OpenGIS® Sensor Planning Service Application Profile for EO Sensors

Copyright notice
Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning
This document defines an OGC Best Practices position on a particular technology or approach related to an OGC standard. This document is not an OGC Standard and may not be referred to as an OGC Standard. It is subject to change without notice. However, this document is an official position of the OGC membership on this particular technology topic.
Contents

i. Preface .. viii
ii. Document terms and definitions ... viii
iii. Submitting organizations .. viii
iv. Document contributor contact points .. ix
v. Revision history ... ix
vi. Changes to the OGC Abstract Specification ... x
vii. Future work ... x
viii. Open issues .. xiii
ix. Foreword ... xiii
1 Scope .. 1
2 Conformance .. 1
3 Normative references ... 2
 3.1 Other references ... 3
4 Terms and definitions ... 3
5 Symbols and abbreviations .. 6
 5.1 Symbols (and abbreviated terms) ... 6
 5.2 UML notation .. 7
 5.2.1 UML Class Diagrams .. 7
 5.2.2 UML Sequence Diagrams .. 8
 5.3 XML notation ... 9
 5.4 Document terms and definitions .. 10
6 System context ... 10
 6.1 Application domain ... 11
 6.2 Reference scenarios ... 12
7 SPS Operations Overview .. 13
8 Information models for EO Programming Requests .. 15
 8.1 ParameterDescriptor element .. 15
 8.2 Preliminary List of Tasking Parameters ... 17
 8.2.1 Priority .. 18
 8.2.2 Acquisition parameters ... 19
 8.2.3 GeometricCoverageCharacteristics ... 21
 8.2.4 RegionOfInterest .. 22
 8.2.5 ValidationParameters .. 22
 8.2.6 SurveyPeriods type .. 23
 8.2.7 Period type .. 24
 8.2.8 Incidence angle type .. 25
 8.3 Input parameters .. 26
 8.4 EO profile specific .. 26
 8.5 sensorID .. 26
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.6</td>
<td>DeliveryInformationType ... 27</td>
</tr>
<tr>
<td>9</td>
<td>External interfaces .. 29</td>
</tr>
<tr>
<td>9.1</td>
<td>Imported protocol bindings (relationship with SPS implementation specification [NR13]) ... 29</td>
</tr>
<tr>
<td>9.2</td>
<td>Operations interface ... 30</td>
</tr>
<tr>
<td>9.3</td>
<td>Shared aspects .. 30</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Protocol ... 30</td>
</tr>
<tr>
<td>9.3.2</td>
<td>notificationTarget versus WS-Addressing (asynchronous operations) 30</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Acknowledgments .. 32</td>
</tr>
<tr>
<td>9.3.4</td>
<td>Progress reports ... 34</td>
</tr>
<tr>
<td>10</td>
<td>GetCapabilities operation (mandatory, synchronous) 36</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction ... 36</td>
</tr>
<tr>
<td>10.2</td>
<td>EO profile specific ... 36</td>
</tr>
<tr>
<td>10.3</td>
<td>Capabilities schema .. 36</td>
</tr>
<tr>
<td>10.4</td>
<td>GetCapabilities Operation request ... 36</td>
</tr>
<tr>
<td>10.5</td>
<td>GetCapabilities Operation response ... 37</td>
</tr>
<tr>
<td>10.5.1</td>
<td>Normal response .. 37</td>
</tr>
<tr>
<td>10.5.2</td>
<td>OperationsMetadata section standard contents 38</td>
</tr>
<tr>
<td>10.6</td>
<td>Exceptions ... 39</td>
</tr>
<tr>
<td>10.7</td>
<td>Example of GetCapabilities response .. 39</td>
</tr>
<tr>
<td>11</td>
<td>DescribeSensor operation (mandatory, synchronous) 42</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction ... 42</td>
</tr>
<tr>
<td>11.2</td>
<td>EO profile specific ... 42</td>
</tr>
<tr>
<td>11.3</td>
<td>DescribeSensor operation request ... 42</td>
</tr>
<tr>
<td>11.3.1</td>
<td>DescribeSensor request XML encoding ... 43</td>
</tr>
<tr>
<td>11.4</td>
<td>DescribeSensor operation response ... 43</td>
</tr>
<tr>
<td>11.5</td>
<td>Exceptions .. 43</td>
</tr>
<tr>
<td>11.6</td>
<td>DescribeSensor response example ... 43</td>
</tr>
<tr>
<td>12</td>
<td>EstimateSensorWorkload operation (optional, synchronous) 44</td>
</tr>
<tr>
<td>12.1</td>
<td>EO profile specific ... 44</td>
</tr>
<tr>
<td>12.2</td>
<td>EstimateSensorWorkload operation request ... 44</td>
</tr>
<tr>
<td>12.2.1</td>
<td>EstimateSensorWorkload request XML encoding 45</td>
</tr>
<tr>
<td>12.3</td>
<td>EstimateSensorWorkload operation response .. 45</td>
</tr>
<tr>
<td>12.4</td>
<td>Exceptions .. 45</td>
</tr>
<tr>
<td>12.5</td>
<td>EstimateSensorWorkload response example .. 45</td>
</tr>
<tr>
<td>13</td>
<td>DescribeGetFeasibility operation (optional, synchronous) 46</td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction ... 46</td>
</tr>
<tr>
<td>13.2</td>
<td>EO profile specific ... 46</td>
</tr>
<tr>
<td>13.3</td>
<td>DescribeGetFeasibility operation schemas .. 46</td>
</tr>
<tr>
<td>13.4</td>
<td>DescribeGetFeasibility operation request ... 47</td>
</tr>
<tr>
<td>13.5</td>
<td>DescribeGetFeasibility operation response .. 48</td>
</tr>
<tr>
<td>13.6</td>
<td>DescribeGetFeasibility exceptions ... 48</td>
</tr>
<tr>
<td>14</td>
<td>DescribeSubmit operation (mandatory, synchronous) 49</td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction ... 49</td>
</tr>
<tr>
<td>14.2</td>
<td>EO profile specific ... 49</td>
</tr>
<tr>
<td>14.3</td>
<td>DescribeSubmit operation schemas ... 49</td>
</tr>
<tr>
<td>14.4</td>
<td>DescribeSubmit operation request .. 50</td>
</tr>
<tr>
<td>14.5</td>
<td>DescribeSubmit operation response .. 51</td>
</tr>
<tr>
<td>14.6</td>
<td>DescribeSubmit exceptions .. 51</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>15</td>
<td>GetFeasibility and Submit operations</td>
</tr>
<tr>
<td>15.1</td>
<td>EO profile specific use cases</td>
</tr>
<tr>
<td>15.2</td>
<td>GetFeasibility operation (optional, asynchronous)</td>
</tr>
<tr>
<td>15.2.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>15.2.2</td>
<td>EO profile specific</td>
</tr>
<tr>
<td>15.2.3</td>
<td>GetFeasibility request</td>
</tr>
<tr>
<td>15.2.4</td>
<td>GetFeasibility request acknowledgment</td>
</tr>
<tr>
<td>15.2.5</td>
<td>GetFeasibility response</td>
</tr>
<tr>
<td>15.2.6</td>
<td>GetFeasibility response acknowledgment</td>
</tr>
<tr>
<td>15.3</td>
<td>Examples</td>
</tr>
<tr>
<td>15.3.1</td>
<td>GetFeasibility exceptions</td>
</tr>
<tr>
<td>15.4</td>
<td>Submit operation (mandatory, asynchronous)</td>
</tr>
<tr>
<td>15.4.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>15.4.2</td>
<td>EO profile specific</td>
</tr>
<tr>
<td>15.4.3</td>
<td>Submit request</td>
</tr>
<tr>
<td>15.4.4</td>
<td>Submit request acknowledgement</td>
</tr>
<tr>
<td>15.4.5</td>
<td>Submit response</td>
</tr>
<tr>
<td>15.4.6</td>
<td>Submit response acknowledgment</td>
</tr>
<tr>
<td>16</td>
<td>GetStatus operation (optional, synchronous)</td>
</tr>
<tr>
<td>16.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>16.2</td>
<td>EO profile specific</td>
</tr>
<tr>
<td>16.3</td>
<td>GetStatus operation schemas</td>
</tr>
<tr>
<td>16.4</td>
<td>GetStatus operation request</td>
</tr>
<tr>
<td>16.4.1</td>
<td>Parameters</td>
</tr>
<tr>
<td>16.4.2</td>
<td>GetStatus request XML encoding</td>
</tr>
<tr>
<td>16.5</td>
<td>GetStatus operation response</td>
</tr>
<tr>
<td>16.6</td>
<td>GetStatus exceptions</td>
</tr>
<tr>
<td>17</td>
<td>Update operation (optional, synchronous)</td>
</tr>
<tr>
<td>17.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>17.2</td>
<td>Update operation schemas</td>
</tr>
<tr>
<td>17.3</td>
<td>Update operation request</td>
</tr>
<tr>
<td>17.3.1</td>
<td>Parameters</td>
</tr>
<tr>
<td>17.3.2</td>
<td>Update request XML encoding</td>
</tr>
<tr>
<td>17.4</td>
<td>Update operation response</td>
</tr>
<tr>
<td>17.4.1</td>
<td>Parameters</td>
</tr>
<tr>
<td>17.4.2</td>
<td>Update response example</td>
</tr>
<tr>
<td>17.5</td>
<td>Update exceptions</td>
</tr>
<tr>
<td>18</td>
<td>Cancel operation (optional, synchronous)</td>
</tr>
<tr>
<td>18.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>18.2</td>
<td>Cancel operation schemas</td>
</tr>
<tr>
<td>18.3</td>
<td>Cancel operation request</td>
</tr>
<tr>
<td>18.4</td>
<td>Cancel operation response</td>
</tr>
<tr>
<td>18.5</td>
<td>Cancel exceptions</td>
</tr>
<tr>
<td>19</td>
<td>DescribeResultAccess operation (mandatory, synchronous)</td>
</tr>
<tr>
<td>19.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>19.2</td>
<td>EO profile specific</td>
</tr>
<tr>
<td>19.3</td>
<td>DescribeResultAccess operation schemas</td>
</tr>
<tr>
<td>19.4</td>
<td>DescribeResultAccess operation request</td>
</tr>
<tr>
<td>19.5</td>
<td>DescribeResultAccess operation response</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>19.6</td>
<td>DescribeResultAccess exceptions</td>
</tr>
<tr>
<td>20</td>
<td>Multi provider scenario</td>
</tr>
<tr>
<td>20.1.1</td>
<td>sensorID scenario</td>
</tr>
<tr>
<td>20.1.2</td>
<td>DescribeGetFeasibility scenario</td>
</tr>
<tr>
<td>20.1.3</td>
<td>GetFeasibility scenario</td>
</tr>
<tr>
<td>20.1.4</td>
<td>Submit scenario</td>
</tr>
<tr>
<td>20.1.5</td>
<td>GetStatus scenario</td>
</tr>
</tbody>
</table>

Annex A (normative) XML schema documents | 84 |

Annex B (informative) Example of XML documents | 101 |
List of figures

Figure 1-1 - Update request schema.. xi
Figure 3-1 UML notations.. 7
Figure 3-2: UML Sequence Diagrams Notations... 9
Figure 8-1 – ParameterDescriptor ... 15
Figure 8-2 - list of tasking parameters.. 18
Figure 8-3 - InputParameter element diagram .. 26
Figure 8-4: DeliveryInformationType diagram.. 27
Figure 9-1 - Request acknowledgment status schema.. 32
Figure 9-2 - Response acknowledgement status schema... 33
Figure 9-3 - Progress report schema.. 34
Figure 9-4 - Capabilities schema ... 36
Figure 13-1: - DescribeGetFeasibility request schema.. 46
Figure 13-2: - DescribeGetFeasibility response schema... 47
Figure 14-1 - DescribeSubmit request schema.. 49
Figure 14-2 - DescribeSubmit response schema.. 50
Figure 15-1: - SPS for Earth Observation Sensor: getFeasibility/Submit operations: scene use case 52
Figure 15-2: - SPS for Earth Observation Sensor: getFeasibility/Submit operations: coverage use case ... 52
Figure 15-3: - SPS for multi sensors: getFeasibility operation detailed coverage use case with invocation of the GS .. 53
Figure 15-4: - SPS for multi sensors: getFeasibility operation detailed coverage use case with invocation of the GS .. 53
Figure 15-5: - SPS for multi sensors getFeasibility operation: coverage use case 54
Figure 15-6 - GetFeasibility asynchronous communication model ... 55
Figure 15-7: - GetFeasibility request .. 56
Figure 15-8 - GetFeasibility request acknowledgment schema ... 58
Figure 15-9: - GetFeasibility response ... 59
Figure 15-10 - GetFeasibilityResponse acknowledgement ... 61
Figure 15-11: - Submit request schema ... 64
Figure 15-12 - SubmitRequestAck schema .. 66
Figure 15-13 - SubmitResponse schema .. 67
Figure 15-14 - SubmitResponseAck schema .. 68
Figure 15-15: - GetStatus request schema.. 69
Figure 15-16: - GetStatus response schema.. 70
Figure 17-1 - Update request schema... 72
Figure 17-2 - Update response schema .. 72
Figure 18-1 - Cancel request schema .. 75
Figure 18-2 - Cancel response schema ... 75
Figure 19-1: - DescribeResultAccess request schema ... 77
Figure 19-2: - DescribeResultAccess response schema ... 77
Figure 20-1: Get Feasibility Scenario ... 81
Figure 20-2: Submit Scenario ... 82
Figure 20-3: GetStatus Scenario .. 83
i. Preface

This candidate implementation specification document explains how Sensor Planning Service is organised and implemented for the Earth Observation domain.

The final goal being to agree to a coherent set of interfaces for sending a programming request for EO products to support access to data from heterogeneous systems dealing with derived data products from satellite based measurements of the earth’s surface and environment.

This document has used the Implementation Specification for the Sensor Planning Service (SPS) [OGC 05-089r3] as input.

ii. Document terms and definitions

This document uses the specification terms defined in Subclause 5.3 of [OGC 05-008], which is based on the ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards.

iii. Submitting organizations

The following organisations will submit the original document or its revisions to the OGC® SPS Revision Working Group.

- ESA – European Space Agency
- Spacebel s.a.
- Astrium
- Spot Image

The editors would like to acknowledge that this work is the result of collaboration and review of many organizations and would like to thank for the comments and contributions from:

- ASI
- CNES
- DLR
- Eumetsat
- MDA
- EUSC

Note: this does not imply a complete endorsement from these organizations.
iv. Document contributor contact points

All questions regarding this document should be directed to the editor. Additional contributors are listed below:

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Contribution</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Didier Giacobbo</td>
<td>Spot Image</td>
<td>Initial version</td>
<td>didier.giacobbo<at>spotimage.fr</td>
</tr>
<tr>
<td>JC Angulo</td>
<td>Spot Image</td>
<td>List of input parameters</td>
<td>jean-christophe.angulo<at>spotimage.fr</td>
</tr>
<tr>
<td>Daniele Marchionni</td>
<td>DATAMAT</td>
<td>OR11, Review and comments</td>
<td>Daniele.marchionni<at>datamat.it</td>
</tr>
<tr>
<td>Jolyon Martin</td>
<td>ESA</td>
<td>Review and comments</td>
<td>Jolyon.Martin<at>esa.int</td>
</tr>
<tr>
<td>Monique Benhamou</td>
<td>Astrium</td>
<td></td>
<td>monique.benhamou<at>astrium.eads.net</td>
</tr>
<tr>
<td>Yves Coene</td>
<td>Spacebel</td>
<td></td>
<td>Yves.coene<at>spacebel.be</td>
</tr>
<tr>
<td>Patrick Floissac</td>
<td>Magellium (CNES sub contractor)</td>
<td>Review and comments</td>
<td>Patrick.floissac<at>magellium.cnes.fr</td>
</tr>
<tr>
<td>Ingo Simonis</td>
<td>Geospatial Research & Consulting</td>
<td>Review and comments</td>
<td>ingo.simonis<at>geospatialresearch.de</td>
</tr>
<tr>
<td>Alexandre Robin</td>
<td>Sensia Software</td>
<td>SensorML examples</td>
<td>robin.alexandre<at>gmail.com</td>
</tr>
</tbody>
</table>

v. Revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Release</th>
<th>Editor</th>
<th>Primary clauses modified</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006-07-28</td>
<td>0.0.1</td>
<td>Didier Giacobbo</td>
<td>initial version</td>
<td>initial version;</td>
</tr>
<tr>
<td>2006-09-04</td>
<td>0.0.2</td>
<td>Didier Giacobbo</td>
<td>Small update</td>
<td>Description of Simulated Sensor Workload and parameters to delegated mission plan added</td>
</tr>
<tr>
<td>2006-10-26</td>
<td>0.0.3</td>
<td>Didier Giacobbo</td>
<td>Major update</td>
<td>Add of new operations: DelegatedMissionPlan, Update, Update of the XML example, Add of UML description for the EO aspects</td>
</tr>
<tr>
<td>2006-11-22</td>
<td>0.0.4</td>
<td>Philippe Mérigot</td>
<td>Major update</td>
<td>DescribeTasking replaced by DescribeGetFeasibility and DescribeSubmit. Previous DescribeGetFeasibility removed. xxxRequestResponse renamed in xxxResponse Schemas modified: DescribeGetFeasibility, GetFeasibility, GetStatus</td>
</tr>
<tr>
<td>2006-12-21</td>
<td>0.9</td>
<td>Didier Giacobbo</td>
<td>Major update</td>
<td>HMA-IF-DAT MP-0001_v1.0.3 merging</td>
</tr>
<tr>
<td>2007-01-12</td>
<td>0.9.1</td>
<td>Didier Giacobbo</td>
<td>Minor update</td>
<td>Editing correction</td>
</tr>
<tr>
<td>2007-01-16</td>
<td>0.9.1</td>
<td>Philippe Mérigot</td>
<td>Major update</td>
<td>viii Open issues Future work External interface Preliminary list of Tasking Parameters ordering parameters removed GetCapabilities protocol/encoding + capabilities schema Operations removed: UpdateStatus Operations modified: GetStatus, Cancel, DescribeGetFeasibility, DescribeSubmit XML examples modified: GetFeasibility & Submit request/response, sweCommon instance (annexe)</td>
</tr>
<tr>
<td>2007-02-07</td>
<td>0.9.2</td>
<td>Philippe Mérigot</td>
<td>Major update</td>
<td>Definition of acknowledgment messages for asynchronous operations Input parameters:</td>
</tr>
<tr>
<td>Date</td>
<td>Version</td>
<td>Author</td>
<td>Changes</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>------------</td>
<td>---------</td>
<td></td>
</tr>
</tbody>
</table>
| 2007-03-21 | 0.9.3 | Philippe Mérigot | Editing correction
QOS and Priority in a new element Priority
AcquisitionMode possible values (OHR)
ValidationParameters
SurveyPeriods
Op. modified: DescribeSubmit, Submit & GetStatus |
| 2007-05-07 | 0.9.4 | Philippe Mérigot | Editing corrections
SOAP version 1.1 supported
Input parameters: parameter Priority
§ 21 (Implementation guidance) has been replaced by
§ 20 Multi provider scenario
Schemas: recursivity in Input parameters (§ 8.3), GML version (v3.1.1) and target namespace
Scenarios modified
New request response examples in Annex B |

vi. **Changes to the OGC Abstract Specification**

The OpenGIS® Abstract Specification does not require changes to accommodate the technical contents of this document.

vii. **Future work**

In future versions of the document the following issues will be improved:

- In this document operations such as EstimateSensorWorkload, DescribeGetFeasibility and DescribeSensor are not part of the SPS reference specification [OGC 05-089]. These operations are proposed only for this profile in order to fulfil the EO Sensor Planning Service requirements. Their adoption in the [OGC 05-089] document has to follow the OGC rules.

- The parameters of the EstimateSensorWorkload operation have to be defined precisely. A complete schema applicable to this specification has to be provided.

- The DescribeSensor operation returns two types of document (a complete and a brief description of the sensors), corresponding to two SensorML profiles. These profiles must be specified. The schema of the DescribeSensor response is also missing.

- Regarding the ongoing revision work on the SPS specification, this current EO profile takes back the SPS specification as it is after the OWS4 initiative. Once an official version of the new SPS will be available (version 1.1), the SPS EO Profile will be updated in order to describe only the new operations and parameters.
• The user should be able to validate an acquisition in order to close the loop and update consequently the submitted task. This could be done via the Update operation. For example, the following schema of request Update would allow the client to update a submitted task or validate the acquisition:

```
Figure 1-1 - Update request schema
```

- Request from Datamat: the user may want to get the list of all orders that have been updated since a specified date. The GetStatus operation schema could be modified in order to satisfy this need: by unbounding the number of ProgressReport elements in the response and making ID optional in GetStatus request, and explaining that if it is not specified it means that all orders issued after the optional DateFrom date have to be returned.

- Request from CNES: from the HMA perspective, data returned by the SPS EO profile is very similar to data returned by a catalog implementing the CSW EO profile: the basic elements are essentially, in both cases, EO products having a footprint, a range of date and some additional properties.
 We expect that, in most cases, HMA-enabled clients will interact with both SPS and CSW instances and will present to the user information mixing acquired datasets with planned or foreseen EO products.
 A GML model has been yet defined for acquired EO products: [OGC 07-018] “GML 3.1.1 Application schema for Earth Observation products”. This model (or a similar one adapted to the mission planning context) cannot be currently used in the SPS EO profile: the later mandates the use of some common constructs (with a few GML exceptions as gml:Polygon) whereas our model involves a GML application schema. HMA-enabled clients will have, thus, to handle two very different models.
 We think that this issue is not specific to the HMA project: other communities might, in the future, use SPS with alternative formats and, in one sense, the SPS specification currently lacks of some “extensibility” mechanism.
To achieve the use of a GML application schema for the HMA community, we suggest to:
- extend the [OGC 07-018] specification to handle also planned or foreseen EO products.
- provide in the base SPS specification a mean to describe a parameter as “with external format” (eg : specifying a QName and the associated XML schema). The base specification could restrict the use of such a definition to output parameters and to well-defined communities (i.e. defining SPS profiles).

Suggested change to <sps:definition> in <sps:ParameterDescriptor> is below:

Note that the only sps structure to be changed would be the sps:ParameterDescriptor : the sps:Parameter (i.e. the structure embedding the response) can yet vehiculate any type of content.

- Request from MDA: the alternative element of the GetFeasibility response should allow the service to propose not only a different list of input parameters to the client but also the corresponding data which may be acquired with this list of parameters.
viii. Open issues

- The preliminary list of input parameters (§ 8.2) may be described by using a dictionary. In this case, the parameters may be referenced with a URI.

- The complexity of the input parameters of GetFeasibility and Submit operations (see for example the surveyPeriod type § 8.2.6) shows that describing the parameters in a XML instance file using sweCommon is a hard task, both for the client (who must understand the description of the parameters and create the corresponding request) and server (which processes the requests). In case of this complexity increases by handling more complex satellites like Pleiades using a schema to describe the parameters may be a better choice.

ix. Foreword

This document is an Earth Observation candidate profile of the existing OGC Implementation Specification for the Sensor Planning Service (SPS) version 0.0.30 [OGC 05-089r3 and 04-092r4].

This document references several external standards and specifications as dependencies:

d) WSDL, Web Services Description Language (WSDL) 1.1, http://www.w3.org/TR/wsd1

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The Open Geospatial Consortium Inc. shall not be held responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property rights of which they may be aware that might be infringed by any implementation of the specification set forth in this document, and to provide supporting documentation.
Introduction

The SPS configuration proposed in this profile is intended to support the programming process of Earth Observation (EO) sensors system. This profile describes a consistent SPS configuration that can be supported by many satellite data providers, most of whom have existing facilities for the management of these programming requests.

The Sensor Planning Service (SPS) is intended to provide a standard interface to collection assets (i.e., sensors, and other information gathering assets) and to the support systems that surround them. Not only must different kinds of assets with differing capabilities be supported, but also different kinds of request processing systems, which may or may not provide access to the different stages of planning, scheduling, tasking, collection, processing, archiving, and distribution of requests and the resulting observation data and information that is the result of the requests. The SPS is designed to be flexible enough to handle such a wide variety of configurations.
OpenGIS® Sensor Planning Service Application Profile for EO Sensors

1 Scope

This SPS EO profile document specifies at a lower level the interfaces and parameters for requesting information describing the capabilities of a Sensor Planning Service dedicated to the EO Sensor domain, for determining the feasibility of an intended sensor planning request, for submitting such a request, for inquiring about the status of such a request, for updating or cancelling such a request, and for requesting information about further OGC Web services that provide access to the data collected by the requested task.

This profile document re-uses largely information models, descriptions and information comprise as defined in within the SPS implementation specification [OGC 05-089 SPS].

This document describes the interfaces for programming the activities of Earth Observation sensors. In particular this candidate implementation specification defines operations for:

- Getting the list of parameters that can be specified for programming a specified sensor;
- Verify the feasibility of the request that is going to be submitted;
- Submit the request and then check its progress;
- If necessary to cancel the submitted request;
- Retrieve the sensor’s acquired data.

2 Conformance

Conformance will be tested by the HMA-T project.
3 Normative references

The following normative documents contain provisions that, through reference in this text, constitute provisions of this document. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. For undated references, the latest edition of the normative document referred to applies.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[NR2]</td>
<td>W3C Recommendation 6 October 2000, Extensible Markup Language (XML) 1.0 (Second Edition), http://www.w3.org/TR/REC-xml</td>
</tr>
<tr>
<td>[NR7]</td>
<td>WSDL, Web Services Description Language (WSDL) 1.1. Available [online]: http://www.w3.org/TR/wsdl</td>
</tr>
<tr>
<td>[NR9]</td>
<td>OGC 05-008c1 OWS Common Implementation Specification, May 2005</td>
</tr>
<tr>
<td>[NR11]</td>
<td>OGC 06-080 GML 3.1.1 Application schema for Earth Observation products</td>
</tr>
<tr>
<td>[NR12]</td>
<td>OGC 06-141 r2 Ordering Services for Earth Observation Products</td>
</tr>
<tr>
<td>[NR14]</td>
<td>OGC 05-086 SensorML</td>
</tr>
</tbody>
</table>
3.1 Other references

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[OR1]</td>
<td>HMA-PL-SPB-AV-001 HMA Prototype Acceptance Test Plan</td>
</tr>
<tr>
<td>[OR3]</td>
<td>OGC 04-038r4 OpenGIS® Catalogue Services Specification 2.0.1 (with Corrigendum) ISO Metadata Application Profile</td>
</tr>
<tr>
<td>[OR4]</td>
<td>OpenGIS® Sensor Planning Service Application Profile for EO Sensors</td>
</tr>
<tr>
<td>[OR7]</td>
<td>OGC 05-090 SWE Architecture</td>
</tr>
<tr>
<td>[OR10]</td>
<td>COMU-TS-ASU-RB-008</td>
</tr>
</tbody>
</table>

In addition to this document, this specification includes several normative XML Schema documents as specified in Annex A.

4 Terms and definitions

For the purposes of this specification, the definitions specified in Clause 4 of the OWS Common Implementation Specification [OGC 05-008] shall apply. In addition, the following terms and definitions apply.

4.1 Application profile
set of one or more base standards and – where applicable – the identification of chosen clauses, classes, subsets, options and parameters of those base standards that are necessary for accomplishing a particular function [ISO 19101, ISO 19106]

4.2 asset
synonyms: sensor, simulation
an available means. For the SPS, an available means of collecting information.

4.3 asset management system
Synonyms: acquisition system, asset support system
A system for controlling the effective utilization of an asset

4.4 client
software component that can invoke an operation from a server

4.5 collection
Process sense (default for this document): the act of gathering something together
Result sense: an aggregation of the results of one or more collection processes.
4.6 **data clearinghouse**
collection of institutions providing digital data, which can be searched through a single interface using a common metadata standard [ISO 19115]

4.7 **data level**
stratum within a set of layered levels in which data is recorded that conforms to definitions of types found at the application model level [ISO 19101]

4.8 **dataset series (dataset collection)**
collection of datasets sharing the same product specification [ISO 19113, ISO 19114, ISO 19115]. In this context, a collection metadata record in the catalogue describes a collection of EO Products, typically a dataset collection corresponds to datasets (i.e. products) generated by a single sensor in a specific mode on a particular EO satellite.

4.9 **geographic dataset**
dataset with a spatial aspect [ISO 19115]

4.10 **geographic information**
information concerning phenomena implicitly or explicitly associated with a location relative to the Earth [ISO 19128 draft]

4.11 **georesource**
geographic information of a specific type (e.g. geographic dataset, geographic application, geographic service)

4.12 **identifier**
a character string that may be composed of numbers and characters that is exchanged between the client and the server with respect to a specific identity of a resource

4.13 **interface**
named set of operations that characterise the behaviour of an entity [ISO 19119]

4.14 **metadata dataset (metadataset)**
metadata describing a specific dataset [ISO 19101]

4.15 **metadata entity**
group of metadata elements and other metadata entities describing the same aspect of data

NOTE 1 A metadata entity may contain one or more metadata entities.

NOTE 2 A metadata entity is equivalent to a class in UML terminology [ISO 19115].

4.16 **metadata schema**
conceptual schema describing metadata

NOTE ISO 19115 describes a standard for a metadata schema. [ISO 19101]

4.17 **metadata section**
subset of metadata that defines a collection of related metadata entities and elements [ISO 19115]

1 Due to historical reasons we’ll mainly use the term ‘dataset collection’ in this document although the term ‘dataset series’ is used in the ISO/TC211 Terminology Maintenance Group.
4.18 operation
specification of a transformation or query that an object may be called to execute [ISO 19119]

4.19 parameter
variable whose name and value are included in an operation request or response

4.20 profile
set of one or more base standards and – where applicable – the identification of chosen clauses, classes, subsets, options and parameters of those base standards that are necessary for accomplishing a particular function [ISO 19101, ISO 19106]

4.21 qualified name
name that is prefixed with its naming context

4.22 request
invocation of an operation by a client

4.23 requirement
Something that is necessary in advance

4.24 response
result of an operation, returned from a server to a client

4.25 schema
formal description of a model [ISO 19101, ISO 19103, ISO 19109, ISO 19118]

4.26 server
service instance
a particular instance of a service [ISO 19119]

4.27 service
distinct part of the functionality that is provided by an entity through interfaces [ISO 19119]
capability which a service provider entity makes available to a service user entity at the interface between those entities [ISO 19104 terms repository]

4.28 service interface
shared boundary between an automated system or human being and another automated system or human being [ISO 19101]

4.29 service metadata
metadata describing the operations and geographic information available at a server [ISO 19128 draft]

4.30 state
condition that persists for a period

NOTE The value of a particular feature attribute describes a condition of the feature [ISO 19108].

4.31 transfer protocol
common set of rules for defining interactions between distributed systems [ISO 19118]
4.32 version

version of an Implementation Specification (document) and XML Schemas to which the requested operation conforms

NOTE An OWS Implementation Specification version may specify XML Schemas against which an XML encoded operation request or response must conform and should be validated.

5 Symbols and abbreviations

5.1 Symbols (and abbreviated terms)

Some frequently used abbreviated terms:

API Application Program Interface
ATM Atmospheric
COTS Commercial Off The Shelf
CQL Common Query Language
CRS Coordinate Reference System
CSW Catalogue Service-Web
DCE Distributed Computing Environment
DC Dublin Core
DCMI Dublin Core Metadata Initiative
DCP Distributed Computing Platform
EO Earth Observation
HMA Heterogeneous Missions Accessibility
HTTP HyperText Transport Protocol
ISO International Organisation for Standardisation
OGC Open GIS Consortium
OHR Optical High Resolution
SAR Synthetic Aperture Radar
SOAP Simple Object Access Protocol
SPS Sensor Planning Service
SQL Structured Query Language
UML Unified Modeling Language
5.2 UML notation

5.2.1 UML Class Diagrams

Some of the diagrams in this document are presented using the Unified Modeling Language (UML) static structure diagram. The UML notations used in this document are described in Figure 3-1, below.

![UML Diagram](image_url)

Association between classes

<table>
<thead>
<tr>
<th>Class #1</th>
<th>Association Name</th>
<th>Class #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>role-1</td>
<td></td>
<td>role-2</td>
</tr>
</tbody>
</table>

Association Cardinality

- **Class**
 - 0..1: Optional (zero or one)
 - 0..*: Zero or more
 - 1..*: Only one
 - n: Specific number

Aggregation between classes

- **Aggregate Class**
 - Component Class #1
 - Component Class #2
 - ... Component Class #n

Class Inheritance (subtyping of classes)

- **Superclass**
 - Subclass #1
 - Subclass #2
 - ... Subclass #n

Figure 3-1 UML notations

In these UML class diagrams, the class boxes with a light background are the primary classes being shown in this diagram, often the classes from one UML package. The class boxes with a grey background are other classes used by these primary classes, usually classes from other packages.
In this diagram, the following stereotypes of UML classes are used:

<<Interface>> A definition of a set of operations that is supported by objects having this interface. An Interface class cannot contain any attributes.

<<Type>> A stereotyped class used for specification of a domain of instances (objects), together with the operations applicable to the objects. A Type class may have attributes and associations.

<<DataType>> A descriptor of a set of values that lack identity (independent existence and the possibility of side effects). A DataType is a class with no operations whose primary purpose is to hold the information.

<<CodeList>> A flexible enumeration that uses string values for expressing a list of potential values. If the list alternatives are completely known, an enumeration shall be used; if the only likely alternatives are known, a code list shall be used.

<<Enumeration>> A data type whose instances form a list of alternative literal values. Enumeration means a short list of well-understood potential values within a class.

In this document, the following standard data types are used:

CharacterString – A sequence of characters
Boolean – A value specifying TRUE or FALSE
Integer – An integer number
Identifier – Unique identifier of an object
URI – An identifier of a resource that provides more information
URL – An identifier of an on-line resource that can be electronically accessed

5.2.2 UML Sequence Diagrams

Sequence diagrams are a representation of an interaction between objects. A sequence diagram traces the execution of an interaction in time.

The picture below illustrates a sequence diagram.
Each interaction between objects is the activation of an operation of an object, which includes input and output parameters.

5.3 XML notation

Most diagrams that appear in this specification are presented using an XML schema notation defined by the XMLSpy tool and described in this subclause.

Hereafter the symbols defined in the XML schema notation are described:

- Optional single element without child elements

- Optional single element with child elements

- Mandatory single element.

- Mandatory multiple element containing child elements. This element must occur at least once (Minimum Occurrence = 1) and may occur as often as desired (Maximum Occurrence = unbounded).

- Mandatory single element with containing simple content (e.g. text) or mixed complex content (e.g. text with xhtml markup).
5.4 Document terms and definitions

This document uses the specification terms defined in Subclause 5.3 of [OGC 05-008c1].

6 System context

This section focuses on the purpose, scope and policies of Programming services that comply with this specification. It documents special requirements and describes the context of use.
6.1 Application domain

The programming service described in this document has the objective of supporting the following 2 types of requests:

- Order of precisely identified (typically specifying the sensing start and stop times) future products. This type of orders are referenced as Acquisition Orders in this document;

- Order asking the coverage of a specified area in a specified time window. This type of orders are referenced as Coverage Orders in this document;

In this document, these orders will be referred to as Programming Requests.

Each requested item in the Programming Request will be referred to as Task.

For the first type of programming request the process is very similar to the one described in [NR12] for ordering products:

- The client identifies (i.e. calculate the sensing start & stop times) the products to be acquired. This step is not covered by this document.

- Next, for each product going to be ordered, the list of tasking parameters is required.

- Next an order for future acquisitions is built on the client selecting the needed tasking parameters for each item to be ordered.

- When the programming request is prepared, the client can ask the feasibility analysis. The result of the analysis can be returned sync / async depending on its complexity, the technical & financial proposal is returned as a document sent by mail / e-mail.

- If the result of the previous step is successful, then the client can submit the programming request. In case of unfeasibility of the request, the service can suggest possible alternative parameters.

- The progress of the programming request can be actively monitored by the client or can be notified to it.

- If necessary the programming request can be cancelled.

For the second type of programming request the process is the same apart from the first step: the client does not have to identify the products, but has to specify only the time window of interest and the geographical area to cover.
6.2 Reference scenarios

This specification refers to 3 scenarios used within the EO domain. The first scenario should be considered as a particular case of the ordering. In this case a request for programming is a “future order”. It is possible to identify uniquely where and when the data will be acquired. This scenario mainly applies to Radar or Atmosphere domains where the weather conditions do not have any influence on the acquisition process. In this scenario the DescribeSensor and EstimateSensorWorkload operations are not used. The response to a GetFeasibility request will be a simple value of type Boolean.

The second reference scenario addresses a more complex request for programming. Here the acquisition needs more than one attempt to acquire the requested data, which comes closer to a “Mission Planning” service scenario. A time range for acquisition has to be defined. In this case the getFeasibility operation returns not a simple response of type Boolean anymore. The response should contain either all information necessary to acquire the data or the scenes which may be acquired with a success rate within the acquisition time frame only. In this scenario the DescribeSensor and EstimateSensorWorkload are not used.

The third scenario corresponds to a multi mission level. In this case a request for programming implies more than one ground station. The client does not send the request directly to the ground stations but to a façade which forwards the requests and gather the responses. All operations described in this specification should be used. Establishing a possible link between multiple missions implies that each mission returns a minimum set of information about the sensor (via the DescribeSensor operation) and its workload (via the EstimateWorkload operation).
7 SPS Operations Overview

The SPS operations can be divided into informational and functional operations. The informational operations are the GetCapabilities operation, the DescribeTasking operation, the DescribeResultAccess operation and the GetStatus operation. Other informational operations have to be adopted for the EO profile; these operations are DescribeSensor and DescribeGetFeasibility. Among these, the GetCapabilities, the DescribeResultAccess and the GetStatus operations provide information that the SPS user needs to know, while the DescribeTasking operation provides a description of information that a sensor management system needs to know. The functional operations are the GetFeasibility, the Submit, the Update and Cancel operations. All of these operations have an effect on the sensor management system, as explained below. Another functional operation, EstimateSensorWorkload, has to be adopted for the EO profile.

The SPS EO application profile interface specifies 11 operations that can be requested by a client and performed by a SPS server. Those operations are:

a) GetCapabilities (mandatory) – This operation allows a client to request and receive service metadata (or Capabilities) documents that describe the abilities of the specific server implementation. This operation also supports negotiation of the specification version being used for client-server interactions. Moreover, the content section of this operation contains the list of sensorID provided by the service.

b) DescribeSensor (mandatory) – This operation allows the client to obtain a description of the sensors supported by the current SPS. The client may request a brief description of the sensor or a complete one, giving him the capability to simulate the possible acquisition of the sensor.

c) EstimateSensorWorkload (optional) – This operation provides information of the Workload of the called sensor. The description of this workload is under the responsibility of the mission and the freshness of the information will be indicated by the mission.

d) DescribeGetFeasibility (optional) – This operation allows a client to request the information that is needed in order to send a GetFeasibility request. The response contains a description of the input and optionally the output parameters for the GetFeasibility operation. Note: this operation is optional because GetFeasibility is optional.

e) GetFeasibility (optional) – This operation is to provide feedback to a client about the feasibility of a programming request. Dependent on the sensor type façaded by the SPS, the SPS server action may be as simple as checking that the request parameters are valid, and are consistent with certain business rules, or it may be a complex operation that calculates the usability of the sensor to perform a specific task at the defined location, time, orientation, calibration etc.

f) DescribeSubmit (mandatory) – This operation allows clients to request the information that is needed in order to send a Submit request. This optional operation should be used only if the input parameters of a submit request are different than the input parameters of a GetFeasibility request. Note: this operation if mandatory because Submit is mandatory.

g) Submit (mandatory) – This operation submits the programming request. Dependent on the façaded sensor, it may perform a simple modification of the sensor or start a complex mission.
h) GetStatus (optional) – This operation allows a client to receive information about the current status of the requested task.

i) Cancel (optional) – This operation allows a client to request cancellation of a previously submitted task.

j) Update (optional) – This operation allows a client to update a previously submitted task.

k) DescribeResultAccess (mandatory) – This operation allows a client to retrieve information how and where data that was produced by the sensor can be accessed. The server response may contain links to any kind of data and not necessary through a OGC Web services nevertheless OGC Web services such as SOS, WMS, WFS or WCS are desirable.

These operations have many similarities to other OGC Web Services, including the WMS, WFS, and WCS. Many of these interface aspects that are common with other OWSs are thus specified in the OpenGIS® Web Services Common Implementation Specification [OGC 05-008]. Many of these common aspects are normatively referenced herein, instead of being repeated in this specification.
8 Information models for EO Programming Requests

To specify a programming request, the programming parameters have to be specified.

The programming parameters are modelled by the ParameterDescriptor. The names of these parameters shall be aligned with those used in [NR11].

8.1 ParameterDescriptor element

The ParameterDescriptor defines the input a client has to provide to task an asset. This element in the EO profile has been modified as follows:

![Diagram of ParameterDescriptor element](image.png)

Figure 8-1 – ParameterDescriptor
Changes are:

- the `ParameterDescriptor` type is based on the `InputDescriptorType` of the SPS specification. It has been renamed because it defines not only input but also output parameters.

- the `definition` element is unbounded. Reason: a parameter may be described by more than one definition. Example: a ROI (Region Of Interest) may be defined by a gml:Polygon OR a Circle.

- the `definition` element may contain a `ParameterDescriptor` element (recursivity). This allows a parameter to contain a list of parameters. The following example shows a parameter scene composed by 4 parameters (satellite, resolution, geoLocation and successRate):

```xml
<ParameterDescriptor parameterID="scene" updateable="false" use="optional">
  <Description>Pseudo scene</Description>
  <definition>
    <ParameterDescriptor use="required" parameterID="satellite" updateable="false">
      <definition>
        <commonData>
          <swe:Category/>
        </commonData>
      </definition>
    </ParameterDescriptor>
    <ParameterDescriptor use="required" parameterID="resolution" updateable="false">
      <definition>
        <commonData>
          <swe:Quantity/>
        </commonData>
      </definition>
    </ParameterDescriptor>
    <ParameterDescriptor use="required" parameterID="geoLocation" updateable="false">
      <definition>
        <GeometryDefinition>gml:polygon</GeometryDefinition>
      </definition>
    </ParameterDescriptor>
    <ParameterDescriptor use="required" parameterID="successRate" updateable="false">
      <definition>
        <commonData>
          <swe:Count>
            <swe:constraint>
              <swe:AllowedValues>
                <swe:min>0</swe:min>
                <swe:max>100</swe:max>
              </swe:AllowedValues>
            </swe:constraint>
          </swe:Count>
        </commonData>
      </definition>
    </ParameterDescriptor>
  </definition>
</ParameterDescriptor>
```

Note: an example of input parameters for SPOT5 tasking is given in annex B of this document.
8.2 Preliminary List of Tasking Parameters

This paragraph proposes the preliminary and extensible list of parameters a client has to provide to task an EO profile asset. The objective is, in a multi mission context, to define the name and the type of the parameters shared by all the EO missions.

Through the DescribeGetFeasibility and DescribeSubmit operations, each mission has the possibility to:

- mark a parameter as optional or mandatory
- restrict the possible values of a parameter
- add its own specific parameters

Note: the description of the parameters returned by DescribeGetFeasibility and DescribeSubmit operations is given by using the ParameterDescriptor element (cf. § 8.1). To make is easier to understand, the following description of the parameters uses UML notation and tables.
The parameters are grouped according to their nature:

The following tables describe each group and each parameter in details. The first column contains the name of the group or the element; the second column contains the description; the third specifies the source document from which the parameter has been derived; the “Mission” column specifies whether the parameter is applicable for Optical (OHR), Radar (SAR), Atmospheric (ATM) or all.

8.2.1 Priority

<table>
<thead>
<tr>
<th>Tasking Parameter Name</th>
<th>Description</th>
<th>Source</th>
<th>Mission</th>
</tr>
</thead>
<tbody>
<tr>
<td>QualityOfService</td>
<td>Programming Priority</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>Urgence</td>
<td>Quality Of Service</td>
<td>[OR4]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type: Enumerated string Possible values are: low, medium, high</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Priority</td>
<td>Priority level.</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type: Enumerated string Possible values are: low, medium, high</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.2.2 Acquisition parameters

8.2.2.1 SAR mission (radar)

<table>
<thead>
<tr>
<th>Tasking Parameter Name</th>
<th>Description</th>
<th>Source</th>
<th>Mission</th>
</tr>
</thead>
<tbody>
<tr>
<td>PolarisationMode</td>
<td>Polarisation Mode</td>
<td>[NR11]</td>
<td>SAR</td>
</tr>
<tr>
<td></td>
<td>Type: Enumerated String</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Possible values: D, Q, S, T, UNDEFINED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PolarisationChannels</td>
<td>Polarisation channel transmit/receive configuration: horizontal, vertical.</td>
<td>[NR11]</td>
<td>SAR</td>
</tr>
<tr>
<td></td>
<td>Type: Enumerated string</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Possible values:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HH</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• VH</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• VV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HH, VV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HH, VH</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HH, HV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HV, VV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• VH, VV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• VH, HV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• VV, HH</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HH, VV, HV, VH</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNDEFINED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AntennaLookDirection</td>
<td>Antenna look direction</td>
<td>[NR11]</td>
<td>SAR</td>
</tr>
<tr>
<td></td>
<td>Type: floating point</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit: degrees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ProgrammingRequestMode</td>
<td>Programming type.</td>
<td>[OR4]</td>
<td>SAR</td>
</tr>
<tr>
<td></td>
<td>Type: Enumerated string</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Possible values are:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SCENE, for tasks specified by time intervals / orbit segments</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• COVERAGE, for specified coverage orders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tasking Parameter Name</td>
<td>Description</td>
<td>Source</td>
<td>Mission</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>CoverageRequired</td>
<td>Required coverage for the observation Type: Enumerated string Valid values: “ANY_COVERAGE”: acquire any product visible in the area of interest (regionOfInterest parameter) even if overlapping already required sub-areas; “ANY_REFERENCE_COVERAGE”: acquire any product visible in the area of interest (regionOfInterest parameter), but suppress duplicates of the same relative segment (i.e. same relative orbit and passCoverage); “FULL_COVERAGE”: within the period (startDate & completionDate) the area (regionOfInterest parameter) has to be fully mapped.</td>
<td>SAR</td>
<td></td>
</tr>
<tr>
<td>SwathId</td>
<td>Indication of a specific swath achieved by steering In case the sensor viewing characteristics can be changed by steering the instrument the SwathId identifies the specific Swath used for the single acquisition Type: String</td>
<td>SAR</td>
<td></td>
</tr>
<tr>
<td>SurveyPeriods</td>
<td>cf § 8.2.6</td>
<td>SAR</td>
<td></td>
</tr>
</tbody>
</table>

8.2.2.2 OHR mission (optical)

```
<Element>
  AcquisitionParameters OHR
  <Element> Resolution: float
  <Element> AcquisitionMode: enum string
  <Element> ProgrammingRequestMode: enum string
</Element>
```

<table>
<thead>
<tr>
<th>Tasking Parameter Name</th>
<th>Description</th>
<th>Source</th>
<th>Mission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>Sensor resolution Type: floating point with allowed values given by the SPS server</td>
<td>[NR11]</td>
<td>OHR</td>
</tr>
<tr>
<td>AcquisitionMode</td>
<td>Type: Enumerated String Possible values are: • MULTISPECTRAL • PANCHROMATIC • BUNDLE</td>
<td>[NR11]</td>
<td>OHR</td>
</tr>
</tbody>
</table>
ProgrammingRequestMode

<table>
<thead>
<tr>
<th>Tasking Parameter Name</th>
<th>Description</th>
<th>Source</th>
<th>Mission</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProgrammingRequestMode</td>
<td>Programming type</td>
<td>[NR11]</td>
<td>OHR</td>
</tr>
<tr>
<td></td>
<td>Type: Enumerated String</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Possible values are:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SCENE: unique attitude acquisition, for tasks specified by time intervals / orbit segments</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• MONOPASS COVERAGE: coverage acquired through a unique pass; many attitude acquisition necessary</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• MULTIPASS COVERAGE: coverage may be acquired through several passes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SurveyPeriods

- cf § 8.2.6

8.2.3 GeometricCoverageCharacteristics

Mono

- Mono acquisition

Stereo

- Stereo acquisition

IncidenceAngle

- cf. § 8.2.6

IncidenceAngle1

- cf. § 8.2.6

Constraints

- BHMin
 - Minimum base over Height ratio accepted between a stereo pair.
 - Type: float

- ohr

<table>
<thead>
<tr>
<th>Tasking Parameter Name</th>
<th>Description</th>
<th>Source</th>
<th>Mission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mono</td>
<td>Mono acquisition</td>
<td>[OR4]</td>
<td>All</td>
</tr>
<tr>
<td>IncidenceAngle</td>
<td>cf. § 8.2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stereo</td>
<td>Stereo acquisition</td>
<td>[OR4]</td>
<td>ohr</td>
</tr>
<tr>
<td>IncidenceAngle1</td>
<td>cf. § 8.2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IncidenceAngle2</td>
<td>cf. § 8.2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constraints</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHMin</td>
<td>Minimum base over Height ratio accepted between a stereo pair.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type: float</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tasking Parameter Name | Description | Source | Mission
--- | --- | --- | ---
BHMax | Maximum base over Height ratio accepted between a stereo pair. Type: float | | |
MaxCoupleDelay | Maximum interval of days between two stereo acquisitions. Type: integer | | |

8.2.4 RegionOfInterest

Tasking Parameter Name	Description	Source	Mission
Region of Interest | Type: GeometryDefinition (polygon, circle, TBD) | [OR4] | all |

8.2.5 ValidationParameters

Tasking Parameter Name	Description	Source	Mission
cloudCoverPercentage | Maximum allowed cloud coverage Type: floating point Unit: percentage | [OR4] | ohr |
snowCoverPercentage | Maximum allowed snow coverage Type: floating point Unit: percentage | [OR4] | ohr |
hazeAccepted | Haze presence accepted Type: boolean | ohr |
sandWindAccepted | Sand wind presence accepted Type: boolean | ohr |
8.2.6 SurveyPeriods type

<table>
<thead>
<tr>
<th>Tasking Parameter Name</th>
<th>Description</th>
<th>Source</th>
<th>Mission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scene</td>
<td>Acquisition of a single scene</td>
<td>OR4</td>
<td>all</td>
</tr>
<tr>
<td>SurveyPeriod</td>
<td>Start date and end date of acquisition</td>
<td>all</td>
<td></td>
</tr>
<tr>
<td>FrameNumber</td>
<td>Type: PeriodType (cf § 8.2.7)</td>
<td>all</td>
<td></td>
</tr>
<tr>
<td>OrbitalParameters</td>
<td>Orbit number</td>
<td>NR11</td>
<td>all</td>
</tr>
<tr>
<td></td>
<td>Type: integer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OrbitDirection</td>
<td>Orbit direction</td>
<td>NR11</td>
<td>all</td>
</tr>
<tr>
<td></td>
<td>Type: Enumerated String</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Possible values: ASCENDING, DESCENDING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANX_StartTime</td>
<td>Time in millisecond of the acquisition start with respect the ascending node crossing. ANX_StartTime & ANX_StopTime are alternative to startDate & completionDate.</td>
<td>NR11</td>
<td>all</td>
</tr>
<tr>
<td></td>
<td>Type: integer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit: milliseconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANX_StopTime</td>
<td>Time in millisecond of the acquisition end with respect the ascending node crossing. ANX_StartTime & ANX_StopTime are alternative to startDate & completionDate.</td>
<td>NR11</td>
<td>all</td>
</tr>
<tr>
<td></td>
<td>Type: integer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit: milliseconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tasking Parameter Name</td>
<td>Description</td>
<td>Source</td>
<td>Mission</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>SingleCoverage</td>
<td>One (mono date survey) or several (multi date survey) observation periods are requested.</td>
<td>[OR4]</td>
<td>all</td>
</tr>
<tr>
<td>SurveyPeriod</td>
<td>Start date and end date of acquisition Type: PeriodType (cf § 8.2.7)</td>
<td>all</td>
<td></td>
</tr>
<tr>
<td>SeveralCoverages</td>
<td>Only one observation periods is requested, but inside this period, the area should be covered more than once, eventually respecting a frozen period between two acquisitions.</td>
<td>all</td>
<td></td>
</tr>
<tr>
<td>SurveyPeriod</td>
<td>Start date and end date of acquisition Type: PeriodType (cf § 8.2.7)</td>
<td>all</td>
<td></td>
</tr>
<tr>
<td>Occurrence</td>
<td>Number of repetitions of the reference observation period required (including the reference observation as first observation). The reference observation period is defined by startDate & completionDate. Type: integer</td>
<td>all</td>
<td></td>
</tr>
<tr>
<td>FrozenDays</td>
<td>Interval between two consecutive observations. Type: integer Unit: day Precision: day</td>
<td>all</td>
<td></td>
</tr>
<tr>
<td>TemporalSeries</td>
<td>Start date and end date of acquisition Type: PeriodType (cf § 8.2.7)</td>
<td>all</td>
<td></td>
</tr>
<tr>
<td>Periodicity</td>
<td>Acquisition periodicity. Type: unsigned integer Unit: days</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.2.7 Period type

```xml
<Episode>
    <SurveyPeriod>
        + startDate: date
        + endDate: date
    </SurveyPeriod>
</Episode>
```

<table>
<thead>
<tr>
<th>Tasking Parameter Name</th>
<th>Description</th>
<th>Source</th>
<th>Mission</th>
</tr>
</thead>
<tbody>
<tr>
<td>StartDate</td>
<td>Start acquisition date. Type: date</td>
<td>[OR4]</td>
<td>all</td>
</tr>
<tr>
<td>EndDate</td>
<td>End acquisition date. Type: date</td>
<td>[OR4]</td>
<td>all</td>
</tr>
</tbody>
</table>
8.2.8 Incidence angle type

<table>
<thead>
<tr>
<th>Tasking Parameter Name</th>
<th>Description</th>
<th>Source</th>
<th>Mission</th>
</tr>
</thead>
<tbody>
<tr>
<td>AngleMin</td>
<td>Minimum incidence angle.</td>
<td>[OR4]</td>
<td>all</td>
</tr>
<tr>
<td>lambda</td>
<td>Type: floating point</td>
<td></td>
<td></td>
</tr>
<tr>
<td>phi</td>
<td>Unit: degrees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AngleMax</td>
<td>Maximum incidence angle</td>
<td>[OR4]</td>
<td>all</td>
</tr>
<tr>
<td>lambda</td>
<td>Type: floating point</td>
<td></td>
<td></td>
</tr>
<tr>
<td>phi</td>
<td>Unit: degrees</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.3 Input parameters

The Parameter Element is used to provide the value(s) for a specific parameter. The encoding follows the description that is part of the definition element of a ParameterDescriptor Element.

8.4 EO profile specific

- The Parameter element is based on InputParameter of the SPS specification. It has been renamed because it is used for both input and output parameters.
- because the ParameterDescriptor element has been modified to be recursive, the Parameter Element is modified the same way:

 ![InputParameter element diagram](image)

The following XML fragment shows an example of value definition for a parameter (country) composed by 2 parameters (countryCode and countryName).

```xml
<Parameter parameterID="country">
    <Parameter parameterID="countryCode">
        <value>
            <swe:Category>KZ</swe:Category>
        </value>
    </Parameter>
    <Parameter parameterID="countryName">
        <value>
            <swe:Category>KAZAKHSTAN</swe:Category>
        </value>
    </Parameter>
</Parameter>
```

8.5 sensorID

The sensorID is an identifier to a set of tasking parameters. A sensorID may represent a sensor (example: SPOT 5), one instrument of one satellite (example: SPOT 5 HRS) or a constellation of satellites (example SPOT+FORMOSAT). The sensorID may also represent a combination of other sensorIDs (an example can be found in § 20.1.1).

Depending on what the sensor ID represents, the list of input parameters may be different. For instance if a sensorID represents a constellation of satellites (example: SPOT2+SPOT4+SPOT5), one input parameter may be the index of the satellite (example: 5). But in case of the sensorID represents one instrument of one satellite, there will be no need for such input parameter.
8.6 DeliveryInformationType

This type has been derived by the DeliveryInformationType defined in the Ordering Service ([NR12]).

<table>
<thead>
<tr>
<th>Tag Name</th>
<th>Tag Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ftp-push</td>
<td>FTP URL: address of a user-owned FTP server to which a product can be posted containing also directory, username, password information. Type: Not empty string (max 255 chars) Syntax: ftp://ftpUserName:'ftpPassword'@ftpAddress/ftpDirectory' Example: ftp://muis_intecs:intecs@ftp.intecs.it/MUIS</td>
</tr>
<tr>
<td>ftp-pull</td>
<td>FTP URL: address of a provider-owned FTP server from which user can fetch products containing also directory, username, password information. The value is set by the provider, therefore the element has to be set to <blank> in the SubmitRequest Type: string (max 255 chars) Syntax: ftp://ftpUserName:'ftpPassword'@ftpAddress/ftpDirectory' Example: ftp://userOder:userpwd@ftp.esa.int/XI/EN1</td>
</tr>
<tr>
<td>mail</td>
<td>Mail element.</td>
</tr>
<tr>
<td>Recipient</td>
<td>Identification of the receiving person. Type: Not empty string (max 40 chars)</td>
</tr>
</tbody>
</table>

Figure 8-4: DeliveryInformationType diagram.
<table>
<thead>
<tr>
<th>Tag Name</th>
<th>Tag Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>companyRef</td>
<td>Identification of the receiving entity.</td>
</tr>
<tr>
<td>postalAddress</td>
<td>Postal Address of the user.</td>
</tr>
<tr>
<td>streetAddress</td>
<td>Street Address element.</td>
</tr>
<tr>
<td>city</td>
<td>City element.</td>
</tr>
<tr>
<td>state</td>
<td>State element.</td>
</tr>
<tr>
<td>postalCode</td>
<td>Postal Code element.</td>
</tr>
<tr>
<td>country</td>
<td>Country element.</td>
</tr>
<tr>
<td>postalBox</td>
<td>Postal Box element.</td>
</tr>
<tr>
<td>telNumber</td>
<td>Telephone number of the receiving person.</td>
</tr>
<tr>
<td>e-mail</td>
<td>E-mail address of the user.</td>
</tr>
<tr>
<td>receiverAddress</td>
<td>DDS address</td>
</tr>
</tbody>
</table>

Table 8-1: DeliveryInformationType description.
9 External interfaces

This clause describes the externally visible behaviour of the system, including the interfaces implemented by its components and the supported protocol bindings. It defines the request and response message structures as part of the operation signatures, primarily the differences to those of the OpenGIS® Sensor Planning Service Implementation Specification [NR13].

9.1 Imported protocol bindings (relationship with SPS implementation specification [NR13])

The following table reports the mapping of SPS operation on the Programming Service operations.

<table>
<thead>
<tr>
<th>SPS operations</th>
<th>SPS EO profile operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>GetCapabilities</td>
<td>GetCapabilities</td>
</tr>
<tr>
<td></td>
<td>DescribeSensor</td>
</tr>
<tr>
<td>DescribeTasking</td>
<td>DescribeGetFeasibility</td>
</tr>
<tr>
<td></td>
<td>DescribeSubmit</td>
</tr>
<tr>
<td>GetFeasibility</td>
<td>GetFeasibility</td>
</tr>
<tr>
<td></td>
<td>EstimateSensorWorkload</td>
</tr>
<tr>
<td>ReserveTasking</td>
<td></td>
</tr>
<tr>
<td>Submit</td>
<td>Submit</td>
</tr>
<tr>
<td>GetStatus</td>
<td>GetStatus</td>
</tr>
<tr>
<td>Update</td>
<td>Update</td>
</tr>
<tr>
<td>Cancel</td>
<td>Cancel</td>
</tr>
<tr>
<td>DescribeResultAccess</td>
<td>DescribeResultAccess</td>
</tr>
</tbody>
</table>

Table 9-1: Mapping of Programming Service to SPS operations.
9.2 Operations interface

The following table shows the main characteristics of the operations. Each operation is fully described further in the document.

<table>
<thead>
<tr>
<th>Operation Name</th>
<th>Request Encoding</th>
<th>Protocol</th>
<th>Mandatory</th>
<th>Sync/Async</th>
</tr>
</thead>
<tbody>
<tr>
<td>GetCapabilities</td>
<td>KVP</td>
<td>HTTP/GET</td>
<td>X</td>
<td>S</td>
</tr>
<tr>
<td>DescribeSensor</td>
<td>XML</td>
<td>SOAP messaging via HTTP/POST</td>
<td>X</td>
<td>S</td>
</tr>
<tr>
<td>DescribeGetFeasibility</td>
<td>XML</td>
<td>SOAP messaging via HTTP/POST</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>GetFeasibility</td>
<td>XML</td>
<td>SOAP messaging via HTTP/POST</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>EstimateSensorWorkload</td>
<td>XML</td>
<td>SOAP messaging via HTTP/POST</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>DescribeSubmit</td>
<td>XML</td>
<td>SOAP messaging via HTTP/POST</td>
<td>X</td>
<td>S</td>
</tr>
<tr>
<td>Submit</td>
<td>XML</td>
<td>SOAP messaging via HTTP/POST</td>
<td>X</td>
<td>A</td>
</tr>
<tr>
<td>GetStatus</td>
<td>XML</td>
<td>SOAP messaging via HTTP/POST</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Update</td>
<td>XML</td>
<td>SOAP messaging via HTTP/POST</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Cancel</td>
<td>XML</td>
<td>SOAP messaging via HTTP/POST</td>
<td>X</td>
<td>S</td>
</tr>
<tr>
<td>DescribeResultAccess</td>
<td>XML</td>
<td>SOAP messaging via HTTP/POST</td>
<td>X</td>
<td>S</td>
</tr>
</tbody>
</table>

9.3 Shared aspects

9.3.1 Protocol

EO profile specific: all operations except GetCapabilities must support the embedding of requests and responses in SOAP messages. Only SOAP messaging (via HTTP/POST) with document/literal style has to be used. Messages must conform to SOAP 1.1 or SOAP 1.2. The message payload will be in the body of the SOAP envelope.

9.3.2 notificationTarget versus WS-Addressing (asynchronous operations)

The SPS specification imposes a mandatory notificationTarget parameter used to identify the Web Notification Service that will send notifications to the client in case of asynchronous operations.

In the HMA context, SOAP with WS-Addressing protocol has been chosen for the following reasons:

- Asynchronous Web Services based on SOAP with WS-Addressing are easily integrated into BPEL workflows
- WS-Addressing is a W3C recommendation (http://www.w3.org/2002/ws/addr)
- WS-Addressing defines a standard for incorporating message addressing information into web services messages
- WS-Addressing defines standard ways to route a message over multiple transports or direct a response to a third party. For example, a client application might send a request over JMS and ask to receive the response through e-mail or SMS (http://dev2dev.bea.com/pub/a/2005/01/ws_addressing_intro.html)
• WS-Security can be used with WS-Addressing
• WS-Addressing is easy to implement
• In the message, there is a "physical" separation between the notification stuff (in the header of the message) and the OGC request (in the body). It facilitates the creation of multi layers applications in which communication (i.e. notifications) and service specific requests processing are managed in different layers.
• Any synchronous request of any existing service can become asynchronous without any modification of the request by adding a replyAddress in the header.

Therefore in the EO profile the notificationTarget parameter is optional.

The header of a SOAP message using WS-Addressing contains a messageID and a replyAddress:

```
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
  <soapenv:Header xmlns:wsa="http://www.w3.org/2004/12/addressing">
    <wsa:MessageID>LZH789</wsa:MessageID>
    <wsa:ReplyTo>
      <wsa:Address>http://wso2.org/addressing</wsa:Address>
    </wsa:ReplyTo>
  </soapenv:Header>
  <soapenv:Body>OWS request</soapenv:Body>
</soapenv:Envelope>
```

The response is sent asynchronously to the address specified in the Address element of the header. The header of the SOAP response message contains a relatesTo element for the messageID, allowing the client to link the request and the asynchronous response:

```
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
  <soapenv:Header xmlns:wsa="http://www.w3.org/2004/12/addressing">
    <wsa:RelatesTo>LZH789</wsa:RelatesTo>
  </soapenv:Header>
  <soapenv:Body>OWS response</soapenv:Body>
</soapenv:Envelope>
```
9.3.3 Acknowledgments

Asynchronous operations are defined by a request and an asynchronous response. Both the request and the response messages are followed by an acknowledgment. This allows the sender of the message to make sure the message is successfully received:

9.3.3.1 Request acknowledgment status

Request acknowledgment status schema:
Table 9-2: Request acknowledgement status

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Data type and values</th>
<th>Multiplicity and use</th>
</tr>
</thead>
<tbody>
<tr>
<td>status</td>
<td>Status of the request</td>
<td>String enumerates: “confirmed” “rejected” “incomplete request” “pending” “rejected, alternatives available”</td>
<td>one (mandatory)</td>
</tr>
<tr>
<td>Description</td>
<td>Text description of the response</td>
<td>String</td>
<td>one (optional)</td>
</tr>
<tr>
<td>Latest Response Time</td>
<td>GetFeasibility response will be sent until LatestResponseTime at latest. In case that no response is received, the operation shall be evaluated as non-feasible.</td>
<td>dateTime</td>
<td>one (optional)</td>
</tr>
<tr>
<td>estimatedToC</td>
<td>Defines estimated time of completion</td>
<td>dateTime</td>
<td>one (optional)</td>
</tr>
</tbody>
</table>

9.3.3.2 Response acknowledgment status

Response acknowledgment status schema:

![sps:ResponseAckStatus](image)

Figure 9-2 - Response acknowledgement status schema

Table 9-3: Response acknowledgement status

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Data type and values</th>
<th>Multiplicity and use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response AckStatus</td>
<td>Indicates that the Response message was successfully received.</td>
<td>String</td>
<td>one (mandatory)</td>
</tr>
<tr>
<td></td>
<td>(in case of the Response message was not successfully received, an exception is thrown)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9.3.4 Progress reports

Operations Submit and GetStatus return information about the status of a request. This information is defined as a ProgressReport specified as follows:

Figure 9-3 - Progress report schema
The following table describes the elements of the Progress report schema:

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Data type and values</th>
<th>Multiplicity and use</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Identifier for this task, needed for subsequent update requests (taskID).</td>
<td>token</td>
<td>one (mandatory)</td>
</tr>
<tr>
<td>status</td>
<td>Identifier of the status of the request</td>
<td>String enumerates: “confirmed” “rejected” “incomplete request” “pending” “rejected, alternatives available”</td>
<td>one (mandatory)</td>
</tr>
<tr>
<td>Description</td>
<td>Additional metadata</td>
<td>String</td>
<td>one (optional)</td>
</tr>
<tr>
<td>Latest ResponseTime</td>
<td>Submit response will be sent until LatestResponseTime at latest. In case that no response is received, the operation shall be evaluated as rejected.</td>
<td>dateTime</td>
<td>one (mandatory)</td>
</tr>
<tr>
<td>estimatedToC</td>
<td>Defines estimated time of completion</td>
<td>dateTime</td>
<td>one (optional)</td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td></td>
<td>one (optional)</td>
<td></td>
</tr>
<tr>
<td>parameters</td>
<td>List of acquired scenes since the date defined in the DateFrom input parameter. These parameters are described in the OutputParameters element of the DescribeSubmit response.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DateFrom</td>
<td>Date from which the result is given.</td>
<td>dateTime</td>
<td>one (optional)</td>
</tr>
</tbody>
</table>
10 GetCapabilities operation (mandatory, synchronous)

10.1 Introduction

The mandatory GetCapabilities operation allows clients to retrieve service metadata from a server. The response to a GetCapabilities request shall be an XML document containing service metadata about the server, including specific information about a SPS. This clause specifies the XML document that a SPS server must return to describe its capabilities.

10.2 EO profile specific

- The description of the sensors has been removed from the capabilities (the description is returned by the DescribeSensor operation);
- The content section of the capabilities contains the supported communication protocols. For SPS EO profile, the communication protocol is SOAP with WS-Addressing.
- PhenomenonOfferingList is removed

10.3 Capabilities schema

The following diagram shows the content of the response sent by the SPS to a GetCapabilities request:

![Capabilities schema diagram](image)

Figure 9-4 - Capabilities schema

10.4 GetCapabilities Operation request

The GetCapabilities operation request shall be as specified in Subclauses 7.2 and 7.3 of [OGC 05-008]. The value of the “service” parameter shall be “SPS”. The allowed set of service metadata (or Capabilities) XML document section names and meanings shall be as specified in Tables 3 and 7 of [OGC 05-008].
The “Multiplicity and use” column in Table 1 of [OGC 05-008] specifies the optionality of each listed parameter in the GetCapabilities operation request. The following table specifies the implementation of those parameters by Programming Service clients and servers.

<table>
<thead>
<tr>
<th>Name</th>
<th>Multiplicity</th>
<th>Client implementation</th>
<th>Server implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>service</td>
<td>One (mandatory)</td>
<td>Each parameter shall be implemented by all clients, using specified value</td>
<td>Each parameter shall be implemented by all servers, checking that each parameter is received with specified value</td>
</tr>
<tr>
<td>request</td>
<td>One (mandatory)</td>
<td>Should be implemented by all software clients, using specified values</td>
<td>Shall be implemented by all servers, checking if parameter is received with specified value(s)</td>
</tr>
<tr>
<td>AcceptVersions</td>
<td>Zero or one (optional)</td>
<td>Each parameter may be implemented by each client</td>
<td>Each parameter may be implemented by each server</td>
</tr>
<tr>
<td>Sections</td>
<td>Zero or one (optional)</td>
<td>If parameter not provided, shall expect default response</td>
<td>If parameter not implemented or not received, shall provide default response</td>
</tr>
<tr>
<td>updateSequence</td>
<td>Zero or one (optional)</td>
<td>If parameter provided, shall allow default or specified response</td>
<td>If parameter implemented and received, shall provide specified response</td>
</tr>
<tr>
<td>AcceptFormats</td>
<td>Zero or one (optional)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 9-5: Implementation of parameters in GetCapabilities operation request

All SPS servers shall implement HTTP GET transfer of the GetCapabilities operation request, using KVP encoding. Servers may also implement HTTP POST transfer of the GetCapabilities operation request, using XML encoding only.

10.5 GetCapabilities Operation response

10.5.1 Normal response

The service metadata document shall contain the SPS sections specified in the following table. Depending on the values in the Sections parameter of the GetCapabilities operation request, any combination of these sections can be requested and shall be returned when requested.

<table>
<thead>
<tr>
<th>Section name</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServiceIdentification</td>
<td>Metadata about this specific server. The schema of this section shall be the same as for all OWSs, as specified in Subclause 7.4.3 and owsServiceIdentification.xsd of [OGC 05-008].</td>
</tr>
<tr>
<td>ServiceProvider</td>
<td>Metadata about the organization operating this server. The schema of this section shall be the same as for all OWSs, as specified in Subclause 7.4.4 and owsServiceProvider.xsd of [OGC 05-008].</td>
</tr>
<tr>
<td>OperationsMetadata</td>
<td>Metadata about the operations specified by this service and implemented by this server, including the URLs for operation requests. The basic contents and organization of this section shall be the same as for all OWSs, as specified in Subclause 7.4.5 and owsOperationsMetadata.xsd of [OGC 05-008].</td>
</tr>
<tr>
<td>Contents</td>
<td>Metadata about the data served by this server. For the SPS, this section shall contain information about the sensors that can be tasked and the phenomena that can be measured by these sensors, as specified in Subclause 0 below.</td>
</tr>
</tbody>
</table>

Table 9-6—Section name values and contents
Candidate OpenGIS® SPS Application Profile for EO Sensors

In addition to these sections, each service metadata document shall include the mandatory “version” and optional updateSequence parameters specified in Table 6 in Subclause 7.4.1 of [OGC 05-008].

10.5.2 OperationsMetadata section standard contents

For the SPS, the OperationsMetadata section shall be the same as for all OGC Web Services, as specified in Subclause 7.4.5 and owsOperationsMetadata.xsd of [OGC 05-008].

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Attribute value</th>
<th>Meaning of attribute value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation name</td>
<td>GetCapabilities</td>
<td>The GetCapabilities operation is implemented by this server.</td>
</tr>
<tr>
<td></td>
<td>DescribeGetFeasibility</td>
<td>The DescribeGetFeasibility operation is implemented by the server.</td>
</tr>
<tr>
<td></td>
<td>DescribeSubmit</td>
<td>The DescribeSubmit operation is implemented by the server.</td>
</tr>
<tr>
<td></td>
<td>Submit</td>
<td>The Submit operation is implemented by this server.</td>
</tr>
<tr>
<td></td>
<td>DescribeResultAccess</td>
<td>The DescribeResultAccess operation is implemented by this server.</td>
</tr>
</tbody>
</table>

Table 9-7: Mandatory Programming Service operations.

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Attribute value</th>
<th>Meaning of attribute value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DescribeSensor</td>
<td>The DescribeSensor operation is implemented by the server.</td>
</tr>
<tr>
<td></td>
<td>GetFeasibility</td>
<td>The GetFeasibility operation is implemented by this server.</td>
</tr>
<tr>
<td></td>
<td>GetStatus</td>
<td>The GetStatus operation is implemented by this server.</td>
</tr>
<tr>
<td></td>
<td>Update</td>
<td>The Update operation is implemented by this server.</td>
</tr>
<tr>
<td></td>
<td>Cancel</td>
<td>The Cancel operation is implemented by this server.</td>
</tr>
</tbody>
</table>

Table 9-8: Optional Programming Service operations.
10.6 Exceptions

When a SPS server encounters an error while performing a GetCapabilities operation, it shall return an exception report message as specified in Clause 8 of [OGC 05-008].

10.7 Example of GetCapabilities response

```xml
<Capabilities version="0.9.4"
    xmlns="http://www.opengis.net/sps/eop"
    xmlns:ows="http://www.opengeospatial.net/ows"
    xmlns:wns="http://www.opengeospatial.net/wns"
    xmlns:gml="http://www.opengis.net/gml"
    xmlns:xlink="http://www.w3.org/1999/xlink"
    xsi:schemaLocation="http://www.opengis.net/sps/eop ./spsAll.xsd">
    <ows:ServiceIdentification>
        <ows:Title>Spot Image SPS EO profile Prototype</ows:Title>
        <ows:ServiceType>SPS</ows:ServiceType>
        <ows:ServiceTypeVersion>0.9.4</ows:ServiceTypeVersion>
        <ows:Fees>none</ows:Fees>
        <ows:AccessConstraints>none</ows:AccessConstraints>
    </ows:ServiceIdentification>
    <ows:ServiceProvider>
        <ows:ProviderName>Spot Image</ows:ProviderName>
        <ows:ProviderSite>http://www.spotimage.com</ows:ProviderSite>
        <ows:ServiceContact>
            <ows:IndividualName>Philippe Merigot</ows:IndividualName>
        </ows:ServiceContact>
    </ows:ServiceProvider>
    <ows:OperationsMetadata>
        <ows:Operation name="GetCapabilities">
            <ows:DCP>
                <ows:HTTP>
                </ows:HTTP>
            </ows:DCP>
        </ows:Operation>
        <ows:Operation name="DescribeSensor">
            <ows:DCP>
                <ows:HTTP>
                </ows:HTTP>
            </ows:DCP>
        </ows:Operation>
        <ows:Operation name="DescribeGetFeasibility">
            <ows:DCP>
                <ows:HTTP>
                </ows:HTTP>
            </ows:DCP>
        </ows:Operation>
        <ows:Operation name="DescribeSubmit">
            <ows:DCP>
                <ows:HTTP>
                </ows:HTTP>
            </ows:DCP>
        </ows:Operation>
    </ows:OperationsMetadata>
</Capabilities>
```
<ows:Operation name="GetFeasibility">
 <ows:DCP>
 <ows:HTTP>
 </ows:HTTP>
 </ows:DCP>
</ows:Operation>

<ows:Operation name="Submit">
 <ows:DCP>
 <ows:HTTP>
 </ows:HTTP>
 </ows:DCP>
</ows:Operation>

<ows:Operation name="DescribeResultAccess">
 <ows:DCP>
 <ows:HTTP>
 </ows:HTTP>
 </ows:DCP>
</ows:Operation>

<ows:Operation name="GetStatus">
 <ows:DCP>
 <ows:HTTP>
 </ows:HTTP>
 </ows:DCP>
</ows:Operation>

<ows:Operation name="Update">
 <ows:DCP>
 <ows:HTTP>
 </ows:HTTP>
 </ows:DCP>
</ows:Operation>

<ows:Operation name="Cancel">
 <ows:DCP>
 <ows:HTTP>
 </ows:HTTP>
 </ows:DCP>
</ows:Operation>

<Contents>
 <SensorOfferingList>
 <SensorOffering>
 <SupportedOperations DescribeSubmit="true" GetFeasibility="true" Submit="true" Update="false" GetStatus="true" Cancel="false" DescribeResultAccess="true" />
 <RequiresNotificationTarget>false</RequiresNotificationTarget>
 <SubsequentGetFeasibilitySupported>true</SubsequentGetFeasibilitySupported>
 </SensorOffering>
 </SensorOfferingList>
</Contents>
<wsns:SupportedCommunicationProtocols>
 <wsns:XMPP>false</wsns:XMPP>
 <wsns:SMS>false</wsns:SMS>
 <wsns:Phone>false</wsns:Phone>
 <wsns:Fax>false</wsns:Fax>
 <wsns:Email>false</wsns:Email>
 <wsns:WSAddressing>true</wsns:WSAddressing>
 <wsns:WNS>false</wsns:WNS>
</wsns:SupportedCommunicationProtocols>
<wsns:SupportedCommunicationFormats>
 <wsns:NotificationFormat>basic</wsns:NotificationFormat>
</wsns:SupportedCommunicationFormats>
</Contents>
</Capabilities>
11 DescribeSensor operation (mandatory, synchronous)

11.1 Introduction

This operation returns SensorML documents containing the description of the sensors provided by the SPS.

Depending on the user’s choice, this operation may return either a full or a brief description of the sensors.

The full description contains all the details of the sensors (geometry, agility, swath, lists and definitions of observables supported by the sensor, etc.). It should be used only in specific cases (simulation of the sensors for instance).

The brief description contains a limited number of information describing the nature of the sensor (for example: optical satellite, 10 meter resolution, 4 bands). This allows the user to ensure that a specific sensor fits its needs. Due to the limited number of information, the SensorML document returned by the server is light and can be exchanged on the network and parsed by the client quickly.

An example of full and brief description can be found in annex B.

11.2 EO profile specific

The operation DescribeSensor is specific to the EO profile.

11.3 DescribeSensor operation request

Table 11-1- Parameters of DescribeSensor Request

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Data type and values</th>
<th>Multiplicity and use</th>
</tr>
</thead>
<tbody>
<tr>
<td>SensorId</td>
<td>The sensorId parameter specifies the sensor for which the description is to be returned.</td>
<td>token</td>
<td>One (mandatory)</td>
</tr>
</tbody>
</table>
| descriptionType | Type of description that the server should return. | String | String Possible values:
| | | | - brief |
| | | | - full |
| service | Service type identifier | Character String | One (mandatory) |
| version | Specification version for operation | Character String | One (mandatory) |

The name capitalization rules being used here are specified in Subclause 11.6.2 of [OGC 05-008].
11.3.1 DescribeSensor request XML encoding

This example illustrates requesting information about a specific sensor instance.

```xml
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
  <soapenv:Body>
    <DescribeSensor service="SPS" version="0.9.4"
        xmlns="http://www.opengis.net/sps/eop">
      <descriptionType>brief</descriptionType>
    </DescribeSensor>
  </soapenv:Body>
</soapenv:Envelope>
```

11.4 DescribeSensor operation response

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Data type and values</th>
<th>Multiplicity and use</th>
</tr>
</thead>
<tbody>
<tr>
<td>sensorID</td>
<td>Identifies the sensor that shall be tasked</td>
<td>token</td>
<td>one, mandatory</td>
</tr>
<tr>
<td>description</td>
<td>Provides description SensorML</td>
<td>complex</td>
<td>one to many, mandatory</td>
</tr>
</tbody>
</table>

An example DescribeSensor response can be found in annex B.

11.5 Exceptions

When a SPS server encounters an error while performing a DescribeSensor operation, it shall return an exception report message as specified in clause 8 of [OGC 05-008].

11.6 DescribeSensor response example

A example of DescribeSensor operation response for SPS is provided on Annex B.
12 EstimateSensorWorkload operation (optional, synchronous)

The EstimateSensorWorkload provides information about the estimated workload of the requested sensor. This information is under the responsibility of each mission and must be accessible on demand by the SPS server. The SPS server has to maintain up to date information of such workload by harvesting the information to the mission on regular basis (weekly, or monthly). The minimal information provided by the mission is as follows:

- Temporal domain: begin date, end date,
- Temporal resolution: number of days (i.e. how many days between two consecutive values in a mesh),
- Spatial domain: lat min, lat max, long min, long max (somewhat similar to "Area of service"),
- Spatial resolution: size of the meshes, expressed in degrees, minutes or in km

Further on, the following information has to be provided for each mesh:

- mesh location: lat-long coordinates of the mesh centre,
- mesh date or range of dates
- workload value: percentage of the resource already booked on this mesh at this date

12.1 EO profile specific

The operation EstimateSensorWorkload is specific to the EO profile.

12.2 EstimateSensorWorkload operation request

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Data type and values</th>
<th>Multiplicity and use</th>
</tr>
</thead>
<tbody>
<tr>
<td>outputFormat</td>
<td>The outputFormat attribute specifies the desired output format of the EstimateSensorWorkload operation. For the EO Profile the format will be SensorML</td>
<td>Character String type</td>
<td>Mandatory</td>
</tr>
<tr>
<td>SensorId</td>
<td>The sensorId parameter specifies the sensor for which the description is to be returned.</td>
<td>token</td>
<td>One (mandatory)</td>
</tr>
<tr>
<td>service</td>
<td>Service type identifier</td>
<td>Character String</td>
<td>One (mandatory)</td>
</tr>
<tr>
<td>version</td>
<td>Specification version for operation</td>
<td>Character String type, not empty Value is specified by each Implementation Specification and Schemas version</td>
<td>One (mandatory)</td>
</tr>
</tbody>
</table>

a The name capitalization rules being used here are specified in Subclause 11.6.2 of [OGC 05-008].
12.2.1 EstimateSensorWorkload request XML encoding

This example illustrates requesting information about a specific sensor instance.

```
<EstimateSensorWorkload version="0.9.4" service="SPS"
outputFormat="text/xml;subtype=sensorML/1.0.0"
xmlns="http://www.opengis.net/sps/eop">
</EstimateSensorWorkload>
```

12.3 EstimateSensorWorkload operation response

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Data type and values</th>
<th>Multiplicity and use</th>
</tr>
</thead>
<tbody>
<tr>
<td>sensorID</td>
<td>Identifies the sensor that shall be tasked</td>
<td>token</td>
<td>one, mandatory</td>
</tr>
<tr>
<td>description</td>
<td>Provides EstimateSensorWorkload description</td>
<td>complex</td>
<td>one to many, mandatory</td>
</tr>
</tbody>
</table>

12.4 Exceptions

When a SPS server encounters an error while performing an EstimateSensorWorkload operation, it shall return an exception report message as specified in clause 8 of [OGC 05-008].

12.5 EstimateSensorWorkload response example

A EstimateSensorWorkload operation response for SPS can look like this encoded in XML:

```
<EstimateSensorWorkloadResponse xmlns="http://www.opengis.net/sps/eop"
xmlns:xlink="http://www.w3.org/1999/xlink">
</EstimateSensorWorkloadResponse>
```
13 DescribeGetFeasibility operation (optional, synchronous)

13.1 Introduction

The DescribeGetFeasibility operation allows SPS clients to request the information necessary to prepare a programming request (targeted at the sensors that are supported by the SPS and that are selected by the client). The server will return information about all parameters that have to be set by the client in order to perform a GetFeasibility operation and eventually the description of parameters returned in the GetFeasibility response. The only additional parameter “SensorID” defines the specific sensor(s) that shall be described by the server. This allows servers to façade multiple sensors that require parameterization and return all information to the client using one call only.

Because GetFeasibility operation is optional, DescribeGetFeasibility is also optional.

13.2 EO profile specific

- This operation is inherited of the OGC 07-014 operation DescribeTasking.
- The ParameterDescriptor has been modified (see § 8.1).
- DescribeGetFeasibility response: InputParameters and OutputParameters share the same (EO profile specific) type ParametersType
- DescribeGetFeasibility response: InputParameters is optional and should not be used if the parameters are the same as the Submit input parameters.

13.3 DescribeGetFeasibility operation schemas

![Figure 13-1: - DescribeGetFeasibility request schema](image)

Figure 13-1: - DescribeGetFeasibility request schema
13.4 DescribeGetFeasibility operation request

Table 13-1: Parameters in DescribeGetFeasibility operation request

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Data type and values</th>
<th>Multiplicity and use</th>
</tr>
</thead>
<tbody>
<tr>
<td>service</td>
<td>Service type identifier</td>
<td>Character String type, not empty</td>
<td>One (mandatory)</td>
</tr>
<tr>
<td></td>
<td>fixed: Value is OWS type</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>abbreviation: SPS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>version</td>
<td>Specification version for operation</td>
<td>Character String type, not empty</td>
<td>One (mandatory)</td>
</tr>
<tr>
<td></td>
<td>Value is specified by each</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Implementation Specification and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schemas version</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sensorID</td>
<td>Defines sensor to be described</td>
<td>token</td>
<td>One (mandatory)</td>
</tr>
</tbody>
</table>

EXAMPLE

```xml
<DescribeGetFeasibility service="SPS" version="0.9.4" xmlns="http://www.opengis.net/sps/eop">
</DescribeGetFeasibility>
```
13.5 DescribeGetFeasibility operation response

If the client provides a valid sensorID (cf. capabilities), the SPS server will respond with a DescribeGetFeasibilityResponse.

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Data type and values</th>
<th>Multiplicity and use</th>
</tr>
</thead>
<tbody>
<tr>
<td>InputParameters</td>
<td>Provides the parameters of a GetFeasibility request</td>
<td>Complex type
Contains a description and a list of ParameterDescriptor</td>
<td>one, optional</td>
</tr>
<tr>
<td>OutputParameters</td>
<td>Describe the parameters returned in the response. EO profile: list of pseudo scenes (scenes which may be acquired).</td>
<td>Complex type
Contains a description and a list of ParameterDescriptor</td>
<td>one, optional</td>
</tr>
</tbody>
</table>

An example of DescribeGetFeasibility response can be found in annex B of this document.

13.6 DescribeGetFeasibility exceptions

When a SPS server encounters an error while performing a DescribeGetFeasibility operation, it shall return an exception report message as specified in Subclause 7.4 of [OGC 05-008].
14 DescribeSubmit operation (mandatory, synchronous)

14.1 Introduction

The DescribeSubmit operation request allows SPS clients to request the information necessary to prepare a programming request targeted at the sensors that are supported by the SPS and that are selected by the client. The server will return information about all parameters that have to be set by the client in order to perform a Submit operation.

Because Submit operation is mandatory, DescribeSubmit is also mandatory.

14.2 EO profile specific

- This operation is inherited of the OGC 07-014 operation DescribeTasking.
- DescribeSubmit response: a new element **InputParameters** is added at the root for homogeneity with the DescribeGetFeasibility response. It contains a list of **ParameterDescriptor** elements.
- DescribeSubmit response: a new element **OutputParameters** is added at the root. It allows the client to get the description of the output parameters returned by a Submit operation (element **Output** in the response).

14.3 DescribeSubmit operation schemas

Figure 14-1 - DescribeSubmit request schema
14.4 DescribeSubmit operation request

Table 14-1: Parameters in DescribeSubmit operation request

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Data type and values</th>
<th>Multiplicity and use</th>
</tr>
</thead>
<tbody>
<tr>
<td>service</td>
<td>Service type identifier</td>
<td>Character String type, not empty fixed: Value is OWS type abbreviation: SPS</td>
<td>One (mandatory)</td>
</tr>
<tr>
<td>version</td>
<td>Specification version for operation</td>
<td>Character String type, not empty Value is specified by each Implementation Specification and Schemas version</td>
<td>One (mandatory)</td>
</tr>
<tr>
<td>sensorID</td>
<td>Defines sensor to be described</td>
<td>token</td>
<td>One (mandatory)</td>
</tr>
</tbody>
</table>

a The name capitalization rules being used here are specified in Subclause 11.6.2 of [OGC 05-008].
14.5 DescribeSubmit operation response

Table 14-2: Parts of DescribeSubmit operation response

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Data type and values</th>
<th>Multiplicity and use</th>
</tr>
</thead>
<tbody>
<tr>
<td>InputParameters</td>
<td>Provides the parameters of a Submit request</td>
<td>Complex type Contains a description and a list of ParameterDescriptor</td>
<td>one, mandatory</td>
</tr>
<tr>
<td>OutputParameters</td>
<td>Describe the parameters returned in the Output element of the Submit and the GetStatus responses. EO profile: list of acquired scenes.</td>
<td>Complex type Contains a description and a list of ParameterDescriptor</td>
<td>one, optional</td>
</tr>
</tbody>
</table>

An example of DescribeSubmit response can be found in annex B of this document.

14.6 DescribeSubmit exceptions

When a SPS server encounters an error while performing a DescribeSubmit operation, it shall return an exception report message as specified in Subclause 7.4 of [OGC 05-008].
15 GetFeasibility and Submit operations

15.1 EO profile specific use cases

Both GetFeasibility and Submit operations are described in more detail in subsequent clauses. The following figures show the EO profile specific use cases:

Figure 15-1: - SPS for Earth Observation Sensor: getFeasibility/Submit operations: scene use case

Figure 15-2: - SPS for Earth Observation Sensor: getFeasibility/Submit operations: coverage use case
Figure 15-3: - SPS for multi sensors: getFeasibility operation detailed coverage use case with invocation of the GS

Figure 15-4: - SPS for multi sensors: getFeasibility operation detailed coverage use case with invocation of the GS
Figure 15-5: - SPS for multi sensors getFeasibility operation: coverage use case
15.2 GetFeasibility operation (optional, asynchronous)

15.2.1 Introduction

The GetFeasibility operation allows SPS clients to obtain information about the feasibility of a programming request.

GetFeasibility uses an asynchronous communication model, as illustrated in the figure below. When the SPS server receives the request, an acknowledgment is sent back by the SPS and the connection is closed. When the SPS has finished its feasibility study later on, it will open a new connection (i.e. asynchronously), to send the response back to the client, which itself acknowledges the reception of the response message.

![Figure 15-6 - GetFeasibility asynchronous communication model](image)

The overall communication process includes four messages (described further in the document):

1. the request: GetFeasibility (§ 15.2.3)
2. the acknowledgment of the request: GetFeasibilityAck (§ 15.2.4)
3. the response (callback): GetFeasibilityResponse (§ 15.2.5)
4. the acknowledgment of the response: GetFeasibilityResponseAck (§ 15.2.6)
15.2.2 EO profile specific

- Acknowledgments

- The GetFeasibility request contains a new element named **feasibilityLevel**

- **NotificationTarget** parameter is optional (see § 9.3.2).

- The GetFeasibility response contains the list of scenes which may be acquired to cover the **regionOfInterest** specified by the client in the Submit operation:

15.2.3 GetFeasibility request

Schema of the GetFeasibility request:

![Diagram of GetFeasibility request](image-url)

Figure 15-7: GetFeasibility request
The following table describes the elements of the GetFeasibility request schema:

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Data type and values</th>
<th>Multiplicity and use</th>
</tr>
</thead>
<tbody>
<tr>
<td>service</td>
<td>Service type identifier</td>
<td>Character String type, not empty Value is “SPS”</td>
<td>One (mandatory)</td>
</tr>
<tr>
<td>version</td>
<td>Specification version for operation</td>
<td>Character String type, not empty Value is same as version of this document</td>
<td>One (mandatory)</td>
</tr>
<tr>
<td>notificationTarget</td>
<td>Defines the WNS that has to be used to notify the client about the request results</td>
<td>complex type</td>
<td>one (optional)</td>
</tr>
<tr>
<td>sensorID</td>
<td>Identifies the sensor that shall be tasked</td>
<td>token</td>
<td>one (optional)</td>
</tr>
<tr>
<td>ID</td>
<td>Identifier for the feasibility study</td>
<td>token</td>
<td>one (optional)</td>
</tr>
<tr>
<td>parameters</td>
<td>Input parameter values. Encoding should match description in InputParameters DescribeGetFeasibility response (or DescribeSubmit response if DescribeGetFeasibility is not implemented)</td>
<td>complex See § 8</td>
<td>one (mandatory)</td>
</tr>
<tr>
<td>feasibilityLevel</td>
<td>Defines the feasibility level</td>
<td>Allowed values:</td>
<td>one (mandatory)</td>
</tr>
<tr>
<td>timeFrame</td>
<td>From ([NR13]): Maximum point in time the request keeps valid.</td>
<td></td>
<td>one (optional)</td>
</tr>
</tbody>
</table>

*a The name capitalization rules being used here are specified in Subclause 11.6.2 of [OGC 05-008].
15.2.4 GetFeasibility request acknowledgment

Schema of the GetFeasibility request acknowledgment:

![Diagram of GetFeasibility request acknowledgment schema]

- sps:RequestAckStatusType
 - sps:status
 - Indicates if the request is being processed, rejected or failed to process due to insufficient parameterization.
 - sps:Description
 - Contains a simple description.
 - sps:EstimatedToC
 - Estimated Time of Completion gives a hint when the task might be completed.
 - sps:LatestResponseTime
 - Denotes the point in time when the notification that contains the definitive response to a delayed operation request will be sent. If no notification has been received until that time the operation shall be deemed to have been rejected or failed.

Figure 15-8 - GetFeasibility request acknowledgment schema

The RequestAckStatus element is described in § Error! Reference source not found. Error! Reference source not found..
15.2.5 GetFeasibility response

Schema of the GetFeasibility response:

Figure 15-9: - GetFeasibility response
The following table describes the elements of the GetFeasibility response schema:

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Data type and values</th>
<th>Multiplicity and use</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Identifier for the feasibility study</td>
<td>Token</td>
<td>one (mandatory)</td>
</tr>
<tr>
<td>Feasibility Result</td>
<td>Identifier for the feasibility status</td>
<td>String, enumerates: “feasible” “not feasible” “response delayed, notification will be sent” “request incomplete” “not feasible, alternatives available”</td>
<td>one (mandatory)</td>
</tr>
<tr>
<td>feasibility</td>
<td>Identifier for the feasibility status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Text description of the response</td>
<td>StringOrRefType</td>
<td>one (optional)</td>
</tr>
<tr>
<td>Latest Response Time</td>
<td>GetFeasibility response will be sent until LatestResponseTime at latest. In case that no response is received, the operation shall be evaluated as non-feasible.</td>
<td>gml:TimeInstantType</td>
<td>one (mandatory)</td>
</tr>
<tr>
<td>Output / parameters</td>
<td>Encoding should match description in OutputParameters</td>
<td>List of scenes which may be acquired to cover the regionOfInterest specified by the client</td>
<td>0 to many</td>
</tr>
<tr>
<td>alternative</td>
<td>Possible alternative to a given set of parameters will lead to status “not feasible, alternative available”. Encoding should match description in InputParameters</td>
<td>One or more value(s) that the user may use as input parameters of a GetFeasibility or a Submit operation.</td>
<td>one to many (optional)</td>
</tr>
</tbody>
</table>

Table 15-2: Parts of GetFeasibility operation response
15.2.6 GetFeasibility response acknowledgment

Schema of the GetFeasibility response acknowledgment:

![Diagram of GetFeasibilityResponse Ack](#)

Figure 15-10 - GetFeasibilityResponse acknowledgement

The element ResponseAckStatus is described in § 9.3.3.2 Response acknowledgment status.

15.3 Examples

Examples of request and response can be found in Annex B of this document.

15.3.1 GetFeasibility exceptions

When a SPS server encounters an error while performing a GetFeasibility operation, it shall return an exception report message as specified in Subclause 7.4 of [OGC 05-008].
15.4 Submit operation (mandatory, asynchronous)

15.4.1 Introduction

The Submit operation allows SPS clients to submit a programming request. Submit uses an asynchronous communication model, as illustrated in the figure below. When the SPS server receives the request, an acknowledgment is sent back by the SPS and the connection is closed. When the SPS has finished the task later on, it will open a new connection (i.e. asynchronously), to send the response back to the client, which itself acknowledges the receive of the response message.

The entire process consists out of 4 messages (described further in the document):

5. the request: Submit (§ 15.4.3)
6. the acknowledgment of the request: SubmitRequestAck (§ 15.4.4)
7. the response (callback): SubmitResponse (§ 15.4.5)
8. the acknowledgment of the response: SubmitResponseAck (§ 15.4.6)

15.4.2 EO profile specific

- Acknowledgments.
- NotificationTarget parameter is optional (see § 9.3.2).
- New element DeliveryInformation as part of the request
- The Submit request contains a new element named statusNotification. Possible values are once, final, all, defined as follow:
 - once (or if not specified), the client will receive an immediate and unique SubmitResponse.
Final, the client will receive the SubmitResponse message when the operation is finished (data is acquired).

All, the client will receive a new response each time some progress has been done on the submitted task.

- Content of the Submit response of the SPS specification has been dispatched in the Submit acknowledgment and Submit response.

- The response is encapsulated into a new element progressReport shared with the GetStatus response (described in paragraph 9.3.4).

- The response contains an Output element allowing the service to tell the client which scene has been acquired.
15.4.3 Submit request

Schema of the Submit request:

![Submit request schema diagram](image)

Figure 15-11: - Submit request schema
The following table describes the elements of the Submit schema:

<table>
<thead>
<tr>
<th>Tag Name</th>
<th>Tag Description</th>
<th>Multiplicity and use</th>
</tr>
</thead>
<tbody>
<tr>
<td>notificationTarget</td>
<td>From ([NR13]): Defines the WNS that has to be used to notify the client about the request results</td>
<td>One (alternative to notification)</td>
</tr>
<tr>
<td>sensorParam</td>
<td>container element contains sensorID and parameters elements Type: complex</td>
<td>Alternative to feasibilityID</td>
</tr>
<tr>
<td>sensorParam / parameters</td>
<td>Input parameter values. Encoding should match description in InputParameters DescribeSubmit response Complex See § 8</td>
<td>One, mandatory only instead of ID element</td>
</tr>
<tr>
<td>ID</td>
<td>Identifier of the feasibility study ID that was provided by SPS on behalf of a GetFeasibility request String feasibilityID</td>
<td>One (mandatory) only instead of parameters element</td>
</tr>
<tr>
<td>timeFrame</td>
<td>From ([NR13]):</td>
<td>One, optional</td>
</tr>
<tr>
<td>statusNotification</td>
<td>Specifies how many notifications are sent back to the client (see § EO profile specific). Type: enumerated string Possible values are: once (default), final, all</td>
<td>One, optional</td>
</tr>
<tr>
<td>DeliveryInformation</td>
<td>Information about how the products of the programming request have to be delivered. See § 8.6</td>
<td>One, optional</td>
</tr>
</tbody>
</table>

Table 15-3: Submit elements descriptions
15.4.4 Submit request acknowledgement

Schema of the acknowledgement of the Submit request:

![SubmitRequestAck schema]

Figure 15-12 - SubmitRequestAck schema
The following table describes the elements of the SubmitRequestAck schema:

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Data type and values</th>
<th>Multiplicity and use</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Identifier for this task, needed for subsequent update requests (taskID).</td>
<td>token</td>
<td>one (mandatory)</td>
</tr>
<tr>
<td>SubmitResult</td>
<td>See § Error! Reference source not found. Error! Reference source not found.</td>
<td>RequestAckStatus</td>
<td></td>
</tr>
<tr>
<td>Alternative</td>
<td>Provides alternatives if the sensors are not taskable as requested</td>
<td>complex: InputParameter</td>
<td>one to many (optional)</td>
</tr>
</tbody>
</table>

15.4.5 Submit response

Schema of the Submit response:

The element ProgressReport is described in § 9.3.4.

Note when sending a Submit request: if the user sets the value of StatusNotification to All, a submit response is sent by the SPS each time a scene is acquired. This is particularly useful in case of an acquisition per week during one year for example. In this case the Output element of ProgressReport contains the description of the new acquired scene only.
15.4.6 Submit response acknowledgment

Schema of the acknowledgment of the Submit response:

![SubmitResponseAck schema](image)

Figure 15-14 - SubmitResponseAck schema

The element ResponseAckStatus is described in § 9.3.3.2 Response acknowledgment status.
16 GetStatus operation (optional, synchronous)

16.1 Introduction

The GetStatus operation allows a client to get information about the current status of a specific task.

16.2 EO profile specific

- The GetStatus request contains a new element named **DateFrom**. This optional element may be useful in case a repetitive acquisition (example: once a week) is made over a long period. By providing the current date as payload of the **DateFrom** element, the response will contain the status of the last acquired image only. If no DateFrom would be defined, the whole list of images acquired since the beginning of the acquisition period would be returned.

- The response is encapsulated into a new element **ProgressReport** shared with the Submit response (describe in paragraph 9.3.4).

- The GetStatusResponse contains an Output element allowing the service to tell the client which scenes have been acquired (cf Figure 16-2: - GetStatus response schema).

16.3 GetStatus operation schemas

![Figure 16-1: - GetStatus request schema](image-url)
16.4 GetStatus operation request

16.4.1 Parameters

Table 16-1: Parameters in GetStatus operation

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Data type and values</th>
<th>Multiplicity and use</th>
</tr>
</thead>
<tbody>
<tr>
<td>service</td>
<td>Service type identifier</td>
<td>Character String type, not empty</td>
<td>One (mandatory)</td>
</tr>
<tr>
<td></td>
<td>Value is OWS type abbreviation</td>
<td>Value is OWS type abbreviation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>“SPS”</td>
<td>“SPS”</td>
<td></td>
</tr>
<tr>
<td>version</td>
<td>Specification version for operation</td>
<td>Character String type, not empty</td>
<td>One (mandatory)</td>
</tr>
<tr>
<td></td>
<td>Value is OWS type abbreviation</td>
<td>Equals the number of this document.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>“SPS”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>notification</td>
<td>WNS data that should be used by</td>
<td>HMA context: not used (see § 9.3.2)</td>
<td>one (optional)</td>
</tr>
<tr>
<td>Target</td>
<td>the SPS server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Identifier of the task (taskID)</td>
<td>Token</td>
<td>one (mandatory)</td>
</tr>
<tr>
<td>DateFrom</td>
<td>see above § 16.2</td>
<td>Date</td>
<td>one (optional)</td>
</tr>
</tbody>
</table>

The name capitalization rules being used here are specified in Subclause 11.6.2 of [OGC 05-008].
16.4.2 GetStatus request XML encoding

Example:

```xml
<GetStatus xmlns="http://www.opengis.net/sps/eop" service="SPS"
    version="0.9.4">
    <ID>433</ID>
</GetStatus>
```

16.5 GetStatus operation response

The element ProgressReport is described in § 9.3.4.

16.6 GetStatus exceptions

When a SPS server encounters an error while performing a GetStatus operation, it shall return an exception report message as specified in Subclause 7.4 of [OGC 05-008].
17 Update operation (optional, synchronous)

17.1 Introduction

The Update operation allows a client to update a previously submitted task.

17.2 Update operation schemas

Figure 17-1 - Update request schema

Figure 17-2 - Update response schema
17.3 Update operation request

17.3.1 Parameters

Table 17-1: Parameters in UpdateRequest operation

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Data type and values</th>
<th>Multiplicity and use</th>
</tr>
</thead>
<tbody>
<tr>
<td>service</td>
<td>Service type identifier</td>
<td>Character String type, not empty</td>
<td>One (mandatory)</td>
</tr>
<tr>
<td></td>
<td>Value is OWS type abbreviation “SPS”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>version</td>
<td>Specification version for operation</td>
<td>Character String type, not empty</td>
<td>One (mandatory)</td>
</tr>
<tr>
<td></td>
<td>Equals the number of this document</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Identifier for the task that shall be updated</td>
<td>token</td>
<td>one (mandatory)</td>
</tr>
<tr>
<td></td>
<td>(taskID)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target</td>
<td>Notification Target</td>
<td>complex</td>
<td>one (optional)</td>
</tr>
<tr>
<td></td>
<td>Defines the WNS that has to be used to notify</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the client about the request results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>parameters</td>
<td>update parameterization for the task</td>
<td>complex</td>
<td>one (optional)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a The name capitalization rules being used here are specified in Subclause 11.6.2 of [OGC 05-008].

17.3.2 Update request XML encoding

All SPS servers shall implement HTTP POST transfer of the UpdateRequest operation, using XML encoding only. The following schema fragment specifies the contents and structure of a UpdateRequest operation encoded in XML.

EXAMPLE

```xml
<Update xmlns="http://www.opengis.net/sps/eop"
         xmlns:swe="http://www.opengis.net/swe" service="SPS" version="0.9.4">
  <ID>433</ID>
  <parameters>
    <Parameter parameterID="pan">
      <value>
        <swe:Category>30</swe:Category>
      </value>
    </Parameter>
    <Parameter parameterID="tilt">
      <value>
        <swe:Category>5</swe:Category>
      </value>
    </Parameter>
  </parameters>
</Update>
```
17.4 Update operation response

17.4.1 Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Data type and values</th>
<th>Multiplicity and use</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Identifies the updated task, provided by SPS server (taskID)</td>
<td>token</td>
<td>one (mandatory)</td>
</tr>
<tr>
<td>status</td>
<td>Status of the Update request.</td>
<td>Enumerated String.</td>
<td>one (mandatory)</td>
</tr>
<tr>
<td>Description</td>
<td>additional continuous text</td>
<td>String</td>
<td>one (optional)</td>
</tr>
<tr>
<td>estimatedToC</td>
<td>Estimated Time of Completion for this task</td>
<td>DateTime</td>
<td>one (optional)</td>
</tr>
</tbody>
</table>

17.4.2 Update response example

A Update operation response for SPS can look like this encoded in XML:

```xml
<UpdateResponse xmlns="http://www.opengis.net/sps/eop">
  <ID>433</ID>
  <status>confirmed</status>
</UpdateResponse>
```

17.5 Update exceptions

When a SPS server encounters an error while performing an Update operation, it shall return an exception report message as specified in Subclause 7.4 of [OGC 05-008]. The allowed standard exception codes shall include those listed in the following table. For each listed exceptionCode, the contents of the “locator” parameter value shall be as specified in the right column.

<table>
<thead>
<tr>
<th>exceptionCode value</th>
<th>Meaning of code</th>
<th>“locator” value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OperationNotSupported</td>
<td>Request is for an operation that is not supported by this server</td>
<td>Name of operation not supported</td>
</tr>
<tr>
<td>MissingParameterValue</td>
<td>Operation request does not include a parameter value, and this server did not declare a default value for that parameter</td>
<td>Name of missing parameter</td>
</tr>
<tr>
<td>InvalidParameterValue</td>
<td>Operation request contains an invalid parameter value</td>
<td>Name of parameter with invalid value</td>
</tr>
<tr>
<td>NoApplicableCode</td>
<td>No other exceptionCode specified by this service and server applies to this exception</td>
<td>None, omit “locator” parameter</td>
</tr>
<tr>
<td>TaskIDExpired</td>
<td>ID that has been issued by the client is no longer supported by the service</td>
<td>None, omit 'locator' parameter</td>
</tr>
<tr>
<td>InvalidRequest</td>
<td>Request is not conform to the schema for this operation</td>
<td>Exception message generated by validator</td>
</tr>
</tbody>
</table>
18 Cancel operation (optional, synchronous)

18.1 Introduction

The Cancel operation cancels a previously requested task.

18.2 Cancel operation schemas

![Figure 18-1 - Cancel request schema](image1)

![Figure 18-2 - Cancel response schema](image2)

18.3 Cancel operation request

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Data type and values</th>
<th>Multiplicity and use</th>
</tr>
</thead>
<tbody>
<tr>
<td>service</td>
<td>Service type identifier</td>
<td>Character String type, not empty Value is OWS type abbreviation “SPS”</td>
<td>One (mandatory)</td>
</tr>
<tr>
<td>request</td>
<td>Operation name</td>
<td>Character String type, not empty Value is operation name “Cancel”</td>
<td>One (mandatory)</td>
</tr>
<tr>
<td>version</td>
<td>Specification version for operation</td>
<td>Character String type, not empty Equals the number of this document</td>
<td>One (mandatory)</td>
</tr>
<tr>
<td>ID</td>
<td>Identifies the task to be cancelled</td>
<td>token</td>
<td>one (mandatory)</td>
</tr>
</tbody>
</table>

a The name capitalization rules being used here are specified in Subclause 11.6.2 of [OGC 05-008].

Figure 18-1 - Cancel request schema

Figure 18-2 - Cancel response schema
An example Cancel operation request XML encoded for HTTP POST is:

```xml
<Cancel xmlns="http://www.opengis.net/sps/eop" service="SPS" version="0.9.4">
  <ID>433</ID>
</Cancel>
```

18.4 Cancel operation response

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Data type and values</th>
<th>Multiplicity and use</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Identifies the task</td>
<td>token</td>
<td>one (mandatory)</td>
</tr>
<tr>
<td>status</td>
<td></td>
<td>String</td>
<td>one (mandatory)</td>
</tr>
<tr>
<td></td>
<td>Possible values are:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>confirmed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rejected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>description</td>
<td>further information in continuous text</td>
<td>String</td>
<td>one (optional)</td>
</tr>
</tbody>
</table>

A Cancel operation response for SPS can look like this encoded in XML:

```xml
<CancelResponse xmlns="http://www.opengis.net/sps/eop">
  <ID>433</ID>
  <status>confirmed</status>
</CancelResponse>
```

18.5 Cancel exceptions

When a SPS server encounters an error while performing a Cancel operation, it shall return an exception report message as specified in Subclause 7.4 of [OGC 05-008].

19 DescribeResultAccess operation (mandatory, synchronous)

19.1 Introduction

The DescribeResultAccess operation allows SPS clients to retrieve information where the observed data can be accessed from. For the EO Application profile, the response should either point to an OGC Web Service (desirable option) or to a datastore accessible using FTP. The link to the acquired data is needed to close the acquisition loop and provide an access to the data or a preview of this data to validate the image acquired.

19.2 EO profile specific

- The DescribeResultAccess request contains a new element named `DateFrom` (see schema below). This optional element may be useful in case a repetitive acquisition (example: once a week) is made over a long period. By providing the current date as payload of the `DateFrom` element, the response will contain the status of the last acquired image only. If no `DateFrom` would be defined, the whole list of images acquired since the beginning of the acquisition period would be returned.
The DescribeResultAccess response contains a new element productID in order to get the products resulting from the programming request from a separated service like the Ordering service ([NR12]).

19.3 DescribeResultAccess operation schemas

![Diagram 1: DescribeResultAccess request schema](image1)

![Diagram 2: DescribeResultAccess response schema](image2)
19.4 DescribeResultAccess operation request

Table 19-1: Parameters in DescribeResultAccess operation request

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Data type and values</th>
<th>Multiplicity and use</th>
</tr>
</thead>
<tbody>
<tr>
<td>service</td>
<td>Service type identifier</td>
<td>Character String type, not empty</td>
<td>One (mandatory)</td>
</tr>
<tr>
<td></td>
<td>Value is OWS type abbreviation “SPS”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>request</td>
<td>Operation name</td>
<td>Character String type, not empty</td>
<td>One (mandatory)</td>
</tr>
<tr>
<td></td>
<td>Value is operation name “DescribeResultAccess”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>version</td>
<td>Specification version for operation</td>
<td>Character String type, not empty</td>
<td>One (mandatory)</td>
</tr>
<tr>
<td></td>
<td>Equals the number of this document</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Identifies task (taskID)</td>
<td>Token</td>
<td>one (mandatory; if sensorID is not used)</td>
</tr>
<tr>
<td>sensorID</td>
<td>If specified the service will return the service(s) which will serve the data when acquired(^b).</td>
<td>Token</td>
<td>one (mandatory; if ID is not used)</td>
</tr>
<tr>
<td>DateFrom</td>
<td>see 19.2</td>
<td>Date</td>
<td>optional</td>
</tr>
</tbody>
</table>

a The name capitalization rules being used here are specified in Subclause 11.6.2 of [OGC 05-008].

b Allows the client to know if it can deal with the service serving the data before sending a submit request.

19.5 DescribeResultAccess operation response

Table 19-2: Parts of DescribeResultAccess operation response

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Data type and values</th>
<th>Multiplicity and use</th>
</tr>
</thead>
<tbody>
<tr>
<td>service</td>
<td>Element containing the type and URL of the OGC Web service that provides access to the observed data</td>
<td>complex,.</td>
<td>one to many (mandatory)</td>
</tr>
<tr>
<td>ServiceType</td>
<td>Defines the type of the OGC Web Service</td>
<td>String example: WCS HMA context: CSW</td>
<td>one (mandatory)</td>
</tr>
<tr>
<td>ServiceURL</td>
<td>Defines the URL of the OGC Web service that provides access to the observed data</td>
<td>String HMA context: getRecordById</td>
<td>one (mandatory)</td>
</tr>
<tr>
<td>ServiceRequest</td>
<td>In case of data is available through the service via a POST request, this field contains the POST request.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>productId</td>
<td>Identifier of the product.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A DescribeResultAccess operation response for SPS can look like this encoded in XML:

```xml
<DescribeResultAccessResponse xmlns="http://www.opengis.net/sps/eop">
```

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved
19.6 DescribeResultAccess exceptions

When a SPS server encounters an error while performing a DescribeResultAccess operation, it shall return an exception report message as specified in Subclause 7.4 of [OGC 05-008].
20 Multi provider scenario

Note: the following section provides some help to developers when setting up a programming service instance that complies with this interface specification. Any information provided here is non-normative. It will be extended and described in more detail in future editions.

The Programming Service operations have been defined to support also a multi-provider scenario where the client is allowed to build and submit programming requests involving Earth Observation products managed by different providers (e.g. ESA Multi-Mission Ground Segment, SPOT, Radarsat-2 CSA Ground Segment). In this scenario, we consider different Programming Service instances with different roles:

- **Façade Programming Service Instance**, which is the intermediary element in charge of providing the clients a transparent access to the different providers and to orchestrate the access to them.

- **Delegated Programming Service Instances**, which are the services instances running in the providers’ environment that are in charge of effectively carrying out the programming requests.

In the following sections the interactions occurring between the different service instances for executing the Programming Service operations are described.

20.1.1 sensorID scenario

As describe in the paragraph 8.5, a sensorID may represent a combination of sensors. In the context of multi-provider, the Façade Programming Service may provide new sensorID representing the combination of sensorID provided by different Programming Service Instances. In the example below, the Façade provides a new sensorID *(ab)* representing the combination of the sensorID *a* (from Provider A) and the sensorID *b* (from Provider B):

![Diagram](image)

This allows the Façade to provide to the Client a unique sensorID for all radar or all optical missions, for example.

20.1.2 DescribeGetFeasibility scenario

The following scenario describes the individual steps to provide all necessary programming parameters to a client. The programming parameters are required to task a sensor appropriately.
• The client requests the definition of the programming parameters by giving a sensorID as input parameter. This sensorID provided by the façade may represent a set of sensorID coming from different missions (see § 20.1.1).

• The façade Programming Service instance retrieves the information about the programming services able to manage the required sensors. This step becomes more complex in case of loosely defined sensors (not all attributes of the sensorIdentifier element are specified but e.g. only the satellite or only the instrument is specified). In this case the Façade Programming Service has to choose one mission / sensor between the ones available that match the request.

• The programming parameters are requested from the specific providers and then sent back to the client.

20.1.3 GetFeasibility scenario

This scenario explains the steps performed by the different service instances to verify the feasibility of a programming request.

- The client prepares a programming request by selecting a sensorID and providing values for those parameters that have been described by the DescribeGetFeasibility operation response, e.g. all those necessary to run a feasibility analysis.
- The specific parts of the GetFeasibility request are forwarded to the delegated Programming Services instance(s) corresponding to the SENSORID value.
- The response provided by the delegated programming service(s) is (are) gathered by the Façade Programming Service and sent back to the client. Possibly delayed analysis is sent to the client by the delegated programming service directly. The service uses the notification information specified in the GetFeasibility request.
- The technical and financial proposals are delivered later on to the users.
20.1.4 Submit scenario

This scenario explains the steps performed by the different service instances when a programming request is submitted by the client.

- The Façade Programming Service forwards the Submit request to the DPS corresponding to the SENSORID value.

- Each DPS return back a taskid. The façade instance stores locally the taskid, creates a new one and forwards it to the client. The client may use it as an input parameter when calling other operations (GetStatus, Cancel, etc.).

Figure 20-2: Submit Scenario.
20.1.5 GetStatus scenario

This scenario explains the steps performed by the different service instances when the client asks the status of previously submitted programming requests.

- From the TASKID value the Façade Service instance retrieves the taskid sent by the DPS in the Submit response (see Submit Scenario).
- The GetStatus request is forwarded to the DPS.

Figure 20-3: GetStatus Scenario
Annex A
(normative)

XML schema documents

A.1. spsGetCapabilities.xsd

```xml
<?xml version="1.0" encoding="UTF-8"?>
     xmlns:xs="http://www.w3.org/2001/XMLSchema" targetNamespace="http://www.opengis.net/sps/eop"
     elementFormDefault="qualified" attributeFormDefault="unqualified" version="0.9.4" xml:lang="en">
  <xs:annotation>
    <xs:appinfo>spsGetCapabilities.xsd 2005/05/11</xs:appinfo>
    <xs:documentation>
      <description>This XML Schema encodes the SPS GetCapabilities operation request and response.</description>
    </xs:documentation>
  </xs:annotation>

  <!-- ==============================================================
  imports
  ============================================================== -->
  <xs:import namespace="http://www.opengeospatial.net/ows" schemaLocation="./ows4sps.xsd"/>
  <xs:include schemaLocation="./spsContents.xsd"/>

  <!-- ==============================================================
  elements and types
  ============================================================== -->
  <xs:element name="GetCapabilities">
    <xs:annotation>
      <xs:documentation>Request to a SPS to perform the GetCapabilities operation. This operation allows a client to retrieve service metadata (capabilities XML) providing metadata for the specific SPS server. In this XML encoding, no "request" parameter is included, since the element name specifies the specific operation.</xs:documentation>
    </xs:annotation>
    <xs:complexType>
      <xs:complexContent>
        <xs:extension base="ows:GetCapabilitiesType">
          <xs:attribute name="service" type="ows:ServiceType" use="required" fixed="SPS"/>
        </xs:extension>
      </xs:complexContent>
    </xs:complexType>
  </xs:element>

  <xs:element name="Capabilities">
    <xs:annotation>
      <xs:documentation>XML encoded SPS GetCapabilities operation response. This document provides clients with service metadata about a specific service instance. If the server does not implement the updateSequence parameter, the server shall always return the complete Capabilities document, without the updateSequence parameter. When the server implements the updateSequence parameter and the GetCapabilities operation request included the updateSequence parameter with the current value, the server shall return this element with only the "version" and "updateSequence" attributes. Otherwise, all optional elements shall be included or not depending on the actual value of the Sections parameter in the GetCapabilities operation request.</xs:documentation>
    </xs:annotation>
    <xs:complexType>
      <xs:complexContent>
        <xs:extension base="ows:CapabilitiesBaseType">
          <xs:sequence>
            <xs:element ref="sps:Contents" minOccurs="0"/>
          </xs:sequence>
        </xs:extension>
      </xs:complexContent>
    </xs:complexType>
  </xs:element>
```

A.2. spsDescribeSensor.xsd

<?xml version="1.0" encoding="UTF-8"?>
targetNamespace="http://www.opengis.net/sps/eop" elementFormDefault="qualified"
attributeFormDefault="unqualified" version="0.9.4">
 <xs:include schemaLocation="./spsCommon.xsd"/>
 <xs:element name="DescribeSensor">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="sps:RequestBaseType">
 <xs:sequence>
 <xs:element ref="sps:sensorID"/>
 <xs:element name="descriptionType">
 <xs:annotation>
 <xs:documentation>Indicates the type of sensor description expected : full or brief</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="brief"/>
 <xs:enumeration value="full"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
</xs:schema>

Future work: DescribeSensor response

A.3. spsDescribeGetFeasibility.xsd

<?xml version="1.0" encoding="UTF-8"?>
targetNamespace="http://www.opengis.net/sps/eop" elementFormDefault="qualified"
attributeFormDefault="unqualified" version="0.9.4">
 <xs:include schemaLocation="./spsCommon.xsd"/>
 <xs:element name="DescribeGetFeasibility">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="sps:RequestBaseType">
 <xs:sequence>
 <xs:element ref="sps:sensorID"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
</xs:schema>
A.4. spsGetFeasibility.xsd

<?xml version="1.0" encoding="UTF-8"?>
xmlns:wns="http://www.opengis.net/wns" targetNamespace="http://www.opengis.net/sps/eop"
 elementFormDefault="qualified" attributeFormDefault="unqualified" version="0.9.4">
 <xs:import namespace="http://www.opengis.net/wns" schemaLocation="./wns4sps.xsd"/>
 <xs:include schemaLocation="./spsCommon.xsd"/>
 <xs:element name="GetFeasibility">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="sps:RequestBaseType">
 <xs:sequence>
 <xs:element ref="wns:NotificationTarget" minOccurs="0"/>
 <xs:element ref="sps:sensorID"/>
 <xs:element ref="sps:ID" minOccurs="0"/>
 <xs:element ref="sps:parameters" minOccurs="0"/>
 <xs:element ref="sps:TimeFrame" minOccurs="0"/>
 <xs:element name="feasibilityLevel">
 <xs:annotation>
 <xs:documentation>Possible values : light, estimate, full</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="light"/>
 <xs:enumeration value="estimate"/>
 <xs:enumeration value="full"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="GetFeasibilityRequestAck">
 <xs:annotation>
 <xs:documentation>Acknowledgement of the GetFeasibility request</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sps:RequestAckStatus" type="sps:RequestAckStatusType"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>
<?xml version="1.0" encoding="UTF-8"?>
<xs:complexType name="GetFeasibilityResponse">
 <xs:documentation>Response to a GetFeasibility request</xs:documentation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sps:ID"/>
 <xs:element name="FeasibilityResult" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="feasibility">
 <xs:annotation>
 <xs:documentation>describes if a request is feasible or not</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="feasible"/>
 <xs:enumeration value="not feasible"/>
 <xs:enumeration value="response delayed. Notification will be sent."/>
 <xs:enumeration value="request incomplete"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element ref="sps:Description" minOccurs="0"/>
 <xs:element ref="sps:LatestResponseTime" minOccurs="0"/>
 <xs:element name="Output" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sps:parameters"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="SuccessRate">
 <xs:annotation>
 <xs:documentation>Indicates the success rate for the given parameter constellation in percent.</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:double">
 <xs:minInclusive value="0"/>
 <xs:maxInclusive value="100"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 <xs:element ref="sps:Alternative" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:complexType>
</xs:element>
</xs:complexType>
</xs:sequence>
A.5. spsDescribeSubmit.xsd

```xml
<?xml version="1.0" encoding="UTF-8"?>
  targetNamespace="http://www.opengis.net/sps/eop" elementFormDefault="qualified"
  attributeFormDefault="unqualified" version="0.9.4">
  <xs:include schemaLocation="./spsCommon.xsd"/>
  <xs:element name="DescribeSubmit">
    <xs:complexType>
      <xs:complexContent>
        <xs:extension base="sps:RequestBaseType">
          <xs:sequence>
            <xs:element ref="sps:sensorID"/>
          </xs:sequence>
        </xs:extension>
      </xs:complexContent>
    </xs:complexType>
  </xs:element>
  <xs:element name="DescribeSubmitResponse">
    <xs:complexType>
      <xs:sequence>
        <xs:element name="InputParameters" type="sps:ParametersDescriptorType"/>
        <xs:element name="OutputParameters" type="sps:ParametersDescriptorType" minOccurs="0"/>
      </xs:sequence>
    </xs:complexType>
  </xs:element>
</xs:schema>
```

A.6. spsSubmit.xsd

```xml
<?xml version="1.0" encoding="UTF-8"?>
  xmlns:wns="http://www.opengis.net/wns" targetNamespace="http://www.opengis.net/sps/eop"
  elementFormDefault="qualified" attributeFormDefault="unqualified" version="0.9.4">
  <xs:import namespace="http://www.opengis.net/wns" schemaLocation="./wns4sps.xsd"/>
  <xs:include schemaLocation="./spsCommon.xsd"/>
  <xs:element name="Submit">
    <xs:complexType>
      <xs:complexContent>
        <xs:extension base="sps:RequestBaseType">
          <xs:sequence>
            <xs:element ref="wns:NotificationTarget" minOccurs="0"/>
            <xs:choice>
              <xs:element name="sensorParam">
                <xs:complexType>
                  <xs:sequence>
                    <xs:element ref="sps:sensorID"/>
                    <xs:element ref="sps:parameters"/>
                  </xs:sequence>
                </xs:complexType>
              </xs:element>
              <xs:element ref="sps:ID"/>
            </xs:choice>
            <xs:element ref="sps:TimeFrame" minOccurs="0"/>
            <xs:element name="statusNotification" minOccurs="0"/>
          </xs:sequence>
        </xs:extension>
      </xs:complexContent>
    </xs:complexType>
  </xs:element>
</xs:schema>
```
Specifies how status notifications are sent back to the client.

```
<xs:element name="SubmitRequestAck">
    <xs:complexType>
        <xs:sequence>
            <xs:element ref="sps:ID" />
            <xs:element name="SubmitResult" type="sps:RequestAckStatusType" />
            <xs:element ref="sps:Alternative" minOccurs="0" maxOccurs="unbounded" />
        </xs:sequence>
    </xs:complexType>
</xs:element>
```

```
<xs:element name="SubmitResponse">
    <xs:complexType>
        <xs:sequence>
            <xs:element name="ProgressReport" type="sps:ProgressReportType" />
        </xs:sequence>
    </xs:complexType>
</xs:element>
```

```
<xs:element name="SubmitResponseAck">
    <xs:complexType>
        <xs:sequence>
            <xs:element name="ResponseAckStatus" type="sps:ResponseAckStatusType" />
        </xs:sequence>
    </xs:complexType>
</xs:element>
```

```
<xs:complexType name="DeliveryInformationType">
    <xs:sequence>
        <xs:element name="ftp-push" minOccurs="0" />
        <xs:element name="ftp-pull" minOccurs="0" />
        <xs:element name="mail" type="sps:DeliveryAddressType" minOccurs="0" />
        <xs:element name="e-mail" type="xs:string" minOccurs="0" />
    </xs:sequence>
</xs:complexType>
```
<xs:complexType name="DeliveryAddressType">
 <xs:sequence>
 <xs:element name="recipient" minOccurs="0">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="40"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="companyRef" minOccurs="0">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="40"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="postalAddress" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="streetAddress">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="40"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="city">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="40"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="state">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="40"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="postalCode">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="12"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="country">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="40"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="postBox">
 <xs:annotation>
 <xs:documentation>only number part, only digits allowed</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
</xs:complexType>
A.7. spsGetStatus.xsd

```xml
<?xml version="1.0" encoding="UTF-8"?>
xmlns:wns="http://www.opengis.net/wns" targetNamespace="http://www.opengis.net/sps/eop"
elementFormDefault="qualified" attributeFormDefault="unqualified" version="0.9.4">
  <xs:import namespace="http://www.opengis.net/wns" schemaLocation="./wns4sps.xsd"/>
  <xs:include schemaLocation="./spsCommon.xsd"/>
  <xs:element name="GetStatus">
    <xs:complexType>
      <xs:complexContent>
        <xs:extension base="sps:RequestBaseType">
          <xs:sequence>
            <xs:element ref="wns:NotificationTarget" minOccurs="0"/>
            <xs:element ref="sps:ID"/>
            <xs:element name="DateFrom" type="xs:dateTime" minOccurs="0"/>
          </xs:sequence>
        </xs:extension>
      </xs:complexContent>
    </xs:complexType>
  </xs:element>
  <xs:element name="GetStatusResponse">
    <xs:complexType>
      <xs:sequence>
        <xs:element name="ProgressReport" type="sps:ProgressReportType"/>
      </xs:sequence>
    </xs:complexType>
  </xs:element>
</xs:schema>
```
A.8. spsCancel.xsd

```xml
<?xml version="1.0" encoding="UTF-8"?>
  targetNamespace="http://www.opengis.net/sps/eop" elementFormDefault="qualified"
  attributeFormDefault="unqualified" version="0.9.4">
  <xs:include schemaLocation="./spsCommon.xsd"/>
  <xs:element name="Cancel">
    <xs:complexType>
      <xs:complexContent>
        <xs:extension base="sps:RequestBaseType">
          <xs:sequence>
            <xs:element ref="sps:ID"/>
          </xs:sequence>
        </xs:extension>
      </xs:complexContent>
    </xs:complexType>
  </xs:element>
  <xs:element name="CancelResponse">
    <xs:complexType>
      <xs:sequence>
        <xs:element ref="sps:ID"/>
        <xs:element name="status">
          <xs:simpleType>
            <xs:restriction base="xs:string">
              <xs:enumeration value="confirmed"/>
              <xs:enumeration value="rejected"/>
            </xs:restriction>
          </xs:simpleType>
        </xs:element>
        <xs:element ref="sps:Description" minOccurs="0"/>
      </xs:sequence>
    </xs:complexType>
  </xs:element>
</xs:schema>
```

A.9. spsUpdate.xsd

```xml
<?xml version="1.0" encoding="UTF-8"?>
  xmlns:wns="http://www.opengis.net/wns"
  targetNamespace="http://www.opengis.net/sps/eop" elementFormDefault="qualified"
  attributeFormDefault="unqualified" version="0.9.4">
  <xs:import namespace="http://www.opengis.net/wns" schemaLocation="./wns4sps.xsd"/>
  <xs:include schemaLocation="./spsCommon.xsd"/>
  <xs:element name="Update">
    <xs:complexType>
      <xs:complexContent>
        <xs:extension base="sps:RequestBaseType">
          <xs:sequence>
            <xs:element ref="sps:ID"/>
            <xs:element ref="wns:NotificationTarget" minOccurs="0"/>
            <xs:element ref="sps:parameters" minOccurs="0"/>
          </xs:sequence>
        </xs:extension>
      </xs:complexContent>
    </xs:complexType>
  </xs:element>
</xs:schema>
```
A.10. spsDescribeResultAccess.xsd

<?xml version="1.0" encoding="UTF-8"?>
targetNamespace="http://www.opengis.net/sps/eop" elementFormDefault="qualified"
attributeFormDefault="unqualified" version="0.9.4">
<xs:include schemaLocation="./spsCommon.xsd"/>
<xs:element name="DescribeResultAccess">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="sps:RequestBaseType">
 <xs:choice>
 <xs:sequence>
 <xs:element ref="sps:ID"/>
 <xs:element name="DateFrom" type="xs:dateTime" minOccurs="0"/>
 </xs:sequence>
 <xs:element ref="sps:sensorID"/>
 </xs:choice>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>
<xs:element name="DescribeResultAccessResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="service" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ServiceType" type="xs:string"/>
 <xs:element name="ServiceURL" type="xs:anyURI"/>
 <xs:element name="ServiceRequest" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>
</xs:schema>

If a POST request has to be used to get the data from the service, the request can be incorporated in this element.
<xs:sequence>
 <xs:element name="productId" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType/>
 </xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

A.11. spsCommon.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:swe="http://www.opengis.net/swe/0.0" xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:sps="http://www.opengis.net/sps/eop" xmlns:wns="http://www.opengis.net/wns"
targetNamespace="http://www.opengis.net/sps/eop" elementFormDefault="qualified"
attributeFormDefault="unqualified" version="0.9.4" xml:lang="en">
<!-- ==
includes and imports
 == -->
<xss:import namespace="http://www.opengis.net/wns" schemaLocation="./wns4sps.xsd"/>
<xss:import namespace="http://www.opengis.net/swe/0.0" schemaLocation="./swe4sps.xsd"/>
<!-- ==
elements and types
 == -->
<xss:complexType name="RequestBaseType">
 <xs:annotation>
 <xs:documentation>XML encoded SPS operation request base, for all operations except Get Capabilities. In this XML encoding, no "request" parameter is included, since the element name specifies the specific operation.</xs:documentation>
 </xs:annotation>
 <xs:attribute name="service" type="xs:string" use="required" fixed="SPS">
 <xs:annotation>
 <xs:documentation>Service type identifier.</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute name="version" type="xs:string" use="required" fixed="0.9.4">
 <xs:annotation>
 <xs:documentation>Specification version for SPS version and operation.</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:complexType name="ParameterType">
 <xs:choice>
 <xs:element name="value" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:any processContents="skip"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element ref="sps:Parameter" maxOccurs="unbounded"/>
 </xs:choice>
 </xs:complexType>
</xs:schema>
<xs:attribute name="parameterID" type="xs:token" use="required"/>
</xs:complexType>
<xs:complexType name="ParameterDescriptorType">
 <xs:sequence>
 <xs:element ref="sps:Description" minOccurs="0"/>
 <xs:element name="definition" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>implicit OR : a parameter may be described by more than one definition</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:choice>
 <xs:element name="commonData">
 <xs:complexType>
 <xs:sequence>
 <xs:group ref="swe:AnyData"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="TaskMessageDefinition">
 <xs:annotation>
 <xs:documentation>links to a URI dictionary where the taskMessage is defined properly</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:anyURI"/>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="GeometryDefinition">
 <xs:annotation>
 <xs:documentation>enumerates gml:Point, gml:Line, gml:Polygon as possible values</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:QName"/> </xs:complexType>
 </xs:element>
 <xs:element ref="sps:ParameterDescriptor" maxOccurs="unbounded"> A parameter may contain a list of parameters, and so on</xs:element>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 <xs:element name="restriction" minOccurs="0">
 <xs:annotation>
 <xs:documentation>optional. Only used if the client has to choose one or many of the provided values.</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
</xs:complexType>
</xs:element>
Candidate OpenGIS® SPS Application Profile for EO Sensors

```xml
<xs:complexType name="ParametersDescriptorType">
    <xs:sequence>
        <xs:element ref="sps:Description" minOccurs="0"/>
        <xs:element ref="sps:ParameterDescriptor" maxOccurs="unbounded"/>
    </xs:sequence>
</xs:complexType>

<xs:complexType name="ProgressReportType">
    <xs:sequence>
        <xs:element ref="sps:ID"/>
        <xs:element name="status">
            <xs:annotation>
                <xs:documentation>
                    defines if the request is being processed, rejected or failed to process due to insufficient parametrization.
                </xs:documentation>
            </xs:annotation>
            <xs:simpleType>
                <xs:restriction base="xs:string">
                    <xs:enumeration value="unknown"/>
                    <xs:enumeration value="in operation"/>
                    <xs:enumeration value="finished"/>
                    <xs:enumeration value="not yet started"/>
                    <xs:enumeration value="cancelled"/>
                    <xs:enumeration value="delayed"/>
                </xs:restriction>
            </xs:simpleType>
        </xs:element>
        <xs:element ref="sps:Description" minOccurs="0"/>
        <xs:element ref="sps:EstimatedToC" minOccurs="0"/>
        <xs:element name="Output" minOccurs="0">
            <xs:complexType>
                <xs:sequence>
                    <xs:element ref="sps:Description" minOccurs="0"/>
                    <xs:element ref="sps:parameters"/>
                    <xs:element name="DateFrom" type="xs:dateTime" minOccurs="0"/>
                </xs:sequence>
            </xs:complexType>
        </xs:element>
    </xs:sequence>
</xs:complexType>
```

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved
<xs:complexType name="RequestAckStatusType">
 <xs:sequence>
 <xs:element name="status">
 <xs:annotation>
 <xs:documentation>
 defines if the request is being processed, rejected or failed to process due to insufficient parametrization.
 </xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="confirmed"/>
 <xs:enumeration value="rejected"/>
 <xs:enumeration value="pending"/>
 <xs:enumeration value="incomplete request"/>
 <xs:enumeration value="rejected, alternatives available"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element ref="sps:Description" minOccurs="0"/>
 <xs:element ref="sps:LatestResponseTime" minOccurs="0"/>
 <xs:element ref="sps:EstimatedToC" minOccurs="0"/>
 </xs:sequence>
</xs:complexType>

<xs:simpleType name="ResponseAckStatusType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Ok"/>
 </xs:restriction>
</xs:simpleType>

<!--ID elements-->
<xs:element name="sensorID" type="xs:token">
 <xs:annotation>
 <xs:documentation>
 Identifies a sensor. Unique to every SPS instance.
 </xs:documentation>
 </xs:annotation>
</xs:element>

<xs:element name="ID" type="xs:token">
 <xs:annotation>
 <xs:documentation>
 Unique ID which either references a feasibility study, a reservation or a task - possible meanings are depending on the actual operation.
 </xs:documentation>
 </xs:annotation>
</xs:element>

<!--elements used for defining task input-->
<xs:element name="Parameter" type="sps:ParameterType"/>
<xs:element name="ParameterDescriptor" type="sps:ParameterDescriptorType">
 <xs:annotation>
 <xs:documentation>
 Defines the input required to task a sensor.
 </xs:documentation>
 </xs:annotation>
</xs:element>

<!--additional elements-->
<xs:element name="parameters">
 <xs:annotation>
 <xs:documentation>
 Contains a list of parameters.
 </xs:documentation>
 </xs:annotation>
</xs:element>

<xs:element name="TimeFrame" type="xs:dateTime"/>
<xs:annotation>
<xs:documentation>Maximum point in time a request keeps being valid. </xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="Alternative">
<xs:annotation>
<xs:documentation>Provides an alternative parameter constellation. </xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element ref="sps:Description" minOccurs="0"/>
<xs:element ref="sps:parameters"/>
</xs:sequence>
<xs:attribute name="SuccessRate">
<xs:annotation>
<xs:documentation>Indicates the success rate for the given alternative in percent. If omitted the success rate equals 100%. </xs:documentation>
</xs:annotation>
<xs:simpleType>
<xs:restriction base="xs:double">
<xs:maxInclusive value="100"/>
<xs:minExclusive value="0"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>
<xs:element name="LatestResponseTime" type="xs:dateTime">
<xs:annotation>
<xs:documentation>Denotes the point in time when the notification that contains the definite response to a delayed operation request will be sent. If no notification has been received until that time the operation shall be deemed to have been rejected or failed. </xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="EstimatedToC" type="xs:dateTime">
<xs:annotation>
<xs:documentation>Estimated Time of Completion gives a hint when the task might be completed. </xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="Description" type="xs:string">
<xs:annotation>
<xs:documentation>Contains a simple description. </xs:documentation>
</xs:annotation>
</xs:element>
</xs:schema>

A.12. spsContents.xsd

<?xml version="1.0" encoding="UTF-8"?>
xmlns:ows="http://www.opengeospatial.net/ows" xmlns:xlink="http://www.w3.org/1999/xlink"
targetNamespace="http://www.opengis.net/sps/eop" elementFormDefault="qualified"
attributeFormDefault="unqualified" version="0.9.4" xml:lang="en">
<!-- includes and imports -->
elements and types

<!-- ==
elements and types
== -->

<xs:element name="Contents" type="sps:SPSContentsType">
 <xs:annotation>
 <xs:documentation>
 A SPS supports the discovery of itself through a registry by two different views. A registry could identify suitable SPSs by either searching the capabilities for a certain type of Phenomenon (that can be sensed by at least one sensor managed by the SPS under investigation) in a certain target-area or by searching for sensors with a certain ID and / or certain characteristics which are able to sense a phenomenon in a certain target-area.
 </xs:documentation>
 </xs:annotation>

 <!-- CONSTRAINTS FOR CONTENTS
 1) All SensorOfferings must have different SensorIDs.
 2) All PhenomenonOfferings must have different Phenomena.
 3) Each Phenomenon referenced by a SensorOffering must be declared in a PhenomenonOffering.
 4) Each SensorID referenced by a PhenomenonOffering must be declared in a SensorOffering.
 5) There may not be two identical SensorIDs in the same PhenomenonOffering.
 -->

 <xs:unique name="sensorOfferingKey">
 <xs:field xpath="."/>
 </xs:unique>

 <xs:complexType name="SPSContentsType">
 <xs:annotation>
 <xs:documentation>
 A SPS supports the discovery of itself through a registry by two different views. A registry could identify suitable SPSs by either searching the capabilities for a certain type of Phenomenon (that can be sensed by at least one sensor managed by the SPS under investigation) in a certain target-area or by searching for sensors with a certain ID and / or certain characteristics which are able to sense a phenomenon in a certain target-area.
 </xs:documentation>
 </xs:annotation>

 <xs:sequence>
 <xs:element name="SensorOfferingList">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="SensorOffering" type="sps:SensorOfferingType" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>
 Contains information necessary to discover the abilities of the sensors managed by this SPS.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element ref="wns:NotificationAbilities"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="AreaOfServiceType">
 <xs:annotation>
 <xs:documentation>
 Contains the geometry of the area that a certain sensor is theoretically able to collect data from. As it is not possible to declare the exact geometry of such an area at any time (at least for mobile sensors), this geometry should be treated as a hint for discovering sensors that can be tasked to collect data from a certain position or area.
 </xs:documentation>
 </xs:annotation>
 </xs:complexType>
</xs:element>
A.13. gml4sps.xsd

<?xml version="1.0" encoding="UTF-8"?>
 <xs:include schemaLocation="http://schemas.opengis.net/gml/3.1.1/base/gml.xsd"/>
 <xs:element ref="ows:BoundingBox"/>
 <xs:element ref="gml:pos"/>
 <xs:element ref="gml:Polygon"/>
 <xs:element ref="gml:Solid"/>
</xs:complexType>
<xs:complexType name="SensorOfferingType">
 <xs:annotation>
 <xs:documentation>Contains information necessary to discover the abilities of the sensors managed by this</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element ref="sps:spID"/>
 <xs:element name="SupportedOperations">
 <xs:complexType>
 <xs:attribute name="DescribeSensor" type="xs:boolean" use="required"/>
 <xs:attribute name="DescribeGetFeasibility" type="xs:boolean" use="required"/>
 <xs:attribute name="DescribeSubmit" type="xs:boolean" use="required"/>
 <xs:attribute name="GetFeasibility" type="xs:boolean" use="required"/>
 <xs:attribute name="Submit" type="xs:boolean" use="required"/>
 <xs:attribute name="Update" type="xs:boolean" use="required"/>
 <xs:attribute name="GetStatus" type="xs:boolean" use="required"/>
 <xs:attribute name="Cancel" type="xs:boolean" use="required"/>
 <xs:attribute name="DescribeResultAccess" type="xs:boolean" use="required"/>
 <xs:attribute name="EstimateWorkload" type="xs:boolean" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="RequiresNotificationTarget" type="xs:boolean"/>
 <xs:element name="SubsequentGetFeasibilitySupported" type="xs:boolean"/>
 </xs:sequence>
</xs:complexType>
</xs:schema>
Annex B
(informative)

Example of XML documents

B.1. Example of DescribeGetFeasibility response

```xml
<DescribeGetFeasibilityResponse xmlns="http://www.opengis.net/sps/eop"
xmlns:gml="http://www.opengis.net/gml"
xmlns:swe="http://www.opengis.net/swe/0.0"
xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/sps/eop
http://ws.spotimage.com/ows/schemas/swe/sps/eop_v0.9.4/spsDescribeGetFeasibility.xsd">
<OutputParameters>
  <ParameterDescriptor parameterID="scene" updateable="false" use="optional">
    <Description>Pseudo scene</Description>
    <definition>
      <ParameterDescriptor use="required" parameterID="satellite" updateable="false">
        <definition>
          <commonData>
            <swe:Category/>
          </commonData>
        </definition>
      </ParameterDescriptor>
      <ParameterDescriptor use="required" parameterID="resolution" updateable="false">
        <definition>
          <commonData>
            <swe:Quantity/>
          </commonData>
        </definition>
      </ParameterDescriptor>
      <ParameterDescriptor use="required" parameterID="geoLocation" updateable="false">
        <definition>
          <GeometryDefinition>gml:polygon</GeometryDefinition>
        </definition>
      </ParameterDescriptor>
      <ParameterDescriptor use="required" parameterID="successRate" updateable="false">
        <definition>
          <commonData>
            <swe:Count>
              <swe:constraint>
                <swe:AllowedValues>
                  <swe:interval>0 100</swe:interval>
                </swe:AllowedValues>
              </swe:constraint>
            </swe:Count>
          </commonData>
        </definition>
        <cardinality>unbounded</cardinality>
      </ParameterDescriptor>
    </definition>
  </ParameterDescriptor>
</OutputParameters>
</DescribeGetFeasibilityResponse>
```
B.2. Example of DescribeSubmit response

```
<?xml version="1.0" encoding="UTF-8"?>
<DescribeSubmitResponse xmlns="http://www.opengis.net/sps/eop" xmlns:gml="http://www.opengis.net/gml"
   xmlns:swe="http://www.opengis.net/swe/0.0" xmlns:xlink="http://www.w3.org/1999/xlink"
http://ws.spotimage.com/ows/schemas/swe/sps/eop_v0.9.4/spsDescribeSubmit.xsd">
  <InputParameters>
    <Description>Example of input parameters for SPOT programming</Description>
    <!-- Urgence / Priority -->
    <ParameterDescriptor parameterID="QualityOfService" updateable="false" use="optional">
      <Description>Programming Priority</Description>
      <definition>
        <ParameterDescriptor use="required" parameterID="Urgence" updateable="false">
          <commonData>
            <swe:Category>
              <swe:constraint>
                <swe:AllowedTokens>
                  <swe:valueList>low medium high</swe:valueList>
                </swe:AllowedTokens>
              </swe:constraint>
            </swe:Category>
          </commonData>
        </ParameterDescriptor>
        <ParameterDescriptor use="optional" parameterID="Priority" updateable="false">
          <commonData>
            <swe:Category>
              <swe:constraint>
                <swe:AllowedTokens>
                  <swe:valueList>low medium high</swe:valueList>
                </swe:AllowedTokens>
              </swe:constraint>
            </swe:Category>
          </commonData>
        </ParameterDescriptor>
      </definition>
    </ParameterDescriptor>
    <!-- Acquisition parameters -->
    <ParameterDescriptor parameterID="AcquisitionParameters" updateable="false">
      <Definition>
        <ParameterDescriptor parameterID="Resolution" updateable="false" use="required">
          <Description>Resolution</Description>
          <definition>
            <swe:Quantity>
              <swe:constraint>
                <swe:AllowedValues>
                  <swe:valueList>2.5 5 10 20</swe:valueList>
                </swe:AllowedValues>
              </swe:constraint>
            </swe:Quantity>
          </definition>
        </ParameterDescriptor>
        <ParameterDescriptor parameterID="AcquisitionMode" updateable="false" use="required">
          <Description>Image mode type</Description>
          <definition>
          </ParameterDescriptor>
        </ParameterDescriptor>
      </Definition>
    </ParameterDescriptor>
  </InputParameters>
</DescribeSubmitResponse>
```

<commonData>
<swe:Category>
<swe:constraint>
<swe:AllowedTokens>
<swe:valueList>MULTISPECTRAL PANCHROMATIC BUNDLE</swe:valueList>
</swe:AllowedTokens>
</swe:constraint>
</swe:Category>
</commonData>
</definition>
</ParameterDescriptor>
</definition>
</ParameterDescriptor>
<!-- Geometric coverage characteristics -->
ParameterDescriptor parameterID=GeometricCoverageCharacteristics updateable=false use required>
<definition>
ParameterDescriptor use=optional parameterID=Mono updateable=false>
<Description>Mono acquisition</Description>
<definition>
ParameterDescriptor use=required parameterID=IncidenceAngle updateable=false>
<definition>
ParameterDescriptor use=required parameterID=AngleMin updateable=false>
<definition>
<commonData>
<swe:SimpleDataRecord>
<swe:field name=lambda>
<swe:Quantity>
<swe:uom xlink:href=urn:ogc:def:unit:percentage/>
</swe:Quantity>
</swe:field>
<swe:field name=phi>
<swe:Quantity>
<swe:uom xlink:href=urn:ogc:def:unit:percentage/>
</swe:Quantity>
</swe:field>
</swe:SimpleDataRecord>
</commonData>
</definition>
</ParameterDescriptor>
</definition>
</ParameterDescriptor>
</definition>
</ParameterDescriptor>
ParameterDescriptor parameterID=surveyPeriod updateable=false use required>
<Description>Defines the minimal unit period or time range requested</Description>
<definition>
<commonData>
<swe:TimeRange/>
</commonData>
</definition>
</ParameterDescriptor>
ParameterDescriptor use=required parameterID=ValidationParameters updateable=false>
<definition>
ParameterDescriptor parameterID=cloudCoverPercentage updateable=false use required>
<Description>Maximum allowed cloud coverage</Description>
<definition>
<commonData>
<swe:Quantity>
<swe:constraint>
<swe:AllowedValues>
</swe: AllowedValues>
</swe:constraint>
</swe:Category>
</commonData>
</definition>
</ParameterDescriptor>
</definition>
</ParameterDescriptor>
<ParameterDescriptor parameterID="snowCoverPercentage" updateable="false" use="optional">
 <Description>Maximum allowed snow coverage</Description>
 <definition>
 <commonData>
 <swe:Quantity>
 <swe:constraint>
 <swe:AllowedValues>
 <swe:interval>0 100</swe:interval>
 </swe:AllowedValues>
 </swe:constraint>
 </swe:Quantity>
 </commonData>
 </definition>
</ParameterDescriptor>

<ParameterDescriptor use="optional" parameterID="hazeAccepted" updateable="false">
 <definition>
 <commonData>
 <swe:Boolean/>
 </commonData>
 </definition>
</ParameterDescriptor>

<ParameterDescriptor use="optional" parameterID="sandWindAccepted" updateable="false">
 <definition>
 <commonData>
 <swe:Boolean/>
 </commonData>
 </definition>
</ParameterDescriptor>

<ParameterDescriptor parameterID="regionOfInterest" updateable="false" use="required">
 <Description>Region of interest</Description>
 <definition>
 <GeometryDefinition>gml:Polygon</GeometryDefinition>
 </definition>
</ParameterDescriptor>

<ParameterDescriptor parameterID="requestID" updateable="false" use="optional">
 <Description>Optional name of the request</Description>
 <definition>
 <commonData>
 <swe:Text/>
 </commonData>
 </definition>
</ParameterDescriptor>

<ParameterDescriptor parameterID="placeName" updateable="false" use="optional">
 <Description>Name of the zone of Interest</Description>
 <definition>
 <commonData>
 <swe:Text/>
 </commonData>
 </definition>
</ParameterDescriptor>

<ParameterDescriptor parameterID="country" updateable="false" use="optional">
 <Description>Country of the zone of Interest</Description>
 <definition>
 <commonData>
 <swe:Text/>
 </commonData>
 </definition>
</ParameterDescriptor>
<ParameterDescriptor use="required" parameterID="countryCode" updateable="false">
 <definition>
 <commonData>
 <swe:Category/>
 </commonData>
 </definition>
</ParameterDescriptor>

<ParameterDescriptor use="required" parameterID="countryName" updateable="false">
 <definition>
 <commonData>
 <swe:Category/>
 </commonData>
 </definition>
</ParameterDescriptor>

<ParameterDescriptor parameterID="comment" updateable="false" use="optional">
 <Description>Any comment</Description>
 <definition>
 <commonData>
 <swe:Text/>
 </commonData>
 </definition>
</ParameterDescriptor>

<InputParameters />

<OutputParameters>

<ParameterDescriptor parameterID="scene" updateable="false" use="optional">
 <Description>Pseudo scene</Description>
 <definition>
 <ParameterDescriptor use="required" parameterID="satellite" updateable="false">
 <definition>
 <commonData>
 <swe:Category/>
 </commonData>
 </definition>
 </ParameterDescriptor>
 <ParameterDescriptor use="required" parameterID="resolution" updateable="false">
 <definition>
 <commonData>
 <swe:Quantity/>
 </commonData>
 </definition>
 </ParameterDescriptor>
 <ParameterDescriptor use="required" parameterID="geoLocation" updateable="false">
 <GeometryDefinition>gml: polygon</GeometryDefinition>
 </ParameterDescriptor>
 <ParameterDescriptor use="required" parameterID="successRate" updateable="false">
 <definition>
 <commonData>
 <swe:Count>
 <swe:constraint>
 <swe:AllowedValues>
 <swe:interval>0 100</swe:interval>
 </swe:AllowedValues>
 </swe:constraint>
 </swe:Count>
 </commonData>
 </definition>
 </ParameterDescriptor>
 </definition>
</ParameterDescriptor>

</OutputParameters>
<cardinality>unbounded</cardinality>
</ParameterDescriptor>
</OutputParameters>
</DescribeSubmitResponse>

B.3 GetFeasibility operation examples

B.3.1 Example of GetFeasibility request

```xml
<?xml version="1.0" encoding="UTF-8"?>
<GetFeasibility service="SPS" version="0.9.4" xmlns:gml="http://www.opengis.net/gml"
xmlns="http://www.opengis.net/sps/eop" xmlns:swe="http://www.opengis.net/swe/0"
xsi:schemaLocation="http://www.opengis.net/sps/eop
http://ws.spotimage.com/ows/schemas/swe/sps/eop_v0.9.4/spsGetFeasibility.xsd">
  <parameters>
    <Parameter parameterID="QualityOfService">
      <value>
        <swe:Category>high</swe:Category>
      </value>
    </Parameter>
    <Parameter parameterID="Urgence">
      <value>
        <swe:Category>high</swe:Category>
      </value>
    </Parameter>
    <Parameter parameterID="AcquisitionParameters">
      <Parameter parameterID="Resolution">
        <value>
          <swe:Quantity>2.5</swe:Quantity>
        </value>
      </Parameter>
      <Parameter parameterID="AcquisitionMode">
        <value>
          <swe:Category>COLOR</swe:Category>
        </value>
      </Parameter>
      <Parameter parameterID="GeometricCoverageCharacteristics">
        <Parameter parameterID="Mono">
          <Parameter parameterID="IncidenceAngle">
            <Parameter parameterID="AngleMin">
              <value>
                <swe:SimpleDataRecord>
                  <swe:field name="lambda">
                    <swe:Quantity>10</swe:Quantity>
                  </swe:field>
                  <swe:field name="phi">
                    <swe:Quantity>10</swe:Quantity>
                  </swe:field>
                </swe:SimpleDataRecord>
              </value>
            </Parameter>
          </Parameter>
        </Parameter>
      </Parameter>
    </Parameter>
    <Parameter parameterID="surveyPeriod">
      <value>
        <swe:TimeRange>2006-12-09T08:00+01:00 2006-12-09T08:00+01:00</swe:TimeRange>
      </value>
    </Parameter>
    <Parameter parameterID="ValidationParameters">
      106 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved
    </Parameter>
  </parameters>
</GetFeasibility>
```
<Parameter parameterID="cloudCoverPercentage">
 <value>
 <swe:Quantity>20</swe:Quantity>
 </value>
</Parameter>

<Parameter parameterID="snowCoverPercentage">
 <value>
 <swe:Quantity>20</swe:Quantity>
 </value>
</Parameter>

<Parameter parameterID="regionOfInterest">
 <value>
 <gml:Polygon>
 <gml:exterior>
 <gml:LinearRing>
 <gml:pos>35.0 35.0</gml:pos>
 <gml:pos>36.0 35.0</gml:pos>
 <gml:pos>36.0 33.5</gml:pos>
 <gml:pos>35.0 33.5</gml:pos>
 </gml:LinearRing>
 </gml:exterior>
 </gml:Polygon>
 </value>
</Parameter>

<Parameter parameterID="country">
 <Parameter parameterID="countryCode">
 <value>
 <swe:Category>KZ</swe:Category>
 </value>
 </Parameter>
 <Parameter parameterID="countryName">
 <value>
 <swe:Category>KAZAKHSTAN</swe:Category>
 </value>
 </Parameter>
</Parameter>

<Parameter parameterID="comment">
 <value>
 <swe:Text>PR generated by SPS v0.9.4</swe:Text>
 </value>
</Parameter>

<parameters>
 <feasibilityLevel>estimate</feasibilityLevel>
</GetFeasibility>

B.3.1 Example of GetFeasibility request acknowledgment

<sps:GetFeasibilityRequestAck xmlns:sps="http://www.opengis.net/sps/eop"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 <sps:RequestAckStatus>
 <sps:status>confirmed</sps:status>
 </sps:RequestAckStatus>
</sps:GetFeasibilityRequestAck>

B.3.1 Example of GetFeasibility response
B.3. Examples of DescribeSensor response

Note: the DescribeSensor operation may return either a complete or a brief description of the sensors (cf. § 11).

B.3.1. Example of brief description (SPOT 10 meter 4 bands):

<?xml version="1.0" encoding="UTF-8"?>
<!-- Author: Alexandre Robin - Sensia Software LLC -->
<!-- Creation Date: 2007-02-02 -->
<!-- Copyright: SpotImage S.A., France -->
 <sml:System gml:id="SPOT_10M_COLOR">
 <gml:description>Configuration of the SPOT constellation for 10m Color Imagery</gml:description>
 <sml:identification>
 <sml:IdentifierList>
 <sml:identifier name="System UID">
 <sml:Term definition="urn:x-ogc:def:identifier:OGC:uuid">
 <sml:value>urn:x-ogc:object:platform:ESA:SPOT:10mColor:v01</sml:value>
 </sml:Term>
 </sml:identifier>
 <sml:identifier name="Short Name">
 <sml:Term definition="urn:x-ogc:def:identifier:OGC:shortName">
 <sml:value>SPOT 10m Color</sml:value>
 </sml:Term>
 </sml:identifier>
 </sml:IdentifierList>
 </sml:identification>
 <sml:capabilities>
 <swe:DataRecord>
 <swe:field name="Band Type">
 <swe:Category definition="urn:x-ogc:def:classifier:OGC:bandType">
 <swe:value>COLOR</swe:value>
 </swe:Category>
 </swe:field>
 <swe:field name="Ground Resolution">
 <swe:Quantity definition="urn:x-ogc:def:phenomenon:ESA:groundResolution">
 <swe:uom code="m"/>
 <swe:value>10</swe:value>
 </swe:Quantity>
 </swe:field>
 <swe:field name="Latitude Coverage">
 <swe:QuantityRange definition="urn:x-ogc:def:phenomenon:OGC:latitude">
 <swe:uom code="deg"/>
 <swe:value>-85 +85</swe:value>
 </swe:QuantityRange>
 </swe:field>
 <swe:field name="Longitude Coverage">
 <swe:uom code="deg"/>
 <swe:value>-180 +180</swe:value>
 </swe:QuantityRange>
 </swe:field>
 </swe:DataRecord>
 </sml:capabilities>
 </sml:System>
 </sml:member>
</sml:SensorML>
<!-- == -->
<sml:components>
<sml:ComponentList>
<sml:component name="SPOT4-HRVIR1">
<sml:System>
<sml:identification>
<sml:IdentifierList>
<sml:identifier name="System UID">
<sml:Term definition="urn:x-ogc:def:identifier:OGC:uuid">
</sml:Term>
</sml:identifier>
<sml:identifier name="Platform UID">
<sml:Term definition="urn:x-ogc:def:identifier:OGC:uuid">
</sml:Term>
</sml:identifier>
<sml:identifier name="Short Name">
<sml:Term definition="urn:x-ogc:def:identifier:OGC:shortName">
<sml:value>SPOT4 HRVIR1</sml:value>
</sml:Term>
</sml:identifier>
</sml:IdentifierList>
</sml:identification>
</sml:System>
</sml:component>
<sml:component name="SPOT4-HRVIR2">
<sml:System>
<sml:identification>
<sml:IdentifierList>
<sml:identifier name="System UID">
<sml:Term definition="urn:x-ogc:def:identifier:OGC:uuid">
</sml:Term>
</sml:identifier>
<sml:identifier name="Platform UID">
<sml:Term definition="urn:x-ogc:def:identifier:OGC:uuid">
</sml:Term>
</sml:identifier>
<sml:identifier name="Short Name">
<sml:Term definition="urn:x-ogc:def:identifier:OGC:shortName">
<sml:value>SPOT4 HRVIR2</sml:value>
</sml:Term>
</sml:identifier>
</sml:IdentifierList>
</sml:identification>
</sml:System>
</sml:component>
<sml:component name="SPOT5-HRG1">
<sml:System>
<sml:identification>
<sml:IdentifierList>
<sml:identifier name="System UID">
<sml:Term definition="urn:x-ogc:def:identifier:OGC:uuid">
</sml:Term>
</sml:identifier>
<sml:identifier name="Platform UID">
<sml:Term definition="urn:x-ogc:def:identifier:OGC:uuid">
<sml:value>urn:x-ogc:object:instrument:ESA:SPOT5:v01</sml:value>
</sml:Term>
</sml:identifier>
</sml:IdentifierList>
</sml:identification>
</sml:System>
</sml:component>
</sml:ComponentList>
</sml:components>
Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved
B.3.2. Example of complete description (SPOT 5 HRS):

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!-- Author: Alexandre Robin - Sensia Software LLC -->
<!-- Creation Date: 2006-01-30 -->
<!-- Copyright: SpotImage S.A., France -->
<sml:SensorML xmlns:sml="http://www.opengis.net/sensorML/1.0"
    xmlns:swe="http://www.opengis.net/swe/1.0"
    xmlns:gml="http://www.opengis.net/gml"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns:xlink="http://www.w3.org/1999/xlink"
    xsi:schemaLocation="http://www.opengis.net/sensorML/1.0 ../Schema/sensorML/sensorML.xsd"
    version="1.0">
        <sml:System gml:id="SPOT5_HRS">
            <gml:description>
                The HRS instrument on board SPOT5 is a high resolution stereoscopic imager. It uses a pushbroom scanning technique and two different ccd detectors - one pointing forward and one pointing backward - to acquire stereoscopic panchromatic images of the earth with 10m resolution.
            </gml:description>
            <sml:identification>
                <sml:IdentifierList>
                    <sml:identifier name="System UID">
                        <sml:Term definition="urn:x-ogc:def:identifier:OGC:uuid">
                        </sml:Term>
                    </sml:identifier>
                    <sml:identifier name="Short Name">
                        <sml:Term definition="urn:x-ogc:def:identifier:OGC:shortName">
                            <sml:value>SPOT5 HRS</sml:value>
                        </sml:Term>
                    </sml:identifier>
                    <sml:identifier name="Long Name">
                        <sml:Term definition="urn:x-ogc:def:identifier:OGC:longName">
                            <sml:value>Spot5 High Resolution Stereoscopic</sml:value>
                        </sml:Term>
                    </sml:identifier>
                </sml:IdentifierList>
            </sml:identification>
            <sml:classification>
                <sml:ClassifierList>
                    <sml:classifier name="Instrument Type">
                        <sml:Term definition="urn:x-ogc:def:classifier:OGC:sensorType">
                            <sml:value>Stereo Imaging Radiometer</sml:value>
                        </sml:Term>
                    </sml:classifier>
                    <sml:classifier name="Acquisition Method">
                        <sml:Term definition="urn:x-ogc:def:classifier:OGC:sensorType">
                            <sml:value>Stereo Imaging Radiometer</sml:value>
                        </sml:Term>
                    </sml:classifier>
                </sml:ClassifierList>
            </sml:classification>
        </sml:System>
    </sml:member>
</sml:SensorML>
```
<sml:value>Pushbroom</sml:value>
</sml:Term>
<sml:classifier>
<sml:classifier name="Application">
<sml:Term definition="urn:x-ogc:def:classifier:OGC:application">
<sml:value>Land - Topography</sml:value>
</sml:Term>
</sml:classifier>
</sml:ClassifierList>

<!-- === -->
<!-- Temporal Validity of this description -->
<!-- === -->
<sml:validTime>
<gml:TimePeriod>
<gml:beginPosition>2002-05-04T00:00:00Z</gml:beginPosition>
<gml:endPosition indeterminatePosition="now"/>
</gml:TimePeriod>
</sml:validTime>

<!-- === -->
<!-- Instrument Geometric Characteristics -->
<!-- === -->
<sml:characteristics>
<swe:DataRecord>
<gml:name>Geometric Characteristics</gml:name>
<swe:field name="Across-Track FOV">
<swe:Quantity definition="urn:x-ogc:def:phenomenon:ESA:acrossTrackFov">
<gml:description>Instrument field of view at nadir</gml:description>
<swe:uom code="deg"/>
<swe:value>8</swe:value>
</swe:Quantity>
</swe:field>
<swe:field name="Swath Width">
<gml:description>Nominal swath width at nadir</gml:description>
<swe:uom code="km"/>
<swe:value>120</swe:value>
</swe:Quantity>
</swe:field>
<swe:field name="Ground Location Accuracy">
<swe:Quantity definition="urn:x-ogc:def:phenomenon:ESA:groundLocationAccuracy">
<gml:description>Positioning accuracy of the acquired images on the ground</gml:description>
<swe:uom code="m"/>
<swe:value>50</swe:value>
</swe:Quantity>
</swe:field>
</swe:DataRecord>
</sml:characteristics>

<!-- === -->
<!-- Instrument Measurement Characteristics -->
<!-- === -->
<sml:characteristics>
<swe:DataRecord>
<gml:name>Measurement Characteristics</gml:name>
<swe:field name="Instrument Mode">
<swe:Category definition="urn:x-ogc:def:identifier:ESA:instrumentMode">
<gml:description>Mass of the instrument</gml:description>
<swe:value>STEREO</swe:value>
</swe:Category>
</swe:field>
</swe:DataRecord>
</sml:characteristics>
<swe:field name="Number of Bands">
 <swe:Count definition="urn:x-ogc:def:data:ESA:numberOfBands">
 <gml:description>Number of bands for this instrument configuration</gml:description>
 <swe:value>1</swe:value>
 </swe:Count>
</swe:field>
</swe:DataRecord>
</sml:characteristics>

<!-- === -->
<!-- Instrument Physical Characteristics -->
<!-- === -->
<sml:characteristics>
 <swe:DataRecord>
 <gml:name>Physical Characteristics</gml:name>
 <swe:field name="Mass">
 <swe:Quantity definition="urn:x-ogc:def:phenomenon:OGC:mass">
 <swe:uom code="kg"/>
 <swe:value>356</swe:value>
 </swe:Quantity>
 </swe:field>
 <swe:field name="Maximum Power Consumption">
 <gml:description>Maximum electrical power consumed by the instrument in any mode</gml:description>
 <swe:uom code="W"/>
 <swe:value>344</swe:value>
 </swe:Quantity>
 </swe:field>
 </swe:DataRecord>
</sml:characteristics>

<!-- === -->
<!-- Instrument Pointing Capabilities -->
<!-- === -->
<sml:capabilities>
 <swe:DataRecord>
 <gml:name>Pointing Capabilities</gml:name>
 <swe:field name="Across-Track Pointing Range">
 <gml:description>Maximum pointing angles in the across-track direction</gml:description>
 <swe:uom code="deg"/>
 <swe:value>-0 +0</swe:value>
 </swe:QuantityRange>
 </swe:field>
 <swe:field name="Along-Track Pointing Range">
 <swe:QuantityRange definition="urn:x-ogc:def:phenomenon:ESA:alongTrackPointingRange">
 <gml:description>Maximum pointing angles in the along-track direction</gml:description>
 <swe:uom code="deg"/>
 <swe:value>-0 +0</swe:value>
 </swe:QuantityRange>
 </swe:field>
 </swe:DataRecord>
</sml:capabilities>

<!-- === -->
<!-- Relevant Contacts -->
<!-- === -->
<sml:contact xlink:role="urn:x-ogc:def:dictionary:OGC:contactTypes:v01#operator">
 <sml:ResponsibleParty>
 <sml:individualName>Didier Giacobbo</sml:individualName>
 <sml:organizationName>Spot-Image</sml:organizationName>
 <sml:contactInfo>
 <sml:phone>+33 5 62 19 42 52</sml:phone>
 </sml:contactInfo>
 </sml:ResponsibleParty>
</sml:contact>
<!-- System Documentation -->
<mg:documentation xlink:role="urn:x-ogc:def:dictionary:OGC:documentTypes:v01#datasheet">
 <mg:Document>
 <mg:description>Page of CNES Website describing the HRS Instrument</mg:description>
 <mg:onlineResource xlink:href="http://spot5.cnes.fr/gb/satellite/camerasHRS.htm"/>
 </mg:Document>
</mg:documentation>

<!-- System Inputs -->
<mg:inputs>
 <mg:InputList>
 <mg:input name="Radiation">
 <mg:ObservableProperty definition="urn:x-ogc:def:phenomenon:OGC:radiation"/>
 </mg:input>
 </mg:InputList>
</mg:inputs>

<!-- System Outputs -->
<mg:outputs>
 <mg:OutputList>
 <mg:output name="Foreview Image">
 <mg:DataArray>
 <mg:elementCount>
 <mg:Count>
 <mg:value>12000</mg:value>
 </mg:Count>
 </mg:elementCount>
 <mg:elementType name="ScanLine">
 <mg:DataArray>
 <mg:elementCount>
 <mg:Count>
 <mg:value>12000</mg:value>
 </mg:Count>
 </mg:elementCount>
 <mg:elementType name="Pixel Value">
 <mg:Count definition="urn:x-ogc:def:phenomenon:OGC:radiance"/>
 </mg:elementType>
 </mg:DataArray>
 </mg:elementType>
 </mg:DataArray>
 </mg:output>
 <mg:output name="Rearview Image">
 <mg:DataArray>
 <mg:elementCount>
 <mg:Count>
 <mg:value>12000</mg:value>
 </mg:Count>
 </mg:elementCount>
 </mg:DataArray>
 </mg:output>
 </mg:OutputList>
</mg:outputs>
<swe:elementType name="ScanLine">
 <swe:DataArray>
 <swe:elementCount>
 <swe:Count>
 <swe:value>12000</swe:value>
 </swe:Count>
 </swe:elementCount>
 <swe:elementType name="Pixel Value">
 <swe:Count definition="urn:x-ogc:def:phenomenon:OGC:radiance"/>
 </swe:elementType>
 </swe:DataArray>
</swe:elementType>
</swe:DataArray>
</sml:output>
</sml:OutputList>
</sml:outputs>

<!-- -->

<sml:components>
 <sml:ComponentList>
 <!-- -- -->
 <!-- HRS1 Detector Description -->
 <!-- -- -->
 <sml:component name="HRS1 Detector">
 <sml:Component>
 <gml:description>
 In the HRS1, a bar of 12000 CCD detectors is used to acquire the foreview scanlines.
 </gml:description>
 <sml:identification>
 <sml:IdentifierList>
 <sml:identifier name="Short Name">
 <sml:Term definition="urn:x-ogc:def:identifier:OGC:shortName">
 <sml:value>HRS1</sml:value>
 </sml:Term>
 </sml:identifier>
 <sml:identifier name="Long Name">
 <sml:Term definition="urn:x-ogc:def:identifier:OGC:longName">
 <sml:value>Panchromatic HRS1 Detector</sml:value>
 </sml:Term>
 </sml:identifier>
 <sml:identifier name="Band ID">
 <sml:Term definition="urn:x-ogc:def:identifier:OGC:bandId">
 <sml:value>ForeView</sml:value>
 </sml:Term>
 </sml:identifier>
 </sml:IdentifierList>
 </sml:identification>
 <sml:characteristics>
 <swe:DataRecord>
 <gml:name>Geometric Characteristics</gml:name>
 <swe:field name="Across-Track Ground Resolution">
 <swe:Quantity definition="urn:x-ogc:def:phenomenon:ESA:acrossTrackGroundResolution">
 <gml:description>Ground sampling resolution in the across-track direction at nadir</gml:description>
 <swe:uom code="m"/>
 <swe:value>10</swe:value>
 </swe:Quantity>
 </swe:field>
 <swe:field name="Along-Track Ground Resolution">
 <swe:Quantity definition="urn:x-ogc:def:phenomenon:ESA:alongTrackGroundResolution">
 <gml:description>Ground sampling resolution in the along-track direction at nadir</gml:description>
 <swe:uom code="m"/>
 <swe:value>10</swe:value>
 </swe:Quantity>
 </swe:field>
 </swe:DataRecord>
 </sml:characteristics>
 </sml:Component>
 </sml:component>
 </sml:ComponentList>
</sml:components>
Ground sampling resolution in the along-track direction at nadir:

- **Quantity**: 5 m
- **Number of Samples**: 12000
- **Band Type**: VIS (Visible)
- **Spectral Range**: 490-690 nm
- **SNR Ratio**: 120

HRS2 Detector Description

In the HRS2, a bar of 12000 CCD detectors is used to acquire the afterview scanlines.
<sml:Term>
 <sml:identifier name="Band ID">
 <sml:Term definition="urn:x-ogc:def:identifier:OGC:bandId">
 <sml:value>AfterView</sml:value>
 </sml:Term>
 </sml:identifier>
</sml:Identification>

<!-- -->

<sml:characteristics>
 <swe:DataRecord>
 <gml:name>Geometric Characteristics</gml:name>
 <swe:field name="Across-Track Ground Resolution">
 <swe:Quantity definition="urn:x-ogc:def:phenomenon:ESA:acrossTrackGroundResolution">
 <gml:description>Ground sampling resolution in the across-track direction at nadir</gml:description>
 <swe:uom code="m"/>
 <swe:value>10</swe:value>
 </swe:Quantity>
 </swe:field>
 <swe:field name="Along-Track Ground Resolution">
 <swe:Quantity definition="urn:x-ogc:def:phenomenon:ESA:alongTrackGroundResolution">
 <gml:description>Ground sampling resolution in the along-track direction at nadir</gml:description>
 <swe:uom code="m"/>
 <swe:value>5</swe:value>
 </swe:Quantity>
 </swe:field>
 <swe:field name="Number of Samples">
 <swe:Count definition="urn:x-ogc:def:data:ESA:numberOfSamples">
 <gml:description>Number of samples collected for this band</gml:description>
 <swe:value>12000</swe:value>
 </swe:Count>
 </swe:field>
 </swe:DataRecord>
</sml:characteristics>

<!-- -->

<sml:characteristics>
 <swe:DataRecord>
 <gml:name>Measurement Characteristics</gml:name>
 <swe:field name="Band Type">
 <swe:Category definition="urn:x-ogc:def:classifier:OGC:bandType">
 <swe:value>VIS</swe:value>
 </swe:Category>
 </swe:field>
 <swe:field name="Spectral Range">
 <gml:description>Nominal Spectral Range of this detector</gml:description>
 <swe:uom code="nm"/>
 <swe:value>490 690</swe:value>
 </swe:QuantityRange>
 </swe:field>
 <swe:field name="SNR Ratio">
 <gml:description>Signal to Noise ratio of this detector</gml:description>
 <swe:value>120</swe:value>
 </swe:Quantity>
 </swe:field>
 </swe:DataRecord>
</sml:characteristics>