

Open Geospatial Consortium Inc.

Date: 2007-08-10

Reference number of this OGC
®
 project document: OGC 07-097

Version: 2 (Rev 2.1)

Category: OGC
®
 Best Practice

Editor: Thomas Usländer (Ed.)

Reference Model for the ORCHESTRA Architecture
(RM-OA) V2 (Rev 2.1)

Copyright notice

See Copyright statement on next page

To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. It is distributed for review and comment. It is subject

to change without notice and may not be referred to as an OGC Standard.

Recipients of this document are invited to submit, with their comments, notification of any

relevant patent rights of which they are aware and to provide supporting documentation.

Document type: Abstract Specification

Document subtype: OGC
®
 Best Practice

Document stage: Approved

Document language: English

http://www.opengeospatial.org/legal/

Copyright © 2007, ORCHESTRA Consortium

The ORCHESTRA Consortium (http://www.eu-orchestra.org/contact.shtml) grants third parties the
right to use and distribute all or parts of this document, provided that the ORCHESTRA project and
the document are properly referenced.

THIS DOCUMENT IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS DOCUMENT, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Preamble to the "Reference Model for the Orchestra
Architecture (RM-OA)"

This document specifies the Reference Model for the ORCHESTRA Architecture (RM-OA). It is an extension
of the OGC Reference Model and contains a specification framework for the design of geospatial service-
oriented architectures and service networks. The RM-OA comprises the generic aspects of service-oriented
architectures, i.e., those aspects that are independent of the risk management domain and thus applicable to
other application domains. The ORCHESTRA Architecture is a platform-neutral (abstract) specification of the
informational and functional aspects of service networks taking into account and evolving out of architectural
standards and service specifications of ISO, OGC, W3C and OASIS. The target audience of the RM-OA com-
prise system architects, information modellers and system developers.

The present revision 2.1 of the RM-OA is an editorial update of revision 2.0 (OGC Discussion Paper 07-024).
It is restricted to the core document of the RM-OA. The major changes comprise:

- refactoring of some basic service descriptions into interfaces according to the ORCHESTRA meta-
model for services

- update of the specification of the Engineering Viewpoint
- update of the service interaction patterns, e.g. semantic catalogue and a new pattern for Geo Rights

Management
- removal of information that is specific to the management of the ORCHESTRA project

The UML specification of the ORCHESTRA Meta-model for information and services is an integral part of this
document.

For the ORCHESTRA abstract service specifications see http://www.eu-orchestra.org .

http://www.eu-orchestra.org/contact.shtml
http://www.eu-orchestra.org/

FP6-511678

ORCHESTRA

Open Architecture and Spatial Data Infrastructure for
Risk Management

Integrated Project

Priority 2.3.2.9 Improving Risk Management

Reference Model for the ORCHESTRA Architecture

(RM-OA)

Deliverable D3.2.3 RM-OA Version 2

Date: 2007-08-10

Revision: 2.1

Start date of the ORCHESTRA project: 2004-09-01

Duration of the ORCHESTRA project: 3 years

Organisation name of lead contractor for this deliverable: Fraunhofer IITB

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

2/180

Document Control Page

Title Reference Model for the ORCHESTRA Architecture (RM-OA)

OGC 07-097

ORCHESTRA Deliverable D3.2.3: RM-OA Version 2 (Rev. 2.1)

Creator Thomas Usländer, Fraunhofer IITB (Ed.)

e-mail: thomas.uslaender@iitb.fraunhofer.de

Subject ORCHESTRA Architecture Design

Description This document specifies the Reference Model for the ORCHESTRA
Architecture (RM-OA). It contains a platform-neutral specification of
the ORCHESTRA Architecture and a specification framework for
the design of ORCHESTRA-compliant service networks across all
viewpoints.

Publisher ORCHESTRA consortium

Contributor Bernard, Lars Joint Research Centre - IES

Bügel, Ulrich Fraunhofer IITB

Corabœuf, Damien BRGM

Cooper, Michael ETH Zürich

Denzer, Ralf Environmental Informatics Group

Dihé, Pascal Environmental Informatics Group

Ecker, Severin ARC Seibersdorf Research

Fischer, Julian Environmental Informatics Group

Friis-Christensen, Anders Joint Research Centre - IES

Frysinger, Steve Environmental Informatics Group

Goodwin, John Ordnance Survey

Güttler, Reiner Environmental Informatics Group

Havlik, Denis ARC Seibersdorf Research

Hilbring, Désirée Fraunhofer IITB

Hofmann, Thomas Environmental Informatics Group

Holt, Ian Ordnance Survey

Humer, Heinrich ARC Seibersdorf Research

Iosifescu Enescu, Ionut ETH Zürich

Kunz, Wolfgang Environmental Informatics Group

Kutschera, Peter ARC Seibersdorf Research

Lorenzo, José Atos Origin Spain

Lutz, Michael Joint Research Centre - IES

Ma, Wenjie Environmental Informatics Group

Pichler, Guenther Open Geospatial Consortium Europe

Portele, Clemens Open Geospatial Consortium Europe

Robida, Francois BRGM

Schimak, Gerald ARC Seibersdorf Research

Schlobinski, Sascha Environmental Informatics Group

Schmieder, Martin Fraunhofer IITB

Serrano, Jean-Jacques BRGM

Sykora, Peter ETH Zürich

Usländer, Thomas Fraunhofer IITB

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

3/180

Date 2007-08-10

Type Text

Format application/msword

Identifier ORCHESTRA Portal: SP3 / SP3 Quality Assurance /
09: D3.2.3 / 06: D3.2.3 RM-OA V2 (2.1) – published version

Source Not applicable

Language en-GB.

Relation none

Coverage Not applicable

Rights © 2007 ORCHESTRA Consortium

The ORCHESTRA project is an Integrated Project (FP6-511678)
funded under the FP6 (Sixth Framework Programme) of the Euro-
pean Commission in the research programme Information Society
Technologies (IST).

The ORCHESTRA Consortium (http://www.eu-
orchestra.org/contact.shtml) grants third parties the right to use and
distribute all or parts of this document, provided that the
ORCHESTRA project and the document are properly referenced.

Deliverable number D3.2.3

Audience public

 restricted

 internal

http://www.eu-orchestra.org/contact.shtml
http://www.eu-orchestra.org/contact.shtml

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

4/180

Revision History

Revision Date Sections
Changed

Description

1.10 2005-10-14 all OGC Discussion Paper 05-107

2.0 2007-07-10 all OGC Discussion Paper 07-024

2.1 2007-08-10 all OGC Candidate Best Practice 07-097

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

5/180

Table of Contents

1 Executive Summary ... 13

2 Document Structure and Links ... 14

2.1 Link to the RM-OA Annexes and ORCHESTRA Deliverables .. 14

3 Introduction ... 15

3.1 Scope .. 15

3.2 Intended Audience .. 15

3.3 References .. 16

3.3.1 Normative references .. 16

3.3.2 Documents and Books ... 16

4 Glossary ... 18

4.1 Abbreviations .. 18

4.2 Terms and definitions .. 19

4.3 General Remark .. 29

5 Process of the ORCHESTRA Architectural Design ... 30

5.1 Overview ... 30

5.2 Application of the Reference Model of Open Distributed Processing (RM-ODP) 31

5.2.1 RM-ODP Overview .. 31

5.2.2 Mapping of RM-ODP to the ORCHESTRA Architectural Design Process 32

5.3 The ORCHESTRA Reference Model .. 34

5.3.1 The ORCHESTRA Architecture ... 34

5.3.2 The ORCHESTRA Implementation Specification .. 35

5.3.3 The ORCHESTRA Service Network and ORCHESTRA Applications 35

5.3.4 The ORCHESTRA Application Architecture .. 37

5.3.5 The ORCHESTRA Application Implementation Specification ... 37

5.4 The OpenGIS Service Architecture ... 38

5.4.1 Platform-neutral and Platform-specific Service Specification .. 38

5.4.2 Service Taxonomy ... 39

5.4.3 ORCHESTRA as Simple Service Architecture according to ISO 19119:2005 39

6 Enterprise Viewpoint .. 41

6.1 Overview ... 41

6.2 Business Perspective .. 41

6.2.1 Contribution to the ORCHESTRA Goals ... 41

6.2.2 Collaboration with European Initiatives and Projects .. 41

6.2.3 Evolution of the ORCHESTRA Architecture .. 45

6.3 Architectural Requirements for the OSN Design .. 45

6.3.1 Rigorous Definition and Use of Concepts and Standards ... 45

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

6/180

6.3.2 Loosely Coupled Components ... 45

6.3.3 Technology Independence .. 46

6.3.4 Evolutionary Development - Design for Change ... 46

6.3.5 Component Architecture Independence .. 46

6.3.6 Generic Infrastructure .. 46

6.3.7 Self-describing Components .. 46

7 Design Decisions of the ORCHESTRA Architecture ... 47

7.1 Functional Domains of the ORCHESTRA Service Network ... 47

7.2 The ORCHESTRA Meta-model Approach .. 48

7.2.1 Overview .. 48

7.2.2 Major Characteristics of the ORCHESTRA Information Meta-model .. 49

7.2.3 Major Characteristics of the ORCHESTRA Service Meta-model .. 49

7.3 Resources in an OSN and their identification ... 51

7.3.1 Identification of OSIs .. 51

7.3.2 Identification of Features ... 52

7.4 Meta-information ... 52

7.5 User Management, Authentication and Authorisation .. 53

7.5.1 Overview .. 53

7.5.2 User Management based on Subjects, Groups and Principals ... 53

7.5.3 Authentication .. 54

7.5.4 Authorisation .. 55

7.5.5 Session Information ... 56

7.6 Approach to Integration of Source Systems ... 56

7.7 Service Interaction Modes... 57

7.8 Interoperability Between Different Service Platforms ... 57

8 Information Viewpoint ... 59

8.1 Overview ... 59

8.2 The ORCHESTRA Definition of a Feature .. 59

8.3 Framework for ORCHESTRA Information Models ... 60

8.4 Framework for ORCHESTRA Meta-Information Models .. 62

8.4.1 Overview .. 62

8.4.2 Description of Purposes ... 63

8.4.3 Framework Specification ... 68

8.4.4 OMM Extensions for Meta-information Association Types .. 69

8.5 Inclusion of the Source System Level ... 70

8.5.1 Extension of the Information Model Framework .. 70

8.5.2 Scenario for Data Interchange related to ISO 19109 .. 71

8.6 Inclusion of the Semantic Level .. 72

8.6.1 Ontologies .. 72

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

7/180

8.6.2 Extension of the Information Model Framework for Domain Ontologies 74

8.7 The ORCHESTRA Meta-Model for Information .. 75

8.7.1 Overview .. 75

8.7.2 Data Types ... 76

8.7.3 OMM Basic Part ... 78

8.7.4 OMM Attribute Types ... 79

8.7.5 OMM Extensions to Feature Types ... 80

8.8 Rules for ORCHESTRA Application Schemas ... 83

8.8.1 General Approach .. 83

8.8.2 Rules for the Identification of an OAS ... 83

8.8.3 Rules for the Documentation of an OAS ... 84

8.8.4 Rule for the Integration of an OAS and other Schemas .. 84

8.8.5 Rules for the Usage of Types in an OAS ... 84

8.8.6 Rules for the Usage of Stereotypes in an OAS ... 85

8.8.7 Rules for the Specification of an OAS ... 85

8.8.8 Rules for Adding Information to a Standard Schema .. 87

8.8.9 Rules for restricted Use of Standard Schemas ... 87

8.8.10 Rules for Adding Information to an OAS ... 87

8.8.11 Rules for Thematic Attributes .. 88

8.8.12 Rules for Temporal Attributes .. 88

8.8.13 Rules for Spatial Attributes .. 88

8.8.14 Rules for Spatial Referencing using Geographic Identifiers .. 88

8.8.15 Rules for Information Types extending the OMM .. 89

8.9 A Simple Example ... 90

9 Service Viewpoint ... 91

9.1 Overview ... 91

9.2 The ORCHESTRA Meta-Model for Services .. 91

9.2.1 Overview .. 91

9.2.2 Service Types .. 93

9.2.3 Structure of the ORCHESTRA Service Specification Process .. 94

9.2.4 Interface Types .. 97

9.2.5 Rules for ORCHESTRA Services .. 100

9.2.6 Rules for the Specification of Interface Types ... 102

9.2.7 Rules for the Specification of Operation Types ... 102

9.2.8 Rules for the Specification of Parameter Types .. 103

9.2.9 Rules for the Service Mapping to a given Platform ... 104

9.2.10 Rules for Platform Specifications ... 106

9.2.11 Rules for Implementation Specifications of ORCHESTRA Services 106

9.3 Functional Classification of ORCHESTRA Services ... 107

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

8/180

9.3.1 Overview .. 107

9.3.2 OA Services ... 107

9.3.3 OT Services ... 109

9.3.4 Human Interaction Components .. 110

9.4 Relationship of the ORCHESTRA Service Types to INSPIRE ... 111

9.5 Service and Interface Description Framework .. 112

9.6 Basic Interface Descriptions ... 113

9.6.1 Service Capabilities Interface .. 113

9.6.2 Synchronous Interaction Interface ... 113

9.6.3 Asynchronous Interaction Interface ... 114

9.6.4 Transaction Interface ... 115

9.6.5 Knowledge Base Interface ... 116

9.7 OA Info-Structure Service Descriptions .. 118

9.7.1 Feature Access Service ... 118

9.7.2 Map and Diagram Service ... 120

9.7.3 Document Access Service ... 122

9.7.4 Sensor Access Service .. 123

9.7.5 Catalogue Service.. 125

9.7.6 Name Service .. 128

9.7.7 User Management Service .. 129

9.7.8 Authorisation Service ... 130

9.7.9 Authentication Service ... 132

9.7.10 Service Monitoring Service .. 134

9.8 OA Support Service Descriptions ... 135

9.8.1 Coordinate Operation Service ... 135

9.8.2 Gazetteer Service .. 136

9.8.3 Annotation Service ... 137

9.8.4 Format Conversion Service ... 139

9.8.5 Schema Mapping Service .. 140

9.8.6 Ontology Access Service ... 142

9.8.7 Thesaurus Access Service .. 144

9.8.8 Service Chain Access Service ... 145

9.9 OT Support Services ... 147

9.9.1 Processing Service .. 147

9.9.2 Simulation Management Services ... 149

9.9.3 Sensor Planning Service ... 151

9.9.4 Project Management Support Service ... 151

9.9.5 Communication Service ... 152

9.9.6 Calendar Service ... 153

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

9/180

9.9.7 Reporting Service .. 154

9.10 OA Service Interaction Patterns .. 155

9.10.1 Controlled User Access to Resources ... 155

9.10.2 Rights-Managed User Access to Resources ... 157

9.10.3 Integration of Source Systems into an OSN .. 158

9.10.4 Generation of Meta-information ... 160

9.10.5 Registration of Resources in a Catalogue ... 161

9.10.6 Semantic Catalogue Component ... 162

9.10.7 Naming in Dynamic OSN Environments .. 163

10 Technology Viewpoint ... 165

10.1 Specification of Platform Properties .. 165

10.2 Selection of User Management, Authentication and Authorisation Mechanisms 166

10.3 Agreement on Data Formats ... 166

10.4 Definition of a Reversible Platform Mapping for Information Models .. 166

10.5 Definition of Procedures for the Mapping of Service Interfaces .. 167

10.6 Restrictions on certain Services .. 167

11 Engineering Viewpoint .. 168

11.1 OSN Characteristics .. 168

11.1.1 Policies ... 168

11.1.2 Resource Naming Policy ... 168

11.1.3 Resource Discovery Policy .. 169

11.1.4 OSN Operating Policy .. 170

11.1.5 User Management, Authorisation and Authentication Policy .. 171

11.2 OSN Classifiers ... 173

11.3 Naming Policy Examples ... 174

11.3.1 Platform as Namespace for OSIs .. 174

11.3.2 Feature Access OSI as Namespace for Feature Instances .. 174

12 Conclusion .. 177

12.1 Summary of Deviations from Standards.. 177

12.1.1 RM-ODP Computational Viewpoint mapped to RM-OA Service Viewpoint 177

12.1.2 The OpenGIS Service Architecture (ISO 19119:2005).. 177

12.1.3 ISO 19101 Service Taxonomy ... 177

12.1.4 ISO 19119:2005 Requirements for Platform-Neutrality ... 177

12.1.5 ORCHESTRA as Simple Service Architecture according to ISO 19119:2005 178

12.1.6 The ORCHESTRA Definition of a Feature .. 178

12.1.7 The ORCHESTRA Meta-Model (OMM) ... 178

12.2 Evolution of the RM-OA ... 178

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

10/180

Figures

Figure 1: Dynamic ORCHESTRA Analysis and Design Process .. 30

Figure 2: The ORCHESTRA Reference Model ... 34

Figure 3: Deployment of ORCHESTRA Service Instance in an ORCHESTRA Service Network 36

Figure 4: Example of two ORCHESTRA Applications using the same OSI .. 36

Figure 5: ORCHESTRA Application Architecture .. 37

Figure 6: The Evolution of the ORCHESTRA Architecture ... 45

Figure 7: Functional Domains in an ORCHESTRA Service Network.. 47

Figure 8: Relationship between Subject and Principal .. 53

Figure 9: Relationship between Subject, Group and Principal .. 54

Figure 10: Schema of Role-based Access Control ... 55

Figure 11: External and ORCHESTRA Source Systems .. 57

Figure 12: OSI interactions in one platform domain .. 58

Figure 13: OSI interactions across platform domains ... 58

Figure 14: From phenomena to feature instances (derived from ISO 19109) .. 60

Figure 15: Framework for ORCHESTRA Information Models ... 61

Figure 16: Framework for the ORCHESTRA Meta-Information Model ... 69

Figure 17: Subclasses of OMM_AssociationType... 70

Figure 18: Inclusion of the Source System Level into the ORCHESTRA Information Model Framework 71

Figure 19: Ad-hoc use of published feature sets and application schemas .. 72

Figure 20: Inclusion of the Semantic Level into the Information Model Framework 75

Figure 21: Basic Data Types ... 78

Figure 22: The basic part of the ORCHESTA Meta-model ... 79

Figure 23: OMM Attribute types... 80

Figure 24: Schema of the OMM extension ―Document Type‖ ... 81

Figure 25: Schema of the OMM Extension ―Coverage Type‖ ... 82

Figure 26: Earthquake example .. 90

Figure 27: Framework for ORCHESTRA Services.. 92

Figure 28: Specification Process for ORCHESTRA Services ... 96

Figure 29: The Service Interface Part of the OMM.. 98

Figure 30: Model of OMM Operations and Parameter Types ... 100

Figure 31: Specification of Exception Types ... 103

Figure 32: Structure of the Service Mapping in the OMM ... 105

Figure 33: Functional classification of ORCHESTRA Services ... 108

Figure 34: Example of OT Service sub-categories for the application domain of Environmental Risk
Management .. 110

Figure 35: Service Interaction Pattern for Geo Rights Management .. 157

Figure 36: Operation Integration (upper right: SSI step 2a, lower right: SSI step 2b) 159

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

11/180

Figure 37: Source System Integration Service .. 160

Figure 38: Generation of resource meta-information .. 160

Figure 39: Generation of meta-information entries (push paradigm) .. 161

Figure 40: Generation of meta-information entries (pull paradigm) .. 162

Figure 41: Example of a Semantic Catalogue ... 163

Figure 42: Linkage between Name Services ... 164

Figure 43: Constructing feature identifiers by using OSI-related namespaces ... 175

Tables

Table 1: Overview about the RM-OA Annexes ... 14

Table 2: Mapping of the RM-ODP Viewpoints to ORCHESTRA ... 33

Table 3: Ontology Classes (ORCH-D2.3.5 2006) ... 73

Table 4: Basic Data Types .. 77

Table 5: List of Basic Interface Types ... 108

Table 6: List of OA Services .. 109

Table 7: List of OT Support Services for Environmental Risk Management ... 110

Table 8: Possible Contribution of ORCHESTRA Service Types to INSPIRE Network Services 111

Table 9: Service Description Framework .. 112

Table 10: Description of the Service Capabilities Interface ... 113

Table 11: Description of the Synchronous Interaction Interface ... 114

Table 12: Description of the Asynchronous Interaction Interface .. 115

Table 13: Description of the Transaction Interface.. 116

Table 14: Description of the Knowledge Base Interface ... 118

Table 15: Description of the Feature Access Service ... 120

Table 16: Description of the Map and Diagram Service .. 122

Table 17: Description of the Document Access Service ... 123

Table 18: Description of the Sensor Access Service .. 124

Table 19: Description of the Catalogue Service .. 127

Table 20: Description of the Name Service ... 129

Table 21: Description of the User Management Service ... 130

Table 22: Description of the Authorisation Service ... 132

Table 23: Description of the Authentication Service.. 134

Table 24: Description of the Service Monitoring Service .. 135

Table 25: Description of the Coordinate Operation Service .. 136

Table 26: Description of the Gazetteer Service ... 137

Table 27: Description of the Annotation Service ... 139

Table 28: Description of the Format Conversion Service .. 140

Table 29: Description of the Schema Mapping Service .. 142

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

12/180

Table 30: Description of the Ontology Access Service ... 144

Table 31: Description of the Thesaurus Access Service ... 145

Table 32: Description of the Service Chain Access Service ... 147

Table 33: Description of the Processing Service ... 149

Table 34: Description of the Simulation Management Service ... 150

Table 35: Description of the Sensor Planning Service .. 151

Table 36: Description of the Project Management Support Service ... 152

Table 37: Description of the Communication Service ... 153

Table 38: Description of the Calendar Service .. 154

Table 39: Description of the Reporting Service ... 154

Table 40: Minimum Policy Requirements according to OSN Classifiers... 173

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

13/180

1 Executive Summary

Increasing numbers of natural disasters have demonstrated to the European Union the paramount im-
portance of avoiding and mitigating natural hazards in order to protect the environment and citizens.
Due to organisational and technological barriers, actors involved in the management of natural or man-
made risks cannot cooperate efficiently. In an attempt to solve some of these problems, the European
Commission has made ―Improving risk management‖ one of its strategic objectives of the Information
Society Technology (IST) research programme. The goal of the integrated project ORCHESTRA (Open
Architecture and Spatial Data Infrastructure for Risk Management) is the design and implementation of
an open, service-oriented software architecture as a contribution to overcome the interoperability prob-
lems in the domain of multi-risk management.

Public information about the ORCHESTRA project is available under http://www.eu-orchestra.org/.

The present document defines the Reference Model for the ORCHESTRA Architecture (RM-OA). The
RM-OA comprises the generic aspects of service-oriented architectures, i.e., those aspects that are in-
dependent of the risk management domain and thus applicable to other application domains.

Based on a glossary of architectural terms, the RM-OA provides a specification framework for system
architects, information modellers and system developers. The ORCHESTRA Architecture is a platform-
neutral (abstract) specification of the informational and functional aspects of service networks taking
into account and evolving out of architectural standards and service specifications of ISO, OGC, W3C
and OASIS.

The structure of the RM-OA follows the viewpoints of the ISO/IEC 10746-1 Reference Model for Open
Distributed Processing (RM-ODP) in the following manner:

 The RM-OA Enterprise Viewpoint provides a business perspective with respect to other Euro-
pean initiatives such as INSPIRE, GMES and other Integrated Projects. It yields the major ar-
chitectural requirements, namely the rigorous use of standards where applicable, the inde-
pendence from technology, the demand for loosely-coupled self-describing components based
on a generic infrastructure and the design for change.

 The RM-OA Information Viewpoint provides a specification framework of all categories of in-
formation including their thematic, spatial, and temporal characteristics as well as their meta-
information. The basic unit is the concept of a feature as an abstraction of a real world phe-
nomenon. In principle, it follows ISO 19109 for the meta-model structure and rules of applica-
tion schemas, but extends it by the pre-definition of the characteristics of eminent feature
types (e.g. documents). As meta-information models are considered to be purpose-specific,
the ORCHESTRA Meta-Model enables pluggable application schemas for meta-information.
Furthermore, it explicitly considers the integration of data and services of existing systems
(source systems) as well as the usage of ontologies.

 The RM-OA Service Viewpoint (in RM-ODP called Computational Viewpoint) specifies types of
ORCHESTRA Architecture Services that support the syntactic and semantic interoperability
between systems as well as the administration of service instances organised in
ORCHESTRA Service Networks. The RM-OA provides textual service descriptions according
to a common service description framework and contains an initial description of so-called
ORCHESTRA Thematic Support services that facilitate the development of thematic function-
ality. Furthermore, by means of a meta-model for services on a platform-neutral level, the RM-
OA provides rules how to formally specify service types based on interface types as the basic
unit of re-usability and how to map them to concrete service platforms.

 The RM-OA Engineering and Technology viewpoints yield the mapping of the application
schemas and service specifications to service platforms (e.g. W3C Web Services). Here, the
RM-OA just provides guidance for the mapping to a given service platform and specifies engi-
neering options for the design of ORCHESTRA Service Networks. The resulting work lead to
platform-specific ORCHESTRA Implementation Specifications that are, however, documented
outside of the RM-OA.

RM-OA annexes contain more detailed system requirements, a conceptual meta-information model and
default application schemas for meta-information for an initial list of ―purposes‖ (e.g. discovery).

http://www.eu-orchestra.org/

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

14/180

2 Document Structure and Links

2.1 Link to the RM-OA Annexes and ORCHESTRA Deliverables

The RM-OA encompasses the results of the ORCHESTRA sub-project 3 and the related deliverables
as annexes. These annexes are contained in the document package of the OGC Discussion paper 07-
024.

Furthermore, they are available under http://www.eu-orchestra.org/publications.shtml#OAspecs at the
Web site of the ORCHESTRA project together with the abstract specifications of the ORCHESTRA ser-
vices.

Annex Name ORCHESTRA
Deliverable

OGC Document

A High Level Requirements Specification

A1 Development dimensions D3.2.1 OGC Discussion Paper 07-024

A2 System requirements D3.2.1 OGC Discussion Paper 07-024

A3 Conceptual Meta-information model D3.3.1 OGC Discussion Paper 07-024

B Specification of ORCHESTRA Meta-information Models

B1 RM-OA rules for OAS-MI D3.3.2 OGC Discussion Paper 07-024

Table 1: Overview about the RM-OA Annexes

.

http://www.eu-orchestra.org/publications.shtml%23OAspecs

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

15/180

3 Introduction

3.1 Scope

This document specifies the Reference Model for the ORCHESTRA Architecture (RM-OA). It contains a
specification framework for the design of ORCHESTRA-compliant service networks and provides a plat-
form-neutral specification of the information and service viewpoints.

The RM-OA specification is structured according to the viewpoints of the Reference Model for Open
Distributed Processing (RM-ODP) as defined in ISO/IEC 10746-1:1998 (E), with some modifications re-
flecting both ORCHESTRA needs and the design objective of a service network based on loosely-
coupled components.

The RM-OA document is divided into the following sections:

 Section 4 ―Glossary‖ provides a definition of the architectural terms used in the RM-OA.

 Section 5 ―Process of the ORCHESTRA Architectural Design‖ describes the ORCHESTRA
Reference Model resulting from the mapping of the ISO/IEC 10746-1 Reference Model for
Open Distributed Processing (RM-ODP) to the ORCHESTRA architectural design process.

 Section 6 ―Enterprise Viewpoint‖ provides a business perspective and summarises the archi-
tectural requirements for the design of ORCHESTRA-compliant service networks. The archi-
tectural requirements are motivated in detail in an argumentation chain in Annex A2 of the
RM-OA..

 Section 7 ―Design Decisions of the ORCHESTRA Architecture‖ summarises basic design de-
cisions for the ORCHESTRA Architecture as an introduction to the architecture specification
in the following section.

 Section 8 "Information Viewpoint‖ provides a specification framework of all categories of in-
formation dealt with by the ORCHESTRA Architecture, including their thematic, spatial, tem-
poral characteristics as well as their meta-information.

 Section 9 ―Service Viewpoint‖ provides a specification framework for ORCHESTRA Services.
Furthermore, it contains descriptions for the services that support the syntactic and semantic
interoperability between services, applications and systems as well as the administration of
ORCHESTRA service networks. The description distinguishes between ORCHESTRA Archi-
tecture services that provide the generic, i.e. application-domain independent part of a service
network, and ORCHESTRA Thematic Service that support particular application-domains, in
the case of ORCHESTRA the risk management domain.

 Section 10 ―Technology Viewpoint‖ describes general guidelines to be considered when
specifying a platform as a service infrastructure upon which the platform-neutral
ORCHESTRA Architecture may be mapped.

 Section 11 ‖Engineering Viewpoint‖ describes topics to be considered by designers of
ORCHESTRA Service Networks, in particular characteristics of ORCHESTRA Service Net-
works and policies w.r.t. naming of service and feature instances, discovery, user manage-
ment, access control and authentication and service administration.

 Section 12 ―Conclusion‖ lists the major aspects where the RM-OA deviates from standards.
Furthermore, it provides an outlook for issues to be tackled in future RM-OA versions.

The RM-OA core document is associated with a list of annexes that provide more background informa-
tion and more refined specifications. See Table 1 in section 2.1.

3.2 Intended Audience

System architects, information modellers and system developers when designing service networks tak-
ing into account relevant standards from ISO, OGC, W3C and OASIS.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

16/180

3.3 References

The following references are used as background documents for the RM-OA. They are categorised in
normative references (i.e. ISO Standards or respective drafts) and other technical or scientific
documents and books.

3.3.1 Normative references

ISO/IEC 10746-1:1998 (E). Information technology - Open Distributed Processing - Reference model

ISO/IEC 10746-2:1996 (E). Information technology - Open Distributed Processing - Foundations

ISO/IEC TR 14252:1996. Information technology - Guide to the POSIX Open System Environment

ISO 19101:2004(E). Geographic information -- Reference model

ISO/TS 19103. Geographic information -- Conceptual schema language

ISO 19107:2004(E). Geographic information -- Spatial schema

ISO 19108:2004(E) Geographic information -- Temporal schema

ISO/FDIS 19109:2003. Text for FDIS 19109 Geographic information -- Rules for application schema, as
sent to the ISO Central Secretariat for issuing as Final Draft International Standard

ISO 19111:2003(E). Geographic information -- Spatial referencing by coordinates

ISO 19112:2003(E). Geographic information -- Spatial referencing by geographic identifiers

ISO 19115:2004(E). Geographic Information -- Metadata

ISO 19119:2005. Geographic Information -- Services (see also ―The OpenGIS Abstract Specification -
Topic 12: OpenGIS Service Architecture‖ under http://www.opengis.org/docs/02-112.pdf)

ISO 19123:2005(E). Geographic Information -- Schema for coverage geometry and functions

ISO 19125-1:2004(E). Geographic Information -- Simple feature access -- Part 1: Common architecture

ISO 19136: 2007. Geographic Information -- Geography Markup Language (GML). International
Standard under publication (2007-07-13)

ISO/TS 19139:2007. Geographic information -- Metadata -- XML schema implementation

3.3.2 Documents and Books

Dufourmont, H., Annoni, A., De Groof, H. (2004). INSPIRE - work programme Preparatory Phase 2005
– 2006. Publisher: ESTAT-JRC-ENV. Identifier: rhd040705WP4A_v4.5.3.doc,
http://inspire.jrc.it/reports/rhd040705WP4A_v4.5.3_final-2.pdf

Egenhofer, M.J. (1989). A Formal Definition of Binary Topological Relationships. 3rd International Con-
ference on Foundations of Data Organization and Algorithms: 457-472

GeoDRM (2006). Open Geospatial Consortium Abstract Specification 06-004r3: Geospatial Digital
Rights Management Reference Model (GeoDRM RM). Version: 1.0.0. Editor: G. Vowles. 2006-
02-28

GMES (2004). Global Monitoring for Environment and Security (GMES): Final Report for the GMES Ini-
tial Period (2001-2003) http://www.gmes.info/action_plan/index.html

INSPIRE (2007). Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007
establishing an Infrastructure for Spatial Information in the European Community (INSPIRE).
http://www.ec-gis.org/inspire/directive/l_10820070425en00010014.pdf

OASIS (2006) OASIS WS-Trust 1.3 Committee Draft 01. 06 September 2006 http://docs.oasis-
open.org/ws-sx/ws-trust/200512/ws-trust-1.3-spec-cd-01.html

OMG (2006). ―Software Services Profile and Metamodel‖. Request For Proposal OMG Document:
soa/2006-09-01

ORCH-D2.1 (2006). D2.1 Final Report on User Requirements V1.4. Restricted Deliverable D2.1

http://www.opengis.org/docs/02-112.pdf
http://www.gmes.info/action_plan/index.html
http://www.ec-gis.org/inspire/directive/l_10820070425en00010014.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-spec-cd-01.html
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-spec-cd-01.html

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

17/180

Integrated Project 511678 ORCHESTRA. Editor: BRGM. 5 October 2006

ORCH-D2.3.5 (2006). Knowledge Modelling Final Report. Internal Deliverable D2.3.5 Integrated Project
511678 ORCHESTRA. Editor: Ordnance Survey. Version 1.0. 28 February 2006

ORCH-D2.4.1 (2005). Report on analysis of existing risk management processes.
Deliverable D2.4.1 Integrated Project 511678 ORCHESTRA. Editor: DATAMAT. Revision [final].
13 June 2005

ORCH-D2.4.2 (2005). Report identifying common service requirements.
Deliverable 2.4.2 (2005) Integrated Project 511678 ORCHESTRA. Editor: DATAMAT. Revision
[final]. 21 December 2005

ORCH-AbstrServ (2007). WP3.4 OA Service Abstract Specifications. Deliverables D3.4.x Integrated
Project 511678 ORCHESTRA. Editor: Environmental Informatics Group (EIG). January 2007

ORCH-DoW (2006). Integrated Project 511678 ORCHESTRA: ―Annex 1 – Description of Work‖. 6
th

Framework Programme IST Priority 2.3.2.9 Improving Risk Management. 11 May 2006

ORCH-ImplServ (2007). WP3.6 OA Service Implementation Specifications. Deliverables D3.6.x. Inte-
grated Project 511678 ORCHESTRA. Editor: Environmental Informatics Group (EIG). 2007 (to be
published)

OGC (2003). Open Geospatial Consortium Doc. No. 03-040. OGC Reference Model, Version 0.1.2 ,
2003-03-04 http://portal.opengis.org/files/?artifact_id=3836

OGC (2006) Open Geospatial Consortium Discussion paper 05-087r3 ―Observations and Measure-
ments‖, 2006-02-24, http://portal.opengeospatial.org/files/?artifact_id=14034

Pollock, J.T., Hodgson, R. (2004). Adaptive Information. ISBN 0-471-48854-2. Wiley 2004

Powell, D. (Ed.) (1991). Delta-4: A Generic Architecture for Dependable Distributed Computing. Re-
search Reports ESPRIT. Project 818/2252 Delta-4 Vol.1. ISBN 3-540-54985-4 Springer-Verlag
1991

RM-OA (2005) Usländer, T. (Ed.) Reference Model for the ORCHESTRA Architecture Version 1.10.
Deliverable D3.2.2 of the ORCHESTRA Consortium, OGC Discussion Paper OGC 05-107 -
https://portal.opengeospatial.org/files/?artifact_id=12574, October 2005

SOA-RM (2006). OASIS Reference Model for Service Oriented Architecture 1.0. Committee Specifica-
tion 1, 2 August 2006. http://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf

Studer, R.; Benjamins, V. R.; Fensel, D.: Knowledge engineering: Principles and methods. Data and
Knowledge Engineering (DKE), 25(1-2):161-197, 1998.

Tomlin, C.D. (1990). Geographic Information Systems and Cartographic Modeling (Prentice-Hall)

W3C (2003). QoS for Web Services: Requirements and Possible Approaches. W3C Working Group
Note, 25 November 2003, http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/

W3C (2004). Web Services Architecture. W3C Working Group Note 11 February 2004.
http://www.w3.org/TR/ws-arch/

http://portal.opengis.org/files/?artifact_id=3836
http://portal.opengeospatial.org/files/?artifact_id=14034
https://portal.opengeospatial.org/files/?artifact_id=12574
http://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf
http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/
http://www.w3.org/TR/ws-arch/

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

18/180

4 Glossary

The glossary provides the coherent terminological framework used in the RM-OA.

4.1 Abbreviations

AAA Authentication, Authorisation, and Accounting

ACID Atomicity, Consistency, Isolation, and Durability

CEN Comité Européen de Normalisation (European Committee for Standardization)

CSL Conceptual Schema Language

DIS Draft International Standard

DoW ORCHESTRA Description of Work

DRM Digital Rights Management

EBAC Expression-based access control

EC European Commission

ESA European Space Agency

ESDI European Spatial Data Infrastructure

GeoRM Rights Management related to Geographic Information

GFM General Feature Model

GMES Global Monitoring for Environment and Security

HCI Human-Computer Interaction

INSPIRE Infrastructure for Spatial Information in Europe

ID Identifier

IS International Standard

ISO International Standardization Organisation

IST Information Society Technology

LMO Legally Mandated Organisations

OA ORCHESTRA Architecture

OA Service ORCHESTRA Architecture Service

OT Service ORCHESTRA Thematic Service

OAA ORCHESTRA Application Architecture

OAS ORCHESTRA Application Schema

OAS-MI ORCHESTRA Application Schema for Meta-information

OFS ORCHESTRA Feature Set

OASIS 1) IST FP-6 project: Open Advanced System for Improved Crisis Management

 2) Organization for the Advancement of Structured Information Standards

OGC Open Geospatial Consortium

OIS ORCHESTRA Implementation Specification

OMG Object Management Group

OMM ORCHESTRA Meta-model

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

19/180

ORCHESTRA Open Architecture and Spatial Data Infrastructure for Risk Management

OSC ORCHESTRA Service Component

OSI ORCHESTRA Service Instance

OSN ORCHESTRA Service Network

OWL Web Ontology Language

OWL-S Web service ontology based on OWL

RBAC Role-based access control

RDF Resource Description Framework

RM Risk Management

RM-OA Reference Model for the ORCHESTRA Architecture

RM-ODP Reference Model for Open Distributed Processing

SOA Service-oriented Architecture

SOA-RM (OASIS) Reference Model for Service Oriented Architecture

SDI Spatial Data Infrastructure

SDIC Spatial Data Interest Communities

UAA User Management, Authentication and Authorisation

UDDI Universal Description, Discovery and Integration

URI Uniform Resource Identifier

W3C World Wide Web Consortium

WIN Wide Information Network for Risk Management

WP Work package

WSMO Web Service Modeling Ontology

XSD XML Schema Definition

4.2 Terms and definitions

ABox

Set of description logics statements about individuals with reference to a TBox (so-called "extensional"
knowledge).

Note: An example is: "Katrina" is-instance-of TropicalCyclone.

Access control

Combination of Authentication and Authorisation.

Accounting

Process of gathering information about the usage of resources by subjects.

Application [derived from http://www.opengeospatial.org/resources/?page=glossary]

Use of capabilities, including hardware, software and data, provided by an information system specific
to the satisfaction of a set of user requirements in a given application domain.

http://www.opengeospatial.org/resources/?page=glossary

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

20/180

Application Domain

Integrated set of problems, terms, information and tasks of a specific thematic domain that an applica-
tion (e.g. an information system or a set of information systems) has to cope with.

Note: One example of an application domain is risk management.

Application Schema [ISO/FDIS 19109:2003]

Conceptual schema for data required by one or more applications.

Architecture (of a system) [ISO/IEC 10746-2:1996]

Set of rules to define the structure of a system and the interrelationships between its parts.

Authentication

Process of verifying the principal of a certain subject. In other words authentication indicates whether a
subject is allowed to use a certain principal .

Within the authentication process a subject proves that it is allowed to act with the corresponding princi-
pal . Generally speaking, this proof can depend on a secret that can be, e.g.

- what somebody has (key, smart card, …)
- what somebody knows (password, …)
- what somebody is (biometrical data, …)
- the place somebody resides (certain computer, …)
- the skills of somebody (handmade signature)

The result of an authentication process is called a session.

Authorisation

Process of determining whether a subject is allowed to have the specified types of access to a particular
resource. This is done by evaluating applicable access control information contained in a so called au-
thorisation context.

Usually, authorisation is carried out in the context of authentication. Once a subject is authenticated, it
may be authorised to perform different types of access.

Catalogue [derived from http://www.opengeospatial.org/resources/?page=glossary]

Collection of entries, each of which describes and points to a feature collection. Catalogues include in-
dexed listings of feature collections, their contents, their coverages, and of meta-information. A cata-
logue registers the existence, location, and description of feature collections held by an Information
Community. Catalogues provide the capability to add and delete entries. A minimum Catalogue will in-
clude the name for the feature collection and the locational handle that specifies where these data may
be found. Each catalogue is unique to its Information Community.

Component

Hardware component (device) or Software Component.

Conceptual model [ISO/FDIS 19109:2003(E); ISO 19101]

Model that defines concepts of a universe of discourse.

http://www.opengeospatial.org/resources/?page=glossary

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

21/180

Conceptual schema [ISO/FDIS 19109:2003(E); ISO 19101]

Formal description of a conceptual model.

Coverage [ISO 19123]

Function from a spatial, temporal or spatiotemporal domain to an attribute range. A coverage associ-
ates a position within its domain to a record of values of defined data types. Thus, a coverage is a fea-
ture with multiple values for each attribute type, where each direct position within the geometric repre-
sentation of the feature has a single value for each attribute type.

Description Logics

Family of logic based knowledge representation languages that are a decidable subset of first order
logic with well defined semantics and inferencing (problem decision procedures). In Description Logics,
a distinction is made between the terminological knowledge (the so-called TBox) and the assertional
knowledge (ABox). This distinction is useful for knowledge base modelling and engineering: for model-
ling it is just natural to distinguish between concepts and individuals; for engineering it helps by separat-
ing key inference problems, e.g. classification is related to the TBox, while instance checking is related
to the ABox.

Discovery [derived from W3C: http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#discovery]

Act of locating a machine-processable description of a resource that may have been previously un-
known and that meets certain functional criteria. It involves matching a set of functional and other crite-
ria with a set of resource descriptions.

Engineering viewpoint

Viewpoint of the ORCHESTRA Reference Model that specifies the mapping of the ORCHESTRA ser-
vice specifications and information models to the chosen service platform and the characteristics of
ORCHESTRA Service Networks.

End user

Members of agencies (e.g. civil or environmental protection agencies) or private companies that are in-
volved in an application domain (e.g. risk management) and that use the applications built by the sys-
tem users according to the ORCHESTRA Architecture.

External Source System

Source system that does not provide its data and functions through an ORCHESTRA-conformant inter-
face.

Feature [derived from ISO 19101]

Abstraction of a real world phenomenon [ISO 19101] perceived in the context of an ORCHESTRA Ap-
plication.

Note: The ORCHESTRA understanding of a ―real world‖ explicitly comprises hypothetical worlds.
Features may but need not contain geospatial properties. In this general sense, a feature corresponds
to an ―object‖ in analysis and design models.

http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#discovery

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

22/180

Framework [http://www.opengeospatial.org/resources/?page=glossary]

An information architecture that comprises, in terms of software design, a reusable software template,
or skeleton, from which key enabling and supporting services can be selected, configured and inte-
grated with application code.

Gazetteer [http://www.opengeospatial.org/resources/?page=glossary]

A catalogue of toponyms (place names) assigned with geographic references. A gazetteer service re-
trieves the geometries for one or more features, given their associated well-known feature identifiers
(text strings).

Generic

A service is generic, if it is independent of the application domain. A service infrastructure is generic, if it
is independent of the application domain and if it can adapt to different organisational structures at dif-
ferent sites, without programming (ideally).

Geospatial [http://www.opengeospatial.org/resources/?page=glossary]

Referring to a location relative to the Earth's surface. ―Geospatial‖ is more precise in many geographic
information system contexts than "geographic," because geospatial information is often used in ways
that do not involve a graphic representation, or map, of the information.

Implementation [http://www.opengeospatial.org/resources/?page=glossary]

Software package that conforms to a standard or specification. A specific instance of a more generally
defined system.

Information Community [http://www.opengeospatial.org/resources/?page=glossary]

A collection of people (a government agency or group of agencies, a profession, a group of researchers
in the same discipline, corporate partners cooperating on a project, etc.) who, at least part of the time,
share a common digital geographic information language and common spatial feature definitions.

Information viewpoint

Viewpoint of the ORCHESTRA Reference Model that specifies the modelling approach of all categories
of information the ORCHESTRA Architecture deals with including their thematic, spatial, temporal char-
acteristics as well as their meta-information.

Interface [ISO 19119:2005; http://www.opengis.org/docs/02-112.pdf]

Named set of operations that characterize the behaviour of an entity.

The aggregation of operations in an interface, and the definition of interface, shall be for the purpose of
software reusability. The specification of an interface shall include a static portion that includes defini-
tion of the operations. The specification of an interface shall include a dynamic portion that includes any
restrictions on the order of invoking the operations.

Interoperability [ISO 19119:2005 or OGC;

http://www.opengeospatial.org/resources/?page=glossary]

Capability to communicate, execute programs, or transfer data among various functional units in a
manner that require the user to have little or no knowledge of the unique characteristics of those units
[ISO 2382-1].

http://www.opengeospatial.org/resources/?page=glossary
http://www.opengeospatial.org/resources/?page=glossary
http://www.opengeospatial.org/resources/?page=glossary
http://www.opengeospatial.org/resources/?page=glossary
http://www.opengeospatial.org/resources/?page=glossary
http://www.opengis.org/docs/02-112.pdf
http://www.opengeospatial.org/resources/?page=glossary

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

23/180

Knowledge Base

Store of formal knowledge about identifiable entities of a real or hypothetical world. The entity descrip-
tions are typically instance knowledge or data, or an ABox in terms of Description Logics. In some
cases, the knowledge base additionally provides access to the knowledge schema (the TBox corre-
sponding to the ABox). Generally, a knowledge base does not necessarily need to be described by
means of a schema: it basically provides a flexible means for identification, representation and interlink-
ing of entities. Compared to a conventional relational database, a knowledge base is more flexible: it
may comprise several identifiable sets of entity relationships (―models‖), and new models can dynam i-
cally be added without the need for redefining the complete database schema. New entities and rela-
tions can be inserted at run time (population of the knowledge base).

Note: Knowledge stored in a knowledge base can be retrieved by means of a query language.
Compared to a Catalogue and/or a Feature Access Service (see section 9.7.1), the result of these que-
ries is not necessarily a feature collection, e.g. just a boolean value an extreme case. If the knowledge
base contains implicitly represented information, e.g. in terms of rules, the quality of the query results
may be improved by automatically inferring new knowledge (TBox and/or ABox reasoning).

Loose coupling [W3C; http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#loosecoupling]

Coupling is the dependency between interacting systems. This dependency can be decomposed into
real dependency and artificial dependency: Real dependency is the set of features or services that a
system consumes from other systems. The real dependency always exists and cannot be reduced. Arti-
ficial dependency is the set of factors that a system has to comply with in order to consume the features
or services provided by other systems. Typical artificial dependency factors are language dependency,
platform dependency, API dependency, etc. Artificial dependency always exists, but it or its cost can be
reduced. Loose coupling describes the configuration in which artificial dependency has been reduced to
the minimum.

Meta-information

Descriptive information

about resources in the universe of discourse. Its structure is given by a meta-

information model depending on a particular purpose.

Note: A resource by itself does not necessarily need meta-information. The need for meta-
information arises from additional tasks or a particular purpose (like catalogue organisation), where
many different resources (services and data objects) must be handled by common methods and there-
fore have to have/get common attributes and descriptions (like a location or the classification of a book
in a library).

Meta-information model

Implementation of a conceptual model for meta-information. It is represented by an ORCHESTRA Ap-
plication Schema for Meta-information.

Middleware [http://www.opengeospatial.org/resources/?page=glossary]

Software in a distributed computing environment that mediates between clients and servers.

OA Info-structure Service

OA Service that is required to operate an OSN in the sense that it plays an indispensable role in the
operation of an OSN.

w3c;%20http:/www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#loosecoupling
http://www.opengeospatial.org/resources/?page=glossary

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

24/180

OA Support Service

OA Service that facilitates the operation of an OSN , e.g. providing an added-value by combining the
usage of OA Info-Structure Services.

Ontology [based on (Studer et al 1998)]

Explicit, formal specification of a shared conceptualisation (Studer et al 1998).

It is formal in order to not only make it readable by humans, but also by machines. It is explicit as it is
based on a taxonomy specified in terms of concepts, properties (or relationships) and axioms (the ―vo-
cabulary‖). It is shared in the sense that these specifications are fixed as an agreement set up and
shared by a dedicated user community and that it is associated with a particular subject area (domain)
or task. It is a conceptualisation as it defines a conceptual schema by abstracting from a real or hypo-
thetical world. Its ultimate purpose is to enable machine understanding which in turn provides the po-
tential for data and service interoperability.

In Description Logics, an ontology describes a TBox; optionally, it may also describe an ABox. The
TBox can then be considered to be the schema of the ABox.

Open Architecture [based on (Powell 1991)]

Architecture whose specifications are published and made freely available to interested vendors and
users with a view of widespread adoption of the architecture. An open architecture makes use of exist-
ing standards where appropriate and possible and otherwise contributes to the evolution of relevant
new standards.

Operation [ISO 19119:2005; http://www.opengis.org/docs/02-112.pdf]

Specification of a transformation or query that an object may be called to execute. An operation has a
name and a list of parameters.

ORCHESTRA Architecture (OA)

Open architecture that comprises the combined generic and platform-neutral specification of the infor-
mation and service viewpoint as part of the ORCHESTRA Reference Model.

ORCHESTRA Application

Set of software components that together comprise an application based on the usage of ORCHESTRA
Services

ORCHESTRA Application Architecture (OAA)

Instantiation of the ORCHESTRA Architecture by inclusion of those thematic aspects that fulfil the pur-
pose and objectives of a given application. The concepts for such an application stem from a particular
application domain (e.g. a risk management application).

ORCHESTRA Architecture Service (OA Service)

ORCHESTRA Service that provides a generic, platform-neutral and application-domain independent
functionality.

http://www.opengis.org/docs/02-112.pdf

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

25/180

ORCHESTRA Application Schema (OAS) [extending ISO/FDIS 19109:2003]

Conceptual schema for the data required by one or more ORCHESTRA Applications. As such it pro-
vides a formal specification that is compliant to the ORCHESTRA Meta-model of the concepts (e.g. fea-
ture types), their properties and associations which are relevant for a specific information model in an
ORCHESTRA Service Network.

ORCHESTRA Application Schema for Meta-information (OAS-MI)

Form of an ORCHESTRA Application Schema applied to meta-information.

ORCHESTRA Application Implementation Specification (OAIS)

Extension and restriction of an ORCHESTRA Implementation Specification according to the needs of a
particular application domain. An OAIS comprises a platform-specific combined specification of a the-
matic information model and a set of OT Services.

ORCHESTRA Feature Set (OFS)

Set of feature instances following the information model formally specified in an ORCHESTRA Applica-
tion Schema.

ORCHESTRA Implementation Specification

Combined platform-specific specification of the engineering and technology viewpoints as a result of the
mapping of the ORCHESTRA Architecture to a specific platform.

ORCHESTRA Meta-Model (OMM)

Framework of rules for the specification of ORCHESTRA Application Schemas or ORCHESTRA Ser-
vice Types. It is specified in terms of UML classes stereotyped as <<MetaClass> and associated rules.

ORCHESTRA Reference Model

The ORCHESTRA Reference Model comprises a specification of all RM-ODP viewpoints for the open
architecture for risk management. In particular, it encompasses the specification of the ORCHESTRA
Architecture and a specification framework for ORCHESTRA Implementation Specifications which are
implemented in ORCHESTRA Service Components and deployed in an ORCHESTRA Service Network
as ORCHESTRA Service Instances.

ORCHESTRA Service

Service specified as an ORCHESTRA Service Type, implemented as ORCHESTRA Service Compo-
nent and offered in an ORCHESTRA Service Network by an ORCHESTRA Service Instance.

ORCHESTRA Service Component

Component that provides an external interface of an ORCHESTRA Service according to an
ORCHESTRA Implementation Specification.

ORCHESTRA Service Instance

Executing manifestation of an ORCHESTRA Service Component.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

26/180

ORCHESTRA Service Network

Set of networked hardware components and ORCHESTRA Service Instances that interact in order to
serve the objectives of ORCHESTRA Applications. The basic unit within an OSN for the provision of
functions are the OSIs.

ORCHESTRA Service Type

Type of an ORCHESTRA Service specified according to the rules of the ORCHESTRA Reference
Model.

ORCHESTRA Service Types are functionally classified in ORCHESTRA Architecture Services (OA
Services) and ORCHESTRA Thematic Services (OT Services).

ORCHESTRA Source System

Source system that provides its data and functions through an ORCHESTRA-conformant interface.
Each ORCHESTRA Source System is associated to at least one External Source System.

ORCHESTRA Thematic Service (OT Service)

ORCHESTRA Service that provides an application domain-specific functionality built on top and by us-
age of OA Services and/or other OT Services.

Note: An OT Service may but need not be specified in a platform-neutral way.

Purpose (of meta-information)

A purpose of meta-information describes the goal of the usage of the resources.

(Service) Platform

Set of infrastructural means and rules that describe how to specify service interfaces and related infor-
mation and how to invoke services in a distributed system.

Examples for platforms are Web Services according to the W3C specifications including a GML profile
for the representation of geographic information or a CORBA-based infrastructure with a UML profile
according to the OMG specifications.

Principal

A principal represents the identity of a subject in an ORCHESTRA Service Network. A subject may
have several identities, and thus several principals. The association between a principal and a subject
is established in an authentication process.

Reference Model [ISO Archiving Standards; http://ssdoo.gsfc.nasa.gov/nost/isoas/us04/defn.html]

A reference model is a framework for understanding significant relationships among the entities of
some environment, and for the development of consistent standards or specifications supporting that
environment. A reference model is based on a small number of unifying concepts and may be used as
a basis for education and explaining standards to a non-specialist.

Resource

Functions (possibly provided through services) or data objects.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

27/180

Semantic Web [W3C; http://www.w3.org/2001/sw/Overview.html]

The Semantic Web provides a common framework that allows data to be shared and reused across
application, enterprise, and community boundaries. It is a collaborative effort led by W3C with participa-
tion from a large number of researchers and industrial partners. It is based on the Resource Description
Framework (RDF), which integrates a variety of applications using XML for syntax and URIs for naming.

Service [ISO 19119:2005; ISO/IEC TR 14252; http://www.opengis.org/docs/02-112.pdf]

Distinct part of the functionality that is provided by an entity through interfaces.

Note: In ORCHESTRA, such an entity is called ORCHESTRA Service Component when referring to
the software component and ORCHESTRA Service Instance when referring to the running instance in an
ORCHESTRA Service Network.

Service Mapping

Process of mapping a description of an ORCHESTRA Service Type and the specification of its inter-
faces on platform-neutral level to an ORCHESTRA Implementation Specification for a given platform.

Service Profile Specification

ORCHESTRA Implementation Specification defining a functional subset of an interface of an
ORCHESTRA Service Type as a result of a service mapping. The functional subset is defined in the
sense that those operations and parameters that are marked on the abstract level as ―mapping not re-
quired‖ may be omitted for the platform-specific specification.

Service Viewpoint

Viewpoint of the ORCHESTRA Reference Model that specifies the ORCHESTRA services supporting
the syntactic and semantic interoperability between source systems and the development of
ORCHESTRA Applications.

Session

Temporary association between a subject and a principal as a result of an authentication process initi-
ated by the subject. Information about a session is stored in authentication session information.

Software Component [derived from component definition of

http://www.opengeospatial.org/resources/?page=glossary]

Software program unit that performs one or more functions and that communicates and interoperates
with other components through common interfaces.

Source System

Container of unstructured, semi-structured or structured data and/or a provider of functions in terms of
services. The source systems are of very heterogeneous nature and contain information in a variety of
types and formats.

Spatial Data Infrastructure [http://www.gsdi.org/pubs/cookbook/chapter01.html#spatial]

Relevant base collection of technologies, policies and institutional arrangements that facilitate the avail-
ability of and access to spatial data. The Spatial Data Infrastructure provides a basis for spatial data
discovery, evaluation, and application for users and providers within all levels of government, the com-

http://www.w3.org/2001/sw/Overview.html
http://www.opengis.org/docs/02-112.pdf
http://www.opengeospatial.org/resources/?page=glossary
http://www.gsdi.org/pubs/cookbook/chapter01.html#spatial

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

28/180

mercial sector, the non-profit sector, academia and by citizens in general.

Subject

Abstract representation of a user or a software component in an ORCHESTRA Application.

System [ISO/IEC 10746-2:1996]

Something of interest as a whole or as comprised of parts. Therefore a system may be referred to as an
entity. A component of a system may itself be a system, in which case it may be called a subsystem.

Note: For modelling purposes, the concept of system is understood in its general, system-theoretic
sense. The term "system" can refer to an information processing system but can also be applied more
generally.

System User

Provider of services that are used for an application domain as well as IT architects, system develop-
ers, integrators and administrators that conceive, develop, deploy and run applications for an applica-
tion domain.

TBox

Describes relations between concepts (so-called "intensional" knowledge) without regarding concrete
individuals.

Note: An example is: Every TropicalCyclone has-exactly 1 hurricaneCategory.

Technology viewpoint

Viewpoint of the ORCHESTRA Reference Model that specifies the technological choices of the service
platform and its operational issues.

Thesaurus (Pollock, Hodgson 2004).

Synonym and antonym repository for data vocabulary terminology.

Transaction [W3C, http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#transaction]

Transaction is a feature of the architecture that supports the coordination of results or operations on
state in a multi-step interaction. The fundamental characteristic of a transaction is the ability to join mul-
tiple actions into the same unit of work, such that the actions either succeed or fail as a unit.

User

Human acting in the role of a system user or end user of the ORCHESTRA Architecture.

Viewpoint [RM-ODP]

Subdivision of the specification of a complete system, established to bring together those particular
pieces of information relevant to some particular area of concern during the design of the system.

http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#transaction

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

29/180

Universe of discourse [ISO 19101]

View of the real or hypothetical world that includes everything of interest.

Web Service

Self-contained, self-describing, modular service that can be published, located, and invoked across the
Web. A Web service performs functions, which can be anything from simple requests to complicated
business processes. Once a Web service is deployed, other applications (and other Web services) can
discover and invoke the deployed service.

W3C Web Service [W3C, http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice]

Software system designed to support interoperable machine-to-machine interaction over a network. It
has an interface described in a machine-processable format (specifically WSDL). Other systems inter-
act with the Web service in a manner prescribed by its description using SOAP-messages, typically
conveyed using HTTP with an XML serialization in conjunction with other Web-related standards.

4.3 General Remark

This document follows the ISO/IEC Directives, Part 2: Rules for the structure and drafting of
International Standards w.r.t. the usage of the word ―shall‖. The word ―shall‖ (not ―must‖) is the verb
form used to indicate a requirement to be strictly followed to conform to this specification.

http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

30/180

5 Process of the ORCHESTRA Architectural Design

5.1 Overview

The ORCHESTRA Architecture is being designed in an iterative way recognising the fact that the re-
quirements of the system and of the end users as well as the technological progress in the IT market
and in IT standardisation have a dynamic nature and cannot be completely caught in a one-shot design.
Thus, a global iteration cycle between the analysis, the design, the implementation and the deployment
phase of the architecture is foreseen.

Figure 1 illustrates the iteration cycle between the analysis and the design phase which is explained fur-
ther in the following paragraphs.

A consolidation process in-between ensures that, at a defined point in time, there is a common un-
derstanding of the system requirements, the user requirements and an assessment of the current tech-
nology as a foundation to design the ORCHESTRA Architecture.

Figure 1: Dynamic ORCHESTRA Analysis and Design Process

System requirements for the ORCHESTRA Architecture encompass all functional and non-functional
aspects that need to be considered in order to enable interoperability between systems. Interoperability
is understood here according to ISO 19119:2005 as the capability to communicate, execute programs,
or transfer data among various functional units in a manner that require the user to have little or no
knowledge of the unique characteristics of those units.

Thus, system requirements for the ORCHESTRA Architecture are requirements for the infrastructure.
Within the RM-OA, they originate from the combined expertise of the consortium in the area of interop-
erability as well as from (ORCH-DoW 2006).

Starting from a view oriented at system user roles, the system requirements for the ORCHESTRA Ar-
chitecture are finally expressed in terms of architectural principals (see section A2.1.4 in the RM-OA
Annex A2) that a system should follow. These architectural principals aim at improving the exchange,
sharing and using of information and services among various functional units cross system boundaries,
i.e. boundaries of existing systems which for some purpose need to collaborate with each other.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

31/180

System requirements are expressed in generic technical terms, i.e. independent of application domains.

User requirements for the ORCHESTRA Architecture encompass all aspects that users or end-users
of the ORCHESTRA Architecture expect to be reflected by a service infrastructure. User requirements
are usually expressed in terms that are tailored to the needs of a specific application domain, for
ORCHESTRA being the domain of risk management. As such, user requirements for the ORCHESTRA
Architecture have to be aligned with and mapped to generic system requirements.

Technology assessment is a continuous process, too. ORCHESTRA aims at building the architecture
on top of and abstracting from technologies, tools and products that are either standard approaches or
have proven to be successful in solving interoperability problems in deployed use-cases.

The dynamic nature of these three input factors of the ORCHESTRA Architecture naturally leads to an
iterative architectural design process. Various but controlled upgrades of the ORCHESTRA Architecture
are required to adapt the architecture to the changing needs. Both the system and the user require-
ments are dynamic in the sense that they will be prioritised and adapted in local iteration cycles. A con-
solidation process is required in order to assess them in the light of time, budget and technological
constraints. The consolidation process is determined by the answers to the following questions:

 How can the user requirements be realised by generic concepts such that a re-use for other
application domains will be possible ?

 Which user requirements are of utmost importance with respect to the pilot scenarios in which
the ORCHESTRA results are to be validated in a first place?

 What is the status of the existing technology in order to realise a given user requirement ?

 What is the effort to realise a user requirement in a given environment ?

As constant factors across the ORCHESTRA architectural design process, ORCHESTRA follows in
each iteration step the principles of the Reference Model for Open Distributed Processing (RM-ODP)
and the taxonomy of the ORCHESTRA services as described in subsections 5.2 and 5.4.

5.2 Application of the Reference Model of Open Distributed Processing (RM-ODP)

5.2.1 RM-ODP Overview

The Reference Model of Open Distributed Processing (ISO/IEC 10746-1:1998) is an international stan-
dard for architecting open, distributed processing systems. It provides an overall conceptual framework
for building distributed systems in an incremental manner. The RM-ODP standards have been widely
adopted: they constitute the conceptual basis for the ISO 19100 series of geomatics standards (norma-
tive references in ISO 19119:2005), and they also have been employed in the OMG object manage-
ment architecture.

The RM-ODP approach has been used in the design of the OpenGIS Reference Model (OGC 2003)
with respect to the following two aspects:

 It constitutes a way of thinking about architectural issues in terms of fundamental patterns or
organizing principles, and

 It provides a set of guiding concepts and terminology.

Systems resulting from the RM-ODP approach (called ODP systems) are composed of interacting ob-
jects (see section 7.1.1 of ISO/IEC 10746-1:1998) whereby in RM-ODP an object is a representation of
an entity in the real world. It contains information and offers services.

Based on this understanding of a system, ISO/IEC 10746 specifies an architectural framework for struc-
turing the specification of ODP systems in terms of the concepts of viewpoints and viewpoint specifica-
tions, and distribution transparencies.

The viewpoints identify the top priorities for architectural specifications and provide a minimal set of re-
quirements—plus an object model—to ensure system integrity. They address different aspects of the
system and enable the ‗separation of concerns‘.

Five standard viewpoints are defined:

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

32/180

 The enterprise viewpoint: A viewpoint on the system and its environment that focuses on
the purpose, scope and policies for the system.

 The information viewpoint: A viewpoint on the system and its environment that focuses on
the semantics of the information and information processing performed.

 The computational viewpoint: A viewpoint on the system and its environment that enables
distribution through functional decomposition of the system into objects which interact at in-
terfaces.

 The engineering viewpoint: A viewpoint on the system and its environment that focuses on
the mechanisms and functions required to support distributed interaction between objects in
the system.

 The technology viewpoint: A viewpoint on the system and its environment that focuses on
the choice of technology in that system.

The aspect of a distributed ODP system is handled by the concept of distribution transparency. Distribu-
tion transparency relates to the masking from applications the details and the differences in mecha-
nisms used to overcome problems caused by distribution. According to the RM-ODP, application de-
signers simply select which distribution transparencies they wish to assume and where in the design
they are to apply. The RM-ODP distinguishes between eight distribution transparency types. These dis-
tribution transparencies consider aspects of object access, failure of objects, location of objects, as well
as replication, migration, relocation, persistence and transactional behaviour of objects.

5.2.2 Mapping of RM-ODP to the ORCHESTRA Architectural Design Process

An RM-ODP-based approach has been selected for the design of the ORCHESTRA Architecture as the
primary objectives of RM-ODP, such as

 support for aspects of distributed processing,

 provision of interoperability across heterogeneous systems, and

 hiding consequences of distribution to systems developers,

are largely coherent with the ORCHESTRA objectives. However, as an ORCHESTRA system will have
the characteristic of a loosely-coupled network of systems and services instead of a ―distributed proc-
essing system based on interacting objects‖, the RM-ODP concepts are not followed literally. For in-
stance, the ORCHESTRA concepts are not specified in terms of the RM-ODP distribution transparen-
cies as these are specified in terms of interacting objects.

The usage of RM-ODP for the ORCHESTRA Architectural design process focuses on the structuring of
ideas and the documentation of the ORCHESTRA Architecture. Thus, a mapping of the RM-ODP view-
points to the ORCHESTRA needs has been applied and summarised in Table 2:

 The second column of Table 2 provides the original definitions of the viewpoints as given in the
OpenGIS Reference Model using the terms of the OpenGIS glossary.

 The third column of Table 2 indicates the mapping of the viewpoints to the ORCHESTRA needs
using the terms as defined in the ORCHESTRA glossary (see section 4).

Note: In order to highlight the fact, that an ORCHESTRA deployment will have the nature
of a loosely-coupled distributed system based on networked services rather than a distributed
application based on computational objects, the ―computational viewpoint‖ is referred to as
―service viewpoint‖ in ORCHESTRA.

 The fourth column of Table 2 provides examples of what will be defined in the respective view-
point.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

33/180

View-
point
Name

Definition according
to ISO/IEC 10746

Definition accord-
ing to the Open-
GIS Reference
Model

Mapping to the
ORCHESTRA
architectural design
process

Examples

E
n
te

rp
ri

s
e

Concerned with the
purpose, scope and
policies governing
the activities of the
specified system
within the organiza-
tion of which it is a
part.

Focuses on the
purpose, scope and
policies for that sys-
tem.

Reflects the analysis
phase in terms of the
system and the user re-
quirements as well as
the technology assess-
ment. Includes rules that
govern actors and
groups of actors, and
their roles.

Use case definition for a
statistical processing
service.

Rules for the mainte-
nance and evolution of
the architecture.

In
fo

rm
a
ti
o
n

Concerned with the
kinds of information
handled by the sys-
tem and constraints
on the use and inter-
pretation of that in-
formation.

Focuses on the
semantics of infor-
mation and infor-
mation processing.

Specifies the modelling
approach of all catego-
ries of information the
ORCHESTRA Architec-
ture deals with including
their thematic, spatial,
temporal characteristics
as well as their meta-
data.

Information objects
specified in UML class
diagrams and referred to
by the specification of
the processing service
(e.g. as parameter
types).

C
o
m

p
u
ta

ti
o
n

a
l

Concerned with the
functional decompo-
sition of the system
into a set of objects
that interact at inter-
faces – enabling sys-
tem distribution.

Captures compo-
nent and interface
details without re-
gard to distribution.

Referred to as ―Service
Viewpoint‖

Specifies the ORCHES-
TRA Interface and Ser-
vice Types that aim at
improving the syntactic
and semantic inter-
operability between ser-
vices, source systems
and ORCHESTRA Ap-
plications.

Specification of the ex-
ternally visible behaviour
of a service type, e.g.
UML specification of the
interface types of the
processing service in-
cluding the possibility to
perform statistics

Service support for ser-
vice orchestration and
choreography.

T
e

c
h

n
o

lo
g

y

Concerned with the
choice of technology
to support system
distribution.

Focuses on the
choice of technol-
ogy.

Specifies the techno-
logical choices of the
platform, its charac-
teristics and its opera-
tional issues.

Specification of the plat-
form ―ORCHESTRA
Web Services‖ consist-
ing of W3C Web Ser-
vices according to (W3C
2004) and a GML pro-
file.

E
n
g
in

e
e
ri
n
g

Concerned with the
infrastructure re-
quired to support
system distribution.

Focuses on the
mechanisms and
functions required
to support distri-
buted interaction
between objects in
the system.

Specifies the mapping of
the ORCHESTRA ser-
vice specifications and
information models to
the chosen platform.

Considers the charac-
teristics and principles
for service networks.

Provision of the service
implementation specifi-
cation, incl. mapping of
the UML specification to
WSDL and functional
service properties (e.g.
persistency).

Decision on access con-
trol policies.

Table 2: Mapping of the RM-ODP Viewpoints to ORCHESTRA

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

34/180

5.3 The ORCHESTRA Reference Model

A graphical depiction of the relationships between the viewpoints and their mapping to the
ORCHESTRA architectural design process, the implementation and deployment phase is provided in
Figure 2. The result is called the ORCHESTRA Reference Model that covers the following phases:

 Analysis phase that leads to the specification of the Enterprise Viewpoint (see section 6)

 Design phase that leads to the specification of the ORCHESTRA Architecture (see section
5.3.1)

 Implementation phase that leads to ORCHESTRA Implementation Specifications (see section
5.3.2) implemented as ORCHESTRA Service Components

 Deployment phase that leads to ORCHESTRA Service Networks (see section 5.3.3).

The iteration cycles that permit to adapt the architecture to changing or refined needs as specified in
the enterprise viewpoint are not shown in Figure 2.

Figure 2: The ORCHESTRA Reference Model

5.3.1 The ORCHESTRA Architecture

The ORCHESTRA Architecture (OA) is, by definition, a platform-neutral specification according to the
requirements of ISO 19119:2005 (i.e. specification in the conceptual schema language UML). The
ORCHESTRA Architecture is specified as part of the design phase. It encompasses the harmonised
specification of the Information and Service Viewpoint resulting from requirements of the Enterprise
viewpoint. The fact that the specification is platform-neutral means that the ORCHESTRA Architecture
does not contain any particular dependencies on the peculiarities of a given platform.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

35/180

5.3.2 The ORCHESTRA Implementation Specification

The aspects of the Engineering and Technology viewpoints are outside the scope of the ORCHESTRA
Architecture. Instead, they are combined in a dedicated specification step that may be carried out multi-
ple times. Each step represents one mapping of the ORCHESTRA Architecture (i.e. the Information and
Service Viewpoint specification) to a specific service platform and leads to a platform-specific
ORCHESTRA Implementation Specification (OIS).

A service platform, or platform for short, hereby is defined to be the set of infrastructural means and
rules that describe how to specify service interfaces and related information and how to invoke services
in a distributed system. Thus, a platform provides a service infrastructure and associated rules for the
specification, discovery, composition and invocation of services in a distributed system. Examples of
platforms are Web Services according to the W3C specifications or a CORBA-based infrastructure ac-
cording to the OMG specifications.

An OIS contains platform-specific specifications of ORCHESTRA information models and
ORCHESTRA services. This means in concrete terms that the information models expressed in UML
have to be mapped to a schema language (e.g. XML/GML or EXPRESS) that fits to the selected plat-
form. Likewise, the abstract specifications of the ORCHESTRA service interfaces expressed in UML
have to be mapped to a service description language (e.g. WSDL) that fits to this platform, too. These
mapping processes may be done manually or performed (semi-)automatically by a tool.

Note: The iterative design process of the ORCHESTRA Architecture allows designers to re-apply
changes in the viewpoint specifications if problems during an OIS specification process occur.

Note that an OIS itself is not part of the RM-OA specification. The RM-OA just provides the architectural
framework for an OIS. As a consequence,

 the RM-OA description of the Technology Viewpoint (see section 10) contains guidelines, re-
quirements and rules what has to be considered when specifying a platform, and

 the RM-OA description of the Engineering Viewpoint (see section 11) contains guidelines, re-
quirements and rules what has to be considered when mapping to a chosen platform and in the
specification of an OIS. Furthermore, the Engineering Viewpoint also covers engineering princi-
ples and guidelines how to design ORCHESTRA Service Networks (see section 5.3.3) and dis-
cusses their characteristics.

The implementation phase encompasses the edition of the ORCHESTRA Implementation Specifica-
tions and their implementation in ORCHESTRA Service Components (OSC) and platform-specific en-
codings of the information models. An OSC is a component that provides an external interface of an
ORCHESTRA Service according to an OIS. Note that the platform-specific encodings of the information
models are accessed by means of ORCHESTRA Services, thus they are not explicitly illustrated in the
ORCHESTRA Reference Model in Figure 2.

5.3.3 The ORCHESTRA Service Network and ORCHESTRA Applications

An executing manifestation of an OSC is an ORCHESTRA Service Instance (OSI). The deployment
phase encompasses the deployment of OSIs on hardware (see Figure 3).

The set of ORCHESTRA Service Instances connected through a communication network is called an
ORCHESTRA Service Network (OSN). An OSN thus comprises the set of networked hardware com-
ponents and ORCHESTRA Service Instances that interact in order to serve the objectives of
ORCHESTRA Applications.

Note that the grouping of OSIs into software components and their distribution and deployment on
hardware components (e.g. server machines) is not relevant from when specifying the ORCHESTRA
Information and Service Viewpoint. The basic unit of an OSN for the provision of functions are the OSIs.
One of several OSIs may be deployed as part of one software component.

On a next higher level, software components distributed in a network are grouped together to form
ORCHESTRA Applications. A software component as part of an ORCHESTRA Application may con-
tain one or more OSIs but, in addition, also other functionality, e.g. functions to built service request
messages or to consume response messages.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

36/180

Figure 3: Deployment of ORCHESTRA Service Instance in an ORCHESTRA Service Network

Figure 4 shows the example of two ORCHESTRA Applications that are built out of several interacting
software components, some of them containing an OSI and some not. Note that in this example these
two ORCHESTRA Applications are sharing the usage of one OSI, i.e., client software components in
the respective ORCHESTRA Applications may call operations of this OSI in parallel.

Figure 4: Example of two ORCHESTRA Applications using the same OSI

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

37/180

5.3.4 The ORCHESTRA Application Architecture

An ORCHESTRA Application Architecture (OAA) is an instantiation of the ORCHESTRA Architecture
by inclusion of those thematic aspects that fulfil the purpose and objectives of a given application. The
concepts for such an application stem from a particular application domain (e.g. a risk management ap-
plication).

Figure 5: ORCHESTRA Application Architecture

By definition, an OAA is a platform-neutral specification. As such, an OAA covers both the platform-
neutral specification of the thematic aspects of the information viewpoint (thematic information model,
e.g. a domain-specific ontology) and the service viewpoint (addition of thematic services). It may en-
compass a specification extension but also a restriction, e.g. omission of optional services or informa-
tion elements.

The relationship between an ORCHESTRA Application Architecture and the ORCHESTRA Architecture
is shown in Figure 5.

Note: The process to identify on the conceptual level the pre-eminent information types and their
relationships (leading to a conceptual thematic information model) and the functional requirements
(leading to service descriptions on the conceptual level) is outside the scope of the RM-OA. The RM-
OA just provides the framework to formally specify information models as well as services in order to in-
tegrate them into the OA.

5.3.5 The ORCHESTRA Application Implementation Specification

A platform-neutral specification of an OAA based on a conceptual schema language like UML might not
be adequate in all development projects. Sometimes, the platform has been pre-selected and the deliv-
ery of a platform-neutral specification that abstracts from the platform specific characteristics is not
necessary.

Nevertheless, in order to allow the exploitation and usage of the ORCHESTRA Architecture, the the-
matic information model and the respective OT Services may also be specified directly on the basis of a
chosen ORCHESTRA Implementation Specification. In this case, the resulting platform-specific specifi-
cation of the thematic extensions and restrictions is called an ORCHESTRA Application Implementa-
tion Specification (OAIS).

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

38/180

5.4 The OpenGIS Service Architecture

Topic 12 of the OpenGIS Abstract Specification (―The OpenGIS Service Architecture‖ - ISO
19119:2005) provides a specification framework for developers to create software that enables users to
access and process geographic data from a variety of sources across a generic computing interface
within an open IT environment.

It extends the architectural reference model of ISO 19101:2001 defining an Extended Open Systems
Environment (EOSE) model for geographic services.

The resulting ISO Architecture for Geospatial Services distinguishes between Information Technology
Services (IT services) and Geospatial Information Services (GI services).

 IT Services are general services in a distributed computing environment, such as processing
services that perform large-scale computation involving substantial amount of data, system
management services for encoding and transfer of data across communication networks etc.

 GI Services are specialized IT services that define capabilities that are specific to the access to,
analysis of, transformation of, manipulation of, storage of, or exchange of geographic informa-
tion.

In the ISO Architecture for Geospatial Services, a GI service is only specified wherever existing IT ser-
vices of the selected distributed computing platform do not exist or do not meet the specific GI require-
ment.

In the ORCHESTRA Reference Model the distributed computing platform is referred to as the service
infrastructure. However, the distinction between IT and GI services is not applied for the ORCHESTRA
service taxonomy because the ORCHESTRA Architecture (and thus the ORCHESTRA services) shall
contain an integrated information model that covers thematic, temporal and spatial aspects.

The link of the RM-OA to the technical content of ISO 19119:2005 focuses on the two following as-
pects:

 the requirements for platform-neutrality (see section 5.4.1)

 the usage of the service taxonomy (see section 5.4.2), and

 the requirements for a simple service architecture (see section 5.4.3).

5.4.1 Platform-neutral and Platform-specific Service Specification

The ORCHESTRA service specifications as part of the ORCHESTRA Architecture shall comply with the
requirements of ISO 19119:2005, section 10.3, for ―platform-neutrality‖.

This means that the following points are considered:

 The ORCHESTRA architectural models shall be described in UML according to the rules and
guidelines of ISO/TS 19103 (conceptual schema language), e.g. for the usage of basic UML
data types.

 As part of the service viewpoint, ORCHESTRA services shall be defined as ―platform-neutral
service specifications‖. They both define static models (objects including the attributes and op-
erations for each object) and dynamic models (capturing the interaction patterns between ob-
jects and state modelling).

 As part of the engineering viewpoint, the ORCHESTRA platform-neutral models are mapped to
a specific service infrastructure context. The resulting platform-specific service models may be
defined in UML or in terms of the platform-specific language (e.g. WSDL). However, it is re-
quired to maintain a description of their mapping from the corresponding platform-neutral mod-
els. This mapping shall show how the intentions of the platform-neutral specifications are met in
the context of the service platform. In order to support interoperability, the reverse mapping
back to the concepts in the platform-neutral model must be defined.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

39/180

5.4.2 Service Taxonomy

The ORCHESTRA Architecture informally classifies the ORCHESTRA services according to the service
taxonomy of ISO 19101 (also referred to in ISO 19119:2005, section 8.3). The service categories are:

 Human interaction services are services for management of user interfaces, graphics, multi-
media, and for presentation of compound documents.

 Model/Information management services are services for management of the development,
manipulation, and storage of meta-information (including ontology specifications), conceptual
schemas, and datasets.

 Workflow/Task management services are services for support of specific tasks or work-
related activities conducted by humans or software components with a high degree of auton-
omy (agents). These services support use of resources and development of products involving
a sequence of activities or steps that may be conducted by different persons.

 Processing services are services that perform computations. These computations might
range from the performance of mathematical equations up to large-scale computations involv-
ing substantial amounts of data.

 Communication services are services for encoding and transfer of data across communica-
tions networks.

 System management services are services for the management of system components, ap-
plications, and networks. These services also include management of user accounts and user
access privileges.

Note: The classification of a particular service in a taxonomy is considered as meta-information for
the service. According to the ORCHESTRA handling of meta-information (see section 8.4.1), the ade-
quacy of this service taxonomy is therefore to be considered when defining purpose-oriented meta-
information for services (see section 8.4.2).

5.4.3 ORCHESTRA as Simple Service Architecture according to ISO 19119:2005

The ORCHESTRA Architecture is a service-oriented architecture. Furthermore, looking at ISO
19119:2005, section 7.6, the ORCHESTRA Architecture aims at observing the characteristics of a
―simple service architecture‖ in all cases where it is applicable and useful. Exceptions shall be identified
in an explicit fashion.

A simple service architecture according to ISO 19119 and interpreted in the context of the
ORCHESTRA Architecture is a message-based architecture that supports service chaining and consid-
ers the following simplifying assumptions:

 Message-operations

ORCHESTRA operations shall be modelled as messages. A message operation shall consist of
a request and response. Requests and responses contain parameters as the payload, which is
transferred in uniform manner independent of content. Simple applications are characterized by
message exchange patterns such as one-way (or event), and two-way (or synchronous) re-
quest response interactions. A service specification should make such simple exchange appli-
cations as easy as possible to create and to use.

 Separation of control and data

A client controlling an ORCHESTRA service may not want the full results of the service. For
example, the user may have no need for the potentially voluminous intermediate products in a
service chain. Only the final result of a service chain may be needed by the client. Therefore,
an interface should separate the control of a service from the access to the data resulting from
the service. A client should have the option of receiving just the status of an operation and the
data should be accessible separately through a separate operation.

 Stateful vs. stateless service

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

40/180

For simplicity it is desired that an ORCHESTRA service be stateless, i.e., that a service invoca-
tion be composed of a single request-response pair with no dependence on past or future inter-
actions. This will not always be possible. For some ORCHESTRA services, preconditions must
be set and iteration may be required. Then it will be necessary to model the service with a state
diagram having multiple states. Transitions between the states are triggered by operations. The
state diagram and associated descriptions will be part of the abstract and of the implementation
specification of the interfaces of an ORCHESTRA service (see section 9.2.6).

 Known service type

All ORCHESTRA service instances are of specific service types and the client may access the
service type description prior to calling the service. In the ORCHESTRA Reference Model, a
―known service type‖ is a service type with an externally available description.

Note: The ORCHESTRA Reference Model does not enforce that the ―clients shall contain
software for accessing the service type prior to encountering service instances of the type in an
implemented architecture‖ as requested by ISO 19119:2005. Although this is useful and a good
start in many applications in order to reduce complexity, the ORCHESTRA Architecture aims at
providing services that enables the design of generic application code that is controlled by the
availability of service meta-information.

 Adequate hardware

ORCHESTRA Services are implemented as software components (OSCs) and deployed and
executed on hardware hosts. The ORCHESTRA Reference Model assumes that the issues of
hardware hosting of the software are transparent to the user. It is assumed that the service has
adequate hardware, i.e. hardware assignment is transparent to user.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

41/180

6 Enterprise Viewpoint

6.1 Overview

The enterprise viewpoint of the ORCHESTRA Architecture briefly describes its

 business perspective,

 purpose (the core mission of the ORCHESTRA Architecture),

 scope (e.g. intended users),

 policies (e.g. standardisation approach, openness)

In terms of the architectural process described in section 5, it reflects the analysis phase in terms of the
high-level and the user requirements as well as the technology assessment.

6.2 Business Perspective

6.2.1 Contribution to the ORCHESTRA Goals

The design of the ORCHESTRA Architecture (OA) is triggered by the main goals of the ORCHESTRA
project which have been described as:

 To design an open service-oriented architecture for risk management where special attention will
be paid to providing a solution for the combination of spatial and non-spatial data and services.
The ORCHESTRA Architecture will contribute to the INSPIRE (INSPIRE, 2007) (Dufourmont,
Annoni, De Groof 2004) and GMES (GMES 2004) infrastructure and thus will assist and support
the needed development of INSPIRE technical specifications and guidelines in the INSPIRE pre-
paratory phase.

 To develop a software infrastructure for enabling risk management services.

 To develop services for various multi-risk management applications based on the architecture.

 To validate the ORCHESTRA Architecture and thematic services in a multi-risk scenario.

 To provide software standards for risk management applications, and to provide additional infor-
mation about these standards. In particular, the de facto standard of OGC and the de-jure stan-
dards of ISO and CEN are expected to be influenced.

6.2.2 Collaboration with European Initiatives and Projects

Furthermore, the ORCHESTRA Architecture is meant to provide substantial input to an information in-
frastructure (info-structure) in the context of the European INSPIRE (Infrastructure for Spatial Informa-
tion in Europe) and GMES (Global Monitoring for Environment and Security) initiatives, especially but
not exclusively for environmental risk management applications. For this task, ORCHESTRA will co-
operate with two other European integrated projects:

 OASIS: Open Advanced System for crisIS management (IST IP 4677 http://www.oasis-fp6.org/)

 WIN: Wide Information Network for Risk Management (IST IP 511481 http://www.win-eu.org)

These projects face in common the task of organising risk management systems that are networked
across and between organisations with interoperable capabilities.

6.2.2.1 Common Architectural Principles of ORCHESTRA, OASIS and WIN

In June 2004, the European Commission (DG INFSO) has initiated a series of meetings between major
stakeholders of the strategic objective ―Improving Risk Management‖, (i.e. ORCHESTRA, OASIS and
WIN), stakeholders of GMES (in particular ESA) and stakeholders of INSPIRE (in particular JRC). With
respect to the relationship between ORCHESTRA, OASIS and WIN common architectural principles of
an open info-structure have been discussed and were finalised in a white paper (see also section

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

42/180

6.2.2.4).

OASIS and ORCHESTRA have agreed to work on a common scenario that will combine the needs
across different phases of the risk management cycles, including the response phase. The scenario will
be developed as a paper study which aims at evaluating the OA in a disaster management context.

6.2.2.2 Requirements of the INSPIRE Relationship

The acronym INSPIRE stands for ―Infrastructure for Spatial Information in Europe‖. INSPIRE is a Euro-
pean directive establishing the legal framework for setting up and operating an Infrastructure for Spatial
Information in Europe. The Directive focuses on spatial data that are held by or on behalf of public au-
thorities. INSPIRE is targeting environmental policies, however, other sectors such as agriculture,
transport and energy may benefit, too, once this infrastructure is in place.

The proposal of the INSPIRE directive lays down general rules for the various components of a frame-
work for a European Spatial Data Infrastructure (SDI). Thus it considers rules for metadata to support
the discovery and evaluation of spatial data and services; rules to achieve interoperability that allows in-
tegration of spatial data of the various themes addressed by INSPIRE; rules for interoperable network
services for discovery, viewing, accessing and downloading spatial information; rules for data sharing;
necessary coordinating structures; and the development of a European geo-portal to provide a common
entry to access all INSPIRE network services.

The INSPIRE Directive was published in the official journal on the 25th April 2007and entered into force
on the 15th May 2007 (INSPIRE, 2007).

The INSPIRE Work Programme published in April 2005 identified a step-wise approach for the defini-
tion and preparation of detailed Implementing Rules (Dufourmont, Annoni, De Groof 2004). Clearly,
such Implementing Rules cannot be developed in isolation but need to take into account what already
exists in the Member States as well as the broader international developments in the field of SDI and e-
government services. In addition operational experiences, international agreements and protocols that
are already in place across various thematic communities need to be considered.

With these considerations in mind, an open call was launched in spring 2005 for the registration of in-
terest by Spatial Data Interest Communities (SDIC) and Legally Mandated Organisations (LMO). LMO
represent those organisations at local, regional, and national levels that have a formal legal mandate
giving them the responsibility for specific thematic data resources. As part of the open call it was asked
to put forward experts and reference material to support the preparation of the Implementing Rules.
More than 180 experts have been proposed, including experts supported by the ORCHESTRA project.
The INSPIRE Drafting Teams were then established and started operations in October 2005.

In early 2007 the ORCHESTRA consortium registered as SDIC.

The current time-line for the full implementation of INSPIRE envisages that the Directive will be trans-
posed in national legislation by the Member States in 2008-9, and that implementation will take place in
the following years.

The technical INSPIRE Implementing Rules shall be based on existing standards and specifications if
possible. Thus the existing geographic information standards and specifications from ISO, CEN and
OGC serve as input into the drafting of the INSPIRE Implementing Rules. If it turns out that these stan-
dards do not cover or cannot fully fulfil requirements formulated in the INSPIRE directive adequate ex-
tensions and modifications are proposed and respective feedback into the standardisation bodies will
be ensured. The current status of the drafting of the INSPIRE Implementing Rules has been reported
on the recent 12

th
 EC GI conference in June 2006

1
.

Input of ORCHESTRA into INSPIRE could be expected on the drafting of Implementing Rules for Net-
work Services by providing the RM-OA and the developed ORCHESTRA services specifications as ref-
erence materials. The requirements on INSPIRE Network Services are therefore detailed in the follow-
ing sub-section. Moreover ORCHESTRA could support the drafting of Implementing Rules for INSPIRE
Data Specifications

2
 by providing the RM-OA and the derived application schemata as reference mate-

rial.

1
 See http://www.ec-gis.org/Workshops/12ec-gis/presentations

2
 See http://www.ec-gis.org/Workshops/12ec-gis/presentations/Plenary%20room/INSPIRE%20I/portele.pdf

http://www.ec-gis.org/Workshops/12ec-gis/presentations

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

43/180

6.2.2.3 Detailed definitions and requirements of INSPIRE Network Services

In the context of INSPIRE Network Services the current INSPIRE proposal distinguishes the following
service types:

 discovery services

 upload services

 view services

 download services

 transformation services

 ―invoke spatial data services‖ services

Following the INSPIRE proposal, the Network Services will be available from each Member State lead-
ing to a distributed architecture at the European level. They will be accessible via the European Geo-
Portal and potentially via the member states‘ own portals. The definition of appropriate technical speci-
fications requires that considered interface specifications are mature and proved by implementation and
operational usage, including performance consideration.

As a first task a more detailed description of these network services is developed. The document on
Detailed definitions on the INSPIRE Network Services

3
 proposes a (technical) understanding of the

INSPIRE Network Services and tries to identify related issues. This understanding served as a starting
point for the work in INSPIRE Drafting Team on Network Services. The Drafting Team is currently up-
dating the document and adding a description of an INSPIRE (service) reference model that includes
the concept of horizontal services for DRM, UAA, and e-commerce aspects

4
. The understanding and

detailed description of the INSPIRE network services developed so far is summarised in the following
paragraphs.

Discovery Services

Discovery services are to search for spatial data sets and spatial data services on the basis of the con-
tent of the corresponding metadata and to display the content of the metadata. As a minimum the fol-
lowing combination of search criteria shall be implemented:

 keywords,

 classification of spatial data and services,

 spatial data quality and accuracy,

 degree of conformity with the harmonised specifications,

 geographical location,

 conditions applying to the access to and use of spatial data sets and services,

 the public authorities responsible for spatial data sets and services.

The related search and response metadata are defined by the INSPIRE Metadata Drafting Team.

The OpenGIS Specification Catalogue Service Web with the ISO application profile (CS-W 2.0 ISO AP
19115/19119) has been identified by the Network Services Drafting Team as the most relevant specifi-
cation for INSPIRE discovery services. This specification would make the definition of a related set of
query and response properties, query language, and the desired level of discovery (dataset only, or
also feature level) necessary. As a candidate standard for service metadata ISO19119 has been identi-
fied but is not considered to be as well developed as the ISO19115 standard is for metadata.

Another open issue on discovery services is whether and how to deal with multiple application profiles
for discovery services (e.g. the ebRIM Profile for the CS-W) and whether and how to link to service reg-
istries as UDDI.

3
 http://inspire.jrc.it/reports/dt/ir_dev_process_network_services.pdf

4
 See http://www.ec-gis.org/Workshops/12ec-gis/presentations/Plenary%20room/INSPIRE%20II/serrano.pdf

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

44/180

Upload Services

Currently the upload services are considered to be functionality closely linked to discovery services al-
lowing for the publishing and updating of metadata sets.

View services

The following specifications have been identified by the Network Services Drafting Team as the most
relevant specification for INSPIRE view services:

 ISO 19128 Web Map Service

 Draft CEN TC287 profile of ISO 19128 / WMS 1.3

Download services

For INSPIRE Download services it is proposed to distinguish downloading predefined datasets (for in-
stance FTP for downloading files) and downloading features allowing for an appropriate selection of
these features (for instance an OpenGIS Web Feature Services). It is envisioned that INSPIRE
download services require close links to e-commerce services and the work on INSPIRE metadata and
data specification implementing rules.

Transformation services

Services to support coordinate transformation have been identified as an important and thus prioritised
instance of INSPIRE transformation services. Within this context the draft OpenGIS Specification for
Web Coordinate Transformation Service (OGC WCTS) has been identified as highly relevant. As for the
view services questions were raised about the need for and requirements on a (European) CRS Regis-
try.

As further candidates for INSPIRE transformation services, services for schema transformation and
services for generalisation have been discussed. Whether these services are required is still under
consideration.

“Invoke spatial data services” services

The INSPIRE drafting team proposed invocation services to be understood as the possibility to orches-
trate (―chain‖) INSPIRE spatial data services in the sense of distributed geo-processing.

The draft INSPIRE Directive requires "invoke spatial data services" to ensure that spatial data services
can be invoked in an INSPIRE way fostering harmonisation and interoperability, be it by a user or by
other services or applications. If an INSPIRE service reference model includes constraints and charac-
teristics a spatial data service has to fulfil to be effectively invoked inside a framework and the invoca-
tion mechanism is unambiguously defined and detailed in an INSPIRE reference model then it could be
envisioned that ―invoke spatial data services‖ service implementing rules concentrate on this reference
model and the detailed invocation/activation framework.

For defining INSPIRE invocation services or mechanisms it has been realised that orchestra-
tion/chaining of geospatial services is in a very early stage. Here, SOAP, WSDL, UDDI, and BPEL are
currently considered as relevant technologies and specifications.

6.2.2.4 Requirements of the GMES Relationship

The overall aim of the Global Monitoring for Environment and Security (GMES) initiative is to support
Europe‘s goals regarding sustainable development and global governance by providing timely and high
quality data, information, and knowledge. Access to information has strategic value in the development
of nations and regions. GMES will contribute to Europe‘s ability to fulfil its role as a world player. This
entails the capacity to have independent access to reliable and timely information on the status and
evolution of the Earth‘s environment at all scales, from global to regional to local. GMES must also en-
sure long-term, continuous monitoring on a time-scale of at least decades.

A final report for the GMES initial period (2001-2003) is available (GMES 2004). It proposes a way for-
ward for the GMES period 2004-2008. As part of the strategic requirements specifying how to realise
the GMES action plan, this report contains assessments and objectives for Data Integration and Infor-
mation Management in the GMES service context which could be relevant for ORCHESTRA.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

45/180

6.2.3 Evolution of the ORCHESTRA Architecture

In order to fulfil the business objectives, especially with respect to the GMES and INSPIRE initiative, the
ORCHESTRA Architecture considers from the beginning a multi-step approach:

Figure 6: The Evolution of the ORCHESTRA Architecture

 In OA Version 1.x (RM-OA 2005), the ORCHESTRA Architecture has been conceived. The
ORCHESTRA Architecture provides a common view of how to harmonise the requirements for
syntactic and semantic service and data interoperability including their thematic, temporal and
spatial characteristics.

 In OA Versions 2.x (the present RM-OA version), the focus is on refining the OA V1 in terms of
service specifications for syntactic interoperability in the spatial domain. These versions link to
the INSPIRE requirements for network services as outlined in section 9.4.

 In OA Version 3.x, the focus is on extending and refining former OA versions in terms of service
specifications for semantic interoperability in the risk management domain.

Note: None of these OA versions includes ORCHESTRA Implementation Specifications (OIS);
they all stay on the platform-neutral level. It has not yet been decided for which OA versions a platform
mapping will be provided in the form of corresponding OISs.

6.3 Architectural Requirements for the OSN Design

In the following sections, architectural requirements for the ORCHESTRA Architecture and an OSN are
specified. They have been derived through a line of argument starting from

1. the different types of users of an OSN and their roles,

2. connecting these user roles with fundamental challenges for the ORCHESTRA Architecture,

3. deriving from that the key system requirements, and

4. finally developing architectural principles.

Here, only the architectural principles are briefly explained in terms of architectural requirements.

6.3.1 Rigorous Definition and Use of Concepts and Standards

The ORCHESTRA Architecture shall make rigorous use of proven concepts and standards in order to
decrease dependence on vendor-specific solutions, to help ensure the openness of the OSN and to
support the evolutionary development process of the ORCHESTRA Architecture.

6.3.2 Loosely Coupled Components

The components involved in OSN shall be loosely coupled, where loose coupling implies the use of
mediation to permit existing components to be interconnected without changes.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

46/180

Note: An example of an ORCHESTRA Service Type that supports the concept of mediation is the
Catalogue Service (see section 9.7.5) that decouples the resources (data and services) from their cli-
ents.

6.3.3 Technology Independence

The ORCHESTRA Architecture shall be independent of technologies, their cycles and their changes. It
must be possible to accommodate changes in technology (e.g. the lifecycle of middleware technology)
without changing the ORCHESTRA Architecture itself. The ORCHESTRA Architecture shall be inde-
pendent of specific implementation technologies (e.g. middleware, programming language, operating
system) and shall not be influenced by or deal with technical limitations of specific implementation tech-
nologies.

Note: The ORCHESTRA Architecture follows this architectural requirement by specifying it in a
platform-neutral manner in the first place before mapping it to one or more ORCHESTRA Implementa-
tion Specifications (see section 5.3.1).

6.3.4 Evolutionary Development - Design for Change

The ORCHESTRA Architecture and an OSN shall be designed to evolve, i.e. it shall be possible to de-
velop and deploy the system in an evolutionary way. The ORCHESTRA Architecture and an OSN shall
be able to cope with changes of user requirements, system requirements, organisational structures, in-
formation flows and information types in the source systems.

Note: The iterative design approach in ORCHESTRA resulting in the planned evolution of the RM-
OA in several versions (see section 6.2.3) is an example of how this architectural requirement is sup-
ported.

6.3.5 Component Architecture Independence

The ORCHESTRA Architecture shall be designed such that an OSN and source systems (i.e. existing
information systems and information networks) are architecturally decoupled. This means that the
ORCHESTRA Architecture shall not impose any architectural patterns on source systems for the pur-
pose of allowing them to collaborate in an OSN, and no source system shall impose architectural pat-
terns (i.e. service interaction patterns as for instance described in section 9.10) on an OSN .

6.3.6 Generic Infrastructure

The OA Services shall be independent of the application domain. This means that the OA Services
should be designed in such a flexible and adaptable way that the OA Services can be used across dif-
ferent thematic domains and in different organisational contexts, and that the update of integrated com-
ponents (e.g. applications, systems, ontologies) causes little or ideally no changes to the users of the
OA Services.

Note: The functional classification of the ORCHESTRA Service Types into application domain-
independent and dependent service types (see section 9.3) reflects this architectural requirement.

6.3.7 Self-describing Components

OSN components, such as data elements or services, shall include descriptions of their critical charac-
teristics, including sources, assumptions, etc. The usage of self-describing components that provide
context-sensitive formal and semantic descriptions of their interfaces can help to realise semantic inter-
operability.

Note: An example of how the ORCHESTRA Architecture considers the concept of self-describing
components is the mandatory support of the service capabilities interface (see section 9.6.1) that allows
a service consumer to learn about the capabilities and the characteristics of a service implementation.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

47/180

7 Design Decisions of the ORCHESTRA Architecture

The ORCHESTRA Architecture is the combined specification of the ORCHESTRA Information and Ser-
vice Viewpoints. Both of these viewpoints are specified in dedicated sections (see section 8 for the In-
formation Viewpoint and section 9 for the Service Viewpoint).

However, as concepts introduced in one viewpoint are required for the specification of the other view-
point, a purely sequential description is not possible. Important design decisions that are not specifically
allocated to one of these viewpoints have to be presented in advance. Note that sometimes they are
just introduced here but further refined in the respective section. In this case, a forward reference is
used.

7.1 Functional Domains of the ORCHESTRA Service Network

The ORCHESTRA Architecture has to face the problem of integrating environmental risk management
systems that are networked across and between organisations. It‘s the OSN, as the running instance of
an ORCHESTRA Architecture, that contributes to improve the syntactic and the semantic interoperabil-
ity of these systems.

Figure 7: Functional Domains in an ORCHESTRA Service Network

The components of an ORCHESTRA Service Network, i.e. the ORCHESTRA Service Instances (OSIs)
are classified according to the following functional domains (see Figure 7):

 User Domain: provides the interface to a user component (a human or a software component)
and interacts with the OSIs of the Mediation and Processing Domain according to the rules of
the ORCHESTRA Meta-Model. However, user components as part of a (distributed) application
may interact among themselves in a native way.

 Mediation and Processing Domain: provides the main functional part of the OSN. It mediates

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

48/180

the service calls from the User Domain to the Integration Domain based on meta-information
exchanged with the components of the Integration Domain (e.g. by means of a publishing or a
retrieval pattern). Note that the implementation of the services in the Mediation and Processing
Domain may be designed themselves as a distributed, possibly functionally-redundant system.
The interactions between the OSIs within the Mediation and Processing Domain and with the
OSIs in the Integration Domain perform solely according to the rules of the ORCHESTRA Meta-
Model. Furthermore, dedicated OSIs in this domain aim at resolving the semantic differences
between the information models of the source systems by means of ontologies. Thus, the Me-
diation and Processing Domain enables semantic interoperability if required by the components
of the User Domain.

 Integration Domain: provides support for the source system integration (see below). The OSIs
in this domain have two-side interfaces. On the one hand, they interact according to the OMM
rules with other OSIs in the Integration Domain and the Mediation and Processing Domain. On
the other hand, they interact with the components of the Source System Domain according to
their native interface. Thus, the Integration Domain enables syntactic interoperability within an
OSN.

 Source System Domain: incorporates the systems and system components of a thematic appli-
cation area (e.g. risk management) to be coupled. They provide the source of data and func-
tionality and are thus referred to as source systems in the following (see also section 7.6). By
means of integration OSIs in the Integration Domains, these source systems are connected to
the Mediation and Processing Domain. In practice, this means they need to identify the data
and the functionality to be offered in an OSN and to wrap it by respective software components
with an ORCHESTRA-compliant service interface. For tightly coupled software systems, this
may imply a considerable re-engineering effort.

Note: The platform domain is not visible in Figure 7. It provides the basic communication and en-
coding mechanisms for the service interactions (the service infrastructure). Its specification is outside the
scope of the ORCHESTRA Architecture. The ORCHESTRA Architecture only makes assumptions about
the characteristics of the platform (see section 9.2.2.2). Furthermore, in some cases, e.g. in the domain
of access control, the platform directly provides support for the implementation of ORCHESTRA Ser-
vices (see section 10.2).

7.2 The ORCHESTRA Meta-model Approach

7.2.1 Overview

By definition, the ORCHESTRA Architecture shall be generic in the sense that it does not prescribe a
specific information model nor an exact configuration of ORCHESTRA Service Instances in an OSN for
a given application domain problem. To summarise, the OA is not the specification of a particular infor-
mation system, but it provides a specification framework for distributed information systems to be used
by information modellers and OSN designers. This specification framework provides a set of basic ele-
ments to be used and a set of rules to be observed for the purpose of enabling syntactic interoperability
between the software components of an ORCHESTRA Application.

These rules and basic elements are summarised in the so-called ORCHESTRA Meta-model (OMM).
The OMM consists of two parts:

 The ORCHESTRA Information Meta-model (OMM-Information) that is specified as part of the
Information Viewpoint in section 8.7. OMM-Information provides rules about how to specify the
application schemas for information models and meta-information models and prescribes the
usage of data types.

 The ORCHESTRA Service Meta-model (OMM-Service) that is specified as part of the Service
Viewpoint in section 9.2. The OMM-Service provides rules about how to specify interfaces and
ORCHESTRA Services and proposes a set of architectural services to be used in an OSN.

Both parts of the OMM are interrelated and depend on each other:

 On the one hand, the structure of the input and output parameters of interface operations have
to obey the rules of the OMM-Info.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

49/180

 On the other hand, built-in operations on feature types have to obey the rules of the OMM-
Service.

Note: For convenience, if there is no need to explicitly distinguish between OMM-Information and
OMM-Service, the RM-OA simply uses the term OMM to refer to the respective meta-model.

The OMM serves as the basis for checking the conformance of information models and service
specifications with respect to the RM-OA. Thus, it has to be specified in detail in a formal and
unambiguous way. For convenience, as the OMM is defined in a very formal way as part of the
Information and Service Viewpoint the major characteristics are summarised in an informal manner in
the following sub-sections.

7.2.2 Major Characteristics of the ORCHESTRA Information Meta-model

In the context of an OSN, information models are specified in order to yield a structure for the
information that is potentially being exchanged with an ORCHESTRA Service, i.e. they comprise the
structure of the service parameters. The role of the OMM-Information is thus to deliver rules for the
specification of such information models (called ORCHESTRA Application Schemas, OAS) with the aim
of achieving a harmonised approach for all service specifications and therefore contributing to improved
re-usability and interoperability of software components.

The OMM-Information is basically an extension of the General Feature Model (GFM) as defined in ISO
19109. The OMM mandates the usage of UML 2.0 as conceptual schema language.

The central concept in the OMM-Information is that the feature is the basic informational unit as per-
ceived by ORCHESTRA Applications. OMM-Information is a meta-model for feature types. A feature is
an abstraction of a real world phenomenon whereby the ―real world‖ explicitly includes hypothetical
worlds. Individual features (or feature instances) are grouped into feature types where all instances of a
certain type are described by common characteristics.

A feature type contains a set of properties which may be either attributes, operations or associations
with other feature types. Furthermore, feature types may be refined by means of inheritance.

The OMM-Information provides rules for the usage of the value domains of attribute type definitions.
First of all, for all attribute types it defines a list of basic data types to be used (mostly based on ISO/TS
19103). However, attribute types are further classified into temporal, spatial, location and thematic at-
tribute types with the obligation to use the respective ISO standard definitions (e.g. ISO 19107 and ISO
19125-1 for spatial attribute types).

Attribute types may also represent meta-information about other resources of an OSN. Here, the OMM
does not follow the GFM approach of ISO 19109 by strictly requiring the use of ISO 19115. Instead, ac-
cording to the meta-information approach of ORCHESTRA (see section 7.4), meta-information is al-
ways purpose-specific and thus ―the‖ single meta-information model may not be specified. The usage of
ISO 19115 in order to define the value domain of meta-information attributes is thus just one of many
options.

7.2.3 Major Characteristics of the ORCHESTRA Service Meta-model

The basic structural unit in the ORCHESTRA Architecture as a service-oriented architecture and in an
OSN is, of course, the concept of an ORCHESTRA Service. Thus, service modelling plays the
predominant role in the specification phase. According to the ORCHESTRA Reference Model, an
ORCHESTRA Service is being specified as an ORCHESTRA Service Type, implemented as an
ORCHESTRA Service Component (OSC) and executed as an ORCHESTRA Service Instance (OSI).

The OMM-Service provides a meta-model and associated rules for the specification of ORCHESTRA
Service Types. Particular emphasis is given to the approach that service modelling is not tied to a
particular platform but shall take place on a platform-neutral level (abstract level). The abstraction from
platform details improves the mapping from functional user requirements, favours re-use of service
specifications for different platforms and enables cross-platform interoperability.

On the abstract level, the purpose and the basic functionality of ORCHESTRA Service Types as seen
by the service consumer is described in an abstract description that should be human-readable. The
RM-OA proposes the service description framework as introduced in section 9.4 and used later on in
the RM-OA for this part. However, there is no formal specification of ORCHESTRA Service Types.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

50/180

Instead, the OMM-Service defines an ORCHESTRA Service Type as a collection of interface types
which specify the externally visible behaviour of an ORCHESTRA Service Type. The concept of an
interface type aims at aggregating coherent functionality for a particular objective (e.g. rendering of
geographic information in a map) such that it may be re-used for other service types. Thus, on the
abstract level an interface type is the unit for re-usability. An interface type itself comprises a set of
operations which are the individual units of interaction between a service provider and and service
consumer. It is specified in an abstract interface specification and uses UML 2.0 as the conceptual
schema language. The OMM-Service proposes dedicated stereotypes for UML classes in order to
customise UML for this modelling approach.

An operation is specified by its signature, i.e. its name and its request and response (result and
exception) parameters. Here the link between the OMM-Service and the OMM-Information becomes
visible: The types of the request and response parameters shall be structured as an ORCHESTRA
Application Schema (OAS) according to the rules of the OMM-Information. A parameter value may thus
be a value of a basic data type (e.g. an integer) but also a collection of feature instances with their
attribute values.

On the platform-specific level, an ORCHESTRA Service Type is represented in an implementation
specification that is tailored to the needs and capabilities of a given platform. A selected platform shall
be specified beforehand in a platform specification.

Derived from the architectural requirement of ―rigorous use of standards‖ (see section 6.3.1) the OMM-
Service assumes that the platform properties and especially the conformance guidelines as specified in
the OASIS Reference Model for Service Oriented Architecture (SOA-RM 2006) are fulfilled. As an ex-
ample, the SOA-RM mandates that the SOA approach of a given platform shall describe how visibility is
established between service providers and consumers whereby visibility is understood as follows:

 The initiator in a service interaction shall be aware of the other parties (awareness), e.g. ef-
fected by means of a discovery mechanism.

Note: This aspect is supported in terms of the Catalogue Service described in section 9.7.5
that shall be available at least in all OSNs that are classified as ―mediated‖ (see section 11.2).

 The participants shall be predisposed to interaction (willingness), e.g. a service provider shall
respond to an interaction request of a service consumer (except in cases of a denial-of-service
attack).

 The participants shall be able to interact (reachability), e.g. it shall be possible to establish a
communication path between the participants.

Note: This aspect is supported by the means for OSN administration. See the Service
Monitoring Service as described in section 9.7.10 that shall be available at least in all OSNs
classified as „managed‖ (see section 11.2).

Such a platform specification shall include a description of the principal way in which the mapping from
the abstract level is performed (e.g. how an operation is represented), how synchronous and
asynchronous interactions specified on the abstract level are principally implemented and how an OAS
is mapped from and to UML to the information model langauge of the platform.

For each service type, the OMM-Service mandates that service mapping from the abstract to the
platform-specific level is to be specified as part of the implementation specification. The main rules that
control the service specification and the mapping are:

 There may be several implementation specifications for one ORCHESTRA Service Type as the
implementation specification is platform-specific. However, the OMM-Service also allows sev-
eral implementation specifications for the same platform by introducing the concept of a service
profile (see below).

 Interface types are not visible on the platform-specific level. Instead, their operations are indi-
vidually mapped upon the action model (SOA-RM term characterising the permissible actions
that may be invoked against a service) of the service.

 All ORCHESTRA Service Types shall support the operations of the interface type
ServiceCapabilities that provide the means to access the meta-information that is associated
with a service (e.g. the supported service type, information about the service provider, the set of

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

51/180

implemented operations). A recommendation for a capabilities schema is provided in Annex B1
―RM-OA rules for OAS-MI‖ of the RM-OA.

 Operations and operation parameters that are marked as optional in the respective abstract in-
terface specifications may be omitted in the mapping to implementation specifications. Thus,
service profiles of ORCHESTRA Service Types may be defined, even for the same platform.
Their action model thus provides a functional subset of the ORCHESTRA Service Type which
is, however, syntacticly and semantically compatible such that generic service consumers (ap-
plication components) may be realised by knowing only the interface types of ORCHESTRA
Service Types and the particular platform characteristics.

 ORCHESTRA Service Types that are classified as OA Services (see below) shall first be speci-
fied on abstract level and then mapped to the platform level. For all other service types, even if
just specified in a platform-specific implementation specification, at least an abstract description
of their basic functionality shall be given.

As a consequence of this approach, a community that applies the OMM to specify their services shall
maintain a well-defined list of ORCHESTRA Service Types that is consistent between the abstract level
and all supported platforms. The RM-OA incorporates as part of its Service Viewpoint in section 9.4 a
description of service types that are derived from functional user requirements. This list is further struc-
tured into architectural service types (so-called OA Services) that are application-domain independent
but indispensable for the operation of an OSN and thematic services (so-called OT Services) that are
tailored towards a given application domain. The RM-OA, being a reference model for an application-
independent architecture, just provides descriptions of OT Services that support thematic applications
across several domains (so-called OT Support Services). Domain-specific services are outside the
scope of the RM-OA.

Specifications of the abstract interfaces of the selected ORCHESTRA Service Types are delivered in
(ORCH-AbstrServ 2007).

7.3 Resources in an OSN and their identification

There are two fundamental resources in an OSN that need dedicated identification schemes:

 ORCHESTRA Service Instances (OSIs) as the basic functional unit, and

 Feature instances as the basic informational unit.

7.3.1 Identification of OSIs

An OSN comprises a set of interacting ORCHESTRA Service Instances (OSIs) running on top of hard-
ware components connected through a network. In order to be able to search for an OSI and call its
operations, a unique identifier of an OSI within an OSN is needed. This unique identifier is also referred
to as the name of an OSI in the following.

The name of an OSI is a logical name which may be generated automatically, i.e. it may not directly be
meaningful to a human user.

In the case of a dynamic OSN environment that supports the dynamic assignment of an OSI to several
OSNs (i.e. the membership of an OSI to one or several OSNs may change during the lifetime of an
OSI) an identifier of an OSI that uses an OSN as namespace is not sufficient. In this case, a globally
unique identifier is required in order to avoid renaming of OSIs during their lifetime. This means that dif-
ferent OSIs within the same OSN or within different OSNs shall have different names. The OSI name
shall be immutable during the lifetime of the OSI.

A recommendation of a naming policy for OSIs that uses the platform as the namespace for an OSI is
described in section 11.3.1, however, the usage of this policy is not obligatory. Other naming policies
may be defined. The selection of a naming policy for OSIs is one of the characteristics of an OSN as
described in the Engineering Viewpoint of the RM-OA (see section 11.1.2).

Note: It has to be distinguished between:

 name of an OSI

 platform-specific identifier of an OSI (e.g. its URI)

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

52/180

 platform-specific address of an OSI (e.g. its IP-address and port)

The focus here is on OSI names and the mapping between OSI names and their platform-specific iden-
tifiers. These tasks are related to an OA Service which is called Name Service and introduced in sec-
tion 9.7.6. The mapping between platform-specific identifiers and addresses is done by platform-
specific mechanisms and is out of scope of this document.

7.3.2 Identification of Features

In the same way as an unambiguous identifier of an OSI is required to refer to that OSI within an OSN,
each feature instance needs to be uniquely identifiable within the OSN. This is required in order to en-
able software components in ORCHESTRA Applications to work with references to feature instances
instead of performing a query each time feature information is needed.

Such a feature instance identifier shall be immutable during the lifetime of the feature instance. This
means that while the values of attributes of a feature may change over time, the identifier assigned to
the feature shall not change.

A proposal of a naming policy for feature instances that uses a Feature Access OSI as namespace is
described in section 11.3.2, however, as for OSI names, the usage of this policy is not obligatory and
other naming policies for feature instances may be defined.

Note that the naming policy of feature instances has to be distinguished from the semantic identity of
two feature instances having different names but possibly representing the same real-world phenome-
non.

7.4 Meta-information

The terms data, metadata, meta-data, metainformation, information, meta-information, and meta-
information are used in different places in the literature, and on the Web.

While most authors clearly distinguish between ―data‖ and ―information‖, the terms meta-data and meta-
information are often used interchangeably. In ORCHESTRA, the meaning of data is only given by the
underlying information model, and certain pieces of data may have very different meanings depending
on the information model. When referring to certain data in the context of a meta-information model, the
RM-OA is actually referring to the meaning given to this data within a model.

In order to avoid confusion, and to account for the fact that all data may have different meanings, the
term meta-information shall be used in all the ORCHESTRA documents whenever a datum is seen in
the context of a meta-information model (see the RM-OA Annex A3). The related terms, including
―metadata‖, ―meta-data‖, and ―metainformation‖ must not be used in the specification parts of
ORCHESTRA documents.

The architectural approach to include meta-information in the OA and in the OMM is provided as part of
the Information Viewpoint in section 8.4. The argumentation and the foundation for this approach are
given in Annex A3 of the RM-OA. A detailed specification of rules and examples is given in Annex B1 of
the RM-OA.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

53/180

7.5 User Management, Authentication and Authorisation

7.5.1 Overview

The access to resources for both feature and service instances is controlled by authentication and au-
thorisation mechanisms. Access encompasses access from human users but also from software com-
ponents. This is handled by three services: the User Management Service (see section 9.7.6), the Au-
thentication Service (see section 9.7.9) and the Authorisation Service (see section 9.7.8), together re-
ferred to as UAA services in the following. An example of their combined usage is described in an OA
pattern in section 9.10.1. The general question how many instances of the UAA services are present in
an OSN and how they are configured is discussed in the context of UAA policies in the Engineering
Viewpoint in section 11.1.5.

The following section just introduces the basic terms and concepts.

Note: Among the variety of security aspects, only the fundamental challenge of how to control the
access to resources in an OSN have been considered in the discussion about architectural
requirements so far. The reason for this selection is that access control in an OSN
is of primary importance when considering cross-border risk management applications.

7.5.2 User Management based on Subjects, Groups and Principals

The major concepts of the ORCHESTRA User Management are subjects and principals.

A subject is an abstract representation of a user or a software component in an ORCHESTRA
Application. Subject attributes are intended to store generic information about subjects (e.g. first name,
last name, address, e-mail, ...).

cd Principals

«type»

OA_Principal

+ id: Integer

+ origin: OA_OSI_Identifier

+ refSubject: OA_Subject [0..1]

+ refGroups: Sequence<OA_Group>

«type»

OA_Subject

+ id: Integer

+ origin: OA_OSI_Identifier

+ principals: Sequence<OA_Principal>

+ attributes: OA_SubjectAttributes

0..*1

Figure 8: Relationship between Subject and Principal

Subjects need to be authenticated. However, the concept of a subject itself cannot be used for the
authentication process. This is mainly because ORCHESTRA aims at supporting multiple
authentication paradigms and mechanisms. Their potentially simultaneous use leads to a number of
implications, e.g. different authentication mechanisms use different subject representations. Thus, a
single subject representation cannot be chosen for ORCHESTRA.

To solve the representation problem, a subject is decoupled from authentication. This decoupling is
done by introducing a further concept called a principal. A principal is an identity of a subject whereas
authentication indicates whether a subject is allowed to use a certain principal. One subject may have
multiple principals as illustrated in Figure 8.

Since each authentication mechanism can have its own way of representing a principal, the UAA
concept defines a superclass OA_Principal that just contains some attributes used for collaboration
purposes (like identifying a principal and referring to the related subject). All attributes that are specific
for an authentication mechanism may then be realised by subclasses of OA_Principal.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

54/180

cd Groups

«type»

OA_Subject

+ id: Integer

+ origin: OA_OSI_Identifier

+ principals: Sequence<OA_Principal>

+ attributes: OA_SubjectAttributes

«type»

OA_Group

+ memberPrincipals: Sequence<OA_Principal>

«type»

OA_Principal

+ id: Integer

+ origin: OA_OSI_Identifier

+ refSubject: OA_Subject [0..1]

+ refGroups: Sequence<OA_Group>

0..*1

1..*

1

Figure 9: Relationship between Subject, Group and Principal

A group is a special subject. A group can have one or more principals (group principals). In addition to
principals identifying the group itself a group can have one or more principals as members (member
principals). This relationship is illustrated in Figure 9.

Member principals are assigned to a group to define memberships of certain principals.

Based on these concepts, user management is the process of creation and management of subjects,
including groups (of principals) as a special kind of subjects. Furthermore, it is up to the User Manage-
ment Service to associate principals with subjects. The creation and management of principals is up to
the Authentication Service.

7.5.3 Authentication

Authentication is the process of verifying the principal of a certain subject. In other words, within an
authentication process a subject proves that it is allowed to act with the corresponding principal.
Generally speaking, this proof can depend on a secret (credentials) that can be, for example:

 what somebody has (key, smart card, …)

 what somebody knows (password, …)

 what somebody is (biometrical data, …)

 the place somebody resides (certain computer, …)

 the skills of somebody (handmade signature)

The result of an authentication process starts a session that is represented by session information (see
section 7.5.5).

Note: As the session information represents the state of the session and must be passed in each
service interaction request, it is an example where stateful services are required (see the assumptions
of a Simple Service Architecture according to ISO 19119 described in section 5.4.3).

Principals are created and managed in instances of Authentication Services. The process of creating a
new principal depends on the authentication mechanism used by the corresponding Authentication
Service instance.

After authentication has successfully been passed the Authentication Service generates session infor-
mation containing the information about which principal has been authenticated.

As an example, consider an OSI of an Authentication Service wrapping an existing Kerberos
authentication. Usually a Kerberos implementation ships with a solution for user management. A user in
the Kerberos user management becomes an ORCHESTRA principal. This principal then will be
associated with the corresponding subject using the ORCHESTRA User Management Service.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

55/180

7.5.4 Authorisation

Authorisation is the process of determining whether a subject is allowed to have the specified types of
access to a particular resource (data or services). This is done by evaluating applicable access control
information contained in a so-called authorisation context.

Note: Up to now, only access control for operations has been considered in the RM-OA.

Usually, authorisation is carried out in the context of authentication. Once a subject is authenticated
through its principal, it may be authorised to perform different types of access. This is carried out
through the concept of permissions that are attached to principals.

A service requests an authorisation decision for a given principal and a given authorisation service con-
text. A service requesting an authorisation decision needs to pass session information containing at
least one authenticated principal of the service requestor as well as the authorisation context. Since
permissions are bound to principals, the Authorisation Service is able to retrieve permissions for a given
principal. There is no restriction on how permissions are associated with principals. This might be done
directly or indirectly using roles, for example.

The connection of permissions and principals is essential to the UAA concept by enabling the decoup-
ling of authentication and authorisation. An Authorisation Service may assign permissions to every
ORCHESTRA principal, regardless of the mechanism that has been used to authenticate it. This possi-
bility is important. If there is a problem with interoperability – maybe because clients do not support a
certain authentication mechanism of a foreign authentication service – they can still use every
ORCHESTRA service as long as the corresponding service provider is willing to assign permissions to
the client principals.

A group (see Figure 9) can be treated as an ordinary subject by Authorisation Service instances. Thus,
assigning permissions to a group does not differ from assigning permissions to any other subject.

Authorisation Services may use different authorisation paradigms. These paradigms can be classified
into lookup and expression-based access control.

Lookup based paradigms use predefined data structures to retrieve authorisation decisions. The most
famous representative is the role-based paradigm.

Example:

A role-based access control (RBAC) system might use the information model illustrated in Figure 10.

cd Authorisation Serv ice RBAC

«type»

OA_Principal

+ id: Integer

+ origin: OA_OSI_Identifier

+ refGroups: Sequence<OA_Group>

+ refSubject: OA_Subject [0..1]

«type»

OA_Permission

+ grant: Boolean = false

«type»

OA_Role

+ description: CharacterString

+ name: CharacterString

+ permission: OA_FeatureCollection

0..*

0..*

0..*

hasRole

0..*

Figure 10: Schema of Role-based Access Control

Expression-based access control systems (EBAC) do not exclusively rely on predefined lookups. More
than that, these systems define a framework to specify authorisation conditions. These conditions are
parameterised and evaluated in order to compute authorisation decisions. Evaluation of expressions is
done by a separated interpreter. This interpreter contains the computational logic and therefore forms

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

56/180

the core of each EBAC.

The most popular representatives of EBAC systems are trust management systems.

7.5.5 Session Information

Session information is created and/or modified by an Authentication Service.

Session information mainly serves as proof that certain principals have been authenticated. Thus, the
creation of session information is done by an Authentication Service after successfully authenticating a
certain principal.

In order to arrive at an authorisation decision a service needs to know under which principal a service
requestor acts. Therefore the requestor of a service has to pass the session information in every inter-
action with the service instance. Interpretation of the session Information is performed by the invoked
service instance.

Verifying and extracting information from session information is a process which is specific to the way
session information is treated, e.g. as a session key or as a session envelope. Thus, each service
needs to provide a capability, possibly called session handler or session interpreter, which is able to in-
terpret session information as passed from the service requestor.

7.6 Approach to Integration of Source Systems

The OA explicitly takes into account the fact that existing systems and services have to be integrated
when designing an OSN. In this respect, it does not matter whether these systems have existed for a
long period of time, possibly realised with older technologies, or whether they have been recently de-
signed with modern technology. Thus, the OA uses the term source system to refer to such systems in-
stead of the often-used term legacy system.

A source system is a container of unstructured, semi-structured or structured data and/or a provider of
functions in terms of services. The source systems are of a very heterogeneous nature and contain in-
formation of a variety of types and and in a variety of formats.

Examples are:

 database containing structured data (e.g. numerical model data), i.e. information that is organ-
ised so that it can be easily located, searched, and updated

 database containing semi-structured data (e.g. an XML database)

 database containing unstructured data (e.g. a document archive or image database)

 a system providing services (e.g. a map server)

 Web site, i.e. a provider of a set of html-documents accessible through the W3C http protocol.

For clarification, as illustrated in Figure 11, the OA furthermore distinguishes between an

 External Source System as a source system that does not provide its data and functions through
an ORCHESTRA-conformant interface, and

 ORCHESTRA Source System as a source system that provides its data and functions through
an ORCHESTRA-conformant interface, in Figure 11 called ORCHESTRA_SourceSystem_IF as
an example. This interface shall be built according to the rules as specified in the ORCHESTRA
Service Meta-model, in Figure 11 represented by the meta-class OMM_InterfaceType as speci-
fied in section 9.2.4.1

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

57/180

cd Source System

ORCHESTRA_SourceSystem

SourceSystem

ExternalSourceSystem

«interface»

ORCHESTRA_SourceSystem_IF

«MetaClass»

OMM_InterfaceType

transformation

process called

"source system

integration"

1..*

«provides»

Figure 11: External and ORCHESTRA Source Systems

Each ORCHESTRA Source System is associated with at least one External Source System.

Thus, the major development process for an OSN designer is the process of transforming an External
Source System into an ORCHESTRA Source System which is called source system integration.

The OA approach for source system integration is specified in the RM-OA Service Viewpoint in section
9.10.2 as part of the recommended patterns of OA Service usage. The consideration of source systems
for the OMM is specified in the RM-OA Information Viewpoint in section 8.5.

7.7 Service Interaction Modes

ORCHESTRA Services will support at least two interaction modes at the conceptual level for the proc-
essing of their operations:

 Synchronous mode: In this mode, the requestor principally waits for the response and the re-
sponse contains the requested data in its output parameters. This mode is usually applied for
all operations with a relatively short response time.

 Asynchronous mode: In this mode, the requestor just issues the request for the operation, con-
tinues its work in parallel and is asynchronously informed about the availability and a reference
to the results. This mode is usually applied for all operations with a longer response time.

Note: These modes are described on the conceptual level which is reflected in respective interac-
tion interfaces of the abstract specification (see sections 9.6.2 and 9.6.3). It does not imply any con-
straints on the application programming interface in an implementation. This means that a synchronous
operation on the conceptual level may be implemented in an asynchronous way and vice versa.

7.8 Interoperability Between Different Service Platforms

Conceptually, there are the following two possible ways to map an OSN onto service platforms:

1. There is exactly one platform assigned to the OSN. In this case, all interactions between all
OSIs that participate in the OSN shall follow the rules of this platform (see Figure 12) with the
dotted lines representing the logical interaction relationships between the OSIs.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

58/180

Figure 12: OSI interactions in one platform domain

2. There are several platforms assigned to the OSN sub-dividing the platform into several platform
domains. In this case, all interactions between all OSIs that participate in the OSN and belong
to the same platform domain shall follow the rules of the respective platform. Furthermore, it
must be ensured that all interactions between OSIs that belong to different platform domains
are made possible by the provision of respective service platform gateways (see Figure 13). An
example for such a situation is a gateway that maps between a CORBA-based platform and
W3C Web Services.

Figure 13: OSI interactions across platform domains

Note: Currently, the RM-OA is restricted to possibility 1, i.e. an OSN may only run on top of one
platform that is specified in a given platform specification.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

59/180

8 Information Viewpoint

8.1 Overview

The Information Viewpoint of the ORCHESTRA Reference Model specifies the modelling approach for
all categories of information the OA deals with, including their thematic, spatial and temporal character-
istics as well as their meta-information. The ORCHESTRA Reference Model does not specify an infor-
mation system. Instead it provides a framework for distributed information systems and ORCHESTRA
Applications based on a service-oriented architecture. As such, the Information Viewpoint of the
ORCHESTRA Reference Model provides an integrated specification framework in order to support a
formal specification of conceptual ORCHESTRA information and meta-information models in the con-
text of ORCHESTRA Applications.

This specification framework encompasses the following levels:

 source system level

 feature level

 schema level

 meta-model level

 semantic level

The source system level comprises all the existing systems that contain relevant data or provide rele-
vant services in order to fulfil a particular objective of an application or end-user task (see also the
ORCHESTRA functional domains in section 7.1).

The feature level provides an informational view of the data and services of the source system level ac-
cording to the rules specified for ORCHESTRA features (see section 8.2). Note that no semantic con-
cepts are considered on this level.

The schema level delivers the structuring of information on the feature level in terms of application
schemas. Application schemas provide formal specifications of ORCHESTRA Information Models.

The meta-model level provides rules to define application schemas.

The semantic level provides semantics to the information specified in the other levels through explicit
consideration of ontologies defined and shared in user communities.

The following sections describe the framework for ORCHESTRA Information Models in two steps:

 In a first step, just the meta-model, the schema and the feature level aspects are considered. For
these levels, a specification framework for information models is specified (see section 8.3) and
then extended by the consideration of meta-information (see section 8.4).

 In a second step, the specification framework is enriched by considering aspects of the source
system level (see section 8.4.4) and the semantic level (see section 8.6).

8.2 The ORCHESTRA Definition of a Feature

One basic concept of the RM-OA Information Viewpoint is the feature, where a feature is an abstraction
of a real world phenomenon perceived in the context of an ORCHESTRA Application. A digital repre-
sentation of the real world can be thought of as a set of features. These individual features (or feature
instances) are grouped into feature types where all instances of a certain type are described by com-
mon characteristics. The characterisation of features into feature types typically depends on the particu-
lar application and is captured in an application schema. This process is shown in Figure 14.

Note: Features have often been understood just as geographic features, i.e. as a feature associ-
ated with a location relative to the Earth. The ORCHESTRA definition of features explicitly goes beyond
geographic features. It includes tangible objects of the real world but also abstractions, concepts or
software artifacts (e.g. documents, software components of IT systems) that may have a physical rep-
resentation only in software systems. These features may, but need not, have spatial characteristics.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

60/180

The ORCHESTRA understanding of a ―real world‖ explicitly comprises these hypothetical worlds or
worlds of human‘s thoughts.

Figure 14: From phenomena to feature instances (derived from ISO 19109)

Common concepts of all application schemas are expressed in the ORCHESTRA feature model as
specified in the ORCHESTRA Meta-Model (see section 8.7). Relationships between feature types are
feature association types and inheritance. Properties of feature types are feature attributes, feature op-
erations and feature association roles.

Any feature may have a number of such properties. Any feature may have a number of attributes, some
of which may be numeric, a spatial geometry, meta-information, temporal information, etc.

Examples of features types are earthquake, forest fire, road, building, water protection area, and moni-
toring station, but also sensor observation, measurement value, document, and equation.

Examples of feature instances are

 for the feature type ―earthquake‖ the Indian Ocean Tsunami December 26, 2004,

 for the feature type ―water protection area‖ the ―Wasserschutzgebiet Seewiesenquellen
ID=3463‖ in the German Federal State of Baden-Württemberg,

 for the feature type ―forest fire‖ the ―forest fire near Fréjus in southern France started on July 6,
2005‖, or

 for the feature type ―document‖ the ―RM-OA Version 1.9 dated July 22, 2005‖.

8.3 Framework for ORCHESTRA Information Models

The framework for ORCHESTRA information models distinguishes between

 the ORCHESTRA Meta-Model (OMM) (for information) on the meta-model level,

 ORCHESTRA Application Schemas (OAS) on the schema level and

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

61/180

 ORCHESTRA Feature Sets (OFS) on the feature level.

The OMM specifies the common specification framework for all feature-based application schemas
used within ORCHESTRA. It is a meta-model and defines rules for the specification of an OAS. An
OAS formally specifies the feature types and their properties which are relevant for a specific informa-
tion model used in an OSN. It is expressed using the conceptual schema language UML.

The OMM is an evolution of, but it is not a profile of the General Feature Model (GFM) of ISO 19109.

A set of feature instances following the information model formally specified in an OAS is called an
ORCHESTRA Feature Set (OFS).

Figure 15: Framework for ORCHESTRA Information Models

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

62/180

8.4 Framework for ORCHESTRA Meta-Information Models

8.4.1 Overview

The following definition for meta-information, which is derived from the principle ideas as described in
the Annex A3, is applied for the RM-OA:

Meta-information is descriptive information

about resources in the universe of discourse. The structure

of the meta-information is given by a meta-information model that depends on a particular purpose. The
terms used in this definition are used in the following sense:

 Resources are either functions (possibly provided through services) or data objects.

 Universe of discourse: view of the real or hypothetical world that includes everything of interest
(see ISO 19101 and also section 8.2).

 Particular purpose: A purpose of meta-information describes the goal of the usage of the re-
sources. The particular purpose also determines the set of resources in the universe of dis-
course that are to be considered.

 Meta-information model: a meta-information model represents an implementation of a concep-
tual model for meta-information. It is represented by an ORCHESTRA Application Schema for
Meta-information (OAS-MI).

The above definition indicates that a resource by itself does not necessarily need meta-information. The
need for meta-information arises from additional tasks or a particular purpose (like catalogue organisa-
tion) where many different resources must be handled by common methods.

Common characteristics of resources in the context of a specific purpose are to be described by means
of a meta-information model (concrete by an OAS-MI) that shall be suitable and sufficient in order to de-
fine respective algorithms. This means:

1. All information needed to fill up the meta-information model is ―meta-information‖ for this par-
ticular purpose.

2. Only attributes of the resources that are also specified in a particular meta-information model
are candidates to be meta-information attributes. Specific attributes of the resources that are
not specified in a meta-information model are consequently not considered as meta-information
for this particular purpose.

3. Meta-information may also be implicitly derived from the existence or content of the resources
without requiring that this information be explicitly specified as attribute of the resources. Ex-
amples here are the results of annotation services for documents or services that generate
meta-information according to a given ontology. This process is known as ―classification‖ in the
domain of the Semantic Web.

Thus, the ORCHESTRA Architecture does not define ―the‖ single meta-information model which is valid
for any purpose. Instead, in the RM-OA Annex B1, ORCHESTRA defines rules which a meta-
information modeller will have to apply to build OAS-MIs related to a dedicated ORCHESTRA Applica-
tion Schema (information model).

The development process of a meta-information model for data and/or services is guided by the fact
that it is necessary to know the purpose of the meta-information. The following approach should be
taken:

1. Find the purposes (use cases/functions) in the context of users and/or machines like search, re-
trieve, etc. (see below).

2. Develop the meta-information model(s) for data and/or services in the respective context.

3. Based on the ORCHESTRA meta-information rules specified in Annex B1 and on the above
(step 2) developed meta-information model specify your OAS-MI.

In order to simplify the above process for writing OAS-MIs, Annex B1 offers several example OAS-MIs
as a recommendation which can be combined in arbitrary ways to cover a great variety of real world

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

63/180

needs.

The RM-OA defines a set of rules for specifying OAS-MIs for the following ―well-known‖ particular pur-
poses that are further explained in the subsequent sub-sections:

 discovery (including search and navigation)

 access, storage and service invocation

 integration (collaboration, including orchestration and choreography of services)

 interpretation

 user profiling

 authentication, authorisation, and accounting (AAA)

 quality control/management

 transactions, synchronisation and locking

 OSN configuration and management

8.4.2 Description of Purposes

8.4.2.1 Purpose ―Discovery‖

The purpose ―discovery‖ encompasses methods to find relevant resources within a set of resources,
namely search and navigation.

The procedure of searching starts with formulation of a search query that is submitted to the search en-
gine. The search engine returns a number of resources that it has identified as relevant with respect to
the query (the search results). Then, the initiator of the query can select resources from the results
and/or refine the query.

Examples of meta-information supporting the search procedure are keyword lists, full text index, bound-
ing areas or gazetteer mapping. Examples of services are the Document Access Service and the Gaz-
etteer Service.

Navigation is the process of finding relevant information by browsing within navigational structures.
These are provided either by a static or a dynamic catalogue. Examples of meta-information supporting
navigation are catalogue entries or catalogue structures; an example of a service is the ―Catalogue
Service‖.

Discovery of services requires a specific meta-information model and dedicated query languages to ac-
cess the meta-information entries. The type of meta-information needed depends on the quality of the
discovery process: discovery might be user driven and based only on syntactic attributes, or it might be
automated and based on semantic descriptions.

8.4.2.2 Purpose ―Access, Storage and Service Invocation‖

The purposes ―access‖ and ―storage‖ are concerned with meta-information needed to access and store
data such as exact location information, access protocol, login information, and access rights (see, for
example, the authorisation context of the Authorisation Service as described in section 9.7.8). The stor-
age and retrieval will be handled by a ―data access service‖ (in the case of the RM-OA e.g. the Feature
Access Service as described in section 9.7.1), so that data access is a specialisation of a service invo-
cation.

Specific meta-information is needed for the purpose of automated ―service invocation‖ based on se-
mantic service descriptions (e.g. OWL-S or WSMO). This requires mapping (also referred to as ground-
ing) of the abstract specifications to concrete service invocation protocols (e.g. SOAP, the protocol for
Web Services).

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

64/180

8.4.2.3 Purpose ―Integration‖

The purpose ―integration‖ comprises aspects of data integration and service integration.

Meta-information for data integration incorporates the description of data, its location, the mappings be-
tween different data representations, and data retrieval.

Meta-information for service integration is needed to support composition and interoperability of ser-
vices. It comprises the description of the service interfaces and functionality.

As an example for an integration requirement, a simulation service based on a flood forecast model and
a database containing meteorological data could be imagined. It should be possible to use the data-
base as input for the simulation model and the model‘s output as input for any other integrated service.

Service composition is the process of selecting, combining and executing of services in order to
achieve a user objective; from the user point of view, the composition is a new service.

A composition is based on a choreography, which defines the rules to communicate with each service
participating in the composition in order to consume its functionality. Compositions of services can be
distinguished by the time at which the composition is determined: proactive composition (determined at
the design phase) and reactive composition (built dynamically at the time the new service is requested).
Meta-information is needed for both patterns.

Service interoperability means mutual usage of open service interfaces and protocols across institu-
tional boundaries. However, internal details of the organisation of an institution should not be made
publicly visible. Therefore meta-information is required in order to describe the external behaviour of
services such that no information about internal business processes is exposed.

Service mediation resolves incompatibilities that arise when performing tasks concerned with the pur-
pose of discovery, invocation or orchestration of services. For instance, in a discovery scenario, queries
(formulated by the requestor) and capabilities of services (formulated by the service provider) may be
incompatible because they use different terminologies. Incompatibilities can arise on the data level
and/or the process level; at the data level, mediation between different terminologies requires solving
the problem of ontology integration. At the process level, mediation between heterogeneous communi-
cation patterns is necessary in order to resolve possible mismatches, e.g. by generation of dummy ac-
knowledgements.

8.4.2.4 Purpose ―Interpretation‖

The purpose interpretation is concerned with the support of explanation and understanding of resources
(data and services).

In many cases resources can be interpreted only by investigation of vast amounts of implicitly ex-
pressed semantics. Thus, explicit descriptions of the semantics shall be added in order to make data
and services self-explanatory and enforce their semantic integration.

A real world example is given by a user needing some information about contaminated sites and their
classification according to risk categories. Although he has no access to the database containing all the
measurements of toxic substances, in some cases he might have to explain the origin of the category
number. Therefore he needs the specific measurement values along with the corresponding critical val-
ues that caused this classification.

8.4.2.5 Purpose ―User profiling‖

It is necessary to provide views on data and services and interaction procedures to support different
types of users on a per-user or a per-task basis.

Users and tasks will be described in a way that appropriate views on data and services can be provided
for different users and tasks.

The required meta-information relates to the way users are represented in an ORCHESTRA Application
as subjects (see section 7.5.2). For example meta-information might be user information (user group,
service provider, service/data integrator, administrator, etc.) and a particular language.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

65/180

8.4.2.6 Purpose ―OSN Configuration and Management‖

Each OSN has to be monitored and administered.

Meta-information for configuration management of the OSN comprises descriptions of the topology of
services of the entire OSN, e.g. which services are available at which sites.

Meta-information for the OSN monitoring comprises information on the actual load, service statistics as
well as execution traces of services, which are important especially to document and trace execution of
services which have been composed reactively.

In order to be able to fulfil this task, all of the services within the OSN have to provide at least their self-
description as meta-information.

Means for monitoring, configuration and administration of the OSN have to be provided in order to facili-
tate this task.

8.4.2.7 Purpose ―Authentication, Authorisation, and Accounting (AAA)‖

The purpose ―accounting, authentication, and authorisation (AAA)‖ is concerned with meta-information
needed for controlling access to computer resources, enforcing policies, auditing usage, and potentially
providing the information necessary to bill for services and/or information. Therefore, AAA requires a
special set of meta-information that is directly related to the authorisation paradigm and is of little to no
use for anything else. This special set of meta-information makes up the authorisation context.

An authorisation context is a set of information used by the Authorisation Service (see section 9.7.8) to
determine the authorisation decision for a given request. The authorisation context can contain, for ex-
ample, the requesting principal(s), name of the invoked operation, etc.

Authentication is a method for identifying the acting subject (representing users or software
components in an ORCHESTRA Application) in an OSN. Authentication systems provide answers to
the following questions:

 Who is the subject ?

 Is the subject really who he/she purports to be?

Actual mechanisms used for the authentication can be as simple (and insecure) as a plain-text
password challenging system or as complicated as the Kerberos system. All authentication systems
rely on at least one of these three factors:

 Something you know, such as a password or a personal identification number. This
assumes that only the owner of the account knows the password or the personal
identification number needed to access the account.

 Something you have, such as a smart card, a token, or one end of a quantum key generator.
This assumes that only the owner of the account has the necessary smart card or token
needed to unlock the account, or that he/she is the only person able to access this end of a
quantum key generator.

 Something you are, such as fingerprint, voice, retina, or iris characteristics.

The ORCHESTRA Architecture does not impose any limitations on the number and type of
authentication systems used within OSNs. Unless such limitations are imposed on the implementation
level, every service provider in a typical OSN will be free to use its own authentication system.

Typical authentication-related meta-information includes a principal, which is used by the system for
authorisation and accounting purposes and therefore should be uniquely assigned to a well-known
subject, and some kind of information that is presumably available only to that subject that attempts to
authenticate a principal (e.g. ‖password―). Independent of the authentication system, at least one
centralised or distributed database with user identifiers must exist. In other words at least one OSI of an
Authentication Service shall exist in an OSN that is classified as ―access-controlled‖ (see the discussion
on OSN characteristics in section 11.1). Depending on the authentication system, this database will
also contain shared secrets. Subjects must prove their authenticity by supplying the correct secret.
Also, more sophisticated authentication-mechanisms (e.g. one-way hashes of a shared secret, actor‘s
public key, a list of single-use keys, etc.) taking the place of the ―username-password mechanism‖ are

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

66/180

imaginable.

In security-critical applications, authentication has to take place before granting access to the requested
service operations. As a complex (and perhaps extreme) example, an organisation may wish to
implement an authentication mechanism involving a retina- and a fingerprint-scan as a pre-requisite for
using their PCs, use quantum key encryption over a quantum channel to secure transmission channels
and to assure the end-point‘s identity, restrict access to specific hosts, and finally use some more
classical means of authentication before actually granting access to specific service.

Authorisation protects resources by restricting usage of those resources to those principals that have
been authorised to use them. The authorisation process is used to decide if that subject is allowed to
make use of a specific resource. In order to identify those subjects the authorisation process makes use
of the authentication process.

Apart from a static authorisation list the authorisation-decision might also be based on certain dynamic
restrictions like time or date constraints, maximum number of concurrent accesses or location-based
restrictions (e.g.: no rights granted to remote accessing actors). The types of permission (operation
permissions, time-slice permissions) actually supported depend on the implementation of the
Authorisation Service (see section 9.7.8).

Authorisation related meta-information may be as simple as a static authorisation list maintained on a
central authorisation server, or as complex as a hierarchical set of dynamic rules involving position in
an organisation, time or date constraints, maximum number of concurrent accesses or some other
measure for service load, billing, or location based restrictions. Authorisation related meta-information is
delivered via or referenced within the authorisation context.

The authorisation context is passed to the authorisation service by the service requesting the
authorisation decision.

Note: Authentication and authorisation are critical factors for joining OSNs. Whenever two OSNs
are joined, a compromise will have to be made concerning the allowed access levels for actors
authenticated by the ―other‖ OSN. In the case of the complex example described above, in-house
security policy may completely prevent direct merging of ―their‖ OSN with any other network.

Accounting is the process of gathering information about the usage of resources by subjects. This can,
for example, include duration of usage or size of the retrieved resources. Accounting information can
further be used to support billing, fair-use, planning and many other purposes. In that sense accounting
information can be used by the authorisation process in order to provide a basis for the granting of
usage rights. The requirements on the actual implementation define the necessary pieces of
information and obviously the implemented logic inside the AAA-related and user management
services.

Meta-information related to accounting is usually a combination of the principal identifying a subject
(e.g. the login-name), and some measure for resources utilisation, such as ‖amount of data downloaded
from the service―, ‖time required to calculate the answer―, ―duration the resource was used during
working hours‖, ‖tons of emitted CO2―, or ‖m

3
 of water used for irrigation―. Depending on the business

model, accounting information may be connected to some kind of a group identifier (―organisation‖), or
even be completely anonymous.

Note: Due to a lack of user requirements on accounting, dedicated accounting services and meta-
information models are currently out of scope of the RM-OA.

8.4.2.8 Purpose ―Quality control/management‖

The purpose ―quality control/management‖ is concerned with meta-information needed to enhance
quality of information and services as well as to increase trust in information, data and services.

Quality control/management is needed when certain criteria need to be fulfilled by data and/or services.
Quality usually has different aspects depending on whether services or data are considered. Specifi-
cally, quality control is important to every actor in every OSN and highly relevant whenever data and
services have to meet certain legal requirements. Therefore working with data that have no quality in-
formation may be in some cases just as bad as working with randomly generated data.

Service quality in the ORCHESTRA sense has to deal with infrastructure properties. Examples of these
are response time or availability of services. Another aspect that can be considered to be an attribute of

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

67/180

service quality is the fee one has to pay to use the service. Quality regarding the output of services,
whether it‘s back to the actor invoking the service, passed on to another service or stored in an internal
data repository is considered to be the data quality of the service. This type of quality is important
especially in the context of service chaining when accumulation of errors becomes an issue. A valid
source of information for this can be found at (W3C 2003).

Data quality becomes an issue when working with data. Quality may refer to many different aspects and
only an open list can be given to characterise them in the context of data:

 absolute and relative errors of measurement data

 computational errors of data processing services

 numerical issues

 minimum and maximum degree of detail in the values of a data set on a specific service

 sensitivity to error accumulation

 refresh period of the data (if it‘s not just a repository for old data)

Obviously the list of criteria for data quality can become quite long but this degree of detail is not always
needed in order to classify the quality of data. The meta-information entries required depend on the par-
ticular requirements of the ORCHESTRA Application.

Quality management also means trust management. These are tightly coupled. Trust becomes an issue
whenever authenticated and authorized but unknown (or not well-known) parties join a network. When
providing their data and services to the network they can and must apply meta-information regarding
the quality of what they are exposing. But how can an actor be sure if this meta-information really
represents the quality of the actual data and services? The actor‘s only choice is to either trust or dis-
trust the actor that attached the quality meta-information. Besides deciding whether to trust an actor or
not, degrees of trust can also exist. Many different information items can be considered important for
trust relationships, including

 Information about the actor: e.g.: name

 Certificates the actor has been granted

 The organisation that the actor represents

Note 1: In order to trust an actor, that actor must be identified first, so a trust relationship relies on
the authentication process. Trust relationships are not mandatory but are highly recommended to en-
sure the quality of a network. A network that does not foresee trust management can be seen as a net-
work where every actor is fully trusted by default.

Note 2: For a discussion on trust in a service environment, see also (OASIS 2006).

Examples for data/information-related quality meta-information: This depends on the data or information
item itself. It is important that each of them has attached meta-information. For example a measure-
ment value within an air quality monitoring network can have attached meta-information about its verifi-
cation status (checked/unchecked) and validation status (valid/invalid).

Examples for service-related quality meta-information: The most important type of service-related qual-
ity meta-information is the one concerning guaranteed availability of service and guaranteed response
times. For example, a single server has far lower guaranteed availability than a redundant server farm,
and a huge grid may be able to guarantee answer times (with constant data quality) practically inde-
pendent of load. Other important aspects of service-related quality meta-information include ―guaran-
teed availability of the service for next N years‖, ―versioning‖ (which implies availability of all data for
long periods – possibly the whole service lifetime), and ―transaction safety‖.

8.4.2.9 Purpose ―Transactions, Synchronization and Locking‖

The ORCHESTRA Architecture defines a set of services that are built with interoperability in mind. In
order to use the ORCHESTRA Architecture to its full extent, different services need to be transparently
combined into new ―(virtual) compound services‖. Using such service chains (combinations) to the full
extent requires mechanisms and meta-information that support building transaction-secure composed
operations on the OSN level. These mechanisms can be further separated into Transactions, Synchro-

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

68/180

nisation, and Locking.

Transactions are needed when certain tasks that involve resources need to be carried out and it is im-
portant to ensure that the resources are not altered during this process.

Synchronisation is needed to secure that data/information are in a consistent state. That means inter-
connected data have to be kept synchronous.

Therefore, updating distributed data without transactions is dangerous in two ways:

 First, distributed data will inevitably become ―out of sync‖ during the update procedure. Access-
ing the data while they are still ―out of sync‖, can lead to unpredictable outcomes.

 Second, the update procedure may break during execution, leaving the data in an unsynchro-
nised state. Consequently, application programmers have to invest a considerable amount of
work in checking the data consistency and assuring that the update is eventually completed.

Neither of these problems occurs if all the changes are encapsulated within a single transaction.

A transaction is a logical group of operations that succeeds or fails as a group. This means that either
all tasks within a transaction are carried out or none are. That way a transaction appears to be atomic.
A lock is a mechanism to (temporarily) restrict the access rights to a resource for certain actors. Locking
is used to guarantee the atomicity of transactions.

Note: Care must be taken when using a locking concept in order to avoid deadlocks.

Examples of meta-information related to Transactions, Synchronization and Locking include ―start
transaction‖, ―end transaction‖ and ―abandon transaction‖ signals, and various exceptions signaling that
a service is unable to perform a transaction (e.g. transaction unsafe services), had to abandon a trans-
action because part of it did not work out (e.g. one service in the chain isn‘t transaction safe), or that a
service is unable to respond to a request because it is currently busy with an transaction.

In addition, each transaction/synchronization request to a transaction safe service produces a lock that
is unique with respect to at least this service and thus also unique with respect to OSN (because ser-
vice has unique identifier with respect to OSN). In order to minimize problems with deadlocks, it may be
advisable to assign an OSN-wide unique identifier to each transaction, maintain a globally accessible
list of transactions and locks they are causing, and enforce an OSN-wide policy on maximal acceptable
transaction times.

8.4.3 Framework Specification

The framework for ORCHESTRA Meta-Information Models (see Figure 16) is specified according to the
general considerations for meta-information as described above. It distinguishes between

 an ORCHESTRA Meta-Model (also used for meta-information) on the meta-level,

 ORCHESTRA Application Schemas for Meta-information (OAS-MI) on the schema level, and

 Meta-Information Bases on the feature level.

The Meta-Information Base is a store for meta-information elements. The store might be persistent or
transient, depending on the purpose of the meta-information usage. An example of a persistent store is
a catalogue for discovery or navigational purposes. An example of a transient store is the usage of
meta-information that is extracted on-the-fly in order to support mediation tasks. The Meta-Information
Bases contain information that describes features in the form of an OFS according to a well-defined
purpose (e.g. navigation, search). There may be several Meta-Information Bases in an OSN.

The structure of these Meta-Information Bases is defined in dedicated ORCHESTRA Application
Schemas for Meta-Information (OAS-MI) as a special variant of OAS applied to meta-information. As
the Meta-Information Bases are generated according to some purpose, there may be different OAS-MIs
for different purposes. ORCHESTRA does not specify one conceptual schema for meta-information
models for all tasks. Instead, the ORCHESTRA Meta-Information Model consists of the set of all OAS-
MIs that are defined according to the purposes identified above.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

69/180

Figure 16: Framework for the ORCHESTRA Meta-Information Model

Depending on the purpose, an OAS-MI may be related to an OAS through some relationships between
the two models, e.g. the OAS-MI elements may be attribute types of feature types or they may be fea-
ture types themselves that are associated with other feature types.

The meta-model for the OAS-MI is the OMM with dedicated statements on the role of attributes that are
considered as meta-information for a particular purpose (see section 8.7.4). Thus, all rules for OAS also
apply for OAS-MI.

Dedicated rules for the definition of OAS-MI are defined in Annex B1 of the RM-OA.

8.4.4 OMM Extensions for Meta-information Association Types

In order to allow one OMM_FeatureType instance to serve as meta-information for another
OMM_FeatureType instance another subclass, OMM_MetaInfoAssociationType, is added to
OMM_AssociationType (see Figure 17). This means that in an OAS, classes marked as feature types
can be associated with each other using instances of the OMM_MetaInfoAssociationType.

Note 1: The list of subclasses is not complete in Figure 17 as new or refined classification schemes
could be applied, e.g. different variants of aggregation.

Note 2: This approach covers meta-information for Features, Feature Collections and Feature Types
as all three terms can be subsumed under the term feature.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

70/180

Figure 17: Subclasses of OMM_AssociationType

8.5 Inclusion of the Source System Level

8.5.1 Extension of the Information Model Framework

The RM-OA specifies a service-oriented architecture that is dedicated to the integration of systems pro-
viding both information and services (see section 5.4.3). For this purpose, ORCHESTRA offers means
and services for syntactic and semantic interoperability. Thus, the RM-OA specifies an architecture for
a ―system of systems‖ or ―networked systems‖. These systems may already exist, whether implemented
in older technologies (―legacy systems‖) or in more recent technologies, or they may already be built
based on ORCHESTRA services.

Regardless of their structure, their technology, their information or their services, these systems are
called ―source systems‖ in the sequel. They provide the source of information and services to be inte-
grated into an OSN.

Source systems are of a very heterogeneous nature with respect to their structure and content. Exam-
ples of source systems are relational or object-oriented databases, information systems, document ar-
chives, map servers, Web sites and sensors. As a consequence, the interfaces to access the informa-
tion contained in a source system or to call a service offered by a source system are very diverse. Al-
though they are sometimes based on individual de-facto or de-jure standards (e.g. SQL, JDBC/ODBC,
CORBA, RMI, Web Services, .NET), there is no standard interface for the integration of source systems
as a whole.

Figure 18 illustrates the consequences for the information model framework when explicitly taking the
source system level into account.

The majority of source systems do not comply with the ISO, OGC or ORCHESTRA understanding of a
feature, nor is their information model specified according to the respective feature models. In order to
allow ORCHESTRA services to process this information, data and information of the source systems
have to be converted into an OFS according to an OAS. Whether the resulting OFS is persistently
stored or just maintained in a transient manner depends on the implementation architecture and the
task to be fulfilled. The only requirement on source systems is that (possibly through some software
adapter) they may offer their data and/or functions in a way that complies with the OMM.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

71/180

Figure 18: Inclusion of the Source System Level into the
ORCHESTRA Information Model Framework

Furthermore, before ORCHESTRA services may access the information of the source systems, they
have to be known in an OSN, either by means of an explicit registration step initiated by the source sys-
tems or by means of a discovery process initiated by OSN components. For this purpose, meta-
information about the source systems, their information and/or their services is required.

This meta-information has to be extracted from the source systems, either by an explicit delivery proc-
ess initiated by the source systems or their providers, or automatically by some extraction (annotation)
process of meta-information initiated by a software component in an OSN. In any case, the extraction of
meta-information is guided by the respective OAS-MI specifically designed for this particular purpose.

Note: The process for converting source system information into an OFS and the process for ex-
tracting meta-information about source systems for a particular purpose are independent processes.
They may be performed in an isolated manner (e.g. just discovery based on provided meta-
information), subsequently (e.g. firstly discover the source system using the meta-information provided,
and secondly access to the source system information via the OFS) or in parallel (e.g. offline transfor-
mation of a source system into an OMM-compliant information system).

8.5.2 Scenario for Data Interchange related to ISO 19109

ISO 19109 specifies two patterns for the interchange of information between systems to be supported:

 Data interchange by transfer: this is the more traditional model where only the data along with
the application schema describing its structure are exchanged between the two partners;

 Data interchange by transaction: in this usage pattern, the communication protocol for querying
or modifying data is also specified allowing systems to communicate directly.

For the ORCHESTRA Architecture, being a service-oriented architecture, the data-interchange-by-
transaction pattern will be used.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

72/180

Figure 19: Ad-hoc use of published feature sets and application schemas

The descriptions in ISO 19109 can be read in a way that data interchange according to that Interna-
tional Standard requires agreement of all parties involved in the interchange over the application
schema. Within the ORCHESTRA Architecture a typical usage scenario will be that a source system
provider will publish its data (OFS) and the application schema describing it (OAS) without consulting
most potential users of the data. If a potential user then discovers the OFS/OAS through catalogues,
carries out an assessment of the usability of the feature set for his task and decides to use the data,
this is then considered as an agreement (ex-post) over the application schema to be used in the data
interchange, too.

This scenario is illustrated in Figure 19

8.6 Inclusion of the Semantic Level

8.6.1 Ontologies

The semantic level provides semantics to the information specified in the other levels, e.g. through ex-
plicit consideration of ontologies defined and shared in user communities.

An ontology is an explicit, formal specification of a shared conceptualisation (Studer et al 1998). On-
tologies may be thought of as a formal representation of the knowledge associated with a particular
subject area (domain) or task. Their ultimate purpose is to enable machine understanding, which in turn
provides the potential for data and service interoperability.

8.6.1.1 Ontology Classes

Ontologies may be broadly classified as listed in Table 3 (ORCH-D2.3.5 2006). Domain and task on-
tologies capture knowledge at a level of abstraction free from implementation concerns – that is, they
reflect the pure nature of the domain or task. The application and data ontologies are descriptions of in-
formation system implementations, and are only necessary if domain and task ontologies cannot be
mapped directly to these implementations. Domain ontologies are intended to provide a source of pre-
defined concepts for use with task ontologies. Task ontologies will typically cross domains and there-
fore draw concepts from more than one domain ontology.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

73/180

Ontology
Class

Definition

Domain
Ontology

A formalisation of the knowledge in a subject area (domain) such as topography,
ecology, biology, flooding, etc.

Task Ontology A formalisation of the knowledge necessary to solve a specific problem or task but
abstracted above the level of a specific situation or organisational context, for ex-
ample performing the task of monitoring fresh water quality.

Application
Ontology

Contains knowledge for a specific application designed to complete a task in a
specific situation and organisational setting, such as the task of monitoring water
quality as performed by the Environment Agency. Such ontologies will contain lit-
tle knowledge that is directly reusable by other organisations and serve to provide
a semantic interface between the domain and task ontologies and the application.

Data or Ser-
vice Ontology

Describes a service or data source and may be seen as a special type of an appli-
cation ontology.

Table 3: Ontology Classes (ORCH-D2.3.5 2006)

Within the RM-OA, ontologies of these classes may be taken into account as follows:

 Domain Ontologies may be used in order to provide a semantic reference for ORCHESTRA In-
formation Models and ORCHESTRA Meta-Information Models.

 Task Ontologies may be used in the context of service chaining and workflow modelling and will
be considered as part of the RM-OA Service Viewpoint specification.

 Application and Data Ontologies may be used to support the integration of source systems.
Here, available application or data ontologies are meta-information for the source systems.
Thus, they will be considered as part of the RM-OA Information Viewpoint in the context of

- the schema mapping between internal schemas of source systems and respective
OAS, or

- the process of converting data from source systems into OFS according to an OAS, or

- the process of extracting meta-information from source systems.

 Service Ontologies may also be used to support the integration of source systems with a par-
ticular focus on the discovery and mediated access to services provided by source systems.
Here, service ontologies are meta-information for the services of source systems. Thus, they
will be considered as part of the RM-OA Information Viewpoint in the context of the process of
extracting meta-information from source systems. Their usage for the service mediation will be
specified as part of the RM-OA Service Viewpoint.

Note 1: The RM-OA will start with the consideration of domain ontologies. Domain ontologies are
the most advanced ones in the research community of the Semantic Web. Furthermore, they play a ma-
jor role within the ORCHESTRA project (ORCH-D2.3.5 2006).

Note 2: The current version of the RM-OA has its focus on the support of syntactic interoperability.
Thus, this RM-OA version just positions domain ontologies in the framework for ORCHESTRA Informa-
tion Models. Version 3 of the RM-OA will provide more detailed specifications of how ontologies influ-
ence the RM-OA Information and Service Viewpoints.

8.6.1.2 Conceptual and Logical Ontologies

Ontologies are formal representations of the knowledge associated with a particular subject area (do-
main) or task, whose ultimate purpose is to enable machine understanding of the knowledge in a par-
ticular domain (ORCH-D2.3.5 2006). Within the RM-OA, ontologies are considered in two appearances
according to the following two development stages of ontologies:

 The first stage is the construction of a conceptual ontology by the domain expert. A conceptual
ontology is structured knowledge in a domain which a domain expert can understand. Its

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

74/180

documentation includes the following:
- A glossary of concepts, instances, relationships, their natural language definitions, as-

signed characteristics and values, and additional information assigned to the relation-
ships.

- Sources of the documents used to create the content of the glossary.
- Defined rules, assumptions and primitives used to express the definitions.
- Concept networks and hierarchies (either in a diagrammatic format or in linear notation).
- Relationship networks and hierarchies (either in a diagrammatic format or in linear nota-

tion).
- Defined rules and assumptions regarding the networks or hierarchies.

 The second stage is the transformation of the structured knowledge base into a machine-
readable logical ontology by an ontology expert. The resulting logical ontology is thus defined in
a machine-readable notation like e.g. OWL.

8.6.1.3 High-level Ontologies

A high-level ontology could be expected to contain terms of a more abstract nature or coarser level of
granularity that can be related (through subsumption relationships) to those concepts in other domain
ontologies which capture knowledge at a finer level of granularity (ORCH-D2.3.5 2006). For example in
the thematic context of risk management, a ―flood risk‖ domain ontology may include concepts like
―flood risk map‖, ―risk of flood‖, and ―velocity measurements‖, and may need to use their super-ordinate,
more generic terms, to effectively describe these concepts. The super-ordinate generic concepts are,
however, often out of scope. A high-level ontology serves the purpose of containing these generic
terms which are common across several domains. A high-level ontology, which the ―flood risk‖ ontology
could reuse, would contain concepts such as ―map‖, ―risk‖, and ―river data‖.

Due to the generic nature of the RM-OA, those generic concepts of high-level ontologies that are not
tied to a particular thematic domain have the highest relevance to be considered as basic information
elements in the framework of ORCHESTRA information models (see section 8.4).

8.6.2 Extension of the Information Model Framework for Domain Ontologies

The extension of the information model framework after domain ontologies have been taken into ac-
count is illustrated in Figure 20.

As mentioned above, the RM-OA distinguishes between conceptual and logical ontologies. This is re-
flected in the framework on the semantic level whereby the logical ontology is the result of a transfor-
mation process from the conceptual ontology.

As the RM-OA specifies a generic ORCHESTRA Architecture, the information viewpoint is not tied to a
specific domain ontology either on the conceptual or on the logical level.

Note: The handling of the conceptual model and the transformation process to the logical ontology
is out of scope of the RM-OA. The RM-OA Version 3 will discuss the aspects of semantic interoperabil-
ity based on machine-processable logical ontologies.

Examples of relationships to the other levels of the specification framework are illustrated in Figure 20:

ex 1. Generic concepts that are relevant across a multitude of domain ontologies (possibly col-
lected in form of a high-level ontology) are candidates for the specification of additional
meta-classes in the OMM. Examples here are documents or maps.

ex 2. An OAS-MI provides an application schema for meta-information for a particular purpose.
Usually, the classes and their characteristics in the form of attributes and operations used in
the application schema have no formally defined semantics. In order to support mediation
tasks using the meta-information, the concepts in a domain ontology including their natural
language definition (i.e. the glossary) could be referred to by the classes in the OAS-MI.

ex 3. OAS may be generated from logical ontologies if these have a sufficient level of detail, e.g. if
they include typed slot definitions that may be mapped to feature properties types.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

75/180

Figure 20: Inclusion of the Semantic Level into the Information Model Framework

8.7 The ORCHESTRA Meta-Model for Information

8.7.1 Overview

As mentioned above, the OMM is derived from the basic ideas of the ISO 19109 GFM, but it is not a
true profile of it. In particular, the GFM requires that

 all data quality attribute types are implemented using DQ_Element as specified by ISO 19115,

 all ―GFM metadata‖ attribute types are implemented using ―metadata classes‖ as specified by
ISO 19115, and

 a ―GFM metadata element‖ has to be used as a GF_Metadata_AttributeType to carry ―meta-
data‖ about instances of feature types.

Note: The term ―metadata‖ here refers to its meaning and usage in ISO 19109 and ISO 19115.

While this may be true in a particular OAS, an OAS is not required to adhere to these rules. For in-
stance, ORCHESTRA application schemas for meta-information will have to support other standards
and other information models. See section 8.4 for additional details.

This is why the OMM is an evolution of the ISO 19109 GFM, taking into account additional,
ORCHESTRA-specific requirements. After defining the data types to be used in the OMM and
ORCHESTRA application schemas in section 8.7.2, the OMM is specified in two steps:

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

76/180

 the OMM selects the classes and properties of the GFM that are relevant for ORCHESTRA
(see sections 8.7.3 and 8.7.4)

 the OMM adds additional meta-classes, namely for additional meta feature and attribute types
(see sections 8.7.4 and 8.7.5). Note that the creation of these meta-classes is not strictly re-
quired, but shall clearly highlight and list the important information types required by
ORCHESTRA applications.

8.7.2 Data Types

8.7.2.1 Introduction

The following section defines the most fundamental data types available in the ORCHESTRA frame-
work. In order to achieve interoperability a common basis is made available and well-defined.
ORCHESTRA Basic Data Types (and OA_Types) are part of such a basis.

All data types used and defined in ORCHESTRA shall be built directly and/or indirectly (e.g. OA_Types)
using Basic Data Types. This enables ORCHESTRA users to have only one definition for a single type
instead of a multitude of definitions (e.g. every service developer and/or every application designer de-
fining its own types for equal purposes). ORCHESTRA basic data types relate and refer to definitions in
already accepted standards (like ISO 191xx series) and therefore they are well-known in the software
development community.

8.7.2.2 Basic Data Types

Basic Data Types have a standardised definition outside of ORCHESTRA documents (e.g. ISO 191xx
series). The names of these types will not be prefixed and refer to standard types. They are defined in
Table 4 with the related standard document being referred to in the Origin column.

Note: Basic Data Types must not be confused with the UML stereotype called <<DataType>> (see
section 8.8.6).

8.7.2.3 OA_Types

OA_Types are predefined types in the OMM which do not have a standardised definition outside of
ORCHESTRA documents. They are composed of ORCHESTRA Basic Data Types and other already
defined OA_Types. OA_Types might still be rather simple.

8.7.2.4 User-defined types

User-defined types are not predefined within the OMM. They usually refer to types defined for a specific
application (e.g. in an OAS) and may only consist of well-known types. These well-known types are Ba-
sic Data Types, OA_Types and already specified User-defined types.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

77/180

Type Names Origin Brief Description

Real ISO/TS 19103 section 6.5.2.5 A signed real (floating point) number consist-
ing of a mantissa and an exponent. (not nec-
essarily the exact value as the common im-
plementation of a Real type uses base 2)

Integer ISO/TS 19103 section 6.5.2.3 A signed integer number. Exact with no frac-
tional part.

Decimal ISO/TS 19103 section 6.5.2.4 A number type that represents an exact value
as a finite representation of a decimal number.
(Unlike real, it can represent 1/10 without er-
ror)

Binary ISO19118 section A.5.2.1.14 Finite-sequence of arbitrary binary data.

Any ISO/TS 19103 The root of all classes. Often not an actual
class in the implementation, it essentially is
used where the target class of a member
name is not known.

CharacterString ISO/TS 19103 section 6.5.2.7
Type representing a simple string. The whole
string has a single specific encoding. This en-
coding is retrievable from the string.

CountryCode As specified by ISO/TS 19139 List of country identifiers.

LanguageCode As specified by ISO/TS 19139 List of language identifiers.

CharacterSetCode ISO/TS 19103 section 6.5.2.7 List of character encodings.

MD_Character
SetCode

As defined in ISO 19115 List of character encodings.

PT_Locale As specified by ISO/TS 19139
Type combining language, country and encod-
ing.

Localised
CharacterString

As specified by ISO/TS 19139
A CharacterString with the addition of a field
specifying the language of the string.

Enumeration ISO/TS 19103 section 6.5.4.2
Defined and closed list of valid mnemonic
identifiers.

CodeList ISO/TS 19103 section 6.5.4.3 An open Enumeration.

Boolean ISO/TS 19103 section 6.5.2.11 A value specifying TRUE or FALSE

Date ISO/TS 19103 section 6.5.2.8 Type representing a date.

Time ISO/TS 19103 section 6.5.2.9 Type representing a point in time.

DateTime ISO/TS 19103 section 6.5.2.10 Type combining date and time.

Set ISO/TS 19103 section 6.5.3.2
Unordered finite collection of non duplicate
objects.

Bag ISO/TS 19103 section 6.5.3.3
Unordered finite collection of possibly dupli-
cate objects.

Sequence ISO/TS 19103 section 6.5.3.4 Ordered ‗bag-like‘ structure.

Dictionary ISO/TS 19103 section 6.5.3.5
Container for key-value pairs where the key
and value types are not predefined.

Table 4: Basic Data Types

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

78/180

Figure 21: Basic Data Types

8.7.3 OMM Basic Part

The UML class diagrams in Figure 22 show the basic part of the OMM that principally specifies the rela-
tionship between OMM_FeatureTypes, OMM_PropertyTypes and OMM_AssociationTypes. It exactly
corresponds to the main structure of the GFM as described in the section 7.3.3 (GFM main structure),
section 7.3.4 (GF_FeatureType) and section 7.3.5 (GF_PropertyType) and illustrated in Figure 5 of the
ISO 19109 GFM document.

The meaning of the respective meta-classes prefixed by OMM_ is the same as the meaning of the
meta-classes prefixed by GF_ in ISO 19109 GFM.

The extension of the OMM with respect to the GFM relates to the extended understanding of what a
feature type could be in ORCHESTRA as described section 8.2.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

79/180

Note: The architectural principle of ―self-describing components‖ (see section 6.3.7) requires that
there is a means to get the feature type specification for a given feature instance. This principle is indi-
rectly fulfilled through the capabilities (see section 9.2.5.2) of the service instance that makes the fea-
ture instance available.

Figure 22: The basic part of the ORCHESTA Meta-model

8.7.4 OMM Attribute Types

The ORCHESTRA Architecture uses the following categories of attribute types and their base class
from the ISO 19100 series:

 Spatial Geometry (ISO19107::GM_Object)

 Spatial Topology (ISO19107::TP_Object)

 Temporal Object (ISO19108::TM_Object)

 Geographic Identifier (ISO19112::SI_LocationInstance)

 Data Quality Information (ISO19115::DQ_Element) (see note 1 below)

 Metadata (ISO19115::MD_Metadata) (see note 2 below)

Note 1: The modelling of data quality information or meta-information in the form of attribute types as
further specified in ISO 19115 is just one possibility for a meta-information model and the specification
of meta-information in the context of an OAS. ORCHESTRA does support further types of meta-
information models depending on the particular purpose of the usage of the meta-information (see sec-
tion 8.4.1).

Note 2: The OMM does not specify meta-information attributes as a prominent high-level attribute
type category. Instead, the modelling of meta-information attribute types
(OMM_MetaInfoAttributeTypes) as a meta-class that specialises the meta-class

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

80/180

OMM_ThematicAttributeType means that a thematic attribute may use type definitions of ISO 19115 as
data type values. See also Rule 1 in section 8.8.11

The resulting schema is illustrated in UML in Figure 23.

Figure 23: OMM Attribute types

8.7.5 OMM Extensions to Feature Types

8.7.5.1 Overview

As will be defined in the rules below (see section 8.8), an ORCHESTRA Feature Type is defined by a
UML class that is part of an OAS as an instance of the OMM meta-class ―feature type‖. Within an OAS,
it has a stereotype ―FeatureType‖.

Feature types are defined by an information modeller or, in some specific cases, on-the-fly by a
software component of an ORCHESTRA Application as part of an OAS and represent ―abstractions of
real-world phenomena perceived in the context of an ORCHESTRA Application‖.

Based on the requirements of thematic domains, the OMM extends the OMM_FeatureType definition

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

81/180

for additional categories of information types. As a result of an analysis of the requirements of the risk
management thematic domain that took place in the ORCHESTRA project, the following eminent but
generic information types have been identified:

 Document Descriptor type (see section 8.7.5.2)

 Coverage type (see section 0)

Note: By intention, this list of predefined feature types is kept very restrictive in order not to move
too much domain-specific information into the meta-model and thus to endanger reusability in different
application domains.

8.7.5.2 Document Descriptor Type

Documents are resources that contain recorded information and can be treated as unit. As pre-defined
ORCHESTRA feature type, a document is represented by a document descriptor that contains identifi-
cation information (such as name and document type) and a reference to one of more files (the docu-
ment store) if the document data is stored locally or a reference to a source system if the document
data is stored remotely.

An instance of OA_ThematicAttributeType may represent an attribute that carries document informa-
tion. The value-types of document attributes shall comply with the definition of an
OA_DocumentDescriptor as defined below.

Figure 24: Schema of the OMM extension “Document Type”

Document types may be classified according to the MIME Media Types and include e.g.

 Documents with page layout (e.g. PDF, MS-Word, MS-PowerPoint files, Web pages based on
html)

 Audio files

 Video files

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

82/180

 Image files

 XML documents

 tabular data in file format (e.g. an MS-Excel file)

The document schema used in ORCHESTRA is specified in Figure 24.

8.7.5.3 Coverage Type

A coverage denotes a function from a spatial, temporal or spatiotemporal domain to an attribute range.
A coverage associates a position within its domain to a record of values of defined data types. Thus, a
coverage is a feature with multiple values for each attribute type, where each direct position within the
geometric representation of the feature has a single value for each attribute type. Examples include a
raster image, polygon overlay, or digital elevation matrix.

The coverage model is defined by ISO 19123.

The domain of a coverage is a set of geometric objects described in terms of direct positions, which are
associated with a spatial or temporal coordinate reference system. Commonly used domains include
point sets, grids, collections of closed rectangles, and other collections of geometric objects. The range
of a coverage is a finite or a transfinite set of feature attribute values.

Coverages can be discrete or continuous. A discrete coverage has a domain that consists of a finite
collection of geometric objects and the direct positions contained in those geometric objects. A discrete
coverage maps each geometric object to a single record of feature attribute values. A continuous cov-
erage has a domain that consists of a set of direct positions in a coordinate space, which it maps to
value records. It then returns a distinct record of feature attribute values for any direct position within its
domain.

Note: The term coverage may be misleading as it implicitly refers to a 2-dimensional data layer.
The term field would be better as it refers to n-dimensional data. However, the term coverage is used in
order to conform with ISO 19123.

Figure 25: Schema of the OMM Extension “Coverage Type”

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

83/180

8.8 Rules for ORCHESTRA Application Schemas

8.8.1 General Approach

The modelling process for OAS on the platform-neutral level corresponds to the description in ISO
19109, section 8.1. This approach allows automatic derivation of platform-specific application schemas
(e.g. GML Application Schemas according to ISO 19136) from the conceptual application schemas in a
normative way. GML Application Schemas can be used to encode ORCHESTRA feature instances in
XML. GML is tightly integrated with most OGC Web Service specifications, e.g. the Web Feature Ser-
vice. In addition, mapping to other platforms is possible from the conceptual UML model.

Note: The relationship to the rules for application schemas as specified in ISO 19109, section 8,
(conformance, changes and/or extensions) is explicitly indicated in respective notes.

Rules:

1) The data structures of the application shall be modelled in the OAS.

Note: Rule conforming to ISO 19109, section 8.2.2, rule 1).

2) An abstract specification of an OAS shall use UML 2.0 as its conceptual schema language fol-
lowing the rules of ISO/TS 19103 and ISO 19109. It shall be documented using class diagrams.

Note: ISO/TS 19103. Geographic information - Conceptual schema language is still based
on UML 1.3. A potential conflict will have to be resolved in dedicated rules.

3) An OAS shall use the UML extensibility mechanisms ―stereotypes‖ and ―tagged values‖ as de-
scribed in annex D.8 of ISO/TS 19103.

Note 1: A stereotype is a model element that is used to classify (or mark) other UML ele-
ments so that they in some respect behave as if they were instances of new virtual or pseudo
meta-model classes whose form is based on existing base meta-model classes. Stereotypes
augment the classification mechanisms on the basis of the built-in UML meta-model class hier-
archy. Therefore, names of new stereotypes must not clash with predefined meta-model ele-
ments or other stereotypes. See section 8.8.6 for the rules how to use stereotypes in an OAS.

Note 2: A tagged value is a tag-value pair that can be used to add properties to any model
element in UML, i.e. it can extend an arbitrary existing element in the UML meta-model or extend
a stereotype.

8.8.2 Rules for the Identification of an OAS

Rules:

1) The identification of each application schema shall include a name and a version. The inclusion
of a version ensures that a supplier and a user agree on which version of the application schema
describes the contents of a particular dataset.

Note 1: This rule conforms to ISO 19109, section 8.2.3, rule 2).

Note 2: The agreement between supplier and user also covers the case where there is no
explicit bilateral agreement, but where the user is able to discover and understand which ver-
sion(s) of an application schema are supported by the supplier.

Note 3: It is recommended that the name of an OAS be globally unique (e.g. an URI) in order
to enable unambiguous re-use of its elements in other OAS.

2) In UML, an application schema shall be described within a PACKAGE, which shall be stereo-
typed with <<Application Schema>> and shall contain the tagged value ―OAS‖ carrying the name
of the application schema and the tagged value ―version‖ carrying the version stated in the
documentation of the PACKAGE.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

84/180

Note 1: This rule extends ISO 19109, section 8.2.3, rule 1).

Note 2: An OAS may consist of several hierarchically ordered packages. In this case, the
OAS name corresponds to the name of the top-level package.

8.8.3 Rules for the Documentation of an OAS

Rules:

1) An OAS shall be documented.

Note: This rule conforms to ISO 19109, section 8.2.4, rule 1).

2) The documentation of an OAS shall include a reference to the version of the RM-OA that has

been used by setting the tagged value ―RM-OA‖ to the version number of the RM-OA document.

3) The documentation of an OAS in UML may utilise the documentation facilities of the software
tool that is used to create the application schema, if this information can be exported.

Note: This rule conforms to ISO 19109, section 8.2.4, rule 2).

4) Documentation of the elements in the UML model shall be stored in tagged values ―documenta-

tion‖.

5) If a CLASS or other UML component corresponds to information in a feature catalogue, the ref-
erence to the catalogue shall be documented.

Note: This rule conforms to ISO 19109, section 8.2.4, rule 3).

6) Documentation of feature types in an OAS shall be in a catalogue with a structure derived from

OMM, for instance in a catalogue in accordance with ISO 19110

Note: This rule conforms to ISO 19109, section 8.2.4, rule 4).

8.8.4 Rule for the Integration of an OAS and other Schemas

Rules:

1) An OAS can be built up of several other application schemas. Each of these schemas can refer
to standardised schemas. This organisation can be used to avoid the creation of large and com-
plex schemas (see ISO 19109, section 8.2.6).

2) The dependency mechanism in UML shall be used to describe the integration of the OAS with
other application schemas or other standard schemas that are required to form the complete
definition of the data structure.

Note: This rule is derived from ISO 19109, section 8.2.5, rule 1).

8.8.5 Rules for the Usage of Types in an OAS

Rules:

1) Basic Data Types as specified in section 8.7.2.2 and OA_Types as specified in section 8.7.2.3
shall be used where applicable.

2) Types defined in OA Services (see section 9.3.2) shall be prefixed by OA_.

Note: An example is the OA_GetCapabilitiesRequest type defined in the ServiceCapabili-
ties interface type (see section 9.6.1).

3) Types defined in OT Services (see section 9.3.3) shall be prefixed by OT_.

4) An OAS designer is not enjoined to use prefixes for the specification of user-defined types (e.g.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

85/180

in an OAS), however, OA_ and OT_ are excluded.

8.8.6 Rules for the Usage of Stereotypes in an OAS

Rules:

1) Every class in an application schema must be stereotyped. The stereotype used must be defined
either in the standard UML or the stereotypes defined within the OMM. If the stereotype has a
name common to the names of those stereotypes already specified, the definition (meaning) has
to be the same.

Note: This facilitates the understanding of OAS and supports application development,
e.g., to help decide whether a class is a feature type or not.

2) Data types shall be modelled as UML classes with the stereotype <<DataType>>.

Note: According to ISO/TS 19103 a <<DataType>> is a descriptor of a set of values that
lack identity (independent existence and the possibility of side effects). The primary purpose of a
DataType is thus to hold the abstract state of another class (e.g. a class representing a feature
type) for transmittal, storage, encoding or persistent storage. An example in the OMM is the ag-
gregation of operation request parameters in one class (see section 9.2.8).

3) Types shall be modelled as UML classes with the stereotype <<Type>>.

Note 1: According to ISO/TS 19103, a <<Type>> is a stereotyped class used for specifica-
tion of a domain of instances (objects), together with the operations applicable to the objects. A
type may have attributes and associations.

Note 2: For the definition of the types and their classification see section 8.8.5.

4) Enumerations shall be modelled as UML classes with the stereotype <<Enumeration>>.

Note: See section 8.8.5 for the definition of an enumeration as a basic type in an OAS.

5) Code lists shall be modelled as UML classes with stereotype <<CodeList>>.

Note 1: According to ISO/TS 19103, a code list can be used to describe an open enumera-
tion (see rule 4 above). This means that it needs to be represented in such a way that it can be
extended during system runtime.

Note 2: See section 8.8.5 for the definition of an enumeration as basic type in an OAS.

6) Interfaces shall be modelled as UML classes with stereotype<<Interface>>.

Note: See the corresponding rule of the OMM-Service in section 9.2.6.

8.8.7 Rules for the Specification of an OAS

Rules:

1) All classes used within an OAS for data transfer shall be instantiable. This implies that the inte-
grated class must not be stereotyped <<interface>>.

Note: This rule conforms to ISO 19109, section 8.2.2, rule 2).

2) All package names used within an OAS shall be unique.

3) Dependencies between packages must be modelled explicitly.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

86/180

4) If a class is a specialization of another class, then this class shall have one of the stereotypes
<<FeatureType>>, <<DataType>>, or <<Type>>. The class shall have zero or one supertype
with the same stereotype and zero or more abstract supertypes of the stereotype <<Type>>.

That is, disregarding abstract classes with stereotype <<Type>>, a generalization relationship
may be specified only between two classes that are either:

- both feature types (stereotype <<FeatureType>>),
- both types with stereotype <<Type>>, or
- both data types (stereotype <<DataType>>).

For every abstract class <<Type>> all direct or indirect subtypes must be either
- all classes with stereotypes <<FeatureType>>, <<Type>>, or
- all classes with stereotypes <<DataType>> or <<Type>>, where all <<Type>> classes

have to be abstract.

All generalization relationships between classes shall have no stereotype. All generalization
relationships with other stereotypes will be ignored. The discriminator property of the UML
generalization shall be blank.

5) OMM_FeatureType: An instance of OMM_FeatureType shall be implemented as a CLASS

stereotyped with <<FeatureType>> except for Rule 6 (see OMM_AssociationType below).

Note: This rule extends ISO 19109, section 8.3.1, rule 1).

6) OMM_AssociationType: An instance of OMM_AssociationType shall not be associated with any

instances of OMM_PropertyType. It has the role of linkBetween in associations to those
instances of OMM_FeatureType that are being implemented as CLASSes.

Note 1: This rule conforms to but restricts ISO 19109, section 8.3.1, rule 2).

Note 2: This rule means that attributed associations between feature types (i.e. associations
with own properties) are not supported.

7) OMM_AggregationType: An instance of OMM_AggregationType shall either be implemented as

an AGGREGATION (empty diamond) or it shall be implemented as a COMPOSITION (filled
diamond). Members of an aggregation can exist independently of the aggregate, and may be-
long to other aggregates. Members of a composite may not exist independently and may belong
to only one composite.

Note: This rule conforms to ISO 19109, section 8.3.1, rule 3).

8) OMM_AttributeType: An instance of OMM_AttributeType shall be implemented as an

ATTRIBUTE, unless it is an attribute of an attribute (see rule 5)

Note: This rule conforms to ISO 19109, section 8.3.1, rule 4).

9) attributeOfAttribute: An instance of OMM_AttributeType that acts in the role characterizedBy in

an attributeOfAttribute association shall be instantiated as a class with a valid stereotype for
classes (e.g., <<FeatureType>>). That class shall be used either as the data type of the
OMM_AttributeType, or in an association with the class that contains the OMM_AttributeType.
Attributes that act in the role characterizes shall be instantiated as attributes of the class that
represents the attribute that acts in the role characterizedBy.

Note 1: This rule extends ISO 19109, section 8.3.1, rule 5).

Note 2: This means that a class stereotyped as <<FeatureType>> may be used as a data
type of an attribute in a class definition

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

87/180

10) OMM_Operation: An instance of OMM_Operation shall be implemented as an OPERATION of
the class representing the feature type that it characterizes, which shall have ASSOCIATIONS to
other CLASSES from which the operation needs ATTRIBUTE VALUES.

Note 1: This rule conforms to ISO 19109, section 8.3.1, rule 6).

Note 2: The relationship between an operation specified in a feature type and operations
specified in interface types (i.e. the link to the OMM-Service meta-classes) will be investigated in
a future version of the RM-OA.

11) OMM_AssociationRole: An instance of OMM_AssociationRole shall be implemented as a role

name at the appropriate end of the ASSOCIATION representing the OMM_AssociationType.

Note: Rule conforming to ISO 19109, section 8.3.1, rule 7).

12) OMM_InheritanceRelation: An instance of OMM_InheritanceRelation shall be represented by a

UML GENERALIZATION relationship, with the following additional characteristics: If uniqueIn-
stance is .TRUE., the {disjoint} constraint shall be attached to the generalization relationship.

Note: This rule is derived from ISO 19109, section 8.3.1, rule 8).

13) OMM_Constraint: Constraints may be stated in OCL or in plain language and attached to the

CLASS, OPERATION or RELATIONSHIP that is constrained. A formal specification of con-
straints is required when automatic processing is intended.

Note: This rule extends ISO 19109, section 8.3.1, rule 9).

8.8.8 Rules for Adding Information to a Standard Schema

Rule:

1) If it is necessary to extend or restrict a CLASS specified in a standard schema, a new CLASS
shall be defined as a SUBTYPE of the CLASS in the standard schema, and ATTRIBUTEs shall
be added to this CLASS to carry the additional information.

Note 1: This rule conforms to ISO 19109, section 8.4.2, rule 1).

Note 2: For practical reasons the new classes may be collected in a separate PACKAGE.

8.8.9 Rules for restricted Use of Standard Schemas

Rules:

1) Specification of a restricted profile of a standard schema shall be described in a new UML pack-
age by copying the actual definitions (classes and relationships) from the standard schema. At-
tributes and operations within classes may be omitted.

Note: This rule conforms to ISO 19109, section 8.4.3, rule 1).

2) Reduction of a standard schema shall be in accordance of the conformance clause given for the
actual standard.

Note 1: This rule conforms to ISO 19109, section 8.4.3, rule 2).

Note 2: The specifications of OMM extension types (see section 8.7.5) are handled like
standard schemas. The rules to be considered for a possible reduction are specified in section
8.8.15.

8.8.10 Rules for Adding Information to an OAS

Rule:

1) If it is necessary to extend a CLASS specified in an OAS, a new CLASS shall be defined as a
SUBTYPE of the CLASS in the standard schema, and ATTRIBUTEs shall be added to this

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

88/180

CLASS to carry the additional information.

8.8.11 Rules for Thematic Attributes

Rule:

1) A thematic attribute may reuse definitions from a package in the ISO 19115 without being con-
sidered as meta-information in the application schema.

Note: This rule conforms to the RM-OA approach to handle meta-information (see section
8.4.1). Whether an attribute is to be considered as meta-information cannot be decided at design
time.

8.8.12 Rules for Temporal Attributes

Rules:

1) If a common representation of time across systems is required then it is recommended that any
description of temporal aspects be in accordance with the specifications given by ISO 19108.

Note: This recommendation is still to be validated in the course of the ORCHESTRA specifica-
tion and implementation process, in particular w.r.t. to the usage of the basic data types ―date‖
and ―time‖ as specified in section 8.7.2.2.

2) The usage of temporal attributes according to ISO 19108 in an OAS shall comply with the speci-
fications and rules of ISO 19109, section 8.6, if not otherwise specified in the RM-OA.

Note: This recommendation is still to be validated in the course of the ORCHESTRA speci-
fication and implementation process, in particular in the handling of time-series by the Map and
Diagram Service (see section 9.7.2).

8.8.13 Rules for Spatial Attributes

Rules:

1) The value domain of spatial attribute types shall be in accordance with the specifications given
by ISO 19107, which provides conceptual schemas for describing the spatial characteristics of
features and a set of spatial operators consistent with these schemas. ISO 19125-1 is a profile of
19107 that is widely adopted (see the OGC simple feature specification). If in the process of
specifying an OAS there is no explicit need to use other data types than those specified in ISO
19125-1, then ISO 19125-1 shall be used.

Note: This rule extends ISO 19109, section 8.7, rule 1).

2) The usage of spatial attributes according to ISO 19107 and ISO 19125-1 in an OAS shall comply
with the specifications and rules of ISO 19109, section 8.7, if not specified otherwise in the RM-
OA.

8.8.14 Rules for Spatial Referencing using Geographic Identifiers

Rules:

1) The value domain of attributes using spatial referencing by geographic identifiers shall be in ac-
cordance with the specifications given in ISO 19112.

Note: This rule conforms to ISO 19109, section 8.9, rule 1).

2) The usage of attributes using spatial referencing by geographic identifiers according to ISO
19112 in an OAS shall comply with the specifications and rules of ISO 19109, section 8.9, if not
specified otherwise in the RM-OA.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

89/180

8.8.15 Rules for Information Types extending the OMM

8.8.15.1 Feature Types vs. Attribute Types

Depending on the semantics, a particular piece of information may be considered either a feature (type)
or a value of an attribute (type). When modelling, it is often a judgement call whether to model a particu-
lar type one way or the other.

As a general rule, a feature type will be used if the concept is of particular importance for the applica-
tion, has an identity of its own and can be considered to be an "abstraction of a real world phenome-
non."

On the other hand, a concept will be modelled as a data type of an attribute if the concept does not
have an identity on its own (i.e. it is just a structured attribute) or if it is just an auxiliary concept and will
only be used in the context of a feature (e.g. a geometry or topology object).

8.8.15.2 Rules for Coverages

Coverages are considered in the OMM as instances of ORCHESTRA feature types, see section
8.7.5.2. Their schema is defined in ISO 19123.

Rules:

1) Any description of coverage information shall be in accordance with the specifications given by
ISO 19123.

2) A coverage type shall be defined as a coverage feature type which is the appropriate, most spe-
cialized type defined in ISO 19123 listed in rule 5 or a subtype of this type.

3) The implementation of a coverage type in UML shall follow the rules (see ISO 19109 8.2.5) for
referencing standardised schemas (see RM-OA, section 8.8.4, rule 2).

4) A coverage type shall be represented in an application schema as a UML CLASS that repre-
sents a feature (see RM-OA, section 9.2.5.2) and which is derived directly or indirectly from one
of the UML classes from rule 5.

5) Valid coverage feature types which shall be applied are::

- Discrete coverages (CV_DiscreteCoverage)

- Discrete point coverage (CV_DiscretePointCoverage)

- Discrete grid point coverage (CV_DiscreteGridPointCoverage)

- Discrete curve coverage (CV_DiscreteCurveCoverage)

- Discrete surface coverage (CV_DiscreteSurfaceCoverage)

- Discrete solid coverage (CV_DiscreteSolidCoverage)

- Continuous coverages (CV_ContinuousCoverage)

- Thiessen polygon coverage (CV_ThiessenPolygonCoverage)

- Hexagonal grid coverage (CV_HexagonalGridCoverage)

- TIN coverage (CV_TINCoverage)

- Segmented curve coverage (CV_SegmentedCurveCoverage)

- Continuous quadrilateral grid coverage (CV_ContinuousQuadrilateralGridCoverage)

Note: Whether all of these coverage types are required for most of the applications of the
RM-OA or if they may be restricted is yet to be determined.

8.8.15.3 Rules for Documents

Documents are considered in the OMM as instances of ORCHESTRA feature types. Their schema is
defined in section 8.7.5.2.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

90/180

Rules:

1) A document type shall be represented in an OAS as an attribute (an instance of
OMM_ThematicAttributeType) of a UML CLASS that represents the feature, in which case the
attribute shall take OA_DocumentDescriptor as defined in section 8.7.5.2 and Figure 24 or a
subtype as the data type for its value.

8.9 A Simple Example

An extremely simplified model of an earthquake feature type is illustrated in Figure 26. In terms of the
OMM, the feature type "XE_Earthquake" has the following own properties:

 an optional thematic attribute type with the name "magnitude", the value is a numeric value be-
tween 0 and 10 (Richter scale);

 an optional feature association role with the name "officialReport" to a document feature
type(see section 8.7.5.2).

Furthermore, by means of multiple inheritance according to the rules specified in section 8.8.7, the
XE_Earthquake class inherits the following properties:

 from the feature type ―Hazard‖: a spatial property type with the name "location", the value type is
a spatial point (see ISO 19107).

 from the feature type ―Hazard‖: a temporal property type with the name "occurredAt", the value
type is a temporal instant (see ISO 19108).

 from the type ―ObjectWithMetadata‖: an optional meta-information property type with the name
―metadata‖; the value type is a metadata entity (see ISO 19115).

cd OAS Example

«FeatureType»

XE_Earthquake

+ magnitude: Real [0..1]

{magnitude > 0 and

magnitude < 10}

«FeatureType»

OA Types::OA_DocumentDescriptor

+ name: OA_GenericName [0..1]

+ description: CharacterString [0..1]

+ mimeType: OA_MimeType

+ resourceLocator: OA_ResourceLocator

+ getMimeType() : OA_MimeType

+ getResourceLocator() : OA_ResourceLocator

«Type»

ObjectWithMetadata

+ metadata: MD_Metadata [0..1]

«FeatureType»

Hazard

+ location: GM_Point

+ occuredAt: TM_Instant

+officialReport

0..1

 Figure 26: Earthquake example

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

91/180

9 Service Viewpoint

9.1 Overview

The Service Viewpoint of the RM-OA specifies the specification framework for ORCHESTRA Services.
This specification framework is provided by the definition of a Service Meta-Model as given in section
9.2.

Furthermore, the Service Viewpoint of the RM-OA provides abstract specifications for the generic
ORCHESTRA Services that support the syntactic and semantic interoperability between ORCHESTRA
Source Systems and between services and the development of ORCHESTRA Applications. This in-
cludes the management of an OSN as one particular application.

In combination with the specification of the ORCHESTRA Information Viewpoint, this specification pro-
vides the ORCHESTRA Architecture. According to RM-OA principles, the abstract description of
ORCHESTRA Services and the abstract specification of their interfaces include all properties of the
services that may be specified in a platform-neutral way. Their mapping to specific service platforms
(e.g. a W3C Web Services environment) is outside the scope of the RM-OA and is specified in
ORCHESTRA Implementation Specifications.

Section 9.2 provides a Service Meta-model (OMM-Service) as a complementary part of the OMM In-
formation Meta-model (OMM-Information).

ORCHESTRA Services are functionally classified in section 9.3

The RM-OA specifies the ORCHESTRA Services and their interfaces in two different ways:

 A coarse abstract service description is given for each service in human-readable text format by
using a service description framework, see section 9.4.

 A refined abstract specification of the interfaces to be realised by the services is given in
(ORCH-AbstrServ 2007) by using UML as the conceptual schema language.

Note: Whereas the OMM-Information is an evolution of the General Feature Model (GFM) of ISO
19109 (see section 8.3), the ISO counterpart for the OMM-Service would be the UML model supplied in
section 7.2 of ISO 19119 which is, however, not directly related to the GFM. Furthermore, it does not
cover the problem of abstract and implementation specification of services. The meta-model approach of
ORCHESTRA aims at a harmonised approach for both the information and the service viewpoint with
direct interdependencies and rules about how to handle the problem of platform-neutral and platform-
specific service specifications and the mapping between them. A need for such an approach has recently
been expressed by the Object Management Group (OMG) in their Request For Proposal
for a ―Software Services Profile and Metamodel‖ (OMG 2006).

9.2 The ORCHESTRA Meta-Model for Services

9.2.1 Overview

An ORCHESTRA Service is a service specified according to the rules of the ORCHESTRA Reference
Model in an ORCHESTRA Service Specification. As with the Information Viewpoint of the RM-OA,
these rules are provided by means of a Service Meta-Model as further part of the ORCHESTRA Meta-
Model (OMM).

In the Information Viewpoint, the OMM has been defined as the common specification framework for all
feature-based application schemas used within ORCHESTRA. It provides a meta-model and a set of
associated rules that control the specification of an OAS. This part of the OMM is called OMM-
Information in the following. For the Service Viewpoint the schema level is extended by the concept of
ORCHESTRA Service Types. The corresponding rules for their specification are defined in a respective
extension of the OMM called OMM-Service in the following.

The framework for ORCHESTRA Services is illustrated in Figure 27. It distinguishes between

 the ORCHESTRA Meta-Model (OMM) on the meta-model level,

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

92/180

 ORCHESTRA Service Specifications on the schema level,

 ORCHESTRA Services on the service level and

 the functionality provided by source systems on the source system level.

Figure 27: Framework for ORCHESTRA Services

ORCHESTRA Service Types are specified by defining their externally visible behaviour accessible
through their service interfaces (see section 9.2.2.3). The service interfaces, including their information
models, are expressed using the conceptual schema language UML in the first step (abstract specifica-
tion), and then mapped to a chosen platform in a second step (implementation specification).

On the schema level, meta-information models are associated to ORCHESTRA Service Types in so-
called OAS-MI for Services according to the rules of the Information Viewpoint (OMM-Information)
specified in section 8.7. These OAS-MI deliver the schema for the meta-information that is associated
with service types in order to serve the various purposes (e.g. discovery of services) as outlined in sec-
tion 8.4.2.

The service level is built by the set of ORCHESTRA Services and the meta-information base as the
logical aggregation of the meta-information that describes the ORCHESTRA Services according to the
various purposes. The meta-information base is structured according to the OAS-MI specified on the
schema level. ORCHESTRA Services are instances of ORCHESTRA Service Types and have two dif-
ferent appearances:

 as ORCHESTRA Service Components (OSC) when referring to the software component that
implements the interfaces defined for the ORCHESTRA Service Types on the schema level, and

 as ORCHESTRA Service Instances (OSI) when referring to deployed and running instances of
OSCs in an OSN.

In the Service Viewpoint, the source system level consists of the set of source systems whose function-
ality is to be integrated into an OSN. For this purpose, source system-specific service types have to be
specified by the system integrator and instantiated as OSIs such that the functions of the source sys-

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

93/180

tems may be offered to ORCHESTRA Applications in an ORCHESTRA-compliant way. Note that there
is no generic ORCHESTRA Service Type defined for this integration. Instead, the interface types as de-
fined in the RM-OA may be re-used. For a discussion about this integration process, see section 9.10.2.

Furthermore, in order to fill the meta-information bases on the service level, descriptive information
about the source systems‘ functionality is extracted (manually or semi-automatically) from the source
systems.

Note: RM-OA version 3 will extend the framework for ORCHESTRA Services by the inclusion of
the semantic level.

9.2.2 Service Types

9.2.2.1 Overview

According to ISO 19119, a service is defined as a distinct part of the functionality that is provided by an
entity through interfaces. If such a service has been being defined according to the rules of the
ORCHESTRA Reference Model, it is called ORCHESTRA Service. However, the design and internal
behaviour of such entities is outside the scope of the ORCHESTRA Architecture. They are conceived
and identified by a designer of an OSN and are called

 ORCHESTRA Service Component when referring to the software component and

 ORCHESTRA Service Instance when referring to an instance in an OSN that has been de-
ployed by a service provider with a dedicated identifier (see section 11.1.2), and whose opera-
tions may be called by a service consumer.

Principally, the ORCHESTRA Architecture just deals with types of ORCHESTRA Services.
ORCHESTRA Service Types (short: service types) are described on a platform-neutral level in abstract
service descriptions which refer to specifications of the interfaces that together provide the externally
visible behaviour of the service type. In the ideal case, through a service mapping process, such a ser-
vice type is mapping to respective implementation specifications for one or more given platforms. When
implemented they result in ORCHESTRA Service Components and are later deployed as
ORCHESTRA Service Instances in ORCHESTRA Service Networks.

Note, however, that for convenience and readability reasons the RM-OA only distinguishes between
ORCHESTRA Service Types, ORCHESTRA Service Components and ORCHESTRA Service In-
stances when only one is meant. Otherwise, the more general term ORCHESTRA Service is used.

The conceptual schema for the specification of an ORCHESTRA Service Type is provided in the sub-
sequent sections and illustrated in Figure 28. The main ideas are as follows:

 There is a 1:1 relationship between the abstract description of an ORCHESTRA Service Type
and an ORCHESTRA Service Type. This means that each abstract service description exactly
specifies one service type and vice versa.

 There is a 1:n relationship between an ORCHESTRA Service Type and an implementation
specification of an ORCHESTRA Service Type. This means that each implementation specifi-
cation of an ORCHESTRA Service exactly specifies one service type, and, for each service
type there may be one or more corresponding implementation specifications.

 As a consequence, there is a common list of ORCHESTRA Service Types for platform-neutral
and platform-specific specifications.

9.2.2.2 Platform Properties

As a general guideline, the platform shall be conformant to the OASIS Reference Model for Service
Oriented Architecture 1.0 (SOA-RM, 2006). Thus, when referring in the RM-OA to characteristics of the
service platform, the following terms of (SOA-RM, 2006) are used. Note that they are only pre-fixed with
SOA-RM in order to distinguish them from RM-OA terms:

 SOA-RM Service: The means by which the needs of a consumer are brought together with the
capabilities of a provider.

 SOA-RM Capability: A real-world effect that a service provider is able to provide to a service

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

94/180

consumer.

 SOA-RM Action model: The characterization of the permissible actions that may be invoked
against a service.

Note: Interacting with a service involves performing transactions with the service. Usually
this is accomplished by sending and receiving messages.

 SOA-RM Service Interface: The means by which the underlying capabilities of a service are ac-
cessed.

 SOA-RM Information Model: The characterization of the information that is associated with the
use of a service. Only information and data that are potentially exchanged with a service are
generally included within that service's information model. The scope of the information model
includes the format of information that is exchanged, the structural relationships with the ex-
changed information and also the definition of terms used.

 SOA-RM Execution Context: The set of technical and business elements that form a path be-
tween those with needs and those with capabilities and that permit service providers and con-
sumers to interact.

9.2.2.3 OMM_ServiceType

The conceptual schema for the specification of ORCHESTRA Service Types is illustrated in Figure 28
(see meta-class OMM_ServiceType). The structural refinement of service types in terms of interface
types is given in Figure 29 (see meta-class OMM_InterfaceType).

An ORCHESTRA Service Type is modelled by the meta-class OMM_ServiceType with the following
properties:

 name: Provides the name of the service type. This name shall indicate the intended behaviour
of the service type and may be used in the identification of a service type by a human user.

 abstractDesc: Association role providing a reference to the abstract description of the service
type (see OMM_ServiceAbstractDesc).

 implSpec: Association role providing the list of references to service implementation specifica-
tions (see OMM_ServiceImplSpec). A reference is provided through the name of the corre-
sponding implementation specification of the service type.

 ifName: Association role providing the list of interface types (see OMM_InterfaceType) that are
supported by the service type. Interface types may be optional, i.e. all their operations are con-
sidered to be marked as <<optional>> (see section 9.2.4.3 about the meaning of optional op-
erations).

OA_ServiceType is an instance of the meta-class OMM_ServiceType. Rules for ORCHESTRA Service
Types are provided in section 9.2.5.2.

The functional classification of ORCHESTRA Service Types is described in section 9.3

9.2.3 Structure of the ORCHESTRA Service Specification Process

The structure of the specification process for ORCHESTRA Services is illustrated by the conceptual
models specified in UML in Figure 28. According to the ORCHESTRA Reference Model as described in
section 5.3, ORCHESTRA Service Types are specified on a platform-neutral and on a platform-specific
level.

The abstract specification level is represented by the meta-classes OMM_ServiceAbstractDesc and
OMM_InterfaceAbstractSpec whereas the platform level is represented by the meta-classes
OMM_ServiceImplSpec, OMM_ServiceMappingSpec and OMM_PlatformSpec.

9.2.3.1 OMM_ServiceAbstractDesc

OMM_ServiceAbstractDesc represents an abstract description of an ORCHESTRA Service Type that is
platform-neutral (i.e. independent of a particular service platform) and may thus be mapped to several
service platforms. It provides a summary description of the functionality that the service type offers to a

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

95/180

calling client through its external interface. This description may be provided in different forms but in
most cases comprises a human-readable text. An example for such a description is the service descrip-
tion framework used in the RM-OA, see section 9.4. However, the abstract description of a service is
also considered to be meta-information about the service type. Thus, respective OAS-MI or parts of it
may also be used as abstract service descriptions. See Annex A3 of the RM-OA for examples.

OMM_ServiceAbstractDesc has the following properties:

 serviceType: Association role providing the name of the service type that is being described.

 description: Description of the purpose and functionality provided by the service type..

 ifSpec: Association role providing the list of abstract specifications of the interfaces
(OMM_InterfaceAbstractSpec) that are supported by the service type that is described in the
abstract description.

9.2.3.2 OMM_InterfaceAbstractSpec

OMM_InterfaceAbstractSpec represents an abstract specification of an interface type that is platform-
neutral (i.e. independent of a particular service platform). It comprises a collection of operations that to-
gether provide a self-contained set of functionality in the sense that its granularity is eligible to be re-
usable by other service types.

OMM_InterfaceAbstractSpec has the following properties:

 ifName: Association role providing the name of the interface type that is being specified.

 spec: Specification of the purpose and functionality of the interface type.

9.2.3.3 OMM_ServiceImplSpec

OMM_ServiceImplSpec represents an implementation specification of an ORCHESTRA Service that is
specified according to the rules of a particular service platform.

 name: Name of the implementation specification of the service type.

 actionModel: Specification of the permissible actions against the service type, i.e. the SOA-RM
Action Model of the service type.

 abstractDesc: Association role providing the reference to the abstract service description upon
which the implementation specification is based (see OMM_ServiceAbstractDesc).

 platformSpec: Association role providing the specification of the (service) platform for which the
implementation specification is valid (see OMM_PlatformSpec).

 mappingSpec: Association role providing the reference to the specification of the service map-
ping that links the SOA-RM Action Model of the implementation specification to the operations
of the abstract service interfaces (see OMM_ServiceMappingSpec). Such a mapping specifica-
tion is a mandatory part of the implementation specification of a service.

As the ORCHESTRA Architecture provides the platform-neutral view, the OMM-Service only provides
detailed rules for the abstract descriptions and interface specifications of ORCHESTRA Services (see
sections 9.2.5.3 and 9.2.6). However, some general rules for implementation service specifications are
given in section 9.2.11.

9.2.3.4 OMM_ServiceMappingSpec

When purely applying the architectural process of ORCHESTRA, there is a service mapping process
between an abstract description and an implementation specification of an ORCHESTRA Service. This
process is modelled by the meta-class OMM_ServiceMappingSpec with the properties:

 spec: Specification of how to map from the abstract level to the platform.

The service mapping process shall be carried out according to the rules given in section 9.2.9. Note
that one abstract description of an ORCHESTRA Service Type may be mapped to several implementa-
tion specifications because

 implementation specifications are platform-specific, i.e. for each platform there is a dedicated

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

96/180

implementation specification of service types, or

 the service mapping rules allow the specification of functional subsets or different concretisa-
tions of service types even for one platform.

The service mapping process also determines if an operation that is specified for a particular service
type is to be called in a synchronous or in an asynchronous interaction. This is handled as part of the
rules specified in section 9.2.9.

Figure 28: Specification Process for ORCHESTRA Services

9.2.3.5 OMM_PlatformSpec

The two-step mapping approach from the abstract to the implementation service specification requires
that the (service) platform has been specified beforehand in a platform specification. This is modelled
by the meta-class OMM_PlatformSpec in Figure 28.

The OMM_PlatformSpec provides the following properties:

 platformName: Name of the platform. In case of a standard platform, a reference shall be pro-
vided.

 interfaceLanguage: Specification of the formal language that is used to define SOA-RM Service
Interfaces. In case of a standard language, a reference shall be provided.

 executionContext: Specification of the SOA-RM Execution Context. In case of a standard SOA-
RM Execution Context, a reference shall be provided.

 interfaceMapping: Specification of how the interface operations on the abstract level are
mapped to actions of the SOA-RM Execution Context. This specification shall cover the follow-
ing aspects:

- principle handling of synchronous and the asynchronous interactions,

- a description of the mechanisms by which ―call by value‖ vs. ―call by reference‖ action
parameters are supported,

- a description of if and how optional actions and optional action parameters are sup-

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

97/180

ported and what optionality means for this particular platform,

- an implementation specification of the basic interface types as specified in section 9.6.1,

- an implementation specification of the way the UAA concepts (see section 7.5) are real-
ised for the platform, e.g. how session information is handled in the interactions.

 schemaLanguage: Specification of the schema language used to define SOA-RM Information
Models.

 schemaMapping: Specification of how to map from the abstract level specified in UML to the
schema language used in the platform and vice-versa.

 informationModelConstraints: Specification of the constraints on the SOA-RM Information
Model, especially the constraints on the format of the messages that are required to accomplish
the SOA-RM Action model.

An example for a platform is the Web Service infrastructure as defined by the W3C specifications (e.g.
WSDL, SOAP V1.2) together with further refinements of ORCHESTRA, e.g. the determination of GML
3.2 as schema language and, if required, a specification of a GML schema profile. The corresponding
platform mapping rules of how to map from UML to GML and vice versa are given in ISO 19136 Geog-
raphy Markup Language (GML).

Rules for platform specifications are provided in section 9.2.10.

9.2.4 Interface Types

9.2.4.1 OMM_InterfaceType

Each ORCHESTRA Service Type shall refer to one or more interface types and each abstract descrip-
tion of a service type shall refer to one or more specifications of interface types. Furthermore, each in-
terface type shall be specified in exactly one abstract specification of an interface.

An interface type is defined as the set of operations that characterize the externally visible behaviour of
an entity providing the service. The aggregation of operations in an interface type and the definition of
interface types shall be for the purpose of software reusability. The specification of an interface type
shall include a static portion that includes a definition of the operations. The specification of an interface
type shall include a dynamic portion that includes any restrictions on the order of invocation of the op-
erations.

An interface type is modelled by the meta-class OMM_InterfaceType with the following properties:

 name: Provides the name of the service interface.

 opName: Association role providing the list of operations (see OMM_OperationType) that are
defined in the service interface.

OA_Interface is an instance of the meta-class OMM_InterfaceType. The rules for specifying interface
types according to the OMM are given in section 9.2.6.

9.2.4.2 OMM_ InterfaceInheritanceRelation

Interface types may be specialised by means of inheritance. Thus, generic interface types may be de-
fined and re-used or refined in other abstract interface specifications. This is modelled by the meta-
class OMM_InterfaceInheritanceRelation.

OMM_InterfaceInheritanceRelation is the meta-class that describes a generic relationship between a
more general interface type (supertype) and one specialised interface type (subtype). An interface type
A being a subtype of another interface type B (that acts as supertype) supports all operations defined in
B in addition to the operations defined in A. An interface type may inherit operations from more than
one supertype (multiple inheritance).

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

98/180

Figure 29: The Service Interface Part of the OMM

OMM_InterfaceInheritanceRelation is defined with the following properties:

 name: Name of the generalization/specialisation (optional).

 description: Explanation of the generalization/specialisation to be provided in the abstract inter-
face specification.

 Generalization: Association specifying that an interface type has the role of being a supertype
in an inheritance relationship with another interface type.

 Specialization: Association specifying that an interface type has the role of being a subtype in
an inheritance relationship with another interface type.

 supertype: The role of being the more generic interface type of one other or many other inter-
face types.

 subtype: The role of being the more specific interface type of one other or other interface types.

9.2.4.3 OMM_OperationType

The conceptual model for operations is illustrated in Figure 30. An operation type is syntacticly defined
through its signature that consists of the name of the operation and the request, result and exception
parameters. Operations are modelled in the meta-class OMM_OperationType with the following proper-
ties:

 name: Name of the operation type.

 optional: Boolean value indicating if the operation may be omitted in the service mapping from
the abstract to the implementation specification (optional = true) or if it shall be supported in the
respective SOA_RM Action Model of the an implementation specification (optional = false), in
the latter case either as a mandatory action or as an optional action.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

99/180

 request: Association specifying that an operation type may have zero, one or more request pa-
rameter types (OMM_RequestParameterType).

 result: Association specifying that an operation type may have zero or one result parameter
types (OMM_ResultParameterType).

 exception: Association specifying that an operation type may have one or more request excep-
tion parameter types (OMM_ExceptionParameterType).

Rules for operation types are provided in section 9.2.7.

All parameter types are specified as subtypes of OMM_AttributeTypes. Therefore the rules that are
specified for attribute types as part of the Information Viewpoint in section 8.7 are also applied for pa-
rameter types. In fact, this means that the totality of the information exchanged in operation requests,
results and exceptions is specified as an OAS. Specific rules for parameter types are provided in sec-
tion 9.2.8.

9.2.4.4 OMM_RequestParameterType

OMM_RequestParameterType is a meta-class representing a parameter to be provided as part of an
operation request. It has the following properties:

 name: Name of the request parameter type.

 optional: Boolean value indicating if the request parameter may be omitted in the service map-
ping from the abstract to the implementation specification (optional = true) or if it shall be sup-
ported in the respective operation of the an implementation specification (optional = false), in
the latter case either as a mandatory parameter or as an optional parameter.

9.2.4.5 OMM_ResultParameterType

OMM_RequestParameterType is a meta-class representing a parameter to be provided as part of an
operation result if the processing of the operation has been successful. It has the following properties:

 name: Name of the result parameter type.

9.2.4.6 OMM_ExceptionParameterType

OMM_ExceptionParameterType is a meta-class representing a parameter to be provided as part of an
operation exception if the processing of the operation has not been successful. It has the following
properties:

 name: Name of the exception parameter type.

9.2.4.7 OMM_OperationRequest

OMM_OperationRequest is a meta-class representing the set of request parameters to be provided as
part of an operation call. It has the following properties:

 opName: Association role representing the name of the corresponding operation.

 paraName: Association role referring to the set of request parameters required for the operation
call.

Note: The meta-class OMM_OperationRequest is required in order to model the case where all re-
quest parameters are modelled in one UML class with the individual request parameters being attrib-
utes of this class. This is, for example, required when the SynchronousInteraction (see section 9.6.2) or
the AsynchronousInteraction (see section 9.6.3) interface types as specified in sections 9.6.1) are used.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

100/180

Figure 30: Model of OMM Operations and Parameter Types

9.2.5 Rules for ORCHESTRA Services

9.2.5.1 General Approach

The modelling process for ORCHESTRA Service Types shall obey the rules specified in the following
sections. In this process, two cases are to be distinguished:

1. ORCHESTRA Service Types that are in a first step specified on a platform-neutral level, i.e. in
addition to the mandatory abstract service description there are abstract specifications of all of
their interface types and then, in a second step, are mapped to one or more platforms as
specified in corresponding implementation specifications.

2. ORCHESTRA Service Types that are directly specified in an implementation specification
without the delivery of abstract specifications of their SOA-RM Action Model in terms of ab-
stract interface types in addition to the mandatory ServiceCapabilities interface type.

Note 1: The implementation specification is dependent on the platform specification that contains the
mapping rules from and to the abstract level. Thus, it is assured that an ORCHESTRA Service Type,
even when just specified on a platform level, is compliant to the OMM.

Note 2: Whether it is possible to automatically derive from a given SOA-RM Action Model of an im-
plementation specification an abstract specification of a corresponding interface such that this distinc-
tion is not necessary will be investigated.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

101/180

Rules:

1) For all ORCHESTRA Service Types an abstract description (i.e. an instance of

OMM_ServiceAbstractDesc) shall be provided.

2) For all ORCHESTRA Service Types that are categorised as OA Services an abstract specifica-

tion of all of their interface types (i.e. an instance of OMM_InterfaceAbstractSpec) is mandatory.

3) For all ORCHESTRA Service Types that are categorised as OT Services and thus are part of an

OAA, an abstract specification of all of its interface types is optional. It is strongly recommended
to provide abstract interface specifications if

- it is envisaged to submit the service specification to a standardisation organisation that is not

fixed to a particular service platform (e.g. ISO or OGC),
- parts of the specified functionality of the service type are expected to be re-used by other

service types,
- the foreseen lifetime of the service specification is expected to be above the usual innovation

cycle of IT service infrastructure technology (around 5-10 years),
- it is envisaged to provide at least two different implementation specifications according to the

same service requirements (e.g. several service profiles for the same platform or the same
service profile for different platforms).

9.2.5.2 Rules for ORCHESTRA Service Types

Rules:

1) An instance of OMM_ServiceType shall be implemented as a CLASS stereotyped as <<Ser-

viceType>> (see OA_ServiceType) that defines an ORCHESTRA Service Type as a realisation
of one or more interfaces (OA_Interface). The name of the CLASS corresponds to the service
type name and shall be unique for all applications of the ORCHESTRA Architecture.

Note: Means how to assure the uniqueness of service type names will be discussed in a
future version of the RM-OA.

2) An instance of OMM_ServiceType shall at least realise the interface type ServiceCapabilities as

specified in section 9.6.1).

9.2.5.3 Rules for Abstract Descriptions of ORCHESTRA Services

Rules:

1) An instance of OMM_ServiceAbstractDesc shall be implemented as a CLASS stereotyped as

<<Specification>> (see OA_ServiceAbstractDesc). It shall describe the purpose and scope of
the service type in a human readable form and shall provide an overview about the interface
types supported by the service type. If no other form is requested by a project environment, the
RM-OA Service Description Framework as introduced in section 9.4 shall be used.

2) An instance of OMM_ServiceAbstractDesc shall refer to one or more instances of

OMM_InterfaceAbstractSpec.

Note: The abstract description of an ORCHESTRA Service Type may also be combined with the
abstract specification of the associated interface types (see section 9.2.6) in one ―abstract service
specification‖. The service types that are described in the RM-OA Service Viewpoint are specified
like that, see (ORCH-AbstrServ 2007).

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

102/180

9.2.6 Rules for the Specification of Interface Types

Rules:

1) An instance of OMM_InterfaceType shall be implemented as a CLASS stereotyped as <<Inter-

face>> (see OA_Interface) that defines the set of operations implemented as instances of
OMM_Operation.

2) An instance of OMM_InterfaceType shall be specified in UML 2.0.

3) An instance of OMM_InterfaceType (acting in the role of a subtype) may only inherit operations

from those instances of OMM_InterfaceTypes (acting in the role of supertypes) if these super-
types are marked by the tagged value <<supertype>.

Note: The supertypes need not be specified in the same abstract specification (an instance
of OMM_InterfaceAbstractSpec) as the subtype.

4) An instance of OMM_InterfaceType shall be contained in exactly one abstract specification of an
interface type (an instance of OMM_InterfaceAbstractSpec).

5) An instance of OMM_InterfaceAbstractSpec shall be implemented as a CLASS stereotyped as

<<Specification>> (see OA_InterfaceAbstractSpec). It shall provide an overview about the inter-
face type both in a human-readable form and in a formal specification (see rule 4) above). If no
other form is requested by a project environment, the specification template applied in (ORCH-
AbstrServ 2007) shall be used.

6) If an interface type contains stateful operations, i.e. if the service implementing the interface

must maintain the value of a state attribute beyond the duration of the processing of an operation
request, the interface specification shall contain a state diagram that describes the meaning of
each state and the conditions for the transitions between the states.

9.2.7 Rules for the Specification of Operation Types

Rules:

1) An instance of OMM_OperationType shall be implemented as OPERATION of a class stereo-

typed as <<Interface>> (see OA_Interface) with the following properties:

- The associated request parameters of an operation type (see instances of
OMM_RequestParameterType) shall be implemented as parameter(s) of the interface op-
erations.

- The associated result parameters of an operation type (see instances of
OMM_ResultParameterType) shall be implemented as return type of the interface opera-
tions.

2) The set of request parameters of an operation type (i.e. instances of

OMM_RequestParameterType) may be summarised in one instance of OMM_OperationRequest
and implemented as a CLASS stereotyped as <<Type>>. This is at least required in the follow-
ing cases:
- if the operation is to be called by means of the generic invoke operation of the Synchronous-

Interaction or AsynchronousInteraction interface type specified in section 9.6.1. See also the
corresponding rules in section 9.2.9.

- if one of the request parameters has to be specified as optional parameter (see rule 3) of
section 9.2.8).

3) If an instance of OMM_OperationType may be omitted in the mapping to the SOA-RM Action

model (SOA-RM 2006) of an implementation specification of an ORCHESTRA Service, the cor-

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

103/180

responding operation shall be marked with a stereotype <<optional>> in the class stereotyped as
<<Interface>>.

Note: An instance of OMM_Operation that is not marked with a stereotype <<optional>> is
considered to be a mandatory operation. This means it shall be mapped to a corresponding ac-
tion in the implementation specification. This is the default case.

Figure 31: Specification of Exception Types

9.2.8 Rules for the Specification of Parameter Types

Rules:

1) An instance of OMM_RequestParameterType representing one request parameter of an opera-
tion shall be implemented as a CLASS stereotyped as <<Type>> (see
OA_OperationRequestParameter in Figure 30).

2) An instance of the OMM_RequestParameterType shall obey the rules for the instances of

OMM_AttributeTypes as specified in section 8.8.7.

Note: This rule means that the data type of a request parameter is either a basic data type
(see section 8.7.2.2) or a class with a valid stereotype (e.g., <<feature type>>). Note that this
rule may cause implementation problems when applied to concrete service platforms. An
example is the use of the latest GML version with the Web service development tools. In this
case, exceptions from this rule must be expressed in the platfrom specification (see section
10.6)

3) If at least one instance of OMM_RequestParameterType as part of an operation type is to be
specified as optional parameter, an instance of OMM_OperationRequest shall be implemented
as a class stereotyped by <<DataType>> that contains all request parameters as ATTRIBUTE
whereby the optional request parameters shall have the cardinality [0..1] or [0..n].

4) An instance of OMM_ResultParameterType representing a result parameter of an operation (i.e.

a normal response) shall be implemented as a CLASS stereotyped as <<Type>> (see
OA_OperationResultParameter in Figure 30).

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

104/180

5) An instance of OMM_ResultParameterType shall obey the rules for the instances of
OMM_AttributeTypes as specified in section 8.8.7.

Note: This rule means that the data type of a result parameter is either a basic data type or
a class with a valid stereotype (e.g., <<feature type>>).

6) An instance of OMM_ExceptionParameterType representing an exception parameter of an op-
eration (i.e. a failure response) shall be implemented as a CLASS stereotyped as <<Type>>
(see OA_OperationExceptionParameter in Figure 30). It shall be derived from the CLASS
OA_AbstractException as specified in Figure 31.

7) An instance of OMM_ExceptionParameterType shall re-use the exception types that are pre-

defined by the specification of the exception types in UML in (ORCH-AbstrServ 2007)) if the se-
mantics of these exception types fit the needs of the operation type.

8) An instance of OMM_OperationType together with its related instances of

OMM_RequestParameterType representing an operation with its request parameters shall be
implemented by a CLASS stereotyped as <<DataType> (see OA_OperationRequest in Figure
30). The operation request shall be sent either within a synchronous interaction, which is the de-
fault case, or within an asynchronous interaction.

Note: The interfaces of a synchronous or asynchronous interaction are specified in the
sections 9.6.2 and 9.6.3). Rules for their application are given in section 9.2.9.

9) An instance of OMM_ResultParameterType representing an operation result parameter shall be

implemented by a CLASS stereotyped as <<Type> (see OA_OperationResult in Figure 30). The
operation result is received within a synchronous or asynchronous interaction depending on the
interaction mode of the preceding operation request (see rule 8) above).

10) An instance of OMM_ExceptionParameterType representing an operation exception parameter

shall be implemented by a CLASS stereotyped as <<Type> (see OA_OperationFailure in Figure
30). The operation exception is received within a synchronous or asynchronous interaction de-
pending on the interaction mode of the preceding operation request (see rule 8) above).

9.2.9 Rules for the Service Mapping to a given Platform

9.2.9.1 General Approach

The process of the service mapping to a given platform is illustrated by the conceptual model in Figure
32.

Rules:

1) For each service type that is considered to be available for a given platform an implementation

specification for this platform according to rules of section 9.2.11 shall be available.

2) The process of mapping an abstract specification to an implementation specification shall be
documented in a service mapping specification, i.e. an instance of OMM_ServiceMappingSpec
(see rule 4) below).

3) The service mapping specification shall be a section in the ORCHESTRA Implementation Speci-

fication. Furthermore,
- It shall define the mapping of each operation type and parameter type specified in ab-

stract interface specifications to the SOA-RM Action Model of the ORCHESTRA service
on platform level.

- The mapping shall comprise both the static part (signature) as well as the behaviour of
the operation.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

105/180

Note: See (ORCH-ImplServ 2006) of an example of such a service mapping specification
for the ORCHESTRA Web Services platform.

4) The service mapping specification shall consider the following cases:

- Case 1: Service Profile, an instance of OMM_ServiceProfile, if the SOA-RM Action

Model of the implementation specification comprises a subset of the interface operations
specified in the abstract specification of an ORCHESTRA Service Type whereby the
structure and the semantics of the interface operations and the SOA-RM Action Model
are identical. Rules for a Service Profile are given in section 9.2.9.2.

Note: Other cases (such as ontology-based service mediation) may be considered in fu-
ture versions of the RM-OA, e.g. if the semantics of the interface operations on the abstract level
and the SOA-RM Action Model on the platform level are similar but not identical.

Figure 32: Structure of the Service Mapping in the OMM

9.2.9.2 Rules for Service Profiles

Rules:

1) All operations of all interfaces that are not marked as ―optional‖ (see rule 3) of section 9.2.7)
shall be mapped to an implementation specification. An operation shall be represented in the
respective SOA-RM Action Model according to one of the following cases:

- It is mapped to exactly one action invoked against a service specified in an implementa-
tion specification. The action invocation is performed in a synchronous interaction and
shall be semantically identical to the operation call of the abstract specification.

- It is mapped to the SOA-RM Action Model that provides the SynchronousInteraction or
AsynchronousInteraction interface type for the given platform if the corresponding func-
tionality has been specified for this platform (see rule 2) of section 9.2.10). In this case,
the following rules apply respectively for the chosen interaction mode.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

106/180

2) For all operations of all interfaces that are marked as ―optional‖ (see rule 3) of section 9.2.7) the
following cases are possible:

- They may be omitted in the SOA-RM Action Model of the implementation specification.
- They may be mapped to optional actions in the SOA-RM Action Model of the implemen-

tation specification.
- They may be mapped to mandatory actions in the SOA-RM Action Model of the imple-

mentation specification.

3) A parameter of an operation that is not marked as ―optional‖ in the abstract specification (see
rule 3) of section 9.2.8) shall be syntacticly mapped to exactly one parameter of the action in-
vocation. The parameter semantics shall be identical.

4) For all parameters of an operation that are marked as ―optional‖ (see rule 3) of section 9.2.8)
the following cases are possible:

- They may be omitted in the action of the implementation specification.
- They may be set to a constant value for the action in the implementation specification.
- They may be mapped to optional action parameters in the implementation specification.
- They may be mapped to mandatory action parameters in the implementation specifica-

tion.

Note 1: The meaning of the expression ―is semantically identical‖ is that the ―real-world effect‖ of an
action (see OASIS RM-SOA, 2005) is identical.

Note 2: It may turn out that ―semantically identical‖ mappings are not possible in all cases and a
weaker definition is required. In this case, a further case in the service mapping rules will be introduced.

9.2.10 Rules for Platform Specifications

Rules:

1) An instance of OMM_PlatformSpec shall be implemented as a CLASS stereotyped as <<Speci-

fication>> (see OA_PlatformSpec). It shall describe the basic properties of the platform as speci-
fied in section 9.2.3.5.

Note: A more refined discussion of the platform properties is provided in the RM-OA Tech-
nology Viewpoint, see section 10.

2) An instance of OMM_PlatformSpec shall contain or refer to implementation specifications of all

mandatory basic interface types specified in section 9.6.1 for which a respective functionality
shall be offered for this platform. The provision of an implementation specification of the Ser-
viceCapabilities interface type is mandatory.

3) An instance of OMM_PlatformSpec shall observe the conformance guidelines given in section 4

of (SOA-RM, 2006).

4) The specification of the SOA-RM Information Model constraints for platform services shall in-
clude a specification of how the rules of the OMM Service Meta-model for request, result and
exception parameters (see section 9.2.8) are fulfilled. This assures that the interactions between
service providers and consumers are compliant to the OMM even in cases where the interfaces
to ORCHESTRA services are not first specified on an abstract level according to the OMM and
then mapped to the SOA-RM action model of a particular platform.

9.2.11 Rules for Implementation Specifications of ORCHESTRA Services

Rules:

1) An ORCHESTRA Implementation Specification of an ORCHESTRA Service Type, i.e. an in-

stance of OMM_ServiceImplSpec, shall be provided according to the rules of the chosen (ser-
vice) platform (see section 9.2.10).

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

107/180

2) An ORCHESTRA Implementation Specification of an ORCHESTRA Service Type shall be a
document that is structured according to a template that fits the chosen platform and is part of an
ORCHESTRA Implementation Specification for that platform.

3) If the functionality of the ORCHESTRA Service Type has been specified in terms of abstract in-

terface types (i.e. instances of OMM_InterfaceAbstractSpec) in addition to the mandatory ser-
viceCapabilities interface type, there must be an instance of OMM_ServiceMappingSpec (see
section 9.2.9) that specifies the mapping process from the abstract to the implementation speci-
fication.

9.3 Functional Classification of ORCHESTRA Services

9.3.1 Overview

As part of the ORCHESTRA Architecture, ORCHESTRA Service Types are defined by the collection of
the interface types that they support. As an interface type defines the externally visible behaviour, an
ORCHESTRA Service Type is in fact defined by the functionality that it provides to the external world.
The RM-OA classifies service types into service categories by discussing their functionality. The main
service categories are ORCHESTRA Architecture Services (OA Services) and ORCHESTRA Thematic
Services (OT Services):

 An OA Service provides a generic, platform-neutral and application-domain independent func-
tionality.

 An OT Service provides an application domain-specific functionality built on top and by usage of
OA Services and/or other OT Services.

Note 1: Here and in the following, the term ―usage‖ means that a service may call operations of an-
other service in order to provide the desired functionality. In this sense, the calling service depends on
the other service. In the service specification it is stated if such a usage is mandatory or just recom-
mended.

Note 2: The list of OA Services and OT Services as presented in the following section is the result of
an intense analysis of the functional user requirements within the ORCHESTRA project.

Note 3: The granularity for the services is oriented at the functional coherency of the service opera-
tions and the type of information (e.g. feature types, meta-information) that is managed by the service.

9.3.2 OA Services

OA Services are further classified into two sub-categories:

 OA Info-Structure Service: These are OA Services that are required to operate an OSN in the
sense that these services play an indispensable role in the operation of an OSN depending on
its required characteristics (see section 11.1). An example of such a role may be that at least
one OSI of such a service must exist in one OSN environment (e.g. for the Catalogue Service,
see section 9.7.5). Other examples are the various access services which shall be used when a
feature of the respective type is accessed in an OSN (e.g. a document shall be accessed by us-
age of the Document Access Service, see section 9.7.3).

 OA Support Service: These are OA Services that support the provision of OA Info-Structure Ser-
vice functionality (as an implementation option) or facilitate the operation of an OSN, e.g. provid-
ing an added value by combining them with the usage of OA Info-Structure Services.

These together comprise the generic information infrastructure (info-structure) of the RM-OA. The OA
Services thus provide the functional basis for application domain-specific functionality. OA Services
themselves do not address any specific thematic application domain, nor do they impose any structure
on the OT Services.

Note that OA Services may themselves use other OA Services. Furthermore, OT Services may use
both OA Info-Structure Services and OA Support Services in order to fulfil a given functionality.

This functional classification is illustrated in Figure 33.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

108/180

Figure 33: Functional classification of ORCHESTRA Services

Table 6 shows the current list of service types categorised as OA Services in alphabetic order within the
sub-categories. Abstract specifications of these service types and its containing interface types are
available in (ORCH-AbstrServ 2007).

Basic functions that may, or even shall, be offered by all OA and OT Services (e.g. an operation to re-
trieve a self-description of a service) with well-defined interfaces are not categorised as OA or OT Ser-
vice itself. Such functions are listed in Table 5 and described as separate interface types in section 9.6.
This approach follows the idea of the OMM-service (see section 7.2.3) that the ―interface‖ is the re-
usable unit of specification. Note that principally, all interface types that are specified in the context of a
service type may also be re-used in other service type specifications.

Interface Type Name Section

Service Capabilities Interface 9.6.1

Synchronous Interaction Interface 9.6.2

Asynchronous Interaction Interface 9.6.3

Transaction Interface 9.6.4

Knowledge Base Interface 9.6.5

Table 5: List of Basic Interface Types

Note 1: The categorisation of an OA Service as either an OA Info-Structure service or an OA Sup-
port service is derived from the idea that essential characteristics of an OSN are discovery and access
to resources residing in source systems, whereby access means read and/or write access, and, in addi-
tion, a possibility of monitoring the running services. The rationale for this selection is a compromise be-
tween, on the one hand, keeping the requirements for a service network to be ―OSN-compliant‖ as
small as possible and, on the other hand, providing a powerful service infrastructure for a broad range
of ORCHESTRA Applications. In this sense, support for transformations of any kind or automatic gen-
eration of meta-information is considered to be ―OA Support‖ as it is not required for all ORCHESTRA
Applications running in a rather homogeneous environment. See a more refined discussion about OSN
characteristics in section 11.1.

Note 2: The column ―ISO 19119 Service Taxonomy‖ provides just a hint of the position of the OA
Service in the ISO 19119 Service Taxonomy. Note that GeoModel/InfoManagement here stands for
Geographic Model/Information Management Services.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

109/180

Service Type Name Service
Category

ISO 19119 Service
Taxonomy

Section

Authentication Service OA Info-Structure GeoModel/InfoManagement 9.7.9

Authorisation Service OA Info-Structure GeoModel/InfoManagement 9.7.8

Catalogue Service OA Info-Structure GeoModel/InfoManagement 9.7.5

Document Access Service OA Info-Structure GeoModel/InfoManagement 9.7.3

Feature Access Service OA Info-Structure GeoModel/InfoManagement 9.7.1

Map and Diagram Service OA Info-Structure GeoModel/InfoManagement 9.7.2

Name Service OA Info-Structure GeoModel/InfoManagement 9.7.6

Sensor Access Service OA Info-Structure GeoModel/InfoManagement 9.7.4

Service Monitoring Service OA Info-Structure GeoModel/InfoManagement 9.7.10

User Management Service OA Info-Structure GeoModel/InfoManagement 9.7.7

Annotation Service OA Support GeoModel/InfoManagement 9.8.3

Coordinate Operation Service OA Support Geographic Processing Services 9.8.1

Format Conversion Service OA Support GeoModel/InfoManagement 9.8.4

Gazetteer Service OA Support GeoModel/InfoManagement 9.8.2

Ontology Access Service OA Support GeoModel/InfoManagement 9.8.6

Schema Mapping Service OA Support GeoModel/InfoManagement 9.8.5

Service Chain Access Service OA Support Workflow/Task Management Services 9.8.8

Thesaurus Access Service OA Support GeoModel/InfoManagement 9.8.7

Table 6: List of OA Services

9.3.3 OT Services

OT Services provide application domain-specific functionality. However, both within and between differ-
ent application domains, high-level functions that have a generic nature may be identified. These ser-
vices are inside the scope of the RM-OA as a generic architecture and area defined as follows:

 OT Support Service: generic service that facilitates the development or interactive composition
of thematic functionality.

The application domain of environmental risk management is taken as an informative example of fur-
ther sub-categories of OT Services, although outside the scope of the RM-OA. Here, the ORCHESTRA
project provides dedicated OT Services according to the following structure:

 OT Risk-neutral Service: service specific to the risk management domain that facilitates the
development or interactive composition of risk-neutral risk management functionality.

 OT Risk-specific Service: service specific to a specific risk management domain (e.g. earth-
quakes, forest fires, flood, systemic risks) that facilitates the development or interactive com-
position of risk-specific risk management functionality.

All OT Services may use and combine the OA Services in order to fulfil their thematic function. As an
example, the service sub-categories for the application domain of environmental risk management are
illustrated in Figure 34.

As an example, Table 7 shows the current list of OT Support Services for the application domain of En-
vironmental Risk Management. The column ―ISO 19119 Service Taxonomy‖ provides a hint of the posi-
tion of the OA Service in the ISO 19119 Service Taxonomy.

A candidate list of required OT Services in the domain of risk management may be found in (ORCH-
D2.4.2 2005).

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

110/180

Figure 34: Example of OT Service sub-categories for the
application domain of Environmental Risk Management

Note: The current list of OT Support Services is a result of functional user requirements. A subset
of them (e.g. the Processing Service) is currently being specified on a detailed level. The orthers are
kept for documentation and traceability purposes.

Service Name Service
Category

ISO 19119 Service Taxonomy Section

Processing Service OT Support Geographic Processing Services 9.9.1

Simulation Management
Services

OT Support Geographic Processing Services 9.9.2

Calendar Service OT Support Workflow/Task Management Services 9.9.6

Communication Service OT Support Workflow/Task Management Services 9.9.5

Project Management Support
Service

OT Support Workflow/Task Management Services 9.9.4

Reporting Service OT Support Workflow/Task Management Services 9.9.7

Sensor Planning Service OT Support Workflow/Task Management Services 9.9.3

Table 7: List of OT Support Services for Environmental Risk Management

9.3.4 Human Interaction Components

The ORCHESTRA Services as categorized above do not provide an interface to a human user but
rather to a software component requesting an operation at the service interface. The provision of such
user interfaces is to be provided by so-called Human Interaction Components.

Human Interaction Components are software components that provide the (usually graphical) user in-
terface (GUI) of an OA Service or OT Service. As such, the specification of such components is outside
the scope of the RM-OA, i.e. no service description will be provided.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

111/180

9.4 Relationship of the ORCHESTRA Service Types to INSPIRE

The ORCHESTRA Architecture follows an iterative design approach. The major iteration cycles that are
currently foreseen are described in section 6.2.3. The focus of the current version 2 of the OA is to
support syntactic interoperability, in particular but not exclusively for spatial services, such that the OA
may contribute to the specification of the INSPIRE network services as outlined in section 6.2.2.3.

The following table provides an overview of which of the ORCHESTRA Interface and Service Types
may contribute to which INSPIRE network services. This linkage to the INSPIRE requirements is
preliminary as the work of the INSPIRE drafting team for network services has not yet been finalised
and a detailed definition on the INSPIRE Network Services is not yet available.

INSPIRE
Network
Services

ORCHESTRA Interface
Type

Specified in ORCHESTRA
Service Type

Comment

Discovery
Services

CatalogueSearchInter-
face

Catalogue Service
(see section 9.7.5)

The ORCHESTRA
Catalogue Service is
generic w.r.t. the usage of a
specific meta-information
model. The CS-W 2.0 ISO
AP 19115/19119 as
currently investigated by
INSPIRE could be chosen
as one example.

Upload
Services

CataloguePublication
and CatalogueCollection
Interface

Catalogue Service
(see section 9.7.5)

View
Services

MapService Map and Diagram Service
(see section 9.7.2)

INSPIRE just requires
rendering in maps

Download
Services

FeatureAccessService Feature Access Service (see
section 9.7.1)

To support the download of
feature instances

DocumentAccess Document Access Service
(see section 9.7.3)

To support the download of
predefined datasets

Transforma
tion
Services

CoordinateOperation Coordinate Operation
Service (see section 9.8.1)

SchemaMapping

SchemaMappingReposi-
tory

Schema Mapping Service
(see section 9.8.5)

In case schema mapping
remains in the scope of the
INSPIRE Transformation
Services.

―Invoke
spatial data
services‖
services

ProcessingService Processing Service
(see section 9.9.1)

OMM-Service (see section
9.2) may provide input to
the specification of the
INSPIRE service reference
model mentioned in the
INSPIRE description

 ServiceChainAc-
cessService

Service Chain Access Ser-
vice (see section 9.8.8)

Table 8: Possible Contribution of ORCHESTRA Service Types to INSPIRE Network Services

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

112/180

9.5 Service and Interface Description Framework

A coarse description of the ORCHESTRA Interfaces and Services is provided in a textual format ac-
cording to the following template. The detailed abstract specifications of the services are provided in
(ORCH-AbstrServ 2007). These documents contain formal specification of the information objects that
are referred to in the interface operations (e.g. parameter types).

Name Name of the ORCHESTRA Service or Interface Type

Convention: All individual words in the service type name are capitalized.

Standard
Specifications

Reference to an abstract or a platform-specific service specification according to a
standardisation organisation (e.g. ISO, CEN, W3C, OGC,…) or to important refer-
ence material that has been taken into account when describing the service, its in-
terfaces or operations. In case there is no adequate reference the field is set to ―no
corresponding standard known‖

Description Human understandable description of the functionality provided by the
ORCHESTRA service or interface. The end of a service description shall provide
the following text:

The <name> Service provides its functionality through the following interfaces:

 Interface1: human understandable description of the purpose of interface 1

 …

 InterfaceN: human understandable description of the purpose of interface N

Note: If an interface is re-used from another ORCHESTRA Service Type de-
scription, the name of this service type shall be indicated in brackets in the interface
definition below. The description of the used interface operations shall be adapted
to the context of the using service.

Convention: All words in the interface name are written together in italics without a
blank in between. The first letter of the first word and all other words are written in
upper case letters.

Interface Interface1 (from << Name of an ORCHESTRA Service>

oper1 Human understandable description of the operation 1 of the interface. Only major
input and output information shall be described, no individual request and result pa-
rameters.

Note: All words in the service operation name are written together in italics
without a blank in between. The first letter of the first word is lower case, all other
words upper case.

…

operN
 (optional)

Human understandable description of the operation n of the interface. Optional op-
erations are to be marked by suffix (optional) after the operation name.

…

Interface InterfaceN

…

Example
usage

Description of an example usage scenario of the service, e.g. by the combination of
several operation calls of the service or in combination with another ORCHESTRA
Service.

Comments Description of current restrictions or possible extensions and enhancements in fu-
ture versions of the RM-OA.

Table 9: Service Description Framework

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

113/180

9.6 Basic Interface Descriptions

9.6.1 Service Capabilities Interface

Name Service Capabilities Interface

Standard
Specifications

The getCapabilities operation of the Service Capabilities Interface is designed such
that it is backward compatible with the concepts and definitions of the
GetCapabilities operation as defined in

 OGC 05-008c1 Web Services Common Specification V1.0

The idea is that the usage of the meta-information schema defined in that OGC
standard is just one possibility how the service capabilities may look like.

Description The Service Capabilities Interface defines of a uniform way to get a self-description
of an OSI by means of so-called capabilities. The capabilities form service meta-
information which can be used for various purposes like, for example, service dis-
covery and service invocation.

This ServiceCapabilities interface is a mandatory interface and shall be imple-
mented by all ORCHESTRA Services.

Interface ServiceCapabilities

get
Capabilities

Informs the client about the capabilities of an OSI. This operation takes into account
that in addition to capabilities that are common to all ORCHESTRA Services (re-
ferred to as common capabilities) an ORCHESTRA Service may provide a specific
set of capabilities (referred to as specific capabilities). Furthermore, this operation
allows the capabilities to be delivered according to different service meta-
information schemas. The meta-information schema shall be structured according
to the rules for ORCHESTRA application schemas defined in section 8.8.

Example
usage

The Service Capabilities Interface contributes to a consistent description of the
functionality provided by ORCHESTRA Services. Thus, it helps in developing ge-
neric applications and in defining a common framework for service discovery and
access.

Comments The contents of the service meta-information are defined as part of the specification
of the OAS-MI for services in Annex B1 of the RM-OA.

Furthermore, the abstract specification of the Service Capabilities interface (see
(ORCH-AbstrServ 2007) also contains the specification of common exception types
to be used by all other ORCHESTRA interface types.

Table 10: Description of the Service Capabilities Interface

9.6.2 Synchronous Interaction Interface

Name Synchronous Interaction Interface

Standard
Specifications

No corresponding standard known.

Description The Synchronous Interaction Interface defines of a uniform way to request synchro-
nous execution of a service operation. Synchronous execution of an operation
means that the client requests operation execution and then waits until the opera-
tion provider has finished operation execution and returns a response. Such a re-
sponse may either contain an operation result value (which also may be empty) or
may be an indication of a failure which is modeled as exception.

Interface SynchronousInteraction

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

114/180

invoke Executes an operation synchronously and returns the operation response.

Example
usage

The synchronous interaction interface may be used by generic software frameworks
that support the integration of source systems into an OSN (see section 9.10.2).

Comments none

Table 11: Description of the Synchronous Interaction Interface

9.6.3 Asynchronous Interaction Interface

Name Synchronous Interaction Interface

Standard
Specifications

The following WC3 standard provides transport-neutral mechanisms to address
Web services and messages.

 W3C Web Services Addressing V1.0 Core, http://www.w3.org/TR/ws-addr-core/

On the abstract, platform-independent level of the service specification, the usage
of WS-Addressing is out of scope. However, it has to be taken into account for the
implementation specification of the Asynchronous Interaction Interface. The
concept of an Endpoint Reference (EPR) as defined by WS-Addressing can be
used for the invokeAsync operation in order to specify the entity to which
notifications are to be sent as a result of asynchronous operation execution.

 OASIS Web Services Notification
(http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn)

OASIS WS-Notification is a family of related specifications that define a standard
Web services approach to notification using a topic-based publish/subscribe
pattern. A Web service (NotificationProducer) disseminates information
(notifications) to a set of other Web services (NotificationConsumers) each of which
has been subscribed to the producer previously.

WS-Notification itself makes use of WS-Addressing as defined by W3C to indicate
endpoint references.

Description The Asynchronous Interaction Interface defines a uniform way to request asynchro-
nous execution of a service operation, e.g., for operations which are time-
consuming or deliver results periodically. Asynchronous execution of an operation
means that the client requests operation execution but does not wait until the opera-
tion has finished. Instead, the client may execute other tasks while the operation is
running. However, in most cases the client wants to be notified when the operation
terminates in order to get its results. In addition, when executing an operation asyn-
chronously the client should be able to abort operation execution.

Interface AsynchronousInteraction

invokeAsync Starts asynchronous execution of an operation. The invokeAsync operation returns
immediately with an identifier (invocation ID) representing the asynchronous execu-
tion. In order to receive notifications a reference to a callback interface can be pro-
vided.

abort Aborts execution of a previously invoked asynchronous operation identified by its
invocation ID.

notify Passes a notification to the callback interface provider.

Example
usage

The Asynchronous Interaction Interface may be used for processing service
operations (e.g. geostatistical interpolations) that take a significant time to produce
results.

Comments The objective of the Asynchronous Interaction Interface is to define a uniform way
to request for asynchronous execution of a service operation. The interface can be

http://www.w3.org/TR/ws-addr-core/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

115/180

implemented by a service in order to offer asynchronous execution of certain
service operations. In contrast to WS-Notification, the interface does not claim to
define a general publish/subscribe pattern. Both specifications are not directly
related and are not comparable with respect to compatibility.

The Asynchronous Interaction Interface comes along with a Notification Callback
Interface which expresses the need to receive notifications in the context of
asynchronous operation execution. A notification may signal the operation result or
operation progress. This is a special case of notification in the sense of WS-
Notification: By invoking an operation asynchronously, the caller implicitly
subscribes at the operation provider. When receiving the final notification from the
operation provider, the receiver implicitly unsubscribes. From that point of view, this
is a special case of the publish/subscribe pattern.

Table 12: Description of the Asynchronous Interaction Interface

9.6.4 Transaction Interface

Name Transaction Interface

Standard
Specifications

 OASIS Business Transaction Protocol (BTP) 1.0, Committee Specification
(http://www.oasis-open.org/committees/download.php/
1184/2002-06-03.BTP_cttee_spec_1.0.pdf)

Description The Transaction Interface supports to enclose a series of service operations in
transactional brackets.

In a system that supports multiple users, synchronization of access to resources
must be assured. This is an especially important requirement in the context of
changing resources (write access), otherwise the consistency of the state of the
system and its data cannot be guaranteed.

Obviously not all services need to support transactions but if they do care must be
taken. In order to guarantee a great amount of flexibility, the TransactionInterface
allows numerous different types of transactions, e.g. transactions that support the
properties of atomicity, consistency, isolation, and durability (ACID), OASIS busi-
ness transactions that relax some of the ACID properties, operation batching, ‗best
try‘ transactions and sub-transactions.

Interface TransactionInterface

createAcid
Transaction

Creates a new ACID transaction at the service

create
Business

Transaction

Creates a new business transaction at the service

createSubAcid
Transaction

Creates a new sub ACID transaction at the service.

createSub
Business

Transaction

Creates a new sub business transaction at the service.

setImplicit
Commit

Sets the implicit timeout action for the specified transaction.

setRollback
OnFailure

Sets the default failure action for the specified transaction

setLockOwner Sets the resource lock owner for resources allocated by this transaction.

start Starts an existing transaction at the service

http://www.oasis-open.org/committees/download.php/1184/2002-06-03.BTP_cttee_spec_1.0.pdf
http://www.oasis-open.org/committees/download.php/1184/2002-06-03.BTP_cttee_spec_1.0.pdf
http://www.oasis-open.org/committees/download.php/1184/2002-06-03.BTP_cttee_spec_1.0.pdf

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

116/180

Transaction

tryCommit Tries to commit the transaction without rolling back if the commit failed.

commit
Transaction

Makes all changes made during the transaction permanent. Also releases all locks
that have been acquired (if any) during the transaction.

abort
Transaction

Revokes all chances made during the transaction

suspend
Transaction

Suspends the transaction environment. All operations that are invoked at the ser-
vice are carried out outside the transaction environment. This does not free any ac-
quired locks.

resume
Transaction

Set the specified transaction as the currently active transaction. This does not free
any acquired locks.

getActive
Transaction

Retrieves the transaction ID of the (most inner, if sub transactions are supported)
currently active transaction.

add
Transactions

Adds a number of transactions as children to the specified transaction.

remove
Transactions

Removes a number of child-transactions from the specified transaction.

Example
usage

The Transactional Interface may be used when a sequence a setFeatures operation
calls has to be carried out in an atomic fashion.

Comments none

Table 13: Description of the Transaction Interface

9.6.5 Knowledge Base Interface

Name Knowledge Base Interface

Standard
Specifications

 W3C RDF-Schema http://www.w3.org/TR/rdf-schema/

 W3C RDF/XML Syntax Specification (Revised)
http://www.w3.org/TR/rdf-syntax-grammar/

 W3C SPARQL Query Language for RDF (Candidate Recommendation)
http://www.w3.org/TR/rdf-sparql-query/

Description The Knowledge Base Interface provides access to a knowledge base in an OSN.
The knowledge base can store identifiable units of knowledge, in the sequel re-
ferred to as ―models‖. A model has a uniform resource identifier (URI). The Knowl-
edge Base Interface conveys query requests to models received via the OSN to the
knowledge base‘s local processing engine and returns the results to the OSI that
requested them.

The Knowledge Base Interface abstracts from existing languages for knowledge
representation and querying, but it assumes that some concepts are common to
most of them:

 Knowledge is represented as a graph, i.e. a number of nodes and edges.

 The knowledge graph is divided into a number of sub-graphs, so called ―mod-
els‖.

 Models are described by a number of basic elements constituting the model
graph; these elements describe the nodes and the edges. Updates of a model
can be performed by adding/deleting basic elements.

RDF is an example for a standard which fulfils these assumptions. In RDF, for in-

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-sparql-query/

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

117/180

stance, ―statements‖ are the basic elements.

SPARQL is a query language for RDF models. The SPARQL Protocol uses WSDL
2.0 to describe a means for conveying SPARQL queries to a SPARQL query proc-
essing service and returning the query results to the entity that requested them.

The Knowledge Base Interface can partly be implemented by means of RDF stor-
age and SPARQL queries, but other implementations are possible.

The Knowledge Base Interface provides operations to query and update models
contained in the knowledge base.

Queries are to be formulated in a query language that is compatible with the queried
model. As opposed to the Feature Access Service, the result of such a request
does not necessarily need to be a feature set: the service may deliver results of any
format, from complete models down to boolean values.

Update requests to a model contain the new elements, which are to be added to the
model, and the elements to be deleted.

Interface KnowledgeBase

queryModel Submits a query to a model stored in the knowledge base. The model to which the
request is to be sent is referenced by a URI. The query is formulated in a query lan-
guage which must be compatible with the knowledge representation model used by
the knowledge base. The service conveys the request to the knowledge base,
which executes the query and composes the result in the required result format (pa-
rameter resultFormat). If the resultFormat parameter is not present, the result is de-
livered in a default format.

updateModel Submits an update request to a model stored in the knowledge base. The model to
which the request is to be sent is referenced by a URI. The request contains the set
of basic elements to be added and the set of elements to be deleted. The service
conveys the request to the knowledge base, which executes the update request.

Interface TransactionInterface

 The operations of the TransactionInterface are used when a synchronised access to
the knowledge base must be assured, especially in the case of the updateModel
operation of the KnowledgeBase interface.

Example
usage

Pre-population and automatic population:

In a scenario, the knowledge base can hold so-called ―named entity‖ definitions
(e.g. mountains, rivers) and relationships between them. A named entity can be in-
serted into the knowledge base in two ways:

 Pre-population – the named entities are imported or acquired otherwise from
trusted sources.

 Automatic discovery and population – the named entities are discovered in the
process of automatic semantic annotation (or by usage of other knowledge dis-
covery and acquisition methods) and are then populated into the knowledge
base by means of the updateModel operation.

Comments The main difference between a knowledge base approach and conventional SQL
databases is that a knowledge base is more flexible: models can be added or re-
moved during run time and there is no fixed database schema. A knowledge base
can have a schema defined by means of ontology (e.g. RDF-Schema or OWL as
schema of an RDF knowledge base), but it does not necessarily need one.

In its current specification, the Knowledge Base interface provides means for model
update, but it does not provide means for adding and removing complete models. It
is assumed that these tasks are performed via local, non-ORCHESTRA interfaces
of the knowledge base (e.g. import). Nevertheless, implementation should allow
adding and removing new models dynamically at runtime.

http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/wsdl20/

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

118/180

Table 14: Description of the Knowledge Base Interface

9.7 OA Info-Structure Service Descriptions

9.7.1 Feature Access Service

Name Feature Access Service

Standard
Specifications

The functionality of the Feature Access Service is based on the WFS and WCS
OGC implementation specifications:

 OGC Web Feature Service (WFS) Implementation Specification (latest version
V1.1, 04-094)

 OGC Web Coverage Service (WCS) Implementation Specification (latest ver-
sion V1.1.0, 06-083r8)

These specifications allows for retrieval of features and coverages, respectively.
Coverages and features are considered as ORCHESTRA features at the abstract
level, and thus one interface has been developed for the access to both types. The
write functionalities of the WFS specifications (which basically consist of a
transactional operation) have been transferred into three operations setFeatures,
createFeatures, and deleteFeatures, as to follow the ORCHESTRA convention of
operation functionality. Additionally, the objective was to put the ―write behaviour‖ of
the WFS at the operation level in the interface. Currently, in the OGC WFS
specification, the write type of a given operation (i.e., insert, update, or delete) is
specified as a parameter to a more generic operation (transaction operation).

The lock mechanism offered by the WFS getFeatureWithLock and lockFeature must
be implemented using the transaction interface offered by ORCHESTRA (see
section 9.6.1). This approach ensures the same transactional model throughout all
services within ORCHESTRA where (serializable) transactions are required. Finally,
the setFeatureTypes, createFeatureTypes, and deleteFeatureTypes operations
have been specified in addition to the OGC specifications in order to provide an
interface to manage feature types. This is currently not possible via implementations
following the OGC specifications.

As the Feature Access Service does not define a specific query language or
encoding for features, it is up to the implementation specification to define these.

Prominent standards which can be used for query languages are:

 ISO/IEC 9075:1995 Information technology -- Database languages – SQL

 OGC 04-095 Filter Encoding Implementation Specification V1.1

A commonly used standard for the encoding of (especially geographic) features is:

 ISO 19136 Geographic information -- Geography Markup Language (GML)

GML is based on the XML standard, which can be used for encoding as well:

 W3C - Extensible Markup Language (XML) 1.0
(http://www.w3.org/TR/2006/REC-xml-20060816)

Examples of commonly used encodings for coverage features are:

 GeoTIFF (http://www.remotesensing.org/geotiff/geotiff. html)

 HDF-EOS (http://www.hdfeos.org)

 CF-NetCDF (http://www.cgd.ucar.edu/cms/eaton/cf-metadata)

Description The Feature Access Service allows interoperable read and write access on feature
instances available in an OSN. Furthermore, the Feature Access Service provides

http://portal.opengeospatial.org/files/?artifact_id=12582
http://www.w3.org/TR/2006/REC-xml-20060816
http://www.remotesensing.org/geotiff/geotiff
http://www.hdfeos.org/

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

119/180

an interface that may be inherited by more specific access services (e.g., sensor
access service) using interface inheritance. The Feature Access Service offers in-
formation about:

 The feature types it is capable to provide.

 The supported encoding(s) to transfer requested or submitted feature data.

 The query language and mechanism for filtered feature access.

Features provided by the Feature Access Service are instances of a certain feature
type defined in an ORCHESTRA Application Schema (OAS), which again is an in-
stantiation of an OMM_FeatureType (see section 8.7.2). This means that the Fea-
ture Access Service only permits access to information which is represented
through feature types according to the rules of the ORCHESTRA Meta-Model
(OMM). Whether information is remodelled on-the-fly by a software component or
whether the features are actually stored in a feature store is not crucial for the Fea-
ture Access Service. Seen from the interface, the feature representation is a black
box and is not visible for clients.

The Feature Access Service allows queries to select certain features based on their
type, certain attribute values and their spatial and temporal extent. The selection
statement is encoded using a query language that supports all these functionalities
(e.g., SQL including spatio-temporal statements). By selecting and retrieving fea-
tures, access to their attributes and operations is provided.

Any Feature Access Service (and its possible profiles or possible inheriting inter-
faces) may support the update of existing feature instances, the creation of new fea-
ture and the deletion of existing features, and hence, in this case, it should also be
transactional. It can also allow the creation, updates, and deletions of feature types.

Feature instances and feature types are identifiable by a Unique Identifier (UID) that
is unique with respect to at least one OSN (section 11.1.2). If a Feature Access
Service is used to create a new feature instance or feature types it will also create
an appropriate UID for this feature type or instance. Additionally, it is important to
emphasize the requirements for Authorisation and authentication in order to support
creation, deletion, and modification of feature and feature types (see section 7.5).

The Feature Access Service provides its functionality through the following inter-
faces:

 ServiceCapabilities: Informs about the common and specific capabilities.

 FeatureAccessService: selection, creation, update and deletion of feature in-
stances and feature types.

Interface ServiceCapabilities

get
Capabilities

Informs the requestor about the common and specific capabilities of a Feature Ac-
cess Service instance. Examples of specific capabilities are the supported feature
types, the encoding of feature type requests, the encoding of returned feature collec-
tions as well as the supported query language.

Interface FeatureAccessService

getFeature
Types

Gets a description (the schema) of given feature types serviced by an Feature Ac-
cess Service instance in a specific encoding based on a query.

setFeature
Types

Updates existing Feature Types matching a given query.

createFeature
Types

Creates new Feature Types based on feature type descriptions.

deleteFeature
Types

Deletes existing Feature Types matching a given query.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

120/180

getFeatures Retrieves features and their attributes matching a given query.

setFeatures Updates existing features matching a given query.

createFeatures Creates new features based on a feature collection and a given query.

deleteFeatures Deletes existing features matching a given query.

Example
usage

A client accessing this service wants to retrieve all feature instances of roads for a
particular region. The Feature Access Service is passed a getFeatures request for
the specified area and feature type. A response is generated containing all valid fea-
tures. The features may be modified and submitted to the Feature Access Service
as an update transaction (via the setFeatures operation).

Comments As the RM-OA, in accordance with ISO 19123, considers coverages as subtypes of
features, the Feature Access Service can also be used to access coverages.

Table 15: Description of the Feature Access Service

9.7.2 Map and Diagram Service

Name Map and Diagram Service

Standard
Specifications

The Map and Diagram Service is a functional extension of the following standards:

 ISO/DIS 19128:2005 - Geographic information -- Web Map Server Interface

 OGC 06-042 Web Map Service (WMS) Implementation Specification V1.3.0

The extensions refer to the generation of diagrams, legends, the detailed layer de-
scriptions that are needed for fine-grained user-styling, and the management of
layers and styles.

When being mapped to a W3C Web Service platform, the Map and Diagram Ser-
vice supports the following standards:

Data sent to the Map and Diagram Service may be structured according to:

 ISO 19136 Geographic information -- Geography Markup Language (GML)

An alternate data source may be a feature store that provides feature instances ac-
cording to:

 OGC 04-094 Web Feature Service (WFS) Implementation Specification) V1.1

The following standards are used for the symbology definition:

 OGC 02-070 Styled Layer Descriptor (SLD) Implementation Specification V1.0

 OGC 04-095 Filter Encoding Implementation Specification V1.1

These are extended with symbolizers for diagrams.

Description The Map and Diagram Service is a service that visualizes, symbolizes and enables
geographic clients to interactively visualise geographic and statistical data. Its main
task is to transforms geographic data (vector or raster) and/or numerical tabular
data (e.g. census data, result of a statistical analysis) into a graphical representation
using symbolization rules.

The main output of this service is an image document, which can be either in raster
(e.g. jpeg, png) or symbolized-vector format (e.g. SVG). The meaning of the image
document (the output of this service) is a general reference map (visualization of
geographic information), a diagram (visualization of statistical data) or a thematic
map (visualization of the spatial distribution of one or more statistical data themes).

This service enables the integration of extended Style Layer Descriptor (SLD)

http://portal.opengeospatial.org/files/?artifact_id=14416
https://portal.opengeospatial.org/files/?artifact_id=1188

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

121/180

documents, which allows the definition of symbologies and symbolization rules at
the feature level and allows also the integration of user data and remotely available
data from other OA Services like the Feature Access Service (see section 9.7.1)

The Map and Diagram Service provides the functionality through the following inter-
faces:

 ServiceCapabilities: Informs about the common and specific capabilities.

 MapDiagramService: This interface allows a client to request and receive
maps, diagrams and, optionally, information about the visualized features
according to specifications, as well as to put/remove data and styles on the
server for visualization.

Interface ServiceCapabilities

get
Capabilities

Informs the client about the capabilities of a Map and Diagram Service instance. Ex-
amples of specific capabilities are a document containing, among others, a list of
supported operations and predefined data layers available on the server with the
corresponding layer information.

Interface MapDiagramService

getMap Returns a map of spatially referenced geographic and thematic information as an
image document with the characteristics specified by the client application. The
characteristics of the output image are specified by the outputAttributes parameter
(image format, width, height, transparency, etc…) as well as the mapAttributes pa-
rameter (list of layers and their corresponding styles, coordinate reference system,
global bounding box). Optionally, the map parameters can be provided using an
SLD document.

getDiagram
(optional)

Returns a diagram representation of numerical data as an image document with the
characteristics specified by the client application. The characteristics of the output
image are specified by the outputAttributes parameter (image format, width, height,
transparency, etc…) as well as the diagramAttributes parameter (list of tabular data
layers and their corresponding styles – diagram type, diagram characteristics). Op-
tionally, the diagram parameters can be provided using an SLD document. This op-
eration expects that the data to be rendered is in tabular format.

getLayerDe-
scription

(optional)

Returns a layer description document containing schema information for a layer: at-
tribute names, types, units, statistical information when applicable (like value
ranges, max, min etc.). This information is needed by clients in order to create their
own styles and symbolization rules based on attribute values.

getLayerLeg-
end
(optional)

Returns a legend symbol (corresponding to a layer) as an image document with the
characteristics specified by the client application. The characteristics of the output
image are specified by the outputAttributes parameter (image format, width, height,
transparency, etc…) as well as the styledLayer parameter (name of the layer for
which the legend should be generated and its corresponding styles). If the styles
corresponding to the layer are not available on the server, then the styles have to
be defined and sent again by the client (optionally, also as a SLD document).

getFeatureInfo
(optional)

Returns information about the features rendered in a certain point of a map or dia-
gram layer as a document. The request must specify the attributes of the query
point (x and y coordinates of the point in the image coordinate system, the layer
name, and the number of features for which is expected to receive information) as
well as a copy of the request that generated the image.

setLayer
(optional)

Stores a new data layer on the server if the format of the sent layer data is sup-
ported (the supported formats for data input are advertised in the service capabili-
ties). For this operation the following information must be defined: the layer (name,
data, data format, minimum and maximum scale, etc…), the duration for which the
layer will be stored and also if it will be visible or not for other users. The operation
confirms the success of the request by sending back to the client a Boolean

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

122/180

―TRUE‖.

deleteLayer
(optional)

Removes an existing data layer from the server. The operation confirms the suc-
cess of the request by sending back to the client a Boolean ―TRUE‖.

setStyle
(optional)

Stores a new style layer on the server. For this operation the style must be defined
either by sending the symbology or by referencing a remotely available symbology.
Furthermore, the duration for which the style will be stored and also if it will be visi-
ble or not for other users must be defined. The operation confirms the success of
the request by sending back to the client a Boolean ―TRUE‖.

deleteStyle
(optional)

Removes an existing style from the server. The operation confirms the success of
the request by sending back to the client a Boolean ―TRUE‖.

Example
usage

A requestor accessing this service wants to create a map that shows the spatial dis-
tribution of the forest fire hazard zones (classified by the susceptibility level) with dif-
ferent colours. On top of this layer the requestor is interested to have the road net-
work, the hydrological network, the urban areas and a diagram layer with bar charts
showing the number of historical forest fire cases. The hazard zones and the his-
torical forest fire data are accessible by means of a Feature Access Service and
other layers are available on the server. The requestor now invokes a getMap op-
eration by passing a styled layer descriptor document, which defines the location of
the data and the symbolization corresponding for each layer. The response of the
service will be a map provided in the requested format.

Comments It is beyond of the scope of this service to provide a human interface like the geo-
graphic viewer in the human interaction services. On the other side, other map ser-
vice instances, a geographic viewer or even a Web browser could act as a client to
this service.

Table 16: Description of the Map and Diagram Service

9.7.3 Document Access Service

Name Document Access Service

Standard
Specifications

no corresponding standard known

Description The Document Access Service supports access to documents of any type (textual
documents, images,). A document descriptor (see section 8.7.5.2) is regarded as a
specific kind of a feature type, therefore the Document Access Service is a speciali-
sation of the Feature Access Service (see section 9.7.1) which inherits only feature-
specific operations. Operations that manipulate feature types are not supported by
this service, since the only feature type this service supports is
OA_DocumentDescriptor.

Compared with the Feature Access Service this service enables the conversion of
documents and it guarantees that the returned feature instances are of type
OA_DocumentDescriptor.

The Document Access Service provides its functionality through the following inter-
faces:

 ServiceCapabilities: Informs about the common and specific capabilities.

 DocumentAccessService: Selection, creation, update and deletion of docu-
ments.

Interface ServiceCapabilities

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

123/180

get
 Capabilites

Informs the client about the common and specific capabilities of a Document Ac-
cess Service OSI. Examples of specific capabilities: a) the specific capabilities in-
herited from the Feature Access Service, b) information about supported document-
encodings and MIME types.

Interface DocumentAccess

get
Documents

Returns and optionally converts documents.

This operation is an extension of the getFeatures operation of the FeatureAc-
cessService interface. In addition to the getFeatures operation it supports the con-
version of a document.

The getDocuments operation retrieves features of the feature type
OA_DocumentDescriptor. A query can be specified to retrieve certain documents
that meet specific requirements.

create
Documents

Creates new documents of type OA_DocumentDescriptor.

This method is an extension of the createFeatures operation of the FeatureAc-
cessService interface. Since this operation provides no additional functionality, the
detailed abstract specification is omitted.

set
Documents

Updates existing documents.

This method is an extension of the setFeatures operation of the FeatureAccessSer-
vice interface. Since this operation provides no additional functionality, the detailed
abstract specification is omitted.

delete
Documents

Removes existing documents. A query identifies which document to be deleted.

This method is an extension of the deleteFeatures operation of the FeatureAc-
cessService interface. Since this operation provides no additional functionality, the
detailed abstract specification is omitted.

Example
usage

After a search in a catalogue-service a found document can be retrieved by call of
the getDocuments operation.

Comments None.

Table 17: Description of the Document Access Service

9.7.4 Sensor Access Service

Name Sensor Access Service

Standard
Specifications

 OGC 06-009r1 – Sensor Observation Service Implementation Specification
V0.1.5 (Request for Comments)

 OGC 05-086r2 - Sensor Model Language (SensorML) Implementation Specifi-
cation V1.0 (Draft proposed version)

Description This service provides a basic interface for accessing sensor data, configuring a
sensor and publishing sensor data. While the configuration and data publishing in-
terfaces of the Sensor Access Service are optional, the ability to find a certain sen-
sor and retrieve its values is mandatory. The Sensor Access Service is strongly re-
lated to the OGC Sensor Observation Service and therefore provides similar func-
tionality.

The Sensor Access Service provides its functionality through the following inter-
faces:

 ServiceCapabilities: Informs about the common and specific capabilities.

 SensorAdministration: Allows the client to add or remove sensors at the ser-

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

124/180

vice and also change the descriptions of already existing sensors.

 SensorConfiguration: Provides functionality that allows the client to configure
a specified sensor (e.g.: adjust measurement range, position)

 SensorData: Allows the client to query for sensors that provide a specific
functionality/type of measurement and retrieve these measurements.

Interface ServiceCapabilities

getCapabilities Informs the client about the common and specific capabilities of a Sensor Access
OSI. Examples of the specific capabilities are:

 configurationSupported: Flag whether the SensorConfigurationInterface is
implemented

 administrationSupported: Flag whether the SensorAdministrationInterface is
implemented

 configurationCacheSupported: Flag whether the checkSensorConfiguration
operation caches valid configurations.

 cacheTimeout: Defines the duration of time after which a cached configura-
tion will be deleted and the associated OA_SensorConfigurationID is invalid

Interface SensorAdministration

addSensor Add a new sensor with its specified description to the services.

updateSen-
sorDescription

This operation can be used to change the description of an already existing sensor.

removeSensor Removes the specified sensor from the service.

setSensor
Data

Publishes new sensor data at the service so that clients may retrieve it through an
invocation of the getSensorData operation.

Interface SensorConfiguration

getConfigu-
ratioSchema

Retrieves the configuration schema of the specified sensor. The schema describes
format, mandatory and optional parts of a valid sensor configuration.

getSensor
Configuration

Retrieves the currently active configuration for the specified sensor.

setSensor
Configuration

Sets the configuration for the specified sensor.

Interface SensorData

getSensor Retrieves a list of identifiers of those sensors that match the specified requirements.
These requirements are formulated in a query language. The query language is in-
dicated in the service‘s capabilities.

getSensor
Data

Retrieves actual data (real measured or calculated/simulated data) of the specified
sensor.

getSensor-
DataTypes

This operation returns the schemas for the data types that can be retrieved at this
service.

Example
usage

A sensor administrator wants to publish ozone measurement values so that an envi-
ronmental authority can retrieve it and produce a report.

Comments The Sensor Access Service is a very basic service that does not include planning of
series of measurements or notifications. Notifications can be supported by imple-
menting the notify operation of the AsynchronousInteraction interface of the OA Ba-
sic Service on the client side (see section 9.6.1).

Table 18: Description of the Sensor Access Service

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

125/180

9.7.5 Catalogue Service

Name Catalogue Service

Standard
Specifications

The ORCHESTRA Catalogue Service has been derived from the approach how
meta-information is being handled in the OA (see section 8.4). Thus, the following
series of catalogue standards has been considered, but the goal has not been to
specify a service that is exactly compliant to one of these services. However, the
functionality of the following standards for basic search and publication is supported
by the ORCHESTRA Catalogue service such that it may be mapped on correspond-
ing service implementations. In addition, the ORCHESTRA Catalogue Service
additionally provides a navigation interface for navigation in the catalogue contennt

 OASIS UDDI Version 3.0.2 Specification (http://uddi.org/pubs/uddi_v3.htm)

 OGC 04-021-r3 Catalogue Service Implementation Specification V2.0.1 (Class:
Abstract Specification)

 OGC 04-017r1 Catalogue Services – ebRIM (ISO/TS 15000-3) profile of
CSW (CAT2 AP ebRIM) V0.9.1 (Class: Engineering Specification)

 OGC 04-038r2 ISO19115/ISO19119 Application Profile for CSW 2.0 ((CAT2 AP
ISO19115/19)) V0.9.3 (Status: Best Practices)

 OGC 06-079r2 EO Application Profile for CSW 2.0 (Status: Pending)

 OGC 06-131 EO Extension Package for ebRIM (ISO/TS 15000-3) Profile of
CSW 2.0 (Status: Discussion Paper)

The ORCHESTRA Catalogue Service does not define a meta-information schema
by itself. The intention of the ORCHESTRA Catalogue is to provide a flexible ser-
vice type which can be adapted to the particular purposes of the application envi-
ronment.

Description The Catalogue Service supports the ability to publish, query and retrieve descriptive
information (meta-information) for resources (i.e. data and services), meta-
information about ORCHESTRA Source Systems (just like meta-information for
other ORCHESTRA services) and instances of feature types that are referred to by
extensions of the OMM_FeatureType, such as documents, schemas, dictionaries,
equations and models.

The Catalogue Service is not tied to a particular schema of a meta-information
standard (e.g. ISO 19115); instead it supports application schemas for meta-
information (OAS-MI) that are designed according to the rules of the OMM. Due to
independence from a specific meta-information standard the catalogue can be used
to store meta-information about services and data according to the meta-information
schema used in the catalogue. Therefore a catalogue instance can be used as a
data catalogue, service registry or both if multiple meta-information types are used
in the catalogue instance. The multilinguality of the catalogue is dependent on the
multilingual capabilities of the meta-information schema used inside the catalogue.

Meta-information entries in catalogues represent resource characteristics that can
be queried and presented for evaluation and further processing by both humans
and software. The Catalogue Service supports the discovery of registered re-
sources within an information community and returns binding information that allows
a user to locate and access the resource (e.g. an URI).

The Catalogue Service provides its functionality through the following interfaces:

 ServiceCapabilities: Informs about the common and specific capabilities.

 CatalogueSearchInterface: The interface for search provides a means for
searching information in the catalogue. The client asks the catalogue capa-
bilities for the available catalogue entry types. Each entry type is associated

http://uddi.org/pubs/uddi_v3.htm
http://portal.opengeospatial.org/files/?artifact_id=5929&version=2
https://portal.opengeospatial.org/files/?artifact_id=7048
https://portal.opengeospatial.org/files/?artifact_id=7048
https://portal.opengeospatial.org/files/?artifact_id=8305
https://portal.opengeospatial.org/files/?artifact_id=8305
https://portal.opengeospatial.org/files/?artifact_id=8305

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

126/180

with a meta-information type and its corresponding query languages. With
this information the client can query the catalogue entry type with the appro-
priate query language.

 CataloguePublicationInterface: The interface for publication is responsible for
including, updating and deleting meta-information in the catalogue. It is push-
ing information into the catalogue. It provides operations for filling the cata-
logue. The needed meta-information could be created with some kind of
meta-information editor, in which the user is specifying the meta-information
about resources to be registered in the catalogue, or it could be collected
through the collection interface.

 CatalogueCollectionInterface: The collection interface provides operations,
which are helpful for the automatic update of catalogue content in difference
to the publication interface, which just fills the catalogue with given content. It
is pulling meta-information into the catalogue. The operations in this interface
should be able to be triggered from the outside of the catalogue and it should
be possible to define a periodic update from the catalogue content.

 CatalogueNavigationInterface: With the means of this interface, the user is
looking for meta-information records managed by the catalogue by navigat-
ing from node to node. The search is driven by the catalogue itself: no query
is performed. Note that the implementation of this interface makes the Cata-
logue Service a stateful service.

 AsynchronousInteraction (OA Basic Service): Definition of a uniform way to
request asynchronous execution of a service operation, e.g., for operations
which are time-consuming or deliver results periodically. This interface is
used by the collectMetaInformationPeriodic operation of the CatalogueCol-
lectionInterface.

Interface ServiceCapabilities

getCapabilities Informs the requestor about the common and specific capabilities of a Catalogue
Service instance. Examples of specific capabilities are the information about query
languages, the statement if the catalogue service instance is the main catalogue of
an OSN (the ―OSN Catalogue‖ as introduced in section 11.1.3) and the meta-
information types used in the Catalogue Service instance.

Interface CatalogueSearchInterface

search Returns a list of identifiers for corresponding features, given a request expressed in
a given query language.

getMeta
Information

Returns associated meta-information instances, given some identifiers of features
managed by the catalogue as returned by a previous search operation call.

getQuery
Domain

Returns the domain of values that are applicable to a property of the meta-
information type. This is used by catalogue clients. Using this operation by giving
the parameters of interest, the client shall know what values (e.g. list of values,
range of values) are allowed for a meta-information property.

getMeta
Information

Type

Returns the associated meta-information type, given a list of catalogue entry types
managed by the catalogue.

Interface CataloguePublicationInterface

createMeta
Information

Pushes information into the catalogue. The task of this operation is to insert cata-
logue content into the catalogue. The operation receives the meta-information to be
stored and returns information about the update of the catalogue.

setMeta
Information

Updates the catalogue content. The operation receives the meta-information types
to be stored and returns information about the update of the catalogue.

deleteMeta Deletes catalogue content from the catalogue. The input is a constraint to identify

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

127/180

Information the catalogue content, which needs to be deleted. The operation returns information
about the update of the catalogue.

Interface CatalogueCollectionInterface

collectMeta
Information

Pulls meta-information into the catalogue. The operation receives one reference of
a source of meta-information and a catalogue entry type. This catalogue entry type
is the type in which the meta-information is going to be stored in the catalogue. The
operation returns information about the update of the catalogue.

collectMeta
Information

Periodic (op-
tional)

Receives one reference of a source of meta-information, the catalogue entry type
and the time interval between two collections and a date to stop the collect. The
catalogue entry type is the type in which the meta-information is going to be stored
into the catalogue. The operation is processed periodically according to the given
intervals and stores the resulting meta-information into the catalogue. The operation
should be called asynchronously using the AsynchronousInteraction interface. The
operation returns information about the update of the catalogue.

Interface CatalogueNavigationInterface

getNaviga-
tionRoots

Returns the catalogue entries that can be used to start navigation inside the cata-
logue. If none is returned, no navigation will be possible.

getNaviga-
tionEdges

Returns all relationships that start from this node to other ones given an existing
node in the catalogue. Each relationship is annotated by the kind of relationship,
which adds some semantic information (e.g. broader, narrower, similar) to the link.

Interface AsynchronousInteraction

invokeAsync Starts asynchronous execution of the collectMetaInformationPeriodic operation of
the CatalogueCollectionInterface. The invokeAsync operation returns immediately
with an identifier (invocation ID) representing the asynchronous execution.

abort Aborts execution of the previously invoked asynchronous collectMetaInformationPe-
riodic operation identified by its invocation ID.

notify Passes a notification to the callback interface provider of the CatalogueCollectionIn-
terface.

Example
usage

A possible usage scenario of the catalogue is the usage of a catalogue for discover-
ing maps and displaying them in a map viewer. The following steps need to be ac-
complished for this scenario:

1. The catalogue needs to be initialized with meta-information about the maps and
a service capable of displaying the maps. The meta-information can be written
into the catalogue using operation createMetaInformation.

2. The user performes a search for available maps on the catalogue using the
search and getMetaInformation operations.

3. The user performes a search for an available map viewer, again using the
search and getMetaInformation operations.

4. The user displays the maps in the map viewer, using the retrieved meta-
information about the maps and the map viewer.

Comments The abstract specification leaves the question of the meta-information creation
open. It could be created by the user with the help of a meta-information editor or
automatically either within the catalogue inside collectMetaInformation or with the
usage of other means and services inside collectMetaInformation.

The support of multi-linguality depends on the meta-information schema used in the
catalogue.

Meta-Information about data and services inside the scope of an OSN will be de-
scribed with the help of the service capabilities.

Table 19: Description of the Catalogue Service

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

128/180

9.7.6 Name Service

Name Name Service

Standard
Specifications

 IETF RFC 1034 Domain Names - Concepts and Facilities

 IETF RFC 1035 Domain Names - Implementation and Specification

Description The objective of the Name Service is to encapsulate the implemented naming policy
for service instances in an OSN. It is responsible for creating globally unique OSI
names using a defined naming policy, e.g. by mapping between OSI names and
corresponding platform-specific service identifiers. If the naming policy requires ad-
ditional information to ensure uniqueness of names, e.g. an OSN name, then such
information may be provided by configuration and shall be hidden at the service in-
terface.

A central Name Service instance for all OSNs is not required. Instead, there may be
multiple Name Service instances, and each one may use a different naming policy,
as long as global uniqueness of created names is guaranteed. If multiple Name
Service instances are available within an OSN, they shall be related, i.e. each one
can be used for name resolving within the OSN. It is possible to share a Name Ser-
vice instance among multiple OSNs. Within an OSN that is based on multiple ser-
vice platforms, a Name Service instance is available for each service platform and
shall be used for name resolving within that platform.

The Name Service provides its functionality through the following interfaces:

 ServiceCapabilities: Informs about the common and specific capabilities.

 NameCreationAndResolution: provides operations to create names and to
resolve names given a platform-specific identifier (PSI) or vice-versa.

 NamingServiceLinkage: provides operations to support the linkage between
several Name Service instances.

Interface ServiceCapabilities

get
Capabilities

Informs the client about the common and specific capabilities of a Name Service in-
stance. An example of a specific capability is the naming policy that is applied in the
Name Service instance.

Interface NameCreationAndResolution

registerService An OSI is made known to the Name Service. The OSI is specified by its platform-
specific service identifier (PSI). It is related to the current service platform, i.e. the
platform on which the Name Service is based. The operation returns a globally
unique name for the OSI according to the implemented naming policy. From that
point on, name resolution is possible for that OSI name and PSI.

If a PSI is not provided as input parameter, an OSI is registered which has not yet
an assigned PSI. In that case, it is assumed that the Name Service itself assigns a
PSI to the OSI This PSI can be retrieved later by means of the getPSI operation.

getPSI Given an OSI name, the PSI of that OSI is returned if known to the Name Service.
The PSI is used to access the OSI within the current service platform. It may there-
fore be a PSI of a service gateway, if the OSI is based on a different platform.

getName Given the PSI of an OSI, the name of that OSI is returned if known to the Name
Service.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

129/180

Interface NamingServiceLinkage

linkName
Service

This operation establishes a linkage between this Name Service instance and an-
other one which is specified by its PSI within the current service platform. The link-
age is used to allow for cascading name resolving. This means if this Name Service
instance has no information to map an OSI name to a PSI, or vice versa, it can redi-
rect the request to all linked Name Service instances.

unlinkName
Service

This operation removes a linkage between this Name Service instance and another
one which is specified by its PSI within the current service platform.

Example
usage

An instance of a Name Service is useful in the case of OSNs that span multiple ser-
vice platforms connected through an OSN gateway.

Comments none

Table 20: Description of the Name Service

9.7.7 User Management Service

Name User Management Service

Standard
Specifications

 IETF RFC 2251 Lightweight Directory Access Protocol (LDAP) (v3)

The LDAP RFC standards span from RFC 2251 to RFC 2256. The following RFC
has been used as a template to define subject attributes in the ORCHESTRA User
Management Service:

 IETF RFC 2256 - A Summary of the X.500(96) User Schema for use with
LDAPv3

Description The User Management Service is used to create and maintain subjects including
groups (of principals) as a special kind of subjects. In general, subjects represent
entities that need to be authenticated. They are not authenticated themselves but
rather represent a point of contact and management feature for authentication and
authorisation purposes. A subject is decoupled from authentication. This decoupling
is done by separating principals from subjects. A principal is an identity of a subject
and is defined in an Authentication Service instance.

Management of subjects includes the association to principals as well as storage of
subject attributes. Group management includes definition of principal memberships.

The User Management Service provides its functionality through the following inter-
faces:

 ServiceCapabilities: Informs about the common and specific capabilities.

 UserManagementService: Management of subjects and group subjects.

Interface ServiceCapabilities

get
Capabilities

Informs the client about the common and specific capabilities of a User Manage-
ment Service instance. Examples of specific capabilities are structural information
on subject attributes specialised with respect to the different types of subjects:

 for human users, e.g. first name, surname as well as contact information

 for groups, e.g. administrative contact.

 for services, e.g. administrative contact. Additional pieces of information may
be defined by a policy provided by the respective OSN.

Interface UserManagementService

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

130/180

createSubject Creates a subject. After a subject has been created, at least one principal has to be
created and associated with the subject.

deleteSubject Deletes a subject including the deletion of all associated principals and subject at-
tributes.

updateSubject Updates the subject itself. Can be used to change subject related information, e.g.
subject attributes.

createGroup Creates a group. Groups contain principals, not subjects. After creation a group has
no members. Since a group is a special subject, principals have to be added. These
can be managed using the addPrincipalToSubject and removePrincipalFromSubject
operations. Group principals represent the identities of the group not group mem-
bers.

Group members can be managed using the operations addPrincipalToGroup and
removePrincipalFromGroup.

deleteGroup Deletes a group without deleting group member principals. Principals of the group
are deleted if not specified otherwise.

updateGroup Updates the group. Can be used to change group related information, e.g. group at-
tributes. In order to manage group memberships use the operations addPrincipal-
ToGroup and removePrincipalFromGroup.

getGroups Retrieves an enumeration of existing groups.

addPrincipal-
ToSubject

Associates an existing principal to an existing subject. This operation can also be
used for the assignment of principals to group subjects (not group members).

removePrinci-
palFromSub-

ject

Removes a prior assigned principal from a subject. This operation can also be used
to remove principals from group subjects (not group members).

getSubjects Enumerates all subjects of the current service instance. Use the operation get-
Groups to exclusively retrieve group subjects. There is no operation to retrieve an
enumeration of non-group subjects. This can be done by simply removing group
subjects from the result.

removePrinci-
palFromGroup

Removes the association between a given principal and a given group. The re-
moved principal is not deleted in the corresponding Authentication Service.

addPrincipal-
ToGroup

Associates an existing group with an existing principal. The principal may reside in
another User Management Service instance.

Example usage A group of users concerned with forest fires manages maps describing fire damage.
Another group of users working on flood risk analysis would like to access the maps
because they are relevant for their planning. Therefore, read access is granted to the
flood analysis group for all maps and features contained in the map layers managed
by the forest fire group.

Comments none

Table 21: Description of the User Management Service

9.7.8 Authorisation Service

Name Authorisation Service

Standard
Specifications

The following standard describes the main ideas of role based authorisation
systems:

 Ferraiolo David F. et. al: Proposed NIST Standard for Role-Based Access Con-
trol, ACM Transactions on Information and System Security, Vol. 4, No. 3, Au-

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

131/180

gust 2001, Pages 224–274. http://csrc.nist.gov/rbac/rbacSTD-ACM.pdf

The Authorisation Service implements the ideas of what is called ―Core Role-based
Access Control (RBAC)‖ in the NIST standard as close as possible.

A further source of inspiration has been the following RFC as it has many
requirements in common with ORCHESTRA UAA:

 IETF RFC 2704 The KeyNote Trust-Management System Version 2 (Septem-
ber 1999) http://www.ietf.org/rfc/rfc2704.txt?number=270

Description The Authorisation Service gives a compliance value as response to a service re-
questing an authorisation decision for a given authorisation context.

The Authorisation Service provides its functionality through the following interfaces:

 ServiceCapabilities: Informs about the common and specific capabilities.

 AuthorisationService: Includes all operations which are common to all Au-
thorisation Service implementations regardless to their underlying paradigms.

 XAuthorisationAdministration (where X could be e.g. Rbac or Principal): The
administration interface is specific to the underlying paradigm, e.g. support-
ing role management and thus may vary for different Authorisation Service
implementations. In the following a representative administration interface for
a role based Authorisation Service is presented.

Interface ServiceCapabilities

get
Capabilities

Informs the client about the common and specific capabilities of an Authorisation
Service instance. Examples of specific capabilities are the supported authorisation
paradigms (e.g. principal permissions, or role-based access control). These para-
digms are accompanied by specialised by dedicated administrative interfaces.

Interface AuthorisationService

authorise Requests an authorisation decision for a given authorisation context. An authorisa-
tion context is required as an input parameter. An authorisation context is a set of
information used by the authorisation service to determine the authorisation deci-
sion for a given request. The authorisation context can contain, for example, the re-
questing principal(s), name of the invoked operation, etc.

A compliance value representing the advice how to treat a certain service request is
delivered as an output parameter.

Authorisation contexts and compliance values need to be agreed upon between a
service and its Authorisation Service.

Interface Administration

createRole Creates a new role. Newly created roles are empty. Neither permission nor princi-
pals are assigned, yet.

deleteRole Deletes an existing role. Permission and principal assignments are deleted as well.

getRoles Retrieves an enumeration of existing roles.

updateRole Updates an existing role, e.g. description, etc.

assign
Permission

ToRole

Assigns permission to a certain role. Permission and role have to exist already.

unassign
Permission
FromRole

Removes permission from a certain role.

assignRole
ToPrincipal

Assigns an existing role to an existing principal. This indirectly assigns permissions
associated with the role to the principal.

http://csrc.nist.gov/rbac/rbacSTD-ACM.pdf
http://www.ietf.org/rfc/rfc2704.txt?number=270

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

132/180

unassignRole
FromPrincipal

Removes the given role from a certain principal. This indirectly removes permis-
sions associated with the role from the principal.

Example us-
age

For a Format Conversion Service it may be necessary to restrict access to certain
principals. The service provider might use an Authorisation Service to assign these
principals‘ permissions to perform conversions. This could be done with a service
type independent Authorisation Service implementation supporting operation level
authorisation. The authorisation context of such a service needs to include at least
requesting principal(s) as well as the requested operation.

An Authorisation Service implementation which is specific to Format Conversion
Services might additionally restrict the size of files to be converted depending on the
requesting principal. The authorisation context for such a scenario would need to
include the size of the file to be processed.

In the domain of Risk and Crisis Management, another example is the following:
Access rights like read, write, access, execute services, compose services or fea-
ture collections, modify rights etc. are granted to principals of a Civil Protection
Agency for all resources that relate to the responsibility domain of the agency. In
case of a hazard event, read access rights are extended to all resources related to
the hazard, independent of their organisational assignment.

Comments none

Table 22: Description of the Authorisation Service

9.7.9 Authentication Service

Name Authentication Service

Standard
Specifications

The following RFC standards have been taken into consideration as individual
authentication mechanisms. The abstract ORCHESTRA Authentication Service
Specification is intended to be independent from authentication mechanisms. Its
current implementation uses a non-encrypted username/password mechanism but
could also integrate a Kerberos authentication mechanism as described in RFC
4120.

 IETF RFC 4120 - The Kerberos Network Authentication Service (V5)

 IETF RFC 4158: Internet X.509 Public Key Infrastructure: Certification Path
Building

 IETF RFC 4210: Internet X.509 Public Key Infrastructure Certificate
Management Protocols

 IETF RFC 4211: Internet X.509 Public Key Infrastructure Certificate Request
Message Format (CRMF)

 IETF RFC 4325: Internet X.509 Public Key Infrastructure Authority Information
Access Certificate Revocation List (CRL) Extension

 IETF RFC 4386: Internet X.509 Public Key Infrastructure Repository Locator
Service

 IETF RFC 4387: Internet X.509 Public Key Infrastructure Operational Protocols:
Certificate Store Access via HTTP

Description The Authentication Service verifies genuineness of principals using a set of given
credentials. The authentication mechanism, which means the way authentication is
performed, is up to the service implementation.

Which credentials an Authentication Service needs as well as the way they are
passed is specific to the authentication mechanism used.

Session information returned after a successful authentication can be used to in-
voke services demanding authenticated principals. A service might use this informa-

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

133/180

tion to perform authorisation requests.

The Authentication Service provides its functionality through the following inter-
faces:

 ServiceCapabilities: Informs about the common and specific capabilities.

 AuthenticationService: Includes all operations which are common to all au-
thentication mechanisms.

 UsernamePasswordMechanism: Contains operations which are specific to
the authentication based on a username/password authentication mecha-
nism. This interface should specify credentials as well as the way they are
passed.

Interface ServiceCapabilities

get
Capabilities

Informs the client about the common and specific capabilities of an Authentication
Service instance. Examples of specific capabilities are the supported authentication-
mechanisms (e.g. username-password authentication, public-key authentication).

Interface AuthenticationService

login Initiates the validation of a certain principal for given credentials. Credentials have
to be passed using the AuthenticationMechanism interface before calling the login
operation. This needs to be done within a transaction. As an output parameter, the
session information that can be used to invoke services demanding authenticated
principals is provided.

addPrincipal Creates a new principal. The principal representation is specific to the authentica-
tion mechanism used.

For a username/password authentication the principal contains at least a username.

remove
Principal

Deletes an existing principal. Removal of principals should not be done without up-
dating corresponding User Management OSIs (see section 9.7.7) as well as updat-
ing services having permissions associated to the principal to be deleted.

A solution to this could be the use of administration tools to keep track of consis-
tency.

update
Principal

Updates an existing principal. The principal to be updated as well as information to
be changed, e.g. new username, shall be provided as input.

add
Credentials

Adds credentials to a certain principals. Credentials are specific to the authentica-
tion mechanism used.

For a username/password authentication credentials is a password.

Update
Credentials

Updates credentials for a certain principal. The principal (username) for whom the
credentials (password) should be changed as well as changed credentials shall be
provided as input.

deactivate
Principal

Deactivates a principal without removing it. The principal, e.g. username to be deac-
tivated and additional information, e.g. a time period for deactivation, shall be pro-
vided as input.

activate
Principal

Activates an existing principal. The principal, e.g. username to be activated and ad-
ditional information, e.g. a point of time for activation, shall be provided as input.

Interface UsernamePasswordMechanism

setUsername Used to pass the principal to be authenticated. In a username/password authentica-
tion the username represents the principal.

setPassword Used to pass the credentials to verify authenticity. In a username/password authen-
tication the password represents credentials.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

134/180

Example us-
age

A Format Conversion Service demands authorisation based on principals. There-
fore each service requestor has to pass session information including at least one
authenticated principal.

In order to invoke a service a subject needs to authenticate a principal having ap-
propriate permissions. The resulting session information can be passed to the ser-
vice. The service uses – among others - the session information to build the au-
thorisation context which is passed to the Authorisation Service.

Comments It is part of the characteritsics of an OSN to determine if user authentication is nec-
essary and if so, by using which authentication mechanism.

Table 23: Description of the Authentication Service

9.7.10 Service Monitoring Service

Name Service Monitoring Service

Standard
Specifications

 Web Notification Service 03-008r2

Description The Service Monitoring Service provides an overview about ORCHESTRA Service
Instances (OSIs) currently running within an OSN.
OSIs can either be monitored using a push or pull model, that is, the status informa-
tion is actively retrieved from an OSI by a service (this could be any service but
preferably the Service Monitoring Service) or they are sent to the Service Monitoring
Service.

There is also the possibility to register an alert service and bind information of a
specific monitoring status to that alert service. That way every time such information
is received the alert operation of the alert service will be invoked.

The Service Monitoring Service provides the functionality through the following in-
terfaces:

 ServiceCapabilities: Informs about the common and specific capabilities.

 ServiceMonitoringService: Implements a push model monitoring and alert
service binding

 Monitorable Interface: A service must implement this interface in order to use
the pull model monitoring.

 Alert Interface: Used when monitoring values of a certain status are provided.
This can for example be used to contact the service administrator via email
or Short Message Service.

Interface ServiceCapabilities

getCapabilities Informs the client about the common and specific capabilities of a Service Monitor-
ing Service instance. Examples for specific capabilities are the supported statistics
about the usage of a service in an OSN.

Interface ServiceMonitoringService

putStatus Gives any service the possibility to send monitoring information to the monitoring
service.

getConfigura-
tion

Retrieves the current configuration of the monitoring service.

setConfigura-
tion

Sets the current configuration of the monitoring service. This includes information
such as which services should be monitored, the binding between status informa-
tion and alert services.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

135/180

getConfigura-
tionSchema

Retrieves the schema that describes the format of the configuration.

getStatistics Retrieves statistical information about the monitored OSN or single services. These
statistical values are features in order to enable easy usage with other feature proc-
essing services.

Interface Monitorable

getStatus Retrieves the status of a specific monitored property of the implementing service.

getConfigura-
tion

Retrieves the currently active configuration of the monitored service.

setConfigura-
tion

Sets the current configuration of the monitored service (e.g., interval that must be
between getStatus calls in order to have new values available)

getConfigura-
tionScheme

Retrieves the schema that describes the format of the configuration.

Interface Alert

alert This operation does not have a predefined functionality. It can either be sending an
email or a Short Message Service or do some other mandatory processing.

Example
usage

A service provider has her FeatureAccessService monitored by the ServiceMonitor-
ingService. Whenever the hard disk usage exceeds 90% of the storage available a
monitoring value of status CRITICAL is produced. This value is retrieved by the
ServiceMonitoringService and since the status has been bound to an alert service, it
is sent there invoking the alert operation. This OSI that implements the Alert Inter-
face then sends a ShortMessageService to the service operator who can react to
this situation.

Comments Since the concrete procedure of reaction to an alert is application and most likely
company dependant the semantic meaning of the alert operation can‘t be given. In
some cases a simple email or other message will be passed to a responsible per-
son, in other cases some complex automatic reaction will take place in case of an
alert.

Table 24: Description of the Service Monitoring Service

9.8 OA Support Service Descriptions

9.8.1 Coordinate Operation Service

Name Coordinate Operation Service

Standard
Specifications

 ISO 19107:2003 Geographic information -- Spatial schema

 ISO 19111:2003 Geographic information -- Spatial referencing by coordinates

 OGC 05-008c1 Web Services Common Specification V1.0

 OGC 05-013 Web Coordinate Transformation Service (WCTS) draft Implemen-
tation Specification (Discussion Paper)

Description The Coordinate Operation Service changes coordinates on features from one coor-
dinate reference system to another (based on a 1-1 relationship). This includes op-
erations on datum and projection. A Datum is used as a basis for defining a coordi-
nate reference system and it specifies how the coordinate system is related to the
earth. Examples are WGS84 and NAD1950. A projection is a method for depicting
3-dimensional data (the shape of the earth) in 2 dimensions.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

136/180

There are two principal variants of coordinate operations:

 Coordinate conversion: An operation on coordinates that does not include
any change of Datum. Examples of a coordinate conversion are a map pro-
jection between projected coordinates and geographic coordinates, or
change of units such as from radians to degrees or feet to meters.

 Coordinate transformation. An operation on coordinates that usually in-
cludes a change of Datum. The parameters of a coordinate transformation
are empirically derived from data containing the coordinates of a series of
points in both coordinate reference systems. This operation introduces er-
rors, hence allowing derivation of error (or accuracy) estimates for the
transformation.

The Coordinate Operation Service provides its functionality through the following in-
terfaces:

 ServiceCapabilities: Informs about the common and specific capabilities.

 CoordinateOperation: Request to change coordinates of features, either by a
coordinate conversion or a coordinate transformation.

Interface ServiceCapabilities from (OA Basic Service)

get
Capabilities

Informs the client about the common and specific capabilities of Coordinate Opera-
tion Service instance. Examples of specific capabilities are the supported conver-
sions and transformations.

Interface CoordinateOperation

check
Operation

Reports if an operation between two Coordinate Reference Systems is supported
by the service implementation and, if so, if it is a conversion or a transformation.

convert
Coordinates

Convert coordinates without any change of Datum.

transform
Coordinates

Transform coordinates usually including a change of Datum.

Example
usage

Coordinate conversion: A user wants to convert coordinates from UTM Zone 33,
Euref89 to Geographic coordinates, Euref89.

Coordinate transformation: A user wants to change coordinates from UTM Zone 33,
ED50 to Geographic coordinates, Euref89

Comments none

Table 25: Description of the Coordinate Operation Service

9.8.2 Gazetteer Service

Name Gazetteer Service

Standard
Specifications

 ISO 19111:2003 Geographic information -- Spatial referencing by coordinates

 ISO 19112:2003 Geographic information -- Spatial referencing by geographic
identifiers

 OGC 05-035r2 Gazetteer Service - Application Profile of the Web Feature Ser-
vice Implementation Specification V0.9.3 (Best Practices Paper)

Description The Gazetteer Service allows a user to relate a geographic location instance
fied by geographic names (e.g. city, lake, region, street) with an instance identified
by coordinates (e.g. a point, line, polygon or sets of these). A client delivers geo-
graphic names or describes them indirectly by means of a query (e.g. all cities in

http://portal.opengeospatial.org/files/?artifact_id=15529
http://portal.opengeospatial.org/files/?artifact_id=15529

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

137/180

Bavaria) and receives geographic objects with their corresponding coordinates or
vice versa.

The Gazetteer Service usually provides this functionality by accessing a directory of
geographic identifiers that describes location instances, called a gazetteer. The
conceptual model of the gazetteer is taken from ISO 19112:2003. Here, location
instances contain both geographic identifiers and the geographic positions.

Access to the gazetteer is performed through operations of the
vice interface (see section 9.7.1). Thus, by the selection of location instances using
the query mechanisms of the Feature Access Service the relationship between
names (indirect spatial reference) and coordinates (direct spatial reference) is
ried out. For the purpose of gazetteer maintenance, the Gazetteer Service supports
changes and updates of a gazetteer, too. A sequence of these operations may, if
required, be secured by a transactional interface.

The Gazetteer Service provides its functionality through the following interfaces:

 ServiceCapabilities: Informs about the common and specific capabilities.

 FeatureAccessService: provides read and write access to a gazetteer.

 TransactionInterface: Secures sequences of change requests to a gazetteer.

Interface ServiceCapabilities

get
Capabilities

Informs the client about the capabilities of a Gazetteer Sesrvice instance. Examples
of specific capabilities are the provider organisation, the version and the geographic
scope of the gazetteer.

Interface FeatureAccessService (from Feature Access Service)

 The operations of the FeatureAccessService interface are used to access to the lo-
cation types and instances of a gazetteer.

Interface TransactionInterface

 The operations of the TransactionInterface are used when a synchronised access to
the gazetteer must be assured, especially in the case of the setFeature, createFea-
ture and deleteFeature operations.

Example us-
age

The Gazetteer Service may be used to integrate information in a risk assessment
process if one of the source information items is geo-referenced by a geographic
identifier (e.g. a statistical result based on a departmental area) and another by a
geographic coordinate (e.g. measurement values at monitoring locations). In this
scenario, the Gazetteer Service helps to generate comparable information that may
be commonly processed.

Comments A future version may consider a combination of a gazetteer with a thesaurus. Thus,
the Gazetteer Service may use the operations of the Thesaurus Access Service
(see section 9.8.6) in order to support multi-lingual gazetteers and fuzzy queries
based on synonyms, quasi-synonyms or related terms, like ―give me the coordi-
nates of the city by the riverside of the Rhine that is close to Wiesbaden‖.

Further enhancements may cover distributed gazetteers, possibly across borders
i.e. in combination with the gazetteer-thesaurus combination discussed above.

Table 26: Description of the Gazetteer Service

9.8.3 Annotation Service

Name Annotation Service

Standard
Specifications

 W3C OWL Web Ontology Language Overview http://www.w3.org/TR/owl-
features/

http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

138/180

 W3C-Resource Description Language http://www.w3.org/RDF/

 W3C RDF-Schema http://www.w3.org/TR/rdf-schema/

Description The Annotation Service automatically generates specific meta-information from
various sources and relates it to semantic descriptions. Semantic descriptions are to
be specified as elements of an ontology (e.g. concepts, properties, instances).
Sources to be annotated can contain unstructured information (e.g. documents,
texts) or structured information (e.g. databases, applications).

Annotations refer to the concepts of an ontology, which is specified in an ontology
language such as OWL and RDF-Schema (a subset of OWL). The content of an
annotation can be stored as a simple string. In order to provide references to con-
cepts, instances and relation types stored in either a knowledge repository or a data
ontology, the RDF syntax can be used.

The generation of annotations of unstructured sources is based on automatic Infor-
mation Extraction, by means of which named entities occurring in documents and
texts can be identified and normalized by means of Natural Language Processing.
The process of extracting information and its assignment to ontological elements is
based on background knowledge held in a repository, the (pre-populated) knowl-
edge base. In an OSN, such a knowledge base is accessible by means of the
Knowledge Base Interface (see section 9.6.5). In addition to named entity identifica-
tion, the service can automatically discover and formalize new knowledge by ana-
lyzing the texts. In a certain application scenario, this knowledge can be used to
populate a knowledge base, from where it can be queried by means of query lan-
guages.

The semantic annotation of documents and texts enables applications such as high-
lighting and document viewing.

The Annotation Service can automatically generate meta-information for structured
sources such as databases, applications, etc. As a pre-requisite of the annotation
service, the structure and content of such a resource is to be transformed into a
data ontology which is compliant with the ontology containing the semantic descrip-
tions. An annotation is a mapping of an element of this ontology to an element of
the data ontology.

The semantic annotation of databases and applications enables applications such
as exploration of the database structure and content by means of ontology query
languages, or interpretation of query results by means of domain knowledge.

The Annotation Service provides its functionality through the following interfaces:

 ServiceCapabilities: Informs about the common and specific capabilities.

 AnnotationService: For sources to be annotated (e.g. documents, data-
bases), an additional document - called a "semantic document" - is estab-
lished which contains the annotations. Another operation of the service al-
lows annotation of texts; here, the annotations are delivered directly in the
operation result; a semantic document is not generated.

Interface ServiceCapabilities

get
Capabilities

Informs the client about the common and specific capabilities of an Annotation Ser-
vice instance. Examples of specific capabilities are the supported annotation strate-
gies (identification, population of new knowledge etc.), a list of mime types of docu-
ments which can be annotated, and a list of supported data and domain ontology
formats.

Interface AnnotationService

http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-schema/

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

139/180

create
Semantic

Document

In a first step prior to annotation, a ―semantic document‖ is associated with the base
document. A semantic document contains the content of the base document, the
annotations and links to the base document and the corresponding domain ontol-
ogy. After creation, a semantic document only contains the content of the base
document; the annotations and the links are entered through the annotateDocument
resp. annotateDataOntology operations.

annotate
Document

Generates annotations for a given semantic document for an unstructured source.
The generated annotations are inserted into the semantic document.

annotateText Generates annotations for a given text ―on the fly‖, i.e. they are not stored in a se-
mantic document.

annotateData
Ontology

Generates annotations for a given semantic document for a structured source. The
semantic document has previously been generated from its data ontology by means
of a createSemanticDocument operation. The generated annotations are inserted
into the semantic document.

Example
usage

Risk maps usually can display various thematic layers. The graphical representation
in the risk map is explained in an attached legend. In many cases, the user needs
more textual explanation about what the values in a legend exactly mean. With a
growing number of layers and legends, a map can contain a considerable amount of
attached text; new layers, legends and texts can be added dynamically. Moreover,
the text itself could contain technical terms that make it difficult to read, or users
might only be interested in getting further information on items occurring in the text.

- In this scenario, the attached text could be processed in an annotateText operation,
which automatically sets up links of the terms occurring in the text to elements (con-
cepts, instances) described in a domain ontology. The user can navigate to the re-
spective ontology element and start browsing the ontology, thus getting help for in-
terpretation of the text.

Comments The service does not maintain the set of sources that are to be annotated; this func-
tionality is expected to be provided elsewhere. For instance, annotation could be
performed on a regular basis by means of a background job triggered at times of
low load. The job checks the set of sources for changes that have been performed
since the last run. Documents which have been changed are annotated again and
old annotations are deleted.

Table 27: Description of the Annotation Service

9.8.4 Format Conversion Service

Name Format Conversion Service

Standard
Specifications

The following language is used to select data formats:

 MIME Media Types (http://www.iana.org/assignments/media-types/)

Description The Format Conversion Service allows the conversion of data given in one format to
the corresponding data given in another format. Each conversion between a pair of
formats requires a conversion algorithm.

The problem is how two organisations are able to exchange their data (e.g. docu-
ments) without caring about the format the other side uses. This is the reason why
the Format Conversion Service is needed. It allows the conversion from one data
format (in case of documents e.g. MS-Word, OpenDocument, pdf,) to another one
in order to easily exchange data between different organisations. Data could be text
based, like a word document or a pdf, or it could be binary data like JPEG or WMF.

The Format Conversion Service provides its functionality through the following inter-
faces:

http://www.iana.org/assignments/media-types/

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

140/180

 ServiceCapabilities: Informs about the common and specific capabilities.

 FormatConversion: Provides the conversion operations.

Interface ServiceCapabilities

get
 Capabilites

Informs the client about the common and specific capabilities of a Format Conver-
sion Service instance. Examples of specific capabilities are the supported source
and target formats and the conversion functionality between these formats.

Interface FormatConversion

convert Performs the conversion given by input and output MIME type.

Example
usage

A time series of measurement values is available as an MS-Excel sheet and shall
be converted into an XML file for further processing in an RM application.

Comments It will be possible to build chains of format conversions. Example: If the conversion
functionality png2gif, gif2jp and jpg2pdf are available, the call convert(doc1, png,
pdf) will directly convert form a png to a pdf format.

Table 28: Description of the Format Conversion Service

9.8.5 Schema Mapping Service

Name Schema Mapping Service

Standard
Specifications

No standard service specification currently exists, on which the functionality of the
Schema Mapping Service could be based.

Several standards exist, on which a language for describing a schema mapping can
be based. However, as the Schema Mapping Service does not define a specific
schema mapping language, it is up to the implementation specification to define
these. Prominent (draft) standards which can be used for describing a schema
mapping are:

 W3C XSL Transformations (XSLT), version 1.0 (http://www.w3.org/TR/xslt/)

 XQuery 1.0: An XML Query Language, W3C Recommendation
(http://www.w3.org/XML/Query/)

 W3C SPARQL Query Language for RDF, W3C Working Draft, 4 Oct 2006
(http://www.w3.org/TR/rdf-sparql-query/)

Description The Schema Mapping Service provides functionality that is related to the mapping
of features from a source into a target schema. It provides this functionality through
two interfaces.

The main functionality of the SchemaMapping interface is to execute a schema
mapping. A schema mapping is considered to be ―the definition of an automated
transformation of each instance of a data structure A into an instance of a data
structure B that preserves the intended meaning of the original information‖.

The service takes a feature collection and a description of the mapping from the
source to the target schema as input and returns the features in the target schema.

A schema mapping is described by

 an identifier that is unique to the Schema Mapping Service instance;

 descriptions of the source and target feature types;

 the schema mapping language used to describe the mapping; and

 a reference to the actual mapping.

http://www.w3.org/TR/xslt/
http://www.w3.org/XML/Query/
http://www.w3.org/TR/rdf-sparql-query/

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

141/180

The Schema Mapping Service can be used to (1) directly map from one application
schema to another one, or (2) to map from an application schema to a common (or
community) schema (or vice versa). The latter can be used to perform an indirect
mapping between two application schemas through the community schema.

The mapping of features might also require that several feature collections be com-
bined. In order to support this, an optional concatenation operation is also included
in the interface.

The description of the schema mapping is required as an input. It is outside the
scope of the Schema Mapping Service to automatically derive a mapping between
two application schemas.

The SchemaMappingRepository interface supports repository functionality for map-
pings between source and target feature types. Service can also serve as a reposi-
tory for mappings between source and target feature types. For this, operations for
the creation (registration), retrieval, updating and deletion of schema mapping de-
scriptions are foreseen.

The Schema Mapping Service provides its functionality through the following inter-
faces:

 ServiceCapabilities: Informs about the common and specific capabilities.

 SchemaMapping: Execution of schema mappings and concatenation of fea-
ture collections.

 SchemaMappingRepository: Creation, deletion, update and selection of
schema mappings.

Interface ServiceCapabilities

getCapabilities Informs the requestor about the common and specific capabilities of a Schema
Mapping Service instance. Examples of specific capabilities are the supported
schema mapping language (for the Schema Mapping interface) and a list of the
mappings registered with the service (for the Schema Mapping Repository inter-
face).

Interface SchemaMapping

mapFeatures Maps a feature collection to a target schema.

concat Concatenates several feature collections.

Interface SchemaMappingRepository

createMapping Registers a new mapping with this instance of the Schema Mapping Service.

getMapping Returns a (list of) mapping(s) matching a given query.

setMapping Updates a specific mapping.

deleteMapping Deletes all mapping matching a given query.

Example
usage

A client wants to transform a data source in a local schema into a common agreed
global schema. The client submits a feature collection and mapping rules specifying
how to map the features into the required feature type.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

142/180

Comments The described interfaces can be used in service implementations in different ways:

 A service that only implements the SchemaMapping interface can be used to
map feature collections in arbitrary schemas to a target schema using a
mapping description that is provided by the requester.

 A service that implements both interfaces can be used in the same way. In
this scenario, the requester does not necessarily have to provide the map-
ping description themselves but can query the Schema Mapping Service for
an appropriate mapping description.

 A service that implements the SchemaMappingRepository interface and an-
other interface for creating or accessing feature collections (e.g. the inter-
faces of the Feature Access Service or the Processing Service) can be used
to provide the output feature collections in different schemas.

Table 29: Description of the Schema Mapping Service

9.8.6 Ontology Access Service

Name Ontology Access Service

Standard
Specifications

The Ontology Access Service currently supports the following ontology language:

 W3C OWL Web Ontology Language http://www.w3.org/TR/owl-features/

Description The Ontology Access Service supports the read access to the specification of a
logical ontology (see section 8.6.1.2) and to export or import a complete specifica-
tion of a logical ontology into an ontology store. It provides a high-level view to the
content of the ontology, allowing the client to get information about the taxonomy
(classes and properties) defined by any stored ontology and to extract TBox and
ABox vocabulary statements for human/machine interpretation.

The Ontology Access Service is independent of any ontology technology, like the
ontology language (e.g. OWL). However, the current version of the Ontology
Access Service ignores ontological classes that are implicitly defined by rules of
description logics (and only the explicit taxonomy is considered).

Some typical usages of this service are:

 Getting a list of the ontologies this service is providing access to;

 Storing, updating or deleting available ontology entries;

 Retrieving a partially or fully a stored ontology;

 Getting high-level information about ontology, such as the list of con-
cepts or the list of supported properties for a given concept and TBox
(optionally ABox) Vocabulary statements.

The Ontology Access Service provides the functionality through the following inter-
faces:

 ServiceCapabilities: Informs the client about the common and specific capa-
bilities of the Ontology Access Service.

 OntologyAccess: Supports the storage, retrieval, and deletion of ontologies
as well as providing a high-level view on ontologies.

 KnowledgeBase: Optional interface providing operations to query and update
models contained in the knowledge base (see section 9.6.5).

 TransactionInterface: Optional interface providing update requests to a
knowledge base in a transactional context (see section 9.6.4).

http://www.w3.org/TR/owl-features/

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

143/180

Interface ServiceCapabilities

get
Capabilities

Informs the client about the common and specific capabilities of an Ontology Ac-
cess Service instance. Examples of specific capabilities are the names of the on-
tologies available at the servers and the supported ontologies (e.g. OWL).

Examples of specific capabilities if the Knowledge Base Interface is being sup-
ported comprise:

 The possible representation formats of query results which can be requested
by clients.

 The types of the models supported by the service that supports the Knowl-
edge Base Interface (e.g. references to standards such as RDF, RDFS,
OWL).

 The query languages that can be used in knowledge base queries.

 The inferencing capabilities of the knowledge base applied when computing
query results.

Interface OntologyAccess

parse
Ontology

Given an ontology or a part (selection) of an ontology, it returns the hierarchy of
classes (concepts) and properties that are defined by this ontology (a high-level
view of the ontology). The format of the result could be, for example basic XHTML
(without CSS) that is suitable for both direct display or further machine processing.

getTBox
Vocabulary

Given an ontology or a part (selection) of an ontology, it returns a list of TBox
statements ready to be used for creating a Knowledge Base.

getABox
Vocabulary

(optional)

Given an ontology or a part (selection) of an ontology, this optional operation
returns a list of ABox statements ready to be used for creating a Knowledge Base.

setOntology Stores a new ontology in the ontology store, if the ontology format is supported. The
operation confirms the success of the operation by sending back to the client a Boo-
lean ―TRUE‖.

getOntology Retrieves an existing ontology or a part (selection) of an ontology from the ontology
store.

Delete
Ontology

Removes an existing ontology from the ontology store. The operation confirms the
success of the operation by sending back to the client a Boolean ―TRUE‖.

Example
usage

A party is having an ontology about forest fires and decides to share it with other
parties. By invoking the setOntology operation, the ontology can be stored in the on-
tology store of the Ontology Access Service. The stored ontology can then be made
accessible to other services. For example, using the updateModel operation of the
the Knowledge Base Interface can use the ontology to expand the knowledge base
with information about forest fires.

Finally, if a client possesses an ontology and wants to present its structure directly
on the Web, the parseOntology operation can be called giving the ontology as a pa-
rameter. The response is a high level-view of the ontology hierarchy, classes and
properties that can be immediately displayed or it can be further processed.

Additionally assuming that a client requires on ontology about forest fires and as-
suming that there are already some ontologies in the ontology store, a client shall
call the parseOntology operation for each of the stored ontology in order to get a
high-level view of the available ontologies and decide if one of the ontologies is
adequate for the purpose. Then the client could retrieve the full ontology or only a
part of the required forest fire ontology and pass it to other services for further proc-
essing tasks.

Comments The following are out of the scope of the Ontology Access Service:

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

144/180

 Creating ontologies – this service manages the storage and the access to
ontologies, but doesn‘t provide any tool to create ontology structures. This is the
purpose of dedicated tools (like Protégé) and methodologies (as the one
defined in deliverable D2.3.2).

 Inferencing – this is the responsibility of inferencign engine that may be
attached to an implementation of the Ontology Access Service.

 Remote editing of ontologies – it is assumed that the client, once it is getting the
ontology from this service, will use specialized tools or API (like Protégé or Jena
API) to deal with the ontology structure and editing. Calling operations on a
remote service to work with ontologies doesn‘t seem reasonable in terms of
architecture or usability. A high-level structure can however be provided for
clients that do not need any details but just overall information about the
ontology (using ―parseOntology operation‖).

Table 30: Description of the Ontology Access Service

9.8.7 Thesaurus Access Service

Name Thesaurus Access Service

Standard
Specifications

 ISO-2788 Documentation -- Guidelines for the establishment and development
of monolingual thesauri

 ISO 5964:1985 Documentation - Guidelines for the establishment and devel-
opment of multilingual thesauri.

Description The Thesaurus Access Service supports read and write access to a thesaurus that
may be multi-lingual. A thesaurus can be thought of as a synonym and antonym re-
pository for data vocabulary terminology (Pollock, Hodgson 2004). As such, a the-
saurus is a variant of an ontology restricting the relations used to a priori relation-
ships between terms, e.g. questioning whether the meaning of two terms is similar,
broader, or narrower. In a multi-lingual thesaurus these a priori relationships are not
restricted to one natural language, e.g. a term A may be a synonym to term B even
if term A is available in English and term B in French.

The Thesaurus Access Service is a run time service that provides on-the-fly insight
into data meaning by cross-referencing the included terms and providing a human
readable description. In this capacity the Thesaurus Access Service provides cru-
cial links in the resolution of unknown data semantics for requestors that are at-
tempting to resolve new schema relationships in newly discovered models.

The requestor may choose the language in which the terms requested shall be pro-
vided.

The Thesaurus Access Service provides its functionality through the following inter-
faces:

 ServiceCapabilities: Informs about the common and specific capabilities.

 ThesaurusAccessService: Includes the operations for the read and write ac-
cess to a thesaurus.

Interface ServiceCapabilities

get
 Capabilites

Informs the requestor about the common and specific capabilities of a Thesaurus
Access Service instance. Examples of specific capabilities are the supported lan-
guages and relations.

Note: The reason to provide these capabilities is less to reflect the services logic
capabilities than to reflect the available data.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

145/180

Interface ThesaurusAccessService

getScope Gets a note attached to a term to indicate its meaning within an indexing language
(i.e. a controlled set of terms selected from natural language and used to represent,
in summary form, the subjects of documents; see ISO 2788).

getPreferred
Term

Gets the preferred term when a choice between synonyms or quasi-synonyms ex-
ists.

getSynonyms Gets the synonyms of a given term in a given language.

getAntonyms Gets the antonyms of a given term in a given language.

getTopTerm

Gets the broadest class to which the specific concept belongs; sometimes used in
the alphabetical section of a thesaurus (e.g. The concept African elephant would re-
turn animal in case of a biological thesaurus)

getBroader
Term

Gets a concept having a wider meaning than the given term has.

getNarrower
Terms

Gets a concept with a more specific meaning than the given term has.

getRelated
Term

Gets an associated term, but that term is not a synonym, a quasi-synonym, a
broader term or a narrower term.

setScope Sets a note attached to a term to indicate its meaning within an indexing language

setPreferred
Term

Sets the preferred term for another term

setSynonyms Sets a synonym for a term in a given language.

setAntonyms Sets an antonym for a given term in a given language.

setTopTerm Sets the broadest class to which a term belongs

setBroader
Term

Sets a broader term for a term.

setNarrower
Terms

Sets a narrower term for a term.

setRelated
Term

Sets an associated term for a term; that associated term is neither a narrower nor a
broader nor a top term, nor is it a synonym, quasi synonym or antonym.

Example
usage

An end-user can use the Thesaurus Access Service to determine synonym terms,
which can subsequently be used to broaden a search.

Comments none

Table 31: Description of the Thesaurus Access Service

9.8.8 Service Chain Access Service

Name Service Chain Access Service

Standard
Specifications

The standards related to the Service Chain Access Service are the following:

 ISO 19119:2005 Geographic information – Services

 OASIS Web Services Business Process Execution Language (WS-BPEL)
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

 XLANG - web services for business process design.
Satish Thatte, Microsoft, 2001.

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

146/180

 Web Services Flow Language (WSFL). Frank Leymann, IBM, 2001.

 W3C Web Services Description Language (WSDL) 1.1
(http://www.w3.org/TR/wsdl)

ISO 19119 defines the term ―service chain‖ and in particular, the computational ap-
proach that is used in the Service Chain Access Service is based on the aggregate
service pattern (opaque chaining). This is due to the fact that: i) current workflow
engines support this approach, ii) the aggregate service pattern seems to be the
more suitable one for the service oriented paradigm.

WS-BPEL is the most credited language for expressing concrete service chains,
others are XLANG and WSFL (WS-BPEL inherits all the main design constructs of
both languages). Actually WS-BPEL is the only one which is continuously extended
(now version 2.0 is available) and it is also the only one equipped with stable en-
gines able to execute the service chain.

Since service engines supply the execution of aggregated services by means of a
single service, the WSDL standard is used to describe the corresponding interface.

During the design of concrete service chain descriptions it could be necessary (e.g.
in the case of very complex service chains) to start by using higher level languages
for services choreography and then move to concrete and executable languages
(e.g. WS-BPEL). The most credited standard for choreography is:

 W3C Web Service Choreography Description Language (WS-CDL) 1.0.
http://www.w3.org/TR/ws-cdl-10/

Description The Service Chain Access Service supports the creation of an executable service
instance based on an explicit description of a service chain. The chain can then be
executed as a single service. However, the execution of the service is outside the
scope of the Service Chain Access Service (see comment below).

Based on the Reference Model of Open Distributed Processing (ISO/IEC 10746-1
RM-ODP) definition of chain of actions, a service chain is defined in ISO 19119 as
a sequence of services in which, for each adjacent pair of services, occurrence of
the first action is necessary for the occurrence of the second action.

For the scope of this specification, it is important to distinguish between the descrip-
tion of a service chain (i.e. a document in some workflow language, e.g. BPEL), a
deployed instance of a chain (i.e. an executable piece of code), and the actual
process of executing the chain.

The service specification is based on the aggregate service pattern where services
appear as a single service which handles all coordination of the individual services
that are part of the chain. The createServiceChain operation supports a service pro-
vider in creating an executable instance of an aggregate service based on an ex-
plicit service chain description, and optionally registering that service instance with a
catalogue service.

The Service Chain Access Service provides its functionality through the following in-
terfaces:

 ServiceCapabilities: Informs about the common and specific capabilities.

 ServiceChainAccessService: Selection of service chain descriptions and crea-
tion and deletion of aggregate services based on such descriptions.

Interface ServiceCapabilities

get
 Capabilites

Informs the requestor about the common and specific capabilities of a Service
Chain Access Service. An examples of a specific capability is the supported work-
flow language in which the service chain description can be specified

Interface ServiceChainAccessService

http://www.w3.org/TR/ws-cdl-10/

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

147/180

createService
Chain

Deploys the service chain instance (an aggregated service) specified in a workflow
document

getService
Chain

Gets a descriptor of the service chain which includes meta-information (id, address,
description, and workflow language) and the workflow description itself.

deleteService
Chain

Deletes a service chain instance.

Example
usage

A client creates an aggregate service which can access features and perform
schema transformations. This service can now be accessed as one single service
from a client.

Comments In a service implementation the Service Chain Access Service and Processing Ser-
vice interfaces can be combined. The workflow language can then be used to define
combinations of several processing operations of this service instance. Thus, a
combination of related processing operations can be executed with one call without
having to send the same data repeatedly to the service.

Table 32: Description of the Service Chain Access Service

9.9 OT Support Services

Note: Some of the OT Support Services do not (yet) comprise descriptions of the service opera-
tions as the functionality of these services still needs further discussion within the ORCHESTRA pro-
ject. The result of this discussion will include the list of OA Services and other OT Support Services that
may be used by a given OT Support Service in order to provide its functionality according to the func-
tional classification of the ORCHESTRA Services (see section 9.3).

9.9.1 Processing Service

Name Processing Service

Standard
Specifications

The functionality of the Processing Service is based on the WPS OGC draft imple-
mentation specifications:

 OGC 05-007r4 Web Processing Service (WPS), version 0.4.0 (discussion pa-
per)

The interface of the WPS is that of a general purpose Web Processing Service
which provides client access to pre-programmed calculations and/or computation
models operating on spatially referenced data. Access happens through one ge-
neric execute operation that initiates a process based on a number of input pa-
rameter values and an output definition. The WPS concept of a single execute op-
eration has been adopted as is for the Processing Service.

The processing may occur on features which can then be encoded according to
given standards (see the Feature Access Service in section 9.7.1).

Description The Processing Service describes a common interface for services offering proc-
essing operations on spatial (vector as well as raster) and non-spatial data. Exam-
ples of processing operations are statistical or geospatial calculations, image proc-
essing and analysis or, in general, computer algebra operations.

The Processing Service provides mechanisms to identify the data required by the
calculation, initiate the calculation, and manage the output so that it can be ac-
cessed by the client.

The Processing Service provides its functionality through the following interface:

 ServiceCapabilities: Informs about the common and specific capabilities.

 ProcessingService: provides the means to get information on and to invoke a

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

148/180

specific processing operation.

Interface ServiceCapabilities

get
Capabilities

Informs the requestor about the common and specific capabilities of a Processing
Service instance. Examples of specific capabilities are the supported processing op-
erations (name and abstract).

Interface ProcessingService

getProcess
Description

This operation allows a client to request and receive detailed information about one
or more processing operation(s) that can be executed by an execute operation, in-
cluding the input parameters and formats, and the outputs.

execute This operation allows a client to execute a specified processing operation imple-
mented by the Processing Service, using provided input parameter values and re-
turning the outputs produced.

Example
usage

A client wants to create a buffer zone around a forest during a fire and calculate the
total area that is included in the buffer. The client queries the Processing Service for
a description of the buffer processing operation (including its input and output types)
using the getProcessDescription operation and then calls the buffer processing op-
eration using the execute operation. The Processing Service returns the result of
the buffer processing operation either directly or as a reference (that can be used by
the client to access the result).

Comments In order to avoid having to send the same data repeatedly to the same instance of
a processing service to execute several related operations, it should be possible to
invoke a combination of related processing operations with one call to the service.
This can be achieved by a service instance that implements both the Processing
Service and the Service Chain Access Service (SCAS) interface. Thus, a SCAS
workflow language can be used to define combinations of processing operations.
The optimisation of ―local‖ operation calls is an issue that should be addressed at
the implementation level.

For the implementation of GIS functionalities, several (Open Source) GIS libraries
exists, both for vector and raster data processing:

 GRASS http://mpa.itc.it/markus/grass50progman/node98.html, (including
OGC-conformal (Open Geospatial Consortium) Simple Features for inter-
operability with other GIS)

 Terralib http://www.terralib.org/

 GeoTools http://www.geotools.org/display/GEOTOOLS/Overview

 GMT http://gmt.soest.hawaii.edu/

 Map window http://www.mapwindow.com/

 OpenEV http://openev.sourceforge.net/

 Jump http://www.jump-project.org/

 STARS: Space-Time Analysis of Regional Systems, http://stars-
py.sourceforge.net/whatisstars.html

For the implementation of statistical functionalities, many tools and libraries are
available. The mathematical algorithms used by the service operations could be
taken from existing libraries, e.g:

 OCTAVE http://www.gnu.org/software/octave/ (Free, Opensource)

 Statistical analysis libraries such as R (http://www.r-project.org/) or Matlab
(http://www.mathworks.com).

 List of free software available at
http://members.aol.com/johnp71/javasta2.html

http://mpa.itc.it/markus/grass50progman/node98.html
http://www.terralib.org/
http://www.geotools.org/display/GEOTOOLS/Overview
http://gmt.soest.hawaii.edu/
http://www.mapwindow.com/
http://openev.sourceforge.net/
http://www.jump-project.org/
http://stars-py.sourceforge.net/whatisstars.html
http://stars-py.sourceforge.net/whatisstars.html
http://www.gnu.org/software/octave/
http://www.r-project.org/
http://www.mathworks.com/
http://members.aol.com/johnp71/javasta2.html

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

149/180

 A complete Statistical Analysis Software Survey available at
http://www.lionhrtpub.com/orms/surveys/sa/sa1.html

 See http://mathworld.wolfram.com/ for terminology and operator explana-
tion

An alternative architectural approach could be taken such that no Processing Ser-
vice interface is described on the abstract level. Instead, the OMM would contain
detailed rules about how processing service interfaces may be described by service
providers. These descriptions should then include a process description, the input
and output of the service and binding information, i.e. all information that is currently
described in the Processing Service‘s getProcessDescription operation.

In both cases and for a common understanding of processing operations, (basic)
operations should be grouped and described in an operation taxonomy to be refer-
enced in the service specific capabilities. Guidelines could be e.g. the Map Algebra
operations (Tomlin 1990) or the Egenhofer Operators (Egenhofer 1989).

Table 33: Description of the Processing Service

9.9.2 Simulation Management Services

Name Simulation Management Service

Standard
Specifications

 OGC 05-007r4 Web Processing Service (WPS), version 0.4.0 (discussion pa-
per)

Description The Simulation Management Service allows the user to discover, specify input for,
and control execution of a variety of simulation models.

A simulation could be anything from a simple service which combines two numbers
to a large simulation based on complicated mathematical models predicting the
weather. The Simulation Management Service allows the implementer to allow oth-
ers to discover, execute and control their model in a simple and generic fashion.
The Simulation Management Service allows the model to initially support multiple
simulations (which also could be derivatives of a particular model). The user can
then ascertain the specifics of what the model requires to run (including additional
input services and a description of the parameters required). The Simulation Man-
agement Service then provides the user the ability to execute and check on the
models progress. They can also modify the currently executing model to dynami-
cally modify the scenario.

The Simulation Management Service provides its functionality through the following
interfaces:

 ServiceCapabilities: Informs about the common and specific capabilities.

 AsynchronousInteraction: Exploits the OA Basic Service to provide a mecha-
nism to invoke a simulation and obtain an ID for the simulation such that
subsequent modification and query requests for that simulation can be made.

 ProcessingService: Provides the operation to call the simulation run.

 SimulationManager: Provides the interface to describe in detail the inputs re-
quired to invoke a supported simulation, as well as its outputs. The interface
also provides operations to modify, suspend or resume an executing simula-
tion, and to query its status.

Interface ServiceCapabilities

http://www.lionhrtpub.com/orms/surveys/sa/sa1.html
http://mathworld.wolfram.com/

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

150/180

getCapabilities Informs the requestor about the common and specific capabilities of a Simulation
Management Service instance. Examples of specific capabilities are the abilities of
the simulation manager to include the types and versions of simulations supported
by the simulation service

Interface AsynchronousInteraction

invokeAsync Starts asynchronous execution of a simulation. The invokeAsync operation returns
immediately with an identifier (invocation ID) representing the asynchronous execu-
tion. In order to receive notifications a reference to a callback interface can be pro-
vided.

abort Aborts execution of a simulation identified by its invocation ID.

notify Passes a notification to the callback interface provider (to be implemented by the
SimMS client).

Interface ProcessingService

getProcess
Description

Requests and receives detailed information about one or more processing opera-
tion(s) that can be executed by an execute operation, including the input parame-
ters and formats, and the outputs.

execute Executes a specified processing operation implemented by the Processing Service,
using provided input parameter values and returning the outputs produced.

Interface SimulationManager

modify
Process

Applies a change to one or more simulation parameters during the execution of a
simulation, to take effect from a defined point within the simulation. The simulation
to be modified is identified by its invocation ID obtained by the invokeAsync opera-
tion.

This operation also allows requests to the simulation state to be made to either sus-
pend or resume execution.

query
Process

Queries the state of a simulation identified by its invocation ID, to determine infor-
mation such as whether the simulation has been suspended, is executing or has
completed. As an option, this operation also provides the percentage complete.

Example us-
age

The caller wishes to execute a model.

 Through getCapabilities the caller can discover what simulations can be exe-
cuted.

 On choosing a particular simulation the caller can then invoke describeProcess
which reveals the requirements of the simulation.

 The simulation is then invoked by invokeAsync which will execute the simula-
tion. If the input to the simulation is ill-formed or invalid the execution will be
aborted and the caller will have to re-specify.

 The calling system can poll via queryProcess to find out the status of the simu-
lation.

 The caller may make dynamic modifications of the active scenario via modi-
fyProcess (e.g. moving the position of a spill or adding extra wind).

 When the simulation has completed, the SimMS returns the simulation results
through the client‘s notify operation.

Comments none

Table 34: Description of the Simulation Management Service

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

151/180

9.9.3 Sensor Planning Service

Name Sensor Planning Service

Standard
Specifications

 NASA/JPL Sensor Webs Project (http://sensorwebs.jpl.nasa.gov/).

 OGC 05-086r2 - Sensor Model Language (SensorML) Implementation Specifi-
cation V1.0 (Draft proposed version)

 OGC 05-089r3 – Sensor Planning Service Implementation Specification
V0.0.30 (Request for Comments)

Description Following the OGC Sensor Planning Service Discussion Paper:

―The Sensor Planning Service is intended to provide a standard interface to collec-
tion assets (i.e., sensors, and other information gathering assets) and to the support
systems that surround them. Not only must different kinds of assets with differing
capabilities be supported, but also different kinds of request processing systems,
which may or may not provide access to the different stages of planning, schedul-
ing, tasking, collection, processing, archiving, and distribution of requests and the
resulting observation data and information that is the result of the requests. The
Sensor Planning Service is designed to be flexible enough to handle such a wide
variety of configurations.‖

Example us-
age

A client wants to gather a satellite scene of a certain sensor for a certain region.
The Sensor Planning Service offers the client a way to define the required parame-
ters and to set up the respective notification mechanisms.

Comments The specification of this service shall be aligned to the ongoing specification work
within the OGC working group dealing with ―Sensor Web Enablement‖.

Table 35: Description of the Sensor Planning Service

9.9.4 Project Management Support Service

Name Project Management Support Service

Standard
Specifications

 ISO 10006:2003 Quality management systems -- Guidelines for quality man-
agement in projects

 ISO 10007:2003 Quality management systems -- Guidelines for configuration
management

 PMI Project Management Body of Knowledge (PMBOK) (http://www.pmi.org/)

 Project Management XML Schema (PMXML)
(http://xml.coverpages.org/projectManageSchema.html)

 dotProject - the Open Source Project Management tool
(http://www.dotproject.net/index.php)

Description The Project Management Support Service supports the planning and performance
of operations (projects) in a cooperative distributed environment in cases where a
desktop project management tool is not sufficient. Its purpose is to specify a project
based on definitions according to the following dimensions of project management:

- the structure of a project into project elements, i.e. the division of a project into
sub-projects, work packages and tasks, the identification of logical dependen-
cies between the project elements, the assignment of costs and priorities to the
project elements and the identification of project results and partial results.

- the structure of the resources, i.e. the identification of the type and number of

http://sensorwebs.jpl.nasa.gov/
http://www.pmi.org/
http://xml.coverpages.org/projectManageSchema.html

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

152/180

resources (human resources, organisation units, machines, tools, computation
resources, network bandwidth, ORCHESTRA features, ORCHESTRA services,
meeting resources…), their characteristics (e.g. competences in case of hu-
man resources), their relationships (e.g. tool is part of a machine, person be-
longs to a organisation unit) and their location.

- the time horizon, structured into units of, for example, months, weeks, days,
hours, minutes in accordance with the plan horizon and the level of plan detail.
Time oriented attributes include start and end dates of project elements, the
identification of milestones and delivery dates for project results, the time de-
pendencies between project results, the (estimated and actual) duration of pro-
ject elements and the availability of resources during a given plan horizon.

- the spatial dimension describing the location and movement of resources and
where the project elements are to be executed.

This service comprises the operations in the following operation groups:

- to specify the project according to the three dimensions illustrated above with a
close interlink to resources in an OSN.

- to support queries about a project, like e.g. ―Which resources are assigned to
which task ?‖, ―What is the pre-requisite to deliver project result A ?‖, ―Which
document is required to carry out task B ?‖

- to specify and optimise the allocation of resources to different tasks based on,
for example, their importance, their order in which they must be undertaken
and competition for the same resources.

- to optimise the timely delivery and to calculate and optimise the cost of the pro-
ject results

- to specify and evaluate project scenarios based on multi-criteria optimisations

The Project Management Support Service provides the following capabilities: list of
supported project management techniques and their options, list of supported op-
erations structured according to operation groups

Example us-
age

The service may be used in the risk management domain to support the develop-
ment and evaluation of emergency plans in case of a natural hazard in a given area,
e.g. the evacuation of a settlement in case of a threatening forest fire.

Comments The service operations are based upon known project management techniques
such as Gantt diagrams, PERT (Program Evaluation and Review Technique), CPM
(Critical Path Method), PSP (Project Structure Plans) or Critical Chain Method. The
applicability of more recent techniques such as that of the Business Communication
Engineering tool Communigram

®
 will be investigated

(http://www.communigram.com/).

Table 36: Description of the Project Management Support Service

9.9.5 Communication Service

Name Communication Service

Standard
Specifications

 IETF 3261 SIP: Session Initiation Protocol, June 2002

 ITU T.120 Data protocols for multimedia conferencing

 ITU H.323 Packet-based multimedia communications systems

 OGC 03-029 OWS Messaging Framework (OMF) V0.0.3

Description The objective of the Communication Service is to provide harmonised access to di-

http://www.communigram.com/

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

153/180

rect user-to-user communication means based on multi-media technologies and
data exchange between users. Harmonised access is required as these services
are most often associated with collaboration within a user community according to a
common community objective (e.g. a project) which is not supported by the existing
tools and standards in a common approach. The service will directly support users
and provide them with the support to conduct interactive collaboration.

Examples include:
- Presence Awareness: ability to determine who is on line at a given instant
- Chat: ability for multiple users to type text data onto their local device and

the text can be seen by other chat session participants
- Instant Messaging: combining Presence Awareness and Chat
- Polling / Surveying: providing the ability for a user to request a vote from

other collaboration participants
- White boards: to interactively manipulate graphical objects with other users
- Application Sharing / Desktop Sharing / File Sharing: provides users with

the ability to control a shared application remaining running on the sharers
computer (for example to allow multiple users to update a single document
interactively)

- Shared Storage: provides multiple users with a common place to upload
and download files

- File Transfer: to transfer a file to another user or set of users
- Shared Calendars / Scheduling: provides a group of users with a common

calendar that all may directly interact with
- Teleconference (audio and/or video)
- Audio and/or Video Broadcast

The Communication Service indicates the following capabilities to the requestor: the
interactive collaboration services supported together with the operations and op-
tions related to each of them.

Example us-
age

Usage through OA Services e.g.

1. Building of user communities and assigning access rights or

2. News registration and communication service

Potential uses of collaborative communication services include, e-learning, workflow
management, decision support, mission planning and logistics.

Comments It is to be decided if parts, at least, of this service are better classified as Human In-
teraction Components than as Workflow/Task Management Services. The compo-
nent could be a community portal integrating different communication services like
e-mail, newsgroups or Internet Relay Chat.

Table 37: Description of the Communication Service

9.9.6 Calendar Service

Name Calendar Service

Standard
Specifications

 ISO 8601: 2004 Data elements and interchange formats -- Information inter-
change -- Representation of dates and times

 ISO 19108:2002 Geographic information - Temporal schema.

Description The Calendar Service performs arithmetical date/time functions, comparisons and
format conversions. As most information in thematic domains has a temporal di-
mension with a reference to a calendar date (e.g. a measurement value), there is a
need to support calculations using these dates (e.g. for time series analysis in case
of measurement series).

The service provides operations to convert between different representations and

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

154/180

the usual one using year, month, day, hour, minute and second,
- to compare two dates and to perform simple arithmetical functions like add-

ing/subtracting a number of days or seconds and computing the difference
between two dates,

- to create a calendar for any month, past, present and future, for easy use
with other services,

- to perform calculations between dates, reducing time computations to sim-
ple arithmetic.

The Calendar Service indicates the following capabilities to the requestor: list of op-
erations supported, including the parameters and their expected format

Example us-
age

To try to recreate history or project the future one might need to know just what day
was the first Sunday of November 1963 or what day of the week May 12, 2034 will
be. The service allows a client to enter a date, to specify a number of days to be
added (to check a future date) or subtracted from (to check a past date) and to get
the new date. Or, it allows a client to specify a pair of dates in order to calculate the
number of days between these.

Comments none

Table 38: Description of the Calendar Service

9.9.7 Reporting Service

Name Reporting Service

Standard
Specifications

 OASIS Open Document Format for Office Applications (OpenDocument)
(http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=office)

Description The Reporting Service supports the creation of reports using actual information from
other services according to a given template. The process to create a report can be
of very high complexity. Thus, instead of providing a generic report generator, this
service offers a wrapper interface to existing products and tools for report genera-
tion. While many report formats are imaginable, for practical reasons only standard-
ised formats are supported.

Example us-
age

The result of a seismic risk assessment has to be publicised regularly in a format
that has been standardised by a civil protection agency. The Reporting Service
supports this task by allowing a template to be provided once according to the re-
port standard and filling the template based on the actual data.

Comments For reporting there might be more than one source for input data. For simple reports
a configurable service may be provided, for special cases subclasses of this service
can be created.

Table 39: Description of the Reporting Service

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

155/180

9.10 OA Service Interaction Patterns

The combined usage of the OA Services and the ORCHESTRA Information Models is illustrated by
means of OA Service interaction patterns. Note that these interaction patterns are informative and just
provide examples. It is not claimed that this is the only way of using and combining the OA Services nor
that this way is complete.

The following OA service patterns are currently described:

 Controlled user access to resources

 Rights-managed user access to resources

 Integration of source system data into an OSN

 Registration of resources in a catalogue

 Generation of meta-information

 Semantic catalogue component

9.10.1 Controlled User Access to Resources

9.10.1.1 Overview

The controlled user access to resources is described by an interaction pattern that involves the User
Management, the Authorisation and the Authentication Service (UAA services). This pattern assumes
the following context and OSN characteristics:

 Two departments of one organisation are attached to the same OSN and share a common UAA
policy (see section 11.1.5).

 The OSN comprises OSIs of a Format Conversion Service, a Document Access Service and a
Feature Access Service that use one User Management OSI, one Authentication OSI and one
Authorisation OSI in the following way:

- The Format Conversion OSI is owned by Department 1. The Feature Access OSI and
the Document Access OSI belong to Department 2.

- Department 1 and 2 have administrators ―admin 1‖ and ―admin2‖, respectively.

- Each administrator is responsible for the services of his department.

- Department 1 and 2 have employees ―user 1‖ and ―user 2‖, respectively.

- The Authentication OSI implements a username/password authentication mechanism.

- The Authorisation OSI implements a role based authorisation paradigm.

9.10.1.2 Scenario ―UAA Setup‖

This scenario cannot be described in detail because the setup procedure of each service depends on
its implementation. Nevertheless, we can describe in principle how such a setup could look.

1. The Authentication OSI is set up. During the setup the first principal called root principal is
created. The root principal can be authenticated and the resulting session information is used
during the setup of the Authorisation and User Management OSIs.

2. Each UAA service OSI has a simple built-in authorisation component which grants all available
permissions to the root principal until the actual Authorisation OSI has been configured.

3. The root principal creates the admin principals ―admin 1‖ and ―admin 2‖.

4. The next step is to register the User Management and Authentication OSIs as well as the
Feature Access, the Format Conversion and the Document Access OSIs in the Authorisation
Service. How this is done is specific to the Authorisation Service implementation.

5. After the Services have been registered the root principal creates admin permission for

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

156/180

principals ―admin 1‖ and ―admin 2‖ for the corresponding services.

6. For security reasons the root principal will be deactivated.

From now on ―admin 1‖ and ―admin 2‖ are able to administer their services.

9.10.1.3 Scenario ―Create new User‖

1. The human ―John Doe‖ behind ―user 1‖ has demanded a user account.

2. Admin1 creates a principal ―user 1‖ in the Authentication OSI.

3. Admin1 creates a subject with John Doe‘s personal information as subject attributes in the User
Management OSI.

4. Admin1 assigns principal ―user1‖ the newly created subject using the addPrincipaltoSubject()
operation of the User Management OSI.

User1 is now a valid system user but cannot access any service due to the lack of corresponding
service permissions.

9.10.1.4 Scenario ―Permission Assignment‖

1. ―User 1‖ has requested permissions to access the Format Conversion OSI.

2. ―Admin 1‖ assigns an operation permissions for the convert operation of the Format Conversion
Service to the principal ―user1‖.

―User 1‖ is now able to able to invoke the Format Conversion Service.

9.10.1.5 Scenario ―Service Request‖

1. ―User 1‖ wants to invoke operation convert against the Format Conversion OSI.

2. In order to receive session information ―user 1‖ (the client software of ―user 1‖ respectively) uses
the Authentication OSI to authenticate his ―user 1‖ principal using his password.

3. ―User 1‖ attaches the session information to the convert operation of the Format Conversion
Service.

4. The Format Conversion OSI parses the session information and extracts the reference to the
Authentication OSI of the authenticated principal(s).

5. The Format Conversion OSI makes a request to the Authentication OSI to verify session
information. Verification of session information is implementation specific and might use session
keys, for example.

6. The Format Conversion OSI creates an authorisation context and passes it to the authorise
operation of the Authorisation Service. The structure of the authorisation context is known to the
application and specific to the permission types supported by the Authorisation Service. For a
operation permission type, for example, the operation context includes the name of the operation to
be invoked.

7. The Authorisation OSI receives the authorisation context. It checks whether the given principal
(included in the authorisation context) has sufficient permission to invoke the requested operation.
This is done within an implementation and permission type-specific decision process. Evaluating an
operation permission means, for instance, to check whether the given operation may be invoked.
An evaluation of a time coverage permission might require a comparison between the current
timestamp and a time coverage given in the permission associated with the current principal.

8. The Authorisation OSI returns a compliance value representing the authorisation decision.

9. The Format Conversion OSI interprets the compliance value. It throws an
OA_PermissionDeniedException for a negative compliance value and performs the operation for a
positive one.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

157/180

9.10.2 Rights-Managed User Access to Resources

Rights-managed user access is an extension of the controlled user access described above. It is based
on two different preconditions:

 The user or the according user group needs access rights to the resource which are stored in
the Authorisation service

 The user needs to either recognise or explicitly agree to a license agreement including usage
constraints, based on a Creative Commons

5
 approach.

The OGC GeoDRM Reference Model (GeoDRM, 2006) defines a right as a ―permission to act that
makes principal entitled to act with respect to all or part of a specified resource for a certain period of
time‖, whereas a license is defined as a ―representation of grants that convey to principals the rights to
use specified resources subject to specified conditions‖.

An example of a Geo Rights Management implementation architecture based on the Authorisation
Service (see section 9.7.8) and Authentication Service (see section 9.7.9) is shown in

Figure 35.

Figure 35: Service Interaction Pattern for Geo Rights Management

This architecture assumes that there is a Web service X (e.g. an OSI or an OGC service instance) and
an corresponding client, both not capable of providing GeoRM functionality. These two components are
wrapped with proxy components on the client side (Client Proxy) as well as on the service side
(Gatekeeper).

The Gatekeeper adds a license code to the service capabilities of X. A license code may contain

 usage restrictions (similar to Creative Commons),

 preconditions (e. g. authentication required, license acceptance required, …) and/or

 obligations (e. g. time-limited access, restricted number of requests, …).

Service requests for the Web service X are first received by the Gatekeeper which checks if the pre-
conditions are fulfilled (e. g. if a valid identity or license token is provided) and if the requesting identity
is permitted to perform that request, i.e. the request has to be covered by the license and must be al-

5
 http://www.creative-commons.org

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

158/180

lowed by the policies stored in the Authorisation Service.

If this is the case, the Gatekeeper applies the obligations (if existent, e.g. by counting requests and
blocking after the maximum number of requests is reached) and forwards the request to the service.
The service then produces the requested result, which is conveyed back to the client.

The Client Proxy is responsible for interpreting the license preconditions and obtaining the required
tokens, either an identity or a license token.

In order to get an identity token, the Client Proxy accesses the Authentication Service with the
credentials of the principal that represents the user or the client software component (see section
7.5.2). The Authentication Service checks the authenticity of the principal and returns the identity token
(including an authentication statement) if the check has been successful.

In order to get an identity token, the Client Proxy accesses the License Broker. The License broker
returns a license token that conatins a reference to the original license stored in the License Manager.

If the Gatekeeper receives a request including an identity or a license token, it delegates the policy
decision to the Authorisation Service by calling an authorise operation. Furthermore, it obtains the
license referenced in the license token from the license manager. If the authorisation process is
successful and the license covers the current request, then the policy decision is set to ―permit‖. If there
are any obligations included in this license they are transmitted to the Gatekeeper as well. Thus, the
Gatekeeper is enabled to enforce the policy decision in its entirety.

9.10.3 Integration of Source Systems into an OSN

Source System Integration has been defined in section 7.6 as the process of transforming an External
Source System into an ORCHESTRA Source System. Thus, it starts in a native (i.e. non-ORCHESTRA)
environment and results in a running OSI that represents the access point to the data and functionality
of an External Source System within an OSN. This OSI must be built according to the rules that are de-
fined in the ORCHESTRA Service Meta-model (OMM-Service as described in section 9.2).

Integration of one or more External Source Systems into an OSN means creating (at least) one new
OSI. This instance is created by defining and implementing an ORCHESTRA conformant interface re-
sulting in a service that is able to interact with the External Source System. For the description of this
OA pattern, the resulting OSI is called Source System Integration Service in order to have a single
name for the entirety of services of this kind. It is a surrogate name since Source System Integration
Services needn‘t share any predefined interface type (apart from the mandatory ServiceCapabilities in-
terface described in section 9.6.1) that could be used as a name instead.

Note: The name Source System Integration Service neither states that any specific interface is im-
plemented, nor does it create a new service type, since a Source System Integration Service might as
well be just an implementation of the service type Feature Access Service.

Starting on an abstract level, the integration process of source systems can be described in the follow-
ing steps:

1. Check the available interfaces types of the defined ORCHESTRA Service Types and select (if
any) the interfaces that are suitable to represent the External Source System. (e.g.: a database
might be best represented through a FeatureAccessService interface as specified in section
9.7.1). This step is not restricted to selecting only one interface type, therefore it‘s valid for a
Source System Integration Service to realise multiple interface types as defined in abstract
specifications.
According to the OMM-Service, at least the ServiceCapabilities interface must be selected in
this step. If the External Source System provides operations that the integrated ORCHESTRA
Source System shall offer to the OSN, continue with step 2. If there aren‘t any further opera-
tions continue with step 3.

2. If the collection of selected interface types does not completely fit a predefined ORCHESTRA
Service Type, a new service type shall be defined.

3. There are two possible ways to integrate any operations that the External Source System pro-
vides. One of these must be chosen as illustrated in Figure 36.

a. Extend the Source System Integration Service‘s interface with a new operation for

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

159/180

every operation of the External Source System that should be integrated (and therefore
visible in the OSN).

b. Implement the SynchronousInvocation interface (see section 9.6.2) and add the exter-
nal operations as possible parameters to the invoke() operation.

4. Transform the native meta-information that will be needed within the OSN into ORCHESTRA
meta-information according to the rules defined in Annex B1 of the RM-OA (or define such
meta-information from scratch if it is not available yet). A non-exhaustive list of such meta-
information that would be the contents of the service capabilities (e.g.: provider information, in-
terface self-description…), the OAS, the feature type descriptions, ontologies, parameter
types…

cd operation integration

«interface»

ESS_native_IF

+ SSop1() : void

ESS : External

Source System «OSI»

Source System Integration Service

+ ...()

+ invoke(OAS_OperationRequest) : OAS_OperationResponse

«OSI»

Source System Integration Service (integrated)

+ ...()

+ SSop1_OMM_conformant() : void

«provides»

Figure 36: Operation Integration (upper right: SSI step 2a, lower right: SSI step 2b)

5. For a given platform, provide an implementation specification for the interface types of the
Source System Integration Service.

6. Develop an OSC that corresponds to the implementation specification. This can be done either
by mapping the interface operations to the native interface operation of the External Source
System or by implementing the functionality from scratch.

7. Create and start an instance of the Source System Integration Service (a respective OSI) within
the OSN.

Note 1: These steps are the tasks a source system provider must perform in order to integrate his
External Source System into an OSN when starting on abstract level. Of course, these steps can be
supported by tools in order to result in a (semi-) automatic integration process.

Note 2: A corresponding integration process could be defined when directly starting on platform-
specific level.

Note 3: During all of those steps existing interface types of OA/OT-Services and also
implementations of OA/OT-Services might be used to facilitate the tasks that need to be performed in
the integration process (e.g.: a Schema Mapping Service might be used to transform a database
schema into an OAS). But implementations of the OA/OT-Services are not required to support the
integration process in any way, since this would mean that those services have to operate outside the
specified boundaries of ORCHESTRA.

Figure 37 shows the basic and common interfaces among all integrated source system integration ser-
vices. Since the type of the External Source System is unknown, it is impossible to know the interfaces
needed for all possible External Source Systems. Therefore a generic and also extendable interface
must be given as a base.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

160/180

All that is predefined is the required service self-describing operation getCapabilities().

cd Source System Integration Service

«interface»

ServiceCapabilities

+ getCapabilities(request :OAS_GetCapabilitiesRequest) : OAS_MI_CapabilitiesDocument

«interface»

SourceSystemIntegrationService

+ getCapabilities(request :OAS_GetCapabilitiesRequest) : OAS_MI_CapabilitiesDocument

Figure 37: Source System Integration Service

In order to be able to support the wide heterogeneity of available External Source Systems, the Inter-
face of the Source System Integration Service can be extended as the integrator desires. This includes
inheriting and implementing interfaces of predefined OT/OA-Services as described in the RM-OA as
well as adding new operations unrelated to any predefined interface type. Of course the meta-
information, especially the interface description in the service capabilities, must reflect this. Thus, it con-
tains all operations that are available at the service, having in mind that there might not be a hand-
written specification of the service in case of a fully automated source system integration process.

9.10.4 Generation of Meta-information

Several OA Services provide the means for the generation of meta-information. Figure 38 outlines
known methods for that purpose and assigns the respective OA Service to each method.

Figure 38: Generation of resource meta-information

Meta-information is generated for various types of resources, being feature or service instances, ac-
cording to a well-defined purpose (see section 8.4). The main criteria for the classification of methods
are the distinction between manual and automatic (or semi-automatic) approaches.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

161/180

Manual generation of meta-information is usually carried out by a human user, who inserts values into
certain fields of meta-information of an input mask. On the one hand, meta-information may consist of
simple attributes, such as keywords for discovery purposes, which can be used to find resources by
applying a boolean match. The attributes may then be structured according to an application schema
for meta-information (OAS-MI, see section 8.4). Concrete examples are meta-information standard
such as Dublin Core or ISO 19115, or ISO 19119 in case of service meta-information. The Catalogue
Service (see section 9.7.5) can be used for the publication of meta-information for discovery purposes.
The publication can be performed manually using a GUI-based client component that accesses the

CataloguePublicationInterface (see method in Figure 38) or semi-automatically by means of the

CatalogueCollectionInterface (see method in Figure 38). These two alternatives are described in

more details in section 0 below.

A more advanced method for describing resources is to edit statements which can be added to a
knowledge base by means of operations of the Knowledge Base Interface (see section 9.6.5), where
they are stored as a knowledge graph. An implementation example of such a knowledge base is an
RDF (Resource Description Framework) Triple Store. The statements describe the relationship from re-
sources to concepts of an ontology and their relationship to other resources as well. Thus, this kind of
meta-information is on a semantic level, as it can be interpreted by an ontology. The Knowledge Base

Interface (see section 9.6.5) allows a user to manually update the knowledge base (see method in

Figure 38).

However, the OA also aims at supporting an automatic approach by means of the Annotation Service
(see method in Figure 38 and the service description in section 9.8.3). The Annotation Service identi-
fies named entities in texts and automatically establishes relationships between resources and con-
cepts and between resources among each other. The information in such a knowledge base can be ex-
plored by browsing the ontology using dedicated navigation tools or by formulating exact queries in an
ontology query language.

As a future possibility, currently not supported by an OA Service, is the possibility to enrich a meta-
information schema by references to concepts of an ontology, illustrated as method in Figure 38.

9.10.5 Registration of Resources in a Catalogue

Registration means the creation of an associated meta-information entry of a resource (data or service)
in a catalogue in order that a user in an OSN may discover the resource. The registration of the re-
sources can be achieved via the CataloguePublicationInterface and the CatalogueCollectionInterface of
the Catalogue Service (see section 9.7.5), which provides means for including, updating and deleting
catalogue entries. The CataloguePublicationInterface provides a push paradigm and the CatalogueCol-
lectionInterface provides a pull paradigm.

Figure 39: Generation of meta-information entries (push paradigm)

The meta-information in a catalogue is structured according to an OAS-MI that the catalogue is able to

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

162/180

handle. The following figures illustrate an example in which an OAS-MI is structured according to the
capabilities of ORCHESTRA services which need to be described in the catalogue. In this example, the
meta-information is extracted from an OSI by calling the operation getCapabilities() contained as part of
the ServiceCapabilities interface of any OSI.

Now, the push paradigm is supported by the operations createMetaInformation() and setMetaInforma-

tion(). By calling these operations software components of ORCHESTRA Applications (see case in

Figure 39) or any OSI itself (see case in Figure 39) can directly store meta-information in the cata-

logue.

Figure 40: Generation of meta-information entries (pull paradigm)

The pull paradigm is supported by the operations collectMetaInformation() and collectMetaInformation-
Periodic(). By calling these operations software components of ORCHESTRA Applications can trigger

the catalogue to pull meta-information from an OSI (see case in Figure 40) or an OSI itself can trig-

ger the catalogue to pull the meta-information (see case in Figure 40). CollectMetaInformation() is

used for a single pull, while collectMetaInformationPeriodic() is used for periodic updates of the re-
sources.

9.10.6 Semantic Catalogue Component

An OSC called ―Semantic Catalogue‖ may be built by combining various instances of the ORCHESTRA
Catalogue Service (see section 9.7.5) and the Ontology Access Service (see section 9.8.6) in a service
interaction pattern as illustrated in Figure 41. A Semantic Catalogue supports the ability to improve the
search for resources by by exploiting the conceptual relations between concepts defined in an ontology.
The ontology should represent (a subset of) the thematic domain of the user.

On the front-end to a client application, the Semantic Catalogue provides an interface in form of the
ORCHESTRA Catalogue Service and, on the back-end, it offers access to more than one catalogue
service instances, possibly with different associated meta-information models, e.g. OGC Catalogue
Services in the form of the ebRIM and ISO application profiles, any other non-OGC compliant catalogue
service (e.g. UDDI in a Web service environment) or even an Intenet search engine. However, this
structural diversity should be transparent to the user of the Semantic Catalogue component by means
of cascaded catalogue OSIs.

First, a query to the Semantic Catalogue is analysed in a semantic query processor that uses the On-
tology Access Service to expand the query according to related concepts in an ontology. It then gener-
ates individual queries and directs them to the appropriate meta-information sources. The response
(result sets in the catalogue‘s own structure) is then assembled and structured by a semantic report
generator and returned as query response to the client.

Furthermore, there is the option to use the Annotation Service (see section 9.8.3) in order to annotate
selected textual results against the ontology that has been used in the query expansion in order to as-
sess and interprete the results in the context of the thematic domain.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

163/180

Figure 41: Example of a Semantic Catalogue

9.10.7 Naming in Dynamic OSN Environments

In the following, a usage of the Name Service (see section 9.7.6) in the case of dynamic OSN environ-
ments is described. Dynamic OSN environments are characterised by the fact that the assignment of
OSIs to one or more OSNs may change during the lifetime of an OSI (e.g. due to a central OSN admin-
istrative decision or due to an autonomous decision of an OSI).

Note: Version 3 of the RM-OA will investigate how an OSI knows about the used naming policy for
its own name and its (current) membership in an OSN.

In order to support a dynamic OSN environment, an interaction of Name Service instances is required.
Consider the following cases:

 An OSI is added to OSN A and is not already registered at any Name Service instance. In this
case, the OSI can be registered at the Name Service instance of OSN A. The Name Service
creates a globally unique name for the OSI and can then be used to resolve the name.

 One or more OSIs are added to OSN A and these OSIs are already registered at a Name Ser-
vice instance of OSN B. As these OSIs already have names, the Name Service instance of
OSN A is not used to create OSI names. Instead, a mechanism is needed to create a linkage
between the Name Services instances of OSN A and OSN B. Such a mechanism is further de-
scribed below.

 An OSI is removed from an OSN. If the OSI is not member of another OSN, it may be deregis-
tered from the Name Service instance of the OSN, which means that it will lose its name. How-
ever, it may also be useful to keep its name and registration in order to use the OSI in another
OSN.

 A new OSN is created and OSIs are added as described above. The new OSN may establish a
new Name Service instance or may reuse an existing one of another OSN.

 An OSN is removed which implies that all its OSIs are removed from that OSN. The Name Ser-
vice instance of the OSN may still be used by another OSN.

The following figure illustrates a linkage between two Name Service instances.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

164/180

Figure 42: Linkage between Name Services

The figure shows two OSNs which are initially separated. Each OSN has its own Name Service in-
stance indicated by A:NS and B:NS. Each OSI is registered at the Name Service instance of its OSN,
indicated by the connecting lines. Now, B:osi2 from OSN B is in addition added to OSN A.

As the added OSI is registered at B:NS, a linkage is established between A:NS and B:NS. The linkage
is used for name resolution in the following way. In order to resolve a name within OSN A, A:NS is
used. If A:NS is not able to resolve the name among its registered OSIs, it uses the linkage and directs
the request to B:NS. Thus, cascading name resolution is performed. This allows the resolution of the
name of B:osi2 using A:NS.

Note that the linkage may be used in both directions for cascading name resolution. B:osi2 may use its
original Name Service B:NS to resolve names within OSN A and OSN B.

A:NS and B:NS may use different naming policies.

To support linkage of Name Service instances, the Name Service has an additional interface called
NameServiceLinkage that includes the following operations:

linkNameService(PSI)

This operation establishes a linkage between this Name Service instance and another one which is
specified by its PSI within the current service platform. The linkage is used to allow for cascading
name resolving. This means, if this Name Service instance has no information to map an OSI name
to a PSI or vice versa, it can redirect the request to all linked Name Service instances.

unlinkNameService(PSI)

This operation removes a linkage between this Name Service instance and another one which is
specified by its PSI within the current service platform.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

165/180

10 Technology Viewpoint

According to the ORCHESTRA Reference Model as introduced in section 5.3, the Technology View-
point specifies the technological choices of the service platform and its operational issues. Thus, when
considering the design process of the ORCHESTRA Service Network, it contains the specification of
the service platform and its characteristics upon which the ORCHESTRA Services and ORCHESTRA
Application Schemas are to be mapped.

The present RM-OA document, being a reference model for the design of ORCHESTRA Service Net-
work, only contains the guidelines and requirements for the platform specification. It comprises the fol-
lowing parts:

 a specification of all properties that are required to be compliant with the SOA Reference Model
of OASIS,

 a specification of how the UAA mechanisms are intrinsically supported by the platform,

 agreement on the usage of specific data formats (e.g. non-GML representation of coverages),

 a specification of a bijective mapping of the platform-specific schema language from and to
UML (both for information models and for service types) according to the OMM,

 a specification of possible restrictions of the platform, e.g. to be considered in the service map-
ping process.

10.1 Specification of Platform Properties

Being a realisation of the OMM meta-class OMM_PlatformSpec (see section 9.2.2.2), a platform speci-
fication has to define the following set of properties, which are considered in the context of the OASIS
Reference Model for Service Oriented Architecture 1.0 (SOA-RM, 2006). As an important example see
the platform specification as part of (ORCH-ImplServ 2007) for the ―ORCHESTRA Web Services Plat-
form‖.

1. RM-OA Version

Version number of the RM-OA to which the platform specification refers to.

2. Platform Name

Name of the platform. In case of a standard platform, a reference shall be provided.

Example: ―ORCHESTRA Web Services Platform‖

3. Interface Language

Specification of the formal language used to define SOA-RM Service Interfaces. In case of a
standard language, a reference shall be provided.

Example: Web Services Description Language (WSDL)

4. Execution Context

Specification of the SOA-RM Execution Context. The Execution context is an agreement be-
tween service providers and consumers. It contains information that can include preferred pro-
tocols, semantics, policies and other conditions and assumptions that describe how a service
can and may be used. This includes, for example, the specification of the transport and the se-
curity layer, the format of the messages exchanged between service providers and consumers,
etc. In case of a standard SOA-RM Execution Context, a reference shall be provided.

Example: SOAP 1.2 HTTP binding for message transport, WS-Security in conjunction with SLL
shall be used if encryption of messages is required, etc.

5. Schema Language

Specification of the schema language used to define SOA-RM Information Models. The schema
language defines the platform dependent encoding of a platform independent information

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

166/180

model as specified by an ORCHESTRA Application Schema.

Example: XML-Schema and a GML Profile based on the GML Simple Feature Profile.

6. Schema Mapping

Specification of how to map the abstract level (UML) to the schema language used for this par-
ticular platform.

Example: XML-Schema/GML encoding rules for ORCHESTRA Application Schemas (ISO
19136 Annex E and F + additional rules for non-GML types)

7. Information Model Constraints

Specification of the constraints on the SOA-RM Information Model, especially the constraints on
the message format required to accomplish the SOA-RM Action model.

Furthermore, in the following sections some specific aspects are discussed that have to be considered
on a platform level in order to increase the level of interoperability.

10.2 Selection of User Management, Authentication and Authorisation Mechanisms

The RM-OA concept for User Management, Authentication and Authorisation (UAA) and the respective
abstract specifications are by intention specified at a high level of abstraction in order to be able to cope
with established UAA mechanisms for dedicated platforms. Thus, a platform specification has to define
how the ORCHESTRA UAA concept can be realised for a specific platform. This includes an agreement
on the authentication and authorisation mechanisms permitted within an OSN, the transport and han-
dling of session information among OSCs, the selection of a language for the expression of permissions
and possibly the predefinition of common permissions and default subjects and principals. Some as-
pects of these definitions, especially the technical details, may not necessarily be part of the platform
specifications but of the implementation specifications of the UAA services.

Example: The Authentication Service implements a simple username/password mechanism, and the
Authorisation Service a role-based access control (RBAC) system. Additional authentication and au-
thorisation mechanisms are not supported. Session information will be exchanged by means of a plat-
form specific protocol, for example inside the header of a SOAP message.

10.3 Agreement on Data Formats

A platform specification may also contain an agreement on the usage of (de-facto or de-jure) standard
data formats (e.g. MIME types) and specific, often proprietary data formats to be exchanged between
OSCs.

Example: An agreement on well-known coverage representation formats (e.g. GeoTIFF, HDF) to repre-
sent coverage type information which is not encoded in GML.

10.4 Definition of a Reversible Platform Mapping for Information Models

Since an information model may also be modelled directly in a platform-specific schema language with-
out the need to follow the OMM approach of defining an OAS and applying platform specific mapping
rules, the conformance of such information models to the OMM has to be ensured.

It must be possible to generate the UML representation of a given information model, modelled in a
platform specific schema language, to check compliance to the OMM. Therefore the definition of encod-
ing rules for the mapping of an OAS to a platform specific transfer format must not be ambiguous and
has to be specified as a reversible mapping as part of the platform specification.

A platform specification may also include an optional annex providing procedures and guidelines for
how these mapping rules shall be applied.

Examples:

1) Usage of the reversible encoding rules from ISO 19136 Annex E and F for the platform "Web Ser-
vices" to map (ORCHESTRA) Application Schemas to GML.

2) Provision of a table that maps basic UML data types (see section 8.7.2.2) to basic XML-Schema

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

167/180

data types and vice versa (e.g. CharacterString xsd:string). See also ISO 19136 Annex D.

3) Guidelines for the usage of UML to GML Application Schema tools.

10.5 Definition of Procedures for the Mapping of Service Interfaces

Procedures for the mapping of the platform-neutral service interfaces to a specific interface language
may have to be defined. These procedures shall ensure that the mapping is in compliance with the
rules of the ORCHESTRA Service Meta-Model (OMM-Service, see section 9.2). The procedures should
be defined in an optional annex of the platform specification. The mapping itself shall be part of an im-
plementation specification. If this can be accomplished, such a mapping should be bi-directional and
described in a machine readable way.

Example: Description of how to transform XMI to WSDL using Enterprise Architect.

Note 1: In cases where ORCHESTRA Services are directly specified on a platform level, compliance
with the OMM-Service must be assured for interoperability reasons.

Note 2: When mapping interfaces and exceptions to a service platform (e.g. Web Services), the
relevant standards have to be considered, such as e.g. WS-I Basic Profile V1 (http://www.ws-
i.org/Profiles/BasicProfile-1.0-2004-04-16.html). It refers to a set of non-proprietary Web services
specifications, like SOAP, WSDL etc., along with clarifications to and amplifications of those
specifications in order to promote interoperability.

10.6 Restrictions on certain Services

A platform specification may further reduce the complexity or restrict the scope of certain services, if
this is required to meet the main characteristics of the selected platform.

Note that this complicates interoperability between different platforms. There should exist a bi-
directional mapping between an abstract and an implementation specification and this mapping should
be described in a machine readable way.

Example: A platform ―OGC Web Services‖ may permit the mapping of some OA Services to OGC ser-
vice interfaces by knowingly allowing a derivation from the abstract service interface specifications.

http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

168/180

11 Engineering Viewpoint

According to the ORCHESTRA Reference Model as introduced in section 5.3, the Engineering View-
point specifies the mapping of the ORCHESTRA service specifications and information models to the
chosen service platform and the specification of the characteristics of ORCHESTRA Service Networks.

Thus, when considering the design process of the ORCHESTRA Service Network, the mapping proc-
ess itself belongs to the Engineering Viewpoint. It is documented in corresponding sections of the im-
plementation specifications, see (ORCH-ImplServ 2007).

The present RM-OA document, being a reference model for the design of ORCHESTRA Service Net-
work, restricts the description of the Engineering Viewpoint to the discussion on OSN Characteristics.

Note: The following sections in the RM-OA Engineering Viewpoint are preliminary ideas and need
to be validated and formalised during the course of the ORCHESTRA project when further
implementation experiences have been gained. Results of this validation will go into version 3 of the
RM-OA.

11.1 OSN Characteristics

11.1.1 Policies

An ORCHESTRA Service Network (OSN) is defined as a set of networked hardware components and
ORCHESTRA Service Instances (OSIs) that interact according to defined policies in order to serve the
objectives of ORCHESTRA Applications (see section 5.3.3). Thus, the basic units within an OSN for the
provision of functions are the OSIs, whereas their interaction principles are determined and character-
ized by policy definitions. Instead of pre-determining a specific policy for all possible OSNs, the follow-
ing sections of the RM-OA only define policy elements and rules for the definition and the existence of
policies for different OSN characteristics. Using this approach, the policies of an OSN may be set-up
according to the given individual business and organisational needs and models.

Note that this approach does not fix the model for policy enforcement, be it centralised or decentralised.
Furthermore, it does not prescribe the time and the way that the policies are defined, be it (pre-) deter-
mined by a central authority or negotiated online between the participating parties. Thus, a wide spec-
trum may be covered, from a centrally-administered OSN with a high level of access control and a fixed
and pre-defined list of OSIs up to an open and flexible OSN with dynamic registration and de-
registration of OSIs and a distributed administration.

An OSN is characterized by adopting a harmonised approach for the following policies (non exhaustive
list):

 resource identification

 resource discovery

 OSN operation

 UAA (User Management, Authorisation, Authentication)

An OSN is defined by a specification of at least these policies. This OSN specification should be ac-
cessible in one of the following forms:

 in written form by the institution running the OSN

 by querying the OSN catalogue in a centralised discovery policy (see section 11.1.3) or

 by querying one of the catalogues in a decentralised discovery policy (see section 11.1.3).

11.1.2 Resource Naming Policy

The Resource Naming policy of an OSN deals with the question of how resources in OSN-like service
instances and feature instances are identified. The uniqueness of resource identifiers in an OSN and
across OSNs is further discussed in the section 11.3.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

169/180

The Resource Naming policy is defined by the following elements:

 name service: statement if a Name Service (see section 9.7.6) is used that is responsible for
the provision of globally unique identifiers for OSIs and/or feature instances.

 naming policy for service instances: specification of which naming policy is used for the iden-
tification of OSIs across platforms. Currently, the following approach has been identified (see
section 11.3.1):

- platform as namespace: The global uniqueness of OSIs is enforced by using the
service platform as namespace, i.e. the platform-specific identifier of an OSI is used.

 naming policy for feature instances: specification of which naming policy is used for the iden-
tification of feature instances. Currently, the following approach has been identified (see sec-
tion 11.3.2):

- OSI as namespace: Each OSI that acts in the role of a Feature Access Service shall
be responsible for managing a namespace of related feature instance identifiers.

11.1.3 Resource Discovery Policy

The Resource Discovery policy of an OSN deals with the registration of resources in an OSN. Registra-
tion means the creation of an associated meta-information entry for a resource in a catalogue in order
that a user who is part of the information community of that catalogue may discover the resource (see
section 0).

The process of registration as well as the process of discovery is supported by operations specified in
the Catalogue Service (see section 9.7.5). A resource may be registered in one or more catalogues.

The meta-information about resources is defined in OAS-MI according to the rules of the OMM Informa-
tion Model. A resource may be the OSN itself, feature types and instances, service types and instances
and UAA resources such as subjects (see section 7.5.2).

The Resource Discovery Policy is defined by the following elements:

 discovery policy: statement about the discovery policy used in the OSN. Possible alterna-
tives are:

- centralised discovery: There is a distinguished Catalogue OSI (called OSN Cata-
logue) that serves as the ―entry point― to the OSN.

Note: The presence of an OSN Catalogue does not exclude the existence of other
instances of the Catalogue Service.

- decentralised discovery: All instances of the Catalogue Service are equivalent.

- no discovery: There is no Catalogue OSI. This means that the service interactions
are not mediated through an instance of a Catalogue Service.

Note: Whether a network of OSIs without a discovery capability based on a Cata-
logue OSI is a ―valid‖ OSN is under discussion.

 definition of the catalogues used in the OSN

- name of the OSN Catalogue

- statement if the catalogue is the ―OSN Catalogue‖, i.e. the ―entry point‖ of an OSN
(see above).

- query language of the OSN Catalogue

- ORCHESTRA Application Schema for Meta-information (OAS-MI) of the OSN Cata-
logue for the purpose of discovery

- resource types that may be discovered through the OSN Catalogue

 OSN

 feature types

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

170/180

 feature instances

 service types

 service instances

 subjects

 … others

- ORCHESTRA Application Schema for Meta-information (OAS-MI) of the OSN Cata-
logue for the purpose of service invocation, i.e. the OAS-MI for the default service
capabilities for all OSIs running in the OSN.

Note: The default service capabilities usually correspond to the OAS-MI for service
instance discovery (see above). However, this is not obligatory.

11.1.4 OSN Operating Policy

The OSN Management Policy is divided into three sub-policies which are described in the following
sections:

 OSN management policy

 service management policy

 network management policy

11.1.4.1 OSN Management Policy

The OSN Management Policy deals with the requirements concerning the management and the opera-
tion of an OSN. It is defined by the following elements:

 general administrative information

- name: globally unique name of an OSN.

Note: An example for such a name is the name of the OSN Catalogue (see section
11.1.3) if the name of the OSN Catalogue is globally unique.

- description: human-readable textual information about the goals and purpose of the
OSN.

- OSN provider: Information about the community, institution or organisational unit
operating the OSN in the sense of defining and enforcing the policies of the OSN.

- administrators: Names and addresses of those persons who are responsible for the
operation of the OSN.

 Technical Information

- platform: reference to the platform specification upon which the OSN is based

Note: Currently, an OSN may only run on top of one specified platform.

- name and platform-specific identifier (OSI) of the ―OSN Catalogue‖ (if any, see sec-
tion 11.1.3) as the entry point to the OSN

- requirements for all OSIs interacting in the OSN:

 minimal required set of formats (see the acceptFormats parameter of the
ServiceCapabilities interface as specified in section 9.6.1) that every OSI
has to support for the getCapabilities-operation

 minimum required level of security to be provided by each OSN component
(client or OSI). The security policy shall make statements (e.g. technologies
or platform-specific mechanisms used) about the following topics:

- encryption of communication

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

171/180

Note: There are some limitations by law in some countries about
the usage of encryption and some sort of communication technol-
ogy (e.g. France).

- measures against intrusion, alteration, eavesdropping, non-
repudiation

- applicable classifiers of the OSN (see section 11.2)

- service registration: statement about whether a service can be registered at any
time by any subject (open service registration) or whether the service registration is
controlled (controlled service registration based on a resource discovery policy, see
section 11.1.3).

- list of mandatory services within the OSN, i.e. at least one OSI of this service type
shall be operational in an OSN. This list may be derived from the type of OSN or
listed explicitly.

- list of additional services for whoch OSIs may be registered in at least one of the
catalogues are allowed. The alternatives are:

 any OSI of any service type is allowed

 no OSIs other than the mandatory services are allowed

 a specified number of OSIs of a specified list of service types are allowed

11.1.4.2 Service Management Policy

The Service Management Policy deals with the administrative requirements that OSIs of a specific ser-
vice type have to fulfil when interacting within a specific OSN. It is defined by the following elements:

 service monitoring

- list of service and network events to be monitored (e.g. just make calls to getCapa-
bilities())

- list of OSIs to be monitored (e.g. all OSIs that are registered in the OSN catalogue)
and supported statistics about the usage of services in an OSN (see Service Moni-
toring Service described in section 9.7.10)

- list of conditions under which management notifications have to be generated

 quality of service (both on the level of individual or all OSIs of a given service type or gener-
ally for all OSIs deployed in an OSN)

- availability of service (e.g. work hours, 24x7, redundant)

- maximum response time for service operations

11.1.4.3 Network Management Policy

The Network Management Policy deals with the management of the communication resources of the
specified platform. For this part of the OSN Operating Policy, the RM-OA refers to the corresponding
management standards that are specific for the chosen platform and underlying communication proto-
cols, e.g.

 for protocols based on the Internet protocol stack (IETF RFC 1122 Requirements for Internet
Hosts -- Communication Layers), these are the IETF recommendations related to RFC 2570 In-
troduction to Version 3 of the Internet-standard Network Management Framework.

 for protocols based on ISO/OSI 7498-1 Open Systems Interconnection, these are the ISO
standards related to ISO/OSI 7498-4 Management Framework.

11.1.5 User Management, Authorisation and Authentication Policy

The User Management, Authorisation and Authentication policy of an OSN is divided into the following
sub-policies:

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

172/180

 user management policy

 authentication policy

 authorisation policy

There are many different concepts and technologies in the context of user management, authorisation
and authentication. Often, these concepts and technologies cannot be applied independently from each
other. Thus, it must be ensured that the policies are specified coherently.

11.1.5.1 User Management Policy

The User Management Policy deals with the way users are represented and made known (registered)
in an OSN. It is defined by the following elements:

 subject information: minimum information to be provided when specifying a subject. This corre-
sponds to a dedicated meta.information schema for the purpose of ―user profiling‖ (see section
8.4.2.5).

 dynamic registration of users: statement about whether dynamic registration (i.e. registration
and de-registration of users at runtime) is allowed or not. In case it is allowed the business
process for dynamic registration shall be described for each of the following:

- subjects (users, including ORCHESTRA Service Instances (OSIs)),

- groups (group of subjects)

A business process to register a new subject shall clarify responsibilities so that the liability for
the registration of a new subject is explicitly expressed.

 pre-defined subjects and groups: statement about whether the OSN requires the existence of
specific pre-defined subjects and groups.

11.1.5.2 Authentication Policy

The Authentication Policy deals with the generation of session information. It is defined by the following
elements:

 set of allowed authentication mechanisms

- default authentication mechanism

- restrictions on the set of allowed authentication mechanisms

 representation of principals: specification of how principals are represented in an OSN (op-
tional)

Note: Even though the set of allowed authentication mechanisms determines the possible
presentations of principals. It may be required for clarity to explicitly specify the representations
of principals.

 single-sign-on or multiple authentication: statement whether single-sign-on and/or multiple au-
thentication is used.

 treatment of session information: definition how session information is treated, either by a ses-
sion key or by a session envelope

 session key validity: validity space for a ―session key‖ returned by the Authentication Service af-
ter a successful authentication has to be assured

11.1.5.3 Authorisation Policy

The Authorisation Policy deals with the way the access to resources in an OSN is controlled. It is de-
fined by the following elements:

 set of allowed authorisation paradigms (e.g. role based access control, trust management)

- default authorisation paradigm for the whole OSN, i.e. for all OSIs of the OSN

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

173/180

- authorisation paradigms that shall be applied for OSIs of a given service type or for
individual OSI

 default permissions for pre-defined subjects and groups

 policy enforcement: statement about whether the authorisation takes place on the service level
and/or the data level.

11.2 OSN Classifiers

In order to characterise OSNs and to provide constraints upon them for their classification, the policies
described above are structured into policy elements. Depending on the scope of OSN that is to be de-
signed a specification of these policy elements is either mandatory or optional.

A preliminary list of classifiers that may be attached to OSNs is given in Table 40. The main ideas are
as follows:

 All OSNs shall use ―platform as namespace‖ for the naming policy of OSIs and ―OSI as name-
space‖ for the naming policy of feature instances. These two policy elements are explained in
section 11.3.

OSN Classi-
fiers

Resource
Naming

Resource
Discovery

OSN Operating UAA

Primitive Platform as name-
space for OSIs, OSIs
as namespace for fea-
ture instances

Mediated dito OSN Catalogue

Managed dito Service Monitoring

Access-
controlled

dito Harmonised UAA
approach

Table 40: Minimum Policy Requirements according to OSN Classifiers

 For a ―primitive OSN‖ there are no further constraints or rules, i.e. it may consist of an arbitrary
network of OSIs as long as these OSIs have been designed according to the rules of the OMM.
An example of a primitive OSN is a Web Mapping application for environmental information run
by one institution that renders a fixed set of map layers based on a set of pre-defined OSIs
whereby changes and extensions in this application are rare or even not expected.

Note: As primitive OSNs do not necessarily support means for resource discovery, they do
not, as a whole, comply with the architectural requirement of ―self-describing components‖, see
section 6.3.7. However, for ORCHESTRA Applications with low requirements on flexibility this
may be a reasonable solution. Nevertheless, as ORCHESTRA aims at supporting environ-
ments that are ―designed for change‖, OSNs that are only classified as ―primitive‖ are usually
not sufficient.

 A ―mediated OSN‖ requires the usage of at least one catalogue OSI (called OSN catalogue) for
the discovery of service and feature instances. An example of a mediated OSN is a Sensor
Web application within or between institutions that shall be flexible enough in order to integrate
a varying set of data source systems (e.g. databases with sensor-related information).and
models.

 A ―managed OSN‖ shall, out of the set of the policy elements for OSN Operation, at least sup-
port the policy element of ―service monitoring‖ (see section 11.1.4.2). This means that it shall be
possible to monitor the execution characteristics of OSIs. An example is a geo-statistical ser-
vice that is offered to customers in a commercial environment such that the service provider
needs to observe the availability of the running OSIs.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

174/180

 An ―access-controlled OSN‖ shall support a harmonised approach for the UAA policy elements
as described in section 11.1.5. Examples are all applications that need to restrict the access to
services and/or data to end-users with a well-defined role (e.g. a risk manager).

 Of course, several classifiers may be applicable to one OSN, e.g. there may be an OSN that is
both mediated, managed and access-controlled. Such OSNs are capable of exploiting the full
potential of the ORCHESTRA approach and respond to the architectural requirements stated in
section 6.3..

11.3 Naming Policy Examples

11.3.1 Platform as Namespace for OSIs

In the following a naming policy approach for OSIs is presented wherein the assignment of a name to
an OSI is independent of the membership of an OSI in an OSN. In particular, a unique OSN name and
an OSN-related namespace are not required for this approach.

According to the ORCHESTRA Architecture, an OSN is designed to be based on one or several service
platforms. A service platform provides the basic communication and encoding mechanisms for the ser-
vice interactions (the service infrastructure). By definition, an OSI is the result of a platform-specific de-
ployment step making the OSI part of a certain platform domain. Thus, an OSI can be considered a
service in the sense of the used service platform.

One of the characteristics of a service platform is that a service is identified by means of a platform-
specific service identifier which is unique within the platform. The identifier is usually assigned when the
service is deployed, i.e. entered into the platform. The service platform acts as a namespace for OSIs.

Service Platform Examples:

 Platform W3C Web Services: An OSI corresponds to a Web Service according to the W3C
specifications. A Web Service is identified by a URI. A URI is a globally unique identifier for all
Web Services.

 Platform Java RMI: An OSI corresponds to a Java Object which is remotely accessible and pub-
lished in an RMI registry. The Java Object is identified by a URI (with an empty schema), i.e. a
string of the form

//<host>:<port>/<name>

where <host> and <port> are used to locate the registry. <host> is a hostname (IP-Address or
domain names according to DNS) and <port> is the host-specific port number. <name> is the
published name of the Java Object which is unique within the registry.

 Platform CORBA: An OSI corresponds to a CORBA Server Object. In CORBA objects can be
uniquely identified by an IOR (Interoperable Object Reference). Another way is to use the ad-
dress of a Name Service and a name local to the Name Service in a similar way as for the Java
RMI example.

In the current RM-OA version, it is assumed that a given OSN is based on just one pre-selected service
platform. Thus, the service identifier of that platform can directly be used to name the OSIs. As the ser-
vice identifier is unique within the platform and only one platform is used, the resulting OSI names are
unique.

RM-OA version 4 will consider an enhancement of this naming policy for the case that an OSN spans
several platforms.

11.3.2 Feature Access OSI as Namespace for Feature Instances

In the following a naming policy approach for feature instances is presented wherein the assignment of
a feature instance identifier is combined with the identifier of the Feature Access OSI that provides ac-
cess to the feature instance.

Thus, a feature access OSI manages a namespace of feature identifiers. The feature identifiers pro-
vided by such an OSI are initially not unique within the whole OSN, but only unique among all features

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

175/180

of that OSI. In general there may be multiple Feature Access OSIs in an OSN. In order to obtain unique
identifiers, the name of the corresponding feature access OSI is added in order to get a unique identifier
within an OSN.

Figure 43 provides an example: Three feature access OSIs are backed by different source systems.
OSI a and OSI b are part of one OSN, OSI b and OSI c are part of another OSN. All feature instances
related to these OSIs have identifiers f1, f2, f3 which are unique for each OSI. By adding the OSI
names, the resulting feature identifiers a:f1, b:f1, c:f1 etc. become unique within the OSNs. They are
even globally unique because the OSI names are globally unique.

This naming policy for the identification of feature instances is summarised as follows:

Within an OSN, each OSI that acts in the role of a feature access service shall be responsible for man-
aging a namespace of related feature instance identifiers. Each such OSI shall assign identifiers to fea-
ture instances which are accessed using that OSI. Such an identifier shall be combined of two ele-
ments:

 the OSI name

 an OSI-specific identifier which unambiguously identifies the feature instance among all other
feature instances of that OSI.

Together these elements form a feature identifier which is unique within the OSN.

Note: The naming policy just described only ensures the uniqueness of feature instances in an
OSN regardless of their real-world phenomenon that they are representing. The situation in which two
feature instances provide a (possibly) different view upon the same real-world phenomenon (e.g. a
road) is a question of semantic identity that is to be solved on the semantic level of the information
model framework (see Figure 20), possibly based on inferencing about an ontology and/or a knowledge
base of the respective thematic domain.

s

Figure 43: Constructing feature identifiers by using OSI-related namespaces

Constructing feature identifiers according to this rule has the following consequences:

 As each OSI name is globally unique as described in the previous section, the feature identifier
is also globally unique.

 If the createFeature operation of the FeatureAccessService interface (see section 9.7.1) is used
to create a new feature instance, the respective Feature Access OSI must assign a unique (i.e.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

176/180

not yet used) feature identifier to it.

 The feature identifier can act as a locator for the feature. The OSI used to access that feature
can be obtained from the feature identifier. A client requesting attributes of the feature can there-
fore direct its request to that OSI. In the same way as a uniform resource locator is used in the
Web to locate a resource, a feature identifier is used to locate a feature instance within one or
multiple OSNs.

The way a feature access OSI assigns identifiers to its feature instances is not further specified. In or-
der to simplify the mapping between feature identifiers and the underlying feature information, certain
feature type-dependent key attribute values may be used when constructing an identifier. However, this
is very much source system dependent.

A feature access OSI may also support version management of features, i.e. it may allow access to
various former versions of a certain feature instance. The current version and former versions may exist
at the same time. In principle the current version and each former version of a feature instance can be
considered separate instances which are implicitly or explicitly associated with each other. All these in-
stances can be distinguished by their identifiers. The way versioning is reflected in the identifiers is not
specified here.

Note: The principle of constructing a global identifier by combining an OSI name with an identifier
which is unique within the context of that OSI can be used for identifying purposes wherever a globally
unique identifier is needed.

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

177/180

12 Conclusion

The present RM-OA Revision 2.1 represents the understanding of the ORCHESTRA consortium about
an open, generic and standards-based service-oriented architecture for distributed environmental and
risk management applications after the third year of the project‘s runtime. Its focus is currently on
syntactic interoperability whereby the upgrade towards the support of semantic interoperability has
been prepared.

The following sections provide a summary of the major deviations of the RM-OA Design Decisions from
ISO and OGC standards (section 12.1) and a short summary of the items that are intended to be cov-
ered in the outstanding version 3 of the RM-OA.

12.1 Summary of Deviations from Standards

Note 1: Textual changes are underlined.

Note 2: Deviations on the level of service types and abstract interface specifications are not listed
here as most of the OGC and ISO service specifications are not provided on abstract level.

12.1.1 RM-ODP Computational Viewpoint mapped to RM-OA Service Viewpoint

In order to highlight the fact that an ORCHESTRA deployment will have the nature of a loosely-coupled
distributed system based on networked services rather than a distributed application based on compu-
tational objects, the ―computational viewpoint‖ will be referred to as ―service viewpoint‖ in
ORCHESTRA.

Rationale: section 5.2.2.

12.1.2 The OpenGIS Service Architecture (ISO 19119:2005)

In the ORCHESTRA Reference Model the distributed computing platform is referred to as the service
infrastructure. However, the distinction between IT and GI services of ISO 19119:2005 is not applied for
the ORCHESTRA service taxonomy because the ORCHESTRA Architecture (and thus the
ORCHESTRA services) shall contain an integrated information model that covers thematic, temporal
and spatial aspects.

Rationale: section 5.4

12.1.3 ISO 19101 Service Taxonomy

Workflow/Task services are services for support of specific tasks or work-related activities conducted
by humans or software components with a high degree of autonomy (agents). These services support
use of resources and development of products involving a sequence of activities or steps that may be
conducted by different persons.

Processing services are services that perform computations. These computation might range from the
performance of mathematical equations up to large-scale computations involving substantial amounts
of data.

Rationale: section 5.4.2

12.1.4 ISO 19119:2005 Requirements for Platform-Neutrality

As part of the engineering viewpoint, the ORCHESTRA platform-neutral models are mapped to a spe-
cific service infrastructure context. The resulting platform-specific service models may be defined in
UML or in terms of the platform-specific language (e.g. WSDL). However, it is required that a descrip-
tion of their mapping to the corresponding platform-neutral models be maintained. This mapping shall
show how the intentions of the platform-neutral specifications are met in the context of the service plat-
form. In order to support interoperability, the reverse mapping back to the concepts in the platform-
neutral model must be defined (instead of should be defined).

Rationale: section 5.4.1

Reference Model for the ORCHESTRA Architecture (RM-OA) V2 Rev. 2.1

© 2007 ORCHESTRA Consortium (IST Integrated Project 511678)

178/180

12.1.5 ORCHESTRA as Simple Service Architecture according to ISO 19119:2005

 Known service type

All ORCHESTRA service instances are of specific service types and the client may access the service
type description prior to calling the service. In the ORCHESTRA Reference Model, a ―known service
type‖ is a service type with an externally available description.

Rationale: section 5.4.3

Note: The RM-OA version 3 will contain a more refined assessment if the ORCHESTRA Architec-
ture may be considered as a ―Simple Service Architecture‖ in the sense of ISO 19119 taking into ac-
count the latest developments about UAA and service chaining in the ORCHESTRA project.

12.1.6 The ORCHESTRA Definition of a Feature

One basic concept of the RM-OA Information Viewpoint is the feature, where a feature is an abstraction
of a real world phenomenon perceived in the context of an ORCHESTRA Application. The
ORCHESTRA definition of features explicitly goes beyond geographic features. It includes tangible ob-
jects of the real world but also abstractions, concepts or software artifacts (e.g. documents, software
components of IT systems) that may have a representation only in software systems. These features
may, but need not, have spatial characteristics. The ORCHESTRA understanding of a ―real world‖ ex-
plicitly includes these hypothetical worlds or worlds of human thoughts.

Rationale: section 8.2

12.1.7 The ORCHESTRA Meta-Model (OMM)

The OMM is derived from the basic ideas of the ISO 19109 GFM, but it is not a true profile of it. The
OMM is an evolution of the ISO 19109 GFM, taking into account additional, ORCHESTRA-specific re-
quirements. In particular:

 The OMM extends the GFM by aspects of services modelling (see the OMM Service Meta-
model (OMM-Service) in section 9.2).

 The OMM does not mandate the usage of one particular meta-information model (e.g. ISO
19115) as prescribed by the GFM. Instead, it gives the OSN designer the freedom to specify the
meta-information models as required for the various purposes. It only mandates that an applica-
tion schema for meta-information (OAS-MI) be specified according to the rules of the OMM-
Information (see section 8.8).

Rationale: section 8.7

12.2 Evolution of the RM-OA

It is envisaged to mainly tackle semantic extensions of the OA in future versions of the RM-OA. This
may encompass the following aspects (this is a non-binding and non-exhaustive list):

 Extension of the OMM-Service by including aspects of Semantic Web Services, e.g. semantic
description of services (e.g. based on WSML, OWL-S or WSDL-S) as part of their meta-
information, usage of semantics in advanced versions of ORCHESTRA Service Types (con-
cerned sections: 9.2).

 Usage and influence of ontologies for the RM-OA Information and Service Viewpoints (con-
cerned sections: 8.7, 9.2), e.g. comparision of the OMM and the OA services with the WSMO
and the OWL-S framework.

 Support of further cases (e.g. service mediation) in the service mapping specification in addition
to the service profile (concerned section: 9.2.9), e.g. discussion how the WSMO concept of me-
diation could be re-used for this question.

