Open Geospatial Consortium Inc.

Date: 2010-02-25

Reference number of this document: OGC 06-080r4

Version: 1.0

Category: OpenGIS® Implementation Standard

Editor: Jerome Gasperi

OpenGIS Geography Markup Language (GML) Application Schema for Earth Observation Products

Copyright (c) 2010 Open Geospatial Consortium
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.
License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below, to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE USER'S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as provided in the following sentence, no such termination of this license shall require the termination of any third party end-user sublicense to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license without any compensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force and effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise exported or reexported in violation of U.S. export laws and regulations. In addition, you are responsible for complying with any local laws in your jurisdiction which may impact your right to import, export or use the Intellectual Property, and you represent that you have complied with any regulations or registration procedures required by applicable law to make this license enforceable.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Scope</td>
</tr>
<tr>
<td>2</td>
<td>Compliance</td>
</tr>
<tr>
<td>3</td>
<td>Normative references</td>
</tr>
<tr>
<td>4</td>
<td>Terms and definitions</td>
</tr>
<tr>
<td>5</td>
<td>Conventions</td>
</tr>
<tr>
<td>6</td>
<td>Overview</td>
</tr>
<tr>
<td>6.1</td>
<td>General concepts</td>
</tr>
<tr>
<td>6.2</td>
<td>GML Observation</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Earth Observation mapping on gml:Observation</td>
</tr>
<tr>
<td>6.3</td>
<td>General rules</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Language rules</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Extensions rules</td>
</tr>
<tr>
<td>6.3.2.1</td>
<td>Thematic extended namespace</td>
</tr>
<tr>
<td>6.3.2.2</td>
<td>Mission specific extended namespace</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Use of Schematron</td>
</tr>
<tr>
<td>6.3.3.1</td>
<td>Schematron basics</td>
</tr>
<tr>
<td>6.3.3.2</td>
<td>Schematron rules for eop</td>
</tr>
<tr>
<td>6.3.4</td>
<td>CodeList</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Units of measure</td>
</tr>
<tr>
<td>6.3.6</td>
<td>Use of xlink</td>
</tr>
<tr>
<td>6.3.7</td>
<td>GML restrictive use</td>
</tr>
<tr>
<td>7</td>
<td>EO Products application schemas</td>
</tr>
<tr>
<td>7.1</td>
<td>General EO product data schema</td>
</tr>
<tr>
<td>7.1.1</td>
<td>EarthObservationMetadata</td>
</tr>
<tr>
<td>7.1.2</td>
<td>EarthObservationEquipment</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Footprint</td>
</tr>
<tr>
<td>7.1.4</td>
<td>EarthObservationResult</td>
</tr>
<tr>
<td>7.2</td>
<td>Thematic EO product data schema</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Optical EO Product data schema</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Radar EO Product data schema</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Atmospheric EO Product data schema</td>
</tr>
<tr>
<td>7.3</td>
<td>Issues</td>
</tr>
<tr>
<td>7.4</td>
<td>XML schema documents</td>
</tr>
</tbody>
</table>
Figures

Figure 1: A layered view of GML EO Products data .. 5

Figure 2: A generic GML viewer understand the “gml” vocabulary and thus displays the product footprint (gml:multiExtentOf property). With no semantic knowledge on the EO product schema, the reader is able to display the related attributes in an xpath/value fashion .. 6

Figure 3: schematron processing for Earth Observation products 11

Figure 5: <eop:EarthObservationType> diagram ... 15

Figure 6: <eop:EarthObservationMetadata> diagram .. 17

Figure 8: <eop:EarthObservationEquipment> diagram ... 21

Figure 10: <eop:Footprint> diagram ... 25

Figure 12: <eop:EarthObservationResult> diagram ... 26

Tables

No table of figures entries found.
i. Preface

This OGC Implementation Standard defines a Geography Markup Language (GML) version 3.1.1 application schema for describing Earth Observation products (EO products) within the HMA (Heterogeneous EO Missions Accessibility) Application Profile for the OGCTM Catalogue Services Standard v2.0.0 (with Corrigendum) [OGC 04-021r3]

Suggested additions, changes, and comments on this draft report are welcome and encouraged. Such suggestions may be submitted by email message.

ii. Document terms and definitions

This document uses the specification terms defined in Subclause 5.3 of [OGC 05-008]. In particular, the word “shall” (not “must”) is the verb form used to indicate a requirement to be strictly followed to conform to this standard.

iii. Submitting organizations

This application schema is being submitted to the OGC by the following organizations:

- ESA – European Space Agency
- CNES – French Space Agency
- EUSC
- Spacebel s.a.
- Spot Image

The editors would like to acknowledge that this work is the result of collaboration and review of many organizations and would like to thank for the comments and contributions from:

- ASI
- Conterra
- DLR
iv. Document contributor contact points

All questions regarding this submission should be directed to the editor or the submitters:

Jerome Gasperi (Editor)
CNES
jerome.gasperi <at> cnes.fr

Contributors:

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christophe Dabin</td>
<td>CNES</td>
</tr>
<tr>
<td>Patrick Floissac</td>
<td>MAGELLIUM (CNES Sub contractor)</td>
</tr>
<tr>
<td>Jolyon Martin</td>
<td>ESA</td>
</tr>
</tbody>
</table>

v. Revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Release</th>
<th>Editor</th>
<th>Primary clauses modified</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 May 2006</td>
<td>0.1.0</td>
<td>Jerome Gasperi</td>
<td>N/A</td>
<td>Initial document</td>
</tr>
<tr>
<td>29 May 2006</td>
<td>0.1.1</td>
<td>Jerome Gasperi</td>
<td>N/A</td>
<td>Updated after telecom meeting</td>
</tr>
<tr>
<td>21 August 2006</td>
<td>0.1.2</td>
<td>Jerome Gasperi</td>
<td>N/A</td>
<td>Update document after Ron Lake comments. Update document regarding version 0.91 of the XML schemas</td>
</tr>
<tr>
<td>19 September 2006</td>
<td>0.1.3</td>
<td>Jerome Gasperi</td>
<td>N/A</td>
<td>Update document regarding version 0.92 of the XML schema</td>
</tr>
<tr>
<td>24 November 2006</td>
<td>0.1.4</td>
<td>Jerome Gasperi</td>
<td>N/A</td>
<td>Use of gml:Observation for schema description. Update document regarding version 0.94 of the XML schema</td>
</tr>
<tr>
<td>8 December 2006</td>
<td>0.1.4</td>
<td>Jolyon Martin</td>
<td>N/A</td>
<td>Updated draft re-numbered as 06-080r1. Minor update of introduction</td>
</tr>
<tr>
<td>7 February 2007</td>
<td>0.1.4</td>
<td>Jerome Gasperi</td>
<td>N/A</td>
<td>Updated draft re-numbered as 06-080r2</td>
</tr>
<tr>
<td>Date</td>
<td>Version</td>
<td>Author</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>------------</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>
| 21 May 2007 | 0.1.4 | Jerome Gasperi | Updated draft re-numbered as 06-080r1
Change pointingAngles to incidenceAngles.
Add hma:composedOf, hma:subsetOf and hma:linkedWith within EarthObservationMetadata
Update document regarding version 1.0beta of the XML schema |
| 18 June 2007 | 0.9.0 | Jerome Gasperi | Updated draft re-numbered as 06-080r2
Change gml:extentOf to gml:multiExtentOf to allow multi-polygons in footprint
Update document regarding version 1.0 of the XML schema |
| 1st August | 0.9.1 | Jerome Gasperi | Change hma namespace to eop (RIDS IMPR#93)
Change opt namespace to opt (RIDS IMPR#94)
Update document regarding version 1.1 of the XML schema |
| 22 November | 0.9.1 | Jolyon Martin | Update of OGC revision no. For re-submission to TC |
| 20 March | 0.9.2 | Jerome Gasperi | Update document regarding version 1.2 of the XML schema
RIDS DAIL-RD-EDT-EN-0101 : Correct typos in the document (acrossTrackIncidenceAngle, orbitType and archivingCenter)
Add the following elements :
 o mandatory “version” attribute
 o ProcessingInformation/processingCenter
 o ProcessingInformation/processingDate |
vi. Changes to OGC Standards

The existing OGC™ standards do not need any changes to accommodate the technical contents of this standard.

vii. Future work

This profile is designed to be used mainly in the cataloguing of EO metadata, using the CS-W ebRIM application profile. This standard (07-006) is based on OGC Filter Encoding Standard that uses GML 3.1.1. For consistancy, this profile also use GML 3.1.1.

Future work on this profile will include harmonization with GML 3.x.x, most likely version 3.3.0.
Foreword

This OGC standard specifies a Geographic Markup Language (GML) version 3.1.1 application schema [OGC 03-105r1 and 04-092r4]. The schema is a GML application schema as specified in Subclause 23 of [OGC 03-105r1].

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The Open Geospatial Consortium Inc. shall not be held responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property rights of which they may be aware that might be infringed by any implementation of the standard set forth in this document, and to provide supporting documentation.
Introduction

The OGC Geography Markup Language is an XML grammar written in XML Schema for the modelling, transport, and storage of geographic information.

From the GML standard, “GML provides a variety of kinds of objects for describing geography including features, coordinate reference systems, geometry, topology, time, units of measure and generalized values. A geographic feature is an abstraction of a real world phenomenon; it is a geographic feature if it is associated with a location relative to the Earth”.

EO data product collections are usually structured to contain data items derived from a sensor onboard a satellite or series of sensors. The key characteristics differentiating these products are date of acquisition, location and in some cases, such as the optical imagery, the possible presence of cloud, haze, smokes or other atmospheric or on ground phenomena obscuring the image. These are the key characteristics; there are however other metadata that are required to identify products of interest.

From a user point of view, an EO data product can be naturally described with a spatial extension (e.g. the geographic footprint of a satellite acquisition) and several attributes describing the metadata (e.g. date of acquisition, etc.). Indeed this point of view is consistent with a GML representation of the data.

The intent of this standard is to describe as a GML version 3.1.1 application schema that can be used with service interfaces for EO data product that can be supported by many data providers (satellite operators, data distributors …). The metadata described is that which is commonly provided through catalogue interfaces, it does not necessarily include all of the metadata that is present in the actual EO data product (e.g. calibration coefficients etc.).

This standard defines the schemas for generic and thematic EO products (i.e optical, radar and atmospheric missions). In addition, this document describes the mechanism used to extend these schemas to very specific mission such as the French Pleiades mission.
GML Application Schema for EO Products

1 Scope

This application schema document describes the encodings required to describe Earth Observation (EO) products from general to mission specific characteristics.

2 Compliance

This document specifies three compliance levels:

- The general level, or “eop” level, describes the general EO Products schema;
- The thematic level extends the “eop” level to describes thematic EO Products such as optical, radar or atmospheric products (respectively “opt”, “sar”, “atm” levels);
- The mission specific level extends one of the “thematic” level to describes mission specific EO Products. For instance the French Pleiades mission uses the “phr” level which extends the “opt” thematic level.

EO Products data encoded using this application schema shall produce XML documents that are fully compliant with normative XML Schema Documents associated with this standard (i.e. eop.xsd for general EO Products, opt.xsd, sar.xsd and atm.xsd for optical, radar and atmospheric products respectively).

More specifically, compliance with this standard shall be checked using all the relevant tests specified in Annex A (normative).

3 Normative references

The following normative documents contain provisions that, through reference in this text, constitute provisions of this document. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. For undated references, the latest edition of the normative document referred to applies.

OGC 03-105r1, OpenGIS Geography Markup Language (GML) Implementation Standard, Version 3.1.0,
In addition to this document, this standard includes several normative XML Schema files. Following approval of this document, these schemas will be posted online at the http://schemas.opengis.net. These XML Schema files are also bundled with the present document. In the event of a discrepancy between the bundled and online versions of the XML Schema files, the online files shall be considered authoritative.

4 Terms and definitions

For the purposes of this standard, the definitions specified in Clause 4 of the OWS Common Implementation Standard [OGC 05-008] shall apply. In addition, the following terms and definitions apply.

client
software component that can invoke an operation from a server

datastrip
A satellite acquisition

geographic information
information concerning phenomena implicitly or explicitly associated with a location relative to the Earth [ISO 19128 draft]

identifier
a character string that may be composed of numbers and characters that is exchanged between the client and the server with respect to a specific identity of a resource

qualified name
name that is prefixed with its naming context

EXAMPLE The qualified name for the road no attribute in class Road defined in the Roadmap schema is RoadMap.Road.road_no. [ISO 19118].
request
invocation of an operation by a client

response
result of an operation, returned from a server to a client

scene
The cutting of a datastrip into part. For PHR mission, a scene is a 20x20 km^2 square part.

schema
formal description of a model [ISO 19101, ISO 19103, ISO 19109, ISO 19118]

5 Conventions

5.1 Abbreviated terms
The abbreviated terms used in this document include:

ATM Atmospheric
EO Earth Observation
EOP Earth Observation Product
GML Geography Markup Language
HMA Heterogeneous Mission Accessibility
OGC Open Geospatial Consortium
PHR Pleiades High Resolution
OPT OPTical
SAR Synthetic Aperture Radar
XML eXtensible Markup Language

5.2 Namespace prefix conventions
The namespace prefixes used in this document are not normative and are merely chosen for convenience; they may appear in examples without being formally declared, and have no semantic significance. The namespaces to which the prefixes correspond are normative, however.

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Namespace URI</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1: namespace mappings

<table>
<thead>
<tr>
<th>Namespace</th>
<th>Namespace URI</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eop</td>
<td>http://earth.esa.int/eop</td>
<td>General EO product schema namespace</td>
</tr>
<tr>
<td>opt</td>
<td>http://earth.esa.int/opt</td>
<td>Optical High Resolution EO product schema namespace</td>
</tr>
<tr>
<td>sar</td>
<td>http://earth.esa.int/sar</td>
<td>Radar EO product schema namespace</td>
</tr>
<tr>
<td>atm</td>
<td>http://earth.esa.int/atm</td>
<td>Atmospheric EO product schema namespace</td>
</tr>
<tr>
<td>phr</td>
<td>http://eop.cnes.fr/phr</td>
<td>Pleiades High Resolution product schema namespace</td>
</tr>
</tbody>
</table>

6 Overview

This section focuses on the purpose and requirements for this standard. In particular, the document describes the context of use of the EO Product application schema.

6.1 General concepts

The approach consists in modelling EO data product through a GML application schema. ISO definitions are specified for attributes where available, although not the full ISO schema is used for the structural definitions, which would lead to a less efficient overall structure.

The general mechanism is to create a schema with a dedicated namespace for each level of specificity from a general description which is common to each EO Product to a restricted description for specific mission EO Product. Each level of specificity is an extension of the previous one.

The General EO product schema is the main application schema for EO Product data. It is associated with the “eop” namespace.

Each Thematic EO product schemas extends the “eop” schema:
- The Optical EO Product schema is used to describe optical products. It is associated with the “opt” namespace;
- The SAR EO Product schema is used to describe radar products. It is associated with the “sar” namespace;
- The Atmospheric EO Product schema is used to describe atmospheric products. It is associated with the “atm” namespace;

The idea behind this set of layered levels approach, is
1) to create an efficient schema set that describes EO Product metadata concentrating on the core metadata that key characteristics differentiate a product within a collection.

2) to profit by the widespread use of GML so that our products can be displayed by a large variety of GML viewer from generic one, which will see EO Products as features with footprint and “unknown” metadata, to EO Product specific one, which will understand the semantic of these metadata (cf. Figure 1)

![Figure 1: A layered view of GML EO Products data.](image)

More precisely, a generic GML viewer will only understand the “gml” vocabulary of the GML document; a “Generic EO Products viewer” will understand the “gml” and “eop” vocabulary of the GML document; an “Optical EO Products viewer” will understand the “gml”, “eop” and “opt” vocabulary of the GML document. The “phr” vocabulary will only be understood by a “Specific PHR Viewer” that extends the “Optical EO Products Viewer”.

Copyright © 2010 Open Geospatial Consortium, Inc.
Figure 2: A generic GML viewer understands the “gml” vocabulary and thus displays the product footprint (gml:multiExtentOf property). With no semantic knowledge on the EO product schema, the reader is able to display the related attributes in an xpath/value fashion.

6.2 GML Observation

An Observation in GML models the act of observing or measuring some quantity. The quantity to be measured can be simple (a single temperature), or it may be a complex quantity such as a coverage. Remotely sensed images in the sense of their acquisition can be viewed as observations in which the result of the observation (value of the resultOf property) is a remotely-sensed image product.

The structure of a GML observation is as follows:

- metadataProperty – general metadata describing the observation;
- validTime - when the observation took place;
- using - the mechanism (procedure, instrument etc.) used in the observing;
- target - the entity that is the subject or target of the observation;
- resultOf - what resulted from the observing.

1 “A coverage is a subtype of feature that has a coverage function with a spatiotemporal domain and a value set range of homogeneous 1- to n- dimensional tuples” (OGC 04-092r4)
6.2.1 Earth Observation mapping on gml:Observation

The Earth Observation is modelled to fit exactly the gml:Observation structure and always has the same first level structure (i.e. gml:using, gml:target, etc.).

Thus, the eop namespace contains:

- eop "words" (i.e. technically speaking global element declaration) : identifier, status, dowlinkedTo, etc. This words are referenced inside higher level structure (or "blocks", see Table 2)

- an eop:EarthObservation element that inherits from gml:Observation. This inheritance is an XML schema extension (to avoid restriction problems) with no element added (because all elements fit inside one of the gml:Observation property metadaProperty, validTime, using, target or resultOf)

The content of gml:Observation properties is as follows:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description within Earth Observation context</th>
<th>Awaited Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>metadaProperty</td>
<td>Describe general properties such as the data identifier, the downlink and archiving information</td>
<td>eop:EarthObservationMetadata</td>
</tr>
<tr>
<td>validTime</td>
<td>Describe the acquisition duration, i.e. the start and end date of acquisition</td>
<td>gml:TimePeriod/gml:beginPosition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gml:TimePeriod/gml:endPosition</td>
</tr>
<tr>
<td>using</td>
<td>Describe the Platform/Instrument/Sensor used for the acquisition and the acquisition parameters (i.e. pointing angles, etc.)</td>
<td>eop:EarthObservationEquipment</td>
</tr>
<tr>
<td>target</td>
<td>Describe the observed area on ground i.e. the footprint of acquisition</td>
<td>eop:Footprint</td>
</tr>
<tr>
<td>resultOf</td>
<td>Describe the Earth Observation result composed of the browse, mask and product description</td>
<td>eop:EarthObservationResult</td>
</tr>
</tbody>
</table>

Table 2: gml:Observation properties mapping within Eart Observation context

6.3 General rules

We defined the following rules for creating the application schemas.
6.3.1 Language rules

Natural language used as far as possible for property names. For instance, complete names for properties are preferred to abbreviations.

Property name “composedOf” is used to define structural links to extended metadata. For instance a “phr:Datastrip” is logically splitted into one or more “phr:Scene”. Thus, each Scene in the “phr:Datastrip” schema is referenced with the “eop:composedOf” property.

Property name “subsetOf” is used to define structural links to “father” metadata. For instance in the previous example, the “phr:Datastrip” is referenced within the “phr:Scene” by the “eop:subsetOf” property name.

6.3.2 Extensions rules

As see in §6.2.1, we want each Earth Observation product to fit exactly the structure of a gml:Observation element.

Thus, in the inheritance mechanism for thematic or mission specific namespaces, we need to extends existing properties defined in eop or create new property that fit inside the model.

6.3.2.1 Thematic extended namespace

Thematic extended namespace (opt for example) contains:

- opt "words";

- an opt:EarthObservation element that inherits from eop:EarthObservation. This inheritance is an XML schema extension (to avoid restriction problems) with no element added (because all elements fit inside one of the Observation property metadataProperty, validTime, using, target or resultOf);

- one or more extension of existing eop properties (see example below).

For example, “opt” thematic EO Products metadata include the solar azimuth angle, named “illuminationAzimuthAngle”. This property is described within opt:Acquisition element which extends and acts as a substitution for eop:Acquisition:

```xml
<opt:EarthObservation>
  […]
  <gml:using>
    <eop:EarthObservationEquipment>
      […]
      <eop:acquisitionParameters>
        <opt:Acquisition>
          […]
          <eop:orbitDirection>ASCENDING</eop:orbitDirection>
          […]
          <opt:illuminationAzimuthAngle>56,67</opt:illuminationAzimuthAngle>
        </opt:Acquisition>
      </eop:acquisitionParameters>
    </eop:EarthObservationEquipment>
  </gml:using>
</opt:EarthObservation>
```
6.3.2.2 Mission specific extended namespace

Mission specific extended namespace (phr for example) contains:

- phr "words";

- a phr:EarthObservation element that inherits from opt:EarthObservation. This inheritance is an XML schema extension (to avoid restriction problems) with no element added (because all elements fit inside one of the Observation property metadataProperty, validTime, using, target or resultOf);

- one or more extension of existing opt properties (e.g. in phr, an extension of opt:EarthObservationResult to add cloudCoverPercentageConfidenceIndex).

These rules are closed to those described in the thematic extended namespace. However, the property extension approach leads to a drawback in the mission specific case.

Indeed, from a client point of view, an “eop” enabled reader must encounter well-known structures under a “eop” properties. This may not be a problem for “eop” and thematics schemas since they are completely described in this document (i.e. structure can be “hard coded”).

However, a mission specific schema shall follow the rules described in this document but the content of this schema is not in the scope of this document. Thus a generic “eop” enabled reader shall be able to process complex schema inheritance mechanisms to “understand” mission specific data.

To avoid this drawback, we introduce an attribute "eop:type" at the eop level. This attribute is required for properties that extends one of eop or thematic property. This attribute is expected to contain the name of the property it extends directly. This mechanism is comparable to the ISO19139 gco:isoType.

For example for a phr:DataStrip that extends opt:EarthObservation:

```xml
<phr:DataStrip eop:type="opt:EarthObservation">
  [...]
  <gml:resultOf>
    <phr:EarthObservationResult eop:type="opt:EarthObservationResult">
      <eop:browse>
        <eop:product>
          <eop:mask>
            <opt:cloudCoverPercentage uom='%'>30</opt:cloudCoverPercentage>
            <phr:cloudCoverAssessmentConfidence uom='%'>10</phr:cloudCoverAssessmentConfidence>
          </eop:mask>
        </eop:product>
      </eop:browse>
    </phr:EarthObservationResult>
  </gml:resultOf>
  [...]
</phr:DataStrip>
```
6.3.3 Use of Schematron

The gml:Observation properties have a very generic definition that do not offer sufficient content constraints within XML Schema, e.g.:

- using: any gml Feature;
- target: any gml Feature or Geometry;
- resultOf: any gml Object.

This leads to an Earth Observation model with properties that cannot be tightly validated with the XML schema mechanism.

To clarify, let's take an example. The eop:EarthObservationEquipement feature shall be used under the "gml:using" property. Nevertheless, the following documents would perfectly validate:

- a gml:Observation with any other feature that a EarthObservationEquipement under the "using" property;
- a gml:Observation with a "EarthObservationEquipement" under the "resultOf" property (since a gml feature inherits from gml object).

A proposed solution to have tightly validated Earth Observation products is to complement XML schema with the use of Schematron.

6.3.3.1 Schematron basics

Schematron is a rule-based language that uses XPath to express assertions about the content in an XML instance document. This can be done by transforming the Schematron schema with a base stylesheet, which turns the schema into an XSLT stylesheet. The stylesheet checks the assertions defined by running the XML instance document through an XSLT processor. The result of the transformation is a report, in XML format, that contains details on which assertions failed along with the comments provided with that particular rule in the schema.

Applied to the Earth Observation products case, this can be summarized in Figure 3.
Figure 3: schematron processing for Earth Observation products

The "Part 1: pre-processing" step is needed to get the validating stylesheet for EOP. It is processed from:

- the schematron basic stylesheet (aka "skeleton stylesheet") from http://www.schematron.com slightly modified for eop (i.e. add eop namespaces into the skeleton: schematron_skeleton_for_eop.xsl;

- the schematron schema rules for eop: schematron_rules_for_eop.sch;

- an XSLT processor.

We used XMLSpy 2004 as the XSLT processor to generate the validating stylesheet schematron_result_for_eop.xsl

This processing is done only one time. This stylesheet will then be used each time we need to validate an EOP XML instance: first an EOP XML instance is validated syntactically and semantically by the EOP XML schema; second it is validated against the validating stylesheet. The schematron report indicates if error were found.

6.3.3.2 Schematron rules for eop

Copyright © 2010 Open Geospatial Consortium, Inc.
The following rules were defined at the eop level:

- `gml:metadataProperty` must contain an `eop:EarthObservationMetadata`;
- `gml:using` must contain an `eop:EarthObservationEquipment`;
- `gml:target` must contain an `eop:Footprint`;
- `gml:resultOf` must contain an `eop:EarthObservationResult`.

More generally, the schematron rules for extension in the general case can be summarized as follows:

- if root element is `eop:EarthObservation` then the whole property are in the `eop` namespace;
- if root element is `opt:EarthObservation` then the whole property are in the `eop` namespace or in the `opt` namespace;
- if root element is `sar:EarthObservation` then the whole property are in the `eop` namespace or in the `sar` namespace;
- if root element is `atm:EarthObservation` then the whole property are in the `eop` namespace or in the `atm` namespace;
- if root element is `xxx:EarthObservation`, where `xxx` is a specific mission namespace, then the whole property are in the `eop` namespace or in the thematic namespace extended by `xxx` (i.e. `opt`, `sar` or `atm`) or must be defined with a `eop:type` attribute containing explicitly the property it extends directly.

6.3.4 CodeList

Property that shall be described within a given codeSpace shall use the `<eop:CodeWithAuthorityType>`. Note that this type will be replaced by the incoming `<gml:CodeWithAuthorityType>` (shall be available in GML 3.2).

```xml
<xs:complexType name="CodeWithAuthorityType">
    <xs:annotation>
        <xs:documentation>From GML 3.2 draft</xs:documentation>
    </xs:annotation>
    <xs:simpleContent>
        <xs:extension base="xs:string"/>
    </xs:simpleContent>
</xs:complexType>
```
Example: to guarantee the uniqueness of the EarthObservationProduct identifier within EOP, the `<eop:identifier>` includes the ground segment namespace through the codeSpace attribute.

```xml
<eop:identifier codeSpace="urn:EOP:PHR:catalog:TLS:id">DS_PHR1A_20010822110247_TLS_PX_E123N45_0101_01234</eop:identifier>
```

6.3.5 Units of measure

Each non-angle property concerned by a unit of measure shall use the existing GML type `<gml:MeasureType>`.

Example: image resolution

```xml
<xs:element name="resolution" type="gml:MeasureType">
  <xs:annotation>
    <xs:documentation>Image resolution</xs:documentation>
  </xs:annotation>
</xs:element>
```

Each angle property shall use the existing GML type `<gml:AngleType>`.

Example: Across Track incidence angle

```xml
<xs:element name="acrossTrackIncidenceAngle" type="gml:AngleType" minOccurs="0">
  <xs:annotation>
    <xs:documentation>Across Track Incidence angle given in degrees.</xs:documentation>
  </xs:annotation>
</xs:element>
```

6.3.6 Use of xlink

Properties that shall only describe an urn shall use the `<eop:HrefPropertyType>`. This complex type is a restriction of `<gml:FeaturePropertyType>` that only includes the “xlink” attribute.

```xml
<xs:complexType name="HrefPropertyType">
  <xs:complexContent>
    <xs:restriction base="gml:FeaturePropertyType">
      <xs:sequence/>
      <xs:attribute ref="xlink:href" use="required"/>
    </xs:restriction>
  </xs:complexContent>
</xs:complexType>
```
Properties that shall describe either an urn or the content of that urn shall use an extension of `<gml:AbstractFeatureType>`.

Example: “composedOf” property reference either the urn (xlink attribute) or the GML content of an EarthObservationProduct. Thus in `<eop:EarthObservation>` the element “composedOf” is defined as an `<eop:EarthObservation>` which extends `<gml:AbstractFeatureType>`.

```xml
<xs:element name="composedOf" type="eop:EarthObservationPropertyType"/>
<xs:complexType name="EarthObservationPropertyType">
    <xs:sequence>
        <xs:element ref="eop:EarthObservation* minOccurs="0"/>
    </xs:sequence>
    <xs:attributeGroup ref="gml:AssociationAttributeGroup"/>
</xs:complexType>
```

6.3.7 GML restrictive use

We restricted the use of GML types to those relevant to the EO Products metadata description, i.e.:

- `gml:Observation`;
- `gml:Feature`;
- `gml:AngleType`;
- `gml:CodeListType`;
- `gml:MeasureType`;
- `gml:centerOf` (expected structure: `gml:Point/gml:pos`);

See chapter 7.3 for discussion about this restrictive use of GML.

7 EO Products application schemas

7.1 General EO product data schema

The “eop” schema provides the description of metadata common to all EO Products derived from satellite based remote sensing.

The root element of the “eop” schema, named `<eop:EarthObservation>` extends the `<gml:ObservationType>` type as follows:
The “EarthObservation” element contains a mandatory “version” attribute that references the schema version number. This should be used by instance parser to know which version of the eop schema validate the instance.

The “eop” metadata are referenced inside higher level structure (see Table 2):

- eop:EarthObservationMetadata;
- eop:EarthObservationEquipment;
- eop:Footprint;
- eop:EarthObservationResult;
Complete description of an *EarthObservation* element is given in Table 3.

<table>
<thead>
<tr>
<th>Field name</th>
<th>Field description</th>
<th>ISO 19115-2 definition</th>
<th>ISO mapping</th>
<th>Cardinality</th>
</tr>
</thead>
<tbody>
<tr>
<td>gml:validTime/gml:TimePeriod/gml:beginPosition</td>
<td>Acquisition start date time dateTime in ISO 8601 format (CCYY-MM-DDThh:mm:ss[.cc]Z)</td>
<td>MI_AcquisitionInformation/MI_MissionIdentification/startDate</td>
<td>no</td>
<td>1</td>
</tr>
<tr>
<td>gml:validTime/gml:TimePeriod/gml:endPosition</td>
<td>Acquisition end date time dateTime in ISO 8601 format (CCYY-MM-DDThh:mm:ss[.cc]Z)</td>
<td>MI_AcquisitionInformation/MI_MissionIdentification/completionDate</td>
<td>no</td>
<td>1</td>
</tr>
<tr>
<td>gml:using/eop:EarthObservationEquipment</td>
<td>Platform/Instrument/Sensor used for the acquisition and the acquisition parameters (i.e. pointing angles, etc.)</td>
<td></td>
<td>no</td>
<td>0..1</td>
</tr>
<tr>
<td>gml:target/eop:Footprint</td>
<td>Observed area on ground i.e. the footprint of acquisition</td>
<td></td>
<td>no</td>
<td>0..1</td>
</tr>
<tr>
<td>gml:resultOf/eop:EarthObservationResult</td>
<td>Earth Observation result composed of the browse, mask and product description</td>
<td></td>
<td>no</td>
<td>0..1</td>
</tr>
</tbody>
</table>

Table 3 : `<eop:EarthObservation>` fields description
7.1.1 EarthObservationMetadata

The eop:EarthObservationMetadata block contains all the metadata relative to an eop:EarthObservation that do not fit inside one of the other blocks, i.e. metadata that don’t describe the time, the mechanism, the location or the result of the observation (Figure 5).

Figure 5: <eop:EarthObservationMetadata> diagram
These metadata are mainly the *EarthObservation* identifier, the acquisition type and information relative to the downlink and archiving centers. Complete description of the *EarthObservationMetadata* is given in Table 4.

<table>
<thead>
<tr>
<th>Field name</th>
<th>Field description</th>
<th>ISO 19115-2 definition</th>
<th>ISO mapping</th>
<th>Cardinality</th>
</tr>
</thead>
<tbody>
<tr>
<td>identifier</td>
<td>Identifier for metadata item, includes ground segment namespace to guarantee uniqueness within EOP</td>
<td></td>
<td>no</td>
<td>1</td>
</tr>
<tr>
<td>doi</td>
<td>Digital Object Identifier identifying the product (see http://www.doi.org)</td>
<td></td>
<td>no</td>
<td>0..1</td>
</tr>
<tr>
<td>parentIdentifier</td>
<td>Collection Identifier</td>
<td></td>
<td>no</td>
<td>0..1</td>
</tr>
<tr>
<td>acquisitionType</td>
<td>Used to distinguish at a high level the appropriateness of the acquisition for "general" use, whether the product is a nominal acquisition, special calibration product or other. Values: - NOMINAL - CALIBRATION - OTHER</td>
<td></td>
<td>no</td>
<td>1</td>
</tr>
<tr>
<td>acquisitionSubType</td>
<td>The broad value is however too restrictive, so mission specific type definition should refer to mission/ground segment dedicated codeSpace</td>
<td></td>
<td>no</td>
<td>0..1</td>
</tr>
<tr>
<td>productType</td>
<td>Describes product type in case that mixed types are available within a single collection, this is ground segment specific definition</td>
<td>MD_ContentInformation/MD_CoverageDescription/MD_CoverageContentType</td>
<td>no</td>
<td>0..1</td>
</tr>
<tr>
<td>status</td>
<td>Refers to product status. Values: - ARCHIVED - ACQUIRED - CANCELLED - FAILED - PLANNED</td>
<td>MD_Identification/MD_ProgressCode</td>
<td>no</td>
<td>1</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
<td>minOccurs</td>
<td>maxOccurs</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>statusDetail</td>
<td>This field refers to the eop:status value. It should be used to motivate the reason of a failure deletion or rejection.</td>
<td>no</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>downlinkedTo/DownlinkInformation/acquisitionStation</td>
<td>Acquisition / receiving station code. Possible values are mission specific and should be retrieved using codespace.</td>
<td>no</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(with AcquisitionInformation 0..n)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>downlinkedTo/DownlinkInformation/acquisitionDate</td>
<td>Acquisition date time.</td>
<td>no</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>archivedIn/ArchivingInformation/archivingCenter</td>
<td>Archiving center code. Possible values are mission specific and should be retrieved using codeSpace.</td>
<td>no</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(with ArchivingInformation 0..n)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>archivedIn/ArchivingInformation/archivingDate</td>
<td>Archiving date time.</td>
<td>no</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>archivedIn/ArchivingInformation/archivingIdentifier</td>
<td>Local archiving id as created by the mission ground segment that may required to allow subsequent order processing</td>
<td>no</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>imageQualityDegradation</td>
<td>Quality degradation percentage (i.e. uom=’%’)</td>
<td>no</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>imageQualityDegradationQuotationMode</td>
<td>Indicator to know how the quality degradation percentage has been calculated.</td>
<td>no</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>histograms/Histogram/bandId</td>
<td>Histogram specific : identifier of the spectral band used to compute histogram values</td>
<td>no</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(with Histogram 1..n)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>histograms/Histogram/</td>
<td>Histogram specific : minimum value</td>
<td>no</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>min</td>
<td>histograms/ Histogram/ max</td>
<td>Histogram specific : maximum value</td>
<td>no</td>
<td>1</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------------</td>
<td>----------------------------------</td>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>histograms/ Histogram/ mean</td>
<td>Histogram specific : mean value</td>
<td>no</td>
<td>0..1</td>
</tr>
<tr>
<td></td>
<td>histograms/ Histogram/ stdDeviation</td>
<td>Histogram specific : standard deviation value</td>
<td>no</td>
<td>0..1</td>
</tr>
<tr>
<td></td>
<td>composedOf</td>
<td>Link to an EO product that is part of this EO product (e.g. a phr:DataStrip is composed of one or more phr:Scene)</td>
<td>no</td>
<td>0..1</td>
</tr>
<tr>
<td></td>
<td>subsetOf</td>
<td>Link to the “father” EO product (e.g. a phr:Scene is a subset of a phr:DataStrip)</td>
<td>no</td>
<td>0..1</td>
</tr>
<tr>
<td></td>
<td>linkedWith</td>
<td>Specify a link to another EO product (e.g. ERS1 and ERS2 interferometric pair)</td>
<td>no</td>
<td>0..1</td>
</tr>
<tr>
<td></td>
<td>processing/ ProcessingInformation/ processingCenter</td>
<td>Processing center code. Possible values are mission specific and should be retrieved using codeSpace.</td>
<td>no</td>
<td>0..n</td>
</tr>
<tr>
<td></td>
<td>processing/ ProcessingInformation/ processingDate</td>
<td>Processing date time</td>
<td>no</td>
<td>0..n</td>
</tr>
<tr>
<td></td>
<td>processing/ ProcessingInformation/ compositeType</td>
<td>Composite type of product, if available</td>
<td>no</td>
<td>0..n</td>
</tr>
<tr>
<td></td>
<td>processing/ ProcessingInformation/ method</td>
<td>Method used to compute datalayer. (e.g. Kalman filtering, ROSE)</td>
<td>no</td>
<td>0..n</td>
</tr>
<tr>
<td></td>
<td>processing/ ProcessingInformation/ methodVersion</td>
<td>Method version (e.g. 1.0)</td>
<td>no</td>
<td>0..n</td>
</tr>
<tr>
<td></td>
<td>processing/ ProcessingInformation/ processorName</td>
<td>Processor software name (e.g. FastROSE)</td>
<td>no</td>
<td>0..n</td>
</tr>
<tr>
<td></td>
<td>processing/ ProcessingInformation/ processorVersion</td>
<td>Processor software version (e.g. 1.0)</td>
<td>no</td>
<td>0..n</td>
</tr>
</tbody>
</table>
Table 4: <eop:EarthObservationMetadata> fields description

7.1.2 EarthObservationEquipment

The eop:EarthObservationEquipment block contains metadata relative to the mechanism used during the EarthObservation (Figure 6).

These metadata describe on one hand the platform, instrument and sensor used for the EarthObservation, and, on the other hand, the acquisition parameters of this observation. Complete description of the EarthObservationEquipment is given in Table 4.
<table>
<thead>
<tr>
<th>Field name</th>
<th>Field description</th>
<th>ISO 19115-2 definition</th>
<th>ISO mapping</th>
<th>Cardinality</th>
</tr>
</thead>
<tbody>
<tr>
<td>platform/Platform/shortName</td>
<td>Platform short name (e.g. PHR)</td>
<td>MD_DataIdentification/MI_DataIdentification/MI_PlatformIdentification/shortName</td>
<td>yes</td>
<td>1</td>
</tr>
<tr>
<td>platform/Platform/serialIdentifier</td>
<td>Platform serial identifier (e.g. for PHR : 1A)</td>
<td>MD_DataIdentification/MI_DataIdentification/MI_AcquisitionInformation/MI_PlatformIdentification/serialIdentifier</td>
<td>yes</td>
<td>0..1</td>
</tr>
<tr>
<td>platform/Platform/orbitType</td>
<td>High level characterisation of main mission types (GEO/LEO)</td>
<td></td>
<td>no</td>
<td>0..1</td>
</tr>
<tr>
<td>instrument/Instrument/shortName</td>
<td>Instrument (Sensor) name</td>
<td>MD_DataIdentification/MI_DataIdentification/MI_AcquisitionInformation/MI_PlatformIdentification/MI_InstrumentIdentification/shortName</td>
<td>yes</td>
<td>1</td>
</tr>
<tr>
<td>sensor/Sensor/sensorType</td>
<td>Sensor type. This field should contain an enumeration : - OPTICAL - RADAR - ALTIMETRIC - ATMOSPHERIC</td>
<td>MD_CoverageDescription/MI_CoverageDescription/MI_Sensor/sensorType</td>
<td>yes</td>
<td>0..1</td>
</tr>
<tr>
<td>sensor/Sensor/operationalMode</td>
<td>Sensor mode. Possible values are mission specific and should be retrieved using codeSpace. (e.g. PHR : PA, XS or PX).</td>
<td>MD_CoverageDescription/MI_CoverageDescription/MI_Sensor/operationalMode</td>
<td>yes</td>
<td>0..1</td>
</tr>
<tr>
<td>sensor/Sensor/resolution</td>
<td>Sensor resolution.</td>
<td></td>
<td>no</td>
<td>0..1</td>
</tr>
<tr>
<td>sensor/Sensor/swathIdentifier</td>
<td>Swath identifier (e.g. Envisat ASAR has 7 distinct swaths (I1,I2,I3...I7) that correspond to precise incidence angles for</td>
<td></td>
<td>no</td>
<td>0..1</td>
</tr>
<tr>
<td>Path</td>
<td>Description</td>
<td>Required</td>
<td>Minimum</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>acquisitionParameters/Acquisition/orbitNumber</td>
<td>Acquisition orbit number</td>
<td>no</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>acquisitionParameters/Acquisition/lastOrbitNumber</td>
<td>Acquisition last orbit number</td>
<td>no</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>acquisitionParameters/Acquisition/orbitDirection</td>
<td>Acquisition orbit direction (Ascending or descending)</td>
<td>no</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>acquisitionParameters/Acquisition/wrsLongitudeGrid</td>
<td>Neutral wrsLongitudeGrid to replace track in track/frame, K in K/J, etc. The optional attribute "eop:codeSpace" is used to point the reference grid</td>
<td>no</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>acquisitionParameters/Acquisition/wrsLatitudeGrid</td>
<td>Neutral wrsLatitudeGrid to replace frame in track/frame, J in K/J, etc. The optional attribute "eop:codeSpace" is used to point the reference grid</td>
<td>no</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>acquisitionParameters/Acquisition/ascendingNodeDate</td>
<td>UTC date and time at ascending node of orbit</td>
<td>no</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>acquisitionParameters/Acquisition/startTimeFromAscendingNode</td>
<td>Start time of acquisition in milliseconds from Ascending node date</td>
<td>no</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>acquisitionParameters/Acquisition/</td>
<td>Stop time of acquisition in</td>
<td>no</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>completionTimeFromAscendingNode</td>
<td>milliseconds from Ascending node date</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>acquisitionParameters/Acquisition/ascendingNodeLongitude</td>
<td>Longitude at ascending node of orbit</td>
<td>no</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>acquisitionParameters/Acquisition/orbitDuration</td>
<td>Actual orbit duration in milliseconds</td>
<td>no</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>acquisitionParameters/Acquisition/acrossTrackIncidenceAngle</td>
<td>Acquisition across the track incidence angle given in degrees (i.e. uom='deg')</td>
<td>MD_ContentInformation/MD_CoverageDescription/MD_ImageDescription/relativeAzimuth</td>
<td>no</td>
<td>0..1</td>
</tr>
<tr>
<td>acquisitionParameters/Acquisition/alongTrackIncidenceAngle</td>
<td>Acquisition along the track incidence angle given in degrees (i.e. uom='deg')</td>
<td>(consistency in EOP between two angle definitions)</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>acquisitionParameters/Acquisition/incidenceAngle</td>
<td>Acquisition global incidence angle given in degrees (i.e. uom='deg')</td>
<td>(consistency in EOP between two angle definitions)</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>acquisitionParameters/Acquisition/pitch</td>
<td>Satellite pitch angle given in degrees (i.e. uom='deg')</td>
<td>no</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>acquisitionParameters/Acquisition/roll</td>
<td>Satellite roll angle given in degrees (i.e. uom='deg')</td>
<td>no</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>acquisitionParameters/Acquisition/yaw</td>
<td>Satellite yaw angle given in degrees (i.e. uom='deg')</td>
<td>no</td>
<td>0..1</td>
<td></td>
</tr>
</tbody>
</table>

Table 5 : <eop:EarthObservationEquipment> fields description

7.1.3 Footprint

The *eop:Footprint* block contains description of the target location observed during the *EarthObservation* (Figure 7).
Complete description of *eop:Footprint* is given in Table 6.

<table>
<thead>
<tr>
<th>Field name</th>
<th>Field description</th>
<th>ISO 19115-2 definition</th>
<th>ISO mapping</th>
<th>Cardinality</th>
</tr>
</thead>
<tbody>
<tr>
<td>multiExtentOf</td>
<td>Acquisition footprint coordinates, described by a closed polygon (last point=first point), using CRS:WGS84, Latitude,Longitude pairs (per-WGS84 definition of point ordering, not necessarily per all WFS implementations). Multi polygons are allowed.</td>
<td></td>
<td>no</td>
<td>1</td>
</tr>
<tr>
<td>centerOf</td>
<td>Acquisition center coordinates</td>
<td>MD_CoverageDescription/MI_CoverageDescription/MD_ImageDescription/MI_ImageDescription/nadir</td>
<td>no</td>
<td>0..1</td>
</tr>
</tbody>
</table>

Table 6: *<eop:Footprint>* fields description

7.1.4 EarthObservationResult

The *eop:EarthObservationResult* block contains description of the result of the *EarthObservation* (Figure 8).
Complete description of *eop:Footprint* is given in Table 7.

<table>
<thead>
<tr>
<th>Field name</th>
<th>Field description</th>
<th>ISO 19115-2 definition</th>
<th>ISO mapping</th>
<th>Cardinality</th>
</tr>
</thead>
<tbody>
<tr>
<td>browse</td>
<td></td>
<td></td>
<td></td>
<td>0..1</td>
</tr>
<tr>
<td>Browse/BrowseInformation</td>
<td></td>
<td></td>
<td></td>
<td>1..n</td>
</tr>
<tr>
<td>browse/BrowseInformation/</td>
<td>Browse type.</td>
<td>MD_Identification/MD_BrowseGraphic</td>
<td>no</td>
<td>1</td>
</tr>
<tr>
<td>type</td>
<td>Possible values</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>are:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>THUMBNAIL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>QUICKLOOK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALBUM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>browse/BrowseInformation/</td>
<td>Browse subType.</td>
<td>MD_Identification/MD_BrowseGraphic</td>
<td>no</td>
<td>0..1</td>
</tr>
<tr>
<td>subType</td>
<td>Value is mission</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>specific. Value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>list can be</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>retrieved with</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>codeSpace (e.g.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For MODIS:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OPTICAL, THERMAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>browse/BrowseInformation/</td>
<td>Indicates if</td>
<td>MD_Identification/MD_BrowseGraphic</td>
<td>no</td>
<td>1</td>
</tr>
<tr>
<td>referenceSystemIdentifier</td>
<td>browse is geo-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>referenced, and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>thus can be</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>assumed to be</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>displayed directly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>on a map (in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>which case</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>should point to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a code space</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>for the CRS),</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>when not</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>supplied it is</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>assumed that</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the browse is</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>provided in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>browse/ BrowseInformation/ fileName</td>
<td>"raw" satellite frame of reference</td>
<td>Path to the browse image (could be any kind of URL: direct link to the image or WMS/WCS interface), it is assumed that if a client is prepared to "manage" a browse delivered by e.g. WMS they would parse the URL to identify that it contains the OGC standard SERVICE=WMS</td>
<td>MD_Identification/ MD_BrowseGraphic/ fileName yes 1</td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------------------------------</td>
<td>---</td>
<td>--------------------------------------</td>
<td></td>
</tr>
<tr>
<td>product</td>
<td></td>
<td>Path to the actual product data if available online (could be any kind of URL: direct link to the image or WMS/WCS interface), it is assumed that if a client is prepared to "manage" a product delivered by e.g. WCS they would parse the URL to identify that it contains the OGC standard SERVICE=WCS</td>
<td>MD_ServiceIdentification no 0..1 (use filename definition as per browse)</td>
<td></td>
</tr>
<tr>
<td>product/ ProductInformation/ fileName</td>
<td></td>
<td>Indicates if product is geo-referenced, (in which case should point to a code space for the CRS), when not supplied it is assumed that the browse is provided in "raw" satellite frame of reference</td>
<td>MD_DataIdentification/ MD_SpatialRepresentationTypeCode no 0..1 (propose adding a code for un-georeferenced) (The CRS is part the geometry. Including it here will create maintenance difficulties)</td>
<td></td>
</tr>
<tr>
<td>product/ ProductInformation/ referenceSystemIdentifier</td>
<td></td>
<td>Product version</td>
<td>MD_DataIdentification supplementalInformation no 0..1</td>
<td></td>
</tr>
<tr>
<td>product/ ProductInformation/ size</td>
<td></td>
<td>Product size (bytes) allowing the user to realise how long a download is likely to take</td>
<td>MD_DataIdentification supplementalInformation no 0..1</td>
<td></td>
</tr>
<tr>
<td>mask</td>
<td></td>
<td>0..1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2010 Open Geospatial Consortium, Inc.
<table>
<thead>
<tr>
<th>mask/MaskInformation/</th>
<th>description</th>
<th>multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>mask/</td>
<td>Mask type. Possible values are: SNOW, CLOUD and QUALITY</td>
<td>no 1</td>
</tr>
<tr>
<td>MaskInformation/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mask/</td>
<td>Mask format. Possible values are: RASTER or VECTOR</td>
<td>no 1</td>
</tr>
<tr>
<td>MaskInformation/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>format</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mask/</td>
<td>Indicates if mask is geo-referenced, and thus can be assumed to be</td>
<td>no 0..1</td>
</tr>
<tr>
<td>MaskInformation/</td>
<td>displayed directly on a map (in which case should point to a code space</td>
<td></td>
</tr>
<tr>
<td>referenceSystemIden</td>
<td>for the CRS), when not supplied it is assumed that the mask is provided in</td>
<td></td>
</tr>
<tr>
<td>tifier</td>
<td>“raw” satellite frame of reference</td>
<td></td>
</tr>
<tr>
<td>mask/</td>
<td>Path to the mask (could be any kind of URL: direct link to the image or</td>
<td>no 1</td>
</tr>
<tr>
<td>MaskInformation/</td>
<td>WMS/WCS interface in case of RASTER mask; direct link to the file or WFS</td>
<td></td>
</tr>
<tr>
<td>fileName</td>
<td>interface in case of VECTOR file), it is assumed that if a client is</td>
<td></td>
</tr>
<tr>
<td></td>
<td>prepared to “manage” a mask delivered by e.g. WMS they would parse the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>URL to identify that it contains the OGC standard SERVICE=WMS</td>
<td></td>
</tr>
</tbody>
</table>

Table 7: `<eop:EarthObservationResult> fields description`

7.2 Thematic EO product data schema

The Thematic EO Product schemas provide the description of metadata common to thematic category of General EO Products derived. Thematic EO Products schemas extend the “eop” schema.

7.2.1 Optical EO Product data schema

The “opt” schema provides the description of metadata common to all EO Products derived from optical satellite based remote sensing. It describes the same fields as the “eop” schema plus optical specific fields.
As described in §6.3.2.1, the root element of the “opt” schema, named
<opt:EarthObservation> simply extends the <eop:EarthObservationType> type (with no element
added):

```xml
<xsd:element name="EarthObservation" type="opt:EarthObservationType"
    substitutionGroup="eop:EarthObservation"/>
```

```xml
<xsd:complexType name="EarthObservationType">
    <xsd:complexContent>
        <xs:extension base="eop:EarthObservationType">
            <xs:sequence/>
        </xs:extension>
    </xsd:complexContent>
</xsd:complexType>
```

Two properties are extended from the eop schema:

- `opt:EarthObservationResults` extends `eop:EarthObservationResults` (Table 8);
- `opt:Acquisition` extends `eop:Acquisition` (Table 9).

<table>
<thead>
<tr>
<th>Field name</th>
<th>Field description</th>
<th>ISO 19115-2 definition</th>
<th>ISO mapping</th>
<th>Cardinality</th>
</tr>
</thead>
<tbody>
<tr>
<td>eop:EarthObservationEquipment/</td>
<td>Azimuth angle given in degrees (i.e. uom='deg')</td>
<td>MD_ContentInformation/MD_CoverageDescription/MD_ImageDescription/illuminationAzimuth</td>
<td>yes</td>
<td>0..1</td>
</tr>
<tr>
<td>eop:acquisitionParameters/opt:Acquisition/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>opt:illuminationAzimuthAngle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eop:EarthObservationEquipment/</td>
<td>Elevation angle given in degrees (i.e. uom='deg')</td>
<td>MD_ContentInformation/MD_CoverageDescription/MD_ImageDescription/illuminationElevation</td>
<td>yes</td>
<td>0..1</td>
</tr>
<tr>
<td>eop:acquisitionParameters/opt:Acquisition/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>opt:illuminationElevationAngle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 8: <opt:Acquisition> extension of <eop:Acquisition>
<table>
<thead>
<tr>
<th>opt:EarthObservationResult opt:cloudCoverPercentage</th>
<th>Cloud cover percentage (i.e. uom='%')</th>
<th>MD_ContentInformation/MD_CoverageDescription/MD_ImageDescription/cloudCoverPercentage</th>
<th>yes</th>
<th>0..1</th>
</tr>
</thead>
<tbody>
<tr>
<td>opt:EarthObservationResult opt:cloudCoverPercentageAssessmentPercentage</td>
<td>Cloud cover assessment confidence. Expressed in percents.</td>
<td></td>
<td>no</td>
<td>0..1</td>
</tr>
<tr>
<td>opt:EarthObservationResult opt:cloudCoverPercentageQuotationMode</td>
<td>Indicator to know how the cloud cover percentage has been calculated</td>
<td></td>
<td>no</td>
<td>0..1</td>
</tr>
<tr>
<td>Value : AUTOMATIC, MANUAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>opt:EarthObservationResult opt:snowCoverPercentage</td>
<td>Snow cover percentage (i.e. uom='%')</td>
<td></td>
<td>no</td>
<td>0..1</td>
</tr>
<tr>
<td>opt:EarthObservationResult opt:snowCoverPercentageAssessmentPercentage</td>
<td>Snow cover assessment confidence. Expressed in percents.</td>
<td></td>
<td>no</td>
<td>0..1</td>
</tr>
<tr>
<td>opt:EarthObservationResult opt:snowCoverPercentageQuotationMode</td>
<td>Indicator to know how the snow cover percentage has been calculated</td>
<td></td>
<td>no</td>
<td>0..1</td>
</tr>
<tr>
<td>Value : AUTOMATIC, MANUAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 9: <opt:EarthObservationResult> extension of <eop:EarthObservationResult>

7.2.2 Radar EO Product data schema

The “sar” schema provides the description of metadata common to all EO Products derived from radar satellite based remote sensing. It describes the same fields as the “eop” schema plus radar specific fields.
As described in §6.3.2.1, the root element of the “sar” schema, named
<sar:EarthObservation> simply extends the <eop:EarthObservationType> type (with no element
added):

```xml
<xs:element name="EarthObservation" type="sar:EarthObservationType"
    substitutionGroup="eop:EarthObservation"/>

<xs:complexType name="EarthObservationType">
    <xs:complexContent>
        <xs:extension base="eop:EarthObservationType">
            <xs:sequence/>
        </xs:extension>
    </xs:complexContent>
</xs:complexType>
```

One property is extended from the eop schema:

- `sar:Acquisition` extends `eop:Acquisition` (Table 10).

<table>
<thead>
<tr>
<th>Field name</th>
<th>Field description</th>
<th>ISO 19115-2 definition</th>
<th>ISO mapping</th>
<th>Cardinality</th>
</tr>
</thead>
<tbody>
<tr>
<td>eop:EarthObservationEquipment/eop:acquisitionParameters/sar:Acquisition/sar:polarisationMode</td>
<td>single S, dual D, twin T, quad Q, UNDEFINED Valids: D, Q, S, T, UNDEFINED</td>
<td>MD_CoverageDescription/MD_RangeDimension/MD_Band/MI_Band/MI_PolarizationCharacteristics</td>
<td>no</td>
<td>1</td>
</tr>
<tr>
<td>eop:EarthObservationEquipment/eop:acquisitionParameters/sar:Acquisition/sar:antennaLookDirection</td>
<td>LEFT or RIGHT</td>
<td></td>
<td>no</td>
<td>1</td>
</tr>
<tr>
<td>eop:EarthObservationEquipment/eop:acquisitionParameters/sar:Acquisition/minimum incidence angle</td>
<td>minimum incidence angle</td>
<td></td>
<td>no</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 10: `<sar:Acquisition>` extension of `<eop:Acquisition>`

<table>
<thead>
<tr>
<th>Field name</th>
<th>Field description</th>
<th>ISO 19115-2 definition</th>
<th>ISO mapping</th>
<th>Cardinality</th>
</tr>
</thead>
<tbody>
<tr>
<td>sar:minimumIncidenceAngle</td>
<td>maximum incidence angle</td>
<td>no</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>eop:EarthObservationEquipment/eop:acquisitionParameters/sar:Acquisition/sar:maximumIncidenceAngle</td>
<td>Incidence angle variation</td>
<td>no</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>eop:EarthObservationEquipment/eop:acquisitionParameters/sar:Acquisition/sar:incidenceAngleVariation</td>
<td>Doppler Frequency of acquisition</td>
<td>no</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

7.2.3 Atmospheric EO Product data schema

The “atm” schema provides the description of metadata common to all EO Products derived from atmospheric based remote sensing. It describes the same fields as the “eop” schema plus atmospheric specific fields.

As described in §6.3.2.1, the root element of the “atm” schema, named `<atm:EarthObservation>` simply extends the `<eop:EarthObservationType>` type (with no element added):

```xml
<xsd:element name="EarthObservation" type="atm:EarthObservationType"
substitutionGroup="eop:EarthObservation"/>

<xsd:complexType name="EarthObservationType">
  <xsd:complexContent>
    <xsd:extension base="eop:EarthObservationType">
      <xsd:sequence/>
    </xsd:extension>
  </xsd:complexContent>
</xsd:complexType>
```

One property is extended from the eop schema:

- `atm:EarthObservationResult` extends `eop:EarthObservationResult` (Table 11).

<table>
<thead>
<tr>
<th>Field name</th>
<th>Field description</th>
<th>ISO 19115-2 definition</th>
<th>ISO mapping</th>
<th>Cardinality</th>
</tr>
</thead>
<tbody>
<tr>
<td>atm:EarthObservationResult/atm:dataLayers/</td>
<td>Specy contained in</td>
<td>no</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
7.2.4 Mission specific schema: example for Pleiades HR data schema

The “phr” schema provides the description of Pleiades HR public metadata. It derived from optical EO product.

As described in §6.3.2.2, the root element of the “phr” schema, named <phr:DataStrip> simply extends the <eop:EarthObservationType> type (with no element added) with the addition of the eop:type attribute:

```xml
<xs:element name="DataStrip" type="phr:DataStripType"
            substitutionGroup="opt:EarthObservation"/>
<xs:complexType name="DataStripType">
  <xs:complexContent>
    <xs:extension base="opt:EarthObservationType">
      <xs:sequence/>
      <xs:attribute ref="eop:type" use="required"/>
    </xs:extension>
  </xs:complexContent>
</xs:complexType>
```

PHR taxonomy, and mission specific taxonomy in general, is out of the scope of this document and is not described in this document.
7.3 Issues

GML is a complex standard that is richly expressive. The Earth Observation Products does not exploit the entire standard but employ a subset of constructs corresponding to its relevant requirements.

As a consequence, the Earth Observation application schema used a GML subset instead of the complete GML definition (see Annex E). The use of this GML subset is recommended to simplify the development of computer application dealing with Earth Observation Product schemas (client-side or server-side applications).

7.4 XML schema documents

The different GML application schemas are specified in the normative XML Schema Documents included in the zip file with this text document, which are named:

a) eop.xsd
b) atm.xsd
c) opt.xsd
d) sar.xsd
e) phr_datastrip.xsd
f) phr_scene.xsd

All these XML Schema Documents contain documentation of the meaning of each element and attribute, and this documentation shall be considered normative as specified in Subclause 11.6.3 of [OGC 05-008].

These XML Schema Documents are bundled in a zip file with this document. After OGC acceptance of a Version 1.0.0 of this Best Practice, these XML Schema Documents will also be posted online at the URL http://schemas.opengis.net. In the event of a discrepancy between the bundled and online versions of the XML Schema Documents, the online files shall be considered authoritative.
Annex A
(normative)

Abstract test suite

An abstract test suite is not provided in this version of this standard.
Annex B
(normative)

Examples using “eop” application schema

B.1 Introduction

This annex contains several example XML documents encoded using the “eop” application schema.

B.2 Example of “eop” EO Product

```xml
<?xml version="1.0" encoding="utf-8"?>
<?xml-stylesheet type="text/xsl" href="schematron_result_for_eop_gml_observation.xsl"?>
<opt:EarthObservation gml:id="DS_PHR1A_20010822110247_TLS_PX_E123N45_0101_01234"
xmlns:gml="http://www.opengis.net/gml" xmlns:eop="http://earth.esa.int/eop"
xmlns:opt="http://earth.esa.int/opt" xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://earth.esa.int/opt
../eop/1.0/opt.xsd">
  <gml:metaDataProperty>
    <eop:EarthObservationMetaData>
      <eop:identifier>DS_PHR1A_20010822110247_TLS_PX_E123N45_0101_01234</eop:identifier>
      <eop:acquisitionType>NOMINAL</eop:acquisitionType>
      <eop:productType>TBD</eop:productType>
      <eop:status>ACQUIRED</eop:status>
      <eop:downlinkedTo>
        <eop:DownlinkInformation>
          <eop:acquisitionStation codeSpace="urn:EOP:PHR:stationCode">TLS</eop:acquisitionStation>
        </eop:DownlinkInformation>
      </eop:downlinkedTo>
      <eop:archivedIn>
        <eop:ArchivingInformation>
          <eop:archivingCenter codeSpace="urn:EOP:PHR:stationCode">TLS</eop:archivingCenter>
        </eop:ArchivingInformation>
      </eop:archivedIn>
      <eop:imageQualityDegradation uom="%">0</eop:imageQualityDegradation>
      <eop:processing/>
    </eop:EarthObservationMetaData>
  </gml:metaDataProperty>
  <gml:validTime>
    <gml:TimePeriod>
      <gml:beginPosition>2001-08-22T11:02:47.000</gml:beginPosition>
      <gml:endPosition>2001-08-22T11:02:47.999</gml:endPosition>
    </gml:TimePeriod>
  </gml:validTime>
  <gml:using>
    <eop:EarthObservationEquipment>
      <eop:platform>
      </eop:platform>
    </eop:EarthObservationEquipment>
  </gml:using>
</opt:EarthObservation>
```
<eop:shortName>PHR</eop:shortName>
<eop:serialIdentifier>1A</eop:serialIdentifier>
</eop:Platform>
</eop:platform>
<eop:instrument>
<eop:Instrument>
<eop:shortName>PHR</eop:shortName>
</eop:Instrument>
</eop:instrument>
<eop:sensor>
<eop:Sensor>
<eop:sensorType>OPTICAL</eop:sensorType>
<eop:operationalMode codeSpace="urn:EOP:PHR:sensorMode">PX</eop:operationalMode>
<eop:resolution uom="m">0.7</eop:resolution>
</eop:Sensor>
</eop:sensor>
<eop:acquisitionParameters>
<opt:Acquisition>
<eop:orbitNumber>12</eop:orbitNumber>
<eop:lastOrbitNumber>12</eop:lastOrbitNumber>
<eop:orbitDirection>ASCENDING</eop:orbitDirection>
<eop:acrossTrackIncidenceAngle uom="deg">-14.0</eop:acrossTrackIncidenceAngle>
<eop:alongTrackIncidenceAngle uom="deg">-13.9</eop:alongTrackIncidenceAngle>
<eop:pitch uom="deg">0</eop:pitch>
<eop:roll uom="deg">0</eop:roll>
<eop:yaw uom="deg">0</eop:yaw>
<opt:illuminationAzimuthAngle uom="deg">10</opt:illuminationAzimuthAngle>
</opt:Acquisition>
</eop:acquisitionParameters>
</eop:EarthObservationEquipment>
</gml:using>
<gml:target>
<eop:Footprint>
<gml:multiExtentOf>
<gml:MultiSurface srsName="EPSG:4326">
<gml:surfaceMembers>
<gml:Polygon srsName="EPSG:4326">
<gml:exterior>
<gml:LinearRing>
<gml:posList>2.1025 43.516667 2.861667 43.381667 2.65 42.862778 1.896944 42.996389 2.1025 43.516667</gml:posList>
</gml:LinearRing>
</gml:exterior>
</gml:Polygon>
</gml:surfaceMembers>
</gml:MultiSurface>
</gml:multiExtentOf>
</gml:Footprint>
</gml:target>
</opt:EarthObservationResult>
</eop:BrowseInformation>
</eop:type>QUICKLOOK</eop:type>
</eop:referenceSystemIdentifier>
<eop:referenceSystemIdentifier codeSpace="EPSG">epsg:4326</eop:referenceSystemIdentifier>
Annex C
(normative)

Reference schemas for EO Products GML application schemas

D.1 Application schema for General EO Products

The following schema document, called eop.xsd, contains elements to describe General EO Products using GML 3.1.1

```xml
<?xml version="1.0" encoding="utf-8"?>
<!-- Created with Liquid XML Studio 1.0.8.0 (http://www.liquid-technologies.com) -->
xmlns:eop="http://earth.esa.int/eop" xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://earth.esa.int/eop"
elementFormDefault="qualified" attributeFormDefault="unqualified" version="1.2.1">
<xs:import namespace="http://www.opengis.net/gml" schemaLocation="../../gml/3.1.1/base/gmlSubset.xsd"/>
<xs:import namespace="http://www.w3.org/1999/xlink" schemaLocation="../../xlink/1.0.0/xlinks.xsd"/>
<xs:element name="EarthObservation" type="eop:EarthObservationType" substitutionGroup="gml:Observation">
  <xs:annotation>
    <xs:documentation>eop root element for generic Earth Observation Product description</xs:documentation>
  </xs:annotation>
</xs:element>
<xs:complexType name="EarthObservationType" mixed="false">
  <xs:annotation>
    <xs:documentation>Earth Obervation Product description</xs:documentation>
  </xs:annotation>
  <xs:complexContent mixed="false">
    <xs:extension base="gml:ObservationType">
      <xs:attribute name="version" type="xs:string" use="required" fixed="1.2">
        <xs:annotation>
          <xs:documentation>Reference to the schema version number used to validate the
instance</xs:documentation>
        </xs:annotation>
      </xs:attribute>
    </xs:extension>
  </xs:complexContent>
</xs:complexType>
<xs:complexType name="EarthObservationPropertyType">
  <xs:sequence>
    <xs:element ref="eop:EarthObservation" minOccurs="0"/>
  </xs:sequence>
</xs:complexType>
<xs:complexType name="EarthObservationEquipment" type="eop:EarthObservationEquipmentType" substitutionGroup="gml:_Feature">
  <xs:complexType name="EarthObservationEquipmentType" mixed="false">
    <xs:complexContent mixed="false">
      <xs:extension base="gml:AbstractFeatureType">
        <xs:sequence>
          <xs:element ref="eop:PlatformPropertyType" minOccurs="0"/>
        </xs:sequence>
      </xs:extension>
    </xs:complexContent>
  </xs:complexType>
</xs:complexType>
<xs:complexType name="EarthObservationEquipmentPropertyType">
  <xs:sequence>
    <xs:element ref="eop:EarthObservationEquipment"/>
  </xs:sequence>
</xs:complexType>
```
<xs:attribute name="type" type="xs:QName"/>
<xs:element name="ArchivingInformation" type="eop:ArchivingInformationType"/>
<xs:complexType name="ArchivingInformationArrayPropertyType">
 <xs:sequence>
 <xs:element ref="eop:ArchivingInformation" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="ArchivingInformationType">
 <xs:sequence>
 <xs:element name="archivingCenter" type="gml:CodeListType">
 <xs:annotation>
 <xs:documentation>Archiving centre code. Possible values are mission specific and should be retrieved using codespace.
 PHR : value is a valid station code
eop/EOLI : N/A</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="archivingDate" type="xs:dateTime">
 <xs:annotation>
 <xs:documentation>Archiving date time</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="archivingIdentifier" type="eop:CodeWithAuthorityType" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Local archiving id as created by the mission ground segment that may required to allow subsequent order processing</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
</xs:complexType>
<xs:element name="DownlinkInformation" type="eop:DownlinkInformationType"/>
<xs:complexType name="DownlinkInformationArrayPropertyType">
 <xs:sequence>
 <xs:element ref="eop:DownlinkInformation" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="DownlinkInformationType">
 <xs:sequence>
 <xs:element name="acquisitionStation" type="gml:CodeListType">
 <xs:annotation>
 <xs:documentation>Acquisition / receiving station code. Possible values are mission specific and should be retrieved using codespace.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="acquisitionDate" type="xs:dateTime" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Acquisition date time</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
</xs:complexType>
<xs:element name="EarthObservationMetaData" type="eop:EarthObservationMetaDataType" substitutionGroup="gml:MetaData"/>
<xs:complexType name="EarthObservationMetaDataType" mixed="true">
 <xs:complexContent mixed="true">
 <xs:extension base="gml:AbstractMetaDataType">
 <xs:sequence>
 <xs:element ref="eop:identifier"/>
 <xs:element ref="eop:doi" minOccurs="0"/>
 <xs:element ref="eop:parentIdentifier" minOccurs="0"/>
 <xs:element ref="eop:acquisitionType"/>
 <xs:element ref="eop:acquisitionSubType" minOccurs="0"/>
 <xs:element ref="eop:productType"/>
 <xs:element ref="eop:status"/>
 <xs:element name="downlinkedTo" type="eop:DownlinkInformationArrayPropertyType" minOccurs="0"/>
 <xs:element name="archivedIn" type="eop:ArchivingInformationArrayPropertyType" minOccurs="0"/>
 <xs:element ref="eop:imageQualityDegradation" minOccurs="0"/>
 <xs:element ref="eop:imageQualityDegradationQuotationMode" minOccurs="0"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>
<xs:element name="Acquisition" type="eop:AcquisitionType" minOccurs="0" />
 <xs:sequence>
 <xs:element name="orbitNumber" type="xs:int" minOccurs="0">
 <xs:annotation>
 <xs:documentation>EOLI : orbit (F B b s)</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="lastOrbitNumber" type="xs:int" minOccurs="0">
 <xs:annotation>
 <xs:documentation>EOLI : lastOrbit (F)</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="orbitDirection" minOccurs="0">
 <xs:annotation>
 <xs:documentation>EOLI : orbitDir (F B b s)</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="ASCENDING"/>
 <xs:enumeration value="DESCENDING"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="wrsLongitudeGrid" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Neutral wrsLongitudeGrid to replace track in track/frame, K in K/J, etc. The optional attribute "eop:codeSpace" is used to point the reference grid.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:anySimpleType">
 <xs:attribute name="codeSpace" type="xs:anyURI"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="wrsLatitudeGrid" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Neutral wrsLatitudeGrid to replace frame in track/frame, J in K/J, etc. The optional attribute "codeSpace" is used to point the reference grid.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:anySimpleType">
 <xs:attribute name="codeSpace" type="xs:anyURI"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="ascendingNodeDate" type="xs:dateTime" minOccurs="0">
 <xs:annotation>
 <xs:documentation>UTC date and time at ascending node of orbit</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
</xs:complexType>
<xs:element name="ascendingNodeLongitude" type="gml:MeasureType" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Longitude at ascending node of orbit. should be expressed in degrees</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:element name="startTimeFromAscendingNode" type="gml:MeasureType" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Start time of acquisition in milliseconds from Ascending node date</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:element name="completionTimeFromAscendingNode" type="gml:MeasureType" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Completion time of acquisition in milliseconds from Ascending node date</xs:annotation>
 </xs:annotation>
</xs:element>

<xs:element name="orbitDuration" type="gml:MeasureType" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Actual orbit duration in milliseconds</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:element name="acrossTrackIncidenceAngle" type="gml:AngleType" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Across Track Incidence angle given in degrees.</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:element name="alongTrackIncidenceAngle" type="gml:AngleType" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Along Track Incidence angle given in degrees.</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:element name="incidenceAngle" type="gml:AngleType" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Global Incidence angle given in degrees.</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:element name="pitch" type="gml:AngleType" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Pitch angle given in degrees.</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:element name="roll" type="gml:AngleType" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Roll angle given in degrees.</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:element name="yaw" type="gml:AngleType" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Yaw angle given in degrees.</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:complexType>
 <xs:complexContent>
 <xs:restriction base="gml:MeasureType">
 <xs:attribute name=" uom" type="gml:LengthUnitType" use="optional"/>
 </xs:restriction>
 </xs:complexContent>
</xs:complexType>
<xs:complexType name="PlatformType">
 <xs:sequence>
 <xs:element name="shortName" type="xs:string">
 <xs:annotation>
 <xs:documentation>Platform short name (eg. PHR)</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="serialIdentifier" type="xs:string" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Platform serial identifier (eg. for PHR : 1A)</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="orbitType" minOccurs="0">
 <xs:annotation>
 <xs:documentation>High level characterisation of main mission types (GEO/LEO)</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="GEO"/>
 <xs:enumeration value="LEO"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
</xs:complexType>
<xs:element name="Instrument" type="eop:InstrumentType"/>
<xs:complexType name="InstrumentType">
 <xs:sequence>
 <xs:element name="shortName" type="xs:string">
 <xs:annotation>
 <xs:documentation>Instrument short name EOLI : instShNm</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
</xs:complexType>
<xs:element name="Sensor" type="eop:SensorType"/>
<xs:complexType name="SensorType">
 <xs:sequence>
 <xs:element name="sensorType" type="eop:SensorTypePropertyType" minOccurs="0"/>
 <xs:element name="operationalMode" type="gml:CodeListType" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Sensor mode. Possible values are mission specific and should be retrieved using codespace. (eg. PHR : PA, XS or PX)</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="resolution" type="gml:MeasureType" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Image resolution</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="swathIdentifier" type="gml:CodeListType" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Swath identifier (e.g. Envisat ASAR has 7 distinct swaths (I1,I2,I3...I7) that correspond to precise incidence angles for the sensor). Value list can be retrieved with codeSpace.</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
</xs:complexType>
<xs:simpleType name="SensorTypePropertyType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="ALTIMETRIC"/>
 <xs:enumeration value="ATMOSPHERIC"/>
 <xs:enumeration value="OPTICAL"/>
 <xs:enumeration value="RADAR"/>
 </xs:restriction>
</xs:simpleType>
<xs:element name="EarthObservationResult" type="eop:EarthObservationResultType" substitutionGroup="gml:Feature">
<xs:documentation>Defines the observation result, i.e. the Earth Observation Product</xs:documentation>
<xs:annotation>
<xs:documentation>
<xs:complexType name="EarthObservationResultType" mixed="false">
<xs:complexContent mixed="false">
<xs:extension base="gml:AbstractFeatureType">
<xs:sequence>
<xs:element name="browse" type="eop:BrowseInformationArrayPropertyType" minOccurs="0"/>
<xs:element name="product" type="eop:ProductInformationArrayPropertyType" minOccurs="0"/>
<xs:element name="mask" type="eop:MaskInformationArrayPropertyType" minOccurs="0"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="EarthObservationResultPropertyType">
<xs:sequence>
<xs:element ref="eop:EarthObservationResult"/>
</xs:sequence>
</xs:complexType>
<xs:element name="Footprint" type="eop:FootprintType" substitutionGroup="gml:_Feature">
<xs:annotation>
<xs:documentation>Defines the acquisition footprint, i.e. the region observed by the Instrument</xs:documentation>
</xs:annotation>
<xs:complexType name="FootprintType" mixed="false">
<xs:complexContent mixed="false">
<xs:extension base="gml:AbstractFeatureType">
<xs:sequence>
<xs:element ref="gml:multiExtentOf">
<xs:annotation>
<xs:documentation>Acquisition footprint coordinates, described by a closed polygon (last point=first point), using CRS: WGS84, Latitude, Longitude pairs (per-WGS84 definition of point ordering, not necessarily per all WFS implementations). Expected structure is gml:Polygon/gml:exterior/gml:LinearRing/gml:posList.
eop/EOLI : polygon/coordinates (F B b s)
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="gml:centerOf" minOccurs="0">
<xs:annotation>
<xs:documentation>Acquisition center coordinates. Expected structure is gml:Point/gml:pos.
eop/EOLI : scCenter/coordinates (F B b s)
</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="BrowseInformationArrayPropertyType">
<xs:sequence>
<xs:element ref="eop:BrowseInformation" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element> Browse type. Possible values are : THUMBNAIL, QUICKLOOK and ALBUM.
</xs:documentation>
</xs:element>
<xs:complexType name="BrowseInformationType">
<xs:sequence>
<xs:element name="type">
<xs:annotation>
<xs:documentation>Browse type. Possible values are : THUMBNAIL, QUICKLOOK and ALBUM.
</xs:documentation>
</xs:annotation>
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="THUMBNAIL"/>
<xs:enumeration value="QUICKLOOK"/>
<xs:enumeration value="ALBUM"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
</xs:complexType>

PHR. For MODIS : OPTICAL, THERMAL

- **Value is mission specific. Value list can be retrieved with codeSpace. Not used by PHR. For MODIS : OPTICAL, THERMAL**

- **Indicates if browse is geo-referenced, and thus can be assumed to be displayed directly on a map (in which case should point to a code space for the CRS), when not supplied it is assumed that the browse is provided in "raw" satellite frame of reference**

- **Path to the browse image (could be any kind of URL : direct link to the image or WMS/WCS interface), it is assumed that if a client is prepared to "manage" a browse delivered by e.g. WMS they would parse the URL to identify that it contains the OGC standard SERVICE=WMS**

- **Path to the actual product data if available online (could be any kind of URL : direct link to the image or WMS/WCS interface), it is assumed that if a client is prepared to "manage" a product delivered by e.g. WCS they would parse the URL to identify that it contains the OGC standard SERVICE=WCS**

- **Product version**

- **Product size (bytes) allowing the user to realise how long a download is likely to take**

- **Processing centre code. Possible values are mission specific and should be retrieved using codespace.**

Copyright © 2010 Open Geospatial Consortium, Inc. 45
<xs:element name="processingDate" type="xs:dateTime" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Processing date time</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:element name="compositeType" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Composite type of product, if available</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="DAILY"/>
 <xs:enumeration value="WEEKLY"/>
 <xs:enumeration value="MONTHLY"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

<xs:element name="method" type="xs:string" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Method used to compute datalayer. (e.g. Kalman filtering, ROSE)</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:element name="methodVersion" type="xs:string" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Method version (e.g. 1.0)</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:element name="processorName" type="xs:string" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Processor software name (e.g. FastROSE)</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:element name="processorVersion" type="xs:string" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Processor software version (e.g. 1.0)</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:element name="processingLevel" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Processing level applied to the product</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="1A"/>
 <xs:enumeration value="1B"/>
 <xs:enumeration value="2"/>
 <xs:enumeration value="3"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

<xs:element name="nativeProductFormat" type="xs:string" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Native product format</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:element>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="histograms" type="eop:HistogramArrayPropertyType"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="Histogram" type="eop:HistogramType" substitutionGroup="gml:_Object">
 <xs:complexType name="HistogramArrayPropertyType">
 <xs:sequence>
 <xs:element ref="eop:Histogram" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="bandId" type="xs:string" minOccurs="0"/>
<xs:element name="min" type="xs:int"/>
<xs:element name="max" type="xs:int"/>
<xs:element name="mean" type="xs:double" minOccurs="0"/>
<xs:element name="stdDeviation" type="xs:double" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="MaskInformationArrayPropertyType">
<xs:sequence>
<xs:element ref="eop:MaskInformation" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:element name="MaskInformation" type="eop:MaskInformationType"/>
<xs:complexType name="MaskInformationType">
<xs:sequence>
<xs:element name="type">
<xs:annotation>
<xs:documentation>Mask type. Possible values are : SNOW, CLOUD and QUALITY</xs:documentation>
</xs:annotation>
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="SNOW"/>
<xs:enumeration value="CLOUD"/>
<xs:enumeration value="QUALITY"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="format">
<xs:annotation>
<xs:documentation>Mask format. Possible values are : RASTER or VECTOR</xs:documentation>
</xs:annotation>
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="RASTER"/>
<xs:enumeration value="VECTOR"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="referenceSystemIdentifier" type="eop:CodeWithAuthorityType" minOccurs="0">
<xs:annotation>
<xs:documentation>Indicates if mask is geo-referenced, and thus can be assumed to be displayed directly on a map (in which case should point to a code space for the CRS), when not supplied it is assumed that the mask is provided in "raw" satellite frame of reference</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="fileName" type="xs:string">
<xs:annotation>
<xs:documentation>Path to the mask (could be any kind of URL : direct link to the image or WMS/WCS interface in case of RASTER mask; direct link to the file or WFS interface in case of VECTOR file), it is assumed that if a client is prepared to "manage" a mask delivered by e.g. WMS they would parse the URL to identify that it contains the OGC standard SERVICE=WMS</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:element name="Mask" type="eop:MaskType" substitutionGroup="gml:_Feature">
<xs:annotation>
<xs:documentation>Mask defined as a feature collection (in the GML 3.2 sense : a feature collection is a feature having a property derived by extension from gml:AbstractFeatureMemberType). Mandates the following optional gml properties inherited from gml:Feature :
- gml:id attribute
- gml:name
- gml:boundedBy

Note : the upcoming gml:identifier will replace eop:identifier in GML 3.2</xs:documentation>
</xs:annotation>
</xs:element>
<xs:complexType name="MaskType" mixed="false">
<xs:complexContent mixed="false">
<xs:extension base="gml:AbstractFeatureType">
<xs:sequence>
<xs:element ref="eop:maskMembers"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

Mask member : mandates the following optional GML properties inherited from GML:_Feature:
- gml:id attribute
- gml:name
- gml:boundedBy

Note: the upcoming gml:identifier will replace eop:identifier in GML 3.2.

Mask type. Value list can be retrieved with codeSpace

Container for ad-hoc metadata that does not merit a mission specific schema or extension, the localAttribute describes the name of the attribute

Container for ad-hoc metadata that does not merit a mission specific schema or extension, the localAttribute describes the value of the attribute

Identifier for metadata item, includes ground segment codespace to guarantee uniqueness within eop:
<xs:simpleType>
 <xs:element name="doi">
 <xs:annotation>
 <xs:documentation>Digital Object Identifier identifying the product</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 </xs:element>
</xs:element>

<xs:element name="parentIdentifier">
 <xs:annotation>
 <xs:documentation>Collection identifier</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
</xs:element>

<xs:element name="status">
 <xs:annotation>
 <xs:documentation>Refers to product status. PHR : always "ACQUIRED"</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="ACQUIRED"/>
 <xs:enumeration value="ARCHIVED"/>
 <xs:enumeration value="CANCELLED"/>
 <xs:enumeration value="FAILED"/>
 <xs:enumeration value="PLANNED"/>
 <xs:enumeration value="POTENTIAL"/>
 <xs:enumeration value="REJECTED"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

<xs:element name="statusDetail" type="xs:string">
 <xs:annotation>
 <xs:documentation>This field refers to the eop:status value. It should be used to motivate the reason of a failure deletion or rejection</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:element name="acquisitionType">
 <xs:annotation>
 <xs:documentation>Used to distinguish at a high level the appropriateness of the acquisition for "general" use, whether the product is a nominal acquisition, special calibration product or other. Values:
- NOMINAL
- CALIBRATION
- OTHER

More specific information (i.e. platform and sensor specific values) are expressed within the imageSubType tag.</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="NOMINAL"/>
 <xs:enumeration value="CALIBRATION"/>
 <xs:enumeration value="OTHER"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

<xs:element name="acquisitionSubType" type="gml:CodeListType">
 <xs:annotation>
 <xs:documentation>The mission specific type definition should refer to mission/ground segment dedicated codeSpace</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:element name="productType" type="xs:string">
 <xs:annotation>
 <xs:documentation>Describes product type in case that mixed types are available within a single collection. This is ground segment specific definition</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:element name="imageQualityDegradation" type="gml:MeasureType"/>
<xs:annotation>
 <xs:documentation>Must be expressed in percents. EOLI N/A (attTypes/attName ?)</xs:documentation>
</xs:annotation>

<xs:element name="imageQualityDegradationQuotationMode">
 <xs:annotation>
 <xs:documentation>Indicator to know how the quality quotation has been calculated.</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="AUTOMATIC"/>
 <xs:pattern value="MANUAL"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

<xs:element name="composedOf" type="eop:EarthObservationPropertyType"/>
<xs:element name="subsetOf" type="eop:EarthObservationPropertyType"/>
<xs:element name="linkedWith" type="eop:EarthObservationPropertyType"/>
<xs:complexType name="CodeWithAuthorityType">
 <xs:annotation>
 <xs:documentation>From GML 3.2 draft</xs:documentation>
 </xs:annotation>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="codeSpace" type="xs:anyURI" use="required"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>
D.2 Application schema for Thematic Optical EO Products

The following schema document, called *opt.xsd*, contains elements to describe Thematic Optical EO Products using GML 3.1.1

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSpy v2007 sp1 (http://www.altova.com) by jrom (C.N.E.S.) -->
<!-- edited with XMLSpy v2004 rel. 2 U (http://www.xmlspy.com) by jrom (CNES) -->
xmlns:gml="http://www.opengis.net/gml" xmlns:eop="http://earth.esa.int/eop" xmlns:opt="http://earth.esa.int/opt"
targetNamespace="http://earth.esa.int/opt" elementFormDefault="qualified" attributeFormDefault="unqualified" version="1.0">
  <xs:import namespace="http://www.opengis.net/gml" schemaLocation="../../gml/3.1.1/base/gmlSubset.xsd"/>
  <xs:import namespace="http://earth.esa.int/eop" schemaLocation="/eop.xsd"/>
  <!-- ===================================================================== -->
  <!--  Optical EarthObservation :  -->
  <!--    + Inherits from eop:AbstractObservation -->
  <!-- ===================================================================== -->
  <xs:element name="EarthObservation" type="opt:EarthObservationType" substitutionGroup="eop:EarthObservation">
    <xs:annotation>
      <xs:documentation>EOP root element for Optical Earth Observation Product description</xs:documentation>
    </xs:annotation>
  </xs:element>
  <xs:complexType name="EarthObservationType">
    <xs:complexContent>
      <xs:extension base="eop:EarthObservationType">
        <xs:sequence />
      </xs:extension>
    </xs:complexContent>
  </xs:complexType>
  <!-- ===================================================================== -->
  <!--  EarthObservationResult Feature : -->
  <!--    + this feature extends eop:EarthObservationResult -->
  <!--    + should be found within EarthObservation "result" property -->
  <!-- ===================================================================== -->
  <xs:element name="EarthObservationResult" type="opt:EarthObservationResultType" substitutionGroup="eop:EarthObservationResult">
    <xs:complexType>
      <xs:complexContent>
        <xs:extension base="eop:EarthObservationResultType">
          <xs:sequence>
            <xs:element name="cloudCoverPercentage" type="gml:MeasureType" minOccurs="0">
              <xs:annotation>
                <xs:documentation>Must be expressed in percents</xs:documentation>
              </xs:annotation>
            </xs:element>
            <xs:element name="cloudCoverPercentageAssessmentConfidence" type="gml:MeasureType" minOccurs="0">
              <xs:annotation>
                <xs:documentation>Cloud cover assessment confidence. Expressed in percents</xs:documentation>
              </xs:annotation>
            </xs:element>
            <xs:element name="cloudCoverPercentageQuotationMode" minOccurs="0">
              <xs:annotation>
                <xs:documentation>Indicator to know how the cloud cover percentage has been calculated</xs:documentation>
              </xs:annotation>
            </xs:element>
          </xs:sequence>
        </xs:extension>
      </xs:complexContent>
    </xs:complexType>
  </xs:element>
</xs:schema>
```

Copyright © 2010 Open Geospatial Consortium, Inc.
Snow cover assessment confidence. Expressed in percents.

Indicator to know how the snow cover percentage has been calculated.

Solar Azimuth angle given in degrees. EOLI : illAziAng

Solar Elevation angle given in degrees. EOLI : illElevAng
D.3 Application schema for Thematic Radar EO Products

The following schema document, called sar.xsd, contains elements to describe Thematic Radar EO Products using GML 3.1.1

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSpy v2004 rel. 2 U (http://www.xmlspy.com) by jrom (CNES) -->
xmlns:gml="http://www.opengis.net/gml" xmlns:eop="http://earth.esa.int/eop" xmlns:sar="http://earth.esa.int/sar"
targetNamespace="http://earth.esa.int/sar" elementFormDefault="qualified" attributeFormDefault="unqualified" version="1.2.1">
  <xs:import namespace="http://www.opengis.net/gml" schemaLocation="../../gml/3.1.1/base/gmlSubset.xsd"/>
  <xs:import namespace="http://earth.esa.int/eop" schemaLocation="./eop.xsd"/>

  <!-- SAR EarthObservation : -->
  <!-- + Inherits from eop:AbstractObservation -->

  <xs:element name="EarthObservation" type="sar:EarthObservationType" substitutionGroup="eop:EarthObservation">
    <xs:annotation>
      <xs:documentation>eop root element for SAR Earth Observation Product description.Namespace for SAR products EarthObservationProduct. This is a first minimum set suggested by DLR. The configuration of EOWEB User Services for TerraSAR-X is ongoing as well as the definition of Feature applicable to catalogue services. Sources: DLR TerraSAR-X PGS SAR L1B Archive Product Specification, SAR Raw Exchange Product Specification</xs:documentation>
    </xs:annotation>

    <xs:complexType name="EarthObservationType">
      <xs:complexContent>
        <xs:extension base="eop:EarthObservationType">
          <xs:sequence />
        </xs:extension>
      </xs:complexContent>
    </xs:complexType>

  </xs:element>

  <!-- Acquisition : -->
  <!-- + this feature extends eop:Acquisition -->

  <xs:element name="Acquisition" type="sar:AcquisitionType" substitutionGroup="eop:Acquisition">
    <xs:complexType name="AcquisitionType">
      <xs:complexContent>
        <xs:extension base="eop:AcquisitionType">
          <xs:sequence>
            <xs:element ref="sar:polarisationMode" minOccurs="0"/>
            <xs:element ref="sar:polarisationChannels" minOccurs="0"/>
            <xs:element ref="sar:antennaLookDirection" minOccurs="0"/>
            <xs:element ref="sar:minimumIncidenceAngle" minOccurs="0"/>
            <xs:element ref="sar:maximumIncidenceAngle" minOccurs="0"/>
            <xs:element ref="sar:incidenceAngleVariation" minOccurs="0"/>
            <xs:element ref="sar:dopplerFrequency" minOccurs="0"/>
          </xs:sequence>
        </xs:extension>
      </xs:complexContent>
    </xs:complexType>

  </xs:element>

  <!-- Miscellaneous properties -->

  <xs:element name="polarisationMode" type="sar:PolarisationModePropertyType">
    <xs:annotation>
      <xs:documentation>single S, dual D, twin T, quad Q, UNDEFINED</xs:documentation>
    </xs:annotation>
  </xs:element>

  <xs:element name="polarisationChannels" type="sar:PolarisationChannelsPropertyType">
    <xs:annotation>
      <xs:documentation>Polarisation channel transmit/receive configuration: horizontal, vertical.</xs:documentation>
    </xs:annotation>
  </xs:element>

  <xs:element name="antennaLookDirection">
    <xs:annotation>
      <xs:documentation>Polarisation channel transmit/receive configuration: horizontal, vertical.</xs:documentation>
    </xs:annotation>
  </xs:element>
</xs:schema>
```
<xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="LEFT"/>
 <xs:enumeration value="RIGHT"/>
 </xs:restriction>
</xs:simpleType>

<xs:element name="minimumIncidenceAngle" type="gml:AngleType">
 <xs:documentation>Minimum Incidence angle.</xs:documentation>
</xs:element>

<xs:element name="maximumIncidenceAngle" type="gml:AngleType">
 <xs:documentation>Maximum Incidence angle.</xs:documentation>
</xs:element>

<xs:element name="incidenceAngleVariation" type="gml:AngleType">
 <xs:documentation>Incidence angle variation.</xs:documentation>
</xs:element>

<xs:element name="dopplerFrequency" type="gml:MeasureType">
 <xs:documentation>Doppler Frequency of acquisition.</xs:documentation>
</xs:element>

<!-- Miscellaneous types -->

<xs:simpleType name="PolarisationChannelsPropertyType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="HH"/>
 <xs:enumeration value="HV"/>
 <xs:enumeration value="VH"/>
 <xs:enumeration value="VV"/>
 <xs:enumeration value="HH, VV"/>
 <xs:enumeration value="HH, VH"/>
 <xs:enumeration value="HH, HV"/>
 <xs:enumeration value="VH, VV"/>
 <xs:enumeration value="VH, HV"/>
 <xs:enumeration value="VV, HV"/>
 <xs:enumeration value="HH, VV, HV, VH"/>
 <xs:enumeration value="UNDEFINED"/>
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name="PolarisationModePropertyType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="D"/>
 <xs:enumeration value="Q"/>
 <xs:enumeration value="S"/>
 <xs:enumeration value="T"/>
 <xs:enumeration value="UNDEFINED"/>
 </xs:restriction>
</xs:simpleType>
D.4 Application schema for Specific Pleiades EO Products

The following schema document, called `atm.xsd`, contains elements to describe Thematic Atmospheric EO Products using GML 3.1.1

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY v2004 rel. 2 U (http://www.xmlspy.com) by jrom (CNES) -->
  targetNamespace="http://earth.esa.int/atm" elementFormDefault="qualified" attributeFormDefault="unqualified" version="1.2.1">
  <!-- ===================================================================== -->
  <!-- Atmospheric EarthObservation : -->
  <!-- + Inherits from eop:AbstractObservation -->
  <!-- ===================================================================== -->
  <xs:element name="EarthObservation" type="atm:EarthObservationType" substitutionGroup="eop:EarthObservation">
    <xs:annotation>
      <xs:documentation>Namespace for Atmospheric products EarthObservationProduct.</xs:documentation>
    </xs:annotation>
  </xs:element>
  <xs:complexType name="EarthObservationType">
    <xs:complexContent>
      <xs:extension base="eop:EarthObservationType">
        <xs:sequence />
      </xs:extension>
    </xs:complexContent>
  </xs:complexType>
  <!-- ===================================================================== -->
  <!--  EarthObservationResult Feature : -->
  <!--    + this feature extends eop:EarthObservationResult -->
  <!--    + should be found within EarthObservation "result" property -->
  <!-- ===================================================================== -->
  <xs:element name="EarthObservationResult" type="atm:EarthObservationResultType" substitutionGroup="eop:EarthObservationResult"/>
  <xs:complexType name="EarthObservationResultType">
    <xs:complexContent>
      <xs:extension base="eop:EarthObservationResultType">
        <xs:sequence>
          <xs:element ref="atm:dataLayers" minOccurs="0"/>
        </xs:sequence>
      </xs:extension>
    </xs:complexContent>
  </xs:complexType>
  <!-- ===================================================================== -->
  <!--  Datalayers  -->
  <!-- ===================================================================== -->
  <xs:element name="dataLayers" type="atm:DataLayerPropertyType"/>
  <xs:complexType name="DataLayerPropertyType">
    <xs:sequence>
      <xs:element ref="atm:DataLayer" maxOccurs="unbounded"/>
    </xs:sequence>
  </xs:complexType>
  <xs:element name="DataLayer" type="atm:DataLayerType"/>
  <xs:complexType name="DataLayerType">
    <xs:sequence>
      <xs:element name="specy" type="xs:string" minOccurs="0"/>
      <xs:element name="unit" type="xs:string" minOccurs="0"/>
      <xs:element name="highestLocation" type="gml:MeasureType" minOccurs="0"/>
    </xs:sequence>
  </xs:complexType>
</xs:schema>
```
<xs:documentation>Top height of datalayer. Should be expressed in meters.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="lowestLocation" type="gml:MeasureType" minOccurs="0">
<xs:annotation>
<xs:documentation>Bottom height of datalayer. Should be expressed in meters.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="algorithmName" type="xs:string" minOccurs="0">
<xs:annotation>
<xs:documentation>Name of algorithm used to compute datalayer</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="algorithmVersion" type="xs:string" minOccurs="0">
<xs:annotation>
<xs:documentation>Version of algorithm used to compute datalayer</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:schema>
Annex D
(normative)

Reference schematron rules for EO Products GML application schemas

D.1 Schematron rules for eop

```xml
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="schematron_skeleton_for_eop.xsl"?>
<schema xmlns="http://www.ascc.net/xml/schematron" xmlns:phr="http://eop.cnes.fr/phr"
xmlns:gml="http://www.opengis.net/gml" xmlns:eop="http://earth.esa.int/eop"
xmlns:opt="http://earth.esa.int/opt">
<title>Technical document schema</title>
  <key name="author-e-mails" match="author" use="@e-mail"/>
  <!-- ============================================================== -->
  <!-- gml:metaDataProperty : -->
  <!-- + expected contents is eop:EarthObservationMetadata -->
  <!-- ============================================================== -->
  <!--! if root is 'eop:EarthObservation', content is always as expected in the eop level (i.e no extension is possible)
! Since 'opt:EarthObservation' does not extend metaDataProperty, expected content is the same as with eop
! Note : should be the same for other thematic schemas (To be discussed)
!-->
  <pattern id="metaDataProperty_strict" name="metaDataProperty_strict">
    <rule context="(eop:EarthObservation/gml:metaDataProperty)|(opt:EarthObservation/gml:metaDataProperty)">
      <assert test="eop:EarthObservationMetaData">gml:metaDataProperty : expected content is eop:EarthObservationMetadata for a eop:EarthObservation or a opt:EarthObservation</assert>
    </rule>
  </pattern>
  <!-- ============================================================== -->
  <!-- gml:using : -->
  <!-- + expected contents is eop:EarthObservationEquipment. -->
  <!-- ============================================================== -->
  <!--! if root explicitaly refers to 'eop:EarthObservation' or 'opt:EarthObservation', content can be as in the preceding rule or can be an
! extension of eop:EarthObservationMetadata
!-->
  <pattern id="metaDataProperty_extended" name="metaDataProperty_extended">
    <rule context="[@eop:type = "eop:EarthObservation" or @eop:type = 'opt:EarthObservation']/gml:metaDataProperty">
      <assert test="eop:EarthObservationMetaData|gml:metaDataProperty : expected content is eop:EarthObservationMetadata or a extension (with appropriate attribute eop:type)"
</assert>
    </rule>
  </pattern>
</schema>
```
<!-- Footprint gml:multiExtentOf : -->
<!-- + expected contents is gml:MultiSurface/gml:surfaceMembers/gml:Polygon/gml:exterior/gml:LinearRing/gml:posList. -->

<pattern id="footprint_extentOf" name="footprint_extentOf">
<rule context="gml:multiExtentOf">
</rule>
</pattern>

<!-- Footprint gml:centerOf : -->
<!-- + expected contents is gml:Point/gml:pos. -->

<pattern id="footprint_centerOf" name="footprint_centerOf">
<rule context="gml:centerOf">
<assert test="gml:Point/gml:pos">gml:centerOf : expected contents is gml:Point/gml:pos</assert>
</rule>
</pattern>
</schema>
Annex E
(normative)

GML Subset for EO Products GML application schemas

E.1 GML subset schema

```xml
<schema xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:sch="http://www.ascc.net/xml/schematron"
  xmlns:gml="http://www.opengis.net/gml" xmlns="http://www.w3.org/2001/XMLSchema"
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" targetNamespace="http://www.opengis.net/gml"
  elementFormDefault="qualified" version="3.1.1">
  <annotation>
  </annotation>
  <import namespace="http://www.w3.org/1999/xlink" schemaLocation="../../../xlink/1.0.0/xlinks.xsd"/>
  <!-- ================================================= -->
  <element name="metaDataProperty" type="gml:MetaDataPropertyType">
    <annotation>
      <documentation>Contains or refers to a metadata package that contains metadata properties.</documentation>
    </annotation>
  </element>
  <!-- ================================================= -->
  <complexType name="MetaDataPropertyType">
    <annotation>
      <documentation>Base type for complex metadata property types.</documentation>
    </annotation>
    <sequence minOccurs="0">
      <any processContents="lax"/>
      <!-- <element ref="gml:_MetaData"/> -->
    </sequence>
    <attributeGroup ref="gml:AssociationAttributeGroup"/>
    <attribute name="about" type="anyURI" use="optional"/>
  </complexType>
  <!-- ================================================= -->
  <attributeGroup name="AssociationAttributeGroup">
    <annotation>
      <documentation>Attribute group used to enable property elements to refer to their value remotely. It contains the simple link components from xlinks.xsd, with all members optional, and the remoteSchema attribute, which is also optional. These attributes can be attached to any element, thus allowing it to act as a pointer. The 'remoteSchema' attribute allows an element that carries link attributes to indicate that the element is declared in a remote schema rather than by the schema that constrains the current document instance.</documentation>
    </annotation>
    <attributeGroup ref="xlink:simpleLink"/>
    <attribute ref="gml:remoteSchema" use="optional"/>
    <attributeGroup>
      <attribute name="remoteSchema" type="anyURI"/>
      <annotation>
        <documentation>Reference to an XML Schema fragment that specifies the content model of the property's value.</documentation>
      </annotation>
    </attributeGroup>
  </attributeGroup>
  <!-- ================================================= -->
  <element name="Polygon" type="gml:PolygonType" substitutionGroup="gml:_Surface"/>
  <!-- ================================================= -->
  <complexType name="PolygonType">
    <!-- ... -->
  </complexType>
</schema>
```

This is in conformance with the XML Schema Section 4.14 Referencing Schemas from Elsewhere.
A Polygon is a special surface that is defined by a single surface patch. The boundary of this patch is coplanar and the polygon uses planar interpolation in its interior. It is backwards compatible with the Polygon of GML 2, GM_Polygon of ISO 19107 is implemented by PolygonPatch.

An abstraction of a surface to support the different levels of complexity. A surface is always a continuous region of a plane. This is the abstract root type of the geometric primitives. A geometric primitive is a geometric object that is not decomposed further into other primitives in the system. All primitives are oriented in the direction implied by the sequence of their coordinate tuples.

All geometry elements are derived directly or indirectly from this abstract supertype. A geometry element may have an identifying attribute ("gml:id"), a name (attribute "name") and a description (attribute "description"). It may be associated with a spatial reference system (attribute "srsName"). The following rules shall be adhered: - Every geometry type shall derive from this abstract type. - Every geometry element (i.e. an element of a geometry type) shall be directly or indirectly in the substitution group of _Geometry. This attribute is included for backward compatibility with GML 2 and is deprecated with GML 3. This identifier is superceded by "gml:id" inherited from AbstractGMLType. The attribute "gid" should not be used anymore and may be deleted in future versions of GML without further notice.

All complexContent GML elements are directly or indirectly derived from this abstract supertype to establish a hierarchy of GML types that may be distinguished from other XML types by their ancestry. Elements in this hierarchy may have an ID and are thus referenceable.
<sequence>
 <group ref="gml:StandardObjectProperties"/>
</sequence>

<!-- === -->
<!-- === -->
<complexType name="StringOrRefType">
 <annotation>
 <documentation>
 This type is available wherever there is a need for a "text" type property. It is of string type, so the text can be included inline, but the value can also be referenced remotely via xlinks from the AssociationAttributeGroup. If the remote reference is present, then the value obtained by traversing the link should be used, and the string content of the element can be used for an annotation.
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="string">
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </extension>
 </simpleContent>
</complexType>

<!-- === -->
<!-- === -->
<element name="name" type="gml:CodeType">
 <annotation>
 <documentation>
 Label for the object, normally a descriptive name. An object may have several names, typically assigned by different authorities. The authority for a name is indicated by the value of its (optional) codeSpace attribute. The name may or may not be unique, as determined by the rules of the organization responsible for the codeSpace.
 </documentation>
 </annotation>
</element>

<!-- === -->
<!-- === -->
<complexType name="CodeType">
 <annotation>
 <documentation>
 Name or code with an (optional) authority. Text token.
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="string">
 <attribute name="codeSpace" type="anyURI" use="optional"/>
 </extension>
 </simpleContent>
</complexType>

<attribute name="id" type="ID">
</attribute>
<annotation>
<documentation>Database handle for the object. It is of XML type ID, so is constrained to be unique in the XML document within which it occurs. An external identifier for the object in the form of a URI may be constructed using standard XML and XPointer methods. This is done by concatenating the URI for the document, a fragment separator, and the value of the id attribute.</documentation>
</annotation>
</attribute>

<!-- === -->
<attributeGroup name="SRSReferenceGroup">
<annotation>
<documentation>Optional reference to the CRS used by this geometry, with optional additional information to simplify use when a more complete definition of the CRS is not needed.</documentation>
</annotation>
<attribute name="srsName" type="anyURI" use="optional">
<annotation>
<documentation>In general this reference points to a CRS instance of gml:CoordinateReferenceSystemType (see coordinateReferenceSystems.xsd). For well known references it is not required that the CRS description exists at the location the URI points to. If no srsName attribute is given, the CRS must be specified as part of the larger geometry element is part of, e.g. a geometric element like point, curve, etc. It is expected that this attribute will be specified at the direct position level only in rare cases.</documentation>
</annotation>
</attribute>
<attribute name="srsDimension" type="positiveInteger" use="optional">
<annotation>
<documentation>The srsDimension is the length of coordinate sequence (the number of entries in the list). This dimension is specified by the coordinate reference system. When the srsName attribute is omitted, this attribute shall be omitted.</documentation>
</annotation>
</attribute>
<attributeGroup ref="gml:SRSInformationGroup"/>
</attributeGroup>
<!-- === -->
<attributeGroup name="SRSInformationGroup">
<annotation>
<documentation>Optional additional and redundant information for a CRS to simplify use when a more complete definition of the CRS is not needed. This information shall be the same as included in the more complete definition of the CRS, referenced by the srsName attribute. When the srsName attribute is included, either both or neither of the axisLabels and uomLabels attributes shall be included. When the srsName attribute is omitted, both of these attributes shall be omitted.</documentation>
</annotation>
<attribute name="axisLabels" type="gml:NCNameList" use="optional">
<annotation>
<documentation>Ordered list of labels for all the axes of this CRS. The gml:axisAbbrev value should be used for these axis labels, after spaces and forbidden characters are removed. When the srsName attribute is included, this attribute is optional. When the srsName attribute is omitted, this attribute shall also be omitted.</documentation>
</annotation>
</attribute>
<attribute name="uomLabels" type="gml:NCNameList" use="optional">
<annotation>
<documentation>Ordered list of unit of measure (uom) labels for all the axes of this CRS. The gml:catalogSymbol should be used for this uom labels, after spaces and forbidden characters are removed. When the axisLabels attribute is included, this attribute shall also be included. When the axisLabels attribute is omitted, this attribute shall also be omitted.</documentation>
</annotation>
</attribute>
</attributeGroup>
<!-- === -->
</simpleType name="NCNameList">
<annotation>
<documentation>A set of values, representing a list of tokens with the lexical value space of NCName. The tokens are separated by whitespace.</documentation>
</annotation>
</simpleType>
<!----------- --->
<!----------- --->
<element name="exterior" type="gml:AbstractRingPropertyType">
<annotation>
<documentation>A boundary of a surface consists of a number of rings. In the normal 2D case, one of these rings is distinguished as being the exterior boundary. In a general manifold this is not always possible, in which case all boundaries shall be listed as interior boundaries, and the exterior will be empty.</documentation>
</annotation>
</element>
<!----------- --->
<complexType name="AbstractRingPropertyType">
<annotation>
<documentation>Encapsulates a ring to represent the surface boundary property of a surface.</documentation>
</annotation>
<sequence>
<element ref="gml:_Ring"/>
</sequence>
</complexType>
<!----------- --->
<element name="_Ring" type="gml:AbstractRingType" abstract="true" substitutionGroup="gml:_Geometry">
<annotation>
<documentation>The "_Ring" element is the abstract head of the substitution group for all closed boundaries of a surface patch.</documentation>
</annotation>
</element>
<!----------- --->
<complexType name="AbstractRingType" abstract="true">
<annotation>
<documentation>An abstraction of a ring to support surface boundaries of different complexity.</documentation>
</annotation>
<complexContent>
<extension base="gml:AbstractGeometryType"/>
</complexContent>
</complexType>
<!----------- --->
<element name="_Geometry" type="gml:AbstractGeometryType" abstract="true" substitutionGroup="gml:_GML">
<annotation>
<documentation>The "_Geometry" element is the abstract head of the substitution group for all geometry elements of GML 3. This includes pre-defined and user-defined geometry elements. Any geometry element must be a direct or indirect extension/restriction of AbstractGeometryType and must be directly or indirectly in the substitution group of "_Geometry".</documentation>
</annotation>
</element>
<!----------- --->
<element name="_GML" type="gml:AbstractGMLType" abstract="true" substitutionGroup="gml:_Object">
<annotation>
<documentation>Global element which acts as the head of a substitution group that may include any element which is a GML feature, object, geometry or complex value.</documentation>
</annotation>
</element>
<!----------- --->
<!----------- --->
<element name="_Object" abstract="true">
<annotation>
<documentation>This abstract element is the head of a substitutionGroup hierararchy which may contain either simpleContent or complexContent elements. It is used to assert the model position of "class" elements declared in other GML schemas.</documentation>
</annotation>
</element>
A boundary of a surface consists of a number of rings. The "interior" rings separate the surface/surface patch from the area enclosed by the rings.

The "_Surface" element is the abstract head of the substitution group for all (continuous) surface elements.

The "_GeometricPrimitive" element is the abstract head of the substitution group for all (pre- and user-defined) geometric primitives.

A Point is defined by a single coordinate tuple.

GML supports two different ways to specify the direct position of a point. 1. The "pos" element is of type DirectPositionType.

2. The "coordinates" element shall only be used for coordinates with ordinates that require a string representation, e.g. DMS representations.

The "coord" element is included for backwards compatibility with GML 2.
DirectPosition instances hold the coordinates for a position within some coordinate reference system (CRS). Since DirectPositions, as data types, will often be included in larger objects (such as geometry elements) that have references to CRS, the "srsName" attribute will in general be missing, if this particular DirectPosition is included in a larger element with such a reference to a CRS. In this case, the CRS is implicitly assumed to take on the value of the containing object's CRS.

XML List based on XML Schema double type. An element of this type contains a space-separated list of double values.

Tables or arrays of tuples. May be used for text-encoding of values from a table. Actually just a string, but allows the user to indicate which characters are used as separators. The value of the 'cs' attribute is the separator for coordinate values, and the value of the 'ts' attribute gives the tuple separator (a single space by default); the default values may be changed to reflect local usage. Defaults to CSV within a tuple, space between tuples. However, any string content will be schema-valid.

Represents a coordinate tuple in one, two, or three dimensions. Deprecated with GML 3.0 and included for backwards compatibility with GML 2. Use the "pos" element instead.
<sequence>
 <element name="X" type="decimal"/>
 <element name="Y" type="decimal" minOccurs="0"/>
 <element name="Z" type="decimal" minOccurs="0"/>
</sequence>
<complexType>
 <element name="LineString" type="gml:LineStringType" substitutionGroup="gml:_Curve"/>
</complexType>
<!-- === -->
<element name="LineString" type="gml:LineStringType" substitutionGroup="gml:_Curve"/>
<!-- === -->
<complexType name="LineStringType">
 <annotation>
 <documentation>A LineString is a special curve that consists of a single segment with linear interpolation. It is defined by two or more coordinate tuples, with linear interpolation between them. It is backwards compatible with the LineString of GML 2, GML_LineString of ISO 19107 is implemented by LineStringSegment.</documentation>
 </annotation>
 <complexContent>
 <extension base="gml:AbstractCurveType">
 <sequence>
 <choice>
 <annotation>
 <documentation>GML supports two different ways to specify the control points of a line string. 1. A sequence of "pos" (DirectPositionType) or "pointProperty" (PointPropertyType) elements. "pos" elements are control points that are only part geometry elements or reference element allows for a compact way to coordinate reference systems and belong two. </documentation>
 </annotation>
 <choice minOccurs="2" maxOccurs="unbounded">"pos" instead. Included for backwards compatibility with GML 3.0.0.</choice>
 <element ref="gml:posList"/>
 <element ref="gml:coordinates"/>
 </choice>
 </sequence>
 </extension>
 </complexContent>
</complexType>
<!-- === -->
<complexType name="AbstractCurveType" abstract="true">
 <annotation>
 <documentation>An abstraction of a curve to support the different levels of complexity. The curve can always be viewed as a geometric primitive, i.e. is continuous.</documentation>
 </annotation>
</complexType>
<extension base="gml:AbstractGeometricPrimitiveType"/>
</complexType>

<!-- === -->
<element name="pointProperty" type="gml:PointPropertyType">
<annotation>
<documentation>This property element either references a point via the XLink-attributes or contains the point element. pointProperty is the predefined property which can be used by GML Application Schemas whenever a GML Feature has a property with a value that is substitutable for Point.</documentation>
</annotation>
</element>

<!-- === -->
<complexType name="PointPropertyType">
<annotation>
<documentation>A property that has a point as its value domain can either be an appropriate geometry element encapsulated in an element of this type or an XLink reference to a remote geometry element (where remote includes geometry elements located elsewhere in the same document). Either the reference or the contained element must be given, but neither both nor none.</documentation>
</annotation>
<sequence minOccurs="0">
<element ref="gml:Point"/>
</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup">
<annotation>
<documentation>This attribute group includes the XLink attributes (see xlinks.xsd). XLink is used in GML to reference remote resources (including those elsewhere in the same document). A simple link element can be constructed by including a specific set of XLink attributes. The XML Linking Language (XLink) is currently a Proposed Recommendation of the World Wide Web Consortium. XLink allows elements to be inserted into XML documents so as to create sophisticated links between resources; such links can be used to reference remote properties. A simple link element can be used to implement pointer functionality, and this functionality has been built into various GML 3 elements by including the gml:AssociationAttributeGroup.</documentation>
</annotation>
</attributeGroup>
</complexType>

<!-- === -->
<element name="pointRep" type="gml:PointPropertyType">
<annotation>
<documentation>Deprecated with GML version 3.1.0. Use "pointProperty" instead. Included for backwards compatibility with GML 3.0.0.</documentation>
</annotation>
</element>

<!-- === -->
<element name="posList" type="gml:DirectPositionListType">
<annotation>
<documentation>Check SRS tags</documentation>
</annotation>
<annotation>
<documentation>Check Dimension</documentation>
</annotation>
</element>
DirectPositionList instances hold the coordinates for a sequence of direct positions within the same coordinate reference system (CRS). The "_Curve" element is the abstract head of the substitution group for all (continuous) curve elements. A LinearRing is defined by four or more coordinate tuples, with linear interpolation between them; the first and last coordinates must be coincident. GML supports two different ways to specify the control points of a linear ring.

1. A sequence of "pos" (DirectPositionType) or "pointProperty" (PointPropertyType) elements. "pos" elements are control points that are only part of this ring, "pointProperty" elements contain a point that may be referenced from other geometry elements or reference another point defined outside of this ring (reuse of existing points).
2. The "posList" element allows for a compact way to specify the coordinates of the control points, if all control points are in the same coordinate reference systems and belong to this ring only. The number of direct positions in the list must be at least four.
<element name="surfaceProperty" type="gml:SurfacePropertyType">
 <annotation>
 <appinfo>
 <sch:pattern name="Check either href or content not both">
 <sch:rule context="gml:surfaceProperty">
 <sch:extends rule="hrefOrContent"/>
 <sch:rule>
 <sch:pattern/>
 </sch:rule>
 </sch:rule>
 </sch:pattern>
 </appinfo>
 <documentation> Deprecated with GML version 3.0 and included for backwards compatibility with GML 2. Use "pos" elements instead.</documentation>
 </annotation>
</element>

<complexType name="SurfacePropertyType">
 <annotation>
 <documentation>A property that has a surface as its value domain can either be an appropriate geometry element encapsulated in an element of this type or an XLink reference to a remote geometry element (where remote includes geometry elements located elsewhere in the same document). Either the reference or the contained element must be given, but neither both nor none.</documentation>
 </annotation>
 <sequence minOccurs="0">
 <element ref="gml:_Surface"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup">
 <annotation>
 <documentation>This attribute group includes the XLink attributes (see xlinks.xsd). XLink is used in GML to reference remote resources (including those elsewhere in the same document). A simple link element can be constructed by including a specific set of XLink attributes. The XML Linking Language (XLink) is currently a Proposed Recommendation of the World Wide Web Consortium. XLink allows elements to be inserted into XML documents so as to create sophisticated links between resources; such links can be used to reference remote properties.
 </documentation>
 </annotation>
 </attributeGroup>
</complexType>

<element name="_Feature" type="gml:AbstractFeatureType" abstract="true" substitutionGroup="gml:_GML"/>

<complexType name="AbstractFeatureType" abstract="true">
 <annotation>
 <documentation>An abstract feature provides a set of common properties, including id, metaDataProperty, name and description inherited from AbstractGMLType, plus boundedBy. A concrete feature type must derive from this type and specify additional properties in an application schema. A feature must possess an identifying attribute ('id' - 'fid' has been deprecated). </documentation>
 </annotation>
 <complexContent>
 <extension base="gml:AbstractGMLType">
 <sequence>
 <element ref="gml:boundedBy" minOccurs="0"/>
 <element ref="gml:location" minOccurs="0"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup">
 <annotation>
 <documentation>deprecated</documentation>
 </attributeGroup>
 </complexContent>
 </complexType>
 </complexType>
</element>
additional properties must be specified in an application schema

<element name="boundedBy" type="gml:BoundingShapeType"/>
<complexType name="BoundingShapeType">
<annotation>
<documentation>Bounding shape.</documentation>
</annotation>
<sequence>
<choice>
<element ref="gml:Envelope"/>
<element ref="gml:Null"/>
</choice>
</sequence>
</complexType>
<element name="Envelope" type="gml:EnvelopeType"/>
<complexType name="EnvelopeType">
<annotation>
<documentation>Envelope defines an extent using a pair of positions defining opposite corners in arbitrary dimensions. The first direct position is the "lower corner" (a coordinate position consisting of all the minimal ordinates for each dimension for all points within the envelope), the second one the "upper corner" (a coordinate position consisting of all the maximal ordinates for each dimension for all points within the envelope).</documentation>
</annotation>
<choice>
<sequence>
<element name="lowerCorner" type="gml:DirectPositionType"/>
<element name="upperCorner" type="gml:DirectPositionType"/>
</sequence>
<element ref="gml:coord" minOccurs="2" maxOccurs="2">
<annotation>
<appinfo>deprecated</appinfo>
<documentation>deprecated with GML version 3.0</documentation>
</annotation>
</element>
<element ref="gml:pos" minOccurs="2" maxOccurs="2">
<annotation>
<appinfo>deprecated</appinfo>
<documentation>Deprecated with GML version 3.1. Use the explicit properties "lowerCorner" and "upperCorner" instead.</documentation>
</annotation>
</element>
<element ref="gml:coordinates">
<annotation>
<documentation>Deprecated with GML version 3.1.0. Use the explicit properties "lowerCorner" and "upperCorner" instead.</documentation>
</annotation>
</element>
</choice>
<attributeGroup ref="gml:SRSReferenceGroup"/>
</complexType>
<element name="Null" type="gml:NullType"/>
<simpleType name="NullType">
<annotation>
<documentation>Utility type for null elements. The value may be selected from one of the enumerated tokens, or may be a URI in which case this should identify a resource which describes the reason for the null. </documentation>
</annotation>
<union memberTypes="gml:NullEnumeration anyURI"/>
</simpleType>
<simpleType name="NullEnumeration"/>
Some common reasons for a null value:

- **inapplicable** - the object does not have a value
- **missing** - The correct value is not readily available to the sender of this data. Furthermore, a correct value may not exist.
- **template** - the value will be available later
- **unknown** - The correct value is not known to, and not computable by, the sender of this data. However, a correct value probably exists.
- **withheld** - the value is not divulged

Other:reason - as indicated by "reason" string

Specific communities may agree to assign more strict semantics when these terms are used in a particular context.
<complexType name="CodeListType">
 <annotation>
 <documentation>List of values on a uniform nominal scale. List of text tokens. In a list context a token should not include any spaces, so xsd:Name is used instead of xsd:string. If a codeSpace attribute is present, then its value is a reference to a Reference System for the value, a dictionary or code list.</documentation>
 </annotation>
 <simpleContent>
 <extension base="gml:NameList">
 <attribute name="codeSpace" type="anyURI" use="optional"/>
 </extension>
 </simpleContent>
</complexType>

<complexType name="AngleType">
 <annotation>
 <documentation>Value of an angle quantity recorded as a single number, with its units. Uses the MeasureType with the restriction that the unit of measure referenced by uom must be suitable for an angle, such as degrees or radians.</documentation>
 </annotation>
 <simpleContent>
 <restriction base="gml:MeasureType"/>
 </simpleContent>
</complexType>

<complexType name="MeasureType">
 <annotation>
 <documentation>[MODIFIED from GML 3.2] gml:MeasureType supports recording an amount encoded as a value of XML Schema double, together with a units of measure indicated by an attribute uom, short for "units Of measure". The value of the uom attribute identifies a reference system for the amount, usually a ratio or interval scale.</documentation>
 </annotation>
 <simpleContent>
 <extension base="double">
 <attribute name="uom" type="gml:UomIdentifier" use="required"/>
 </extension>
 </simpleContent>
</complexType>

<complexType name="UomIdentifier">
 <annotation>
 <documentation>The simple type gml:UomIdentifier defines the syntax and value space of the unit of measure identifier.</documentation>
 </annotation>
 <union memberTypes ="gml:UomSymbol gml:UomURI"/>
</complexType>

<complexType name="UomSymbol">
 <annotation>
 <documentation>This type specifies a character string of length at least one, and restricted such that it must not contain any of the following characters: ":" (colon), " " (space), (newline), (carriage return), (tab). This allows values corresponding to familiar abbreviations, such as "kg", "m/s", etc. It is recommended that the symbol be an identifier for a unit of measure as specified in the "Unified Code of Units of Measure" (UCUM) (http://aurora.regenstrief.org/UCUM). This provides a set of symbols and a grammar for constructing identifiers for units of measure that are unique, and may be easily entered with a keyboard supporting the limited character set known as 7-bit ASCII. ISO 2955 formerly provided a specification with this scope, but was withdrawn in 2001. UCUM largely follows ISO 2955 with modifications to remove ambiguities and other problems.</documentation>
 </annotation>
 <restriction base="string">
 <pattern value="^[^: \n\r\t]+"/>
 </restriction>
</complexType>
<simpleType name="UomURI">
 <annotation>
 <documentation>This type specifies a URI, restricted such that it must start with one of the following sequences:
 "#", ".", "/", or a string of characters followed by a ":". These patterns ensure that the most common URI forms are supported,
 including absolute and relative URIs and URIs that are simple fragment identifiers, but prohibits certain forms of relative URI that
 could be mistaken for unit of measure symbol .
 NOTE It is possible to re-write such a relative URI to conform to the restriction (e.g. ":/m/s").
 In an instance document, on elements of type gml:MeasureType the mandatory uom attribute shall carry a value corresponding to
 either
 - a conventional unit of measure symbol,
 - a link to a definition of a unit of measure that does not have a conventional symbol, or when it is desired to indicate a precise or
 variant definition.</documentation>
 </annotation>
 <restriction base="anyURI">
 <pattern value="([a-zA-Z][a-zA-Z0-9-\+\./]*:|./|./|#/).*"/>
 </restriction>
</simpleType>

<complexType name="MeasureListType">
 <annotation>
 <documentation>List of numbers with a uniform scale. The value of uom (Units Of Measure) attribute is a reference to a
 Reference System for the amount, either a ratio or position scale.</documentation>
 </annotation>
 <simpleContent>
 <extension base="gml:doubleList">
 <attribute name="uom" type="anyURI" use="required"/>
 </extension>
 </simpleContent>
</complexType>

<element name="centerOf" type="gml:PointPropertyType"/>
<element name="extentOf" type="gml:SurfacePropertyType"/>
<element name="_MetaData" type="gml:AbstractMetaDataType" abstract="true" substitutionGroup="gml:_Object">
 <annotation>
 <documentation>Abstract element which acts as the head of a substitution group for packages of MetaData properties.</documentation>
 </annotation>
</element>
<complexType name="AbstractMetaDataType" abstract="true" mixed="true">
 <annotation>
 <documentation>An abstract base type for complex metadata types.</documentation>
 </annotation>
 <attribute ref="gml:id" use="optional"/>
</complexType>
<element name="Observation" type="gml:ObservationType" substitutionGroup="gml:_Feature">
 <complexType name="ObservationType">
 <complexContent>
 <extension base="gml:AbstractFeatureType">
 <sequence>
 <element ref="gml:validTime"/>
 <element ref="gml:using" minOccurs="0"/>
 <element ref="gml:target" minOccurs="0"/>
 <element ref="gml:resultOf"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
</element>
<element name="validTime" type="gml:TimePrimitivePropertyType"/>
<complexType name="TimePrimitivePropertyType">
 <sequence minOccurs="0">
 <element ref="gml:validTime"/>
 <element ref="gml:using" minOccurs="0"/>
 <element ref="gml:target" minOccurs="0"/>
 <element ref="gml:resultOf"/>
 </sequence>
</complexType>
<complexType name="ObservationType">
 <complexType name="ObservationType">
 <extension base="gml:AbstractFeatureType">
 <sequence>
 <element ref="gml:validTime"/>
 <element ref="gml:using" minOccurs="0"/>
 <element ref="gml:target" minOccurs="0"/>
 <element ref="gml:resultOf"/>
 </sequence>
 </extension>
 </complexType>
</element>
<complexType>
 <element name="_TimePrimitive" type="gml:AbstractTimePrimitiveType" abstract="true" substitutionGroup="gml:_TimeObject">
 <annotation>
 <documentation xml:lang="en">This abstract element acts as the head of the substitution group for temporal primitives.</documentation>
 </annotation>
 <complexType name="AbstractTimePrimitiveType" abstract="true">
 <annotation>
 <documentation xml:lang="en">The abstract supertype for temporal primitives.</documentation>
 </annotation>
 <complexContent>
 <extension base="gml:AbstractTimeObjectType">
 <sequence>
 <element name="relatedTime" type="gml:RelatedTimeType" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 </element>
</complexType>

complexType name="AbstractTimeObjectType" abstract="true">
 <annotation>
 <documentation xml:lang="en">The abstract supertype for temporal objects.</documentation>
 </annotation>
 <complexContent>
 <extension base="gml:AbstractGMLType"/>
 </complexContent>
</complexType>

complexType name="RelatedTimeType">
 <complexContent>
 <extension base="gml:TimePrimitivePropertyType">
 <attribute name="relativePosition">
 <simpleType>
 <restriction base="string">
 <enumeration value="Before"/>
 <enumeration value="After"/>
 <enumeration value="Begins"/>
 <enumeration value="Ends"/>
 <enumeration value="During"/>
 <enumeration value="Equals"/>
 <enumeration value="Contains"/>
 <enumeration value="Overlaps"/>
 <enumeration value="Meets"/>
 <enumeration value="OverlappedBy"/>
 <enumeration value="MetBy"/>
 <enumeration value="BegunBy"/>
 <enumeration value="EndedBy"/>
 </restriction>
 </simpleType>
 </attribute>
 </extension>
 </complexContent>
</complexType>

complexType name="_TimeObject" type="gml:AbstractTimeObjectType" abstract="true" substitutionGroup="gml:_GML">
 <annotation>
 <documentation xml:lang="en">This abstract element acts as the head of the substitution group for temporal primitives and complexes.</documentation>
 </annotation>
 <complexType>
 <element name="using" type="gml:FeaturePropertyType">
 <annotation>
 <documentation>This element contains or points to a description of a sensor, instrument or procedure used for the observation</documentation>
 </annotation>
 </element>
 </complexType>
</complexType>
<element>
 <annotation>
 <documentation>This element contains or points to the specimen, region or station which is the object of the observation</documentation>
 </annotation>
</element>

<complexType name="TargetPropertyType">
 <annotation>
 <documentation>Container for an object representing the target or subject of an observation.</documentation>
 </annotation>
 <sequence minOccurs="0">
 <choice>
 <element ref="gml:Feature"/>
 <element ref="gml:Geometry"/>
 </choice>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
</complexType>

<element name="resultOf" type="gml:AssociationType">
 <annotation>
 <documentation>The result of the observation: an image, external object, etc</documentation>
 </annotation>
</element>

<complexType name="AssociationType">
 <annotation>
 <documentation>A pattern or base for derived types used to specify complex types corresponding to an unspecified UML association - either composition or aggregation. Restricts the cardinality of Objects contained in the association to a maximum of one. An instance of this type can contain an element representing an Object, or serve as a pointer to a remote Object. Descendents of this type can be restricted in an application schema to
 * allow only specified classes as valid participants in the aggregation
 * allow only association by reference (i.e. empty the content model) or by value (i.e. remove the xlinks).

 When used for association by reference, the value of the gml:remoteSchema attribute can be used to locate a schema fragment that constrains the target instance.

 In many cases it is desirable to impose the constraint prohibiting the occurrence of both reference and value in the same instance, as that would be ambiguous. This is accomplished by adding a directive in the annotation element of the element declaration. This directive can be in the form of normative prose, or can use a Schematron pattern to automatically constrain occurrence - see the declaration for _strictAssociation below.

 If co-occurrence is not prohibited, then both a link and content may be present. If this occurs in an instance, then the rule for interpretation is that the instance found by traversing the href provides the normative value of the property, and should be used when possible. The value(s) included as content may be used if the remote instance cannot be resolved. This may be considered to be a "cached" version of the value(s).
 </annotation>
 <sequence minOccurs="0">
 <element ref="gml:Object"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
</complexType>

<element name="TimePeriod" type="gml:TimePeriodType" substitutionGroup="gml:_TimeGeometricPrimitive"/>

<complexType name="TimePeriodType">
 <complexContent>
 <extension base="gml:AbstractTimeGeometricPrimitiveType">
 <sequence>
 <choice>
 <element name="beginPosition" type="gml:TimePositionType"/>
 <element name="begin" type="gml:TimeInstantPropertyType"/>
 </choice>
 <choice>
 <element name="endPosition" type="gml:TimePositionType"/>
 <element name="end" type="gml:TimeInstantPropertyType"/>
 </choice>
 </sequence>
 </extension>
 </complexContent>
</complexType>
<element name="end" type="gml:TimeInstantPropertyType"/>
</choice>
</group ref="gml:timeLength" minOccurs="0"/>
</sequence>
</extension>
</complexContent>
</complexType>
<!-- === -->
<complexType name="AbstractTimeGeometricPrimitiveType" abstract="true">
<annotation>
<documentation xml:lang="en">The abstract supertype for temporal geometric primitives. A temporal geometry must be associated with a temporal reference system via URI. The Gregorian calendar with UTC is the default reference system, following ISO 8601. Other reference systems in common use include the GPS calendar and the Julian calendar.</documentation>
</annotation>
</complexContent>
</complexType>
<!-- === -->
<complexType name="TimePositionType" final="#all">
<annotation>
<documentation xml:lang="en">Direct representation of a temporal position. Indeterminate time values are also allowed, as described in ISO 19108. The indeterminatePosition attribute can be used alone or it can qualify a specific value for temporal position (e.g. before 2002-12, after 1019624400).
For time values that identify position within a calendar, the calendarEraName attribute provides the name of the calendar era to which the date is referenced (e.g. the Meiji era of the Japanese calendar).</documentation>
</annotation>
<simpleContent>
<extension base="gml:TimePositionUnion">
<attribute name="frame" type="anyURI" use="optional" default="#ISO-8601"/>
<attribute name="calendarEraName" type="string" use="optional"/>
<attribute name="indeterminatePosition" type="gml:TimeIndeterminateValueType" use="optional"/>
</extension>
</simpleContent>
</complexType>
<!-- === -->
<simpleType name="TimePositionUnion">
<annotation>
<documentation xml:lang="en">The ISO 19108:2002 hierarchy of subtypes for temporal position are collapsed by defining a union of XML Schema simple types for indicating temporal position relative to a specific reference system.

Dates and dateTime may be indicated with varying degrees of precision. dateTime by itself does not allow right-truncation, except for fractions of seconds. When used with non-Gregorian calendars based on years, months, days, the same lexical representation should still be used, with leading zeros added if the year value would otherwise have fewer than four digits.

An ordinal position may be referenced via URI identifying the definition of an ordinal era.

A time coordinate value is indicated as a decimal (e.g. UNIX time, GPS calendar).

Calendar dates may be indicated with varying degrees of precision, using year, year-month, date. When used with non-Gregorian calendars based on years, months, days, the same lexical representation should still be used, with leading zeros added if the year value would otherwise have fewer than four digits.

Time is used for a position that recurs daily (see clause 5.4.4.2 of ISO 19108:2002).
</annotation>
<union memberTypes="gml:CalDate time dateTime anyURI decimal"/>
</simpleType>
<!-- === -->
<simpleType name="CalDate">
<annotation>
<documentation xml:lang="en">Calendar dates may be indicated with varying degrees of precision, using year, year-month, date. When used with non-Gregorian calendars based on years, months, days, the same lexical representation should still be used, with leading zeros added if the year value would otherwise have fewer than four digits. time is used for a position that recurs daily (see clause 5.4.4.2 of ISO 19108:2002).
</annotation>
<union memberTypes="date gYearMonth gYear"/>
This enumerated data type specifies values for indeterminate positions.

```xml
<complexType name="TimeIndeterminateValueType">
  <annotation>
    <documentation xml:lang="en">This enumerated data type specifies values for indeterminate positions.</documentation>
  </annotation>
  <restriction base="string">
    <enumeration value="after"/>
    <enumeration value="before"/>
    <enumeration value="now"/>
    <enumeration value="unknown"/>
  </restriction>
</complexType>
```

```xml
<complexType name="TimeInstantPropertyType">
  <sequence minOccurs="0">
    <element ref="gml:TimeInstant"/>
  </sequence>
  <attributeGroup ref="gml:AssociationAttributeGroup"/>
</complexType>
```

```xml
<element name="TimeInstant" type="gml:TimeInstantType" substitutionGroup="gml:_TimeGeometricPrimitive"/>
```

```xml
<complexType name="TimeInstantType">
  <annotation>
    <documentation>Omit back-pointers begunBy, endedBy.</documentation>
  </annotation>
  <complexContent>
    <extension base="gml:AbstractTimeGeometricPrimitiveType">
      <sequence>
        <element ref="gml:timePosition"/>
      </sequence>
    </extension>
  </complexContent>
</complexType>
```

```xml
<element name="timePosition" type="gml:TimePositionType">
  <annotation>
    <documentation>Direct representation of a temporal position</documentation>
  </annotation>
</element>
```

```xml
<_TimeGeometricPrimitive type="gml:AbstractTimeGeometricPrimitiveType" abstract="true" substitutionGroup="gml: TimePrimitive"/>
```

```xml
<element name="timeLength">
  <documentation xml:lang="en">This abstract element acts as the head of the substitution group for temporal geometric primitives.</documentation>
</element>
```

```xml
<group name="timeLength">
  <annotation>
    <documentation>This model group is provided as an alternative to the abstract substitutionGroup head timeLength.
ISO 19136 comment 411</documentation>
  </annotation>
  <choice>
    <element ref="gml:duration"/>
    <element ref="gml:timeInterval"/>
  </choice>
</group>
```

```xml
<element name="duration" type="duration">
  <annotation>
    <documentation xml:lang="en">This element is an instance of the primitive xsd:duration simple type to
```
```
enable use of the ISO 8601 syntax for temporal length (e.g. P5DT4H30M).
It is a valid subtype of TimeDurationType according to section 3.14.6,
rule 2.2.4 in XML Schema, Part 1. 

This element is a valid subtype of TimeDurationType
according to section 3.14.6, rule 2.2.4 in XML Schema, Part 1.

This type extends the built-in xsd:decimal simple type to allow floating-point
values for temporal length. According to the ISO 11404 model you have to use
positiveInteger together with appropriate values for radix and factor. The
resolution of the time interval is to one radix \(^{-factor}\) of the specified
time unit (e.g. unit="second", radix="10", factor="3" specifies a resolution
of milliseconds). It is a subtype of TimeDurationType.

A property that has a collection of surfaces as its value domain can either be an appropriate
gometry element encapsulated in an element of this type or an XLink reference to a remote geometry element (where remote includes
gometry elements located elsewhere in the same document). Either the reference or the contained element must be given, but neither
both nor none.

This attribute group includes the XLink attributes (see xlinks.xsd). XLink is used in GML
to reference remote resources (including those elsewhere in the same document). A simple link element can be constructed by
including a specific set of XLink attributes. The XML Linking Language (XLink) is currently a Proposed Recommendation of the
World Wide Web Consortium. XLink allows elements to be inserted into XML documents so as to create sophisticated links between resources; such links can be used to reference remote properties.

A simple link element can be used to implement pointer functionality, and this functionality has been built into various GML 3 elements by including the gml:AssociationAttributeGroup.

```xml
<complexType name="MultiSurfaceType">
 <annotation>
 <documentation>A MultiSurface is defined by one or more Surfaces, referenced through surfaceMember elements.</documentation>
 </annotation>
 <complexContent>
 <extension base="gml:AbstractGeometricAggregateType">
 <sequence>
 <element ref="gml:surfaceMember" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="gml:surfaceMembers" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>
```

"standard" property or the array property style. It is also valid to use both the "standard" and the array property style in the same collection.

NOTE: Array properties cannot reference remote geometry elements.

```xml
<complexType name="AbstractGeometricAggregateType" abstract="true">
 <annotation>
 <documentation>This is the abstract root type of the geometric aggregates.</documentation>
 </annotation>
 <complexContent>
 <extension base="gml:AbstractGeometryType"/>
 </complexContent>
</complexType>
```

A surface element is any element which is substitutable for "_Surface".

```xml
<complexType name="SurfaceArrayPropertyType">
 <annotation>
 <documentation>A container for an array of surfaces. The elements are always contained in the array property, referencing geometry elements or arrays of geometry elements is not supported.</documentation>
 </annotation>
 <sequence>
 <element ref="gml:_Surface" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
</complexType>
```

The "_GeometricAggregate" element is the abstract head of the substitution group for all geometric aggregates.

```xml
<element>
 <complexType name="_GeometricAggregate" type="gml:AbstractGeometricAggregateType" abstract="true"
 substitutionGroup="gml:Geometry"/>
 <annotation>
 <documentation>The "_GeometricAggregate" element is the abstract head of the substitution group for all geometric aggregates.</documentation>
 </annotation>
</element>
```
<element name="FeatureCollection" type="gml:AbstractFeatureCollectionType" abstract="true" substitutionGroup="gml:_Feature">
<complexType name="AbstractFeatureCollectionType" abstract="true">
<annotation>
<documentation>A feature collection contains zero or more features.</documentation>
</annotation>
<complexContent>
<extension base="gml:AbstractFeatureType">
<sequence>
<element ref="gml:featureMember" minOccurs="0" maxOccurs="unbounded"/>
<element ref="gml:featureMembers" minOccurs="0"/>
</sequence>
</extension>
</complexContent>
</complexType>
<element name="featureMembers" type="gml:FeatureArrayPropertyType"/>
<complexType name="FeatureArrayPropertyType">
<annotation>
<documentation>Container for features - follow gml:ArrayAssociationType pattern.</documentation>
</annotation>
<sequence>
<element ref="gml:_Feature" minOccurs="0" maxOccurs="unbounded"/>
</sequence>
</complexType>
</schema>