

The principle of these two classes is that the number and type of elements contained in
the array is defined once, while the actual array values are listed separately without being
redefined with each value. In order to achieve this, all array values are encoded as a
single data block in the “values” attribute. Consequently, these classes are restricted to
cases where all elements are homogeneous and thus can be described only once even
though the array data may in fact contain many of them.

This package also defines the “DataStream” class that is similar in principle to the
“DataArray” class but is not a data component.

7.4.1 DataArray Class

The “DataArray” class is modeled on the corresponding definition of ISO 11404. This
definition states that an array is a collection of elements of the same type (as opposed to a
record where each field can have a different type), with a defined size. This class is
shown on the following UML diagram:

SWE Common Data Model OGC 08-094

AbstractDataComponent

«Type»
DataArray

«property»
+ elementCount: Count
+ encoding: AbstractEncoding [0..1]
+ values: EncodedValues [0..1]

«soft-typed property»
+ elementType: AbstractDataComponent

Figure 7.30 – DataArray Class

This class implements a full composite pattern, so that the “elementType” can be any data
component, including simple and aggregate types. It can be used to group identical scalar
components as well as records, choices and arrays in a recursive manner.

The “elementCount” attribute is used to indicate the size of the array (i.e. the number of
elements of the given type in the array).

The content of the “elementType” attribute defines the structure of each element in the
array. The data component used and all of its children shall not include any inline values,
as these will be block encoded in the “values” attribute of the parent “DataArray”.

Req 49 Data components that are children of an instance of a block component shall
be used solely as data descriptors. Their values shall be block encoded in the
“values” attribute of the block component rather than included inline.

However, the “DataArray” class itself, like any other data component can be used either
as a data descriptor or as a data container. To use it as a data descriptor the “encoding”
and “values” attributes are not set. To use it as a data container, these attributes are both
set as described below.

The “encoding” and “values” fields are there to provide array data as an efficient block
which can be encoded in several ways. The different encoding methods are described in
clauses §0 and §7.6. The “encoding” field shall have a value if the “values” field is
present, and the data shall be encoded using the specified encoding.

Req 50 Whenever an instance of a block component contains values, an encoding
method shall be specified by the “encoding” property and array values shall
be encoded as specified by this method.

The choice of simple encodings (defined in the “Simple Encodings” package) allows
encoding data as text using a delimiter separated values (DSV, a variant of CSV) format
or as XML tagged values. The “Advanced Encodings” package defines binary encodings
that can be used to efficiently package large datasets.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

47

OGC 08-094 SWE Common Data Model

By combining instances of “DataArray”, “DataRecord” and scalar components, one can
obtain the complex data structures that are necessary to fully describe any kind of sensor
data.

Example

The “DataArray” class can be used to describe a simple 1D array of measurements such as radiance values obtained
using a 12000 cells (1 row) CCD strip for instance. This can be done by using the “Quantity” class as the element
type. In such a case, describing the dataset as a “DataRecord” would be a very repetitive task given the number of
elements (12000 in this case!)

Each element is
defined (i.e. unit,
semantics, quality,
etc.) by the nested
Quantity component.

The possibility of nesting a “DataRecord” or “Vector” inside a “DataArray” allows the
construction of arrays of more complex structures, useful to describe trajectories, profiles,
images, etc.

Example

The “DataArray” class can be used as a descriptor for a trajectory dataset by using a vector of [latitude, longitude]
coordinates as its element type. Note that this can also be considered as a 1D coverage in a 2D CRS.

Since the “DataArray” class alone can only represent 1-dimensional arrays, the
construction of multi-dimensional arrays is done by nesting “DataArray” objects inside
each other.

Example

The structure of panchromatic imagery data can be described with two nested arrays, which sizes indicate the two
dimensions of the image. A “Quantity” is used as the element type of the nested array in order to indicate that the
repeated element of the 2D array is of type infrared radiance with a given unit.

… x 1000 …

Each element is
defined by the nested
Vector component that
itself has 2
coordinates.

Array dimension – Element count = 1000

Lat

Lon

Lat

Lon

Lat

Lon

Lat

Lon

Lat

Lon

Lat

Lon

Lat

Lon

… x 12000 …

Array dimension – Element count = 12000

48 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

In this example, the image is described as an array of rows, each row being an array of samples. It is also possible to
describe an image as an array of columns by reversing the two dimensions. Note that this would change the order in
which the data values would appear in a stream (by rows vs. by columns).

One powerful feature of the “DataArray” model is that it allows for the element count to
be either fixed or variable, thus allowing the description of data streams with variable
number of repetitive elements as is often the case with many kinds of sensor.

In a fixed size array, the number of elements can be provided in the descriptor as an
instance of the “Count” class with an inline value. This value is only present in the data
description and not in the encoded block of array values.

In a variable size array, the “elementCount” attribute either contains an instance of the
“Count” class with no value or references an instance of a “Count” class in a parent or
sibling data component. The value giving the actual array size is then included in the
stream, before the array values themselves, so that the block can be properly decoded.
One obvious implementation constraint is that the value representing the array size must
be received before the array values. This is detailed further in the XML implementation
section.

Examples

Argo profiling floats can measure ocean salinity and temperature profiles of variable lengths by diving at different
depths and depending on the conditions. A variable size “DataArray” could be used to describe their output data as
well as a dataset aggregating data from several Argo floats.

Variable size arrays can often be used to avoid unnecessary padding of fixed size array data. However for efficiency
reasons (usually to enable fast random access w/o preliminary indexation), padding can also be specified in SWE
Common when using the binary encoding.

As with any other data component, the “name” and “description” can be used to better
describe the array and more importantly the “definition” attribute can be used to formally
indicate the semantics behind the array.

Example

Each element is
defined by the
nested Quantity
component
describing the
radiance value
and its unit.

Inside array dimension = columns – Element count = 640
Outside

array
dimension

= rows
–

Element
count =

480

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

49

OGC 08-094 SWE Common Data Model

When a “DataArray” is used to package data relative to the spectral response of a sensor, the array “definition”
attribute can be used to point to the formal out-of-band definition of the “spectral response” concept.

Similarly a “DataArray” used to describe the output data of an Argo float would have its “definition” attribute
reference the formal definition of a “profile”.

The value of the “definition” attribute of the “Count” instance used as the
“elementCount” is also especially important, since it is used to define the meaning of the
array dimension. Thanks to this, it is possible to tag the dimension of an array as spatial,
t spectral, or any other kind. emporal,

Examples

In the CCD strip example described as a 1D array, the array index is the cell number in the strip.

In the 2D image example, the outer array index is the row number, while the inner array index is the column (or
sample) number.

In a 1D array representing a time series, the array index is along the temporal dimension.

In a 2D array representing a spatial coverage, the two array indices are along spatial dimensions.

In a 3D array representing hyper-spectral imagery, the two first arrays have indices along spatial dimension while
the most inner array is indexed along the spectral dimension.

This extra information can be used by software to make decisions (or at least ask the user
by providing him this information) about how to represent or even interpolate the data.

” class except that it
provides a reference frame within which the matrix elements are expressed and a local
frame of interest. The UML diagram of this class is shown below:

7.4.2 Matrix Class

The “Matrix” class is essentially the same as the “DataArray

AbstractDataComponent

«Type»
Matrix

«property»
+ referenceFrame: URI
+ localFrame: URI [0..1]

+ encoding: AbstractEncoding [0..1]
+ values: EncodedValues [0..1]

+ elementCount: Count

«soft-typed property»
+ e t

ss is usually used to represent a position matrix or a tensor quantity of
second or higher order. Each matrix element is expressed along the axis of a well defined
reference frame.

lementType: AbstractDataComponen

Figure 7.31 – Matrix Class

The “Matrix” cla

50 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

The “elementCount”, “elementType”, “encoding” and “values” attributes are equivalent
to the ones in the “DataArray” class.

Req 49 and Req 50 also apply to the “Matrix” class.

The “referenceFrame” attribute is used in the same way as with the “Vector” class to
specify the frame of reference with respect to which the matrix element values are
expressed. It is inherited by all child components.

The “localFrame” attribute is used to identify the frame of interest, that is to say the
frame whose orientation or position is given with the matrix in the case where it is a
position matrix. If the matrix does not specify position, “localFrame” should not be used.
Whether an instance of the “Matrix” class represents a position matrix or not should be
disambiguated by setting the value of its “definition” attribute.

Examples

The “Matrix” class can be used to represent for instance:

- A 3D 3x3 stress tensor

- A 4D 4x4 homogeneous affine transformation matrix

In particular it is often used to specify the orientation of an object relative to another one, like for instance the
attitude of a plane relative to the earth.

7.4.3 DataStream Class

The “DataStream” class has a structure similar than the “DataArray” class but is not a
data component (i.e. it does not derive from “AbstractDataComponent”) and thus cannot
be used as a child of other aggregate components. Below is its UML diagram:

AbstractSWE

«Type»
Basic Types::AbstractSWEIdentifiable

«property»
+ description: CharacterString [0..1]
+ name: GenericName [0..1]
+ identifier: ScopedName [0..1]

«Type»
DataStream

«property»
+ elementCount: Count [0..1]
+ encoding: AbstractEncoding
+ values: EncodedValues

«soft-typed property»
+ elementType: AbstractDataComponent

Figure 7.32 – DataStream Class

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

51

OGC 08-094 SWE Common Data Model

This class should be used as the wrapper object to define a complete data stream. It
defines a data stream as containing a list of elements with an arbitrary complex structure.
An important feature is that the data stream can be open ended (i.e. the number of
elements is not known in advance) and is thus designed to support real time streaming of
data.

The “elementCount” attribute is optional and can be used to indicate the number of
elements in the stream if it is known. This is done by instantiating an instance of the
“Count” class whose “value” attribute would be set to the number of elements.

The “elementType” attribute is used to define the structure of each element in the stream.
The data component used as the element type and all of its children shall be used solely
as data descriptors, meaning that they shall not include any inline values. These values
will instead be block encoded in the “values” attribute of the parent “DataStream”.

The “encoding” and “values” fields are there to provide the stream values as an efficient
block which can be encoded in several ways. The same encoding methods as for the
“DataArray” class are available and are described in clauses §7.5 and §7.6.

Req 49 also applies to the “DataStream” class.

7.5 Requirements Class: Simple Encodings Package

Encoding methods describe how structured array and stream data is encoded into a low
level byte stream (see related concepts in clause §6.6). Once encoded as a sequence of
bytes, the data can then be transmitted using various digital means such as files on a disk
or network connections.

Req 51 An implementation passing the “Simple Encodings UML Package”
conformance test class shall first pass “Basic Types and Simple Components
UML Package” conformance test class.

Req 52 A compliant encoding or software shall correctly implement all UML classes
defined in the “Simple Encodings” package.

This package defines two encoding methods that can be used in conjunction with a
classes defined in the “Block Components” package. There model is shown on the
diagram below:

52 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

AbstractEncoding

TextEncoding

«property»

XMLEncoding

«property»
+ tokenSeparator: CharacterString
+ blockSeparator: CharacterString
+ decimalSeparator: CharacterString [0..1] = .
+ collapseWhiteSpaces: Boolean [0..1] = true

+ defaultNamespace: URI [0..1]

Figure 7.33 – Simple Encodings

All classes defining encoding methods derive from a common abstract class called
“AbstractEncoding”. Extensions to this standard that define new encoding methods shall
derive encoding classes from this abstract class.

The intent of this standard is to provide a set of core encodings covering most common
needs. Each encoding has specific benefits that match the needs of different applications.
Sometimes several encodings of the same dataset can be offered in order to satisfy
several types of consumers and/or use cases.

In the model provided in this standard, the encoding specification is provided separately
from the data component tree describing the dataset structure, thus enabling several
encodings to be applied to the same data structure without changing it.

7.5.1 TextEncoding Class

The “TextEncoding” class defines a method allowing encoding arbitrarily complex data
using a text based delimiter separated values (DSV) format. The class used to specify this
encoding method is shown below:

AbstractEncoding
TextEncoding

«property»
+ tokenSeparator: CharacterString
+ blockSeparator: CharacterString
+ decimalSeparator: CharacterString [0..1] = .
+ collapseWhiteSpaces: Boolean [0..1] = true

Figure 7.34 – TextEncoding Class

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

53

OGC 08-094 SWE Common Data Model

The “tokenSeparator” attribute specifies the characters to use for separating each scalar
value from one another. Scalar values appear sequentially in the stream alternatively with
the token separator characters, in an order unambiguously defined by the data component
structure. The detailed rules are given in the implementation clause §8.4.

The “blockSeparator” attribute specifies characters used to mark the end of a “block”,
corresponding to the complete structure defined by the data component tree (in a
“DataArray”, “Matrix” or “DataStream” one block corresponds to one element, that is to
say the structure defined by the “elementType” property). Stream or array data can then
be composed of several blocks of the same type separated by block separator characters.

The “decimalSeparator” attribute specifies the character used as the decimal point in
decimal number. This attribute is optional and the default is a period (‘.’).

Example

In the case of a “DataStream” with an element type that is a “DataRecord” containing three fields – one of type
“Category” and two of type “Quantity” - a data stream encoded using the Text method would look like the
following:

STATUS_OK,24.5,1022.5
STATUS_OK,24.5,1022.5
STATUS_OK,24.5,1022.5

Where ‘,’ is the token separator and ‘ ’ (carriage return) is the block separator (i.e. this is the CSV format).

Note that there could be many more values in a single block if the data set has a large number of fields, or if it
contains an array of values.

The “collapseWhiteSpaces” attribute is a boolean flag used to specify if extra white
spaces (including line feeds, tabs, spaces and carriage returns) surrounding the token and
block separators should be ignored (skipped) when processing the stream. This is useful
for encoded blocks of data that are embedded in an XML document, since formatting
(indenting with spaces or tabs especially) is often done in XML content.

This type of encoding is used when compactness is important but balanced by a desire of
human readability. This type of encoding is easily readable (for debugging or manual
usage) as well as easily imported in various spreadsheet, charting or scientific software.

The main drawback of such an encoding is the impossibility of locating an error in the
stream with certitude. Secondly, if only one expected value is missing, the whole block is
usually lost since the parser cannot resynchronize correctly before the next block
separator. This last issue can however be solved by transmitting this type of encoded
stream using error resilient protocols when needed.

54 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

7.5.2 XMLEncoding Class

The “XMLEncoding” class defines a method that allows encoding structured data into a
stream of nested XML tags, which names are obtained from the data structure definition.
The class is shown below in UML:

AbstractEncoding
XMLEncoding

«property»
+ defaultNamespace: URI [0..1]

Figure 7.35 – XMLEncoding Class

The only attribute of this class, “defaultNamespace”, is used to specify what namespace
should be used for the tags used in the data stream.

This encoding method is used when compactness is not an issue and a high level of
readability and error detection is required. Furthermore, a data stream encoded in this
way can be easily transformed and formatted using XSLT like languages.

The main drawback of this method is the verbosity and high degree of redundancy of the
information contained in the stream due to the repetitive XML tags. This problem can be
minimized by compressing the XML data using well known techniques such as GZIP or
BZIP, but such an approach may not be viable in the case of streaming (e.g. real time)
data.

7.6 Requirements Class: Advanced Encodings Package

This package defines an additional encoding method for packaging sensor data as raw or
base 64 binary blocks. When this package is implemented, the binary encoding method is
usable, as any other encoding method, within the “DataArray” and “DataStream” classes.

Req 53 An implementation passing the “Advanced Encodings UML Package”
conformance test class shall first pass the “Simple Encodings UML Package”
conformance test class.

Req 54 A compliant encoding or software shall correctly implement all UML classes
defined in the “Advanced Encodings” package.

7.6.1 BinaryEncoding Class

The “BinaryEncoding” class defines a method that allows encoding complex structured
data using primitive data types encoded directly at the byte level, in the same way that
they are usually represented in memory.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

55

OGC 08-094 SWE Common Data Model

The binary encoding method can lead to very compact streams that can be optimized for
efficient parsing and fast random access. However this comes with the lack of human
readability of the data and sometimes lack of compatibility with other software (i.e.
software that is not SWE Common enabled).

More information is needed to fully define a binary encoding, so the model is more
complex than the other encodings. It is shown below:

AbstractEncoding
BinaryEncoding«Enumeration»

ByteEncoding
«Enumeration»

ByteOrder
«property»

56 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

«DataType»
Component

«property»
+ ref: CharacterString
+ dataType: URI
+ byteLength: Integer [0..1]
+ bitLength: Integer [0..1]
+ significantBits: Integer [0..1]
+ encryption: URI [0..1]

«DataType»
Block

«property»
+ ref: CharacterString
+ byteLength: Integer [0..1]
+ paddingBytes-before: Integer [0..1]
+ paddingBytes-after: Integer [0..1]
+ encryption: URI [0..1]
+ compression: URI [0..1]

«Union»
ComponentOrBlock

«property»
+ byComponent: Component
+ byBlock: Block

+ byteLength: Integer [0..1]
+ byteEncoding: ByteEncoding
+ byteOrder: ByteOrder
+ member: ComponentOrBlock [1..*]

«property» «property»
+ raw: CharacterString
+ base64: CharacterString

+ bigEndian: CharacterString
+ littleEndian: CharacterString

Figure 7.36 – BinaryEncoding Class

The main class “BinaryEncoding” specifies overall characteristics of the encoded byte
stream such as the byte order (big endian or little endian) and the byte encoding (raw or
base64). The two corresponding attributes, respectively “byteOrder” and “byteEncoding”
are mandatory. Base64 encoding is usually chosen to insert binary content within an
XML document.

The “byteLength” attribute is optional and can be used to specify the overall length of the
encoded data as a total number of bytes. This should be indicated whenever possible if
the data size is known in advance as it can be useful for efficient memory allocation.

The “BinaryEncoding” class also has several “member” attributes that contain detailed
information about parts of the data stream. This attribute can take a choice of instance of
two classes: “Component” or “Block”.

The “Component” class is used to specify binary encoding details of a given scalar
component in the stream. The following information can be provided for each scalar
field:

SWE Common Data Model OGC 08-094

- The “ref” attribute allows identifying the data component in the dataset structure
for which we’re specifying the encoding parameters. Soft-typed property names are
used to uniquely identify a given component in the tree.

- The “dataType” attribute allows selecting a data type among commonly accepted
ones such as ‘byte’, ‘short’, ‘int’, ‘long’, ‘double’, ‘float’, ‘string’, etc…

- The “byteLength” or “bitLength” attributes are mutually exclusive and used to
further specify the length of the data type in the case where it is not a standard
length (i.e. to encode integer numbers on more than 8 bytes or less than 8 bits for
instance).

- The “significantBits” can be used to signal that only some of the bits of the data
type are actually used to carry the value (i.e. a value may be encoded as a byte but
only use 4 bits to encode a value between 0 and 15). This is mostly informational.

- The “encryption” attribute can be used to select the method with which the value is
encrypted before being written to the stream.

The “Block” class is used to specify binary encoding details of a given aggregate
component representing a block of values in the data stream. This is used either to specify
padding before and/or after a block of data or to enable compression or encryption of all
or part of a dataset.

- The “ref” attribute allows identifying the data component in the dataset structure
for which we’re specifying the encoding parameters. Soft-typed property names are
used to uniquely identify a given component in the tree.

- The optional “byteLength” attribute allows indicating the overall length of the
encoded block to facilitate memory allocation.

- The “paddingBytes-before” and “paddingBytes-after” are used to specify the
number of empty bytes (i.e. usually 0 bytes) that are inserted in the stream
respectively before and after data for the referenced component. This is sometimes
used to align data on N-bytes block for faster access.

- The “encryption” attribute identifies the encryption method that is used to encrypt
the block of data before it is inserted in the stream.

- The “compression” attribute identifies the compression method that is used to
compress the block of data before it is inserted in the stream.

This standard does not define any concrete encryption and compression methods, so that
software implementations of this requirement class are not required to support any value
in the “encryption” and “compression” attributes of the “Component” and “Block”
classes. Extensions of this standard that define binary encryption and compression
methods shall describe how the encrypted or compressed data is inserted in the SWE
Common data stream.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

57

OGC 08-094 SWE Common Data Model

8 XML Implementation (normative)

This standard defines normative XML schemas and ISO Schematron patterns with which
all future separate extensions should be compliant. The standardization target types for all
XML related conformance classes are:

- XML instances compliant to this standard
- Software reading, writing or processing these XML instances
- XML schemas that have a dependency on the SWE Common Data Model schemas

XML schemas defined in this section are a compliant implementation of the UML
conceptual models described in clause §7. They are auto-generated from these models by
strictly following well-defined encoding rules. All attributes and composition/aggregation
associations contained in the UML models are encoded either as XML elements or XML
attributes but the names are fully consistent. One XML schema file is produced for each
UML package.

Schematron patterns implement most additional requirements stated in clause §7. One
Schematron file is produced for each UML package.

All example instances given in this section are informative and are used solely for
illustrating features of the normative model. They are marked by a light gray background.

8.1 Requirements Class: XML Encoding Principles

This section lists common requirements associated to the XML encoding rules used in the
context of this standard.

Req 55 An implementation passing the “XML Encoding Principles” conformance test
class shall first pass the core conformance test classes.

As mentioned above, the normative XML schemas in this standard have been generated
by strictly following UML to XML encoding rules, such that the schemas are the exact
image of the UML models. The same encoding principles shall be used by all extensions
of this standard.

8.1.1 XML Encoding Conventions

The rules used to encode the SWE Common data models into an XML Schema are
similar to those used to derive GML application schemas and defined in ISO 19136.
Extensions to these rules have been defined to allow:

58 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

- Use of “soft-typed” properties. These properties are encoded as XML elements
with a generic element name but provide a “name” attribute for further
desambiguation.

- Encoding of certain properties as XML attributes. This type of encoding adds to the
“element-only” rules defined by ISO 19136. It is restricted to properties with a
primitive type and indicated by a new tagged value in the UML model.

- Use of a new abstract base type. A custom base type called “AbstractSWEType” are
used for all complex types instead of “gml:AbstractGMLType”.

Following ISO 19136 encoding rules, each UML class with a <<Type>> or
<<DataType>> stereotype, or no stereotype at all, is implemented in the schema as a
global XML complex type with a corresponding global XML element (called object
element). Each of these elements has the same name as the UML class (i.e. always
UpperCamelCase) and the name of the associated complex type is a concatenation of this
name and the word “Type”.

Each UML class attribute is implemented either as a global complex type and a
corresponding local element (called property element), or as an XML attribute. Each
property complex type is given a name composed of the UML attribute name (always
lowerCamelCase) and the words “PropertyType”. The element is defined locally within
the complex type representing the class carrying the attribute and named exactly like the
attribute in UML (i.e. no global elements are created for class attributes). Class
associations are implemented similarly except they cannot be implemented as an XML
attributes.

8.1.2 IDs and Linkable Properties

As in GML, the schemas defined in this standard make extensive use of “xlink” features
to support hypertext referencing in XML. This allows most property elements to
reference content either internally or externally to the instance document, instead of
including this content inline. This is supported by extensive use of the “gml:id” attribute
(taking an xs:ID as its value) on most object elements, and of the GML attribute group,
“gml:AssociationAttributeGroup”, on most property elements.

In properties that support “xlink” attributes, one can usually choose to define that
property value inline, as in:

<swe:field>
 <swe:Quantity id="TEMP" … />
</swe:field>

One can then reference an object within the same document by its ID:

<swe:field xlink:href="#TEMP"/>

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

59

OGC 08-094 SWE Common Data Model

An object within an external document can also be referenced by including the full URI:

<swe:field xlink:href="http://www.my.com/fields.xml#TEMP"/>

Typically, “xlink” references will be specified as URLs or as URNs that can be easily
resolved through registries. It is required that the property has either the “xlink:href”
attribute set or contain an inline value, even though this cannot be enforced by XML
schema.

Req 56 A property element supporting the “gml:AssociationAttributeGroup” shall
contain the value inline or populate the “xlink:href” attribute with a valid
reference but shall not be empty.

8.1.3 Extensibility Points

The SWE Common Data Model schemas define extensibility points that can be used to
insert ad-hoc XML content that is not defined by this standard. This is done via optional
“extension” elements of type “xs:anyType” in the base abstract complex type
“AbstractSWEType”. Since all object types defined in this standard derive from this base
type, extensions can be added anywhere in a SWE Common instance.

This mechanism allows for a “laxist” way of including extended content in XML
instances as the extended content is by default ignored by the validator. However, it is
also possible to formally validate extended content by writing an XML schema for the
extension and feeding it to the validator via the “xsi:schemaLocation” attribute in all
instances using the extension.

The recommended way of extending the XML schema of this standard is by defining new
properties on existing objects by inserting them in an “extension” slot. Additionally this
should be done in a way that these new properties can be safely ignored by an
implementation that is not compatible with a given extension. Defining new XML object
elements (such as new data component objects) rather than new properties will greatly
reduce forward compatibility of implementations compliant to this standard with XML
instances containing extensions of this standard.

In any case, all extensions of the XML schema described in this standard shall be defined
in a new namespace (other than the namespaces used by this standard and its
dependencies) in order to allow easy detection of extensions by implementations.

Req 57 All extensions of the XML schemas described in this standard shall be defined
in a new unique namespace.

Extensions are not allowed to change the meaning or behavior of elements and types
defined by this standard in any way (in this case, new classes or properties shall me

60 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

defined). This guarantees that implementations that have no knowledge of an extension
can still properly use XML instances containing these extensions.

Req 58 Extensions of this standard shall not redefine or change the meaning or
behavior of XML elements and types defined in this standard.

8.2 Requirements Class: Basic Types and Simple Components Schemas

XML Schema elements and types defined in the “basic_types.xsd” and
“simple_components.xsd” schema files implement all classes defined respectively in the
“Basic Types” and “Simple Components” UML packages.

Req 59 An implementation passing the “Basic Types and Simple Components
Schemas” conformance test class shall first pass the “XML Encoding
Principles” and core conformance test classes.

Req 60 An implementation passing the “Basic Types and Simple Components
Schemas” conformance test class shall first pass the “Abstract test suite for
GML documents” conformance test class of the GML 3.2.1 standard.

Req 61 A compliant XML instance shall be valid with respect to the XML grammar
defined in the “basic_types.xsd” and “simple_components.xsd” XML as well
as satisfy all Schematron patterns defined in “simple_components.sch”.

8.2.1 Base Abstract Complex Types

Several base abstract types are defined in the “basic_types.xsd” schema file. They are
used as base substitution groups for all global XML elements defined in this standard.
Below are XML schema snippet for the “AbstractSWE”, “AbstractSWEIdentifiable” and
“AbstractSWEValue” elements and corresponding complex types:
<element name="AbstractSWE" abstract="true" substitutionGroup="gml:AbstractObject"
 type="swe:AbstractSWEType"/>

<complexType name="AbstractSWEType">
 <sequence>
 <element name="extension" minOccurs="0" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <any namespace="##other" processContents="lax"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 <attribute ref="gml:id" use="optional"/>
</complexType>

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

61

OGC 08-094 SWE Common Data Model

The “AbstractSWE” complex type is the base for all derived complex types defined in
this standard. It defines a first extension mechanism as an optional “extension” element
that allows for any extended element content (in a namespace other than the SWE
Common Data Model namespace). It also has an optional “gml:id” attribute allowing
referencing the object that derives from it.

<element name="AbstractSWEIdentifiable" abstract="true" substitutionGroup="swe:AbstractSWE"
 type="swe:AbstractSWEIdentifiableType"/>

<complexType name="AbstractSWEIdentifiableType">
 <complexContent>
 <extension base="swe:AbstractSWEType">
 <sequence>
 <element ref="gml:description" minOccurs="0"/>
 <element ref="gml:identifier" minOccurs="0"/>
 <element ref="gml:name" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

The “AbstractSWEIdentifiable” complex type derives from “AbstractSWE” and adds
three identification elements extracted from the GML schema. These elements are to be
used as described in the UML section of this standard which is compliant with the
definition of these elements in the GML standard.

<element name="AbstractSWEValue" abstract="true" substitutionGroup="gml:AbstractValue"
 type="swe:AbstractSWEValueType"/>

<complexType name="AbstractSWEValueType">
 <sequence>
 <element name="extension" minOccurs="0" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <any namespace="##other" processContents="lax"/>
 </sequence>
 </complexType>
 </element>
 <element ref="gml:description" minOccurs="0"/>
 <element ref="gml:identifier" minOccurs="0"/>
 <element ref="gml:name" minOccurs="0"/>
 </sequence>
 <attribute ref="gml:id" use="optional"/>
</complexType>

 The “AbstractSWEValue” complex type resembles “AbstractSWEIdentifiable” but does
not derive from it to avoid double derivation. This base type is indeed used to place all
elements derived from it (i.e. all data components) in the “gml:AbstractValue”
substitution group. This is important because data components defined in this standard
are enhanced version of value objects defined in GML. This derivation method thus
allows reuse of SWE Common elements within GML application schemas and in
particular for describing coverage range parameters.

The following XML elements and complex types are defined in the
“simple_components.xsd” schema file:
<element name="AbstractDataComponent" abstract="true" substitutionGroup="swe:AbstractSWEValue"
 type="swe:AbstractDataComponentType"/>

62 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

<complexType name="AbstractDataComponentType" abstract="true">
 <complexContent>
 <extension base="swe:AbstractSWEValueType">
 <attribute name="definition" type="anyURI" use="required"/>
 <attribute name="updatable" type="boolean" use="optional" default="false"/>
 <attribute name="optional" type="boolean" use="optional" default="false"/>
 </extension>
 </complexContent>
</complexType>

The “AbstractDataComponent” complex type adds XML attributes as defined in the
UML class with the same name. The meaning of the corresponding UML class attributes
is detailed in clause §7.2.3.

Req 62 The “definition” attribute shall contain a URI that can be resolved to the
complete human readable definition of the property that is represented by
the data component.

<element name="AbstractSimpleComponent" abstract="true"
 substitutionGroup="swe:AbstractDataComponent" type="swe:AbstractSimpleComponentType"/>

<complexType name="AbstractSimpleComponentType" abstract="true">
 <complexContent>
 <extension base="swe:AbstractDataComponentType">
 <sequence>
 <element name="quality" type="swe:QualityPropertyType" minOccurs="0"
 maxOccurs="unbounded"/>
 <element name="nilValues" type="swe:NilValuesPropertyType" minOccurs="0"/>
 </sequence>
 <attribute name="referenceFrame" type="anyURI" use="optional"/>
 <attribute name="axisID" type="string" use="optional"/>
 </extension>
 </complexContent>
</complexType>

The “AbstractSimpleComponent” complex type adds XML attributes as defined in the
UML class with the same name. The meaning of the corresponding UML properties is
detailed in clause §7.2.4. The “definition” attribute is mandatory on all elements derived
from “AbstractSimpleComponentType” (see Req 19 of UML model). This is enforced by
a Schematron pattern.

As the XML schema snippet shows, this abstract element contains two important
property elements “quality” and “nilValues” as well as two attributes “referenceFrame”
and “axisID” implementing the corresponding attributes in the UML. Since all simple
data components defined in this schema derive from this base type, these elements and
attributes are available on all of them. Examples in the following sub-clauses show their
usage. Detailed content of the “Quality” and “NilValues” elements that are the values of
“QualityPropertyType” and “NilValuesPropertyType” respectively are given in clause
§8.2.12 and §8.2.13.

Most simple data components (defined in the following sub-clauses) also allow for the
definition of constraints via the “constraint” property element. When such constraints are
specified, the value of the component (either inline or in a separate data block) shall
always satisfy these constraints.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

63

OGC 08-094 SWE Common Data Model

Req 63 The inline value included in an instance of a simple data component shall
satisfy the constraints specified by this instance.

8.2.2 Boolean Element

The “Boolean” element is the XML schema implementation of the “Boolean” UML class
defined in clause §7.2.5. The schema snippet for this element and its corresponding
complex type is shown below:

<element name="Boolean" substitutionGroup="swe:AbstractSimpleComponent"
type="swe:BooleanType"/>

<complexType name="BooleanType">
 <complexContent>
 <extension base="swe:AbstractSimpleComponentType">
 <sequence>
 <element name="value" maxOccurs="1" minOccurs="0" type="boolean"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

The following instance shows how this element is used in practice to wrap a value
generated by a motion detector:

<swe:Boolean definition="urn:ogc:def:property:OGC::Motion">
 <gml:description>True when motion was detected in the room</gml:description>
 <gml:name>Motion Detected</gml:name>
 <swe:value>true</swe:value>
</swe:Boolean>

Without the value it can serve as data descriptor for values that are encoded separately.
The following example shows how it is used in SPS to define a Boolean tasking
parameter. It is used as the definition of the input parameter, and so does not contain the
value:

<swe:Boolean definition="urn:ogc:def:property:OGC::Reset">
 <gml:description>Set to true to force sensor reset</gml:description>
 <gml:name>Sensor Reset</gml:name>
</swe:Boolean>

8.2.3 Text Element

The “Text” element is the XML schema implementation of the “Text” UML class defined
in clause §7.2.6. The schema snippet for this element and its corresponding complex type
is shown below:
<element name="Text" substitutionGroup="swe:AbstractSimpleComponent" type="swe:TextType"/>

<complexType name="TextType">
 <complexContent>
 <extension base="swe:AbstractSimpleComponentType">
 <sequence>

64 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

 <element name="constraint" maxOccurs="1" minOccurs="0"
 type="swe:AllowedTokensPropertyType"/>
 <element name="value" maxOccurs="1" minOccurs="0" type="string"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

Constraints can be expressed by using the “AllowedTokens” element detailed in clause
§8.2.14. The “value” property element is of the XML schema type “string” and it can
contain XML entities if special characters (i.e. not allowed in XML) are required.

The following instance shows how this element can be used to describe a “plate number”:

<swe:Text definition="urn:ogc:def:property:OGC::PlateNumber">
 <gml:description>Plate number detected by traffic webcam</gml:description>
 <gml:name>Plate Number</gml:name>
 <swe:value>5689 ABT 31</swe:value>
</swe:Text>

The plate number value that would be present in the corresponding data file or stream
would then have to include a value that matches the pattern such as “5491 AB 31”.

8.2.4 Category Element

The “Category” element is the XML schema implementation of the “Category” UML
class defined in clause §7.2.7. The schema snippet for this element and its corresponding
complex type is shown below:

<element name="Category" substitutionGroup="swe:AbstractSimpleComponent" type="swe:CategoryType"/>

<complexType name="CategoryType">
 <complexContent>
 <extension base="swe:AbstractSimpleComponentType">
 <sequence>
 <element name="codeSpace" maxOccurs="1" minOccurs="0" type="gml:ReferenceType"/>
 <element name="constraint" maxOccurs="1" minOccurs="0"
 type="swe:AllowedTokensPropertyType"/>
 <element name="value" maxOccurs="1" minOccurs="0" type="string"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

The “codeSpace” element is of type “gml:ReferenceType” and thus makes use of an
“xlink:href” XML attribute to reference an external dictionary, taxonomy or ontology
representing the code space (Please see the full description of “gml:ReferenceType” in the
GML 3.2.1 specification for more details).

Constraints can be expressed by using the “AllowedTokens” element detailed in clause
§0. The “value” property element is of the XML schema type “string”. The text content
of this element should however be limited to short tokens in the case of a categorical
representation.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

65

OGC 08-094 SWE Common Data Model

The following example shows how this XML element can be used to give the value of a
geological period:

<swe:Category definition="urn:ogc:def:property:OGC:GeologicalPeriod">
 <gml:description>
 Name of the geological period according to the nomenclature of the
 International Commission on Stratigraphy
 </gml:description>
 <gml:name>Geological Period</gml:name>
 <swe:codeSpace xlink:href="urn:cgi:classifierScheme:BGS:DIC_GEOCHRON.TRANSLATION"/>
 <swe:value>Jurassic</swe:value>
</swe:Category>

Note that the code space references an existing dictionary defined by CGI (Commission
for the Management and Application of Geoscience Information). This shows how SWE
Common can leverage an existing community managed terminology.

Alternatively it can be used without the value to describe, for instance, a “bird species”
field in a biology dataset:

<swe:Category definition="urn:ogc:def:property:OGC::Species">
 <gml:description>
 Bird species according to the classification of the World Bird Database
 </gml:description>
 <gml:name>Bird Species</gml:name>
 <swe:codeSpace xlink:href="http://www.birdlife.org/datazone/species/index.html"/>
</swe:Category>

In this example, no official code space URI was found so the “codeSpace” element is
used to reference the online source of the taxonomy (The “birdlife.org” website hosts the
international database that is the reference in this case).

If no code space is specified, Req 27 must be satisfied by inserting a constraint with a list
of allowed values as shown in the example below:

<swe:Category definition="urn:ogc:def:property:OGC::SensorStatus">
 <gml:description>Current status of the sensor</gml:description>
 <gml:name>Sensor Status</gml:name>
 <swe:constraint>
 <swe:AllowedTokens>
 <swe:value>Off</swe:value>
 <swe:value>Stand-by</swe:value>
 <swe:value>Ready</swe:value>
 <swe:value>Busy</swe:value>
 </swe:AllowedTokens>
 </swe:constraint>
</swe:Category>

Note that in this case, the data consumer has no way of knowing the exact meaning of
each allowed value, since there is no associated description. A code space is thus more
explicit as it defines not only the list of allowed terms but should also give a textual
description. This is why a code space is preferred whenever it is possible to implement it.

66 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

8.2.5 Count Element

The “Count” element is the XML schema implementation of the “Count” UML class
defined in clause §7.2.8. The schema snippet for this element and its corresponding
complex type is shown below:
<element name="Count" substitutionGroup="swe:AbstractSimpleComponent" type="swe:CountType"/>

<complexType name="CountType">
 <complexContent>
 <extension base="swe:AbstractSimpleComponentType">
 <sequence>
 <element name="constraint" maxOccurs="1" minOccurs="0"
 type="swe:AllowedValuesPropertyType"/>
 <element name="value" maxOccurs="1" minOccurs="0" type="integer"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

Constraints are expressed by using the “AllowedValues” element detailed in clause
§8.2.15. The “value” property element is of the XML schema type “integer”.

The following example shows how this XML element can be used to give the value of a
geological period:

<swe:Count definition="urn:ogc:def:property:OGC::NumberOfPixels">
 <gml:description>Number of pixels in each row of the image</gml:description>
 <gml:name>Row Size</gml:name>
 <swe:value>1024</swe:value>
</swe:Count>

Alternatively it can be used without the value just like any other component.

8.2.6 Quantity Element

The “Quantity” element is the XML schema implementation of the “Quantity” UML
class defined in clause §7.2.9. The schema snippet for this element and its corresponding
complex type is shown below:
<element name="Quantity" substitutionGroup="swe:AbstractSimpleComponent" type="swe:QuantityType"/>

<complexType name="QuantityType">
 <complexContent>
 <extension base="swe:AbstractSimpleComponentType">
 <sequence>
 <element name="uom" type="swe:UnitReferencePropertyType"/>
 <element name="constraint" maxOccurs="1" minOccurs="0"
 type="swe:AllowedValuesPropertyType"/>
 <element name="value" maxOccurs="1" minOccurs="0" type="double"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

The “uom” property element is of type “UnitReferencePropertyType” whose complex
type definition is given below:

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

67

OGC 08-094 SWE Common Data Model

<complexType name="UnitReferencePropertyType">
 <attribute name="code" type="gml:UomSymbol" use="optional"/>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
</complexType>

This type allows defining a unit of measure by its code (using the “code” attribute) or by
using an “xlink:href” from the “gml:AssociationAttributeGroup” to reference a unit
defined externally. Defining the unit of measure by its code expressed using the Unified
Code for Units of Measure (UCUM) is the mandatory way unless the unit cannot be
properly expressed with the elements defined in this specification (in which case
“xlink:href” should be used).

Req 64 The UCUM code for a unit of measure shall be used as the value of the
“code” XML attribute whenever it can be constructed using the UCUM 1.8
specification. Otherwise the “href” XML attribute shall be used to reference
an external unit definition.

Constraints can be expressed by using the “AllowedValues” element detailed in clause
§8.2.15. The “value” property element takes a decimal value of the XML schema type
“double”. This means that special values “–INF”, “+INF” and “NaN” (for Not a Number)
are allowed as well as numbers in exponent notation (ex: 1.2e-9).

The following example shows how this XML element can be used to wrap a continuous
measurement value. In this case, a temperature measurement with a value of 21.5°C is
shown:

<swe:Quantity definition="urn:ogc:def:property:OGC::AtmosphericTemperature">
 <gml:description>Outside temperature taken at the top of the antenna</gml:description>
 <gml:name>Outside Temperature</gml:name>
 <swe:uom code="Cel"/>
 <swe:value>21.5</swe:value>
</swe:Quantity>

The following example illustrates the use of a more complex UCUM unit for a radiance
measurement (The value is 0.0283 watts per square meter per steradian per micrometer):

<swe:Quantity definition="urn:ogc:def:property:OGC::Radiance">
 <gml:description>Radiance measured on band1</gml:description>
 <gml:name>Radiance</gml:name>
 <swe:uom code="W.m-2.Sr-1.um-1"/>
 <swe:value>2.83e-2</swe:value>
</swe:Quantity>

The “Quantity” element is also often used to define projected quantities. For example, it
can be used to define the altitude of a plane with respect to a well defined vertical
reference system:

<swe:Quantity definition="urn:ogc:def:property:OGC::Height" axisID="H"
 referenceFrame="urn:ogc:def:crs:EPSG:7.1:5714">
 <gml:description>Height above mean sea level</gml:description>
 <gml:name>MSL Height</gml:name>

68 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

 <swe:uom code="m"/>
 <swe:value>1320</swe:value>
</swe:Quantity>

The “referenceFrame” attribute is used here to reference a well know vertical coordinate
reference system unambiguously defined in the EPSG database. This example means that
the height is measured along the H axis of the EPSG reference system code 5714 (Mean
Sea Level Height), and has a value of 1320 meters.

Like in any other data component the “value” property element can be omitted when this
element is used as a data descriptor for a field which value is provided separately.

8.2.7 Time Element

The “Time” element is the XML schema implementation of the “Time” UML class
defined in clause §7.2.10. The schema snippet for this element and its corresponding
complex type is shown below:

<element name="Time" substitutionGroup="swe:AbstractSimpleComponent" type="swe:TimeType"/>

<complexType name="TimeType">
 <complexContent>
 <extension base="swe:AbstractSimpleComponentType">
 <sequence>
 <element name="uom" type="swe:UnitReferencePropertyType"/>
 <element name="constraint" maxOccurs="1" minOccurs="0"
 type="swe:AllowedTimesPropertyType"/>
 <element maxOccurs="1" minOccurs="0" name="value" type="swe:TimePosition"/>
 </sequence>
 <attribute name="referenceTime" type="dateTime" use="optional"/>
 <attribute name="localFrame" type="anyURI" use="optional"/>
 </extension>
 </complexContent>
</complexType>

The “uom” property element is of type “UnitReferencePropertyType”. It has the same
requirements as its equivalent in the “Quantity” element. When ISO 8601 calendar
notation is used, it is specified as a unit by using a special value in the “xlink:href”
attribute (i.e. for simplicity, a calendar representation is considered here as a complex
unit composed of year, month, day, hours, minutes and seconds).

Req 65 When ISO 8601 notation is used to express the measurement value
associated to a “Time” element, the URI “urn:ogc:def:unit:ISO:8601” shall be
used as the value of the “xlink:href” XML attribute on the “uom” element.

Additional constraints on the value can be expressed by using the “AllowedTimes”
element detailed in clause §8.2.16. The “value” property element takes either a decimal
value or a calendar value encoded according to the ISO 8601 standard. This is enforced
by using the “TimePosition” simple type defined below as the union of the “double” and
“TimeIso8601” data types:

<simpleType name="TimePosition">

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

69

OGC 08-094 SWE Common Data Model

 <union memberTypes="double swe:TimeIso8601"/>
</simpleType>

<simpleType name="TimeIso8601">
 <union memberTypes="date time dateTime gml:TimeIndeterminateValueType"/>
</simpleType>

The “double” data type is used to express time as a scalar decimal number (i.e. a
duration) and can be any of the special values “-INF”, “+INF” and “NaN” just like the

spectively (see XML schema 1.0 specification and ISO

ow shows how to use this XML element to specify the sampling time of
a measurement:

value of a “Quantity” component.

The “date”, “time” and “dateTime” data types are built-in types of XML Schema and are
implemented according to ISO 8601 complete representations of date, time and
combination of date and time re
8601 for details on the format).

The example bel

<swe:Time definition="urn:ogc:def:property:OGC::SamplingTime"
 referenceFrame="urn:ogc:def:crs:OGC::GPS">
 <gml:description>Time at which the measurement was made</gml:description>
 <gml:name>Sampling Time</gml:name>
 <swe:uom xlink:href="urn:ogc:def:unit:ISO:8601"/>
 <swe:value>2009-11-05T16:29:26Z</swe:value>
</swe:Time>

Note the “referenceFrame” attribute which clarifies the time reference system used. Here
the GPS time standard, which is different from UTC and TAI is used. The presence of the
mandatory “referenceFrame” attribute (see Req 29) is enforced by an additional

sing a scalar numerical value. This is shown
in the following example with a UNIX time:

Schematron assertion.

As mentioned above, the “Time” element can also be used to specify a time after an
epoch by specifying a time of reference and u

<swe:Time definition="urn:ogc:def:property:OGC::RunTime"
 referenceFrame="urn:ogc:def:crs:OGC::UTC" referenceTime="1970-01-01T00:00:00Z">
 <gml:description>Run time of the model express as a Unix time</gml:description>
 <gml:name>Model Run Time</gml:name>
 <swe:uom code="s"/>
 <swe:value>1257415633</swe:value>
</swe:Time>

The “localFrame” attribute can be used to indicate the time frame whose origin is given
by the time component value. This way several time positions can be defined relative to
each other. The next example shows how this can be used to express times of high
frequency scan lines acquired by an airborne scanner relative to the flight’s start time:

<swe:Time definition="urn:ogc:def:property:OGC::MissionTime"
 localFrame="urn:ift:MISSION_01265:START_TIME"
 referenceFrame="urn:ogc:def:crs:OGC::UTC">
 <gml:description>Time at take-off in UTC</gml:description>

70 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

 <gml:name>Flight Time</gml:name>
 <swe:uom xlink:href="urn:ogc:def:unit:ISO:8601"/>
 <swe:value>2009-01-26T10:21:45+01:00</swe:value>
</swe:Time>

S t time : can times are then expressed relative to the flight’s star

<swe:Time definition="urn:ogc:def:property:OGC::ScanTime"
 referenceFrame="urn:ift:MISSION_01265:START_TIME">
 <gml:description>Acquisition time of the scan line</gml:description>
 <gml:name>Scanline Time</gml:name>
 <swe:uom code="s"/>
 <swe:value>1256.235</swe:value>
</swe:Time>

In the snippet above the reference frame is the previously defined mission start time
which means that the time value is relative to this time of reference. The value can then

Note: A simple duration expressed outside of any time reference system should be defined
by using a “Quantity” rather than a “Time” element.

implementation of the
“CategoryRange” UML class defined in clause §7.2.12. The schema snippet for this

onGroup="swe:AbstractSimpleComponent"

be encoded as a float for better efficiency.

8.2.8 CategoryRange Element

The “CategoryRange” element is the XML schema

element and its corresponding complex type is shown below:
<element name="CategoryRange" substituti
 type="swe:CategoryRangeType"/>

<complexType name="CategoryRangeType">
 <complexContent>
 <extension base="swe:AbstractSimpleComponentType">
 <sequence>
 <element name="codeSpace" maxOccurs="1" minOccurs="0" type="gml:DictionaryEntryType"/>
 <element name="constraint" maxOccurs="1" minOccurs="0"
 type="swe:AllowedTokensPropertyType"/>
 <element name="value" maxOccurs="1" minOccurs="0" type="swe:TokenPair"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

This element is used exactly in the same way as the “Category” element except that the
“value” property takes a space separated pair of tokens. The example below illustrates the
representation of an approximative dating as a range of geological eras:

<swe:CategoryRange def ">inition="urn:ogc:def:property:CGI::GeologicalDating
 <gml:description>
 Approximate geological dating expressed as a range of geological eras
 </gml:description>
 <gml:name>Approximate Dating</gml:name>
 <swe:codeSpace xlink:href="urn:cgi:classifierScheme:BGS:DIC_GEOCHRON.TRANSLATION"/>
 <swe:value>Paleozoic Mesozoic</swe:value>
</swe:CategoryRange>

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

71

OGC 08-094 SWE Common Data Model

The pair of values can be omitted like with any other data component in the case where it
is provided in a separate data stream.

8.2.9 CountRange Element

The “CountRange” element is the XML schema implementation of the “CountRange”
UML class defined in clause §7.2.13. The schema snippet for this element and its
corresponding complex type is shown below:
<element name="CountRange" substitutionGroup="swe:AbstractSimpleComponent"
 type="swe:CountRangeType"/>

<complexType name="CountRangeType">
 <complexContent>
 <extension base="swe:AbstractSimpleComponentType">
 <sequence>
 <element name="constraint" maxOccurs="1" minOccurs="0"
 type="swe:AllowedValuesPropertyType"/>
 <element name="value" maxOccurs="1" minOccurs="0" type="swe:IntegerPair"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

This element is used exactly in the same way as the “Count” element except that the
“value” property takes a space separated pair of integers. The next example shows how to
specify an array index range:

<swe:Count definition="urn:ogc:def:property:OGC::IndexRange">
 <gml:name>Index Range</gml:name>
 <swe:value>0 9999</swe:value>
</swe:Count>

The pair of values can be omitted like with any other data component in the case where it
is provided in a separate data stream.

8.2.10 QuantityRange Element

The “QuantityRange” element is the XML schema implementation of the
“QuantityRange” UML class defined in clause §7.2.14. The schema snippet for this
element and its corresponding complex type is shown below:
<element name="QuantityRange" substitutionGroup="swe:AbstractSimpleComponent"
 type="swe:QuantityRangeType"/>

<complexType name="QuantityRangeType">
 <complexContent>
 <extension base="swe:AbstractSimpleComponentType">
 <sequence>
 <element name="uom" type="swe:UnitReferencePropertyType"/>
 <element name="constraint" maxOccurs="1" minOccurs="0"
 type="swe:AllowedValuesPropertyType"/>
 <element name="value" maxOccurs="1" minOccurs="0" type="swe:RealPair"/>
 </sequence>
 </extension>
 </complexContent>

72 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

</complexType>

This element is used exactly in the same way as the “Quantity” element except that the
“value” property takes a space separated pair of double values. The next example shows
how to express the dynamic range of a thermometer in Kelvins:

<swe:QuantityRange definition="urn:ogc:def:property:OGC::DynamicRange">
 <gml:description>Dynamic range of the cryogenic thermometer</gml:description>
 <gml:name>Dynamic Range</gml:name>
 <swe:uom code="K"/>
 <swe:value>10 300</swe:value>
</swe:QuantityRange>

The pair of values can be omitted like with any other data component in the case where it
is provided in a separate data stream.

8.2.11 TimeRange Element

The “TimeRange” element is the XML schema implementation of the “TimeRange”
UML class defined in clause §7.2.15. The schema snippet for this element and its
corresponding complex type is shown below:

<element name="TimeRange" substitutionGroup="swe:AbstractSimpleComponent"
 type="swe:TimeRangeType"/>

<complexType name="TimeRangeType">
 <complexContent>
 <extension base="swe:AbstractSimpleComponentType">
 <sequence>
 <element name="uom" type="swe:UnitReferencePropertyType"/>
 <element name="constraint" maxOccurs="1" minOccurs="0"
 type="swe:AllowedTimesPropertyType"/>
 <element name="value" maxOccurs="1" minOccurs="0" type="swe:TimePair"/>
 </sequence>
 <attribute name="referenceTime" type="dateTime" use="optional"/>
 <attribute name="localFrame" type="anyURI" use="optional"/>
 </extension>
 </complexContent>
</complexType>

This element is used exactly in the same way as the “Time” element except that the
“value” property takes a space separated pair of time positions. The next example shows
how to express a time period with such a component:

<swe:TimeRange definition="urn:ogc:def:property:OGC::SurveyPeriod"
 referenceFrame="urn:ogc:def:crs:OGC::UTC">
 <gml:name>Survey Period</gml:name>
 <swe:uom xlink:href="urn:ogc:def:unit:ISO:8601"/>
 <swe:value>2008-01-05T11:02:54Z 2009-11-05T16:29:26Z</swe:value>
</swe:TimeRange>

The pair of time positions can be omitted like with any other data component in the case
where it is provided in a separate data stream.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

73

OGC 08-094 SWE Common Data Model

8.2.12 Quality Element Group

The “Quality” group is the XML schema implementation of the “Quality” Union UML
classifier defined in clause §7.2.16. The schema snippet for this XML schema group is
shown below:
<group name="Quality">
 <choice>
 <element ref="swe:Quantity"/>
 <element ref="swe:QuantityRange"/>
 <element ref="swe:Category"/>
 <element ref="swe:Text"/>
 </choice>
</group>

This group allows the use of some of the XML elements define above to add qualitative
information to a simple data component. The following examples illustrate how this is
done in a SWE Common XML instance.

This first example shows that quality is expressed by wrapping the value in one of the
data components defined previously that is appropriate for the desired representation.
Here a “Quantity” element is used to specify a decimal value representing relative
accuracy:

<swe:Quantity definition="urn:ogc:def:property:OGC::RelativeAccuracy">
 <gml:name>Relative Accuracy</gml:name>
 <swe:uom code="%"/>
 <swe:value>5</swe:value>
</swe:Quantity>

This snippet is then inserted within the data component element whose value’s quality
needs to be expressed. This is shown below:

<swe:Quantity definition="urn:ogc:def:property:OGC::Velocity">
 <gml:description>Linear velocity of the vehicle</gml:description>
 <gml:name>Velocity</gml:name>
 <swe:quality>
 <swe:Quantity definition="urn:ogc:def:property:OGC::RelativeAccuracy">
 <gml:name>Relative Accuracy</gml:name>
 <swe:uom code="%"/>
 <swe:value>5</swe:value>
 </swe:Quantity>
 </swe:quality>
 <swe:uom code="m/s"/>
 <swe:value>23.5</swe:value>
</swe:Quantity>

This example is a velocity measurement of 23.5 meters per seconds, with a relative
accuracy of 5%. Absolute accuracy could have been specified as well by using a different
definition URI and setting the unit of the accuracy value to “m/s”.

Bidirectional tolerance is a measure of quality that is often used for specification of
mechanical parts. Such a use case is shown below:

<swe:Quantity definition="urn:ogc:def:property:OGC::Diameter">
 <gml:description>Diameter of the cylinder</gml:description>

74 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

 <gml:name>Diameter</gml:name>
 <swe:quality>
 <swe:QuantityRange definition="urn:ogc:def:property:OGC::Tolerance">
 <gml:name>Dimensional Tolerance</gml:name>
 <swe:uom code="um"/>
 <swe:value>-20 +0</swe:value>
 </swe:QuantityRange>
 </swe:quality>
 <swe:uom code="mm"/>
 <swe:value>5.6</swe:value>
</swe:Quantity>

In the previous example, the cylinder is specified to have a diameter between 5.58 and
5.6 millimeters. Note that a different unit (i.e. micrometer) is used for the tolerance value.

The following example shows the use of a categorical representation of quality in order to
implement a pass/fail quality control flag as defined in the MMI (Marine Metadata
Interoperability) ontology:

<swe:Quantity definition="urn:ogc:def:property:OGC::Pressure">
 <gml:description>Water pressure measured by CTD</gml:description>
 <gml:name>Water Pressure</gml:name>
 <swe:quality>
 <swe:Category definition="urn:ogc:def:property:OGC::QualityControlFlag">
 <gml:name>QC Flag</gml:name>
 <swe:codeSpace xlink:href="http://mmisw.org/ont/q2o/flag"/>
 <swe:value>fail</swe:value>
 </swe:Category>
 </swe:quality>
 <swe:uom code="dbar"/>
 <swe:value>1084</swe:value>
</swe:Quantity>

All previous examples shows how quality can be given along with the inline value.
However this standard allows specifying quality in a data descriptor, which means that
the qualitative information applies to all data values represented by the component in a
separately encoded data stream. This is just achieved by using the component with no
inline values.

Additionally the quality value can be given in the encoded data stream along with the
measurement values when the quality component is defined itself as a field of the dataset.
This is shown in clause §7.4.3 describing the “DataStream” element.

The “quality” property element should never be used recursively by an implementation
(i.e. This property should not be used within a data component that is himself used as an
instance of the “Quality” group). Indeed, although it is theoretically acceptable to
describe the quality of the qualitative information itself, it is a practice that would greatly
complexify the analysis of such metadata and is thus strongly discouraged.

8.2.13 NilValues Element

The “NilValues” element is the XML schema implementation of the “NilValues” UML
class defined in clause §7.2.17. The schema snippet for this element and its
corresponding complex type is shown below:

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

75

OGC 08-094 SWE Common Data Model

<element name="NilValues" substitutionGroup="gml:AbstractSWE" type="swe:NilValuesType"/>

<complexType name="NilValuesType">
 <complexContent>
 <extension base="swe:AbstractSWEType">
 <sequence>
 <element name="nilValue" type="swe:NilValuePropertyType" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

<complexType name="NilValuePropertyType">
 <simpleContent>
 <extension base="token">
 <attribute name="reason" type="anyURI" use="required"/>
 </extension>
 </simpleContent>
</complexType>

This element allows specifying a list of nil value for a particular data component. The
next example shows how it can be used to reserve values for indicating a bad
measurement in a radiation sensor data stream.

<swe:Quantity definition="urn:ogc:def:property:OGC::RadiationDose">
 <gml:description>Radiation dose measured by Gamma detector</gml:description>
 <gml:name>Radiation Dose</gml:name>
 <swe:nilValues>
 <swe:NilValues>
 <swe:nilValue reason="urn:ogc:def:nil:OGC::BelowDetectionLimit">-INF</swe:nilValue>
 <swe:nilValue reason="urn:ogc:def:nil:OGC::AboveDetectionLimit">+INF</swe:nilValue>
 </swe:NilValues>
 </swe:nilValues>
 <swe:uom code="uR"/>
</swe:Quantity>

This means that if the “-INF” or “+INF” values (these are allowed values for a floating
point encoding) are found in the data stream, they should not be taken as real
measurement values but instead carry a specific meaning that is given by the “reason”
attribute. In this example, all other values (i.e. all decimal numbers) should be interpreted
as a radation dose expressed in micro-roentgens.

One important feature is that the “NilValues” object can be referenced instead of being
included inline. In addition to allowing their definition in shared repositories, this also
enables sharing nil value definitions between several components of the same dataset.
This is for instance useful for describing multispectral and hyperspectral images since all
bands in these types of images usually share the same nil values. The field representing
the first band can then be defined as shown below:

<swe:Count definition="urn:ogc:def:property:OGC::Radiance">
 <gml:name>Band 1</gml:name>
 <swe:nilValues>
 <swe:NilValues gml:id="NIL_VALUES">
 <swe:nilValue reason="urn:ogc:def:nil:OGC::BelowDetectionLimit">0</swe:nilValue>
 <swe:nilValue reason="urn:ogc:def:nil:OGC::AboveDetectionLimit">255</swe:nilValue>
 </swe:NilValues>
 </swe:nilValues>
</swe:Count>

76 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

And the following bands can have a much shorter description as it just references the nil
values group previously defined:

<swe:Count definition="urn:ogc:def:property:OGC::Radiance">
 <gml:name>Band 2</gml:name>
 <swe:nilValues xlink:href="#NIL_VALUES"/>
</swe:Count>
...
<swe:Count definition="urn:ogc:def:property:OGC::Radiance">
 <gml:name>Band 33</gml:name>
 <swe:nilValues xlink:href="#NIL_VALUES"/>
</swe:Count>

An important requirement of nil values is that they shall be expressible with the data
component data type in order to guarantee that they can be properly encoded. This is
enforced by a Schematron pattern.

For a field with a string data type (i.e. “Category” and “Text” components), each nil value
can be any string but it is recommended to use short upper case alphabetical tokens for
better readability.

For a field with a floating point data type (i.e. “Quantity” and “Time” components), nil
values are restricted to decimal numbers and the three special values ‘+INF’, ‘-INF’,
‘NaN’. These tokens shall be used when encoding nil values using the “TextEncoding”
method. It is recommended to use these values to represent nil reasons whenever possible
for clarity, but it is also possible to use special numbers such as ‘-9999’ or ‘9e99’, which
are usually chosen outside of the sensor measurement range, for carrying NIL semantics.

For a field with an integer data type (i.e. “Count” component), only integer numbers such
as ‘255’ or ‘999’ can be used for expressing NIL values. These are usually chosen outside
of the measurement range, and in a way that the smallest possible data type can be used
to store the data in memory (i.e. reserved values should be outside of the measurement
range but as small as possible).

8.2.14 AllowedTokens Element

The “AllowedTokens” element is the XML schema implementation of the
“AllowedTokens” UML class defined in clause §7.2.18. The schema snippet for this
element and its corresponding complex type is shown below:

<element name="AllowedTokens" substitutionGroup="gml:AbstractSWE"
 type="swe:AllowedTokensType"/>

<complexType name="AllowedTokensType">
 <complexContent>
 <extension base="swe:AbstractSWEType">
 <sequence>
 <element name="value" type="string" minOccurs="0" maxOccurs="unbounded"/>
 <element name="pattern" type="string" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

77

OGC 08-094 SWE Common Data Model

This element is used to restrict the values allowed by both categorical and textual
representations. An enumeration constraint used with a “Category” element is shown
below:

<swe:Category definition="urn:ogc:def:property:OGC::SensorType">
 <gml:name>Instrument Type</gml:name>
 <swe:codeSpace xlink:href="http://mmisw.org/ont/bodc/instrument"/>
 <swe:constraint>
 <swe:AllowedTokens>
 <swe:value>Multi beam echosounder</swe:value>
 <swe:value>Temperature sensor</swe:value>
 <swe:value>Underwater camera</swe:value>
 </swe:AllowedTokens>
 </swe:constraint>
</swe:Category>

In this example, the values allowed by the code space (OWL ontology located at
http://mmisw.org/ont/bodc/instrument) are further restricted by allowing only three of its
members.

This element can also be used to specify a constraint with a regular expression pattern.
This is shown below with a serial number example using a “Text” element:

<swe:Text definition="urn:ogc:def:property:OGC::SerialNumber">
 <gml:name>Serial Number</gml:name>
 <swe:constraint>
 <swe:AllowedTokens>
 <swe:pattern>^[0-9][A-Z]{3}[0-9]{2}S1$</swe:pattern>
 </swe:AllowedTokens>
 </swe:constraint>
</swe:Text>

The pattern shall follow the unicode regular expression syntax described in Unicode
Technical Std #18. This is the same syntax as the one used by the XML Schema
specification.

Req 66 The “pattern” child element of the “AllowedTokens” element shall be a
regular expression valid with respect to Unicode Technical Standard #18,
Version 13.

8.2.15 AllowedValues Element

The “AllowedValues” element is the XML schema implementation of the
“AllowedValues” UML class defined in clause §7.2.19. The schema snippet for this
element and its corresponding complex type is shown below:
<element name="AllowedValues" substitutionGroup="gml:AbstractSWE"
 type="swe:AllowedValuesType"/>

<complexType name="AllowedValuesType">
 <complexContent>
 <extension base="swe:AbstractSWEType">
 <sequence>
 <element name="value" type="double" minOccurs="0" maxOccurs="unbounded"/>

78 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

http://mmisw.org/ont/bodc/instrument

SWE Common Data Model OGC 08-094

 <element name="interval" type="swe:RealPair" minOccurs="0" maxOccurs="unbounded"/>
 <element name="significantFigures" type="integer" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

This element is used to specify numerical constraints for the “Count” and “Quantity”
elements and the corresponding range components. The XML snippet below illustrates
how to constrain an angular value to the -180/180 degrees domain:

<swe:Quantity definition="urn:ogc:def:property:OGC::Angle">
 <gml:name>Planar Angle</gml:name>
 <swe:uom code="deg"/>
 <swe:constraint>
 <swe:AllowedValues>
 <swe:interval>-180 +180</swe:interval>
 </swe:AllowedValues>
 </swe:constraint>
</swe:Quantity>

Several intervals can be specified to generate holes with forbidden values. Using several
intervals means that the value is constrained to be within one of the intervals:

<swe:AllowedValues>
 <swe:interval>-INF -20</swe:interval>
 <swe:interval>20 50</swe:interval>
 <swe:interval>60 +INF</swe:interval>
</swe:AllowedValues>

Note that the –Infnity and +Infinity are allowed in order to specify unbounded intervals.
The above example indicates that the value must be either less than or equal to -20,
between 20 and 50 included, or greater than or equal to 60. Intervals specified with this
element are always inclusive and should not overlap.

Allowed values can also be enumerated as shown in the example below:

<swe:Count definition="urn:ogc:def:property:OGC::ObjectCount">
 <gml:description>Number of active cameras</gml:description>
 <gml:name>Active Cameras</gml:name>
 <swe:constraint>
 <swe:AllowedValues>
 <swe:value>1</swe:value>
 <swe:value>3</swe:value>
 <swe:value>6</swe:value>
 </swe:AllowedValues>
 </swe:constraint>
</swe:Count>

Several allowed intervals and values can also be combined to express a complex
constraint even though this is rarely used in practice:

<swe:AllowedValues>
 <swe:value>5</swe:value>
 <swe:value>10</swe:value>
 <swe:interval>20 30</swe:interval>
 <swe:interval>40 60</swe:interval>

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

79

OGC 08-094 SWE Common Data Model

</swe:AllowedValues>

In the above example, the actual value must be 5, or 10, or between 20 and 30 included,
or between 40 and 60 included. All numbers used within “interval” and “value” elements
shall be expressed in the same unit as the enclosing data component (Req 39).

The last option to specify a constraint on a decimal number (so only applicable to
“Quantity”) is to limit the number of significant figures:

<swe:AllowedValues>
 <swe:significantFigures>5</swe:significantFigures>
</swe:AllowedValues>

Constraining a number to 5 significant figures means that a total of only 5 digits are or
can be used for the representation of the value. The numbers 1.2345, 5.4823e-3, 0.98655
and 00235 are all composed of 5 significant figures, but 1.23450 and 658970 have six
significant figures (leading zeros are ignored).

When decimal values are encoded with a binary floating point data type rather than text,
restricting the number of significant figures also means that the lowest order fractional
digits of the mantissa should be ignored even though they may be encoded due to
rounding errors.

8.2.16 AllowedTimes Element

The “AllowedTimes” element is the XML schema implementation of the “AllowedTimes”
UML class defined in clause §7.2.20. The schema snippet for this element and its
corresponding complex type is shown below:

<element name="AllowedTimes" substitutionGroup="gml:AbstractSWE"
 type="swe:AllowedTimesType"/>

<complexType name="AllowedTimesType">
 <complexContent>
 <extension base="swe:AbstractSWEType">
 <sequence>
 <element name="value" type="swe:TimePosition" minOccurs="0" maxOccurs="unbounded"/>
 <element name="interval" type="swe:TimePair" minOccurs="0" maxOccurs="unbounded"/>
 <element name="significantFigures" type="integer" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

This element is used to specify numerical constraints with the “Time” and “TimeRange”
elements. It is used in the same way as the “AllowedValues” element in “Quantity” when
the temporal value is expressed as a decimal number, but also supports encoding
enumerated values and intervals as ISO 8601 date times. The definition of a temporal
field with a restriction to a certain period is shown below:

<swe:Time definition="urn:ogc:def:property:OGC::SamplingTime">
 <gml:name>Acquisition Time</gml:name>

80 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

 <swe:uom xlink:href="urn:ogc:def:unit:ISO:8601"/>
 <swe:constraint>
 <swe:AllowedTimes>
 <swe:interval>2009-01-01 +INF</swe:interval>
 </swe:AllowedTimes>
 </swe:constraint>
</swe:Time>

Note that unbounded intervals are also possible when ISO 8601 notation is used. In all
other cases mixing decimal and ISO 8601 notation is forbidden. If the “uom” element
indicates that ISO 8601 is the unit, then constraints shall be expressed using ISO 8601
notation as well, otherwise constraints shall be expressed with decimal numbers with the
scale specified by “uom”. This is enforced by a Schematron pattern (Req 39).

8.2.17 Simple Component Groups

Three XML element groups as well as the corresponding property types are defined in the
schema in order to simplify their use in external schemas.

<group name="AnyScalar">
 <choice>
 <element ref="swe:Boolean"/>
 <element ref="swe:Count"/>
 <element ref="swe:Quantity"/>
 <element ref="swe:Time"/>
 <element ref="swe:Category"/>
 <element ref="swe:Text"/>
 </choice>
</group>

<group name="AnyNumerical">
 <choice>
 <element ref="swe:Count"/>
 <element ref="swe:Quantity"/>
 <element ref="swe:Time"/>
 </choice>
</group>

<group name="AnyRange">
 <choice>
 <element ref="swe:QuantityRange"/>
 <element ref="swe:TimeRange"/>
 <element ref="swe:CountRange"/>
 <element ref="swe:CategoryRange"/>
 </choice>
</group>

The “AnyScalar” group contains all scalar representations, “AnyNumerical” only
numerical representations and the “AnyRange” group includes all range components.

8.3 Requirements Class: Aggregate Components Schema

XML Schema elements and types defined in the “aggregate_components.xsd” schema
implement all classes defined in the “Aggregate Components” UML packages.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

81

OGC 08-094 SWE Common Data Model

Req 67 An implementation passing the “Aggregate Components Schema”
conformance test class shall first pass the “Basic Types and Simple
Components Schemas” conformance test class.

Req 68 A compliant XML instance shall be valid with respect to the XML grammar
defined in the “aggregate_components.xsd” XML schema as well as satisfy all
Schematron patterns defined in “aggregate_components.sch”.

8.3.1 DataRecord Element

The “DataRecord” element is the XML schema implementation of the “DataRecord”
UML class defined in clause §7.3.1. The schema snippet for this element and its
corresponding complex type is shown below:

<element name="DataRecord" type="swe:DataRecordType"
 substitutionGroup="swe:AbstractDataComponent"/>

<complexType name="DataRecordType">
 <complexContent>
 <extension base="swe:AbstractDataComponentType">
 <sequence>
 <element name="field" maxOccurs="unbounded">
 <complexType>
 <complexContent>
 <extension base="swe:AbstractDataComponentPropertyType">
 <attribute name="name" type="NCName" use="required"/>
 </extension>
 </complexContent>
 </complexType>
 </element>
 </sequence>
 </extension>
 </complexContent>
</complexType>

The element contains all sub-elements inherited from “AbstractDataComponentType” as
well as a list of (at least one) “field” property elements, each with a “name” attribute and
containing the data component element that defines the field.

The XML example below describes a record composed of weather data fields. In this
case the “DataRecord” element is used as a data descriptor and the corresponding data
stream is usually composed of several tuples of values, each tuple corresponding to one
record as defined here:

<swe:DataRecord>
 <gml:description>Record of synchronous weather measurements</gml:description>
 <gml:name>Weather Data Record</gml:name>
 <swe:field name="time">
 <swe:Time definition="urn:ogc:def:property:OGC::SamplingTime">
 <gml:name>Sampling Time</gml:name>
 <swe:uom xlink:href="urn:ogc:def:unit:ISO:8601"/>
 </swe:Time>
 </swe:field>
 <swe:field name="temperature">
 <swe:Quantity definition="urn:ogc:def:property:OGC::AirTemperature">
 <gml:name>Air Temperature</gml:name>
 <swe:uom xlink:href="Cel"/>

82 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

 </swe:Quantity>
 </swe:field>
 <swe:field name="pressure">
 <swe:Quantity definition="urn:ogc:def:property:OGC::AtmosphericPressure">
 <gml:name>Atmospheric Pressure</gml:name>
 <swe:uom code="mbar"/>
 </swe:Quantity>
 </swe:field>
 <swe:field name="windSpeed">
 <swe:Quantity definition="urn:ogc:def:property:OGC::WindSpeed">
 <gml:name>Wind Speed</gml:name>
 <swe:uom code="km/h"/>
 </swe:Quantity>
 </swe:field>
 <swe:field name="windDirection">
 <swe:Quantity definition="urn:ogc:def:property:OGC::WindDirectionToNorth">
 <gml:name>Wind Direction</gml:name>
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:field>
</swe:DataRecord>

Each field shall have a unique name within the record (Req 42). This is enforced by a
Schematron pattern.

The “DataRecord” element can also carry its own “definition” attribute to carry
semantics about the whole group of values. The next example shows how to encode
radial distortion coefficients of a frame camera sensor:

<swe:DataRecord definition="urn:ogc:def:property:CSM:RadialDistortionCoefficients">
 <gml:name>Radial Distortion Coefficients</gml:name>
 <swe:field name="k1">
 <swe:Quantity definition="urn:ogc:def:property:CSM:DISTOR_RAD1">
 <swe:uom code="mm-2"/>
 <swe:value>1.92709e-005</swe:value>
 </swe:Quantity>
 </swe:field>
 <swe:field name="k2">
 <swe:Quantity definition="urn:ogc:def:property:CSM:DISTOR_RAD2">
 <swe:uom code="mm-2"/>
 <swe:value>-5.14206e-010</swe:value>
 </swe:Quantity>
 </swe:field>
 <swe:field name="k3">
 <swe:Quantity definition="urn:ogc:def:property:CSM:DISTOR_RAD3">
 <swe:uom code="mm-2"/>
 <swe:value>-3.33356e-012</swe:value>
 </swe:Quantity>
 </swe:field>
</swe:DataRecord>

The “DataRecord” element is fully recursive so that each field can itself be a
“DataRecord”, but most importantly each field can be any other data component defined
in this standard (such as “Vector”, “DataChoice” and “DataArray”).

Examples above only make use of field components with minimum metadata, but each of
these fields can have all the possible content defined in clause §8.2, including quality,
constraints, etc.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

83

OGC 08-094 SWE Common Data Model

8.3.2 DataChoice Element

The “DataChoice” element is the XML schema implementation of the “DataChoice”
UML class defined in clause §7.3.2. The schema snippet for this element and its
corresponding complex type is shown below:
<element name="DataChoice" type="swe:DataChoiceType"
 substitutionGroup="swe:AbstractDataComponent"/>

<complexType name="DataChoiceType">
 <complexContent>
 <extension base="swe:AbstractDataComponentType">
 <sequence>
 <element name="choiceValue" type="swe:CategoryPropertyType"/>
 <element name="item" minOccurs="2" maxOccurs="unbounded">
 <complexType>
 <complexContent>
 <extension base="swe:AbstractDataComponentPropertyType">
 <attribute name="name" type="NCName" use="required"/>
 </extension>
 </complexContent>
 </complexType>
 </element>
 </sequence>
 </extension>
 </complexContent>
</complexType>

This element contains a list of (at least two) “item” property elements, each with a
“name” attribute and containing the data component element that defines the field.

The following “DataChoice” example illustrates how it can be used to define an element
of a data stream that can either be a temperature or a pressure measurement, in both cases
associated to a time tag:

<swe:DataChoice>
 <!-- -->
 <swe:choiceValue>
 <swe:Category definition="urn:ogc:def:data:OGC:MessageType"/>
 </swe:choiceValue>
 <!-- -->
 <swe:item name="TEMP">
 <swe:DataRecord>
 <gml:name>Temperature Measurement</gml:name>
 <swe:field name="time">
 <swe:Time definition="urn:ogc:def:property:OGC:SamplingTime"
 referenceFrame="urn:ogc:def:crs:OGC::GPS">
 <swe:uom xlink:href="urn:ogc:def:unit:ISO:8601"/>
 </swe:Time>
 </swe:field>
 <swe:field name="temp">
 <swe:Quantity definition="urn:ogc:def:property:OGC:Temperature">
 <swe:uom code="Cel"/>
 </swe:Quantity>
 </swe:field>
 </swe:DataRecord>
 </swe:item>
 <!-- -->
 <swe:item name="PRESS">
 <swe:DataRecord>
 <gml:name>Pressure Measurement</gml:name>
 <swe:field name="time">
 <swe:Time definition="urn:ogc:def:property:OGC:SamplingTime"
 referenceFrame="urn:ogc:def:crs:OGC::GPS">
 <swe:uom xlink:href="urn:ogc:def:unit:ISO:8601"/>

84 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

 </swe:Time>
 </swe:field>
 <swe:field name="press">
 <swe:Quantity definition="urn:ogc:def:property:OGC:Pressure">
 <swe:uom code="HPa"/>
 </swe:Quantity>
 </swe:field>
 </swe:DataRecord>
 </swe:item>
 <!-- -->
</swe:DataChoice>

A dataset element defined by the structure above would be of a variant type, meaning that
each instance (actual data values) of this structure could be either a pair of time and
temperature values OR a pair of time and pressure values.

Each choice item shall have a unique name within a given “DataChoice” element (Req
43). This is enforced by a Schematron pattern.

The “DataChoice” element is fully recursive so that each field can itself be any type of
component defined in this standard, although implementations are not required to support
nested “DataChoice” elements.

8.3.3 Vector Element

The “Vector” element is the XML schema implementation of the “Vector” UML class
defined in clause §7.3.3. The schema snippet for this element and its corresponding
complex type is shown below:

<element name="Vector" type="swe:VectorType" substitutionGroup="swe:AbstractDataComponent"/>

<complexType name="VectorType">
 <complexContent>
 <extension base="swe:AbstractDataComponentType">
 <sequence>
 <element name="coordinate" maxOccurs="unbounded">
 <complexType>
 <complexContent>
 <extension base="swe:AnyNumericalPropertyType">
 <attribute name="name" type="NCName" use="required"/>
 </extension>
 </complexContent>
 </complexType>
 </element>
 </sequence>
 <attribute name="referenceFrame" type="anyURI" use="required"/>
 <attribute name="localFrame" type="anyURI" use="optional"/>
 </extension>
 </complexContent>
</complexType>

This element is similar to the “DataRecord” element except that it is composed of a list
of coordinates instead of fields. Each “coordinate” element is restricted to numerical
component types (see “AnyNumerical” element group defined in clause §8.2.17) and
inherits the reference frame from the “Vector” element. A Schematron pattern enforces
that an “axisID” attribute is specified and that no “referenceFrame” attribute is used on
each coordinate component (see Req 44 and Req 45).

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

85

OGC 08-094 SWE Common Data Model

The example below illustrates how to use the “Vector” element to encode geographic
location:

<swe:Vector definition="urn:ogc:def:data:OGC::LocationVector"
 referenceFrame="urn:ogc:def:crs:EPSG:7.1:4326">
 <swe:coordinate name="lat">
 <swe:Quantity definition="urn:ogc:def:property:OGC::GeodeticLatitude" axisID="Lat">
 <gml:name>Latitude</gml:name>
 <swe:uom xlink:href="deg"/>
 <swe:value>45.36</swe:value>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="lon">
 <swe:Quantity definition="urn:ogc:def:property:OGC::Longitude" axisID="Long">
 <gml:name>Longitude</gml:name>
 <swe:uom code="deg"/>
 <swe:value>5.2</swe:value>
 </swe:Quantity>
 </swe:coordinate>
</swe:Vector>

This snippet indicates that the location coordinates are given in the EPSG 4326 (WGS 84
Lat/Lon) coordinate reference system. Note the use of a “definition” attribute to indicate
what type of vector it is.

This definition is very important because the “Vector” element can be used to represent
other vector quantities than location. For instance, the velocity vector of a spacecraft can
be defined as show below:

<swe:Vector definition="urn:ogc:def:data:OGC::VelocityVector"
 referenceFrame="urn:ogc:def:crs:OGC::ECI">
 <swe:coordinate name="Vx">
 <swe:Quantity definition="urn:ogc:def:property:OGC::Velocity" axisID="X">
 <gml:name>Velocity X</gml:name>
 <swe:uom xlink:href="m/s"/>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="Vy">
 <swe:Quantity definition="urn:ogc:def:property:OGC::Velocity" axisID="Y">
 <gml:name>Velocity Y</gml:name>
 <swe:uom code="m/s"/>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="Vz">
 <swe:Quantity definition="urn:ogc:def:property:OGC::Velocity" axisID="Z">
 <gml:name>Velocity Z</gml:name>
 <swe:uom code="m/s"/>
 </swe:Quantity>
 </swe:coordinate>
</swe:Vector>

This instance is a data descriptor (i.e. there are no inline values) for an element of a
dataset containing coordinates of a velocity vector. Each coordinate is projected along
one axis of the Earth Centered Inertial (ECI) coordinate reference system and the unit of
each vector component is the meter per second.

The “localFrame” attribute can also be used to identify the frame that the positioning
information applies to:

86 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

<swe:Vector definition="urn:ogc:def:data:OGC::Quaternion"
 referenceFrame="urn:ogc:def:crs:OGC::ECI"
 localFrame="urn:ogc:id:CEOS:platform:SPOT5#PLATFORM_FRAME"/>
 <swe:coordinate name="qx">
 <swe:Quantity definition="urn:ogc:def:property:OGC::Coefficient" axisID="X">
 <swe:uom code="1"/>
 <swe:value>0.14</swe:value>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="qy">
 <swe:Quantity definition="urn:ogc:def:property:OGC::Coefficient" axisID="Y">
 <swe:uom code="1"/>
 <swe:value>0.22</swe:value>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="qz">
 <swe:Quantity definition="urn:ogc:def:property:OGC::Coefficient" axisID="Z">
 <swe:uom code="1"/>
 <swe:value>0.05</swe:value>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="qw">
 <swe:Quantity definition="urn:ogc:def:property:OGC::Coefficient" axisID="R">
 <swe:uom code="1"/>
 <swe:value>0.33</swe:value>
 </swe:Quantity>
 </swe:coordinate>
</swe:Vector>

This vector specifies the attitude of the local frame (i.e. attached to SPOT5 spacecraft)
with respect to the ECI reference frame using a normalized quaternion. Note that
quaternion coefficients are unit-less and normalized to 1.0 which is indicated by the
UCUM code “1”.

8.4 Requirements Class: Block Components Schema

XML Schema elements and types defined in the “block_components.xsd” schema
implement all classes defined in the “Block Components” UML packages.

Req 69 An implementation passing the “Block Components Schema” conformance
test class shall first pass the “Aggregate Components Schema” and “Simple
Encodings Schema” conformance test classes.

Req 70 A compliant XML instance shall be valid with respect to the grammar defined
in the “block_components.xsd” XML schema as well as satisfy all Schematron
patterns defined in “block_components.sch”.

8.4.1 DataArray Element

The “DataArray” element is the XML schema implementation of the “DataArray” UML
class defined in clause §7.4.1. The schema snippet for this element and its corresponding
complex type is shown below:

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

87

OGC 08-094 SWE Common Data Model

<element name="DataArray" type="swe:DataArrayType"
 substitutionGroup="swe:AbstractDataComponent"/>

<complexType name="DataArrayType">
 <complexContent>
 <extension base="swe:AbstractDataComponentType">
 <sequence>
 <element name="elementCount" type="swe:CountPropertyType"/>
 <element name="elementType">
 <complexType>
 <complexContent>
 <extension base="swe:AbstractDataComponentPropertyType">
 <attribute name="name" type="NCName" use="required"/>
 </extension>
 </complexContent>
 </complexType>
 </element>
 <element name="encoding" minOccurs="0">
 <complexType>
 <sequence>
 <element ref="swe:AbstractEncoding"/>
 </sequence>
 </complexType>
 </element>
 <element name="values" type="swe:EncodedValuesPropertyType" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

The size of the array is given by the “elementCount” property element which takes a
“Count” data component. It can be used to construct both fixed size and variable size
arrays. When the “Count” child element of the “elementCount” property includes an
inline value, the array has a fixed size indicated by the value. When the “Count” child
element has no inline value or when the “elementCount” has an “xlink:href” attribute, the
array has a variable size.

The “elementType” property carries the definition of a single array element while the
“encoding” and “values” properties allow including the array data inline as an efficient
encoded data block. When present, this data block contains values for all elements of the
array (the number of elements is given by the array size).

Req 71 The encoded data block included either inline or by‐reference in the “values”
property of a “DataArray”, “Matrix” or “DataStream” element shall be
consistent with the definition of the element type, the element count and
the encoding method.

This first example shows how the “DataArray” element can be used to define a fixed size
array of several measurement records and give their values inline as an encoded data
block:

<swe:DataArray>
 <gml:description>Array of synchronous weather measurements</gml:description>
 <swe:elementCount>
 <swe:Count definition="urn:ogc:def:data:OGC::TemporalDimension">
 <swe:value>5</swe:value>
 </swe:Count>
 </swe:elementCount>

88 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

 <swe:elementType name="weather_measurement">
 <swe:DataRecord>
 <gml:name>Weather Data Record</gml:name>
 <swe:field name="time">
 <swe:Time definition="urn:ogc:def:property:OGC::SamplingTime">
 <gml:name>Sampling Time</gml:name>
 <swe:uom xlink:href="urn:ogc:def:unit:ISO:8601"/>
 </swe:Time>
 </swe:field>
 <swe:field name="temperature">
 <swe:Quantity definition="urn:ogc:def:property:OGC::AirTemperature">
 <gml:name>Air Temperature</gml:name>
 <swe:uom xlink:href="Cel"/>
 </swe:Quantity>
 </swe:field>
 <swe:field name="pressure">
 <swe:Quantity definition="urn:ogc:def:property:OGC::AtmosphericPressure">
 <gml:name>Atmospheric Pressure</gml:name>
 <swe:uom code="mbar"/>
 </swe:Quantity>
 </swe:field>
 </swe:DataRecord>
 </swe:elementType>
 <swe:encoding>
 <swe:TextEncoding blockSeparator="
" tokenSeparator=","/>
 </swe:encoding>
 <swe:values>
 2009-02-10T10:42:56Z,25.4,1020
 2009-02-10T10:43:06Z,25.3,1021
 2009-02-10T10:44:16Z,25.3,1020
 2009-02-10T10:45:26Z,25.4,1022
 2009-02-10T10:46:36Z,25.4,1022
 </swe:values>
</swe:DataArray>

In this example, an array of 5 weather records is created. Each element of the array is a
record of 3 values: the measurement sampling time, a temperature value and a pressure
value. The array values are encoded as text tuples, and since the array size is 5, there are
5 tuples in the “values” element (in this case each line is a new tuple since the block
separator is a ‘new line’ character. See clauses §8.5 and §8.6 for more information on
“TextEncoding” and other encoding methods).

The next example illustrates how a dataset field containing variable length trajectory data
can be defined:

<swe:DataArray definition="urn:ogc:def:data:OGC::Trajectory">
 <gml:description>Mobile Trajectory</gml:description>
 <swe:elementCount>
 <swe:Count definition="urn:ogc:def:data:OGC::SpatialDimension"/>
 </swe:elementCount>
 <swe:elementType name="point">
 <swe:Vector definition="urn:ogc:def:data:OGC:LocationVector"
 referenceFrame="urn:ogc:def:crs:EPSG:7.1:4326">
 <gml:name>Location Point</gml:name>
 <swe:coordinate name="lat">
 <swe:Quantity definition="urn:ogc:def:property:OGC::GeodeticLatitude" axisID="Lat">
 <gml:name>Latitude</gml:name>
 <swe:uom xlink:href="deg"/>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="lon">
 <swe:Quantity definition="urn:ogc:def:property:OGC::Longitude" axisID="Long">
 <gml:name>Longitude</gml:name>
 <swe:uom code="deg"/>

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

89

OGC 08-094 SWE Common Data Model

 </swe:Quantity>
 </swe:coordinate>
 </swe:Vector>
 </swe:elementType>
</swe:DataArray>

In this case, the “elementCount” value is not specified indicating that there will be an
integer number specifying the array size in the data (corresponding to the “Count”
representation) before the array values themselves. The array data will then contain
several pairs of Lat/Lon values, each representing one array element. Note that neither
the “encoding” or “values” properties are present in this example as the “DataArray” is
used as a data descriptor. The “definition” attribute on the array gives useful information
about its content.

Several “DataArray” elements can be nested to form multidimensional arrays. The
following example shows how to fully define the structure of an image by using arrays:

<swe:DataArray definition="urn:ogc:def:data:OGC::Image">
 <swe:elementCount>
 <swe:Count definition="urn:ogc:def:data:OGC::ImageDimension">
 <swe:value>3000</swe:value>
 </swe:Count>
 </swe:elementCount>
 <swe:elementType name="row">
 <swe:DataArray definition="urn:ogc:def:data:OGC::Row">
 <swe:elementCount>
 <swe:Count definition="urn:ogc:def:data:OGC::ImageDimension">
 <swe:value>3000</swe:value>
 </swe:Count>
 </swe:elementCount>
 <swe:elementType name="pixel">
 <swe:DataRecord definition="urn:ogc:def:data:OGC::Pixel">
 <swe:field name="band1">
 <swe:Quantity definition="urn:ogc:def:property:OGC::Radiance">
 <gml:description>Radiance measured on band1</gml:description>
 <swe:uom code="W.m-2.Sr-1.um-1"/>
 </swe:Quantity>
 </swe:field>
 <swe:field name="band2">
 <swe:Quantity definition="urn:ogc:def:property:OGC::Radiance">
 <gml:description>Radiance measured on band2</gml:description>
 <swe:uom code="W.m-2.Sr-1.um-1"/>
 </swe:Quantity>
 </swe:field>
 <swe:field name="band3">
 <swe:Quantity definition="urn:ogc:def:property:OGC::Radiance">
 <gml:description>Radiance measured on band3</gml:description>
 <swe:uom code="W.m-2.Sr-1.um-1"/>
 </swe:Quantity>
 </swe:field>
 </swe:DataRecord>
 </swe:elementType>
 </swe:DataArray>
 </swe:elementType>
</swe:DataArray>

This example describes a 3000x3000 pixels image with three components. The image is
organized by rows and the bands are interleaved by pixel. It is possible to describe
different interleaving patterns by reversing the nesting order of the components.

90 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

8.4.2 Matrix Element

The “Matrix” element is the XML schema implementation of the “Matrix” UML class
defined in clause §7.4.2. The schema snippet for this element and its corresponding
complex type is shown below:
<element name="Matrix" type="swe:MatrixType" substitutionGroup="swe:AbstractDataComponent"/>

<complexType name="MatrixType">
 <complexContent>
 <extension base="swe:AbstractDataComponentType">
 <sequence>
 <element name="elementCount" type="swe:CountPropertyType"/>
 <element name="elementType">
 <complexType>
 <complexContent>
 <extension base="swe:AbstractDataComponentPropertyType">
 <attribute name="name" type="NCName" use="required"/>
 </extension>
 </complexContent>
 </complexType>
 </element>
 <element name="encoding" minOccurs="0">
 <complexType>
 <sequence>
 <element ref="swe:AbstractEncoding"/>
 </sequence>
 </complexType>
 </element>
 <element name="values" type="swe:EncodedValuesPropertyType" minOccurs="0"/>
 </sequence>
 <attribute name="referenceFrame" type="anyURI" use="required"/>
 <attribute name="localFrame" type="anyURI" use="optional"/>
 </extension>
 </complexContent>
</complexType>

The “Matrix” element is a special case of “DataArray” that adds “referenceFrame” and
“localFrame” attributes for expressing the array components in a well defined reference
frame. As opposed to the “Vector” component, the axis order is implied in a matrix
because it is difficult to assign a frame axis to each individual element of an N-
dimensional array. The array index in each dimension is thus used as the axis index in the
ordered list provided by the reference frame.

The following example shows how to encode a rotation matrix:

<swe:Matrix definition="urn:ogc:def:data:OGC::RotationMatrix"
 referenceFrame="urn:ogc:def:crs:OGC::ECI">
 <swe:elementCount>
 <swe:Count definition="urn:ogc:def:data:OGC::SpatialDimension">
 <swe:value>3</swe:value>
 </swe:Count>
 </swe:elementCount>
 <swe:elementType name="row">
 <swe:DataArray>
 <swe:elementCount>
 <swe:Count definition="urn:ogc:def:data:OGC::SpatialDimension">
 <swe:value>3</swe:value>
 </swe:Count>
 </swe:elementCount>
 <swe:elementType name="coef">
 <swe:Quantity definition="urn:ogc:def:property:OGC::Coefficient">
 <swe:uom code="1"/>

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

91

OGC 08-094 SWE Common Data Model

 </swe:Quantity>
 </swe:elementType>
 </swe:DataArray>
 </swe:elementType>
 <swe:encoding>
 <swe:TextEncoding blockSeparator=" " tokenSeparator=","/>
 </swe:encoding>
 <swe:values>0.36,0.48,-0.8 -0.8,0.6,0 0.48,0.64,0.6</swe:values>
</swe:Matrix>

This example defines a 3x3 rotation matrix whose elements are expressed in the ECI
coordinate reference system. It corresponds to the following matrix:

Axes are assumed to be in the same order as specified in the reference frame definition,
that is to say: 1st row/column = X, 2nd row/column = Y, 3rd row/column = Z

As with the “Vector” element, the “localFrame” attribute can be used to identify the
frame of whose positioning information is specified by the matrix

8.4.3 DataStream Element

The “DataStream” element is the XML schema implementation of the “DataStream”
UML class defined in clause §7.4.3. The schema snippet for this element and its
corresponding complex type is shown below:

<element name="DataStream" type="swe:DataStreamType"
 substitutionGroup="swe:AbstractSWEIdentifiable">

<complexType name="DataStreamType">
 <complexContent>
 <extension base="swe:AbstractSWEIdentifiableType">
 <sequence>
 <element name="elementCount" minOccurs="0">
 <complexType>
 <sequence>
 <element ref="swe:Count"/>
 </sequence>
 </complexType>
 </element>
 <element name="elementType">
 <complexType>
 <complexContent>
 <extension base="swe:AbstractDataComponentPropertyType">
 <attribute name="name" type="NCName" use="required"/>
 </extension>
 </complexContent>
 </complexType>
 </element>
 <element name="encoding">
 <complexType>
 <sequence>
 <element ref="swe:AbstractEncoding"/>
 </sequence>
 </complexType>
 </element>
 <element name="values" type="swe:EncodedValuesPropertyType"/>
 </sequence>

92 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

 </extension>
 </complexContent>
</complexType>

This element is used to describe a data stream as a list of elements whose type is given by
the element type. It is similar to a “DataArray” but the “elementCount” property is
optional as the total number of elements composing the stream does not have to be
specified. This is useful in particular to describe never-ending streams such as the ones
used for delivering real time sensor data. Additionally, the “DataStream” element is not a
data component and thus cannot be nested into other aggregates. It can only serve as a
root object to represent the data stream as a whole.

The next example shows how it is used to describe a real time stream of aircraft
navigaton data:

<swe:DataStream>
 <gml:name>Aircraft Navigation</gml:name>
 <swe:elementType name="navData">
 <swe:DataRecord>
 <swe:field name="time">
 <swe:Time definition="urn:ogc:def:property:OGC:SamplingTime"
 referenceFrame="urn:ogc:def:crs:OGC::GPS"
 referenceTime="1970-01-01T00:00:00Z">
 <swe:uom code="s"/>
 </swe:Time>
 </swe:field>
 <swe:field name="location">
 <swe:Vector definition="urn:ogc:property:OGC::LocationVector"
 referenceFrame="urn:ogc:def:crs:EPSG:6.7:4979">
 <swe:coordinate name="lat">
 <swe:Quantity definition="urn:ogc:def:property:OGC:GeodeticLatitude" axisID="Lat">
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="lon">
 <swe:Quantity definition="urn:ogc:def:property:OGC:Longitude" axisID="Long">
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="alt">
 <swe:Quantity definition="urn:ogc:def:property:OGC:EllipsoidalHeight" axisID="h">
 <swe:uom code="m"/>
 </swe:Quantity>
 </swe:coordinate>
 </swe:Vector>
 </swe:field>
 <swe:field name="attitude">
 <swe:Vector definition="urn:ogc:property:OGC::EulerAngles"
 referenceFrame="urn:ogc:def:crs:OGC::ENU">
 <swe:coordinate name="heading">
 <swe:Quantity definition="urn:ogc:def:property:OGC:TrueHeading" axisID="Z">
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="pitch">
 <swe:Quantity definition="urn:ogc:def:property:OGC:PitchAngle" axisID="X">
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="roll">
 <swe:Quantity definition="urn:ogc:def:property:OGC:RollAngle" axisID="Y">
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:coordinate>

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

93

OGC 08-094 SWE Common Data Model

 </swe:Vector>
 </swe:field>
 </swe:DataRecord>
 </swe:elementType>
 <swe:encoding>
 <swe:TextEncoding tokenSeparator="," blockSeparator="
" decimalSeparator="."/>
 </swe:encoding>
 <swe:values xlink:href="rtp://myserver:4563/navData"/>
</swe:DataStream>

This example defines a stream of homogeneous records, each of which is composed of a
time stamp, 3D aircraft location expressed in the EPSG 4979 (WGS 84 Lat/Lon/Alt)
coordinate reference system, and aircraft attitude expressed relative to the local ENU
(East-North-Up) coordinate frame. The actual data values would then be sent via the RTP
connection in the following text (CSV) format:

1257691405,41.55,13.61,325,90.5,1.2,1.1
1257691410,41.55,13.62,335,90.4,1.3,0.5
1257691415,41.55,13.63,345,90.5,1.3,0.1
1257691420,41.55,13.64,355,90.4,1.2,-1.1
1257691425,41.55,13.65,365,90.5,1.2,-0.5
...

Note that the “encoding” and “values” properties are mandatory on the “DataStream”
element, indicating that it can only be used to describe the dataset as a whole, along with
its encoding method. The “values” element is usually used to provide a reference to the

so be described by using a
“DataChoice” as the element type. This is shown below:

.xsd” schema

Req
 the “Basic Types and Simple Components Schemas”

Req
 well as satisfy all Schematron

actual data stream (i.e. the values).

Note that streams of heterogeneous records can al

8.5 Requirements Class: Simple Encodings Schema

XML Schema elements and types defined in the “simple_encodings
implement all classes defined in the “Simple Encodings” UML packages.

 72 An implementation passing the “Simple Encodings Schema” conformance
test class shall first pass
conformance test class.

 73 A compliant XML instance shall be valid with respect to the grammar defined
in the “simple_encodings.xsd” XML schema as
patterns defined in “simple_encodings.sch”.

This requirement class defines a set of core encodings that have been chosen to cover the
needs of simple applications that need to encode data as efficient data blocks. The
“TextEncoding” method allows encodings datasets in a human readable textual format,

94 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

while the “XMLEncoding” method allows encoding data values light weight XML tagged
values.

Note: It is not the intent of this standard to support legacy formats by simply wrapping
them with an XML description. Implementations seeking comformance to this
requirement class will most often have to re-encode existing data by following the
encoding rules described in this clause. However the encoding model has been designed
and tested so that re-encoding can be done very efficiently on-the-fly without requiring

unts of existing data.

The way values are encoded is linked to the data structure specified using a hierarchy of
data components. The values are included sequentially in the data stream by recursively

ing the dataset definition tree.

oding”, a numerical value is represented by its string representation that usually
span several bytes (e.g. ‘1.2345’ spans 6 bytes), why with the “BinaryEncoding” encode

 NIL, the appropriate nil value is used in the
stream and replaces the actual measurement value. This is always possible because nil
values are required to be expressed with a data type that is compatible with the

d.

The values of range components are encoded as a sequence of two successive values, first
the lower bound of the range, then the upper bound. Each of these values is encoded

ts.

the pre-processing of large amo

8.5.1 General Encoding Rules

All encodings defined in this standard follow general principles so that it is possible to
implement them in a similar way.

processing all data components compos

8.5.1.1 Rules for Scalar Components

The value of each scalar component is encoded as a single scalar value. The actual binary
representation of this scalar value depends on the encoding method. For example, in
“TextEnc

a similar value would likely be encoded as an IEEE 754 single precision floating-point
format.

The value of a “Time” component is encoded either as a decimal value or as a string in
the case where a calendar representation or indeterminate value is used.

When the value of a scalar component is

representation of the corresponding fiel

8.5.1.2 Rules for Range Components

exactly like the values of scalar componen

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

95

OGC 08-094 SWE Common Data Model

8.5.1.3 Rules for DataRecord and Vector

Both “DataRecord” and “Vector” components are aggregates consisting of an ordered

.

Th DataRecord” (“Vector”) structure composed of N fields
(co be in the fo

ucture would sequentially include all values for

i

Req 74 “DataRecord” fields or “Vector” coordinates shall be encoded sequentially in
der in which these fields or coordinates are listed in the

data descriptor.

ild components
called item e encoded, the resulting data block consists
of dentifying the selecting item and the item values themselves.
On sin be coded in each instance of a choice.

esponding to such a structure would then sequentially include the item

range com

Req 75 Encoded values for the selected item of a “DataChoice” shall be provided
along with information that unambiguously identifies the selected item.

sequence of child components. The values contained in these aggregates are encoded by
successively encoding each child component in the order in which they are listed in the
XML description and including the resulting values sequentially in the stream

e definition of a “
ordinates) can represented llowing way:

The data block corresponding to such a str

DataRecord definition

 Definition
of Field 1

Definition
of Field 2

Definition
of Field N ...

field 1, then all values for field 2, etc. until the last field is reached. Each field may
consist of a single value if it is a scalar but may also consist of multiple values if it is
tself an aggregate or a range component.

a data block in the or

8.5.1.4 Rules for DataChoice

The “DataChoice” is an aggregate consisting of a choice of several ch
s. When values of a data choice ar

two things: A token i
ly values of a gle item can en

The data block corr

DataChoice definition

 Definition
of Item 1

Definition
of Item 2

Definition
of Item N ...

identifier (i.e. the choice value) and then the value(s) for the selected item. The item may
consist of a single value if it is a scalar or multiple values if it is itself an aggregate or a

ponent.

96 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

8.5.1.5 Rules for DataArray and Matrix

The “DataArray” is an aggregate consisting of a number of repeated elements, all of the
same type as defined by the element type. Values contained by a “DataArray” are
encoded by sequentially including the values of each element.

The definition of a “DataArray” (“Matrix”) structure composed of the array dimension
and size and the element type definition. This can be represented in the following way:

Definition of
Array Element

 Definition of
Array Dimension

DataArray definition

The data block corresponding to such a structure would sequentially include the number
representing the array size (only if it is variable) followed by one or more values
corresponding to each array element. The number of values encoded for each element
depends only on the array element definition, and the total number of values also depends
on the array size.

Req 76 “DataArray” elements shall be encoded sequentially in a data block in the
order of their index in the array (i.e. from low to high index).

Req 77 Encoded data for a variable size “DataArray” shall include a number
specifying the array size whatever the encoding method used.

8.5.2 AbstractEncoding Element

The “AbstractEncoding” element is the XML schema implementation of the
“AbstractEncoding” UML class defined in clause §0. The schema snippet for this
element and its corresponding complex type is shown below:

<element name="AbstractEncoding" type="swe:AbstractEncodingType" abstract="true"
 substitutionGroup="swe:AbstractSWE"/>

<complexType name="AbstractEncodingType" abstract="true">
 <complexContent>
 <extension base="swe:AbstractSWEType"/>
 </complexContent>
</complexType>

This element serves as the substitution group for all XML elements that describe
encoding methods in this standard or in extensions of this standard.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

97

OGC 08-094 SWE Common Data Model

8.5.3 TextEncoding Element

The “TextEncoding” element is the XML schema implementation of the “TextEncoding”
UML class defined in clause §7.5.1. The schema snippet for this element and its
corresponding complex type is shown below:
<element name="TextEncoding" type="swe:TextEncodingType"
 substitutionGroup="swe:AbstractEncoding"/>

<complexType name="TextEncodingType">
 <complexContent>
 <extension base="swe:AbstractEncodingType">
 <attribute name="collapseWhiteSpaces" type="boolean" use="optional" default="true"/>
 <attribute name="decimalSeparator" type="string" use="optional" default="."/>
 <attribute name="tokenSeparator" type="string" use="required"/>
 <attribute name="blockSeparator" type="string" use="required"/>
 </extension>
 </complexContent>
</complexType>

This element is used to specify encoding of data values in a “Delimiter Separated Values”
format (a generalization of CSV) that is parameterized by its 4 XML attributes. The
following example shows a set of commonly used parameters:

<swe:TextEncoding tokenSeparator="," blockSeparator=" "/>

The “decimalSeparator” and “collapseWhiteSpaces” attributes have been omitted to
indicate that their default values should be used. This leads to a data stream where
individual tokens are separated by commas (i.e. the ‘,’ character), while complete blocks
are separated by spaces. It can for example be used to encode coordinate tuples of
“lat,lon,lat” values in a very readable manner, such as:

25.41,10.23,320 25.43,10.23,300 25.39,11.51,310

Special characters such as carriage returns (CR) or line feeds (LF) can be used as block or
token separators by using XML entities. For example new line characters are often used
as block separators to cleanly separate blocks of values on successive lines:

<swe:TextEncoding tokenSeparator=";" blockSeparator="
"/>

This corresponds to the following data block format:

25.41;10.23;320
25.43;10.23;300
25.39;11.51;310

This is compatible with the CSV format and is often used for compatibility with other
software.

98 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

More than one character can be used as a separator in order to avoid conflicts with
characters within the data values themselves. The following example shows this type of
usage:

<swe:TextEncoding tokenSeparator="||" blockSeparator="@@
"/>

This specifies the following data block format:

25.41||text with spaces||text with
carriage return||{special_chars}@@
25.42||text with spaces||text with
carriage return||{special_chars}@@
25.43||text with spaces||text with
carriage return||{special_chars}@@

A compliant parser can successfully parse such a data block because only sequences of
characters that perfectly match the separator definition indicate the end of a token or
block. Implementations are required to support sequences of characters of any length as
separators but small ones (i.e. 1 to 3 characters) are more efficient and should be used
whenever possible.

Both “tokenSeparator” and “blockSeparator” can have the same value but this is not
recommended as it makes the data block less readable and makes block-level
resynchronizations impossible in error prone transmissions.

8.5.4 Text Encoding Rules

The “TextEncoding” method encodes field values (especially numbers) by their text
representation rather than their binary representation. Special characters provide a way to
separate successive values. The EBNF syntax defined in ISO 14977 is used to formalize
the encoding rules, and thus all EBNF snippet provided in this section are normative.

Req 78 Compliant encoding/decoding software shall implement the “TextEncoding”
method by following the EBNF grammar defined in this clause.

8.5.4.1 Separators

Token separators are used between single values and the block separator is used at the
end of each block. The block corresponds to one element of the “DataArray” or
“DataStream” carrying the “values” element in which the values are encoded. There are
no special separators to delimitate nested records, arrays and choices.

Separators shall be chosen so that nothing in the dataset contains the exact same character
sequence as the one chosen for token or block separator.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

99

OGC 08-094 SWE Common Data Model

Req 79 Block and token separators used in the “TextEncoding” method shall be
chosen as a sequence of characters that never occur in the data values
themselves.

When the attribute “collapseWhiteSpaces” is set to true (its default value), all white space
characters surrounding the token and block separators shall be ignored. The BNF
grammar for separators is given below:

white-space = %d9 | %d10 | %d13 | %d32; (: TAB, LF, CR and SPACE :)

token-separator-chars = ? Value of the ‘tokenSeparator’ attribute ?;

block-separator-chars = ? Value of the ‘blockSeparator’ attribute ?;

token-separator = [white-space], token-separator-chars, [white-space];

block-separator = [white-space], block-separator-chars, [white-space];

White spaces around separators are in fact only allowed when the “collapseWhiteSpaces”
attribute is set to ‘true’ (which is the default).

8.5.4.2 Rules for Scalar Components

The value for a scalar component is encoded as its text representation, following XML
schema datatypes conventions.

scalar-value = xs:bool | xs:string | xs:double | xs:int | xs:date | xs:dateTime;

Nil values are included in the stream just like normal scalar values. Since their data type
has to match the field data type, there is no special treatment necessary for a decoder or
encoder. It is the responsibility of the application to match the data value against the list
of registered nil values for a given field in order to detect if it is associated to a nil reason
or if it is an actual measurement value.

8.5.4.3 Rules for Range Components

Range components are encoded as a sequence of two tokens (each one representing a
scalar value) separated by a token separator:
min-value = scalar-value;

max-value = scalar-value;

range-values = min-value, token-separator, max-value;

8.5.4.4 Rules for DataRecord and Vector

Values of fields of a “DataRecord” are recursively encoded following rules associated to
the type of component used for the field’s description (i.e. scalar, record, array, etc.) and
separated by token separators as expressed by the following grammar:

100 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

field-count = ? Number of fields in the record minus one ?; (: greater or equal to 0 :)

any-field-value = scalar-value | range-values | record-values | choice-values | array-values;

mandatory-field-value = any-field-value;

optional-field-value = (“Y”, any-field-value) | “N”;

field-value = mandatory-field-value | optional-field-value

record-values = field-value, <field-count> * (token-separator, field-value);

When a field is marked as optional in the definition, the token ‘Y’ or ‘N’ shall be inserted
in the data block. When the field value is omitted, the token ‘N’ is inserted alone. When it
is included, the token ‘Y’ is inserted followed by the actual field value.

Req 80 The ‘Y’ or ‘N’ token shall be inserted in a text encoded data block for all fields
that have the “optional” attribute set to ‘true’.

Coordinate values of “Vector” components are encoded with a similar syntax, but a
coordinate value can only be scalar and cannot be omitted:

coord-count = ? Number of coordinates in the vector minus one ?; (: greater or equal to 0 :)

vector-values = scalar-value, <coord-count> * (token-separator, scalar-value);

The following example shows how elements of an array defined as a “DataRecord” are
encoded with the text method:

<swe:DataArray definition="urn:ogc:def:data:OGC::ErrorCurve">
 <gml:description>Measurement error vs. temperature</gml:description>
 <swe:elementCount>
 <swe:Count definition="urn:ogc:def:data:OGC::PhysicalDimension">
 <swe:value>5</swe:value>
 </swe:Count>
 </swe:elementCount>
 <swe:elementType name="point">
 <swe:DataRecord>
 <gml:name>Error vs. Temperature</gml:name>
 <swe:field name="temp">
 <swe:Quantity definition="urn:ogc:def:property:OGC::Temperature">
 <gml:name>Temperature</gml:name>
 <swe:uom code="Cel"/>
 </swe:Quantity>
 </swe:field>
 <swe:field name="error">
 <swe:Quantity definition="urn:ogc:def:property:OGC::RelativeError">
 <gml:name>Relative Error</gml:name>
 <swe:uom code="%"/>
 </swe:Quantity>
 </swe:field>
 </swe:DataRecord>
 </swe:elementType>
 <swe:encoding>
 <swe:TextEncoding blockSeparator=" " tokenSeparator=","/>
 </swe:encoding>
 <swe:values>0,5 10,2 50,2 80,5 100,15</swe:values>
</swe:DataArray>

In this example, each element consists of a record of two values. The array element
structure also corresponds to one block so that tuples are separated by block separators

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

101

OGC 08-094 SWE Common Data Model

(here the ‘,’ character). Since the array is of size 5, there are 5 tuples listed sequentially in
the data block, each one composed of the two values of the data record separated by the
token separator. The pattern is “temp,error temp,error …” since values have to be listed
in the same order as the fields.

The following example shows the resulting encoded block when some of the fields are
optional:

<swe:DataStream>
 <gml:name>Aircraft Navigation</gml:name>
 <swe:elementType name="navData">
 <swe:DataRecord>
 <swe:field name="time">
 <swe:Time definition="urn:ogc:def:property:OGC::SamplingTime"
 referenceFrame="urn:ogc:def:crs:OGC::GPS">
 <swe:uom xlink:href="urn:ogc:def:unit:ISO:8601"/>
 </swe:Time>
 </swe:field>
 <swe:field name="speed">
 <swe:Quantity definition="urn:ogc:def:property:OGC::AirSpeed">
 <swe:uom code="m/s"/>
 </swe:Quantity >
 </swe:field>
 <swe:field name="location">
 <swe:Vector optional="true" referenceFrame="urn:ogc:def:crs:EPSG:6.7:4979">
 <swe:coordinate name="lat">
 <swe:Quantity definition="urn:ogc:def:property:OGC::GeodeticLatitude" axisID="Lat">
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="lon">
 <swe:Quantity definition="urn:ogc:def:property:OGC::Longitude" axisID="Long">
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="alt">
 <swe:Quantity definition="urn:ogc:def:property:OGC::EllipsoidalHeight" axisID="h">
 <swe:uom code="m"/>
 </swe:Quantity>
 </swe:coordinate>
 </swe:Vector>
 </swe:field>
 </swe:DataRecord>
 </swe:elementType>
 <swe:encoding>
 <swe:TextEncoding blockSeparator="
" tokenSeparator=","/>
 </swe:encoding>
 <swe:values>
 2007-10-23T15:46:12Z,15.3,Y,45.3,-90.5,311
 2007-10-23T15:46:22Z,25.3,N
 2007-10-23T15:46:32Z,20.6,Y,45.3,-90.6,312
 2007-10-23T15:46:52Z,18.9,Y,45.4,-90.6,315
 2007-10-23T15:47:02Z,22.3,N
 </swe:values>
</swe:DataStream>

In this example, the whole location “Vector” is marked as optional and thus the
coordinate values are only included when the optional flag is set to ‘Y’ in the stream.
Field values in each block have to be listed in the same order as the field properties in the
record definition thus following the “time,speed,Y,lat,lon,alt” or “time,speed,N” pattern
depending on whether or not the location is omitted.

102 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

8.5.4.5 Rules for DataChoice

A “DataChoice” is encoded with the text method by providing the name of the selected
item before the item values themselves. The name used shall correspond to the “name”
attribute of the “item” property element that describes the structure of the selected item.
selected-item-name = ? Value of the “name” attribute of the item selected ?;

selected-item-values = scalar-value | range-values | record-values | choice-values | array-
values;

choice-values = selected-item-name, token-separator, selected-item-values;

Req 81 The selected‐item‐name token shall correspond to the value of the “name”
attribute of the “item” property element that represents the selected item.

This is illustrated by the following example:

<swe:DataStream>
 <swe:elementType name="message">
 <swe:DataChoice>
 <swe:choiceValue>
 <swe:Category definition="urn:ogc:def:data:OGC::MessageType"/>
 </swe:choiceValue>
 <swe:item name="TEMP">
 <swe:DataRecord>
 <gml:name>Temperature Measurement</gml:name>
 <swe:field name="time">
 <swe:Time definition="urn:ogc:def:property:OGC::SamplingTime"
 referenceFrame="urn:ogc:def:crs:OGC::GPS">
 <swe:uom xlink:href="urn:ogc:def:unit:ISO:8601"/>
 </swe:Time>
 </swe:field>
 <swe:field name="temp">
 <swe:Quantity definition="urn:ogc:def:property:OGC::Temperature">
 <swe:uom code="Cel"/>
 </swe:Quantity>
 </swe:field>
 </swe:DataRecord>
 </swe:item>
 <swe:item name="WIND">
 <swe:DataRecord>
 <gml:name>Wind Measurement</gml:name>
 <swe:field name="time">
 <swe:Time definition="urn:ogc:def:property:OGC::SamplingTime"
 referenceFrame="urn:ogc:def:crs:OGC::GPS">
 <swe:uom xlink:href="urn:ogc:def:unit:ISO:8601"/>
 </swe:Time>
 </swe:field>
 <swe:field name="wind_speed">
 <swe:Quantity definition="urn:ogc:def:property:OGC::WindSpeed">
 <swe:uom code="km/h"/>
 </swe:Quantity>
 </swe:field>
 <swe:field name="wind_dir">
 <swe:Quantity definition="urn:ogc:def:property:OGC::WindDirectionToNorth">
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:field>
 </swe:DataRecord>
 </swe:item>
 </swe:DataChoice>
 </swe:elementType>
 <swe:encoding>
 <swe:TextEncoding blockSeparator="
" tokenSeparator=","/>

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

103

OGC 08-094 SWE Common Data Model

 </swe:encoding>
 <swe:values>
 TEMP,2009-05-23T19:36:15Z,25.5
 TEMP,2009-05-23T19:37:15Z,25.6
 WIND,2009-05-23T19:37:17Z,56.3,226.3
 TEMP,2009-05-23T19:38:15Z,25.5
 </swe:values>
</swe:DataStream>

This data stream interleaves different types of messages separated by the block separator
character. The element type is a “DataChoice” which means that each block is composed
of the item name ‘TEMP’ or ‘WIND’ (highlighted in yellow), followed by values of the
item. This example also demonstrates that items of a choice can be of different types and
length.

8.5.4.6 Rules for DataArray and Matrix

Values of each “DataArray” or “Matrix” element are recursively encoded following rules
associated to the type of component used for the element type (i.e. scalar, record, array,
etc.). Groups of values (or single value in the case of a scalar element type)
corresponding to each element are sequentially appended to the data block and separated
by token or block separators, depending on the context: When the “DataArray” or
“Matrix” is nested in another block component (i.e. “DataArray”, “Matrix” or
“DataStream”), its elements are separated by token separators, otherwise its elements are
separated by block separators.

A “DataArray” or “Matrix” can have a fixed or variable size, which leads to two slightly
different syntaxes for encoding values:

array-separator = token-separator | block-separator;

array-values = fixed-size-array-values | variable-size-array-values;

Fixed size arrays have a size of at least one, and are encoded as defined below:
fixed-element-count = ? Number of elements in a fixed size array minus one ?; (: greater or
equal to 0 since fixed size is always at least one :)

element-values = scalar-value | range-values | record-values | choice-values | array-values;

fixed-size-array-values = element-values, <fixed-element-count> * (array-separator, element-
values);

The following example illustrates how values of a fixed size 3x3 stress matrix can be text
encoded:

<swe:Matrix definition="urn:ogc:def:data:OGC::StressMatrix" referenceFrame="#SAMPLE_FRAME">
 <swe:elementCount>
 <swe:Count definition="urn:ogc:def:data:OGC::SpatialDimension">
 <swe:value>3</swe:value>
 </swe:Count>
 </swe:elementCount>
 <swe:elementType name="row">
 <swe:DataArray definition="urn:ogc:def:data:OGC::Row">

104 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

 <swe:elementCount>
 <swe:Count definition="urn:ogc:def:data:OGC::SpatialDimension">
 <swe:value>3</swe:value>
 </swe:Count>
 </swe:elementCount>
 <swe:elementType name="coef">
 <swe:Quantity definition="urn:ogc:def:property:OGC::Stress">
 <swe:uom code="MPa"/>
 </swe:Quantity>
 </swe:elementType>
 </swe:DataArray>
 </swe:elementType>
 <swe:encoding>
 <swe:TextEncoding blockSeparator=" " tokenSeparator=","/>
 </swe:encoding>
 <swe:values>0.36,0.48,-0.8 -0.8,0.6,0.0 0.48,0.64,0.6</swe:values>
</swe:Matrix>

Note that elements of the outer array (i.e. a matrix is a special kind of array) are separated
by block separators (i.e. each block surrounded by spaces corresponds to one row of the
matrix) while the inner array elements are separated by token separators.

When a “DataArray” (“Matrix”) is defined as variable size, its size can be 0 and the array
size is included as a token in the data block, before the actual array elements values are
listed:

variable-element-count = ? Number of elements in a variable size array ? (: greater or equal to
0 since variable size can be 0 for an empty array :)

variable-size-array-values = variable-element-count, <variable-element-count> * (array-
separator, element-values);

The following example shows how SWE Common can be used to encode a series of
irregular length profiles by using a variable size array:

<swe:DataStream>
 <swe:elementType name="profileData">
 <swe:DataRecord>
 <swe:field name="time">
 <swe:Time definition="urn:ogc:def:property:OGC:SamplingTime">
 <gml:name>Sampling Time</gml:name>
 <swe:uom xlink:href="urn:ogc:def:unit:ISO:8601"/>
 </swe:Time>
 </swe:field>
 <swe:field name="profilePoints">
 <swe:DataArray>
 <swe:elementCount>
 <swe:Count definition="urn:ogc:def:data:OGC::SpatialDimension"/>
 </swe:elementCount>
 <swe:elementType name="point">
 <swe:DataRecord>
 <swe:field name="depth">
 <swe:Quantity definition="urn:ogc:def:property:OGC:EllipsoidalHeight"
 referenceFrame="urn:ogc:def:crs:EPSG:7.1:4979" axisID="Z">
 <gml:name>Sampling Point Vertical Location</gml:name>
 <swe:uom code="m"/>
 </swe:Quantity>
 </swe:field>
 <swe:field name="salinity">
 <swe:Time definition="http://mmisw.org/ont/cf/parameter#sea_water_salinity">
 <gml:name>Salinity</gml:name>
 <swe:uom code="[ppth]"/>
 </swe:Time>
 </swe:field>

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

105

OGC 08-094 SWE Common Data Model

 </swe:DataRecord>
 </swe:elementType>
 </swe:DataArray>
 </swe:field>
 </swe:DataRecord>
 </swe:elementType>
 <swe:encoding>
 <swe:TextEncoding blockSeparator="@@
" tokenSeparator=","/>
 </swe:encoding>
 <swe:values>
 2005-05-16T21:47:12Z,5,0,45,10,20,20,30,30,35,40,40@@
 2005-05-16T22:43:05Z,4,0,45,10,20,20,30,30,35@@
 2005-05-16T23:40:52Z,5,0,45,10,20,20,30,30,35,40,40@@
 2005-05-17T00:45:22Z,6,0,45,10,20,20,30,30,35,40,40,50,45@@
 </swe:values>
</swe:DataStream>

The example shows data for 4 profiles with a variable number of measurements along the
vertical dimension. The number of measurements is indicated by a number in the data
block (highlighted in yellow) that is inserted before the measurements themelves. Since
the array is itself the element of a “DataStream”, elements of the array are separated by
token separators.

8.5.4.7 Rules for DataStream

Values of “DataStream” elements are encoded as a sequence of tokens in a way similar
to how “DataArray” values are encoded. Groups of encoded values corresponding to one
element of a “DataStream” are always separated by block separators, while all values
within these groups are separated by token separators:

stream-element-count = ? Number of elements in a data stream minus one ?; (: greater or equal
to 0 since the number of elements in a data stream is always at least one :)

stream-values = element-values, <stream-element-count> * (block-separator, element-values);

Examples of “DataStream” with “TextEncoding” have already been given in previous
sections.

8.5.5 XMLEncoding Element

The “XMLEncoding” element is the XML schema implementation of the
“XMLEncoding” UML class defined in clause §7.5.2. The schema snippet for this
element and its corresponding complex type is shown below:
<element name="XMLEncoding" type="swe:XMLEncodingType"
 substitutionGroup="swe:AbstractEncoding"/>

<complexType name="XMLEncodingType">
 <complexContent>
 <extension base="swe:AbstractEncodingType">
 <attribute name="defaultNamespace" type="anyURI" use="optional"/>
 </extension>
 </complexContent>
</complexType>

106 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

The XML Block encoding method is used when data values are to be encoded as light
weight XML elements. The way the XML elements are named and structured are tied to
the data structure specified using a hierarchy of data components.

This encoding method defines only one parameter: the “defaultNamespace” attribute
indicates the namespace URI to use for XML elements in the data stream. There is no
restriction on what this namespace can be but it is recommended to use a different
namespace than the one used by this standard and its dependencies. Ideally this
namespace should be unique to the dataset whose values are encoded using this method.
The declaration of such a namespace is shown below:

<swe:XMLEncoding defaultNamespace="http://www.epa.gov/swe_datasets/023451"/>

8.5.6 XML Encoding rules

The “XMLEncoding” method encodes field values (especially numbers) by their text
representation according to XML schema data types and wraps them with XML tags
carrying the name of the corresponding field. The hierarchy of components is fully
represented by XML tags, which makes this encoding more verbose but also well suited
for processing and validation with existing XML frameworks.

8.5.6.1 XML element names

Each data component of the tree is represented by an XML tag whose element name
corresponds to the “name” attribute of the soft-typed property containing the component
description. This property is most often “field”, “coordinate” or “elementType”,
depending on the parent aggregate.

Req 82 All data components shall be XML encoded with an element whose local
name shall correspond to the “name” attribute of the soft‐typed property
containing the data component.

Scalar components are thus encoded by an XML element with a text value whereas
aggregate components are encoded by an XML element itself containing sub-elements
representing the aggregate’s children.

8.5.6.2 Rules for Scalar Components

Scalar components are encoded by an XML element whose name corresponds to the soft-
typed property containing the component.

Req 83 Scalar components values shall be XML encoded with a single element
containing the value as its text content and no other child element.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

107

OGC 08-094 SWE Common Data Model

Examples of scalar values encoded in XML are given below:

<ns:status>OFF</ns:status>

<ns:time>2009-01-02T23:45:12Z</ns:time>

<ns:temp>25.5</ns:temp>

NIL values are included as the text content of the XML element representing scalar
components, in the same way regular scalar values would be included.

8.5.6.3 Rules for Range Components

Range components are encoded by an XML element whose name corresponds to the soft-
typed property containing the component which itself contain two min/max elements
carrying the range extreme values.

Req 84 Range components values shall be XML encoded with an element containing
two sub‐elements with local names “min” and “max” which respectively
contain the lower and upper values of the range as their text content.

Let us consider the example of “TimeRange” below:

<swe:field name="SurveyPeriod">
 <swe:TimeRange definition="urn:ogc:def:property:CEOS:eop:SurveyPeriod" referenceFrame=”…”>
 <swe:uom xlink:href="urn:ogc:def:unit:ISO:8601"/>
 </swe:TimeRange>
</swe:field>

Following Req 84, this component values are encoded as XML as shown below:

<ns:SurveyPeriod>
 <ns:min>2009-01-02T23:45:12Z</ns:min>
 <ns:max>2009-01-02T23:45:12Z</ns:max>
</ns:SurveyPeriod>

8.5.6.4 Rules for DataRecord and Vector

Aggregate components are encoded by using a parent element with the proper local name
as enforced by Req 82 to which elements for sub-components are appended (recursively).
Elements normally corresponding to record fields marked as optional can be completely
omitted since parsers can use element names to unambiguously know the ones that are
missing.

Req 85 “DataRecord” values shall be XML encoded with an element which contains
one sub‐element for each “field” that is not omitted.

108 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

Req 86 “Vector” values shall be XML encoded with an element which contains one
sub‐element for each “coordinate” of the aggregate.

The curve data example introduced in section §8.5.4.4 would be encoded in XML as
shown below:

<swe:encoding>
 <swe:XMLEncoding defaultNamespace="http://www.myorg.com/datasets/id"/>
</swe:encoding>

<swe:values xmlns:ns="http://www.myorg.com/datasets/id">
 <ns:point>
 <ns:temp>0</ns:temp>
 <ns:error>5</ns:error>
 </ns:point>
 <ns:point>
 <ns:temp>10</ns:temp>
 <ns:error>2</ns:error>
 </ns:point>
 <ns:point>
 <ns:temp>50</ns:temp>
 <ns:error>2</ns:error>
 </ns:point>
 <ns:point>
 <ns:temp>80</ns:temp>
 <ns:error>5</ns:error>
 </ns:point>
 <ns:point>
 <ns:temp>100</ns:temp>
 <ns:error>15</ns:error>
 </ns:point>
</swe:values>

In this example, the array element type is called ‘point’ and is defined as a “DataRecord”
that contains two scalar fields called ‘temp’ and ‘error’. These soft-typed property names
are thus used as the element local names of encoded values.

The following example shows how the second sample dataset from section §8.5.4.4 that
makes use of optional fields is encoded with the “XMLEncoding” method:

<swe:encoding>
 <swe:XMLEncoding defaultNamespace="urn:myorg:dataset:X156822"/>
</swe:encoding>

<swe:values xmlns:ns="urn:myorg:dataset:X156822">
 <ns:navData>
 <ns:time>2007-10-23T15:46:12Z</ns:time>
 <ns:speed>15.3</ns:speed>
 <ns:location>
 <ns:lat>45.3</ns:lat>
 <ns:lon>-90.5</ns:lon>
 <ns:alt>311</ns:alt>
 </ns:location>
 </ns:navData>
 <ns:navData>
 <ns:time>2007-10-23T15:46:22Z</ns:time>
 <ns:speed>25.3</ns:speed>
 </ns:navData>
 <ns:navData>
 <ns:time>2007-10-23T15:46:32Z</ns:time>
 <ns:speed>20.6</ns:speed>
 <ns:location>

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

109

OGC 08-094 SWE Common Data Model

 <ns:lat>45.3</ns:lat>
 <ns:lon>-90.6</ns:lon>
 <ns:alt>312</ns:alt>
 </ns:location>
 </ns:navData>
</swe:values>

The missing ‘location’ value in the second stream element has been completely omitted.

8.5.6.5 Rules for DataArray, Matrix and DataStream

Block components are slightly different because they can either include the encoded data
block in their “values” element or be nested into another block component which
includes the encoded data block.

In the case of all “DataStream” instances or when the “DataArray” or “Matrix” includes
its own encoded values, only the array elements are actually encoded within the “values”
XML element. The two previous examples of this section illustrate this case.

Req 87 Values of each element of a “DataArray”, “Matrix” or “DataStream” shall be
encapsulated in a separate XML element whose local name shall be the value
of the “name” attribute of its “elementType” element.

When a “DataArray” or “Matrix” is nested in a parent block component (and thus does
not encapsulate encoded values itself), array elements are encoded as defined above but
are also wrapped in an element carrying the array name.

Req 88 All elements of each nested “DataArray” and “Matrix” shall be encapsulated
in a parent element as specified in Req 82 and this element shall also have an
“elementCount” attribute that specifies the array size.

The following example builds on the sample profile series dataset introduced in clause
§8.5.4.6 and shows how the same values could be encoded with the “XMLEncoding”
method:

<swe:encoding>
 <swe:XMLEncoding defaultNamespace="urn:myorg:dataset:PS3658"/>
</swe:encoding>

<swe:values xmlns:ns="urn:myorg:dataset:PS3658">
 <ns:profileData>
 <ns:time>2005-05-16T21:47:12Z</ns:time>
 <ns:profilePoints elementCount="5">
 <ns:point>
 <ns:depth>0</ns:depth>
 <ns:salinity>45</ns:salinity>
 </ns:point>
 <ns:point>
 <ns:depth>10</ns:depth>
 <ns:salinity>20</ns:salinity>
 </ns:point>
 <ns:point>

110 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

 <ns:depth>20</ns:depth>
 <ns:salinity>30</ns:salinity>
 </ns:point>
 <ns:profilePoint>
 <ns:depth>30</ns:depth>
 <ns:salinity>35</ns:salinity>
 </ns:point>
 <ns:profilePoint>
 <ns:depth>40</ns:depth>
 <ns:salinity>40</ns:salinity>
 </ns:point>
 </ns:profilePoints>
 </ns:profileData>
 <ns:profileData>
 <ns:time>2005-05-16T22:43:05Z</ns:time>
 <ns:profilePoints elementCount="4">
 <ns:point>
 <ns:depth>0</ns:depth>
 <ns:salinity>45</ns:salinity>
 </ns:point>
 <ns:point>
 <ns:depth>10</ns:depth>
 <ns:salinity>20</ns:salinity>
 </ns:point>
 <ns:point>
 <ns:depth>20</ns:depth>
 <ns:salinity>30</ns:salinity>
 </ns:point>
 <ns:point>
 <ns:depth>30</ns:depth>
 <ns:salinity>35</ns:salinity>
 </ns:point>
 </ns:profilePoints>
 </ns:profileData>
 ...
</swe:values>

This example shows how the array size is specified on the ‘profilePoints’ element
corresponding to each nested array, and how element local names correspond to the
“name” attributes of each component’s parent property.

ional encoding method that is used to encode data

Req
ass shall first pass the “Simple Encodings Schema” conformance test

Req
 as satisfy all

8.6 Requirements Class: Advanced Encodings Schema

This requirement class defines an addit
values as raw or base64 binary blocks.

 89 An implementation passing the “Advanced Encodings Schema” conformance
test cl
class.

 90 A compliant XML instance shall be valid with respect to the grammar defined
in the “advanced_encodings.xsd” XML schema as well
Schematron patterns defined in “advanced_encodings.sch”.

Note: The raw binary encoding option is not usable within an XML document since it
makes use of characters not allowed in XML. Raw binary data can only be provided

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

111

OGC 08-094 SWE Common Data Model

separately from the XML document and eventually referenced via an xlink. If there is a
requirement for binary data to be included as text content of an XML element, the base64
option should be used.

e schema snippet for this
element and its corresponding complex type is shown below:

ngType"

8.6.1 BinaryEncoding Element

The “BinaryEncoding” element is the XML schema implementation of the
“BinaryEncoding” UML class defined in clause §7.6.1. Th

<element name="BinaryEncoding" type="swe:BinaryEncodi
 substitutionGroup="swe:AbstractEncoding"/>

<complexType name="BinaryEncodingType">
 <complexContent>
 <extension base="swe:AbstractEncodingType">
 <sequence>
 <element name="member" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <group ref="swe:ComponentOrBlock"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 <attribute name="byteOrder" type="swe:ByteOrderType" use="required"/>
 <attribute name="byteEncoding" type="swe:ByteEncodingType" use="required"/>
 <attribute name="byteLength" type="integer" use="optional"/>
 </extension>
 </complexContent>
</complexType>

This element makes use of two simple types implementing the “ByteEncoding” and
“ByteOrder” UML enumerations respectively:

"> <simpleType name="ByteEncodingType
 <restriction base="string">
 <enumeration value="base64"/>
 <enumeration value="raw"/>
 </restriction>
</simpleType>

<simpleType name="ByteOrderType">
 <restriction base="string">
 <enumeration value="bigEndian"/>
 <enumeration value="littleEndian"/>
 </restriction>
</simpleType>

The member property allow a choice of “Component” or “Block” sub-elements as defined
below:
<group name="ComponentOrBlock">
 <choice>
 <element ref="swe:Component"/>
 <element ref="swe:Block"/>
 </choice>
</group>

The “Component” element implements the UML class with the same name. It is used to
specify encoding parameters of scalar components and is shown below:

112 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

<element name="Component" type="swe:ComponentType" substitutionGroup="gml:AbstractObject"/>

<complexType name="ComponentType">
 <sequence>
 <element ref="swe:ComponentExtensibilityPoint" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="encryption" type="anyURI" use="optional"/>
 <attribute name="significantBits" type="integer" use="optional"/>
 <attribute name="bitLength" type="integer" use="optional"/>
 <attribute name="byteLength" type="integer" use="optional"/>
 <attribute name="dataType" type="anyURI" use="required"/>
 <attribute name="ref" type="string" use="required"/>
 <attribute ref="gml:id" use="optional"/>
</complexType>

The “Block” element implements the UML class with the same name. It is used to specify
padding, encryption and/or compression of a block of data corresponding to an aggregate
component and is shown below:

<element name="Block" type="swe:BlockType" substitutionGroup="gml:AbstractObject"/>

<complexType name="BlockType">
 <sequence>
 <element ref="swe:BlockExtensibilityPoint" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="compression" type="anyURI" use="optional"/>
 <attribute name="encryption" type="anyURI" use="optional"/>
 <attribute name="paddingBytes-after" type="integer" use="optional"/>
 <attribute name="paddingBytes-before" type="integer" use="optional"/>
 <attribute name="byteLength" type="integer" use="optional"/>
 <attribute name="ref" type="string" use="required"/>
 <attribute ref="gml:id" use="optional"/>
</complexType>

These elements allow for the detailed specification of the encoding parameters associated
to components of the data description tree as discussed in clause §7.6.1. The “ref”
attribute takes a value of a particular syntax that allows pointing to any data component.
The syntax is a ‘/’ separated list of component names, starting with the name of the root
component and listed hierarchically. Each of these component names shall match the
value of the “name” attribute defined in the data definition tree.

Req 91 The “ref” attribute of the “Component” and “Block” elements shall contain a
hierarchical ‘/’ separated list of data component names.

The “ref” attribute used on the “Component” element shall point exclusively to a scalar
component while it should point to an aggregate component when used on the “Block”
element.

Req 92 The “ref” attribute shall reference a scalar component when used on the
“Component” element and an aggregate component when used on the
“Block” element.

The following binary encoded image data illustrates how this path like syntax is used:

<swe:DataArray definition="urn:ogc:def:data:OGC::Image">
 <swe:elementCount>

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

113

OGC 08-094 SWE Common Data Model

 <swe:Count definition="urn:ogc:def:data:OGC::ImageDimension">
 <swe:value>256</swe:value>
 </swe:Count>
 </swe:elementCount>
 <swe:elementType name="row">
 <swe:DataArray definition="urn:ogc:def:data:OGC::Row">
 <swe:elementCount>
 <swe:Count definition="urn:ogc:def:data:OGC::ImageDimension">
 <swe:value>256</swe:value>
 </swe:Count>
 </swe:elementCount>
 <swe:elementType name="pixel">
 <swe:DataRecord definition="urn:ogc:def:data:OGC::Pixel">
 <swe:field name="red">
 <swe:Quantity definition="urn:ogc:def:property:OGC::Radiance">
 <gml:description>Radiance measured on band1</gml:description>
 <swe:uom code="W.m-2.Sr-1.um-1"/>
 </swe:Quantity>
 </swe:field>
 <swe:field name="green">
 <swe:Quantity definition="urn:ogc:def:property:OGC::Radiance">
 <gml:description>Radiance measured on band2</gml:description>
 <swe:uom code="W.m-2.Sr-1.um-1"/>
 </swe:Quantity>
 </swe:field>
 <swe:field name="blue">
 <swe:Quantity definition="urn:ogc:def:property:OGC::Radiance">
 <gml:description>Radiance measured on band3</gml:description>
 <swe:uom code="W.m-2.Sr-1.um-1"/>
 </swe:Quantity>
 </swe:field>
 </swe:DataRecord>
 </swe:elementType>
 <swe:encoding>
 <swe:BinaryEncoding byteOrder="bigEndian" byteEncoding="base64">
 <swe:member>
 <swe:Component dataType="urn:ogc:def:data:OGC:unsignedByte" ref="row/pixel/red"/>
 </swe:member>
 <swe:member>
 <swe:Component dataType="urn:ogc:def:data:OGC:unsignedByte" ref="row/pixel/green"/>
 </swe:member>
 <swe:member>
 <swe:Component dataType="urn:ogc:def:data:OGC:unsignedByte" ref="row/pixel/blue"/>
 </swe:member>
 </swe:BinaryEncoding>
 </swe:encoding>
 <swe:values>
 FZEFZE564864HGZ6RG54Z684F86R7H4Z84FR8Z4685E468GTA4E8G4A6...
 </swe:values>
 </swe:DataArray>
 </swe:elementType>
</swe:DataArray>

In this example the root component is the element type of the array in which the values
are embedded (i.e. the outer array). All paths used in the encoding section thus start with
this component name (i.e. ‘row’) and then hierarchically list the names that lead to the
scalar component whose data type is being defined.

8.6.2 Binary Encoding Rules

The “BinaryEncoding” method encodes field values by their binary representation. The
EBNF syntax defined in ISO 14977 is used to formalize the encoding rules, and thus all
EBNF snippet provided in this section are normative.

114 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

Req 93 Compliant encoding/decoding software shall implement the
“BinaryEncoding” method by following the EBNF grammar defined in this
clause.

The encoding rules are similar to those of the “TextEncoding” method except that
numerical values are encoded directly as their binary representation and that no
separators are used. Separators are not needed because data types have either a fixed size
or contain length information (See String encoding).

8.6.2.1 Rules for Scalar Components

8.6.2.1.1 Binary Data Types

The value for a scalar component is encoded as its binary representation. This especially
applies to numerical values that are encoded directly in binary form in accordance to the
selected data type and the value of the “byteOrder” attribute.

scalar-value = ? binary value encoded according to data type definition and byte order ?;

This standard defines the list of data types that are allowed for scalar values and the
corresponding URNs to use in an XML instance of the “BinaryEncoding” element.

Req 94 The value of the “dataType” XML attribute of the “Component” element shall
be one of the URNs listed in Table 8.1.

These data types are specified in the normative table below:

Common Name URN to use in “dataType” attribute Description

Signed Byte urn:ogc:def:data:OGC:signedByte
8-bits signed binary integer.
Range: −128 to +127

Unsigned Byte urn:ogc:def:data:OGC:unsignedByte
8-bits unsigned binary integer.
Range: 0 to +255

Signed Short urn:ogc:def:data:OGC:signedShort
16-bits signed binary integer.
Range: −32,768 to +32,767

Unsigned Short urn:ogc:def:data:OGC:unsignedShort
16-bits unsigned binary integer.
Range: 0 to +65,535

Signed Int urn:ogc:def:data:OGC:signedInt
32-bits signed binary integer.
Range: −2,147,483,648 to +2,147,483,647

Unsigned Int urn:ogc:def:data:OGC:unsignedInt
32-bits unsigned binary integer.
Range: 0 to +4,294,967,295

Signed Long urn:ogc:def:data:OGC:signedLong
64-bits signed binary integer.
Range: −2^63 to +2^63 - 1

Unsigned Long urn:ogc:def:data:OGC:unsignedLong
64-bits unsigned binary integer.
Range: 0 to +2^64 - 1

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

115

OGC 08-094 SWE Common Data Model

Custom Integer* urn:ogc:def:data:OGC:integer Custom size integer (the actual length is specified by the
“bitLength” or “byteLength” attribute).

Half Precision
Float

urn:ogc:def:data:OGC:float16 16-bits single precision floating point number as defined in
IEEE 754.

Float urn:ogc:def:data:OGC:float32 32-bits single precision floating point number as defined in
IEEE 754.

Double
urn:ogc:def:data:OGC:double or

urn:ogc:def:data:OGC:float64
64-bits double precision floating point number as defined
in IEEE 754.

Long Double urn:ogc:def:data:OGC:float128 128-bits quadruple precision floating point number as
defined in IEEE 754.

UTF-8 String
(Variable Length)

urn:ogc:def:data:OGC:string:utf-8

“byteLength” attribute is not set.

Variable length string composed of a 2-bytes unsigned
short value indicating its length followed by a sequence of
UTF-8 encoded characters as specified by the Unicode
Standard (§2.5).

UTF-8 String*
(Fixed Length)

urn:ogc:def:data:OGC:string:utf-8

“byteLength” attribute is set.

Fixed length string composed of a sequence of UTF-8
encoded characters as specified by the Unicode Standard
(§2.5), and padded with 0 characters.

Table 8.1 – Allowed Binary Data Types

The data type should be chosen so that its range allows the encoding of all possible
values for a field (i.e. compatible with the field representation and constraints) including
NIL values. This means that certain combinations of data type and components are not
allowed. If a scalar component does not specify any constraint, any data type compatible
with its representation can be used and it is the responsibility of the implementation to
insure that all future values for the component will “fit” in the data type.

Req 95 The chosen data type shall be compatible with the scalar component
representation, constraints and NIL values.

Only data types marked with an asterisk allow the usage of the “byteLength” or
“bitLength” attribute to customize their size. Usage of these attributes is forbidden on all
other data types since their size is fixed and already specified in the description column
(in the case of a variable length string, the size is included in the stream). This is enforced
by a Schematron pattern.

Req 96 The “bitLength” and “byteLength” XML attribute shall not be set when a
fixed size data type is used.

The last column of the table indicates how each data type shall be binary encoded into a
low level byte sequence. The actual order of bytes composing a multi-bytes data type
depends on the value of the “byteOrder” attribute. The ‘bigEndian’ option indicates that
muti-bytes data types are encoded with the most significant byte (MSB) first, while
selecting ‘littleEndian’ signifies that encoding is done with the less significant byte (LSB)
first. A UTF-8 string is not considered as a multi-byte data type and is always encoded in
the same order, as specified by the Unicode Standard.

116 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

Req 97 Binary data types in Table 8.1 shall be encoded according to their definition
in the description column and the value of the “byteOrder” attribute.

Nil values are included in the stream just like normal scalar values. Since their data type
has to match the field data type, there is no special treatment necessary for a decoder or
encoder. It is the responsibility of the application to match the data value against the list
of registered nil values for a given field in order to detect if it is associated to a nil reason
or if it is an actual measurement value.

The value of the “byteEncoding” XML attribute allows the selection of either the ‘raw’ or
‘base64’ encoding methods. When the ‘raw’ option is selected, bytes resulting from the
data type encoding process defined above are inserted in the binary stream directly. This
is refered to as ‘raw binary’ encoding. When the ‘base64’ option is selected, each byte
resulting from this encoding process is also encoded in Base64 before being included in
the stream. Scalar values can be Base64 encoded one by one or by blocks as long as the
resulting stream is compatible with requirements of IETF RFC 2045.

Req 98 When the ‘base64’ encoding option is selected, binary data shall be encoded
with the Base64 technique defined in IETF RFC 2045 Section 6.8: Base64
Content‐Transfer‐Encoding.

8.6.2.2 Rules for Range Components

Range components are encoded as a sequence of two binary values (each one
representing a scalar value):

min-value = scalar-value;

max-value = scalar-value;

range-values = min-value, max-value;

Values are always included in the same order: The lower bound of the range first,
followed by the upper bound.

8.6.2.3 Rules for DataRecord and Vector

Values of fields of a “DataRecord” are recursively encoded following rules associated to
the type of component used as the field’s description (i.e. scalar, record, array, etc.) and
appended to the binary block:

field-count = ? Number of fields in the record ?; (: greater or equal to 1 :)

any-field-value = scalar-value | range-values | record-values | choice-values | array-values |
block_values;

mandatory-field-value = any-field-value;

optional-field-value = (“Y”, any-field-value) | “N”;

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

117

OGC 08-094 SWE Common Data Model

field-value = mandatory-field-value | optional-field-value

record-values = <field-count> * field-values;

When a field is marked as optional in the definition, the 1-byte value ‘Y’ (ASCII code
89) or ‘N’ (ASCII code 78) shall be inserted in the data block. When the field value is
omitted, the token ‘N’ is inserted alone. When it is included, the token ‘Y’ is inserted
followed by the actual field value.

Req 99 The ‘Y’ or ‘N’ 1‐byte token shall be inserted in a binary encoded data block
for all “DataRecord” fields that have the “optional” attribute set to ‘true’.

Coordinate values of “Vector” components are encoded with a similar syntax, but a
coordinate value can only be scalar and cannot be omitted:

coord-count = ? Number of coordinates in the vector ?; (: greater or equal to 1 :)

vector-values = <coord-count> * scalar-value;

Vector coordinates cannot be optional.

8.6.2.4 Rules for DataChoice

A “DataChoice” is encoded with the binary method by providing the name of the
selected item before the item values themselves. The name used shall correspond to the
“name” attribute of the “item” property element that describes the structure of the
selected item, and be encoded as a variable length string datatype.

selected-item-name = ? Value of the “name” attribute of the item selected ?;

selected-item-value = scalar-value | range-values | record-values | choice-values | array-
values;

choice-values = selected-item-name, selected-item-value;

Req 100 The selected‐item‐name token shall correspond to the value of the “name”
attribute of the “item” property element that represents the selected item.

8.6.2.5 Rules for DataArray and Matrix

Values of each “DataArray” or “Matrix” element are recursively encoded following rules
associated to the type of component used for the element type (i.e. scalar, record, array,
etc.). Groups of values (or single value in the case of a scalar element type)
corresponding to each element are sequentially appended to the data block. Since a
“DataArray” or “Matrix” can have a fixed or variable size, two slightly different syntaxes
for encoding values are possible:
array-values = fixed-size-array-values | variable-size-array-values;

118 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

element-value = scalar-value | range-values | record-values | choice-values | array-values |
block_values;

Fixed size arrays have a size of at least one, and are encoded as defined below:
fixed-element-count = ? Number of elements in a fixed size array ?;

fixed-size-array-values = <fixed-element-count> * element-value;

When a “DataArray” (“Matrix”) is defined as variable size, its size can be 0 and the array
size is included as a token in the data block, before the actual array elements values are
listed:

variable-element-count = ? Number of elements in a variable size array ?;

variable-size-array-values = variable-element-count, <variable-element-count> * element-value;

When the array size is 0, only this number is encoded and no element values are included
in the data block.

8.6.2.6 Rules for DataStream

Values of “DataStream” elements are encoded exactly as elements of an array:
stream-element-count = ? Number of elements in a data stream ?;

stream-values = <stream-element-count> * element-value;

A data stream usually contains at least one value but could be empty.

8.6.2.7 Block encoded components

Binary encoding parameters can be specified for aggregate components in order to insert
padding or achieve compression or encryption of whole or part of a dataset. This is
achieved by using a “Block” element with its “ref” attribute pointing to an aggregate
component in the data description and setting one or more of the “compression”,
“encryption” or “padding” attributes.

When padding is specified, padding bytes with a value of zero are inserted before (when
“paddingBytesBefore” is set) and/or after (when “paddingBytesAfter” is set) the whole
block of values corresponding to the aggregate components. Decoders should skip these
bytes completely.

This standard does not specify specific compression or encryption methods. Future
extensions can define single or groups of methods to target specific application domains.

Compression methods can be specific such as the ones for video (e.g. MPEG-2, MPEG-4,
etc.) or imagery (e.g. JPEG, JPEG2000, etc.) or generic so that they are applicable for
any kind of data (e.g. GZIP, BZIP, etc.). They can be lossy or lossless. When a

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

119

OGC 08-094 SWE Common Data Model

compression method results in variable length data blocks, the method should also define
how the the block length is specified.

120 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

Annex A
(normative)

Abstract Conformance Test Suite

A.1 Conformance Test Class: Core Concepts

Tests described in this section shall be used to test conformance of software and encoding
models implementing the Requirements Class: Core Concepts (normative core).

A.1.1 Core concepts are the base of all derived models

A conformant model or software shall implement the concepts defined in the core of this
standard in a way that is consistent with their definition.

a) Reference: Clause 6, Req 1

b) Test Type: Conformance

c) Test Method: Inspect the model or software implementation to verify the above.

A.1.2 A boolean representation consists of a boolean value

A boolean representation shall at least consist of a boolean value.

a) Reference: Clause 6.2.1, Req 2

b) Test Type: Conformance

c) Test Method: Inspect the model or software implementation to verify the above.

A.1.3 A categorical representation consists of a token with a code space

A categorical representation shall at least consist of a category identifier and information
describing the value space of this identifier.

a) Reference: Clause 6.2.2, Req 3

b) Test Type: Conformance

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

121

OGC 08-094 SWE Common Data Model

c) Test Method: Inspect the model or software implementation to verify the above.

A.1.4 A continuous numerical representation consists of a number with a scale

A continuous numerical representation shall at least consist of a decimal number and the
scale (or unit) used to express this number.

a) Reference: Clause 6.2.3, Req 4

b) Test Type: Conformance

c) Test Method: Inspect the model or software implementation to verify the above.

A.1.5 A countable representation consists of an integer number

A countable representation shall at least consist of an integer number.

a) Reference: Clause 6.2.4, Req 5

b) Test Type: Conformance

c) Test Method: Inspect the model or software implementation to verify the above.

A.1.6 A textual representation is implemented as a character string

A textual representation shall at least consist of a character string.

a) Reference: Clause 6.2.5, Req 6

b) Test Type: Conformance

c) Test Method: Inspect the model or software implementation to verify the above.

A.1.7 Semantic definition of each measured property shall be provided

All data values shall be associated with a clear definition of the property that the value
represents.

a) Reference: Clause 6.3.2, Req 7

b) Test Type: Conformance

c) Test Method: Inspect the model or software implementation to verify the above.

122 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

A.1.8 References to semantical information shall be resolvable

If robust semantics are provided by referencing out-of-band information, the locators or
identifiers used to point to this information shall be resolvable by some well-defined
method.

a) Reference: Clause 6.3.2, Req 8

b) Test Type: Conformance

c) Test Method: Inspect the model or software implementation to verify the above.

A.1.9 A temporal quantity is associated to a temporal reference frame

A temporal quantity shall be expressed with respect to a well defined temporal reference
frame and this frame shall be specified.

a) Reference: Clause 6.3.3, Req 9

b) Test Type: Conformance

c) Test Method: Inspect the model or software implementation to verify the above.

A.1.10 A spatial quantity is associated to an axis of a spatial reference frame

A spatial quantity shall be expressed with respect to the axes of a well defined spatial
reference frame and this frame shall be specified.

a) Reference: Clause 6.3.3, Req 10

b) Test Type: Conformance

c) Test Method: Inspect the model or software implementation to verify the above.

A.1.11 A NIL value maps a reserved value to a reason

A model of a NIL value shall always include a mapping between the selected reserved
value and a well-defined reason.

a) Reference: Clause 6.4.2, Req 11

b) Test Type: Conformance

c) Test Method: Inspect the model or software implementation to verify the above.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

123

OGC 08-094 SWE Common Data Model

A.1.12 Aggregate data types are modeled according to ISO 11404

A conformant model or software shall implement aggregate data structures in a way that
is consistent with definitions of ISO 11404.

a) Reference: Clause 6.5, Req 12

b) Test Type: Conformance

c) Test Method: Inspect the model or software implementation to verify the above.

A.1.13 Encoding methods shall be defined for all possible data structures

All encoding methods shall be applicable to any arbitrarily complex data structures as
long as they are made of the data components described in clause 6.5.

a) Reference: Clause 6.6, Req 13

b) Test Type: Conformance

c) Test Method: Inspect the model or software implementation to verify the above.

A.2 Conformance Test Class: Simple Components UML Package

Tests described in this section shall be used to test conformance of software and encoding
models implementing the Requirements Class: Basic Types and Simple Components
Packages.

Software implementations shall at least be tested against this test class to claim
conformance to this standard. Additionally, conformance of XML documents ingested
and generated by the software shall be tested by using conformance test classes A.7 to
A.12 when seeking compliance with the XML encodings defined in this standard.

A.2.1 Dependency on core

An implementation passing the “Simple Components UML Package” conformance test
class shall first pass the core conformance test class.

d) Reference: Clause 7.2, Req 14

e) Test Type: Conformance

f) Test Method: Apply all tests described in section A.1

124 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

A.2.2 Compliance with UML models defined in this package

A compliant encoding or software shall correctly implement all UML classes defined in
the “Simple Components” and “Basic Types” packages.

a) Reference: Clause 7.2, Req 15

b) Test Type: Conformance

c) Test Method: Inspect the model or software implementation to verify the above.

A.2.3 Compliance with UML models defined in ISO 19103

A compliant encoding or software shall correctly implement all UML classes defined in
ISO 19103 that are used in this standard.

a) Reference: Clause 7.2, Req 16

b) Test Type: Conformance

c) Test Method: Inspect the model or software implementation to verify the above.

A.2.4 Compliance with UML models defined in ISO 19136

A compliant encoding or software shall correctly implement all UML classes defined in
ISO 19136 (GML) that are used in this standard.

a) Reference: Clause 7.2, Req 17

b) Test Type: Conformance

c) Test Method: Inspect the model or software implementation to verify the above.

A.2.5 Unknown extensions shall be ignored gracefully

A compliant implementation shall not generate errors when the content of an “extension”
attribute is unknown.

a) Reference: Clause 7.2.3, Req 18

b) Test Type: Conformance

c) Test Method: Verify that the implementation is able to handle extensions by, at
the minimum, ignoring them without triggering errors. If extensions are supported
check that they are made available via the generic “extension” property.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

125

OGC 08-094 SWE Common Data Model

A.2.6 A definition URI is mandatory on all simple components

The “definition” attribute shall be specified by all instances of concrete classes derived
from “AbstractSimpleComponent”.

a) Reference: Clause 7.2.4, Req 19

b) Test Type: Conformance

c) Test Method: Verify that the implementation of the conceptual model has a
constraint that enforces the above.

A.2.7 Reference frames are described using ISO 19111 models

The URI used as the value of the “referenceFrame” attribute shall identify a coordinate
reference system as defined by ISO 19111.

a) Reference: Clause 7.2.4, Req 20

b) Test Type: Conformance

c) Test Method: Check that the CRS identifier can be mapped to an ISO 19111
Coordinate Reference System definition. This definition can be obtained from a
well known registry (e.g. EPSG), the local machine, or a remote location if the
identifier (URI) can be dynamically resolved to it.

A.2.8 The value of the axisID and axisAbbrev attributes match

The value of the “axisID” attribute shall correspond to the “axisAbbrev” attribute of one
of the coordinate system axes listed in the specified reference frame definition.

a) Reference: Clause 7.2.4, Req 21

b) Test Type: Conformance

c) Test Method: Verify that the implementation of the conceptual model has a
constraint that enforces the above.

A.2.9 The axis ID is always specified on scalar spatial properties

The “axisID” attribute shall be specified by all instances of concrete classes derived from
“AbstractSimpleComponent” and representing a property projected along a spatial axis.

a) Reference: Clause 7.2.4, Req 22

126 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

b) Test Type: Conformance

c) Test Method: Verify that the implementation of the conceptual model has a
constraint that enforces the above.

A.2.10 The reference frame is specified on scalar spatial properties not part of a vector

The “referenceFrame” attribute shall be specified by all instances of concrete classes
derived from “AbstractSimpleComponent” and representing a property projected along a
spatial or temporal axis, except if it is inherited from a parent aggregate (Vector or
Matrix).

a) Reference: Clause 7.2.4, Req 23

b) Test Type: Conformance

c) Test Method: Verify that the implementation of the conceptual model has a
constraint that enforces the above.

A.2.11 The value of a component satisfies the constraints

The property value (formally the representation of the property value) attached to an
instance of a class derived from “AbstractSimpleComponent” shall satisfy the constraints
specified by this instance.

a) Reference: Clause 7.2.4, Req 24

b) Test Type: Conformance

c) Test Method: Verify that the implementation of the conceptual model has a
constraint that enforces the above.

A.2.12 All derived simple components have an optional value attribute

All concrete classes derived from the “AbstractSimpleComponent” class (directly or
indirectly) shall define an optional “value” attribute and use it as defined by this standard.

a) Reference: Clause 7.2.4, Req 25

b) Test Type: Conformance

c) Test Method: Inspect the model or software implementation to verify the above.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

127

OGC 08-094 SWE Common Data Model

A.2.13 The list of values allowed in a Category component is a subset of the code space

When an instance of the “Category” class specifies a code space, the list of allowed
tokens provided by the “constraint” property of this instance shall be a subset of the
values listed in this code space.

a) Reference: Clause 7.2.7, Req 26

b) Test Type: Conformance

c) Test Method: Verify that the implementation of the conceptual model has a
constraint that enforces the above.

A.2.14 A Category component always specifies a list of possible values

An instance of the “Category” class shall either specify a code space or an enumerated
list of allowed tokens, or both.

a) Reference: Clause 7.2.7, Req 27

b) Test Type: Conformance

c) Test Method: Verify that the implementation of the conceptual model has a
constraint that enforces the above.

A.2.15 The value of a Category component is one defined in the code space

When an instance of the “Category” class specifies a code space, the value of the
property represented by this instance shall be equal to one of the entries of the code
space.

a) Reference: Clause 7.2.7, Req 28

b) Test Type: Conformance

c) Test Method: Verify that the implementation of the conceptual model has a
constraint that enforces the above.

A.2.16 A reference frame is always specified on a Time component

The “referenceFrame” attribute inherited from “AbstractSimpleComponent” shall be set
on all instances of the “Time” class.

a) Reference: Clause 7.2.10, Req 29

128 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

b) Test Type: Conformance

c) Test Method: Verify that the implementation of the conceptual model has a
constraint that enforces the above.

A.2.17 The time of reference is expressed relative to the origin of the reference frame

The value of the “referenceTime” attribute shall be expressed with respect to the system
of reference indicated by the “referenceFrame” attribute.

a) Reference: Clause 7.2.10, Req 30

b) Test Type: Conformance

c) Test Method: Verify that the implementation of the conceptual model has a
constraint that enforces the above.

A.2.18 The local and reference frames of a Time component are different

The “localFrame” attribute of an instance of the “Time” class shall have a different value
than the “referenceFrame” attribute.

a) Reference: Clause 7.2.10, Req 31

b) Test Type: Conformance

c) Test Method: Verify that the implementation of the conceptual model has a
constraint that enforces the above.

A.2.19 The scale of a Time component is always a temporal unit

The “uom” attribute of an instance of the “Time” class shall specify a base or derived
time unit.

a) Reference: Clause 7.2.10, Req 32

b) Test Type: Conformance

c) Test Method: Verify that the implementation of the conceptual model has a
constraint that enforces the above.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

129

OGC 08-094 SWE Common Data Model

A.2.20 Values of range components satisfy the same requirements as scalar values

Both values specified in the “value” property of an instance of a class representing a
property range (i.e. “CategoryRange”, “CountRange”, “QuantityRange” and
“TimeRange”) shall satisfy the same requirements as the scalar value used in the
corresponding scalar classes.

a) Reference: Clause 7.2.11, Req 33

b) Test Type: Conformance

c) Test Method: Verify that the implementation of the conceptual model has
constraints that enforce the above.

A.2.21 CategoryRange components satisfy all requirements of a Category component

All requirements associated to the “Category” class defined in clause §7.2.7 apply to the
“CategoryRange” class.

a) Reference: Clause 7.2.12, Req 34

b) Test Type: Conformance

c) Test Method: Apply conformance tests A.2.13 to A.2.15 to the “CategoryRange”
class.

A.2.22 The code space of a CategoryRange component is well-ordered

The code space specified by the “codeSpace” attribute of an instance of the
“CategoryRange” class shall define a well-ordered set of categories.

a) Reference: Clause 7.2.12, Req 35

b) Test Type: Conformance

c) Test Method: Inspect the information defining the code space to verify the above.

A.2.23 TimeRange components satisfy all requirements of the Time class

All requirements associated to the “Time” class defined in clause §7.2.10 apply to the
“TimeRange” class.

a) Reference: Clause 7.2.15, Req 36

b) Test Type: Conformance

130 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

c) Test Method: Apply conformance tests A.2.16 to A.2.19 to the “CategoryRange”
class.

A.2.24 The reason attribute is a URI that is resolvable to a definition

The “reason” attribute of an instance of the “NilValue” class shall contain a URI that can
be resolved to the complete human readable definition of the reason associated with the
NIL value.

a) Reference: Clause 7.2.17, Req 37

b) Test Type: Conformance

c) Test Method: Check that the NIL reason identifier corresponds to either a well
known reason code defined by OGC or can be resolved to the textual description
of a custom reason.

A.2.25 Values reserved for NIL reasons are compatible with the component data type

The value used in the “value” property of an instance of the “NilValue” class shall be
compatible with the datatype of the parent data component object.

a) Reference: Clause 7.2.17, Req 38

b) Test Type: Conformance

c) Test Method: Verify that the implementation of the conceptual model has a
constraint that enforces the above.

A.2.26 The scale of constraints is the same as the scale of the component value

The scale of the numbers used in the “enumeration” and “interval” properties of an
instance of the “AllowedValues” class shall be expressed in the same scale as the value(s)
that the constraint applies to.

a) Reference: Clause 7.2.19, Req 39

b) Test Type: Conformance

c) Test Method: Inspect instances generated by the implementation of the
“Quantity”, “Count” and “Time” classes including an “AllowedValues” constraint
to verify the above.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

131

OGC 08-094 SWE Common Data Model

A.3 Conformance Test Class: Aggregate Components UML Package

A.3.1 Dependency on Simple Components package

An implementation passing the “Aggregate Components UML Package” conformance
test class shall first pass the “Basic Types and Simple Components UML Packages”
conformance test class.

d) Reference: Clause 7.3, Req 40

e) Test Type: Conformance

f) Test Method: Apply all tests described in section A.2.

A.3.2 Compliance with UML models defined in this package

A compliant encoding or software shall correctly implement all UML classes defined in
the “Aggregate Components” package.

a) Reference: Clause 7.3, Req 41

b) Test Type: Conformance

c) Test Method: Inspect the model or software implementation to verify the above.

A.3.3 Each DataRecord field has a unique name

Each “field” attribute in a given instance of the “DataRecord” class shall be identified by
a name that is unique to this instance.

a) Reference: Clause 7.3.1, Req 42

b) Test Type: Conformance

c) Test Method: Verify that the implementation of the “DataRecord” class has a
constraint that enforces the above.

A.3.4 Each DataChoice item has a unique name

Each “item” attribute in a given instance of the “DataChoice” class shall be identified by
a name that is unique to this instance.

a) Reference: Clause 7.3.2, Req 43

b) Test Type: Conformance

132 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

c) Test Method: Verify that the implementation of the “DataChoice” class has a
constraint that enforces the above.

A.3.5 The reference frame is not specified on individual coordinates of a Vector

The “referenceFrame” attribute shall be ommited from all data components used to define
coordinates of a “Vector” instance.

a) Reference: Clause 7.3.3, Req 44

b) Test Type: Conformance

c) Test Method: Verify that the implementation of the conceptual model has a
constraint that enforces the above.

A.3.6 The axis ID is specified on all coordinates of a Vector

The “axisID” attribute shall be specified on all data components used to define
coordinates of a “Vector” instance.

a) Reference: Clause 7.3.3, Req 45

b) Test Type: Conformance

c) Test Method: Verify that the implementation of the conceptual model has a
constraint that enforces the above.

A.3.7 The local and reference frames of a Vector component are different

The “localFrame” attribute of an instance of the “Vector” class shall have a different
value than the “referenceFrame” attribute.

d) Reference: Clause 7.3.3, Req 46

e) Test Type: Conformance

f) Test Method: Verify that the implementation of the conceptual model has a
constraint that enforces the above.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

133

OGC 08-094 SWE Common Data Model

A.4 Conformance Test Class: Block Components UML Package

A.4.1 Dependency on Aggregate Components package

An implementation passing the “Block Components UML Package” conformance test
class shall first pass the “Aggregate Components UML Package” and “Simple Encodings
UML Package” conformance test classes.

g) Reference: Clause 7.4, Req 47

h) Test Type: Conformance

i) Test Method: Apply all tests described in sections A.3 and A.5.

A.4.2 Compliance with UML models defined in this package

A compliant encoding or software shall correctly implement all UML classes defined in
the “Block Components” package.

a) Reference: Clause 7.4, Req 48

b) Test Type: Conformance

c) Test Method: Inspect the model or software implementation to verify the above.

A.4.3 Components nested in a block component are data descriptors

Data components that are children of an instance of a block component shall be used
solely as data descriptors. Their values shall be block encoded in the “values” attribute of
the block component rather than included inline.

a) Reference: Clause 7.4.1, Req 49

b) Test Type: Conformance

c) Test Method: Verify that the implementation of the conceptual model has a
constraint that enforces the above.

A.4.4 An encoding method is specified whenever an encoded data block is included

Whenever an instance of a block component contains values, an encoding method shall
be specified by the “encoding” property and array values shall be encoded as specified by
this method.

134 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

a) Reference: Clause 7.4.1, Req 50

b) Test Type: Conformance

c) Test Method: Inspect block components instances (“DataArray”, “DataStream”
and “Matrix”) generated by the implementation to verify that an encoding method
is specified and properly used. (Note that detailed requirements for encoding data
are only defined in section 8 XML Implementation (normative), but these
requirements are also applicable when data streams are not wrapped in XML).

A.5 Conformance Test Class: Simple Encodings UML Package

A.5.1 Dependency on Basic Types package

An implementation passing the “Simple Encodings UML Package” conformance test
class shall first pass “Basic Types and Simple Components UML Package” conformance
test class.

a) Reference: Clause 7.5, Req 51

b) Test Type: Conformance

c) Test Method: Apply all tests described in section A.2.

A.5.2 Compliance with UML models defined in this package

A compliant encoding or software shall correctly implement all UML classes defined in
the “Simple Encodings” package.

a) Reference: Clause 7.5, Req 52

b) Test Type: Conformance

c) Test Method: Inspect the model or software implementation to verify the above.

A.6 Conformance Test Class: Advanced Encodings UML Package

A.6.1 Dependency on Simple Encodings package

An implementation passing the “Advanced Encodings UML Package” conformance test
class shall first pass the “Simple Encodings UML Package” conformance test class.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

135

OGC 08-094 SWE Common Data Model

a) Reference: Clause 7.6, Req 53

b) Test Type: Conformance

c) Test Method: Apply all tests described in section A.5.

A.6.2 Compliance with UML models defined in this package

A compliant encoding or software shall correctly implement all UML classes defined in
the “Advanced Encodings” package.

a) Reference: Clause 7.6, Req 54

b) Test Type: Conformance

c) Test Method: Inspect the model or software implementation to verify the above.

A.7 Conformance Test Class: XML Encoding Principles

All tests in this conformance test class and in the following shall be used to check
conformance of XML instances created according to the schemas defined in this
standard. They shall also be used to check conformance of software implementations that
output XML instances.

For all software implementations that provide reading functionality of the SWE Common
XML format, the behaviour of the software when ingesting invalid XML instances shall
be tested as well. This shall be done by running the tests described in this section and
making sure that at least one of the tests fails.

A.7.1 Dependency on Core

An implementation passing the “XML Encoding Principles” conformance test class shall
first pass the core conformance test classes.

a) Reference: Clause 8.1, Req 55

b) Test Type: Conformance

c) Test Method: Apply all tests described in section A.1.

136 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

A.7.2 XML property values are included inline or by reference

A property element supporting the “gml:AssociationAttributeGroup” shall contain the
value inline or populate the “xlink:href” attribute with a valid reference but shall not be
empty.

a) Reference: Clause 8.1.2, Req 56

b) Test Type: Conformance

c) Test Method: Check that all properties either include an inline value or an
“xlink:href” attribute.

A.7.3 Each extension uses a different namespace

All extensions of the XML schemas described in this standard shall be defined in a new
unique namespace.

a) Reference: Clause 8.1.3, Req 57

b) Test Type: Conformance

c) Test Method: If the standardization target is an extension of the XML schema
defined in this standard, inspect the XML schema of the extension to verify the
above.

A.7.4 Extensions do not redefine XML elements or types

Extensions of this standard shall not redefine or change the meaning or behavior of XML
elements and types defined in this standard.

a) Reference: Clause 8.1.3, Req 58

b) Test Type: Conformance

c) Test Method: If the standardization target is an extension of the XML schema
defined in this standard, inspect the XML schema of the extension to verify the
above.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

137

OGC 08-094 SWE Common Data Model

A.8 Conformance Test Class: Basic Types and Simple Components Schemas

A.8.1 Dependency on XML Encoding Principles

An implementation passing the “Basic Types and Simple Components Schemas”
conformance test class shall first pass the “XML Encoding Principles” and core
conformance test classes.

a) Reference: Clause 8.2, Req 59

b) Test Type: Conformance

c) Test Method: Apply all tests described in section A.7.

A.8.2 Dependency on GML

An implementation passing the “Basic Types and Simple Components Schemas”
conformance test class shall first pass the “Abstract test suite for GML documents”
conformance test class of the GML 3.2.1 standard.

a) Reference: Clause 8.2, Req 60

b) Test Type: Conformance

c) Test Method: Apply all tests defined in the GML 3.2.1 standard that are
applicable to XML elements used in this standard.

A.8.3 Compliance with XML schemas and Schematron patterns

A compliant XML instance shall be valid with respect to the XML grammar defined in
the “basic_types.xsd” and “simple_components.xsd” XML as well as satisfy all
Schematron patterns defined in “simple_components.sch”.

a) Reference: Clause 8.2, Req 61

b) Test Type: Conformance

c) Test Method: Validate the XML instance containing simple data components with
the “swe.xsd” XML schema file and the Schematron patterns in
“simple_components.sch”.

138 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

A.8.4 The value of the definition attribute is a resolvable URI

The “definition” attribute shall contain a URI that can be resolved to the complete human
readable definition of the property that is represented by the data component.

d) Reference: Clause 8.2.1, Req 62

e) Test Type: Conformance

f) Test Method: Verify that the URI can be resolved to an online document (or a
document fragment if the URI includes a fragment) describing the type of
property. In the case of a URL, check that connecting to the specified address
results in the successful retrieval of the document. In the case of a URN check
that a registry is available to resolve it to a URL that behaves as specified above
or directly to retrieve the document.

A.8.5 Data component inline value satisfies the constraints

The inline value included in an instance of a simple data component shall satisfy the
constraints specified by this instance.

g) Reference: Clause 8.2.1, Req 63

h) Test Type: Conformance

i) Test Method: This test is run only on instances of simple data components that
include a constraint (i.e. using one of “AllowedValues”, “AllowedTimes” or
“AllowedTokens” elements) and an inline value. For such instances, verify that
the inline value is valid with respect to the specified constraint(s).

A.8.6 UCUM is used whenever possible

The UCUM code for a unit of measure shall be used as the value of the “code” XML
attribute whenever it can be constructed using the UCUM 1.8 specification. Otherwise
the “href” XML attribute shall be used to reference an external unit definition.

a) Reference: Clause 8.2.6, Req 64

b) Test Type: Conformance

c) Test Method: Verify that in all instances of the “Quantity” class, values of the
“code” attribute on the “uom” element are valid UCUM expressions. When the
“code” attribute is not used verify that the “href” attribute is present and that it is
only used to reference units of measure that cannot be expressed using UCUM.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

139

OGC 08-094 SWE Common Data Model

A.8.7 URI to use for specifying ISO 8601 encoding

When ISO 8601 notation is used to express the measurement value associated to a
“Time” element, the URI “urn:ogc:def:unit:ISO:8601” shall be used as the value of the
“xlink:href” XML attribute on the “uom” element.

a) Reference: Clause 8.2.7, Req 65

b) Test Type: Conformance

c) Test Method: Verify that in all instances of the “Time” class including a temporal
value encoded as ISO 8601 (either inline or in a block encoded data stream) the
proper URN is used as the unit.

A.8.8 Pattern constraints are expressed using Unicode regular expressions

The “pattern” child element of the “AllowedTokens” element shall be a regular
expression valid with respect to Unicode Technical Standard #18, Version 13.

a) Reference: Clause 8.2.14, Req 66

b) Test Type: Conformance

c) Test Method: Verify that all character strings used as regular expressions are valid
according to the Unicode standard.

A.9 Conformance Test Class: Aggregate Components Schema

A.9.1 Dependency on Basic Types and Simple Components schemas

An implementation passing the “Aggregate Components Schema” conformance test class
shall first pass the “Basic Types and Simple Components Schemas” conformance test
class.

a) Reference: Clause 8.3, Req 67

b) Test Type: Conformance

c) Test Method: Apply all tests described in section A.8.

140 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

A.9.2 Compliance with XML schema and Schematron patterns

A compliant XML instance shall be valid with respect to the XML grammar defined in
the “aggregate_components.xsd” XML schema as well as satisfy all Schematron patterns
defined in “aggregate_components.sch”.

a) Reference: Clause 8.3, Req 68

b) Test Type: Conformance

c) Test Method: Validate the XML instance containing aggregate components with
the “swe.xsd” XML schema file and the Schematron patterns in
“aggregate_components.sch”.

A.10 Conformance Test Class: Block Components Schema

A.10.1 Dependency on Aggregate Components and Simple Encodings schemas

An implementation passing the “Block Components Schema” conformance test class
shall first pass the “Aggregate Components Schema” and “Simple Encodings Schema”
conformance test classes.

a) Reference: Clause 8.4, Req 69

b) Test Type: Conformance

c) Test Method: Apply all tests described in sections A.9 and A.11.

A.10.2 Compliance with XML schema and Schematron patterns

A compliant XML instance shall be valid with respect to the grammar defined in the
“block_components.xsd” XML schema as well as satisfy all Schematron patterns defined
in “block_components.sch”.

a) Reference: Clause 8.4, Req 70

b) Test Type: Conformance

c) Test Method: Validate the XML instance containing block components with the
“swe.xsd” XML schema file and the Schematron patterns in
“block_components.sch”.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

141

OGC 08-094 SWE Common Data Model

A.10.3 Encoding of array elements is consistent with the DataArray definition

The encoded data block included either inline or by-reference in the “values” property of
a “DataArray”, “Matrix” or “DataStream” element shall be consistent with the definition
of the element type, the element count and the encoding method.

a) Reference: Clause 8.4.1, Req 71

b) Test Type: Conformance

c) Test Method: Verify that the data block is effectively encoded with the specified
encoding method. Decode the data block as specified by this standard and verify
that the decoded data is actually a sequence of values that is consistent with the
element type definition: For each decoded value in the sequence, verify that it is
consistent with the data type and constraints (including the code space for a
“Count” component) of the corresponding data component. Verify that the total
number of decoded elements is equal to the element count.

A.11 Conformance Test Class: Simple Encodings Schema

A.11.1 Dependency on Basic Types and Simple Components schema

An implementation passing the “Simple Encodings Schema” conformance test class shall
first pass the “Basic Types and Simple Components Schemas” conformance test class.

a) Reference: Clause 8.5, Req 72

b) Test Type: Conformance

c) Test Method: Apply all tests described in section A.8.

A.11.2 Compliance with XML schema and Schematron patterns

A compliant XML instance shall be valid with respect to the grammar defined in the
“simple_encodings.xsd” XML schema as well as satisfy all Schematron patterns defined
in “simple_encodings.sch”.

a) Reference: Clause 8.5, Req 73

b) Test Type: Conformance

c) Test Method: Validate the XML instance containing definitions of simple
encodings with the “swe.xsd” XML schema file and the Schematron patterns in
“simple_encodings.sch”.

142 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

A.11.3 DataRecord fields and Vector coordinates are encoded recursively

“DataRecord” fields or “Vector” coordinates shall be encoded sequentially in a data
block in the order in which these fields or coordinates are listed in the data descriptor.

a) Reference: Clause 8.5.1.3, Req 74

b) Test Type: Conformance

c) Test Method: Verify that the sequence of scalar values (obtained after decoding
the section of the encoded data block corresponding to the “DataRecord” or
“Vector”) includes values for the successive fields/coordinates in the right order.

A.11.4 DataChoice items are encoded recursively

Encoded values for the selected item of a “DataChoice” shall be provided along with
information that unambiguously identifies the selected item.

a) Reference: Clause 8.5.1.4, Req 75

b) Test Type: Conformance

c) Test Method: Verify that the sequence of scalar values (obtained after decoding
the section of the encoded data block corresponding to the “DataChoice”)
includes a value identifying the selected item as well as values for the item itself.

A.11.5 DataArray elements are encoded recursively

“DataArray” elements shall be encoded sequentially in a data block in the order of their
index in the array (i.e. from low to high index).

a) Reference: Clause 8.5.1.5, Req 76

b) Test Type: Conformance

c) Test Method: Verify that the sequence of scalar values obtained after decoding the
section of the encoded data block corresponding to the “DataArray” includes
values for the successive elements of the array.

A.11.6 The length of variable size arrays is encoded in the data block

Encoded data for a variable size “DataArray” shall include a number specifying the array
size whatever the encoding method used.

a) Reference: Clause 8.5.1.5, Req 77

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

143

OGC 08-094 SWE Common Data Model

b) Test Type: Conformance

c) Test Method: Verify that the sequence of values obtained after decoding the
section of the encoded data block corresponding to a variable size “DataArray”
includes a value specifying the size of the array.

A.11.7 Text Encoding: Compliance with EBNF grammar

Compliant encoding/decoding software shall implement the “TextEncoding” method by
following the EBNF grammar defined in this clause.

a) Reference: Clause 8.5.4, Req 78

b) Test Type: Conformance

c) Test Method: Verify that the text encoded data block is correct with respect to the
EBNF grammar corresponding to the particular dataset (The complete EBNF
grammar of the dataset should be logically constructed from the EBNF snippets
provided in the specification).

A.11.8 Text Encoding: Separator characters are well chosen

Block and token separators used in the “TextEncoding” method shall be chosen as a
sequence of characters that never occur in the data values themselves.

a) Reference: Clause 8.5.4.1, Req 79

b) Test Type: Conformance

c) Test Method: Verify that the values encoded in the data block never include the
reserved separator characters. This can be detected by looking for invalid or
superfluous values.

A.11.9 Text Encoding: Special flags are inserted before optional component values

The ‘Y’ or ‘N’ token shall be inserted in a text encoded data block for all fields that have
the “optional” attribute set to ‘true’.

a) Reference: Clause 8.5.4.4, Req 80

b) Test Type: Conformance

c) Test Method: Verify that the sequence of values in the section of the data block
corresponding to the optional value starts with the ‘Y’ or ‘N’ flag.

144 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

A.11.10 Text Encoding: The name of a selected choice item is inserted in the stream

The selected-item-name token shall correspond to the value of the “name” attribute of the
“item” property element that represents the selected item.

a) Reference: Clause 8.5.4.5, Req 81

b) Test Type: Conformance

c) Test Method: Verify that the sequence of values in the section of the data block
corresponding to the “DataChoice” starts with a character string matching the
name of one item of the choice.

A.11.11 XML Encoding: Element local names are derived from name attribute

All data components shall be XML encoded with an element whose local name shall
correspond to the “name” attribute of the soft-typed property containing the data
component.

a) Reference: Clause 8.5.6.1, Req 82

b) Test Type: Conformance

c) Test Method: Inspect the XML of the encoded data block to verify the above.

A.11.12 XML Encoding: Scalar components are encoded with an XML element with text
content

Scalar components values shall be XML encoded with a single element containing the
value as its text content and no other child element.

a) Reference: Clause 8.5.6.2, Req 83

b) Test Type: Conformance

c) Test Method: Inspect the XML of the encoded data block to verify the above.

A.11.13 XML Encoding: Range components are encoded as a group of two XML elements

Range components values shall be XML encoded with an element containing two sub-
elements with local names “min” and “max” which respectively contain the lower and
upper values of the range as their text content.

a) Reference: Clause 8.5.6.3, Req 84

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

145

OGC 08-094 SWE Common Data Model

b) Test Type: Conformance

c) Test Method: Inspect the XML of the encoded data block to verify the above.

A.11.14 XML Encoding: DataRecord components are encoded as an XML element with
complex content

“DataRecord” values shall be XML encoded with an element which contains one sub-
element for each “field” that is not omitted.

a) Reference: Clause 8.5.6.4, Req 85

b) Test Type: Conformance

c) Test Method: Inspect the XML of the encoded data block to verify the above.

A.11.15 XML Encoding: Vectors components are encoded as an XML element with
complex content

“Vector” values shall be XML encoded with an element which contains one sub-element
for each “coordinate” of the aggregate.

a) Reference: Clause 8.5.6.4, Req 86

b) Test Type: Conformance

c) Test Method: Inspect the XML of the encoded data block to verify the above.

A.11.16 XML Encoding: Array elements are encoded as an XML element with complex
content

Values of each element of a “DataArray”, “Matrix” or “DataStream” shall be
encapsulated in a separate XML element whose local name shall be the value of the
“name” attribute of its “elementType” element.

a) Reference: Clause 8.5.6.5, Req 87

b) Test Type: Conformance

c) Test Method: Inspect the XML of the encoded data block to verify the above.

146 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

A.11.17 XML Encoding: Nested arrays are encoded with an XML element with a size

All elements of each nested “DataArray” and “Matrix” shall be encapsulated in a parent
element as specified in Req 82 and this element shall also have an “elementCount”
attribute that specifies the array size.

a) Reference: Clause 8.5.6.5, Req 88

b) Test Type: Conformance

c) Test Method: Inspect the XML of the encoded data block to verify the above.

A.12 Conformance Test Class: Advanced Encodings Schema

A.12.1 Dependency on Simple Encodings Schema

An implementation passing the “Advanced Encodings Schema” conformance test class
shall first pass the “Simple Encodings Schema” conformance test class.

a) Reference: Clause 8.6, Req 89

b) Test Type: Conformance

c) Test Method: Apply all tests described in section A.11.

A.12.2 Compliance with XML schema and Schematron patterns

A compliant XML instance shall be valid with respect to the grammar defined in the
“advanced_encodings.xsd” XML schema as well as satisfy all Schematron patterns
defined in “advanced_encodings.sch”.

a) Reference: Clause 8.6, Req 90

b) Test Type: Conformance

c) Test Method: Validate the XML instance containing definitions of simple
encodings with the “swe.xsd” XML schema file and the Schematron patterns in
“simple_encodings.sch”.

A.12.3 The path value in the ref attribute has the correct syntax

The “ref” attribute of the “Component” and “Block” elements shall contain a hierarchical
‘/’ separated list of data component names.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

147

OGC 08-094 SWE Common Data Model

a) Reference: Clause 8.6.1, Req 91

b) Test Type: Conformance

c) Test Method: Inspect the section of the XML instance describing the binary
encoding options. Check that the path formed by the ‘/’ separated list of
component names actually points to a component of the dataset definition tree.

A.12.4 The path value in the ref attribute points to a valid component

The “ref” attribute shall reference a scalar component when used on the “Component”
element and an aggregate component when used on the “Block” element.

a) Reference: Clause 8.6.1, Req 92

b) Test Type: Conformance

c) Test Method: Inspect the section of the XML instance describing the binary
encoding options. Resolve the path to a component of the dataset definition tree
and check that this component is of the right type.

A.12.5 Compliance with EBNF grammar

Compliant encoding/decoding software shall implement the “BinaryEncoding” method
by following the EBNF grammar defined in this clause.

a) Reference: Clause 8.6.2, Req 93

b) Test Type: Conformance

c) Test Method: Verify that the binary encoded data block is correct with respect to
the EBNF grammar of the particular dataset (The complete EBNF grammar of the
dataset should be logically constructed from the EBNF snippets provided in the
specification).

A.12.6 The chosen datatype is one of the possible options

The value of the “dataType” XML attribute of the “Component” element shall be one of
the URNs listed in Table 8.1.

a) Reference: Clause 8.6.2.1.1, Req 94

b) Test Type: Conformance

148 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

c) Test Method: Verify that the URN used to specify the binary data type is in the
list.

A.12.7 The chosen datatype is compatible with the associated component

The chosen data type shall be compatible with the scalar component representation,
constraints and NIL values.

a) Reference: Clause 8.6.2.1.1, Req 95

b) Test Type: Conformance

c) Test Method:

For text components (i.e. “Category”, “Text” or “Time” with ISO-8601 encoding),
verify that the data type is one of the string types.

For scalar numerical components (i.e. “Quantity”, “Count” or “Time” with a simple
unit), verify that:

- The data type is also numerical (i.e. one of the integer or floating point types)

- The range of values it allows can cover all possible numbers within the
allowed intervals and enumerated values (e.g. A short data type cannot be
used for an interval constraint of [-100000; 10000]). When no interval
constraint is specified, this test should be ignored.

- The data type can accommodate the desired precision indicated by the
“significantFigures” constraint (e.g. a float cannot be used for a number of
significant figures greater than 7). When no precision constraint is specified,
this test should be ignored.

For a boolean component, verify that the data type is an unsigned byte
(urn:ogc:def:data:OGC:unsignedByte)

A.12.8 The length of a datatype is specified only when appropriate

The “bitLength” and “byteLength” XML attribute shall not be set when a fixed size data
type is used.

a) Reference: Clause 8.6.2.1.1, Req 96

b) Test Type: Conformance

c) Test Method: Verify that these attributes are used only when one of the UTF-8
String or Custom Integer data types is selected.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

149

OGC 08-094 SWE Common Data Model

A.12.9 Data types are encoded as specified in this standard

Binary data types in Table 8.1 shall be encoded according to their definition in the
description column and the value of the “byteOrder” attribute.

a) Reference: Clause 8.6.2.1.1, Req 97

b) Test Type: Conformance

c) Test Method: Verify that valid and realistic scalar values are obtained when the
binary data block is parsed by extracting the number of bits specified in the table
and decoding the resulting bytes in the order specified by the “byteOrder”
attribute. When the encoded data and the encoding parameters are not consistent,
abberant values (such as -65502 for a temperature field, etc…) are usually
obtained, which can be easily detected.

A.12.10 Base64 encoding is implemented as defined by IETF

When the ‘base64’ encoding option is selected, binary data shall be encoded with the
Base64 technique defined in IETF RFC 2045 Section 6.8: Base64 Content-Transfer-
Encoding.

a) Reference: Clause 8.6.2.1.1, Req 98

b) Test Type: Conformance

c) Test Method: Verify that only characters allowed by base64 encoding are used in
the encoded data content. Verify that the data block can be properly parsed after
the base64 data has been decoded into a raw binary data stream.

A.12.11 Special flags are inserted before optional component values

The ‘Y’ or ‘N’ 1-byte token shall be inserted in a binary encoded data block for all
“DataRecord” fields that have the “optional” attribute set to ‘true’.

a) Reference: 8.6.2.3, Req 99

b) Test Type: Conformance

c) Test Method: Verify that only characters allowed by base64 encoding are used in
the encoded data content. Verify that the data block can be properly parsed after
the base64 data has been decoded into a raw binary data stream.

150 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

A.12.12 The name of a selected choice item is inserted in the stream

The selected-item-name token shall correspond to the value of the “name” attribute of the
“item” property element that represents the selected item.

a) Reference: Clause 8.6.2.4, Req 100

b) Test Type: Conformance

c) Test Method: Verify that only characters allowed by base64 encoding are used in
the encoded data content. Verify that the data block can be properly parsed after
the base64 data has been decoded into a raw binary data stream.

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

151

OGC 08-094 SWE Common Data Model

152 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

Annex B
(informative)

Relationship with other ISO models

B.1 Feature model

SWE “Records” can sometimes be seen as feature data from which GML feature
representations could be derived. Even if it is true that a SWE “Record” contains values
of feature properties, it does not always represent an object like a “Feature” does. The
“Record” is simply a logical collection of fields that may be grouped together for a
different reason than the fact that they all represent properties of the same object.

The “Feature” model is a higher level model that is used to regroup property values
inside the objects that they correspond to, and a special meaning is associated to these
objects.

A good example is a set of weather observations obtained from different sensors that may
be grouped into a single “Record” in SWE Common.

B.2 Geometry model

SWE provides lower level data from which GML form, canonical XML representation of
ISO19107 geometries, can be derived

B.3 Coverage model

SWE “Arrays” can sometimes be interpreted as coverage range data or grid data.
However, SWE data arrays are lower level data types and don’t constitute a “Coverage”
in themselves. The ISO “Coverage” model can be used on top of the SWE “Array” model
(which only provides means for describing and encoding the data), in order to provide a
stronger link between range data and domain definition.

Additionally, sensor descriptions given in SensorML (and thus using the SWE Common
model) can be used to define a geo-referencing transformation that can be associated with
a coverage via the ISO model.

Table of Requirements

Req 1 A conformant model or software shall implement the concepts defined
in the core of this standard in a way that is consistent with their
definition. ..9

Req 2 A boolean representation shall at least consist of a boolean value.10

Req 3 A categorical representation shall at least consist of a category
identifier and information describing the value space of this identifier.10

Req 4 A continuous numerical representation shall at least consist of a
decimal number and the scale (or unit) used to express this number.11

Req 5 A countable representation shall at least consist of an integer number.12

Req 6 A textual representation shall at least consist of a character string.12

Req 7 All data values shall be associated with a clear definition of the
property that the value represents. ..13

Req 8 If robust semantics are provided by referencing out-of-band
information, the locators or identifiers used to point to this information
shall be resolvable by some well-defined method. ..14

Req 9 A temporal quantity shall be expressed with respect to a well defined
temporal reference frame and this frame shall be specified.14

Req 10 A spatial quantity shall be expressed with respect to the axes of a well
defined spatial reference frame and this frame shall be specified.14

Req 11 A model of a NIL value shall always include a mapping between the
selected reserved value and a well-defined reason. ...15

Req 12 A conformant model or software shall implement aggregate data
structures in a way that is consistent with definitions of ISO 11404.16

Req 13 All encoding methods shall be applicable to any arbitrarily complex
data structures as long as they are made of the data components
described in clause 6.5. ..17

Req 14 An implementation passing the “Simple Components UML Package”
conformance test class shall first pass the core conformance test class.20

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

153

Req 15 A compliant encoding or software shall correctly implement all UML
classes defined in the “Simple Components” and “Basic Types”
packages. ...20

Req 16 A compliant encoding or software shall correctly implement all UML
classes defined in ISO 19103 that are used in this standard.20

Req 17 A compliant encoding or software shall correctly implement all UML
classes defined in ISO 19136 (GML) that are used in this standard.20

Req 18 A compliant implementation shall not generate errors when the
content of an “extension” attribute is unknown. ..24

Req 19 The “definition” attribute shall be specified by all instances of concrete
classes derived from “AbstractSimpleComponent”.25

Req 20 The URI used as the value of the “referenceFrame” attribute shall
identify a coordinate reference system as defined by ISO 19111.25

Req 21 The value of the “axisID” attribute shall correspond to the
“axisAbbrev” attribute of one of the coordinate system axes listed in
the specified reference frame definition. ...26

Req 22 The “axisID” attribute shall be specified by all instances of concrete
classes derived from “AbstractSimpleComponent” and representing a
property projected along a spatial axis. ...26

Req 23 The “referenceFrame” attribute shall be specified by all instances of
concrete classes derived from “AbstractSimpleComponent” and
representing a property projected along a spatial or temporal axis,
except if it is inherited from a parent aggregate (Vector or Matrix).26

Req 24 The property value (formally the representation of the property value)
attached to an instance of a class derived from
“AbstractSimpleComponent” shall satisfy the constraints specified by
this instance. ...27

Req 25 All concrete classes derived from the “AbstractSimpleComponent”
class (directly or indirectly) shall define an optional “value” attribute
and use it as defined by this standard. ...27

Req 26 When an instance of the “Category” class specifies a code space, the
list of allowed tokens provided by the “constraint” property of this
instance shall be a subset of the values listed in this code space.29

Req 27 An instance of the “Category” class shall either specify a code space or
an enumerated list of allowed tokens, or both. ...29

154 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

Req 28 When an instance of the “Category” class specifies a code space, the
value of the property represented by this instance shall be equal to one
of the entries of the code space. ..29

Req 29 The “referenceFrame” attribute inherited from
“AbstractSimpleComponent” shall be set on all instances of the
“Time” class. ..31

Req 30 The value of the “referenceTime” attribute shall be expressed with
respect to the system of reference indicated by the “referenceFrame”
attribute. ...32

Req 31 The “localFrame” attribute of an instance of the “Time” class shall
have a different value than the “referenceFrame” attribute.32

Req 32 The “uom” attribute of an instance of the “Time” class shall specify a
base or derived time unit. ..33

Req 33 Both values specified in the “value” property of an instance of a class
representing a property range (i.e. “CategoryRange”, “CountRange”,
“QuantityRange” and “TimeRange”) shall satisfy the same
requirements as the scalar value used in the corresponding scalar
classes. ...33

Req 34 All requirements associated to the “Category” class defined in clause
§7.2.7 apply to the “CategoryRange” class. ..34

Req 35 The code space specified by the “codeSpace” attribute of an instance of
the “CategoryRange” class shall define a well-ordered set of categories.34

Req 36 All requirements associated to the “Time” class defined in clause
§7.2.10 apply to the “TimeRange” class. ...35

Req 37 The “reason” attribute of an instance of the “NilValue” class shall
contain a URI that can be resolved to the complete human readable
definition of the reason associated with the NIL value.37

Req 38 The value used in the “value” property of an instance of the
“NilValue” class shall be compatible with the datatype of the parent
data component object. ...37

Req 39 The scale of the numbers used in the “enumeration” and “interval”
properties of an instance of the “AllowedValues” class shall be
expressed in the same scale as the value(s) that the constraint applies
to. ...38

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

155

Req 40 An implementation passing the “Aggregate Components UML
Package” conformance test class shall first pass the “Basic Types and
Simple Components UML Packages” conformance test class.40

Req 41 A compliant encoding or software shall correctly implement all UML
classes defined in the “Aggregate Components” package.40

Req 42 Each “field” attribute in a given instance of the “DataRecord” class
shall be identified by a name that is unique to this instance.42

Req 43 Each “item” attribute in a given instance of the “DataChoice” class
shall be identified by a name that is unique to this instance.43

Req 44 The “referenceFrame” attribute shall be ommited from all data
components used to define coordinates of a “Vector” instance.44

Req 45 The “axisID” attribute shall be specified on all data components used
to define coordinates of a “Vector” instance. ..44

Req 46 The “localFrame” attribute of an instance of the “Vector” class shall
have a different value than the “referenceFrame” attribute.44

Req 47 An implementation passing the “Block Components UML Package”
conformance test class shall first pass the “Aggregate Components
UML Package” and “Simple Encodings UML Package” conformance
test classes. ..45

Req 48 A compliant encoding or software shall correctly implement all UML
classes defined in the “Block Components” package.45

Req 49 Data components that are children of an instance of a block component
shall be used solely as data descriptors. Their values shall be block
encoded in the “values” attribute of the block component rather than
included inline. ...47

Req 50 Whenever an instance of a block component contains values, an
encoding method shall be specified by the “encoding” property and
array values shall be encoded as specified by this method.47

Req 51 An implementation passing the “Simple Encodings UML Package”
conformance test class shall first pass “Basic Types and Simple
Components UML Package” conformance test class.52

Req 52 A compliant encoding or software shall correctly implement all UML
classes defined in the “Simple Encodings” package.52

156 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

Req 53 An implementation passing the “Advanced Encodings UML Package”
conformance test class shall first pass the “Simple Encodings UML
Package” conformance test class. ...55

Req 54 A compliant encoding or software shall correctly implement all UML
classes defined in the “Advanced Encodings” package.55

Req 55 An implementation passing the “XML Encoding Principles”
conformance test class shall first pass the core conformance test
classes. ...58

Req 56 A property element supporting the “gml:AssociationAttributeGroup”
shall contain the value inline or populate the “xlink:href” attribute
with a valid reference but shall not be empty. ..60

Req 57 All extensions of the XML schemas described in this standard shall be
defined in a new unique namespace. ..60

Req 58 Extensions of this standard shall not redefine or change the meaning or
behavior of XML elements and types defined in this standard.61

Req 59 An implementation passing the “Basic Types and Simple Components
Schemas” conformance test class shall first pass the “XML Encoding
Principles” and core conformance test classes. ...61

Req 60 An implementation passing the “Basic Types and Simple Components
Schemas” conformance test class shall first pass the “Abstract test
suite for GML documents” conformance test class of the GML 3.2.1
standard. ...61

Req 61 A compliant XML instance shall be valid with respect to the XML
grammar defined in the “basic_types.xsd” and
“simple_components.xsd” XML as well as satisfy all Schematron
patterns defined in “simple_components.sch”. ...61

Req 62 The “definition” attribute shall contain a URI that can be resolved to
the complete human readable definition of the property that is
represented by the data component. ..63

Req 63 The inline value included in an instance of a simple data component
shall satisfy the constraints specified by this instance.64

Req 64 The UCUM code for a unit of measure shall be used as the value of the
“code” XML attribute whenever it can be constructed using the
UCUM 1.8 specification. Otherwise the “href” XML attribute shall be
used to reference an external unit definition. ..68

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

157

Req 65 When ISO 8601 notation is used to express the measurement value
associated to a “Time” element, the URI “urn:ogc:def:unit:ISO:8601”
shall be used as the value of the “xlink:href” XML attribute on the
“uom” element. ..69

Req 66 The “pattern” child element of the “AllowedTokens” element shall be
a regular expression valid with respect to Unicode Technical Standard
#18, Version 13. ..78

Req 67 An implementation passing the “Aggregate Components Schema”
conformance test class shall first pass the “Basic Types and Simple
Components Schemas” conformance test class. ..82

Req 68 A compliant XML instance shall be valid with respect to the XML
grammar defined in the “aggregate_components.xsd” XML schema as
well as satisfy all Schematron patterns defined in
“aggregate_components.sch”. ...82

Req 69 An implementation passing the “Block Components Schema”
conformance test class shall first pass the “Aggregate Components
Schema” and “Simple Encodings Schema” conformance test classes.87

Req 70 A compliant XML instance shall be valid with respect to the grammar
defined in the “block_components.xsd” XML schema as well as satisfy
all Schematron patterns defined in “block_components.sch”.87

Req 71 The encoded data block included either inline or by-reference in the
“values” property of a “DataArray”, “Matrix” or “DataStream”
element shall be consistent with the definition of the element type, the
element count and the encoding method. ..88

Req 72 An implementation passing the “Simple Encodings Schema”
conformance test class shall first pass the “Basic Types and Simple
Components Schemas” conformance test class. ..94

Req 73 A compliant XML instance shall be valid with respect to the grammar
defined in the “simple_encodings.xsd” XML schema as well as satisfy
all Schematron patterns defined in “simple_encodings.sch”.94

Req 74 “DataRecord” fields or “Vector” coordinates shall be encoded
sequentially in a data block in the order in which these fields or
coordinates are listed in the data descriptor. ..96

Req 75 Encoded values for the selected item of a “DataChoice” shall be
provided along with information that unambiguously identifies the
selected item. ..96

158 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

Req 76 “DataArray” elements shall be encoded sequentially in a data block in
the order of their index in the array (i.e. from low to high index).97

Req 77 Encoded data for a variable size “DataArray” shall include a number
specifying the array size whatever the encoding method used.97

Req 78 Compliant encoding/decoding software shall implement the
“TextEncoding” method by following the EBNF grammar defined in
this clause. ...99

Req 79 Block and token separators used in the “TextEncoding” method shall
be chosen as a sequence of characters that never occur in the data
values themselves. ..100

Req 80 The ‘Y’ or ‘N’ token shall be inserted in a text encoded data block for
all fields that have the “optional” attribute set to ‘true’.101

Req 81 The selected-item-name token shall correspond to the value of the
“name” attribute of the “item” property element that represents the
selected item. ..103

Req 82 All data components shall be XML encoded with an element whose
local name shall correspond to the “name” attribute of the soft-typed
property containing the data component. ...107

Req 83 Scalar components shall be XML encoded with a single element
containing the field value as its text content and no other child element. ..107

Req 84 Range components shall be XML encoded with an element containing
two sub-elements with local names “min” and “max” which
respectively contain the lower and upper values of the range as their
text content. ..108

Req 85 “DataRecord” components shall be XML encoded with an element
which contains one sub-element for each “field” that is not omitted.108

Req 86 “Vector” components shall be XML encoded with an element which
contains one sub-element for each “coordinate” of the aggregate.109

Req 87 Each element of a “DataArray”, “Matrix” or “DataStream” shall be
XML encoded as a separate XML element whose local name shall be
the value of the “name” attribute of its “elementType” element.110

Req 88 Elements of nested “DataArray” and “Matrix” shall be XML encoded
as an element as specified in Req 82 that shall also have an
“elementCount” attribute that specifies the array size.110

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

159

Req 89 An implementation passing the “Advanced Encodings Schema”
conformance test class shall first pass the “Simple Encodings Schema”
conformance test class. ..111

Req 90 A compliant XML instance shall be valid with respect to the grammar
defined in the “advanced_encodings.xsd” XML schema as well as
satisfy all Schematron patterns defined in “advanced_encodings.sch”.111

Req 91 The “ref” attribute of the “Component” and “Block” elements shall
contain a hierarchical ‘/’ separated list of data component names.113

Req 92 The “ref” attribute shall reference a scalar component when used on
the “Component” element and an aggregate component when used on
the “Block” element. ..113

Req 93 Compliant encoding/decoding software shall implement the
“BinaryEncoding” method by following the EBNF grammar defined in
this clause. ...115

Req 94 The value of the “dataType” XML attribute of the “Component”
element shall be one of the URNs listed in Table 8.1.115

Req 95 The chosen data type shall be compatible with the scalar component
representation, constraints and NIL values. ...116

Req 96 The “bitLength” and “byteLength” XML attribute shall not be set
when a fixed size data type is used. ..116

Req 97 Binary data types in Table 8.1 shall be encoded according to their
definition in the description column and the value of the “byteOrder”
attribute. ...117

Req 98 When the ‘base64’ encoding option is selected, binary data shall be
encoded with the Base64 technique defined in IETF RFC 2045 Section
6.8: Base64 Content-Transfer-Encoding. ..117

Req 99 The ‘Y’ or ‘N’ 1-byte token shall be inserted in a binary encoded data
block for all “DataRecord” fields that have the “optional” attribute set
to ‘true’. ..118

Req 100 The selected-item-name token shall correspond to the value of the
“name” attribute of the “item” property element that represents the
selected item. ..118

160 Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010
Open Geospatial Consortium, Inc.

SWE Common Data Model OGC 08-094

Copyright © 2010 Open Geospatial Consortium, Inc. Copyright © 2010 Open
Geospatial Consortium, Inc.

161

	i. Preface
	ii. Submitting Organizations
	iii. Submission Contact Points
	iv. Revision History
	v. Future Work
	vi. Changes to the OGC® Abstract Specification
	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Conventions
	5.1 Abbreviated terms
	5.2 UML notation
	5.3 Finding requirements and recommendations

	6 Requirements Class: Core Concepts (normative core)
	6.1 Introduction
	6.2 Data Representation
	6.2.1 Boolean
	6.2.2 Categorical
	6.2.3 Numerical (continuous)
	6.2.4 Countable (discrete)
	6.2.5 Textual
	6.2.6 Constraints

	6.3 Nature of Data
	6.3.1 Human readable information
	6.3.2 Robust semantics
	6.3.3 Time, space and projected quantities

	6.4 Data Quality
	6.4.1 Simple quality information
	6.4.2 Nil Values
	6.4.3 Full lineage and traceability

	6.5 Data Structure
	6.6 Data Encoding

	7 UML Conceptual Models (normative)
	7.1 Package Dependencies
	7.2 Requirements Class: Basic Types and Simple Components Packages
	7.2.1 Relationship with GML Value Objects
	7.2.2 Basic Data Types
	7.2.3 Attributes shared by all data components
	7.2.4 Attributes shared by all simple data components
	7.2.5 Boolean Class
	7.2.6 Text Class
	7.2.7 Category Class
	7.2.8 Count Class
	7.2.9 Quantity Class
	7.2.10 Time Class
	7.2.11 Requirements applicable to all range classes
	7.2.12 CategoryRange Class
	7.2.13 CountRange Class
	7.2.14 QuantityRange Class
	7.2.15 TimeRange Class
	7.2.16 Quality Union
	7.2.17 NilValues Class
	7.2.18 AllowedTokens Class
	7.2.19 AllowedValues Class
	7.2.20 AllowedTimes Class
	7.2.21 Unions of simple component classes

	7.3 Requirements Class: Aggregate Components Package
	7.3.1 DataRecord Class
	7.3.2 DataChoice Class
	7.3.3 Vector Class

	7.4 Requirements Class: Block Components Package
	7.4.1 DataArray Class
	7.4.2 Matrix Class
	7.4.3 DataStream Class

	7.5 Requirements Class: Simple Encodings Package
	7.5.1 TextEncoding Class
	7.5.2 XMLEncoding Class

	7.6 Requirements Class: Advanced Encodings Package
	7.6.1 BinaryEncoding Class

	8 XML Implementation (normative)
	8.1 Requirements Class: XML Encoding Principles
	8.1.1 XML Encoding Conventions
	8.1.2 IDs and Linkable Properties
	8.1.3 Extensibility Points

	8.2 Requirements Class: Basic Types and Simple Components Schemas
	8.2.1 Base Abstract Complex Types
	8.2.2 Boolean Element
	8.2.3 Text Element
	8.2.4 Category Element
	8.2.5 Count Element
	8.2.6 Quantity Element
	8.2.7 Time Element
	8.2.8 CategoryRange Element
	8.2.9 CountRange Element
	8.2.10 QuantityRange Element
	8.2.11 TimeRange Element
	8.2.12 Quality Element Group
	8.2.13 NilValues Element
	8.2.14 AllowedTokens Element
	8.2.15 AllowedValues Element
	8.2.16 AllowedTimes Element
	8.2.17 Simple Component Groups

	8.3 Requirements Class: Aggregate Components Schema
	8.3.1 DataRecord Element
	8.3.2 DataChoice Element
	8.3.3 Vector Element

	8.4 Requirements Class: Block Components Schema
	8.4.1 DataArray Element
	8.4.2 Matrix Element
	8.4.3 DataStream Element

	8.5 Requirements Class: Simple Encodings Schema
	8.5.1 General Encoding Rules
	8.5.1.1 Rules for Scalar Components
	8.5.1.2 Rules for Range Components
	8.5.1.3 Rules for DataRecord and Vector
	8.5.1.4 Rules for DataChoice
	8.5.1.5 Rules for DataArray and Matrix

	8.5.2 AbstractEncoding Element
	8.5.3 TextEncoding Element
	8.5.4 Text Encoding Rules
	8.5.4.1 Separators
	8.5.4.2 Rules for Scalar Components
	8.5.4.3 Rules for Range Components
	8.5.4.4 Rules for DataRecord and Vector
	8.5.4.5 Rules for DataChoice
	8.5.4.6 Rules for DataArray and Matrix
	8.5.4.7 Rules for DataStream

	8.5.5 XMLEncoding Element
	8.5.6 XML Encoding rules
	8.5.6.1 XML element names
	8.5.6.2 Rules for Scalar Components
	8.5.6.3 Rules for Range Components
	8.5.6.4 Rules for DataRecord and Vector
	8.5.6.5 Rules for DataArray, Matrix and DataStream

	8.6 Requirements Class: Advanced Encodings Schema
	8.6.1 BinaryEncoding Element
	8.6.2 Binary Encoding Rules
	8.6.2.1 Rules for Scalar Components
	8.6.2.1.1 Binary Data Types

	8.6.2.2 Rules for Range Components
	8.6.2.3 Rules for DataRecord and Vector
	8.6.2.4 Rules for DataChoice
	8.6.2.5 Rules for DataArray and Matrix
	8.6.2.6 Rules for DataStream
	8.6.2.7 Block encoded components

