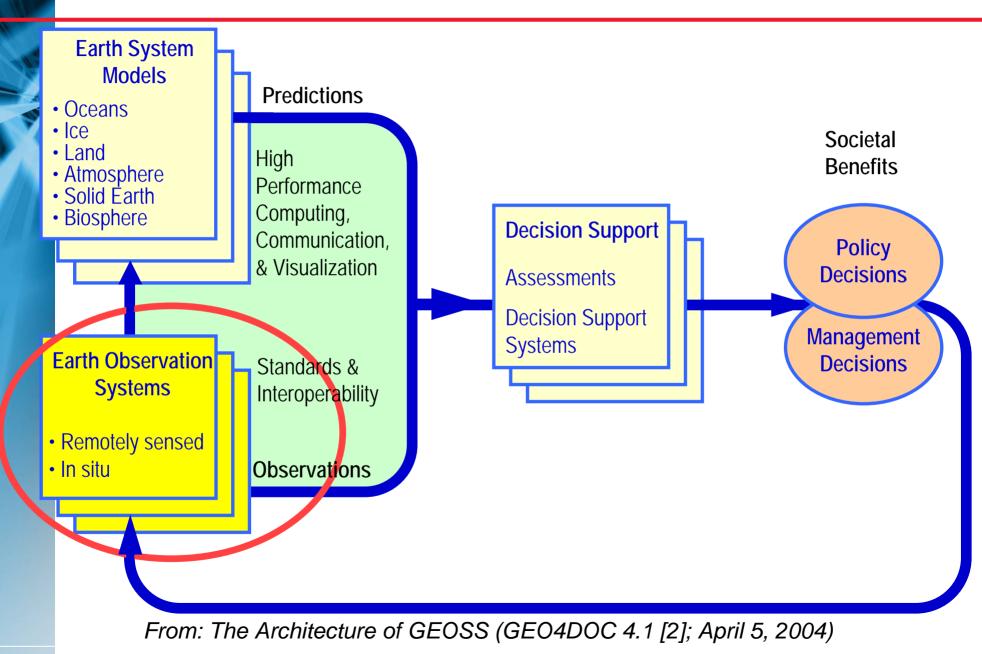


DEFINING THE FUTURE

Global Change Monitoring System

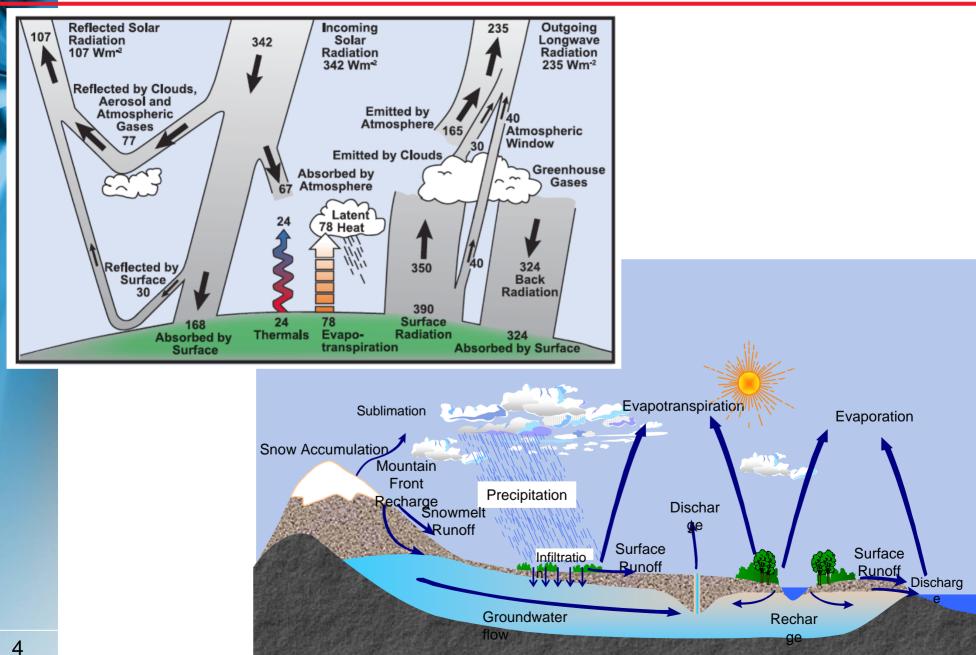

Intelligenc **Urveillance** and econnaissance Navigation Systems

September 21, 2007

Northrop Grumman Corporation

System of Systems Framework

Northrop Grumman


Framework for Future Earth Observations

- Targets Establish, evolve, and optimize a target set of observations to support the user community and society
- Operational Views Establish, evolve, and optimize operational views of an overall system to deliver the target set of observations with a time-phased view looking forward 40 years to include guidance for research for future generations of operational systems
- Architecture Evolve an Integrated Earth Observation System (IEOS) architecture developed on the principles of the Federal Enterprise Architecture
- Blueprint for Solutions Establish, evolve, and optimize blueprints for implementing the components needed for integrated approach to address applications of national priority

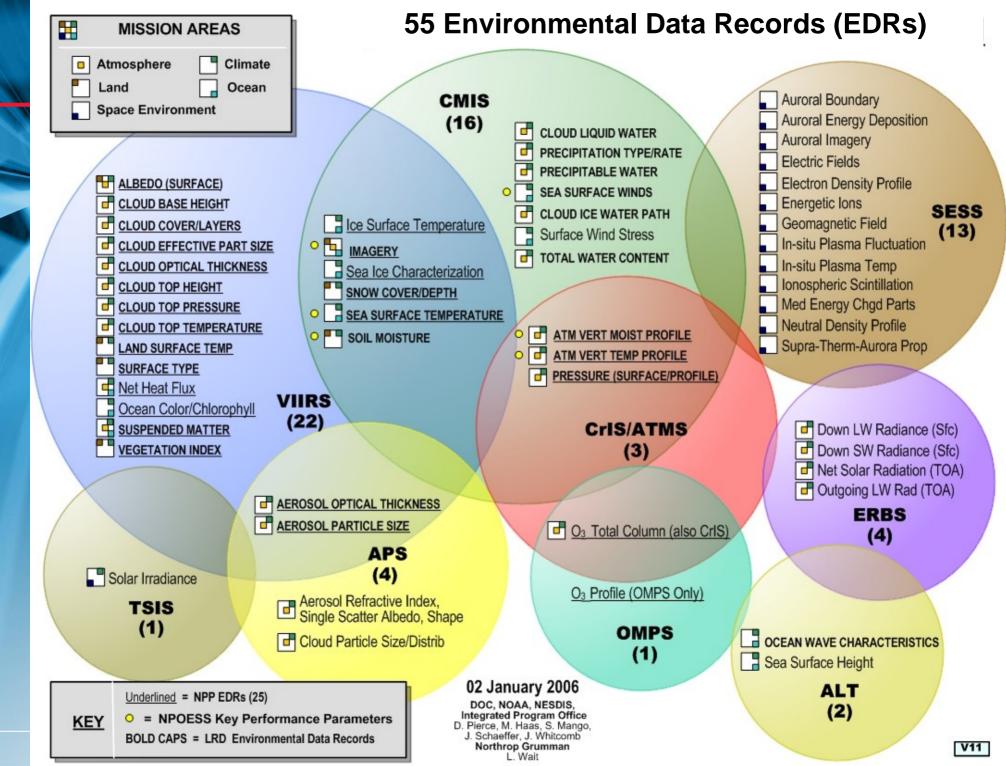
Pathway to Future Earth Observations

- Target Observables
 - 55 Environmental Data Records (EDRs)
 - 26 Essential Climate Variables (ECVs)
 - Gap Analyses
- Operations Concepts
 - Operations View
 - Whole Earth Simulator
- Evolving Architecture
 - GEOSS and IEOS Framework
 - Multi-System Configurations
- Blueprint for Solutions
 - Integrated System Solutions
 - Prospective Next Generation Monitoring/Measurement Systems

Earth Energy and Water Budget

26 GCOS Essential Climate Variables (ECV)

3.1. <u>Atmosphere</u>

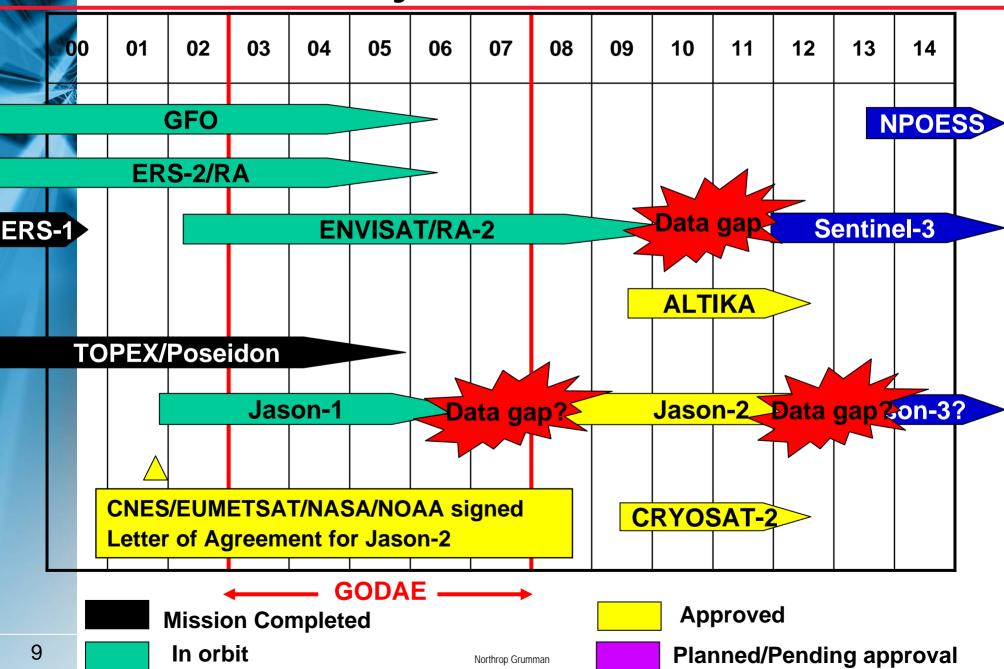

- 3.1.1. Surface Wind Speed and Direction
- 3.1.2. Upper-air Temperature
- 3.1.3. Water Vapour
- 3.1.4. Cloud properties
- 3.1.5. Precipitation
- 3.1.6. Earth Radiation Budget
- <u>3.1.7.</u> <u>Ozone</u>
- 3.1.8. <u>Atmospheric reanalysis (multiple ECVs)</u>
- <u>3.1.9.</u> <u>Aerosols</u>
- 3.1.10. Carbon Dioxide, Methane and other Greenhouse Gases
- 3.1.11. Upper-air Wind

3.2. Oceans

- <u>3.2.1.</u> <u>Sea Ice</u>
- <u>3.2.2.</u> <u>Sea Level</u>
- 3.2.3. Sea Surface Temperature
- 3.2.4. Ocean Colour
- <u>3.2.5.</u> <u>Sea State</u>
- 3.2.6. Ocean Reanalysis
- 3.2.7. Ocean Salinity

3.3. <u>Terrestrial</u>

- 3.3.1. Lakes
- 3.3.2. Glaciers and Ice Caps, and Ice Sheets
- 3.3.3. Snow Cover
- <u>3.3.4.</u> <u>Albedo</u>
- 3.3.5. Land Cover
- <u>3.3.6.</u> <u>fAPAR</u>
- <u>3.3.7.</u> LAI
- <u>3.3.8.</u> <u>Biomass</u>
- 3.3.9. Fire Disturbance
- <u>3.3.10.</u> Soil moisture



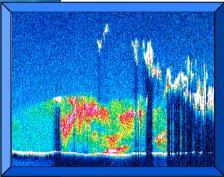
Global Essential Climate Variables out through 2050

		2010	2015	2020	2025	2030	2035	2040	2045	2050
	Solar Irradiance Total									
	Solar Irradiance Fota Solar Irradiance Spectral									
	Radiation Budget (Surface & TOA)									
Atmosphere	Ozone Column		N	POESS						
	Ozone Profile									
	Cloud Properties		N	POESS						
	Aerosol Properties									
	Land Surface/Wind Spd Direction									
Ē	Surface Air Pressure		N	POESS					+++	
Ā	Surface Air Temp & Water Vapor			POESS						
	Upper Air Wind Speed/Direction									
	Upper Air Temperature			POESS						
	Upper Air Water Vapor			POESS						
	Atmospheric CH4				++++					
	Atmospheric CO2									
	Precipitation			IPOESS GP						
	Sea Surface Salinity									
0 C	Ocean Wind and Wind Stress								++++	
1	Surface Level (Sea, Lakes, Sea State)									
JS /	Surface Temp. (Sea, Land, Lakes, Fire)			IPOESS						
Ū	Ocean Color		N	IPOESS						
Oceans	Sea Ice		I\	IPOESS						
0	Ice Area (glaciers, sheets)									
lerrestri	Ice Elevation (caps, sheets)									
	Snow Cover (area)		N	IPOESS						
	Land Cover type/use		N	IPOESS						
	Vegetation Properties (LAI, (FAPAR,			IPOESS						
	albedo, burnt area) Fire Disturbance (active fire area,									
	radiated power)									2050
		2010	2015	2020	2025	2030	2035	2040	2045	2000
	Generally considered adequate for developing CDR's			known, applicatio cess-dependent		Generally consider for developing Cl			o viable observa ailable	tions
	tor developing orbits	uep	endent, or act	cess dependent		for acverophilg Of	5105	av	anabie	

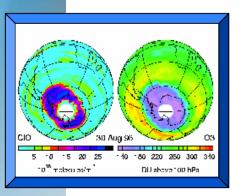
- Precipitation (TRMM GPM)
- Terrestrial Variables (Landsat 5,7 LDCM)
- Altimetry (JASON 2 JASON 3)
- Solar Irradiance (SORCE NPOESS)
- Space Weather (ACE SESS)
- Climate Variables (EOS NPP NPOESS)
- Unprecedented Environmental Variables

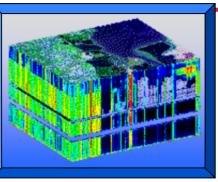
"Known Altimetry Missions"

Decadal Survey Recommendation to NASA


Timeframe 2	2010 – 2013, Missions listed by cost			
CLARREO (NASA portion)	Solar radiation: spectrally resolved forcing and response of the climate system	LEO, Precessing	Absolute, spectrally- resolved interferometer	\$200 M
SMAP	Soil moisture and freeze/thaw for weather and water cycle processes	LEO, SSO	L-band radar L-band radiometer	\$300 M
ICESat-II	Ice sheet height changes for climate change diagnosis	LEO, Non- SSO	Laser altimeter	\$300 M
DESDynI	Surface and ice sheet deformation for understanding natural hazards and climate; vegetation structure for ecosystem health	LEO, SSO	L-band InSAR Laser altimeter	\$700 M
Timeframe:	2013 – 2016, Missions listed by cost			
HyspIRI Land surface composition for agriculture and mineral characterization; vegetation types for ecosystem health		LEO, SSO	Hyperspectral spectrometer	\$300 M
ASCENDS	Day/night, all-latitude, all-season CO ₂ column integrals for climate emissions	LEO, SSO	Multifrequency laser	\$400 M
SWOT	Ocean, lake, and river water levels for ocean and inland water dynamics	LEO, SSO	Ka-band wide swath radar C-band radar	\$450 M
GEO- CAPE	Atmospheric gas columns for air quality forecasts; ocean color for coastal ecosystem health and climate emissions	GEO	High and low spatial resolution hyperspectral imagers	\$550 M
ACE	Aerosol and cloud profiles for climate and water cycle; ocean color for open ocean biogeochemistry	LEO, SSO	Backscatter lidar Multiangle polarimeter Doppler radar	\$800 M
Timeframe:	2016 -2020, Missions listed by cost			
LIST	Land surface topography for landslide hazards and water runoff	LEO, SSO	Laser altimeter	\$300 M
PATH	High frequency, all-weather temperature and humidity soundings for weather forecasting and SST ^a	GEO	MW array spectrometer	\$450 M
GRACE-II	High temporal resolution gravity fields for tracking large-scale water movement	LEO, SSO	Microwave or laser ranging system	\$450 M
SCLP	Snow accumulation for fresh water availability	LEO, SSO	Ku and X-band radars K and Ka-band radiometers	\$500 M
GACM	Ozone and related gases for intercontinental air quality and stratospheric ozone layer prediction	LEO, SSO	UV spectrometer IR spectrometer Microwave limb sounder	\$600 M
3D-Winds (Demo)	Tropospheric winds for weather forecasting and pollution transport	LEO, SSO	Doppler lidar	\$650 M

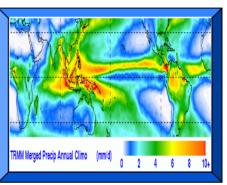
^a Cloud-independent, high temporal resolution, lower accuracy SST to complement, not replace, global operational high accuracy SST measurement. Northrop Grumman


Remote Sensing Technologies

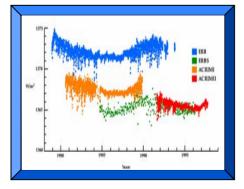

Multispectral

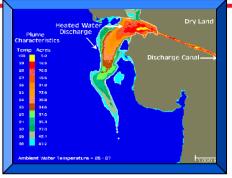
Atmospheric LIDAR

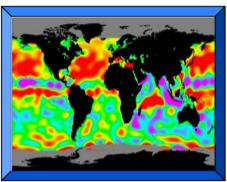
Limb Sounding


Hyperspectral

Surface LIDAR


Laser Ranging


RADAR / SAR


Passive Microwave

Irradiance/Photometry

Thermal

RADAR Altimetry

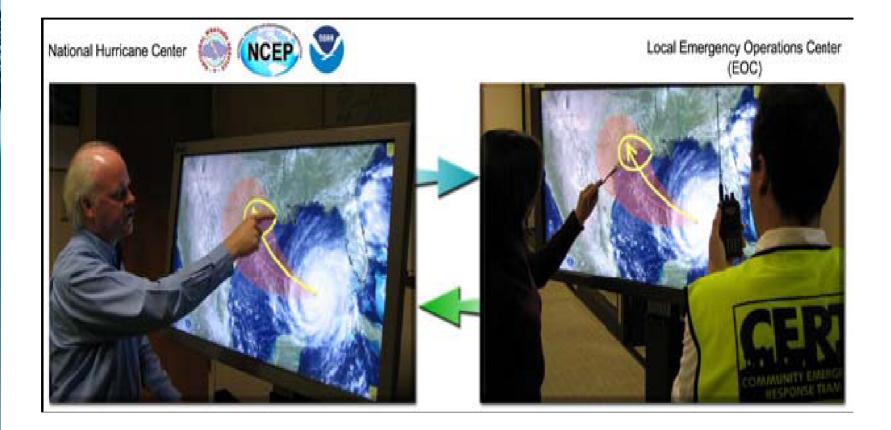
Scatterometry

Northrop Grumman

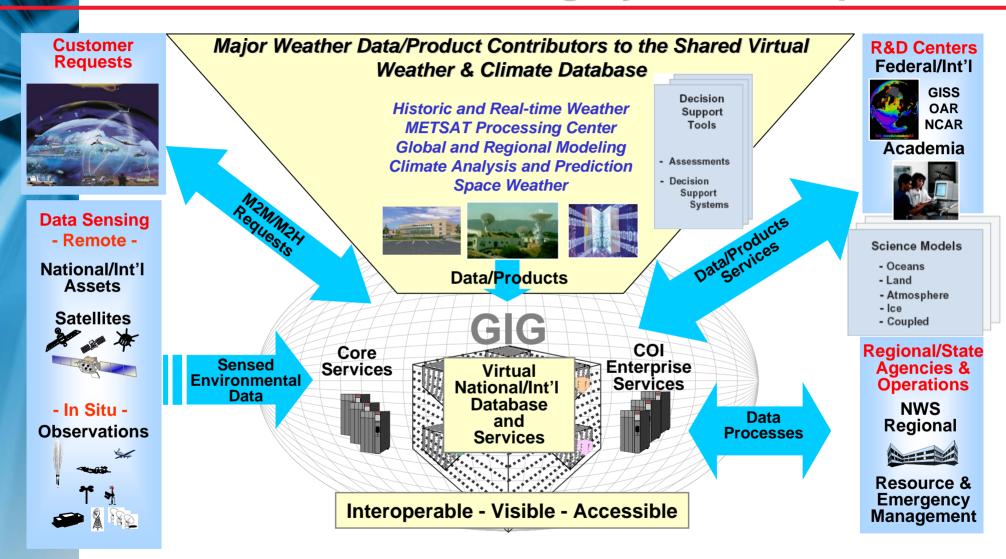
Pathway to Future Earth Observations

- Target Observables
 - 55 Environmental Data Records (EDRs)
 - 26 Essential Climate Variables (ECVs)
 - Gap Analyses
- Operations Concepts
 - Operations View
 - Whole Earth Simulator
- Evolving Architecture
 - GEOSS and IEOS Framework
 - Multi-System Configurations
- Blueprint for Solutions
 - Integrated System Solutions
 - Prospective Next Generation Monitoring/Measurement Systems

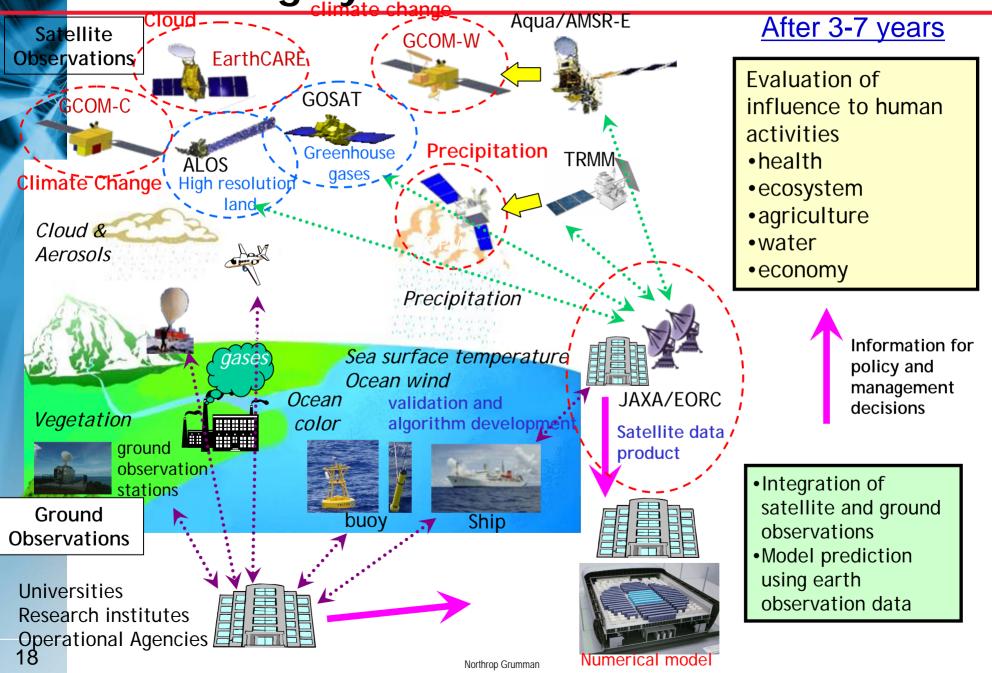
Operating Principles


- Mission Focused Continuously evolve existing and planned Earth observation systems to be optimally useful
- User Oriented Optimize use of heritage capacity and continuous innovation in response to meeting civilian and economic needs
- Science and Technology Enabled Apply research, technology, and credentialed science as the basis of assuring optimal capacity to place the right capabilities in the right place at the right time
- Innovation Driven Maintain commitment to the innovation and discovery process to continue to provide the advantages of Earth observation systems and their applications to our national interests

20 MegaPixel Workstations

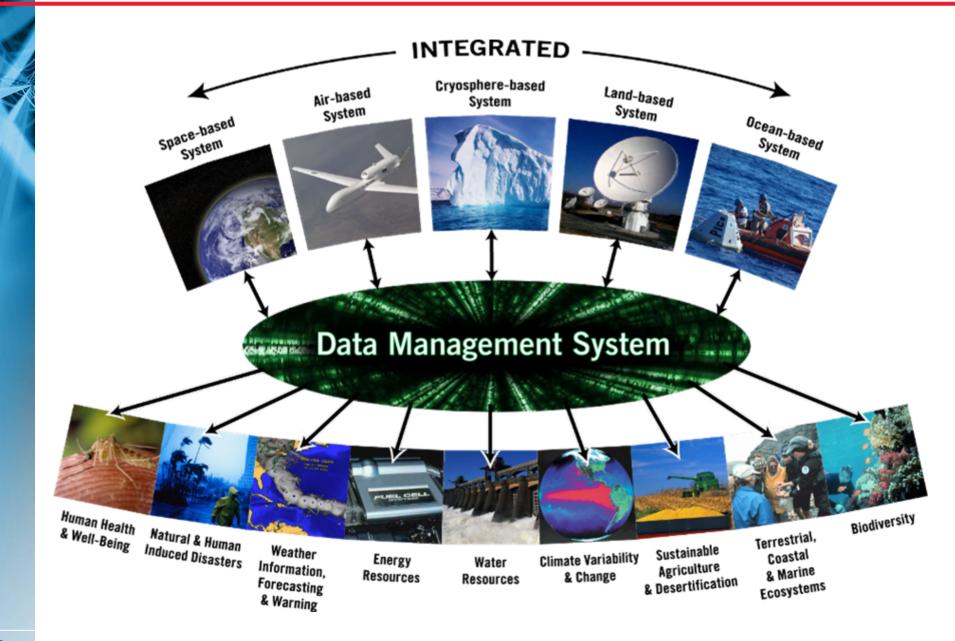


Collaborative Engineering Tools


- Enables integration of observations and decision support tools
- Enables scientists and decision makers to collaborate on common views
- TouchTable approach can be distributed around country and world

Operations View Example - U.S. Global Environmental Monitoring System Components

Net-centric architecture where observed and forecast weather and climate are available in standardized formats enabling machine-to-machine (M2M) and human-to-machine interfaces


Proposed JAXA Earth Environmental Monitoring System

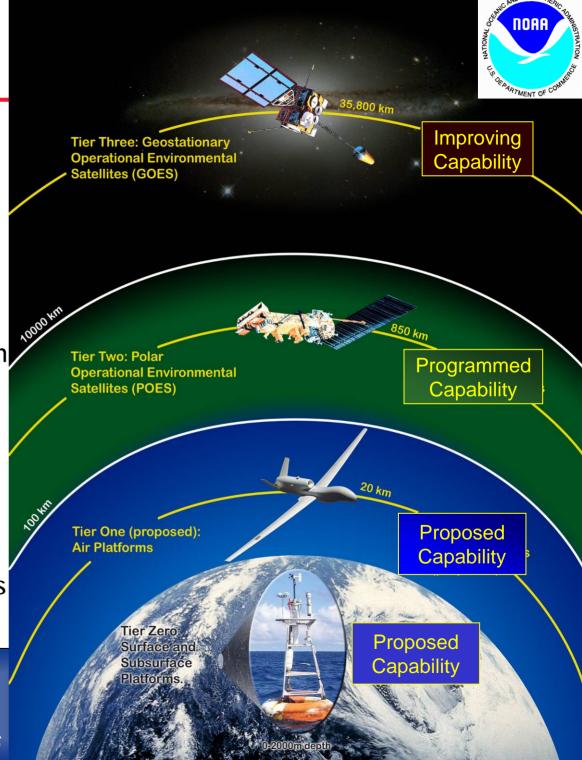
Pathway to Future Earth Observations

- Target Observables
 - 55 Environmental Data Records (EDRs)
 - 26 Essential Climate Variables (ECVs)
 - Gap Analyses
- Operations Concepts
 - Operations View
 - Whole Earth Simulator
- Evolving Architecture
 - GEOSS and IEOS Framework
 - Multi-System Configurations
- Blueprint for Solutions
 - Integrated System Solutions
 - Prospective Next Generation Monitoring/Measurement Systems

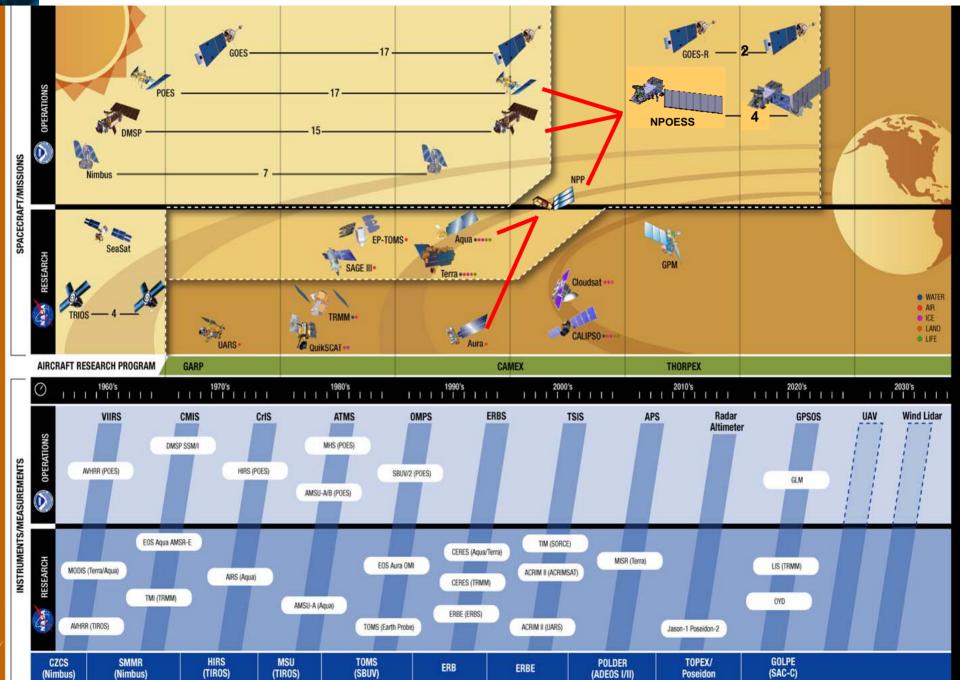
GEOSS Construct

GEOSS Scope

- 10-							
	OBSERVATIONS	DATA	INFORMATIO	<u>DECISI</u>	DECISION SUPPORT		
Value Chain	Remote	 Processing 	 Interpret 	Actio	 Actionable Information 		
	 In Situ 	 Archive 	 Predict 	• C3, N	 C3, Networked 		
	-	Metadata	 Tailor 	• Indivi	dual		
Collection	SUBSURFACE	SURFACE	ATMOSPHERE	<u>SUBORBITAL</u>	<u>SPACE</u>		
Regimes	Undersea	 Hydrology 	 Boundary 	• 65kft to 325kft	 Solar Wind 		
	Land	 Biology 	 Troposphere 		 Magnetosphere 		
	Chemistry	 Vegetation 	 Stratosphere 		Plasma		
Platforms	Platforms • Buoys • Seismic		AirborneBalloon	AirborneBalloons	• LEO • MEO		
	• UAV's	 Stations 	 Rockets 		• GEO		
Models	WORLDWIDE	REGIOI	• UAVs NAL STA	RING SIT	E		
Synergy	INTERDISCIPLIN	IARY INTERAG	BENCY INSTITU	JTIONS INTER	RNATIONAL		
	REQUIREMENTS	ACQUISITION	DEVELOPMENT	OPERATIONS	REPLACEMENT		
Life Cycle							
	Near Term	 Stovepipes 	Users	 Mission Op 	 Next Gen 		
	 Long Term 	 System-of- Systems 	 Multi-Use 	 Prediction 	 Integrated 		
		- , • • • • • •		• Alarm			
21				/			


Northrop Grumman

Integrated Global Weather and Climate Observing System


- Global Observing System
 - ✓ Supports real-time weather data collection
 - Supports scientific prediction of long-term climate change
 - ✓ GH provides In-situ ground truth for new space sensors
 - ✓ Routine Systematic Reporting
 - ✓ Global coverage over Oceans

Strategic triad for global observing: *Satellites, UAVs & Buoys*

22

U.S. Weather System

WEATHER R20 ESEARCH TO OPERATIONS

NASA

NPOESS Mission

- National, operational, polar-orbiting environmental monitoring capability
- Converges DoD & NOAA weather satellite programs
- Incorporates new technology from NASA programs
- International cooperation with European MetOp satellite

NPOESS Benefits

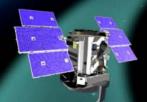
- Critical input to weather forecast models
 - NPOESS will improve accuracy and expedite data products
- Greatly improved direct broadcast data to users worldwide
- Science-quality data to all users including research scientists and continuity of climate data records

NPOESS


MetOp

09:30

NPOESS 17:30


Equatorial Crossing Local Times

NPOESS Mission Configuration

25

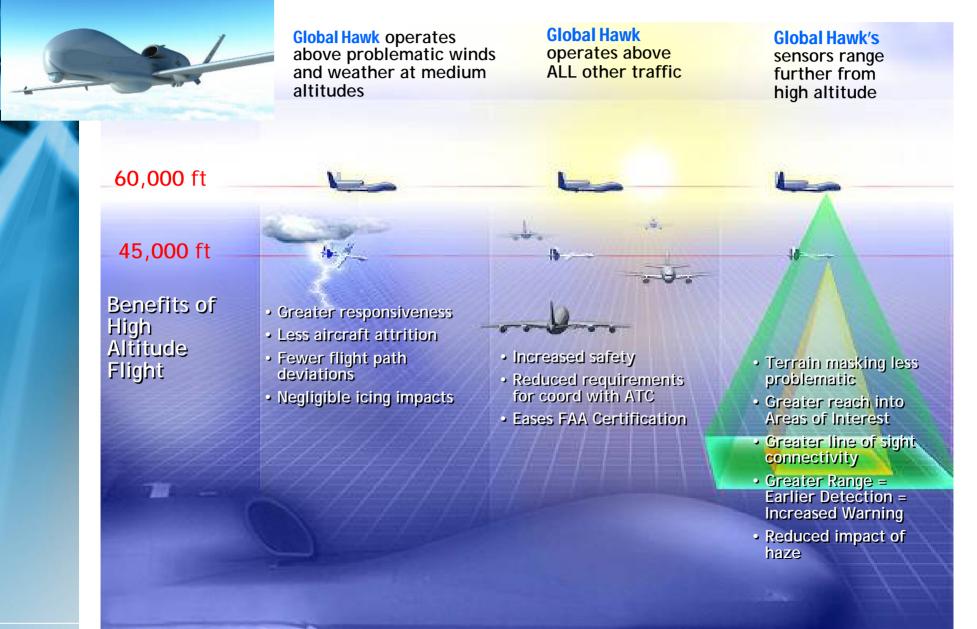
NASA Research Spacecraft – 2006 and beyond

CloudSat


Glory

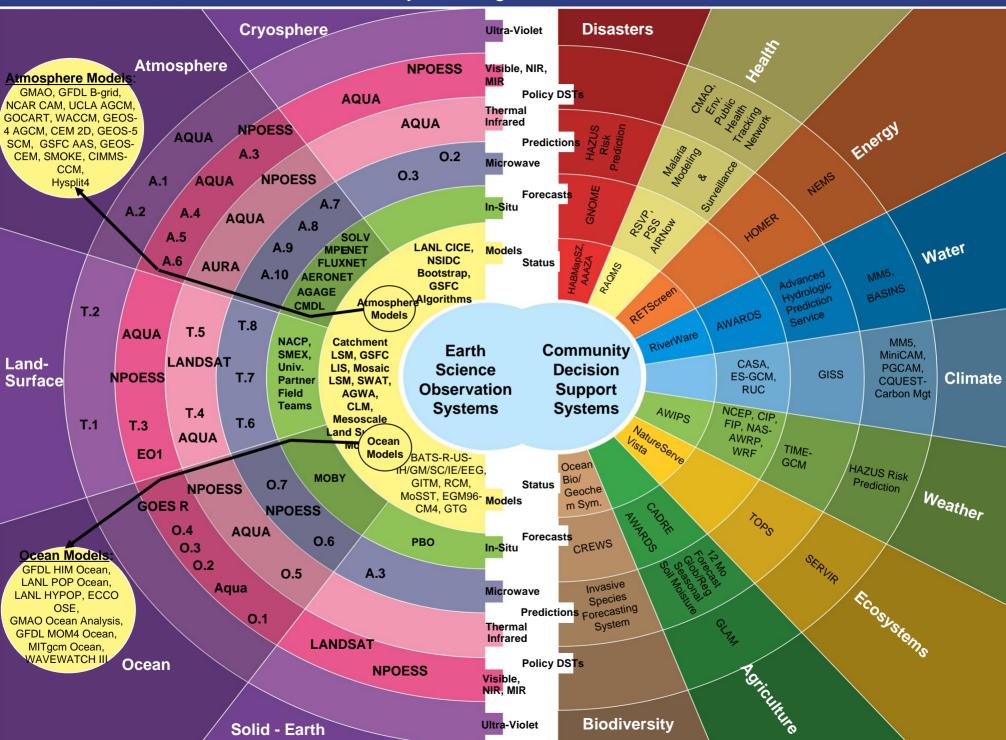
NPP

Aquarius



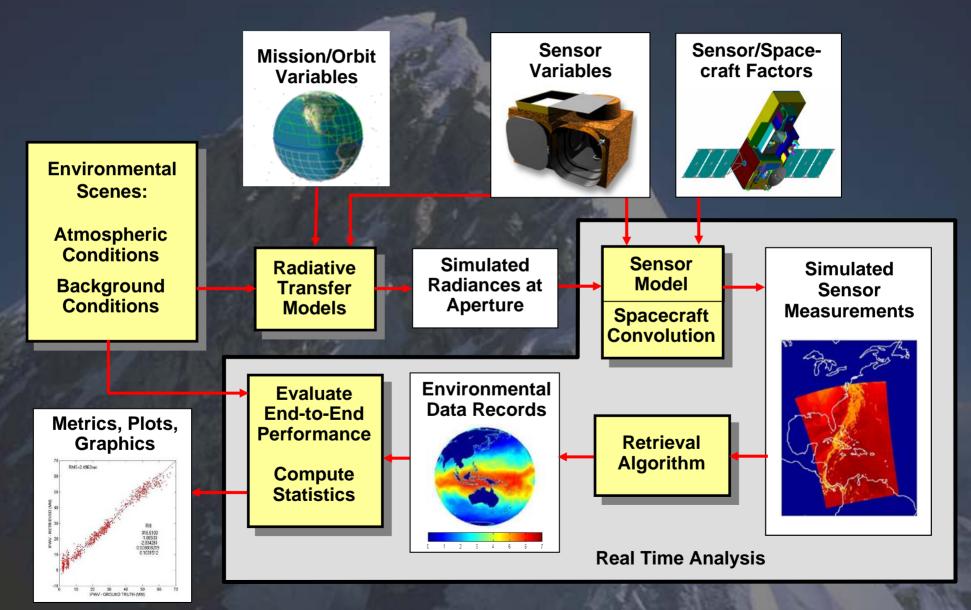
GPM

GH for Earth Environment and Climate



Calibration/Validation for Global System

Global Hawk Instruments	to Cal/Val GOES R ABI
GOES-R ABI range (μm) (resolution 0.64 μm vis, >2 μm vis/NIR)	NAST-I range (µm) (resolution 1.4 nm)
0.45-0.49	
0.59-0.69	
0.846-0.885	
1.371-1.386	
1.58-1.64	
2.225-2.275	
3.80-4.00	3.7-5.05
5.77-6.6	
6.75-7.15	5.0-7.775
7.24-7.44	
8.3-8.7	
9.42-9.8	
10.1-10.6	
10.8-11.6	7.69-15.5
11.8-12.8	7.09-15.5
13.0-13.6	


Architecture for IEOS Climate Variability & Change

DRAFT- WORKING DOCUMENT 12/19/06

Analysis of Alternatives

Flexible Set of Tools Supports Multiple Sensors/Missions

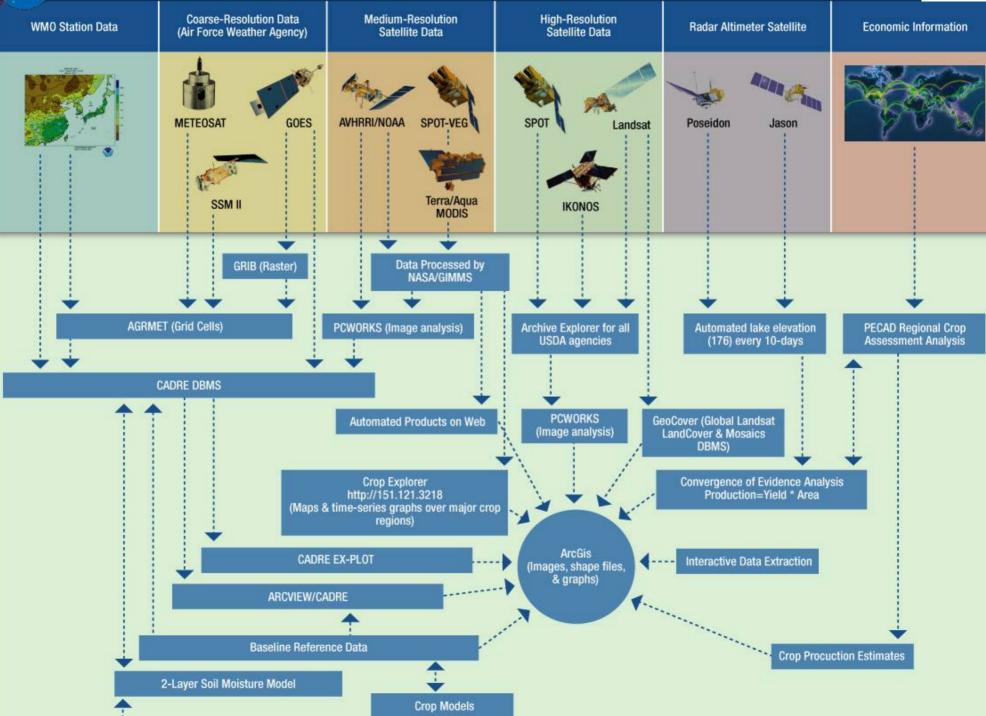
Recommendation: Establish National Board on Earth Observations

- Inclusive: Embrace cross-community, national perspectives on a target vision and on capabilities and capacities to achieve that target vision
- Responsive: Produce value-added targets (measurements, architectures, solutions) to enable timely decisions on investments
- Objective: Act as an "honest broker" with broad, analytically based perspectives
- Accountable: Serve the needs of the nation by taking into account the needs of the agencies, state, regional, local, tribal, and private sectors using OMB's Program Assessment Rating Tool (PART)
- Effective: Capitalize on agency & private sector activities and expertise; including use of existing investments in Earth observations that can be leveraged to meet additional target observations

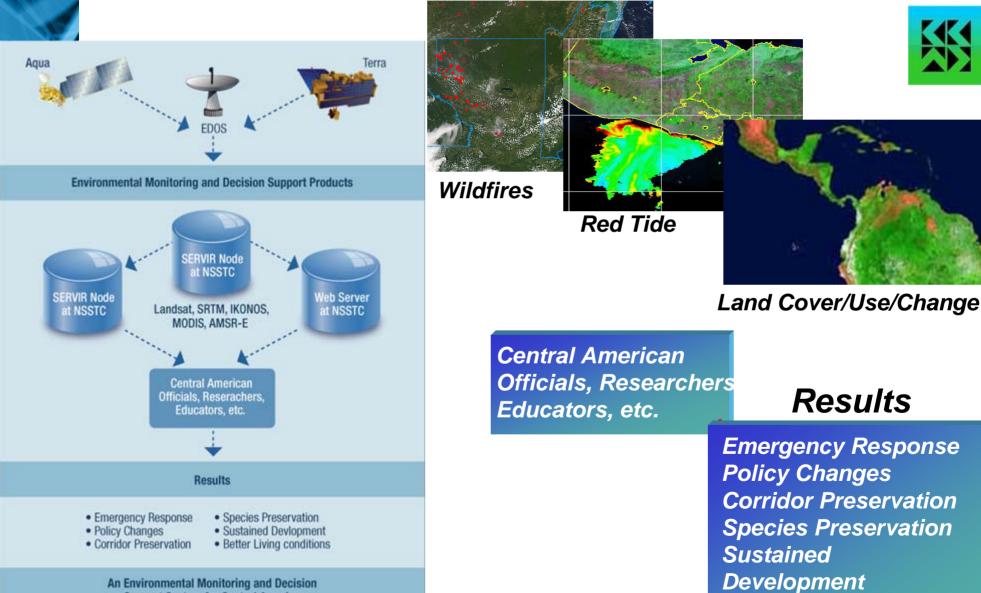
Pathway to Future Earth Observations

- Target Observables
 - 55 Environmental Data Records (EDRs)
 - 26 Essential Climate Variables (ECVs)
 - Gap Analyses
- Operations Concepts
 - Operations View
 - Whole Earth Simulator
- Evolving Architecture
 - GEOSS and IEOS Framework
 - Multi-System Configurations
- Blueprint for Solutions
 - Integrated System Solutions
 - Prospective Next Generation Monitoring/Measurement Systems

Essential Decisions are enabled by Essential Data



National Application	Partner Organizations	Decision-Support Systems
Agricultural Efficiency	USDA,NOAA	CADRE—Crop Assessment Data Retrieval and Evaluation (USDA)
Air Quality	EPA,NOAA,USDA	CMAQ—Community Multiscale Air Quality Modeling System AIRNow AQI—Air Quality Index
Aviation	DOT/FAA,NOAA	NAS-AWRP—National Air Space-Aviation Weather Research Program
Carbon Management	USDA,DOE,NOAA	CQUEST—Support to the Energy Act of 1992, Section 1605b
Coastal Management	NOAA,EPA,NRL	HAB—Harmful Algal Bloom Bulletin/Mapping System CREWS—Coral Reef Early Warning System
Disaster Management	DHS/FEMA,NOAA,USGS,USFS	AWIPS—Advanced Weather Interactive Processing System HAZUS-MH—Hazards U.S.—Multi-Hazards
Ecological Forecasting	USAID,NOAA,NPS,CCAD,USGS	SERVIR—Regional Visualization and Monitoring System
Energy Management	DOE,UNEP,NOAA,NRC	RETScreen—Energy Diversification Research Laboratory (CEDRL) NEMS—National Energy Modeling System
Homeland Security	DHS,USGS,NOAA,NGA,DOD	IOF—Integrated Operations Facility IMAAC—Interagency Modeling and Atmospheric Assessment Center
Invasive Species	USGS,USDA,NOAA	ISFS—Invasive Species Forecasting System
Public Health	NIH,CDC,DOD,EPA	PSS—Plague Surveillance System EPHTN—Environmental Public Health Tracking Network MMS—Malaria Monitoring and Surveillance RSVP—Rapid Syndrome Validation Project
Water Management	EPA,USDA,USGS,BoR	RiverWARE—Bureau of Reclamation decision-support Tool AWARDS—Agricultural Water Resources and decision-support Tool BASINS—Better Assessment Science Integrating Point and Nonpoint Source


NASA

PECAD-Global Data Sources for Estimating Crop Production

SIAM-SERVIR with CCAD

An Environmental Monitoring and Decision Support System for Central America

Better Living

Next Generation Systems

Optimized to

- cover essential variables and coverage
- be interoperable with Earth Science System models
- be interoperable with decision support tools of national and global priority
- effectively transition from research to operations

Optimized for

- sustainability and operational use
- adaptability and flexibility with evolving knowledge of science and technology
- cost, schedule, performance and risk mitigation
- national collaboration
- international collaboration

Over 6.5 billion people to serve....

