

Open Geospatial Consortium, Inc.

Date: 2009-08-05

Reference number of this document: OGC 09-075r1

Version: 0.3.0

Category: Public Engineering Report

Editor: Arne Schilling

OGC
®
 OWS-6 3D Flythrough (W3DS) Engineering Report

Copyright © 2009 Open Geospatial Consortium, Inc.

To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. This document is an OGC Public Engineering

Report created as a deliverable in an OGC Interoperability Initiative and is not an

official position of the OGC membership. It is distributed for review and comment. It

is subject to change without notice and may not be referred to as an OGC Standard.

Further, any OGC Engineering Report should not be referenced as required or

mandatory technology in procurements.

Document type: OpenGIS
®

Public Engineering Report

Document subtype: NA

Document stage: Approved for Public Release

Document language: English

http://www.opengeospatial.org/legal/

OGC 09-075r1

ii Copyright © 2009 Open Geospatial Consortium, Inc.

Preface

Suggested additions, changes, and comments on this draft report are welcome and

encouraged. Such suggestions may be submitted by email message or by making

suggested changes in an edited copy of this document.

The changes made in this document version, relative to the previous version, are tracked

by Microsoft Word, and can be viewed if desired. If you choose to submit suggested

changes by editing this document, please first accept all the current changes, and then

make your suggested changes with change tracking on.

Forward

Attention is drawn to the possibility that some of the elements of this document may be

the subject of patent rights. The Open Geospatial Consortium Inc. shall not be held

responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of

any relevant patent claims or other intellectual property rights of which they may be

aware that might be infringed by any implementation of the standard set forth in this

document, and to provide supporting documentation.

OGC 09-075r1

Copyright © 2009 Open Geospatial Consortium, Inc. iii

OWS-6 Testbed
OWS testbeds are part of OGC's Interoperability Program, a global, hands-on and

collaborative prototyping program designed to rapidly develop, test and deliver Engineering

Reports and Chnage Requests into the OGC Specification Program, where they are

formalized for public release. In OGC's Interoperability Initiatives, international teams of

technology providers work together to solve specific geoprocessing interoperability problems

posed by the Initiative's sponsoring organizations. OGC Interoperability Initiatives include

test beds, pilot projects, interoperability experiments and interoperability support services -

all designed to encourage rapid development, testing, validation and adoption of OGC

standards.

In April 2008, the OGC issued a call for sponsors for an OGC Web Services, Phase 6 (OWS-

6) Testbed activity. The activity completed in June 2009. There is a series of on-line

demonstrations available here: http://www.opengeospatial.org/pub/www/ows6/index.html

The OWS-6 sponsors are organizations seeking open standards for their interoperability

requirements. After analyzing their requirements, the OGC Interoperability Team

recommended to the sponsors that the content of the OWS-6 initiative be organized around

the following threads:

1. Sensor Web Enablement (SWE)

2. Geo Processing Workflow (GPW)

3. Aeronautical Information Management (AIM)

4. Decision Support Services (DSS)

5. Compliance Testing (CITE)

The OWS-6 sponsoring organizations were:

 U.S. National Geospatial-Intelligence Agency (NGA)

 Joint Program Executive Office for Chemical and Biological Defense (JPEO-CBD)

 GeoConnections - Natural Resources Canada

 U.S. Federal Aviation Agency (FAA)

 EUROCONTROL

 EADS Defence and Communications Systems

 US Geological Survey

 Lockheed Martin

OGC 09-075r1

iv Copyright © 2009 Open Geospatial Consortium, Inc.

 BAE Systems

 ERDAS, Inc.

The OWS-6 participating organizations were:

52North, AM Consult, Carbon Project, Charles Roswell, Compusult, con terra, CubeWerx,

ESRI, FedEx, Galdos, Geomatys, GIS.FCU, Taiwan, GMU CSISS, Hitachi Ltd., Hitachi

Advanced Systems Corp, Hitachi Software Engineering Co., Ltd., iGSI, GmbH, interactive

instruments, lat/lon, GmbH, LISAsoft, Luciad, Lufthansa, NOAA MDL, Northrop Grumman

TASC, OSS Nokalva, PCAvionics, Snowflake, Spot Image/ESA/Spacebel, STFC, UK, UAB

CREAF, Univ Bonn Karto, Univ Bonn IGG, Univ Bunderswehr, Univ Muenster IfGI,

Vightel, Yumetech.

OGC 09-075r1

Copyright © 2009 Open Geospatial Consortium, Inc. v

Contents Page

1 Introduction ..1

1.1 Scope ...1

1.2 Document contributor contact points ..1

1.3 Revision history ...1

1.4 Future work ...2

2 References ..2

3 Conventions ...2

3.1 Abbreviated terms ...2

3.2 UML notation ..3

4 Overview ..3

5 Web 3D Service ...3

5.1 Introdution ...3

5.2 W3DS Scope ...5

5.3 Interface Specification ...6

5.3.1 GetCapabilites Operation ..6

5.3.1.1 Levels of Detail ...7

5.3.2 GetScene Operation ..7

5.3.3 GetFeatureInfo Operation ...9

5.3.3.1 VERSION ..10

5.3.3.2 REQUEST ...10

5.3.3.3 CRS ...10

5.3.3.4 QUERY_LAYERS ..10

5.3.3.5 INFO_FORMAT ...11

5.3.3.6 FEATURE_COUNT ...11

5.3.3.7 X, Y, Z ...11

5.3.4 GetLayerInfo Operation ..11

5.3.4.1 VERSION ..12

5.3.4.2 REQUEST ...12

5.3.4.3 LAYER ..12

5.3.4.4 COLUMNNAME ..12

5.3.4.5 FORMAT ..13

Examples: ...13

6 CityGML Adaptor ..14

7 Streaming of GML Content ...18

Figures Page

OGC 09-075r1

vi Copyright © 2009 Open Geospatial Consortium, Inc.

Fig. 1: Portrayal Pipeline Comparison .. 4

Fig. 2: W3DS interface UML diagram .. 6

Fig. 3: UML model of W3DS contents section .. 7

Fig. 2: Feature attribute table (viewed as shape file, dbf) translated from CityGML. 17

Fig. 3: Generated building footprints viewed as shape file. ... 18

Fig. 6: Streaming concept. Diagram showing the interaction between client and W3DS

server ... 20

OpenGIS
®

Public Engineering Report OGC 09-075r1

Copyright © 2009 Open Geospatial Consortium, Inc. 1

OGC
®
 OWS-6 3D Flythrough (W3DS) Engineering Report

1 Introduction

1.1 Scope

This document describes the 3D portrayal server components which were used in the

OGC OWS-6 Decision Support Systems (DSS) thread. The objective pf this activity was

to efficiently stream and display GML 3 content in internet or wireless networks with

limited bandwidth, especially focusing on the CityGML application profile. The server

for delivering landscape and city models is implemented as Web 3D Service (W3DS) that

is designed as portrayal service. The W3DS is currently an OGC discussion paper. The

interface is described in detail in this document. The concept of how to process CityGML

content for efficient streaming and rendering is explained. CityGML is converted into

VRML and shape files containing all available attributes and semantics. The W3DS is

backed up by a data base containing VRML code for each individual feature and attribute

tables.

This OGC® document is applicable to the OWS-6 DSS and GPW thread in order to

retrieve the data sets used in the airport scenario, display the content interactively and get

additional attribute information of features.

1.2 Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

Name Organization

Arne Schilling University of Bonn

1.3 Revision history

Date Release Editor Primary
clauses

modified

Description

2008-12-12 0.1 Arne Schilling

2009-05-18 1.0 Arne Schilling

OGC 09-075r1

2 Copyright © 2009 Open Geospatial Consortium, Inc.

2009-08-

03

0.3.0 Carl Reed Various Prepare for publication as PER.

1.4 Future work

This is the first draft. The final document will be submitted until 04-17-2009.

2 References

The following documents are referenced in this document. For dated references,

subsequent amendments to, or revisions of, any of these publications do not apply. For

undated references, the latest edition of the normative document referred to applies.

OGC 06-121r3, OpenGIS
®

 Web Services Common Specification

NOTE This OWS Common Specification contains a list of normative references that are also
applicable to this Implementation Specification.

OGC 08-007r1 OpenGIS
®

 City Geography Markup Language (CityGML) Encoding

Standard

OGC 05-019 OpenGIS
®

 Web 3D Service Discussion Paper, Version 0.3.0

In addition to this document, this report includes several XML Schema Document files as

specified in Annex A.

3 Conventions

3.1 Abbreviated terms

API Application Program Interface

BIM Building Information Model

COM Component Object Model

CORBA Common Object Request Broker Architecture

COTS Commercial Off The Shelf

CRS Coordinate Reference System

DCE Distributed Computing Environment

DCOM Distributed Component Object Model

DSS Decision Support System

GPW Geo Processing Workflow

http://portal.opengeospatial.org/files/?artifact_id=28802
http://portal.opengeospatial.org/files/?artifact_id=28802

OGC 09-075r1

Copyright © 2009 Open Geospatial Consortium, Inc. 3

IDL Interface Definition Language

LOD Level of Detail

3.2 UML notation

Most diagrams that appear in this standard are presented using the Unified Modeling

Language (UML) static structure diagram, as described in Subclause 5.2 of [OGC 06-

121r3].

4 Overview

The Web3D Service (W3DS, OGC 05-019) was proposed as Portrayal Service for 3D

geo data. It has currently the status of a discussion paper. The latest version is 0.3.0. The

W3DS creates 3D scenes of landscape and city models that can be explored interactively

on the client. It delivers graphical elements for displaying a complete 3D map or parts of

it. The client, which is equipped with modern 3D graphics acceleration hardware can

decide how to visualize and explore the scene and is not confined to certain viewpoints

(like e.g. in panoramic images). The W3DS is suitable for a Medium Server Medium

Client concept, which means that the Server collects the necessary geo data, and

generates display elements which are streamed to the Client. The Client is responsible for

rendering the display elements on the screen using the rendering techniques of his choice.

The W3DS is proposed in the DSS thread as a middle tier between the actual data store

containing city and landscape models and the client application, e.g. the proposed Virtual

Flythrough Application or Integrated Client which is used as a front end and allows user

interaction and rendering at an interactive frame rate. Beyond the DSS thread, W3DS

servers have been successfully deployed in numerous research activities, including 3D

routing in emergency cases [2], user defined styling for generating thematic cartographic

representations [4], providing large user generated content (OpenStreetMap 3D, [3]).

Basic principles and components for setting up 3D SDIs are explained in [5] and [7].

5 Web 3D Service

5.1 Introdution

The W3DS is designed as Portrayal Service. It does not provide the raw geo data but a

3D representation of the data. The difference is that the geo data itself is organized in

features and object with additional attributes, metadata, and semantics, and the result of a

Portrayal Service is just something that can be viewed. There is no guarantee on the

internal structure of the resulting scenes and attribute data is generally missing due to

lacking support in current 3D internet formats (e.g. COLLADA, X3D). It is even

advisable to re-organize the scene graph structure for a more efficient rendering. For

retrieving fully GML compatible and attribute rich geo data, an OGC WFS should be

used. The advantage of using visualization-centric formats is that they support a wide

range of features for controlling the visual appearance (e.g. textures, surface properties,

OGC 09-075r1

4 Copyright © 2009 Open Geospatial Consortium, Inc.

animations, lighting, atmosphere) and that they can be more efficiently transmitted and

encoded.

Fig. 1: Portrayal Pipeline Comparison

The W3DS component is usually backed by a WFS provided by a third party which

provides content in OGC GML 3.x or OGC CityGML (OGC 08-007r1) format. Since the

OGC WFS is maintained by a public authority such as a local municipality, a regional

command center for disaster management, or a federal agency, it is always ensured that

the data is kept up to date. In the OWS-6 testbed we import CityGML data sets which

must be validated using the GML Application Schema for the UTDS data and converted

into X3D format plus according attribute tables which can then imported into our data

base.

The W3DS has its own data store for the contents that need to be visualized in DSS. The

advantage of using a separate database for storing relevant data is that it can be

configured and optimized for visualization exploiting the features of state of the art

computer graphics. This makes it possible for using CityGML contents for very efficient

fly-through visualizations. Otherwise the file structure of GML3 makes it very difficult

for graphics hardware to render the contents efficiently and only a small portion of the

data can be displayed. The optimizations are part of the conversion process and include

mesh reduction for Digital Elevation Models, restructuring the scene graph, combining

objects with the same attributes, efficient usage of display lists, generalization, adapting

texture resolutions, compression, and other techniques.

OGC 09-075r1

Copyright © 2009 Open Geospatial Consortium, Inc. 5

5.2 W3DS Scope

As mentioned before, the W3DS is a Portrayal Service and delivers Scenes that are

comparable to images. Similar to an image, a Scene is a representation of the geo data

and is composed of display elements, which may comprise triangles, polygons,

billboards, text, textures, materials, atmospheric elements (fog, lights), also animations

are possible. A Scene is encoded in formats that are widely accepted for streaming 3D

contents over the internet. Our implementation delivers all content in VRML.

What is a Scene?

1. A Scene is composed of data from one or multiple layers. Different integration

strategies are feasible. Simple client implementations may request static and ready

to use Scenes. The GetScene request would include all layers that need to

displayed at one time (e.g. terrain, buildings, trees, objects). Since combining and

overlaying multiple Scenes is technically no problem, GetScene requests can also

be sent to different servers and the results integrated in the client. E.g. a 3D map

application might download a landscape model from a federal W3DS provider

and a city model from the local authorities.

2. A Scene may also contain map elements (title, compass, scale bar, legend etc.).

In this case the Scene becomes a real 3D map ready for online publication.

Predefined viewpoints can be provided simplifying the navigation in the Scene.

3. A Scene must be provided in a CRS that can be used for visualization. At least it

must be kept in mind that geographic coordinates (WGS84) are not suitable for

the display. Large coordinates are problematic because of single precision

arithmetic used in graphics hardware. Therefore an offset value is usually used

shifting the Scene back to the local origin of the coordinate system. The y axis

must point upwards which is the standard in most graphics formats. X and z axes

define East and South.

4. A Scene is composed of “Display Elements” (geometries, triangles, materials,

animations, lights, fog).

5. The structure of a Scene is not defined. CityGML contents can be reconfigured in

order to reduce the complexity. Examples are building parts such as multiple

WallSurfaces, RoofSurfaces, which can be combined if they share the same

material. Also all gml:Polygons of a gml:MultiSurface can be combined into one

geometry.

6. Semantics are usually missing since internet formats usually do not support it.

Semantics and attribute information must be provided by additional service

requests (GetFeatureInfo). However, this depends on the format being used.

VRML does not support semantics.

OGC 09-075r1

6 Copyright © 2009 Open Geospatial Consortium, Inc.

5.3 Interface Specification

The Service interface supports 4 operations:

1. GetCapabilities

2. GetSCene

3. GetFeatureInfo

4. GetLayerInfo

Fig. 2: W3DS interface UML diagram

5.3.1 GetCapabilites Operation

The W3DS GetCapabilities operation is almost identical to the WMS GetCapabilities

operation (OGC 06-042). One additional layer element was defined for providing

information on the available LODs.

OGCWebService {Abstract}

+ getCapabilities(request : GetCapabilities) : ServiceMetadata

(from OGC Web Service)

<<Interface>>

W3DService

+ getScene(request : GetScene) : GetSceneResponse
+ getFeatureInfo(request : GetFeatureInfo) : GetFeatureInfoResponse
+ getLayerInfo(request: GetLayerInfo) : GetLayerInfoResponse

Each server instance instantiates only one object of this class,
and this object always exists while server is available

OGC 09-075r1

Copyright © 2009 Open Geospatial Consortium, Inc. 7

Fig. 3: UML model of W3DS contents section

5.3.1.1 Levels of Detail

The optional <MinLevelOfDetail> and <MaxLevelOfDetail> elements describe the range

of Levels of Detail that can be provided by the layer. The actual LOD value which is a

number, is preceded by a qualifier. The qualifier specifies a namespace or value range

which is used for correctly interpreting the value. The most commonly used LOD

definition originates from the CityGML standard and ranges from 0 (landscape model to

4 (indoor model).

Example:

<MinLevelOfDetail>CityGML:1</MinLevelOfDetail>

<MaxLevelOfDetail>CityGML:4</MaxLevelOfDetail>

5.3.2 GetScene Operation

The GetScene request is the main operation of a W3DS. The basic usage is described in

OGC’s OWS standard and is corresponding to the GetMap request of the ISO/DIS 19128

Web Map Service standard. Table 1 shows the parameters for a GetScene request.

1 0..*

+ lowerCorner : Sequence <Number, 2>

+ upperCorner : Sequence <Number, 2>

+ crs [0..1]: URI="urn:ogc:def:crs:CRS::84"

+ dimensions [0..1] PositiveInteger=2

<<DataType>>

WGS84BoundingBox

(From OWS Common)

+ WGS84BoundingBox

+ keywords

+ metadata [0..1]: Any

+ link [0..1]: URL

+ about [0..1]: URI

Metadata

(from OWS Common)

+ metadata

<<DataType>>

OWSContents

DatasetSummary

Description

(from OWS Data Identitfication)

 + title [0..*] : LanguageString

+ abstract [0..*] : LanguageString

Keywords

(from ISO 19115 subset)

+ keyword [1..*] : LanguageString

+ datasetSummary

1

0..*

1

0..1 0..1

1

+ identifier

1

1

0..*

0..*

<<DataType>>

LanguageString

(from ISO 19115 subset)

 + value : CharacterString

+ lang [0..1] : CharacterString

+ code : CharacterString

+ codeSpace [0..1]: URI

+ type

Code

(from ISO 19115 subset)

1

1

Layer

 + queriable: Boolean Type

+ cascaded : Integer Type

+ minScaleDenominator : Double Type

+ maxScaleDenominator : Double Type

+ minLevelOfDetail : URI

+ minLevelOfDetail : URI

Style

 + title [0..*] : LanguageString

+ abstract [0..*] : LanguageString

<<DataType>>

BoundingBox

(From OWS Common)

+ lowerCorner : Sequence <Number>

+ upperCorner : Sequence <Number>

+ crs [0..1]: URI

+ dimensions [0..1] PositiveInteger

+ boundingBox

+ identifier

OGC 09-075r1

8 Copyright © 2009 Open Geospatial Consortium, Inc.

Parameters marked with “R” are mandatory, “O” means they are optional and “C” is

conditional, i.e. the usage of the conditional rated parameters depends on the required or

optional parameters.

Table 1 — Parameters of the GetScene request

URL parameter
Required/
Optional/

Conditional
annotation

VERSION=<version> R requested version

REQUEST=GetScene R requested operation

CRS=namespace:identifier R coordindate reference system

POI=<point_of_interest> C x,y,z point coordinates according to CRS

PITCH=<pitch> C angle of inclination [degree]

YAW=<yaw> C azimuth [degrees]

ROLL=<roll> O rotation around viewing vector [degree]

DISTANCE=<distance> C distance POI to POC [meter]

POC=x, y, z C x,y,z coordinates of camera according to SRS

AOV=<angle_of_view> C angle of view [degree]

BBOX=xmin,ymin,xmax,ymax R 2d bounding box

MINHEIGHT=<lower_limit> O displaying objects with height lower_limit
according to SRS

MAXHEIGHT=<upper_limit> O displaying objects with height upper_limit
according to SRS

LAYERS=<layer list> O comma separated list of 3D object sets

STYLES=<style list> O comma separated list of styles for each layer

FORMAT=<format> R MIME type of output

TIME=<date_and_time> O date and time

EXCEPTIONS=<excepttype> O exception format

TRANSLATE=x,y,z C translation vector that is applied to all 3D
coordinates

ENVIRONMENT=on / off O switch on/off background elements like sky or
light source

BGCOLOR=<color> O background color

BGIMAGE=<image url> O URL of background image

OGC 09-075r1

Copyright © 2009 Open Geospatial Consortium, Inc. 9

LOD=<qualifier:number> O Level of Detail

LOD_SELECTION=<string> O The method how to select the LODs. (“equals” |
“equals_or_smaller”)

SELECTION_METHOD=<string> O How to select features (“intersection” |
“by_center” | “crop”).

SLD=<string> O URL reference to SLD document

SLD_BODY=<string> O inline SLD Document in GET request

StyledLayerDescriptor=<xml> O inline SLD Document in POST request

The parameter are described in detail in the W3DS discussion paper which can be

downloaded from the OGC portal. Reference number: OGC 05-019.

Example:

http://myw3ds.de/W3DS_HD/W3DS?REQUEST=GetScene&VERSION=0.1.0&SRS=EPSG:3

1466&FORMAT=model/vrml&layers=Terrain,Buildings&bbox=3479000.0,5474500.

0,3480000.0,5476000.0&POI=3478633.0,5475125.0,109.0&POC=3479430.0,54749

00.0,250.0

5.3.3 GetFeatureInfo Operation

The GetFeatureInfo operation is designed to provide clients of a W3DS with more

information about features within a scene that is currently displayed. The canonical use

case for GetFeatureInfo is that a user explores the response of a GetScene request and

points at an object within the scene for which to obtain more information. The concept of

this operation is that the client determines a location in 3D space by clicking on an object

and calculates either the intersection point of the object geometry with the picking ray or

the center point of the object and submits this location together with additional

parameters to the server. The location can be also determined by other 3D input devices

or by any other means. Since the W3DS protocol is stateless, also the current CRS needs

to be submitted so that the W3DS is able to reconstruct the location within the CRS of its

data store. Also the layer(s) must be submitted in order to restrict the search to selected

data sets. The current implementation selects features based on the footprint. For each

feature a 2D footprint was generated and stored in the database. The coordinates in the

GetFeatureInfo request are transformed into a small bounding box (size 0.5 m) which is

used for a spatial database query. Features are selected if the bounding box intersects

with the footprint. The response is encoded as MIME type text/html and can be easily

displayed in a web browser.

Table 2 — Parameters of the GetFeatureInfo request

URL parameter
Required/
Optional/

Conditional
annotation

OGC 09-075r1

10 Copyright © 2009 Open Geospatial Consortium, Inc.

VERSION=0.3.1 M Request version.

REQUEST=GetFeatureInfo M Request name.

CRS M Value of CRS in 19128 is a text string that

identifies a

coordinate reference system defined by

another

authority.

QUERY_LAYERS=layer_list M Comma-separated list of one or more layers to be
queried.

INFO_FORMAT=output_format M Return format of feature information (MIME
type).

FEATURE_COUNT=number O Number of features about which to return

information

(default=1).

X=number M x coordinate of the location in Scene CS.

Y=number M y coordinate of the location in Scene CS.

Z=number M z coordinate of the location in Scene CS.

EXCEPTIONS=exception_format O The format in which exceptions are to be

reported by the

W3DS (default= XML).

5.3.3.1 VERSION

The mandatory VERSION parameter is defined in 6.2.1. The value “0.3.1” shall be used

for GetFeatureInfo requests that comply with this proposed Standard.

5.3.3.2 REQUEST

The mandatory REQUEST parameter is defined in ?.?.?. For GetFeatureInfo, the value

“GetFeatureInfo” shall be used.

5.3.3.3 CRS

The mandatory CRS parameter is defined in 7.3.2.4. The value should be the same as

used in the GetScene request, regardless of the internally used coordinate system for the

computer graphics, which may be different.

5.3.3.4 QUERY_LAYERS

The mandatory QUERY_LAYERS parameter lists the server layer(s) from which

features and their information should be retrieved. The value is a comma-separated list of

one or more layers. This parameter shall contain at least one layer name. If any layer in

the QUERY_LAYERS parameter is not defined in the service metadata of the W3DS, the

server shall issue a service exception (code = LayerNotDefined).

OGC 09-075r1

Copyright © 2009 Open Geospatial Consortium, Inc. 11

5.3.3.5 INFO_FORMAT

The mandatory INFO_FORMAT parameter indicates what format to use when returning

the feature information. Supported values for a GetFeatureInfo request on a W3DS server

are listed as MIME types in one or more <Request><FeatureInfo><Format> elements of

its service metadata. The entire MIME type string in <Format> is used as the value of the

INFO_FORMAT parameter. In an HTTP environment, the MIME type shall be set on the

returned object using the Content-type entity header. If the request specifies a format not

supported by the server, the server shall issue a service exception (code = InvalidFormat).

EXAMPLE The parameter INFO_FORMAT=text/xml requests that the feature

information be formatted in XML.

5.3.3.6 FEATURE_COUNT

The optional FEATURE_COUNT parameter states the maximum number of features per

layer for which feature information shall be returned. Its value is a positive integer. The

default value is 1 if this parameter is omitted or is other than a positive integer.

5.3.3.7 X, Y, Z

The mandatory X, Y, and Z request parameters are floating point values that indicate a

location in 3D space within the scene from which feature information has to be

generated. The location should be within or at the border of a feature geometry, but it

does not have to be. The W3DS shall detect the feature(s) which geometry is containing

the location or lying nearest to it. Note that x, y, z values are not in computer graphics

coordinate system, but they should have the same axis orientation and direction as

defined in the CRS parameter.

Example:

http://myserver.de/W3DS_HD/W3DS?REQUEST=GetFeatureInfo&VERSION=0.1.0&QU

ERY_Layers=Gebaeude_LOD1&X=3478297.22&Y=5475044.53&SRS=EPSG:31467&Info_

Format=text/html&Feature_Count=10

5.3.4 GetLayerInfo Operation

The purpose of the GetLayerInfo request is to collect information on the available

attribute names and the values in the attribute table of a specific layer. The attribute table

is managed by the W3DS in a database table. The entries in the attribute table are linked

to the geometries that can be retrieved using the GetScene request.

The GetLayerInfo request contains a mandatory LAYER parameter for identifying the

dataset from which attribute information should be received and an optional

COLUMNNAME parameter. If only the LAYER parameter is used, then the response of

the request contains only a list of all available attribute or column names in the format

specified by the FOMRAT parameter. The received attribute names can then be used to

receive additional information on the available values in the attribute table. If additionally

to the LAYER parameter also a COLUMNNAME parameter is present, then the attribute

OGC 09-075r1

12 Copyright © 2009 Open Geospatial Consortium, Inc.

table is queried for all available values that the features in the layer may have. The

response to such a request contains a full list of unique values. The list has no duplicate

values.

Table 3 — Parameters of the GetLayerInfo request

URL parameter
Required/
Optional/

Conditional
annotation

VERSION=0.3.1 M Request version.

REQUEST=GetLayerInfo M Request name.

LAYER=<layer> M One Layer

COLUMNNAME=<column list> O Comma-separated list of one or more column
to be queried.

FORMAT=output_format M Return format of feature information (MIME
type).

5.3.4.1 VERSION

The mandatory VERSION parameter is defined in 6.2.1. The value “0.3.1” shall be used

for GetFeatureInfo requests that comply with this proposed Standard.

5.3.4.2 REQUEST

For GetLayerInfo, the value “GetLayerInfo” must be used.

5.3.4.3 LAYER

The mandatory LAYER parameter specifies the server layer from which information

should be retrieved. The value should be exactly one layer. If information from several

layers needs to be collected, then several requests must be sent to the W3DS. If the layer

in the LAYER parameter is not defined in the service metadata of the W3DS, the server

shall issue a service exception (code = LayerNotDefined).

5.3.4.4 COLUMNNAME

The optional COLUMNNAME parameter specifies one or several table column(s) or

attribute name(s) of the selected layer in the LAYER parameter from which all available

unique values should be retrieved. The value is a comma-separated list of one or more

attribute names. If all available Attributes of a Layer should be queried, the value of the

COLUMNNAME parameter can be set to “ALLINFO”. If any layer in the

COLUMNNAME parameter is not defined in the service metadata of the W3DS, the

server shall issue a service exception (code = ColumnNameNotDefined).

OGC 09-075r1

Copyright © 2009 Open Geospatial Consortium, Inc. 13

5.3.4.5 FORMAT

The optional FORMAT parameter indicates what format to use when returning the

attribute information. Supported values for a GetLayerInfo request on a W3DS server are

listed as MIME types in one or more <Request><LayerInfo><Format> elements of its

service metadata. The entire MIME type string in <Format> is used as the value of the

FORMAT parameter. In an HTTP environment, the MIME type shall be set on the

returned object using the Content-type entity header. If the request specifies a format not

supported by the server, the server shall issue a service exception (code = InvalidFormat).

Examples:

GetLayerInfo request:
http://www.myserver.de/W3DS?REQUEST=GetLayerInfo&VERSION=0.3

.1&LAYER=Terrain&FORMAT=text/xml

GetLayerInfo response:

<GetLayerInfo>

<Layer>

<Name>Terrain</Name>

<Attribute>

<Name>id</Name>

</Attribute>

<Attribute>

<Name>landuse</Name>

</Attribute>

</Layer>

</GetLayerInfo>

GetLayerInfo request:
http://www.myserver.de/W3DS?REQUEST=GetLayerInfo&VERSION=0.3

.1&LAYER=Terrain &COLUMNNAME=landuse&FORMAT=text/xml

GetLayerInfo response:

<GetLayerInfo>

<Layer>

<Name>Terrain</Name>

<Attribute>

<Name>landuse</Name>

<Values>

<Value>Bahn</Value>

<Value>Baubloecke</Value>

<Value>Gruenflaechen</Value>

<Value>null</Value>

<Value>Strassen</Value>

<Value>Waldflaechen</Value>

<Value>Wasserflaechen</Value>

 </Values>

http://www.myserver.de/W3DS?REQUEST=GetLayerInfo&VERSION=0.3.1&LAYER=Terrain&FORMAT=text/xml
http://www.myserver.de/W3DS?REQUEST=GetLayerInfo&VERSION=0.3.1&LAYER=Terrain&FORMAT=text/xml
http://www.myserver.de/W3DS?REQUEST=GetLayerInfo&VERSION=0.3.1&LAYER=Terrain&FORMAT=text/xml
http://www.myserver.de/W3DS?REQUEST=GetLayerInfo&VERSION=0.3.1&LAYER=Terrain&FORMAT=text/xml

OGC 09-075r1

14 Copyright © 2009 Open Geospatial Consortium, Inc.

 </Attribute>

</Layer>

</GetLayerInfo>

6 CityGML Adaptor

In DSS the geographic content is provided and stored as GML data sets. This will be the

basis for the data exchange between servers. CityGML is the accepted standard for

describing 3D data sets for city environments since it enables to store all relevant

information in a well defined XML structure which allows extracting specific parts such

as geometry, specific properties very easily and in a standardized manner. The standard is

implemented as GML application profile and comes with a XSD validation schema

which makes it possible to validate any CityGML content before being processed. The

XML schema defines elements for all possible objects and properties that are required in

order to describe a city model. It is therefore inherently semantic rich. CityGML will be

also the basis for setting up the previously described visualization server.

However, the scope of CityGML and W3DS differ. On the one hand, CityGML must be

able to store all available information on city object including buildings, vegetation,

streets, addresses etc. Information must not be lost when using CityGML as an exchange

format automatically generated by converter tools or exporters built in into COTS

software. It supports features derived from 3D modeling software (appearances,

materials, textures) as well as from GIS software (bboxes, addresses), and from BIM

software (semantics for buildings parts). On the other hand, W3DS is designed for

supporting server-client architectures with limited bandwidth and for supporting very

efficient real-time 3D rendering on the client side (e.g. virtual globes, virtual flythrough).

The content maintained and served by the W3Ds must be compact and allow for efficient

rendering at a high frame rate, yet it must be possible to retrieve additional information

on selected objects.

For these reasons we implemented a CityGML adaptor, which is used when setting up the

server and importing CityGML content into the W3DS database. The W3DS database

stores tables for each data set containing all available information. Each row in this table

represents a GIS feature which is a more traditional way to maintain geographic data sets,

compared with the possibly hierarchical nature of XML files. Each row/feature contains:

 2D footprint for 2D map representations

 Center point for selecting features

 Unique ID

 3D geometry stored as VRML

 Attributes

The CityGML adaptor separates a GML file into an array of features using a predefined

XML tag. In the example below (Listing 1) the <groupMember> tag has been used in order

to identify the individual features. From the sub-elements in <groupMember> the geometry

OGC 09-075r1

Copyright © 2009 Open Geospatial Consortium, Inc. 15

is extracted, in this case a <lod1MultiSurface>. How to deal with multi LOD features is

left aside in this report. The <lod1MultiSurface> is represented as <gml:MultiSurface>,

containing a set of <gml:surfaceMember>, <gml:Polygon>, <gml:exterior>,

<gml:LinearRing>, and finally <gml:posList>. This leads to a highly redundant

representation because each polygon has its own point list and does not share vertices

with adjacent polygons. The adaptor merges all polygons and creates a single VRML

IndexedFaceSet from a <gml:MultiSurface> containing a single Coordinate array and a

coordIndex array defining triangles and polygons. The same applies to texture

coordinates.

The adaptor converts the remaining XML elements in <groupMember> into attributes. It

collects attribute information from the tag names (<Building>, <CityFurniture>,

<VegetationObject>, <WaterObject>, <Landuse>,…) providing the top level semantics,

from gml:id fields, which usually contain the cadastre unique IDs, from the <address>

elements, and from additional elements which as defined in the GML application profile,

e.g. <stringAttribute>.

<groupMember>

 <Building gml:id="HA05513000061300056 003">

 <gml:description>HA05513000061300056 003</gml:description>

 <gml:name>HA05513000061300056 003</gml:name>

 <creationDate>2008-10-30</creationDate>

 <gml:boundedBy>

 <gml:Envelope>

 <gml:lowerCorner>2572874.82700002 5715926.04600018

0</gml:lowerCorner>

 <gml:upperCorner>2572883.55300015 5715930.93

4.25</gml:upperCorner>

 </gml:Envelope>

 </gml:boundedBy>

 <lastModificationDate>2008-12-01</lastModificationDate>

 <updatingPerson>01.12.2008</updatingPerson>

 <reasonForUpdate>new calculations</reasonForUpdate>

 <lineage>City of Nimmerlein</lineage>

 <stringAttribute name="OSCHL">

 <value>2366</value>

 </stringAttribute>

OGC 09-075r1

16 Copyright © 2009 Open Geospatial Consortium, Inc.

 <stringAttribute name="OART">

 <value>1032</value>

 </stringAttribute>

 <stringAttribute name="OBJNUM">

 <value>D00XBJH</value>

 </stringAttribute>

 <stringAttribute name="OBJNAME">

 <value>HA05513000061300056 003</value>

 </stringAttribute>

 <stringAttribute name="STREET">

 <value>06130</value>

 </stringAttribute>

 <stringAttribute name="HOUSENR">

 <value>56</value>

 </stringAttribute>

 <stringAttribute name="LFDNR">

 <value>3</value>

 </stringAttribute>

 <stringAttribute name="ANZHOCH">

 <value>1</value>

 </stringAttribute>

 <stringAttribute name="ANZDACH">

 <value>1</value>

 </stringAttribute>

 <doubleAttribute name="Traufe">

 <value>4.25</value>

 </doubleAttribute>

 <stringAttribute name="Origin">

 <value>LIDAR capture</value>

 </stringAttribute>

 <stringAttribute name="Cadastre_ID">

 <value>05513000061300056 003</value>

 </stringAttribute>

OGC 09-075r1

Copyright © 2009 Open Geospatial Consortium, Inc. 17

 <function>1032</function>

 <yearOfConstruction>-1</yearOfConstruction>

 <measuredHeight uom="#m">4.25</measuredHeight>

 <storeysAboveGround>1</storeysAboveGround>

 <storeyHeightsAboveGround uom="#m">0 </storeyHeightsAboveGround>

 <storeyHeightsBelowGround uom="#m">0 </storeyHeightsBelowGround>

 <lod1MultiSurface>

 <gml:MultiSurface gml:id="5114">

 ...

 </gml:MultiSurface>

 </lod1MultiSurface>

 <address>

 <Address>

 <streetName>Backerodstr.</streetName>

 <houseNumber>0056</houseNumber>

 <zipCode>000</zipCode>

 <city>13</city>

 </Address>

 </address>

 </Building>

 </groupMember>

Listing 1: Extract from a sample CityGML file.

Fig. 4: Feature attribute table (viewed as shape file, dbf) translated from CityGML.

OGC 09-075r1

18 Copyright © 2009 Open Geospatial Consortium, Inc.

Fig. 5: Generated building footprints viewed as shape file.

The CityGML adaptor is implemented using a SAX parser. The parser validates against

the GML application schema, which can be provided by third parties. The second step is

to create a memory internal DOM document which is then transformed into a Java3D

scene graph. Java3D is used as internal representation for 3D geometries and

appearances. An optimization step merges polygons that belong to the same

<gml:MultiSurface> and flattens partly the scene graph structure, which improves the

rendering performance significantly. Also appearances are merged, that means that

instead of repeating the same appearance for each 3D shape, a single appearance is

created which is referenced multiple times by the 3D shapes. The result is an optimized

3D representation for each GIS feature which is then encoded in VRML and stored in the

data base along with the attributes.

7 Streaming of GML Content

In order to visualize and analyze the GML content, a special client software was

developed, used as integrated client in the DSS and GPW threads. The GML data is

streamed via the W3DS interface to the client. This section covers the basic principles of

OGC 09-075r1

Copyright © 2009 Open Geospatial Consortium, Inc. 19

streaming and dynamic scene graph updating. Upon connecting to the W3DS server, the

client analyzes the server’s meta data which contains information on supported protocols,

formats, available layers, CRSs, styles, spatial extents, and on the service provider. Each

layer contains a BoundingBox element, which describes the maximum spatial extent of

all included features.

The streaming is based on a block-wise data update schema. This means that the space is

divided into parcels or tiles of rectangular shape. For each tile a server request is created

and sent to the W3DS server. The response is parsed and loaded into internal scene

graph. This corresponds to a tree like scene graph structure stored in the clients memory

and modified according to what needs to be displayed. Each tile is connected to a LOD

trigger, which measures the distance from the virtual viewpoint to the center of the tile. If

the viewer comes closer and the distance becomes smaller than the pre-defines threshold

value, then the tile is activated and data for the tile’s extent is requested from the W3DS.

A principle issue with this schema is that requests with adjacent bounding boxes may

result in overlapping features at the border. That means that duplicate features at the tile

borders must be loaded if the spatial selection logic performs an intersection method

which selects all features that are inside or overlap with the requested bounding box. In

order to avoid such effects, the W3DS server performs a spatial selection based on the

feature’s center point. Features are selected if the center point is inside the requested

bounding box. Thus adjacent tiles will not contain duplicate features.

For each layer the provided bounding box is translated in a base tile covering all data that

may be downloaded from this layer. If the viewpoint comes closer, the LOD node is

triggered, upon which 4 child tiles are generated arranged as a 2x2 raster splitting the area

of the base node into 4. The child tiles are added to the base tile node. LOD triggers are

added to the child nodes which have a threshold value which is generated from the size of

the tile. The distance to these child nodes is then checked again and the scene graph is

extended accordingly. This update procedure is continued until the leaf tiles with a

predefined size have been reached. The leaf tiles will not extended, they contain the

actual 3D model downloaded from the W3DS. If the viewer moved forward, then leaf

tiles may come out of range and removed from the scene graph. This update procedure

generates a tree structure of the scene graph. The spatial layout is a quad tree with small

tiles near the viewpoint displaying a part of the GML content and larger tiles farther away

from the viewpoint. Fig. 6 illustrates the block wise streaming schema.

OGC 09-075r1

20 Copyright © 2009 Open Geospatial Consortium, Inc.

Fig. 6: Streaming concept. Diagram showing the interaction between client and W3DS server

OGC 09-075r1

Copyright © 2009 Open Geospatial Consortium, Inc. 21

Bibliography

[1] Guidelines for Successful OGC Interface Standards, OGC document 00-014r1

[2] Neis, P., A. Schilling, A. Zipf (2007): 3D Emergency Route Service (3D-ERS)

based on OpenLS Specifications. GI4DM 2007. 3rd International Symposium on

Geoinformation for Disaster Management. Toronto, Canada.

[3] Neubauer, N., M. Over, A. Schilling, A. Zipf (2009): Virtual Cities 2.0:

Generating web-based 3D city models and landscapes based on free and user

generated data (OpenStreetMap). GeoViz 2009. Contribution of Geovisualization

to the concept of the Digital City. Workshop. Hamburg. Germany.

[4] Neubauer, S., Zipf, A. (2007): Suggestions for Extending the OGC Styled Layer

Descriptor (SLD) Specification into 3D – Towards Visualization Rules for 3D

City Models, Urban Data Management Symposium. UDMS 2007. Stuttgart.

Germany.

[5] SCHILLING, A., S.NEUBAUER, A. ZIPF (2009): Putting GDI-3D into practice:

Experiences from developing a 3D spatial data infrastructure based on OpenGIS

standards for the sustainable management of urban areas. FIG Commission 3,

International Workshop on 'Spatial Information for Sustainable Management of

Urban Areas'. Mainz. Germany.

[6] Schilling, A., Basanow, J., Zipf, A. (2007): VECTOR BASED MAPPING OF

POLYGONS ON IRREGULAR TERRAIN MESHES FOR WEB 3D MAP

SERVICES. 3rd International Conference on Web Information Systems and

Technologies (WEBIST). Barcelona, Spain. March 2007.

[7] Zipf, A., J. Basanow, P. Neis, S. Neubauer, A. Schilling (2007): Towards 3D

Spatial Data Infrastructures (3D-SDI) based on Open Standards - experiences,

results and future issues. In: "3D GeoInfo07". ISPRS WG IV/8 International

Workshop on 3D Geo-Information: Requirements, Acquisition, Modelling,

Analysis, Visualisation. Delft, NETHERLANDS

http://www.geographie.uni-bonn.de/karto/GI4D2007.3DEmergencyRouteService.pdf
http://www.geographie.uni-bonn.de/karto/GI4D2007.3DEmergencyRouteService.pdf
http://www.geographie.uni-bonn.de/karto/3D_SLD.UDMS2007.sn.az.pdf
http://www.geographie.uni-bonn.de/karto/3D_SLD.UDMS2007.sn.az.pdf
http://www.geographie.uni-bonn.de/karto/3D_SLD.UDMS2007.sn.az.pdf
http://www.geographie.uni-bonn.de/karto/3D.dem.webist07.as.jb.az.pdf
http://www.geographie.uni-bonn.de/karto/3D.dem.webist07.as.jb.az.pdf
http://www.geographie.uni-bonn.de/karto/3D.dem.webist07.as.jb.az.pdf

	Introduction
	Scope
	Document contributor contact points
	Revision history
	Future work

	References
	Conventions
	Abbreviated terms
	UML notation

	Overview
	Web 3D Service
	Introdution
	W3DS Scope
	Interface Specification
	GetCapabilites Operation
	Levels of Detail

	GetScene Operation
	GetFeatureInfo Operation
	VERSION
	REQUEST
	CRS
	QUERY_LAYERS
	INFO_FORMAT
	FEATURE_COUNT
	X, Y, Z

	GetLayerInfo Operation
	VERSION
	REQUEST
	LAYER
	COLUMNNAME
	FORMAT

	Examples:

	CityGML Adaptor
	Streaming of GML Content

