
OpenGIS® Discussion Paper OGC 03-021

OGC 2003 –

© All rights reserved
1

Open GIS Consortium Inc.

Date: 2003-01-20

Reference number of this OpenGIS® project document: OGC 03-021

Version: 0.1.18

Category: OpenGIS® Discussion Paper

Editor: J. Yutzler

Integrated Client for Multiple OGC-compliant Services

Architecture, Design, and Experience

Copyright notice
This OGC document is a draft and is copyright-protected by OGC. While the
reproduction of drafts in any form for use by participants in the OGC
Interoperability Program is permitted without prior permission from OGC, neither
this document nor any extract from it may be reproduced, stored or transmitted in
any form for any other purpose without prior written permission from OGC.

Warning
This document is not an OGC Standard or Specification. This document presents a
discussion of technology issues considered in an Interoperability Initiative of the
OGC Interoperability Program. The content of this document is presented to create
discussion in the geospatial information industry on this topic; the content of this
document is not to be considered an adopted specification of any kind. This
document does not represent the official position of the OGC nor of the OGC
Technical Committee. It is subject to change without notice and may not be
referred to as an OGC Standard or Specification.

Recipients of this document are invited to submit, with their comments, notification
of any relevant patent rights of which they are aware and to provide supporting
documentation.

Document type: OpenGIS® Discussion Papers
Document stage: Publicly Available
Document language: English

Contents

i. Preface...4

ii. Submitting organizations ..5

iii. Submission contact points ...5

iv. Revision history..5

v. Changes to the OpenGIS Abstract Specification..6

Foreword...7

Introduction..8

1 Scope..1

2 Reference Documents ..2

3 Terms and definitions ..3

4 Conventions ..4
4.1 Symbols (and abbreviated terms)...4
4.2 UML Notation ..5

5 Overview ...6
5.1 Service Discovery & Binding ..6
5.2 Imagery Production/Exploitation...10
5.3 Feature Production ..11
5.4 Sensor Web Production...13
5.5 Project Persistence & Sharing ..16

6 Requirements..18
6.1 Sponsor Requirements...18
6.2 End User Requirements ..18
6.3 Project creation, storage, loading, and sharing...18
6.4 OGC specifications...19

7 Architectural and Design Considerations..20
7.1 Characteristics of Client Technology and Architecture Choices20
7.2 Other Architectural and Design Choices...22

8 Client Components and Modules ...24
8.1 Factoring...24
8.2 Generic Descriptions of Client Components ...24
8.3 Implementations Developed or Presented in OWS 1.2.....................................26

9 User Interface ...28
9.1 Introduction..28
9.2 Considerations Regarding a Standard User Interface28
9.3 UI Description Languages...29
9.4 Additional UI Topics..30
9.5 Summary and recommendations..32

2 © OGC 2003 – All rights reserved

10 Test Considerations and Results...33
10.1 Issues and Opportunities...33
10.2 External vs. Internal Interoperability..33
10.3 TIEs and Results ..33

11 Summary...37

OGC 2003 –

Annex A – Technology Integration Experiments..38

1 Laser-Scan, Inc...38
1.1 Galdos WRS ...38
1.2 Syncline WRS...38
1.3 Ionic WRS...39
1.4 Polexis WRS ...40
1.5 Cubewerx WRS..40
1.6 Syncline UDDI..41
1.7 CubeWerx WMS..42
1.8 Ionic WMS..42
1.9 Intergraph WMS..43
1.10 Ionic WMS..43
1.11 Intergraph WFS...44
1.12 ubeWerx WCS..45
1.13 PCI WCS...45
1.14 Intergraph WCS...46
1.15 GMU WCS..46
1.16 Polexis SCS ...47

2 Intergraph...48
2.1 CubeWerx WFS ...48
2.2 Ionic WFS ...48
2.3 Intergraph WFS...48
2.4 GMU WCS..48
2.5 UAH WCS...48
2.6 PCI Geomatics WCS..48
2.7 Intergraph IAS...48

3 Autodesk ...48
3.1 Galdos WFS..48
3.2 Galdos WRS ...49
3.3 Syncline WRS...49
3.4 Ionic WRS...49
3.5 Cubewerx WMS...50
3.6 Intergraph WMS..50
3.7 Intergraph WFS...51
3.8 CAST WMS..51
3.9 Polexis WRS ...51
3.10 Cubewerx WRS..52

4 UAH...52
4.1 UAH STT client to WMS servers ...52
4.2 UAH STT client to WFS servers...53
4.3 UAH STT client to WCS servers ..54

 All rights reserved
3

©

5 GMU..55
5.1 CubeWerx WRS...55
5.2 CubeWerx WMS..55
5.3 Intergraph WMS..56
5.4 CAST WMS..56
5.5 CubeWerx WFS ...57
5.6 Ionic WFS ...57
5.7 Intergraph WFS...58

6 Polexis..58
6.1 Galdos WRS ...58
6.2 Syncline WRS...58
6.3 Ionic WRS...59
6.4 PCI WRS...59
6.5 CubeWerx WRS...60
6.6 CubeWerx WMS..60

7 Ionic...60

i. Preface

The OpenGIS Consortium (OGC) is an international industry consortium of more than
220 companies, government agencies, and universities participating in a consensus
process to develop publicly available geo-processing specifications. This Interoperability
Program Report (IPR) provides an overview of the requirements, architecture, and design
of Integrated Clients developed during the OGC Open Web Services Thread Set 2 (OWS
1.2) program. Additionally, this IPR includes a discussion of the experiences gained
during the development of the integrated clients during the effort within the context of the
OGC General Services Architecture with respect to consistency and completeness. This
discussion is primarily intended to serve as an introduction to those undertaking the
development of client services.

Suggested additions, changes, and comments on this draft report are welcome and
encouraged. Such suggestions may be submitted by OWS 1.2 portal message, email
message, or by making suggested changes in an edited copy of this document.

Changes made to this document can be tracked by Microsoft Word. If you choose to
submit suggested changes by editing this document, please make your suggested changes
with change tracking on.

4 © OGC 2003 – All rights reserved

ii. Submitting organizations

This Interoperability Program Report is being submitted to the OGC by the following
organizations:

Laser-Scan, Inc.
Ionic Software

iii. Submission contact points

CONTACT COMPANY ADDRESS PHONE/FAX EMAIL
Jeff Yutzler Laser-Scan Inc. 45635 Willow Pond

Plaza,
Sterling, VA 20164
USA

(703) 709-9306 jyutzler@lsiva.com

John Vincent Intergraph
Mapping and
GIS Solutions

PO Box 6695
Huntsville, AL
35824-6695
USA

(256) 730-7767 jtvincen@intergrap
h.com

Chris Tucker Ionic
Enterprise, Inc.

PO Box 2635
Alexandria, VA 22301
USA

(703) 535-5973 tucker@ionicenterp
rise.com

Jerome Sonnet Ionic Software,
S.A.

Rue de Wallonie, 18
B-4460 Grâce-Hollogne
Belgium

+32 4 364 0 364 jerome.sonnet@ion
icsoft.com

Thomas M.
Tuerke

Autodesk, Inc. 111 McInnis Parkway
San Rafael, CA 94903
USA

(415) 507-5000 thomas.tuerke@aut
odesk.com

iv. Revision history

Date Release Author Paragraph
modified

Description

 5 July 2002 0.0.1 Dibner - Initial version.
 22 July 2002 0.0.2 Osborne - -
 23 July 2002 0.0.3 Osborne Sections 5 and 6 Added additional

text to the overview
and use case
sections.

 9 Sep 2002 0.1.4 Osborne Section 8 Added Chris
Tuckers comments.
Added use case
diagrams.

 11 Nov 2002 0.1.5 Yutzler Sections 5 and 6 Merged sections and

 All rights reserved
5

© OGC 2003 –

mailto:jyutzler@lsiva.com
mailto:jtvincen@intergraph.com
mailto:jtvincen@intergraph.com
mailto:tucker@ionicenterprise.com
mailto:tucker@ionicenterprise.com
mailto:jerome.sonnet@ionicsoft.com
mailto:jerome.sonnet@ionicsoft.com
mailto:thomas.m.tuerke@autodesk.com
mailto:thomas.m.tuerke@autodesk.com

added additional
detail.

 13 Nov 2002 0.1.6 Tuerke Section 9 Added UI section
 13 Nov 2002 0.1.7 Tuerke Section 9 Added UI section
 13 Nov 2002 0.1.87 Dibner Section 8 (new) Added outline and

some text for
software component
/ implementation
section.

 14 Nov 2002 0.1.98 Yutzler All Reviewed for
content and style

 153 Jan 2003 0.1.109 Yutzler Sections 5.5 6– 9-
9

 Sections completely
rewritten based on
input from Dibner,
Tuerke

 14 Jan 2003 0.1.11 Yutzler Annex A Tie reports added
 14 Jan 2003 0.1.12 Yutzler All Reviewed for

content and style
 14 Jan 2003 0.1.13 Yutzler Annex A Replaced section for

Ionic with new text
14 Jan 2003 0.1.14 Dibner Sections 10 and

11
 Expanded section on
test considerations,
prepared TIE
summary table,
wrote concluding
summary.

15 Jan 2003 0.1.15 Tuerke Annex A Formatting
corrections; updated
contact info. Fixed
incorrect heading,
some text.

15 Jan 2003 0.1.16 Dibner TOC Fixed glitch in
header identification

16 Jan 2003 0.1.17 Dibner Section 5.3 Fixed error in
reference to Figure 7

19 Jan 2003 0.1.18 Dibner Document Reformatted –
eliminate corruption
causing crashes

v. Changes to the OpenGIS Abstract Specification

The OpenGIS® Abstract Specification does not require changes to accommodate the
contents of this document.

6 © OGC 2003 – All rights reserved

Foreword

This document (OGC 03-021) is an Interoperability Program Report (IPR) that reflects
work carried out during the OGC Web Services Initiative, Thread Set 2.

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. OGC Inc. shall not be held responsible for identifying any or
all such patent rights.

This IPR is intended to be informative, and does not seek to modify any existing OGC
specifications, nor create any new specifications. There are currently no annexes in the
IPR., although some may be added in the future.

 All rights reserved
7

© OGC 2003 –

Introduction

This Interoperability Program Report (IPR) provides an overview of the general
requirements, architecture, and design considerations of ‘Integrated Clients’ developed
for the OGC Open Web Services Thread Set 2 (OWS 1.2) program. In addition, this IPR
includes a discussion of the experiences gained during the development of the integrated
clients during the effort within the context of the OWS 1.2 architecture with respect to
consistency and completeness. This discussion is primarily intended to serve as an
introduction to those undertaking the development of client services.

Within the context of this effort an integrated client is defined as a software application
that provides common functionality for the discovery, retrieval, and handling of data
from sources that fall into the following categories:

• Feature data (GML encoded vector data)

• Image data (raster)

• Sensor Web data (XML)

At the core of the integrated client concept is the requirement to provide a unified
environment that allows a user to visualize, analyze, and/or edit data from all three of the
above source categories simultaneously. In addition the integrated client may also support
a persistent project file, so that a complex set of data layers – comprised of source,
service chain, and portrayal information – can be stored and shared between applications
and users.

This IPR will include integrated clients which utilize many or all of the following
specifications: Web Registry Service (WRS), Web Map Server (WMS), Web Feature
Server (WFS), Style Layer Descriptor (SLD), Style Management Service (SMS), Web
Coverage Server (WCS), Coverage Portrayal Service (CPS), Image Archive Service
(IAS), Sensor Planning Service (SPS), Web Notification Service (WNS), and Sensor
Collection Service (SCS).

8 © OGC 2003 – All rights reserved

OpenGIS® Discussion Paper OGC 03-021

© All rights reserved
1

OGC 2003 –

OGC Interoperability Program Report:
The Integrated Client

1 Scope

This IPR describes the requirements, use cases, architectural and design considerations
for the development of an integrated, multi-service client; and also discusses the
experiences of OWS 1.2 participants in creating such clients. In fulfilment of these goals,
the IPR includes:

A) Definitions of the common terms associated with the effort.

B) A discussion of the functional breakdown of the integrated client, and the OGC
services that are related to each functional category.

C) A discussion of use cases for the integrated client, and how these use cases might take
advantage of blending functionality across the functional categories and various OGC
services.

D) A discussion of possible architectures for the integrated client, with a focus on both
thick and thin client types.

E) A discussion of design issues and tradeoffs associated with the development of an
integrated client, with respect to the similarities and differences between the OGC
services.

F) And a discussion of the key accomplishments and lessons learned by the OGC
members participating in the development on integrated client for the OWS 1.2 effort.

2 Reference Documents

The following documents contain provisions that serve as points of reference for portions
of this report. For dated references, subsequent amendments to, or revisions of, any of
these publications do not apply. However, parties to agreements based on the notions in
this text are encouraged to investigate the possibility of applying the most recent editions
of the documents indicated below.

The OpenGIS Abstract Specification Topic 12: OpenGIS Service Architecture (Version
4.2), Kottman, C. (ed.), OGC AS 12, September 2001.

OWS1 Registry Service, Martell, Richard (ed.), OGC 02-050r5, 19 August 2002.

OGC Contexts Definition and Encoding, Monie, D. & Humblet Jean-Philippe (eds.),
OGC 02-066r1, 29 August 2002.

Web Feature Service Implementation Specification, Version 1.0.0, OGC Document #02-
058, 19 September 2002.

Web Map Service Implementation Specification, Version 1.1.1, OGC Document #01-
068r3, 16 January 2002.

Sensor Collection Service IPR, Version 0.7.0, OGC Document #02-028, 22 October
2002.

UDDI Experiment, OGC Document #02-054r1, 22 August 2002.

2 © OGC 2003 – All rights reserved

3 Terms and definitions

During previous OGC IP efforts, there have been discussions about client issues, but
there has not been common concrete agreement on the definition of terms ‘client’, ‘thin
client’, ‘thick client’, and ‘integrated client’ among others. For the purposes of this
document, the following terms and definitions apply:

Client
A computer program which remotely accesses data or services from one or more
servers.

Client-Server
A common form of distributed computing in which functionality is split between
server software and client software. A client sends requests to a server, according to
some protocol, asking for information to be returned and/or an action be performed,
and the server responds.

Integrated Client
A client which unifies common service discovery, feature production, imagery
exploitation, portrayal managment, and sensor web exploitation functionalities, and
provides an environment for visualizing, analysing and/or editing data from these
sources/services.

Interface
Named set of operations that characterize the behavior of an entity [OGC AS 12].

Operation
Specification of a transformation or query that an object may be called to execute
[OGC AS 12].

Request
An invocation by a Client of an Operation.

Response
The result of an Operation, returned from a Server to a Client.

Service
Distinct part of the functionality that is provided by an entity through interfaces
[OGC AS 12].

Server, Service Instance
A computer program that implements a service.

Thick Client
A computer program that is installed on a target platform, and is executed within a
heavyweight operating system on that platform.

Thin Client
A computer program that runs a lightweight operating system and executes
applications downloaded over a network.

 All rights reserved
3

© OGC 2003 –

4 Conventions

The following sections define the conventions used in this document.

4.1 Symbols (and abbreviated terms)

1D One Dimensional
2D Two Dimensional
3D Three Dimensional
4D Four Dimensional
API Application Program Interface
COM Component Object Model
CORBA Common Object Request Broker Architecture
COTS Commercial Off The Shelf
CPS Coverage Portrayal Service
DCE Distributed Computing Environment
DCP Distributed Computing Platform
DCOM Distributed Component Object Model
FPS Feature Portrayal Service
GML Geographic Markup Language
IDL Interface Definition Language
ISO International Organization for Standardization
OGC Open GIS Consortium
PKI Public Key Infrastructure
SRS Spatial Reference System
SMS Style Management Service
SLD Styled Layer Descriptor
UML Unified Modeling Language
WCS Web Coverage Service
WFS Web Feature Service
WMS Web Map Service
XML Extensible Markup Language

4 © OGC 2003 – All rights reserved

4.2 UML Notation

The diagrams that appear in this document are presented using the Unified Modeling
Language (UML) static structure diagram. The UML notations used in this standard are
described in the diagram below.

Association between classes

role-1 role-2

Association Name
Class #1 Class #2

Association Cardinality

Class Only one

Class Zero or more

Class Optional (zero or one)

1..* Class One or more

n Class Specific number

Aggregation between classes

Aggregate
Class

Component
Class #1

Component
Class #2

Component
Class #n

……….

0..*

0..1

Class Inheritance (subtyping of classes)
Superclass

Subclass #1

…………..

Subclass #2 Subclass #n

Figure 1 — UML notation

In this standard, the following three stereotypes of UML classes are used:

a) <<Interface>> A definition of a set of operations that is supported by objects having
this interface. An Interface class cannot contain any attributes.

b) <<DataType>> A descriptor of a set of values that lack identity (independent
existence and the possibility of side effects). A DataType is a class with no
operations whose primary purpose is to hold the information.

c) <<CodeList>> is a flexible enumeration that uses string values for expressing a list of
potential values.

 All rights reserved
5

© OGC 2003 –

5 Overview

The core purpose of an integrated client is to provide a unified environment that allows a
user to visualize, analyze, and/or edit data from feature, imagery, and sensor web data
sources simultaneously. Within the context of the OGC, this means that the integrated
client allows a user to publish, discover, access, integrate and apply all types of spatial
data (e.g., raster, vector, coverages, and sensor observations) from a wide range of vendor
“web services” through OGC standard interfaces.

The functionality of an integrated client can be divided into the following five categories:

A) Service Discovery & Binding

B) Feature Production

C) Imagery Production/Exploitation

D) Sensor Web Planning/Exploitation

E) Project Persistence and Sharing

Each of these functional categories is described in additional detail in the following sub-
sections.

This section also presents use cases for the integrated client. These use cases are not
necessarily limited the functionality in which they have been placed. In some
circumstances they include functionality from more than one category.

For each integrated client, the implementation must harness specific technologies and
adopt particular architectural approaches. Each technology/architecture pairing presents
different reliability, availability, serviceability, usability, security, and performance
characteristics. And as such, different technology/architecture pairings may be more or
less suitable for various purposes across an enterprise. This issue will be discussed in
detail in section 7, Architectural Design Considerations.

5.1 Service Discovery & Binding

A service registry is a software component that supports the run-time discovery and
evaluation of available service offerings. The Service Discovery & Binding functionality
of the integrated client provides, as a minimum, a tool for finding data and services by
querying service registries.

There are a number of existing service registries in use, and as the number of available
registries grows it will become increasingly difficult for users to find all the possible data
of interest and choose the best data for the task at hand. The functionality provided by the
integrated client is intended to assist the user in maintaining persistent knowledge of a set
of service registries, executing queries against these registries, and creating service chains
to provide discovered data to the client in the desired form.

The Service Discovery & Binding functionality can be divided into the following 5
functions:

6 © OGC 2003 – All rights reserved

A) Registering a service to a Service Registry (WRS)

Once GIS data is published in an OGC web service instance (W*S), its presence must be
announced so that GIS data analysts can find it. A GIS data provider can do this by using
an integrated client to register the service with a WRS (see Figure 2). The client
generates an XML document containing the URL and other information pertaining to the
service and sends this document to the WRS. When the WRS receives the request, it then
queries the W*S service for its capabilities.

Integrated Client WRS W*S

getCapabilties()

getCapabilities return - XML()

registerResource()

registerResource return - XML()

getCapabilities()

getCapabilities return - XML()

Figure 2: Service Registration and Harvesting

B) Querying a Service Registry for OGC Web Services.

A GIS analyst must be able to locate OGC Web Services. The analyst can use an
integrated client to query a WRS for available services (see Figure 3) based on location
and other parameters. The WRS returns an XML document containing capability
metadata for the available services. The client should present these results in such a way
that the analyst could select a specific service and view its capabilities.

 All rights reserved
7

© OGC 2003 –

Integrated Client WRS W*S

getCapabilties()

getCapabilities return - XML()

getRecordRequest()

getRecordRequest return - XML()

getCapabilities()

getCapabilities return - XML()

Figure 3: Service Discovery

C) Querying a Service Registry for data layers.

Service registries not only contain information on the services registered, they also
contain metadata on the data layers contained by each service. A GIS analyst can query
an integrated client to discover not only services but also data layers. The client retrieves
metadata for these layers from the service registry so that the analyst can filter the results
in order to find available data which meets time-of-collection and data quality
requirements.

D) Assembling Service Chains to provide data layers for the client.

Integrated clients, no matter how complex, will never be able to render every possible
data source. Therefore, additional services may be required to generate an appropriate
data layer. The client can be used to discovery additional data transformation and
portrayal services that can be chained together to produce a data layer that can be
supported.

In the example in figure 4, a GIS analyst uses an integrated client to query a WRS and
discover a Web Feature Server (WFS). In this scenario, the data in the WFS is rendered
by a WMS that supports external feature rendering. The resulting service chain can be
used by the integrated client to retrieve a data layer. The client then queries the WMS,
passing all of the data required to retrieve feature information from the WFS. The WMS
retrieves the feature data from the WFS and returns a raster image to the client.

8 © OGC 2003 – All rights reserved

Integrated Client WRS WFSWMS

getRecordRequest()

getRecordRequest return - XML()

getMap()

getMap return - Raster()

getCapabilities()

getCapabilities return - XML()

getCapabilities()

getCapabilities return - XML()

getFeatures()

getFeatures return - GML()

Figure 4: Service Chaining Example

In another example, a GIS analyst invokes a tool that allows the user to specify a filter for
how they want to view the imagery. First, the client accesses a Service Registry to find a
Web Coverage Service that will operate on one of the output formats produced by the
Imagery Archive Service. The analyst identifies the appropriate service. Next the client
searches the Service Registry to find a matching Coverage Portrayal Service. It finds a
match, but it can not support the results because a coordinate transformation is required.
The client then proceeds to search the Service Registry to find a matching Coordinate
Transformation Service. Once this is completed, the client has the full sequence of
necessary operations and constructs and invokes the following service chain: Web
Coverage Service→Coordinate Transformation Service→Coverage Portrayal Service.
The client then queries to the Web Coverage Service, requesting multiple bands of the
imagery, as a reduced-resolution “browse thumbnail” for the overall area. The coverage
data is chained through the chosen Coordinate Transformation Service and Coverage
Portrayal Service, which renders the imagery as a simple JPEG image. The analyst then
browses the resulting image using the client imagery viewer. Having found a desirable
image, the user fetches the full-resolution imagery using the same service chain: Web
Coverage Service→Coordinate Transformation Service→Coverage Portrayal Service.
The analyst can now browse and combine the different image bands as needed.

 All rights reserved
9

© OGC 2003 –

Integrated Client WRS WCS CPS

getRecordRequest return - XML()

getRecordRequest()

getCapabilities return - XML()

getCapabilities()

getCapabilities return - XML()

getCapabilities()

getMap()

getFeatures()

getFeatures return - GML()

getMap return - Raster()

Figure 5: Additional Service Chaining Example

E) Managing a collection of Service Registries.

Instead of querying a specific WRS, an integrated client could potentially query multiple
WRS services simultaneously. This has the potential of increasing the breadth of the
search, but there are ramifications for performing this operation. Since each query
returns an XML document which may be quite large, bandwidth restrictions may make
this operation impractical. There is also the potential for retrieving multiple duplicate
entries and the complexity of organizing the results from multiple servers.

5.2 Imagery Production/Exploitation

The Imagery Exploitation functionality serves to provide retrieval and viewing of
imagery. This includes querying for imagery based on geometry and attributes and
creation of service chains to utilize additional services to render the imagery in a specific
manner. The user will use this component to find and use imagery data, and then find
and use imagery application services to operate on the imagery data. The Imagery
Production functionality requires support of some or all of the following OGC interfaces:
WMS, WCS, CPS, ICS, and IAS. It can be divided into the following 4 functions:

A) Querying an Imagery Catalog.

The client must have search tools to specify, find, and retrieve data. The client must also
provide the user the means to view and interact with the data. The client must have tools

10 © OGC 2003 – All rights reserved

to select and invoke imagery application services, and to invoke service chains (e.g.
Image Catalog→Image Archive→Coordinate Transformation Service→Web Coverage
Service). The client might access map data to depict their study area, view imagery
footprints from an Image Catalog, select imagery coverage, etc. This also involves using
Web Map Servers and Web Feature Servers.

B) Retrieving Imagery from an Imagery Archive.

The user wants a recent imagery over the disaster area. The user formulates a request
based upon the well-known Imagery Metadata Model employed by the Image Catalog.
The user employs the client to access an Image Catalog to find recent satellite, aerial and
ground imagery of the area. (As described here, the client knows about the Image Catalog
Service, but the client might also discover this service through a service registry that
operates as a broker for several Image Catalogs.)

The user finds the Image Metadata they want through the catalog search and now must
access the appropriate Imagery Archive Service to fetch the imagery and imagery support
data. The client formulates the request to the archive, stipulating where the data are to be
delivered for the client to later exploit. This process might take some time, if for example
the archive has to fetch the data from tape storage. The Imagery Archive Service
completes its assignment by delivering the imagery data to the appropriate Web address.
Optionally, the Imagery Archive Service might employ a Notification Service to alert the
User about the availability of their requested data. The data is now available for
exploiting, although it is still in its tiled archive format. (The archive service likely
supports mosaicing, re-tiling, and re-sampling to deliver the imagery in a form that is
ready for exploitation.)

C) Assembling a Service Chain to retrieve raster data from a WCS and rendered
according to client specified styles and parameters by a CPS.

D) Local manipulation of imagery (translucency, edge detection, etc.)

5.3 Feature Production

The Feature Production functionality serves to provide retrieval and viewing of feature
geometry and attributes, supporting complex querying for features based on geometry
and attributes, cartographic portrayal of feature data, feature analysis, and feature editing
capabilities. The Feature Production functionality requires support of one or more of the
following OGC interfaces: WMS, WFS, FPS, SMS, SLD. It can be divided into the
following 2 functions:

A) Managing/editing features contained in a WFS-T.

A Transactional Web Feature Server (WFS-T) allows users to retrieve and modify feature
data. In the example in figure 6, a GIS data producer employs recent imagery as a source
for feature analysis and update. The integrated client employs an Image Catalog Service
and Image Archive Service to access the imagery. Next, the user browses and queries
Web Service Registries for feature metadata. The user employs this metadata to select
the appropriate feature data for use in disaster response. Having discovered the
appropriate feature data, the client then employs a Transactional Web Feature Service

 All rights reserved
11

© OGC 2003 –

(WFS-T) to access the feature data. The client then uses feature extraction tools to
update the data.

Integrated Client WRS WFS-TICS

getRecordRequest()

IAS

getRecordRequest return - XML()

Message1()

Message2()

Message3()

Message4()

getCapabilities return - XML()

getCapabilities()

getFeatures()

getFeature return - GML()

LockFeature()

LockFeature response - XML()

Transaction()

Transaction response - XML()

Figure 6: WFS Transaction with Imagery Server Support

B) Assembling a Service Chain.

The client provides the means to view, filter, and interact with feature data rendered
according to client defined styles and client specified parameters.

In the example in Figure 7, an SLD-enabled Web Map Service is used to portray
cartographic layers that are styled according to user-selected symbolization preferences.
The user selects the desired SLD from an SMS; this SLD was previously constructed
using a Style Editor component.

12 © OGC 2003 – All rights reserved

Integrated Client WRS WMSSMS

getRecordRequest()

getMap response - Raster()

getRecordRequest return - XML()

getStyles()

getStyles response - XML()

getMap()

getStyles()

getStyles response - XML()

getCapabilities return - XML()

getCapabilities()

Figure 7: Feature Portrayal using SMS

5.4 Sensor Web Production

A number of remote sensors, but in-situ and mobile, are in use today. The data from
these sensors can be analyzed for their spatial and temporal patterns and visualized
through maps either statically or via animation. A number of OGC services were created
to provide a common framework for working with sensors which are connected to the
Internet. The Sensor Web Exploitation functionality requires support of some or all of
the following service types: SPS, SCS, WNS. It can be divided into the following 3
functions:

A) Retrieving sensor data from a SCS.

Support for a Sensor Collection Service (SCS) allows users to retrieve data from a remote
sensor. Sensors may be queried by location, time, and coordinate system. The SCS
responds to a query with an XML document containing the sensor observation data.

In the example in Figure 8, an Emergency Management analyst wants to find the water
level l at any location p within the river system at time t, in response to rising water levels
during a severe thunderstorm. The analyst builds a query for a OGC Registry Service
asking “Is there a service that is able to give me the data I need synchronously?” and
receives the URL of an appropriate SCS. The analyst retrieves the capabilities of the

 All rights reserved
13

© OGC 2003 –

SCS. The capabilities indicate that the service provides data for the entire river system,
and the observations can be retrieved by providing the location and time. The analyst
provides these parameters and sends them to the SCS using the getObservation() request;
the SCS responds with the appropriate observation data.

Integrated Client WRS SCS

Get Capabilities response - XML()

GetRecordRequest()

GetRecordRequest response - XML()

GetCapabilities()

GetCapabilities response - XML()

GetObservation()

GetObservation response - XML()

GetCapabilities()

Figure 8: In-Situ Synchronous Water Level Sensor

B) Managing a sensor plan through a Sensor Planning Service.

The Sensor Planning Service (SPS) is used to generate and edit collection plans. Pre-
collection prediction capability is used to help develop the plans required for mobile
sensors to provide the needed sensor coverage. This service accepts location information
identifying the region/target of sensor coverage. The prediction capability considers the
physical environment, communications environment, sensor, and platform to determine
the relevant area, path, time, duration, and/or similar parameters, and acceptable
deviations that the platform must take into account to correctly position the sensor. In a
UAV scenario, the pre-collection prediction capability may determine the collection
geometry, which may be represented in 2D or 3D to help identify possible flight
area/path, speed, and elevation in a way users can insure that the planned sensor flight
provides the needed sensor coverage. Displaying similar information for a series of
regions/targets can help the user identify a complete flight circuit appropriate for single
sensor collection against multiple targets. This service allows a UAV collection plan to
be generated and then saved. In addition to the flight plan details, corresponding sensor
Collection Requests are also specified. This information is used to fly the UAV and task
the air quality sensor to perform collections.

C) Handling sensor plan notifications from a Web Notification Service.

14 © OGC 2003 – All rights reserved

When a request is made through an SPS and it is not immediately known whether the
requested action can be performed, a WNS is used to notify the user that the collection
has been successful. The user is then free to use utilize the SCS functionality to retrieve
the data.

In the example in Figure 9, an Emergency Management analyst wants to know the
concentration of a hazardous airborne pollutant at any location within a city and
surroundings at a given time t, in response to a disaster at a chemical plant. The analyst
builds a query for a OGC Registry Service asking: “Is there a service that is able to give
me the data I need?” and receives the URL of an SPS. The analyst retrieves the
capabilities of the SPS. The analyst sends a collection feasibility request to the SPS for
their desired collection; the SPS responds with an affirmative. The analyst submits the
collection request to the SPS; the SPS registers the request with a WNS. When the
collection has been completed the SPS informs the WNS, and the WNS notifies the client
that the collection has been stored in a given SCS. The client retrieves the observations
from the SCS.

 All rights reserved
15

© OGC 2003 –

Integrated Client WRS SPS

Get Capabilities response - XML()

GetRecordRequest()

GetRecordRequest response - XML()

GetCapabilities()

GetCapabilities response - XML()

GetFeasibilityTest()

GetFeasibilityTest response - XML()

GetCapabilities()

WNS SCS

DoProcess()

DoProcess response - XML()

RegisterProcess()

NotificationMessage - XML()

GetObservation()

GetObservation response - XML()

registrationID()

DoNotification()

acknowledgement()

Figure 9: In-Situ Asynchronous Air Quality Sensor

5.5 Project Persistence & Sharing

The Project Persistence & Sharing functionality serves the need for users to maintain a
flat file representation of the knowledge aggregated in a client project and enables
sharing of this knowledge between different clients. The current most robust OGC
specification for supporting this functionality is known as the WMS Context
Specification. There are however, other draft OGC specifications, as well as higher
aspirations.

5.5.1 WMS Context

16 © OGC 2003 – All rights reserved

The present Context specification is known as a "Web Map Context Document," or
simply a "Context." It states how a specific grouping of one or more maps from one or
more map servers can be described in a portable, platform-independent format for storage
in a repository or for transmission between clients. There are several possible uses for
Context documents:

• The Context document can provide default start-up views for particular classes of

user. Such a document would have a long lifetime and public accessibility.
• The Context document can save the state of a viewer client as the user navigates and

modifies map layers.
• The Context document can store not only the current settings but also additional

information about each layer (e.g., available styles, formats, SRS, etc.) to avoid
having to query the map server again once the user has selected a layer.

• The Context document could be saved from one client session and transferred to a
different client application to start up with the same context. Contexts could be
catalogued and discovered, thus providing a level of granularity broader than
individual layers.

A Context is an XML document that includes information about the server(s) providing
layer(s) in the overall map, the bounding box and map projection shared by all the maps,
sufficient operational metadata for Client software to reproduce the map, and ancillary
metadata used to annotate or describe the maps and their provenance for the benefit of
human viewers.

5.5.2 Location Organizer Folder (LOF)
The LOF specification is a draft specification which has not seen much movement since
the Geospatial Fusion Services (GFS) test bed. In concept, it is a “grab bag” that enables
users to create a collection of “geo-links” as features, and link in a wide range of http:
linkable resources (e.g., video, web pages, documents, graphics, etc.) into a personalized
collection. This XML document can be shared with colleagues in either “thick” or “thin”
versions. A thin LOF is just an XML document with links to remote resources. A thick
LOF actually harvests the remote resources and stores them locally in the document.

The LOF is hindered by the need for a specific application schema, which has not been
well specified, and is not in synch with several evolving OGC specifications. It is likely
that the LOF specification will ultimately we overcome by the next generation of Context
specifications.

5.5.3 Capturing Additional Project Information
In the future, it would be desirable to have project persistence encodings that support
annotations (e.g. XIMA or some other form), WFS queries/filter expressions, and service
chaining (for instance, WCS to CPS). It is probable that a WMS/WFS Context will be
the next natural step toward more comprehensive project sharing.

 All rights reserved
17

© OGC 2003 –

6 Requirements

Requirements for an integrated client come from a variety of sources.

6.1 Sponsor Requirements

Sponsors of the development initiative for an integrated client that interacts with a variety
of OGC services have a variety of goals in funding this initiative. Included among these
are:

 Simplicity of Environment: one consistent user environment in which an end user
can interact with and use all OGC services.

 Applicability to their respective domains of interest.

 Demonstration in the context of an easily followed narrative that depicts a
realistic scenario involving geographic analysis.

6.2 End User Requirements

End user requirements for geospatial clients are as varied as the users themselves, and we
cannot detail them here. However, the following are of particular importance and
generality in the OWS1.2 initiative and in the context of bringing new, easy-to-use
technology to a community that is already sophisticated in the use of tools for geospatial
analysis:

 Simplicity and familiarity of use. Standard paradigms for data discovery, import,
collation.

 Familiar features and approaches to specifying map parameters such as bounding
region, spatial reference system (SRS), scale, and styling.

 Seamless integration of data processing and data rendering capabilities.

6.3 Project creation, storage, loading, and sharing.

While project persistence is not an explicit goal for this initiative, several of the OWS1.2
integrated clients do or will support it in some capacity. Among the considerations for
project persistence in this initiative are:

 Novel opportunities for technical innovation.

 Marketability: satisfaction of end user requirements for functionality and
workflow management.

 Interoperability Requirements

18 © OGC 2003 – All rights reserved

6.4 OGC specifications

 Specifications relevant to externally accessed services, or consistent with versions
under development during the OWS 1.2 test bed.

 All rights reserved
19

© OGC 2003 –

7 Architectural and Design Considerations

In practice, an integrated client implementation must harness specific technologies and
adopt particular architectural approaches. Each technology/architecture pairing presents
different reliability, availability, serviceability, usability, security, and performance
characteristics. And as such, different technology/architecture pairings may be more or
less suitable for various purposes across an enterprise.

As mentioned previously, there are five categories of functionality (or supported use
cases) are called for within a fully integrated multi-service client. These are:

A) Service Discovery & Binding

B) Feature Production

C) Imagery Production/Exploitation

D) Sensor Web Planning/Exploitation

E) Project Persistence and Sharing

Each use case strains different architectures in different ways. And, different kinds of
clients (e.g., thick clients, JAVA clients, Browser + Plug-ins, Browser + JAVA Applet,
Browser + Active X Controls or JavaScript, and Browser + HTML), due to the
capabilities of the implementation technology, are differentially capable of supporting
these use cases.

A separate, but related issue is the server-side client generators that might enable
thin(ner) clients to cascade various web mapping calls to other servers, or even design
and invoke complex service chains. While thick client products can sometimes draw
upon OGC conformant server-side components to provide such functionality, these thick
clients can also enable value-adding and data manipulation functions that are impossible
to replicate in a browser, and difficult to replicate in a browser when augmented by
various plugins, applets, or scripting languages.

7.1 Characteristics of Client Technology and Architecture Choices

As mentioned above, each technology/architecture pairing presents different reliability,
availability, serviceability, usability, security, and performance characteristics. And as
such, different technology/architecture pairings may be more or less suitable for various
purposes across an enterprise.

7.1.1 Reliability

The reliability of any network-based architecture can be affected by a number of factors.
And, the wider the network and more distributed the server infrastructure, the more these
factors are out of your direct control.

20 © OGC 2003 – All rights reserved

• Network bottlenecks and networks under peak usage can lead to poor quality of
service for distributed geo-processing, regardless of whether the client is thick,
thin, or anything in between.

• Depending on the information security measures taken at various points along the
network topography, various forms of active code (e.g., JavaScript, VB script,
ActiveX, etc.) will often be disallowed. Therefore, the reliability of clients
utilizing active code will not be automatic across any network.

• The server infrastructure for a distributed geoprocessing solution can either be
deployed and maintained for reliability, or not. If inadequate attention is paid to
the server infrastructure (and when clustered, to relevant clustering technology),
then reliability will be compromised.

7.1.2 Availability

Users of thick client devices enjoy a certain level of data persistence that they do not get
with a browser based WMS view. When network availability fails, so does access to
data. As such, client-side caching can enable the availability of whatever data is locally
available at the time of network failure. However, thick client implementations still must
operate within an OGC conformant distributed geo-processing infrastructure if others are
to have access to value added data (e.g., annotations, attribute updates, or
geometry/topology updates).

7.1.3 Serviceability

The servicing of various client technology/architecture configurations ranges widely.
Thick client deployments entail configuration management which, depending on the
technology, can be centrally managed. Browser deployments also require configuration
management, to ensure the proper level of browser feature support. Yet, providing
intermittent servicing and updating of client/application functionality can be much more
frequent and simple for web-based client generators.

7.1.4 Usability

The usability of a client is primarily based on the quality of interface design. Generally it
is irrelevant whether a capability is held locally in a client, or across a network.
However, a browser client based upon a WMS “views” concept will pose user latency
between views. This is not inherent to http://, but rather to un-augmented browsers
engaged in web mapping.

7.1.5 Security

Both thick client applications and browser-based applications have the potential for
offering single-sign-on PKI identification and authentication (I&A), which can conform
with the Department of Defense’s Defense Information Security Agency (DISA) PKI
standards. Browser selection, however, may be influenced by the native vulnerabilities in
the browser for managing PKI certificates. Also, allowable scripting and plug-ins may be
limited in order to achieve a high level of information assurance.

 All rights reserved
21

© OGC 2003 –

The other side of information security, audit and profiling, can be implemented on each
server, including client generators. Thick client applications making calls to a distributed
geo-processing infrastructure would face similar logging. However, insofar as thick
clients cache larger volumes of data on the client side, the click-stream analysis would be
less fine-grained.

7.1.6 Performance

The same network issues introduced and discussed in the ‘reliability’ section above are
just as important to the performance of a distributed geo-processing solution.

Thick clients have the potential to provide certain performance gains, once data is
brought across the network. WMS calls bring map layers to a thick client. WFS calls
bring feature data to the thick client. And, WCS calls bring subsets of coverages (e.g.,
imagery, etc.) to the thick client. Once in the thick client, the navigation of the data does
not face any network latencies. Navigating through the data (panning, zooming, etc.) is
one function that can be very susceptible to performance problems. However, to take
advantage of the potential for caching data on the client side, clients must retrieve more
data than just the current view. For example, allowing for client side panning would
require retrieval of data well outside the extents of the current view. Unless this sort of
mechanism is implemented, there is no performance advantage to the thick client for this
scenario. This is a trade-off that must be considered by the implementers.

Browser based clients most often adopt the strategy of drawing upon a range of portrayal
services to provide data sources through a WMS interface. This strategy provides a view
into the distributed geospatial resources, with limited functionality for editing and
manipulating this data at the client level. And, every new view requires another call
across the network. However, the size of a WMS request and response is very minimal
and poses limited impact on a network.

Particular scripting and plug-in augmentations bring the more bandwidth intensive WFS
and WCS outputs directly to the browser client. Such clients can offer client-side
caching of data that can reduce the number of network calls, but the volume of data
originally pushed to the client far exceeds a WMS call. Also, such clients can enable
actually editing and manipulation of data at the client level, which might be
transactionally inserted back into the originating service.

Clustering allows greater performance than more distributed network/server
topographies. While clustering over http:// does enable you to avoid network latencies,
the current OGC servlet (http://) interfaces do not maximally enable clustering the way
CORBA or JAVA interfaces do.

7.2 Other Architectural and Design Choices

In addition to the question of whether a client is clustered or distributed, an implementer
must decide how the various components of the software connect to one another, how
control is imposed on the flow of logic through any given process, and how and whether
extensions are accommodated. Extension mechanisms are often important in the case of
OGC interfaces, which are made available only as plug-ins or software development kits
in a number of commercially important cases.

22 © OGC 2003 – All rights reserved

For many GIS systems that predate the growing acceptance of interoperability standards,
the core system may be considered a black box that provides hooks for adaptors or
translators of file formats not supported in the original design. Call-backs and callouts to
extensions that support OGC interfaces are essentially functional interfaces. They may
be mediated through jump tables that are populated from configuration files when the
application is started. The most monolithic systems can be extended only by their
developers, by compiling new interfaces directly into their code.

Some more recently developed systems are be built upon a concept of messaging
between their various internal components. A system of this sort resembles a clustered
architecture as described above, except that its various components all exist and
communicate within the same address space, as a single application. Information passed
across the internal interfaces may be documents similar or identical to those mandated by
OGC standards. This approach minimizes the cost of converting external documents to
internal object format.

 All rights reserved
23

© OGC 2003 –

8 Client Components and Modules

Like most complex software applications, the extensive functionality of an Integrated
Client of OGC Web Services is typically implemented as a suite of software modules that
have more or less independent although related functions. Although there is a
relationship between functional categories and the software modules that implement
them, the relationship is not necessarily one to one.

By the same token, neither functionality nor the underlying software always bear a direct
relationship to user interface. In this section, we describe some of the software
components that support the fundamental operations of an integrated client. In the next,
we discuss user interface.

8.1 Factoring

There are many ways that code can be factored, and it will be impossible to catalog and
evaluate them all in this short treatise. Consider, for example, how rendered data are
compiled in a map display window. The window may be nothing more than a target
region of application memory, into which each active rendering service sums its data in
turn when an update event is delivered from system control logic. Alternatively, the
display could be an active and self-managing buffering system that polls constituent
services. We will attempt to keep our discussion above the level where code factoring
makes a difference in the way a functional block is conceived.

8.2 Generic Descriptions of Client Components

The following paragraphs provide a description of modules that may be found in a client
that supports a variety of OGC specifications.

8.2.1 Search and Discovery System

The ability to search for data is fundamental to Service Discovery and Binding
functionality. User interface of some sort (see Section 9) is essential to this system
component; it has no use as a hidden internal engine. Speaking schematically, the search
subsystem connects at one end to an OGC search protocol client interface, such as a
WRS, Stateless Catalog, or UDDI client. The discovery subsystem includes code capable
of parsing and organizing the Capabilities Documents that come through the protocol
interface, as well as analyzing and presenting the material from the parsed data.

8.2.2 Data Selection Component

Once data sources have been presented by the Search and Discovery System, they may be
selected by the user for retrieval, and subsequent display or further processing. Details of
the logical organization of selection software may be varied and are not discussed here.
The selection event itself, resulting from user interaction with a GUI widget such as a
pull-down menu or selectable list, is typically mediated by the user interface library that
comes with the operating system or windows support subsystem. Ultimately, control
passes to code that actually binds to a data service, retrieves the selected layers, and

24 © OGC 2003 – All rights reserved

caches them or passes them to display or processing components within the client
application.

There are some variations on this theme. The selection software may be used to choose
local as well as remote data sets. Data selection software might also connect to services
that appear to be OGC data services, but in fact are opaque interfaces to rendering or
other processing services that ultimately connect to data services. The only such service
at this time is the Coverage Portrayal Service, which presents a WMS interface to the
web.

8.2.3 Display and Navigation System

Clients that provide for visualization at all include software to control the map display,
zoom controls, layer ordering and visibility control, legend, etc. This software is
inherently dependent on user interface, both for visualization on output, and user control
on input. There are actually several components of this. The map display itself may
include a secondary buffering system in addition to the primary display buffer, to assist in
the support of pan, zoom and other navigation actions.

8.2.4 Coordinate Transformation Engine

Many clients have the ability to perform coordinate transformation. This service is
relevant to all three map-creation functionalities: Feature Production, Imagery Production
and Exploitation, and Sensor Web Planning and Exploitation. The coordinate
transformation engine is typically an essentially isolated entity within the application or
an external, dynamically bound library. It does not inherently support or require user
interface elements, but it may receive parameters from user interface components used
for selecting transformations or target spatial reference systems. It may also report
source and destination reference systems to a status display.

8.2.5 Rendering Engine

The rendering engine is the component of the client that converts data to a form in which
it can be displayed graphically. The data come from remote services, including OGC
data services, and possibly local data stores. Styling information may be created or
manipulated locally (see below), or may be received from another source, possibly as a
standard styling document such as a Style Layer Descriptor.

Note that images retrieved from WMS servers are already styled, although it would be
possible for a client application to restyle them via one-to-one color remapping or some
more sophisticated algorithm. However, raw data retrieved from WFS cannot be
displayed unless they are rendered, with some sort of styling. Data from WCS might or
might not be displayable upon receipt, depending upon format and the client’s
capabilities.

8.2.6 Style Editing and Management Interface

A client may include a number of tools for determining the styling of data it receives. As
indicated above, this is essential for WFS. It is also highly desirable for WCS coverage
data, and useful as well for WMS information, especially if it is received from an SLD-
enabled WMS server.

 All rights reserved
25

© OGC 2003 –

Clients that interact with SLD-enabled WMS may contain entire subsystems for editing
SLD documents. These may resemble or even be fully integrated with the style editing
features that control the appearance of local data.

8.2.7 Geospatial Analysis Logic

A client that supports several OGC interfaces may be much more than a simple mapping
tool. Several included in this initiative are full-fledged GIS systems. As such, they
support a great variety of analytic capabilities, including unions and intersections of
areas, distance and containment relationships, statistical and report generation facilities,
means to combine two or more layers for analysis or enhanced display, etc.

8.2.8 Modelling Tools or Interfaces

GIS systems and simpler, more specialized clients alike may include tools for predictive
or analytical modelling. They may also support interfaces to external tools that perform
modelling or analysis.

8.2.9 Image Processing Engine

Graphical displays inherently require image processing, which is often provided by the
operating system’s user interface libraries. Tasks required of the system or application
image processing code include: summing information from multiple layers into a map
display buffer. and resampling and subsetting, required by map display navigation; more
sophisticated resampling features for clients that support coordinate transformation for
imagery.

Clients may also provide an entirely different class of image processing functionality
whose purpose is to enhance the displayed imagery or perform some sort of analysis.
Enhancement tools provided by some of the OWS1.2 include histogram equalization,
image differentiation or integration, brightness and contrast management, and
thresholding. Analytical tools are highly varied, and may be quite specialized. They
include software that implements clustering and classification algorithms, noise
reduction, guided or fully automated feature extraction, image stitching,
orthorectification, and any number of other tasks. Such tools are typically controlled by a
set of user interface elements.

8.3 Implementations Developed or Presented in OWS 1.2

The following table shows how many clients out of 8 in the project have planned support
for each of several existing or emerging OGC standards:

Current or Experimental OGC
Standard

Number of Integrated Clients Supporting (out of
8)

WMS 8

WFS 7

26 © OGC 2003 – All rights reserved

WCS 4 (+2 via CPS)

SLD 2

CPS (in addition to independent WCS
support)

1

SMS 1

SCS 3

SPS 3

WRS discover 6

WRS register 1

UDDI discover 2

Sharable project persistence (Context) 1

 All rights reserved
27

© OGC 2003 –

9 User Interface

9.1 Introduction

User Interface and human factors engineering constitute a huge field in the domain of
software as well as hardware development. It involves extensive test, experimentation
and domain expertise. Successful human-computer interfaces seldom result from
haphazard design and hasty implementation. However, they are often significantly aided
by an appropriate dose of inspiration, especially in these early days of the art. Human
interface is still a rapidly evolving field, and still ripe for innovation.

UI is also one very important way that vendors and other developers distinguish and
brand their products. In some measure, it is dictated by the operating system: different
platforms offer different means of interacting with the computer. Often these are merely
stylistic variations (bevelled "3D" buttons versus rounded-rectangle areas versus "jewel-
like" buttons), but in other cases represent distinctly different levels of support (Windows'
three styles of combo-box vs. HTML's <select>).

For these and other reasons, this document does not seek to mandate a standard for
Integrated Client UI. However, it does make observations, and records cases where
certain UI elements do seem in some sense to be standard in existing implementations. It
also discusses the benefits and issues of standardization in OGC Integrated Clients.

These suggestions are platform-neutral, and are intended to identify major components
without codifying them in detail.

9.2 Considerations Regarding a Standard User Interface

In this section we examine the practicality of standardizing UI elements for applications
that use OGC standards.

9.2.1 Benefits

The primary reward to users of interface standardization would be the consistency of
experience among applications from different vendors. It allows users to understand
immediately how to operate a standard component, even in unfamiliar environments, and
to transition smoothly between products while performing daily tasks. It reduces the
need for specialized training.

Standardization can benefit developers as well. By embodying best practices known to
the industry representatives that form the standards body, it eliminates the need for
redesign and shortens time to market. It also provides a market ready-trained in the use
of the standard components.

9.2.2 Obstacles

Despite the benefits, and even assuming that some standard components would be
valuable despite concerns about maturity of the art and vendor acceptance, there are
obstacles to the adoption of a prescribed User Interface standard. Among these is the
great diversity of environments currently in use, with their attendant capabilities.

28 © OGC 2003 – All rights reserved

At one end of the spectrum are the ultra-light clients, hosted exclusively within HTML
(and perhaps DHTML) browsers. While visually rich, these tools fall short in interaction;
solutions that must support a wide cross-section of available browsers are often reduced
to marginal lowest-common-denominator capabilities. Even browser-specific solutions
find the present state of the art very restrictive and require means of augmenting the User
Interface, either by extensive scripting, or the use of embedded technologies like Java.
Enhanced interaction description languages, such as XUL, are too immature at present to
offer any near-term improvements to these problems. At the other end of the spectrum are
heavy-weight clients, often very specific to an operating system, and usually supported
by proprietary subsystems that provide very powerful capabilities, but typically only to
the specific vendor’s suite of products.

The diversity of operating environments (specific operating systems, such as Windows,
Macintosh, etc., and platforms such as desktop, notebook, palm-top, etc.) each have
nuances that distinguish them from the rest. Producing a standard that spans all these
environments is not a trivial undertaking, as XVT and Java developers can attest. The
novice user sees the “foreign” look and feel, and is often uncomfortable with the
interaction. (Novice users on the Macintosh, for example, used to ask why such
applications aren’t like “real” Mac applications...)

Applications themselves often introduce complexities that make standardization more
difficult. The OGC provides a set of technologies that permit multiple vendors to
interact in a standard fashion. Yet, each vendor brings with it customers that are already
indoctrinated with terminology and interaction metaphors specific to that vendor, or to
the industry or vertical market served by that vendor.

Finally, the level of user sophistication may necessitate simplifying or entirely removing
certain aspects of User Interface in some cases. Even a geographically sophisticated
layperson is unlikely to know more than standard Latitude/Longitude and may care little
for various means of projection. The less sophisticated layperson may not even want to
know about that, and alternate means of specifying bounds may be called for. (A case in
point: how often has the typical MapQuest® user been presented with a bounding box, let
alone a means of specifying a Spatial Reference System?)

None of these barriers is definitive, and none precludes specifying a standard for one or
more environments, or possibly a single standard that spans many environments. Some
market segments might have goals of their own with respect to UI, and might welcome an
interim standard based on the benefits discussed in the previous section.

9.3 UI Description Languages

While somewhat tangential to the matter of OpenGIS User Interfaces, it becomes
apparent that there is a need to uniformly describe the interface, both in the design sense,
and in a machine-actionable way. In the course of this initiative, we reviewed a few new
languages that are intended to fill this need. The following summary identifies the most
salient points of our exploration of these technologies:

• Benefits

o Platform-independent, automatically interpreted GUI object rendering

 All rights reserved
29

© OGC 2003 –

o Different platform-appropriate interpretations on different OS, different
hardware (e.g., desktop vs. hand-held).

o Possible emerging standards? (No clear single leading candidate at this
point.)

• Example languages, limitations, and liabilities

o Current state of UI description languages may be insufficient to support
any but the simplest applications; too coarse to capture subtleties of
layout.

o XUL: Supports HTML only, and in practice often requires platform-
specific code embedded in the document.

o UIML: More general, and getting stronger, but still supports no encoding
of functionality, in particular of data validation or behavior.

o XIML: Includes behavior. No assessment is available at this time.

• UML itself may be adequate to address most issues, especially regarding behavior
of these objects with respect to the rest of the application.

• The topic needs more exploration.

o The notion of using UIML was presented and discussed at the September,
2002 TC Meeting (by Ron Lake, Galdos, Inc.). We can anticipate further
research and discussion.

o UI Description languages (UIDL’s) have gained momentum recently, but
are still immature. Premature adoption of one UIDL over another may
prove counterproductive down the road, possibly requiring some early-
adoptees to abandon thwarted standards. Nevertheless, we do believe it
would be appropriate to establish a set of evaluation criteria (platform-
neutrality, ubiquity, simplicity, richness, etc.) to apply to candidate
languages, in order to make an informed recommendation as soon as it is
practical to do so.

9.4 Additional UI Topics

There are a number of topics relevant to user interface that we explored, but were not
able to fully elucidate in this initiative. We note them here to identify them as points of
interest to readers of this document, and to serve as a possible guide to future work in this
arena.

• Generic use cases that require some involvement by the user, and thus some form
of UI:

o Search

o Layer selection and ordering

o Zooming and other navigation

30 © OGC 2003 – All rights reserved

o Specifying style and other presentation

o Tasking active sensors

o Specifying transformations, or transformation pipelines

o Bounding box definition: both numerical and graphical

• Opportunities arising from other applications use cases:

o Catalog a list of UI functional requirements (a minimum feature-set) for
each web mapping use case, as detailed in the Overview (Section 5)
above, and also as identified in other specific use cases that may come to
light.

o Catalog/describe a range of UI styles at least for the most basic web
mapping use-cases, as a sort of style-guide.

• Window allocation and screen real estate: how much space should be allocated to
map views as opposed to controls, and under what circumstances? Large,
viewable maps are often desirable, but so are accessible and complete control
clusters. Is it desirable to have one window that contains display and a full suite
of controls, or to support multiple windows? What are the trade-offs for different
groups of geospatial systems users?

• Modal vs. modeless behaviors: Interface modes are an important consideration in
all UI designs. The most familiar example with geospatial tools is probably
navigation. What are the relative benefits of being in “zoom in,” “zoom out,” or
“pan” mode as opposed to having all these operations available all the time?
Specialized panels that lock out the rest of the display while the user sets
preferences, styling parameters, or other features of an application are another
case in point.

• Differences or similarities in UI for accessing different services (WMS, WFS,
WCS, SWE data services, various styling services). The suite of clients offered
for OWS1.2 provides a substantial arena for this comparison. In overview, it
appears that the interfaces for the web mapping services were quite similar, with
some variation to support rendering of pure-data services (WFS and WCS).
Sensor interfaces were different. However, these comparisons were not
quantified. A thorough study would require an evaluator to become familiar with
the operation of all the clients.

• Generic user vs. expert modes

• Specific UI elements: There are many ways to do navigation, discovery and
metadata presentation. Is there a common "best-practice" current approach? What
new, innovative interfaces may be forthcoming in the near future? What
requirements might drive developing them? One form or another of each of the
following components appeared in several of the Integrated Clients developed
during the OWS1.2 Initiative:

o Map Window

 All rights reserved
31

© OGC 2003 –

o Navigation tools: zoom, pan, or jump

o Discovery tools and layer selection

o Metadata and auxiliary data display, and filter editors or controls

o Styling editors and controls, including layer ordering tools

o Sensor tasking or query tools and sensor data visualization

o Front ends for modeling or analysis engines, including image or geospatial
processors. These appeared in relatively simple WCS clients as well as in
general-purpose GIS applications.

o Notification panels or annunciators

9.5 Summary and recommendations

• Because the science of user interface is moving rapidly, and because vendors use
user interface to provide their own added value and provide brand identification,
it is not appropriate at this time to mandate a standard OGC user interface for web
mapping applications.

• There may be opportunities and benefits to specifying a set of standard
components, and even the arrangement of these components, for certain market
segments. Benefits could include capture of best practices from a broad-based
group of implementers and users, a reduced cost for user interface design, and a
resultant shorter time to market.

• Any such guidelines should be

o based upon extensive usability testing

o extensible, to accommodate innovation and new requirements

o platform neutral, with respect to vendors, hardware platform, and
underlying transport protocol.

• Guidelines could define minimal levels of support, and offer tiers of improved
behavior for more sophisticated users, or richer technology platforms.

32 © OGC 2003 – All rights reserved

10 Test Considerations and Results

10.1 Issues and Opportunities

10.1.1 Combinatorics of testing many services.

One requirement of developing an integrated client application that supports multiple
OGC services is that the application be tested against all services, and as many instances
of each one as possible. This produces a much more substantial burden than testing one
interface alone. Mechanics of the test effort itself take time and resources, but the greater
effort involves communication with a greater number of organizations, and collating,
reporting, and especially resolving failures, partial successes, and ambiguities.

10.1.2 Staged testing; leveraging one service to test others

 Early in the OWS1.2 initiative, we had hoped to gain some leverage against the
combinatoric problem by using intermediate services in a chain to test several
services that lay beyond it, allowing the exercise of two or more services at one
time. This opportunity did not present itself, as the only such service ultimately
considered for this work was a CPS instance that was not tested by any integrated
clients.

10.2 External vs. Internal Interoperability

Talking to each external service independently is not all there is to exercising an integrated client.
We anticipated that some issues might arise in testing whether the internal representations and the
presentation of the data are consistent among the services accessed by the clients.

In fact, no prominent issues of this sort did arise. The primary issue was one that has been
encountered in many other initiatives, and by clients that access only a single service type:
inconsistent spatial reference systems among the remote data sets. Integrated clients with
substantial local functionality can provide a solution to this issue, however, by performing
coordinate transformations on the data they retrieve.

10.3 TIEs and Results

A number of Technology Integration Experiments (TIEs) have been performed between
the different integrated client implementations and the different OGC services. The
results of these TIEs appear in Annex A.

These results are also summarized in the following tables. Successes and failures, with
some qualifying information, are recorded in the relevant table locations. A blank entry
means that no test was reported.

Please note that this summary does not capture all the nuances of the reports in Annex A.
A success may mean that the client and server worked flawlessly, but only in a
constrained set of experiments. TIEs noted here as failures may have been very close to
successful interactions, and may have resulted from inconsistent interpretations of
existing or experimental specifications rather than flaws in client or server software. It is
also likely that some informal experimentation was not recorded as a TIE at all.

 All rights reserved
33

© OGC 2003 –

For a full appreciation of the Integrated Client tests and results, please refer to the Annex.

10.3.1 WRS Registry TIEs

 WRS
Servers:

CubeWerx Galdos Ionic Polexis Syncline

Clients:
Laser-Scan,
Inc.

Success, but with
non-compliant
query

No services
registered

Failed Failed: null
response

Failed

Ionic SA Partial success? Partial
success?

 Partial
success?

Autodesk Success with
workaround

 Success Failed:
XML
issue

Success,
but registry
empty

Failed

Intergraph
GMU Success
UAH
Polexis Exception

response
Success:
requires
workaround

Failed Failed

10.3.2 UDDI Registry TIEs

 UDDI Servers: NASA Syncline
Clients:
Laser-Scan, Inc. Failed
Ionic SA Success
Autodesk
Intergraph
GMU
UAH
Polexis

34 © OGC 2003 – All rights reserved

10.3.3 WMS TIEs

 Servers: CAST CubeWerx Intergraph Ionic JPL
Landsat
Mosaic

NASA
GLOBE
data

Clients:
Laser-
Scan, Inc.

Success
when
server is
available

Success
with most
layers

Success Success
with
some
layers

Ionic SA Success Success Success Success
Autodesk Success Success Success Success Success
Intergraph
GMU Success Success Success
UAH Success Success Success Success
Polexis Success,

including
SLD

10.3.4 WFS TIEs

 Servers: CubeWerx Galdos Intergraph Ionic
Clients:
Laser-Scan,
Inc.

 Success

Ionic SA Success, once
schema issues
resolved

Success, once
schema issues
resolved

Success, once
schema issues
resolved

Autodesk Limited
Success

Success Success Limited
Success

Intergraph Success – some
pending fixes

 Success Success in
parse and
retrieve; issues
with WFS-T

GMU Success Success Success,
including WFS-
T

UAH Success Success
Polexis

 All rights reserved
35

© OGC 2003 –

10.3.5 WCS and IAS TIEs

 Servers: CubeWerx Intergraph GMU PCI UAH Intergraph
IAS

Clients:
Laser-
Scan, Inc.

Version
mismatch

Success
with v. 0.4

Version
mismatch

Version
mismatch

Ionic SA
Autodesk
Intergraph Success Success Success Success
GMU
UAH Success
Polexis

10.3.6 SCS TIEs

 SCS Server: Polexis
Clients:
Laser-Scan, Inc. Success (intermittent connection issue)
Ionic SA Success
Autodesk
Intergraph
GMU
UAH
Polexis

36 © OGC 2003 – All rights reserved

11 Summary

In this document, we have addressed a variety of topics concerned with clients that
integrate the ability to access several OGC-compliant services within a single application,
and merge the acquired data into a single map or information display. We have touched
on various aspects of client architecture, including the impacts of component distribution
across a network, and choice of implementation technology. We have identified a
variety of generic and specialized use cases. We have described the functional
components of an integrated client, and provided an overview of some user interface
features and considerations.

Perhaps most important, this project has resulted in the creation or extension of seven
multi-service, integrated OGC client implementations, which have been tested as reported
in this document, and deployed in an extensive live demonstration. Further exercise,
testing, refinement, and extension of these and other clients is the best way to gain deeper
insight into the relative merits of different approaches to client creation.

 All rights reserved
37

© OGC 2003 –

Annex A – Technology Integration Experiments

1 Laser-Scan, Inc.

1.1 Galdos WRS

1.1.1 Operations Exercised

• WRS GetCapabilities

• WRS GetRecord on WMS and WFS

1.1.2 Test Procedures

1. Open the WorldView client

2. Select the Query Manager tab

3. Select New Query

4. Select the server being queried from the Registry Server drop down (or create a
new one if it does not exist)

5. Select Refresh and note the results

6. Enter a title to query against and select Refresh again. Note the results.

7. Enter a string into the abstract keyword field and select Refresh again. Note the
results.

1.1.3 Test Results

There are no WMS or WFS servers in this particular WRS. We always get back an
empty result set. This prohibits us from advancing past step 5 in the test.

1.1.4 Next Steps (Actions Required)

We will continue to try these tests periodically until we find some data and can
continue.

1.2 Syncline WRS

1.2.1 Operations Exercised

• WRS GetCapabilities

• WRS GetRecord on WMS and WFS

38 © OGC 2003 – All rights reserved

1.2.2 Test Procedures

1. Open the WorldView client

2. Select the Query Manager tab

3. Select New Query

4. Select the server being queried from the Registry Server drop down (or create a
new one if it does not exist)

5. Select Refresh and note the results

6. Enter a title to query against and select Refresh again. Note the results.

7. Enter a string into the abstract keyword field and select Refresh again. Note the
results.

1.2.3 Test Results

Bad Registry message. The server responded with connection refused.

1.2.4 Next Steps (Actions Required)

We will continue to try these tests periodically until they work.

1.3 Ionic WRS

1.3.1 Operations Exercised

• WRS GetCapabilities

• WRS GetRecord on WMS and WFS

1.3.2 Test Procedures

1. Open the WorldView client

2. Select the Query Manager tab

3. Select New Query

4. Select the server being queried from the Registry Server drop down (or create a
new one if it does not exist)

5. Select Refresh and note the results

6. Enter a title to query against and select Refresh again. Note the results.

7. Enter a string into the abstract keyword field and select Refresh again. Note the
results.

 All rights reserved
39

© OGC 2003 –

1.3.3 Test Results

Bad Registry message. The server responded with connection refused.

1.3.4 Next Steps (Actions Required)

We will continue to try these tests periodically until we see better results.

1.4 Polexis WRS

1.4.1 Operations Exercised

• WRS GetCapabilities

• WRS GetRecord on WMS and WFS

1.4.2 Test Procedures

1. Open the WorldView client

2. Select the Query Manager tab

3. Select New Query

4. Select the server being queried from the Registry Server drop down (or create a
new one if it does not exist)

5. Select Refresh and note the results

6. Enter a title to query against and select Refresh again. Note the results.

7. Enter a string into the abstract keyword field and select Refresh again. Note the
results.

1.4.3 Test Results

Bad Registry. The server responded with null.

1.4.4 Next Steps (Actions Required)

We will continue to try these tests periodically until we find some data and can
continue.

1.5 Cubewerx WRS

1.5.1 1.5.1 Operations Exercised

• WRS GetCapabilities

• WRS GetRecord on WMS and WFS

40 © OGC 2003 – All rights reserved

1.5.2 Test Procedures

1. Open the WorldView client

2. Select the Query Manager tab

3. Select New Query

4. Select the server being queried from the Registry Server drop down (or create a
new one if it does not exist)

5. Select Refresh and note the results

6. Enter a title to query against and select Refresh again. Note the results.

7. Enter a string into the abstract keyword field and select Refresh again. Note the
results.

1.5.3 Test Results

• We can successfully query for servers layers in the CubeWerx WMS

• Only Cubewerx data appears in the registry, and only the CubeWerx WMS

• We can only support a version which is not OGC compliant. We can not use the
same query as Galdos or Polexis

• Searching only searches on the name of the layer inside the database. The concept
of querying on the title or keywords is misleading.

1.5.4 Next Steps (Actions Required)

We are waiting for an OGC compliant WRS to test against

1.6 Syncline UDDI

1.6.1 Operations Exercised

• UDDI GetCapabilities

• UDDI GetRecord on WMS and WFS

1.6.2 Test Procedures

1. Open the WorldView client

2. Select the Query Manager tab

3. Select New Query

4. Select the server being queried from the Registry Server drop down (or create a
new one if it does not exist)

 All rights reserved
41

© OGC 2003 –

5. Select Refresh and note the results

6. Enter a title to query against and select Refresh again. Note the results.

7. Enter a string into the abstract keyword field and select Refresh again. Note the
results.

1.6.3 Test Results

Bad Registry message. Java.net.Connection Exception:Operation timed out.

1.6.4 Next Steps (Actions Required)

We will continue to try these tests periodically until we find some data and can
continue.

1.7 CubeWerx WMS

1.7.1 Operations Exercised

• WMS getCapabilities

• WMS getMap

1.7.2 Test Procedures

1. Select the Source tab of the client and select New

2. Enter the URL of the WMS based on the TWIKI. Select Refresh. View the results
in the bottom text box. Select OK.

3. Select the Layer tab of the client and select New

4. Select the appropriate source in the drop down. Select the requested layers in the
right tree that you want to view and select the arrow to move them into the left list.
Select OK.

1.7.3 Test Results

We can connect to the server, but we get a Cubeserv Error when trying to display the
Foundation data. Other layers work properly.

1.8 Ionic WMS

1.8.1 Operations Exercised

• WMS getCapabilities

• WMS getMap

42 © OGC 2003 – All rights reserved

1.8.2 Test Procedures

1. Select the Source tab of the client and select New

2. Enter the URL of the WMS based on the TWIKI. Select Refresh. View the results
in the bottom text box. Select OK.

3. Select the Layer tab of the client and select New

4. Select the appropriate source in the drop down. Select the requested layers in the
right tree that you want to view and select the arrow to move them into the left list.
Select OK.

1.8.3 Test Results

We can retrieve data from some of the available layers.

1.9 Intergraph WMS

1.9.1 Operations Exercised

• WMS getCapabilities

• WMS getMap

1.9.2 Test Procedures

1. Select the Source tab of the client and select New

2. Enter the URL of the WMS based on the TWIKI. Select Refresh. View the results
in the bottom text box. Select OK.

3. Select the Layer tab of the client and select New

4. Select the appropriate source in the drop down. Select the requested layers in the
right tree that you want to view and select the arrow to move them into the left list.
Select OK.

1.9.3 Test Results

We can connect to the server, and the selected layers work.

1.10 Ionic WMS

1.10.1 1.10.1 Operations Exercised

• WMS getCapabilities

• WMS getMap

 All rights reserved
43

© OGC 2003 –

1.10.2 Known problems or limitations

The CAST server is unreliable. It is sometimes very slow and sometimes it does not
work at all.

1.10.3 Test Procedures

1. Select the Source tab of the client and select New

2. Enter the URL of the WMS based on the TWIKI. Select Refresh. View the results
in the bottom text box. Select OK.

3. Select the Layer tab of the client and select New

4. Select the appropriate source in the drop down. Select the requested layers in the
right tree that you want to view and select the arrow to move them into the left list.
Select OK.

1.10.4 Test Results

We can retrieve data from any of the available layers when the server is up.

1.11 Intergraph WFS

1.11.1 Operations Exercised

• WFS GetCapabilities

• WFS GetFeatureData

1.11.2 Known problems or limitations

We can not handle any coordinate system other than EPSG:4326. This limits us to the
Beta WFS provided by Intergraph.

1.11.3 Test Procedures

1. Create new source

1. Enter URL for Intergraph WFS

2. Select OK

2. Create new layer

1. Select Intergraph WFS as the source.

2. Select a layer to display

3. Select OK

3. Data will appear on screen.

44 © OGC 2003 – All rights reserved

4. After ensuring that objects from that layer are selectable, select a feature object.
Data for that feature will appear in the feature attributes frame.

1.11.4 Test Results

• Successful WFS GetCapabilities

• Successful WFS GetFeatureData

1.11.5 Next Steps (Actions Required)

• Support other coordinate systems

• Support modifications to features

1.12 ubeWerx WCS

1.12.1 Operations Exercised

• WMS getCapabilities

• WMS getMap

1.12.2 Test Procedures

1. Select the Source tab of the client and select New

2. Enter the URL of the WMS based on the TWIKI. Select Refresh. View the results
in the bottom text box. Select OK.

3. Select the Layer tab of the client and select New

4. Select the appropriate source in the drop down. Select the requested layers in the
right tree that you want to view and select the arrow to move them into the left
list. Select OK.

1.12.3 Test Results

Can not connect to server. Server does not implement version 0.4 or 1.0.3.

1.13 PCI WCS

1.13.1 Operations Exercised

• WMS getCapabilities

• WMS getMap

1.13.2 Test Procedures

1. Select the Source tab of the client and select New

 All rights reserved
45

© OGC 2003 –

2. Enter the URL of the WMS based on the TWIKI. Select Refresh. View the results
in the bottom text box. Select OK.

3. Select the Layer tab of the client and select New

4. Select the appropriate source in the drop down. Select the requested layers in the
right tree that you want to view and select the arrow to move them into the left
list. Select OK.

1.13.3 Test Results

Can not connect to server. Server does not implement version 0.4 or 1.0.3.

1.14 Intergraph WCS

1.14.1 Operations Exercised

• WMS getCapabilities

• WMS getMap

1.14.2 Test Procedures

1. Select the Source tab of the client and select New

2. Enter the URL of the WMS based on the TWIKI. Select Refresh. View the results
in the bottom text box. Select OK.

3. Select the Layer tab of the client and select New

4. Select the appropriate source in the drop down. Select the requested layers in the
right tree that you want to view and select the arrow to move them into the left
list. Select OK.

1.14.3 Test Results

We can retrieve Elevation Coverage for version 0.4, but the server does not
implement version 1.0.3.

1.15 GMU WCS

1.15.1 Operations Exercised

• WMS getCapabilities

• WMS getMap

1.15.2 Test Procedures

1. Select the Source tab of the client and select New

46 © OGC 2003 – All rights reserved

2. Enter the URL of the WMS based on the TWIKI. Select Refresh. View the results
in the bottom text box. Select OK.

3. Select the Layer tab of the client and select New

4. Select the appropriate source in the drop down. Select the requested layers in the
right tree that you want to view and select the arrow to move them into the left
list. Select OK.

1.15.3 Test Results

Can not connect to server. The server does not implement version 0.4 or 1.0.3.

1.16 Polexis SCS

1.16.1 Operations Exercised

• SCS GetCapabilities

• SCS GetObservation

1.16.2 Known problems or limitations

The sensor has been turned off. We can only get readings if we request data from a
few weeks ago.

1.16.3 Test Procedures

1. Create new layer

2. Select Polexis SCS as the source.

3. Select OK

4. Data will appear on screen.

5. After ensuring that objects from that layer are selectable, select a sensor object.
Data for that sensor will appear in the feature attributes frame.

1.16.4 Test Results

• Successful SCS GetCapabilities

• Successful SCS GetObservation

• Intermittent failure to connect

1.16.5 Next Steps (Actions Required)

None.

 All rights reserved
47

© OGC 2003 –

2 Intergraph

2.1 CubeWerx WFS

Intergraph's multi-source client has successfully parsed the CubeWerx WFS
capabilities version 0.0.14 and loaded features from their dataset. In addition, WFS
insert, delete and update transactions have been successfully tested. There is an
outstanding issue with feature names which use non-alphanumeric characters, such as
the parenthesis characters "(" and we are modifying our client to handle these better.

2.2 Ionic WFS

We have successfully parsed capabilities and loaded features from Ionic’s WFS
services. Transaction interoperability was not achieved due to the service requiring
namespace support in the transaction XML and our client's inability to provide it.

2.3 Intergraph WFS

Complete functionality achieved.

2.4 GMU WCS

Intergraph's multi-source client has successfully parsed capabilities versions 0.5 and
0.6 and loaded coverages from their server in the NITF format.

2.5 UAH WCS

Intergraph's multi-source client has successfully parsed capabilities version 0.6 and
loaded GOES satellite coverages in GeoTiff format.

2.6 PCI Geomatics WCS

Intergraph's multi-source client has successfully parsed capabilities version 0.5 and
0.6 and loaded coverages in GeoTiff and NITF format.

2.7 Intergraph IAS

Intergraph's multi-source client has successfully parsed WFS capabilities version
0.0.14 and loaded footprints, metadata, and images from its Image Archive Service.

3 Autodesk

Unless otherwise specified, operations Exercised: GetCapabilities,
GetFeature/GetMap/GetRecord, as appropriate.

3.1 Galdos WFS

3.1.1 Final Status

Successful request of GML features parsed and rendered.

48 © OGC 2003 – All rights reserved

3.2 Galdos WRS

Galdos WRS requires version=0.7.1 parameter in order for the request=GetCapabilities to
work.

 Client-side workaround utilized.

3.2.1 Final Status:

Successful request of registry entries; dynamically built queries returned things such as
"all WFS services," etc.

3.3 Syncline WRS

17-Oct-02:

http://ogc-tie.syncline.com:8080/mapaccess/main.jsp?request=GetCapabilities

Produces Error 500.

Partial Stack dump:

Root cause:

java.lang.NoClassDefFoundError:
com/syncline/ows/server/common/MapAccessException at
java.lang.Class.getDeclaredConstructors0(Native Method)

3.3.1 Final Status:

Unable to complete testing cycle; server unavailable

3.4 Ionic WRS

14-Oct-02: Encountered invalid XML from

http://demo.ionicsoft.com/Registry/wrs/WRS?request=GetCapabilities

Verified in IE:

> XML page cannot be displayed
> Cannot view XML input using XSL style sheet. Please correct the error and then click
the
> Refresh button, or try again later.
> --
>
> Reference to undeclared namespace prefix: 'xlink'. Error processing
> resource 'http://demo.ionicsoft.com/Registry/wrs/WRS?request=GetCapabilities'. Line
748,
> Position 100

 All rights reserved
49

© OGC 2003 –

>
>
xlink:href="http://schemas.cubewerx.com/schemas/ogcrim/0.7.0/ebRIM.xsd#Association
Type1">

09-Jan-03: Server produces 404 - seems to be removed from service.

> 404 Not Found
> /Registry/wrs/WRS was not found on this server.
>
>
> --
> Resin 2.1.6 (built Fri Nov 8 08:18:18 PST 2002)

3.4.1 Final Status:

Unable to complete testing cycle; XML produced by server isn't validating; server now
unavailable

3.5 Cubewerx WMS

Capability-Document URL: http://demo.cubewerx.com/ows12/cubeserv/cubeserv.cgi

Initial tests show that we're able to connect without problems. Test Development to plan
test suite.

3.5.1 Final Status:

Successful requests of maps. Many combinations of layers and options tried with
success.

3.6 Intergraph WMS

Using "unadvertised" http://maps.intergraph.com/wms/london/GetCapabilities.asp --
difficulty digesting DOCTYPE with relative path dtd.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<!DOCTYPE WMT_MS_Capabilities SYSTEM
"capabilities_1_0_0.dtd"> <WMT_MS_Capabilities
version="1.0.0" updateSequence="0">
<Service> ...

Now identifying relative paths.

3.6.1 Final Status:

Successful request of maps

50 © OGC 2003 – All rights reserved

3.7 Intergraph WFS

22-Oct-02 Identified that WFS
GetFeaturehttp://member.opengis.org/portal/twiki_ows12/bin/edit/Main/GetFeature?topic
parent=Main.AutoInt results links to incomplete (or irrelevant) XSD; the only
intersection between feature types identified by the WFS and the elements defined in the
XSD is States; consequently, feature types aren’t recognized as features using rigorous
algorithm, relaxed algorithm required to parse and identify objects.

<?xml version="1.0" encoding="UTF-8"?>
<wfs:featureCollection
 xmlns="http://ogc.intergraph.com/wfs"
 xmlns:gml="http://www.opengis.net/gml"
 xmlns:wfs="http://ogc.intergraph.com/wfs"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://OGC/temp GMLData.xsd">

qv http://ogc.intergraph.com/alpha_wfs/GMLData.xsd

17-Oct-02 Successful TIE with Intergraph at the advertised location
http://ogc.intergraph.com/alpha_wfs/request.asp -- Previously encountered invalid XML
(namespace not defined prior to use.)

3.7.1 Final Status:

Successfully requested and received GML, however the document did not contain a
completely descriptive schema, so parsing/feature recognition was impaired.

3.8 CAST WMS

Capability-Document URL: http://kirk.cast.uark.edu:9080/ows/wms

Initial tests show that we're able to connect without problems. Test Development to plan
test suite.

3.8.1 Final Status:

Successful request of maps.

3.9 Polexis WRS

Issue with inconsistencies in implementation, however client-side workaround was
implemented that successfully circumvented the problem. As such, behaved very similar
to Galdos' WRS.

3.9.1 Final Status:

Successful request of registry; dynamically built queries were accepted and returned valid
results, however the registry had not been populated with entries that matched the criteria
so empty result sets were returned.

 All rights reserved
51

© OGC 2003 –

3.10 Cubewerx WRS

3.10.1 Final Status:

Successful unconstrained request of registry entries; structured queries akin to those sent
to Galdos and Polexis generated exceptions. Further investigation into query syntax to
formulate an interoperable query is indicated.

4 UAH

4.1 UAH STT client to WMS servers

4.1.1 Description

The Space Time Toolkit (STT) client is accessing images from several clients using
the OGC WMS interface

4.1.2 Operations Exercised

• WMS getCapabilities
• WMS getMap

4.1.3 TIE Partners

• Clark DLGs - http://kirk.cast.uark.edu:9080/ows/wms (Transportation and hydro)
• CubeWerx -

http://demo.cubewerx.com/ows12/cubeserv/cubeserv.cgihttp://demo.cubewerx.co
m/ows12/cubeserv/cubeserv.cgi%3C/EM%3E%3CEM%3E (Builtups, topo, etc.)

• CubeWerx - http://demo.cubewerx.com/ows1/cubeserv/cubeserv.cgi (NY Orthos,
hydro, others)

• Intergraph - http://ogc.intergraph.com/alpha/request.asp
(LaPlatahttp://member.opengis.org/portal/twiki_ows12/bin/edit/Main/LaPlata?top
icparent=Main.UahWms DOQQs)

• JPL - http://wms.jpl.nasa.gov/wms.cgi (Landsat Mosaic)

4.1.4 TIE Components

Space Time Toolkit client (http://vast.uah.edu/SpaceTimeToolkit)

4.1.5 How to use

Install STT from link below. Open
LaPlatahttp://member.opengis.org/portal/twiki_ows12/bin/edit/Main/LaPlata?topicpar
ent=Main.UahWms Project, enable appropriate data item by selecting in data tree,
and clicking on enable in data customizer panel (or double click on selection in data
tree)

4.1.6 Physical configuration (data, software, hardware environment)

Java JDK 1.3 Run Time Environment

52 © OGC 2003 – All rights reserved

4.1.7 Test Procedures

URLs and layer names entered into STT Project resource files. User enables these
data items through STT interface

4.1.8 Test Description.

URLs and layer names entered into STT Project resource files. User enables these
data items through STT interface

4.1.9 Test Results

All listed interactions returned fine.

4.2 UAH STT client to WFS servers

4.2.1 Description

The Space Time Toolkit (STT) client is accessing images from several clients using
the OGC WFS interface

4.2.2 Operations Exercised

• WFS getFeatureDescription
• WFS getFeature

4.2.3 TIE Partners

• Ionic WFS server (Maryland Counties)
• Intergraph WFS Server (LaPlata Snapshots)
• Intergraph WFS Server (La Plata DOQQs)

4.2.4 TIE Components

Space Time Toolkit client (http://vast.uah.edu/SpaceTimeToolkit)

4.2.5 How to use

Install STT from link below. Open LaPlata Project, enable appropriate data item by
selecting in data tree, and clicking on enable in data customizer panel (or double click
on selection in data tree)

4.2.6 Physical configuration (data, software, hardware environment)

Java JDK 1.3 Run Time Environment

4.2.7 Test Procedures

URLs and layer names entered into STT Project resource files. User enables these
data items through STT interface

 All rights reserved
53

© OGC 2003 –

4.2.8 Test Description.

URLs and layer names entered into STT Project resource files. User enables these
data items through STT interface

4.2.9 Test Results

All listed interactions returned fine.

4.3 UAH STT client to WCS servers

4.3.1 Description

The Space Time Toolkit (STT) client is accessing images from several clients using
the OGC WCS interface

4.3.2 Operations Exercised

• WCS getCapabilities
• WCS getCoverage

4.3.3 TIE Partners

• UAH - http://stromboli.nsstc.uah.edu:8080/sttserv/servlet/DopplerServlet
(WSR88 Doppler Radar - UAH JSO)

• UAH -
http://stromboli.nsstc.uah.edu:8080/sttserv/servlet/GoesServlethttp://stromboli.nss
tc.uah.edu:8080/sttserv/servlet/GoesServlet%3C/EM%3E%3CEM%3E (GOES
Weather satellite -
GeoTIFFhttp://member.opengis.org/portal/twiki_ows12/bin/edit/Main/GeoTIFF?t
opicparent=Main.UahWcs)

• UAH - http://stromboli.nsstc.uah.edu:8080/sttserv/servlet/NldnServlet (National
Lightning Detection Network - UAH JSO)

4.3.4 TIE Components

Space Time Toolkit client (http://vast.uah.edu/SpaceTimeToolkit)

4.3.5 How to use

Install STT from link below. Open LaPlata Project, enable appropriate data item by
selecting in data tree, and clicking on enable in data customizer panel (or double click
on selection in data tree)

4.3.6 Physical configuration (data, software, hardware environment)

Java JDK 1.3 Run Time Environment

54 © OGC 2003 – All rights reserved

4.3.7 Test Procedures

URLs and layer names entered into STT Project resource files. User enables these
data items through STT interface

4.3.8 Test Description.

URLs and layer names entered into STT Project resource files. User enables these
data items through STT interface

4.3.9 Test Results

All listed interactions returned fine.

5 GMU

5.1 CubeWerx WRS

5.1.1 Operations Exercised

• WRS GetRecord, to find dataset for a area within the specified bounding box

5.1.2 Test Procedures

1. Select CubeWerx WRS server, URL is
http://demo.cubewerx.com/ows12/wrs0/cwwrs.cgi
2. Specify the bounding box and coordinate’s name
3. Find data within the bounding box
4. Add some result into project as a layer

5.1.3 Test Results

finds out some data on CubeWerx WMS successfully

5.2 CubeWerx WMS

5.2.1 Operations Exercised

• GetCapabilities
• GetFeatureInfo
• GetMap

5.2.2 Test Procedures

1. Select CubeWerx WMS server, URL is
http://demo.cubewerx.com/ows12/wfs/cwwfs.cgi
2. Get WMS capabilities
3. Select some maps in the capabilities

 All rights reserved
55

© OGC 2003 –

4. Get maps
5. Display map, select features in the map to get feature information

5.2.3 Test Results

• Get capabilities on CubeWerx WMS successfully
• Get map on CubeWerx WMS successfully
• Get feature info on CubeWerx WMS successfully

5.3 Intergraph WMS

5.3.1 5.3.1 Operations Exercised

• GetCapabilities
• GetMap

5.3.2 Test Procedures

1. Select Intergraph WMS server, URL is http://ogc.intergraph.com/alpha/request.asp
2. Get WMS capabilities
3. Select some maps in the capabilities
4. Get maps
5. Display map

5.3.3 Test Results

• Get Capabilities on Intergraph WMS successfully
• Get map on Intergraph WMS successfully

5.4 CAST WMS

5.4.1 Operations Exercised

• GetCapabilities
• GetMap

5.4.2 Test Procedures

1. Select CAST WMS server, URL is http://kirk.cast.uark.edu:9080/ows/wms
2. Get WMS capabilities
3. Select some maps in the capabilities
4. Get maps
5. Display map

5.4.3 Test Results

• Get capabilities on CAST WMS successfully
• Get map on CAST WMS successfully

56 © OGC 2003 – All rights reserved

5.5 CubeWerx WFS

5.5.1 Operations Exercised

• GetCapabilities
• DescribeFeatureType
• GetFeature

5.5.2 Test Procedures

1. Select CubeWerx WFS server, URL is
http://demo.cubewerx.com/ows12/wfs/cwwfs.cgi
2. Get WFS capabilities
3. Select a feature to get its schema by DescribeFeatureType request
4. Get feature data according to its schema
5. Display feature, select features in the map to get attribute information

5.5.3 Test Results

• Get capabilities on CubeWerx WFS successfully
• Get DescribeFeatureInfo on CubeWerx WFS successfully
• Get feature on CubeWerx WFS successfully

5.6 Ionic WFS

5.6.1 5.6.1 Operations Exercised

• GetCapabilities
• DescribeFeatureType
• GetFeature
• Transaction

5.6.2 Test Procedures

1. Select Ionic WFS server, URL is
http://demo.ionicsoft.com/owsData/wfs/CHARLESCOUNTY and
http://demo.ionicsoft.com/owsData/wfs/DAMAGEDAREA
2. Get WFS capabilities
3. Select a feature to get its schema by DescribeFeatureType request
4. Get feature data according to its schema
5. Display feature, select features in the map to get attribute information
6. Digitize damaged area and produce a feature layer encoding in GML
7. Submit it to Ionic transaction WFS

5.6.3 Test Results

• Get capabilities on Ionic successfully
• Get DescribeFeatureInfo on Ionic WFS successfully
• Get feature on Ionic WFS successfully
• Insert feature into Ionic WFS by transaction

 All rights reserved
57

© OGC 2003 –

5.7 Intergraph WFS

5.7.1 Operations Exercised

• GetCapabilities
• DescribeFeatureType
• GetFeature

5.7.2 Test Procedures

1. Select Intergraph WFS server, URL is
http://ogc.intergraph.com/OWS_Demo/request.asp
2. Get WFS capabilities
3. Select a feature to get its schema by DescribeFeatureType request
4. Get feature data according to its schema
5. Display feature, select features in the map to get attribute information

5.7.3 Test Results

• Get capabilities on Intergraph successfully
• Get DescribeFeatureInfo on Intergraph WFS successfully
• Get feature on Intergraph WFS successfully

6 Polexis

6.1 Galdos WRS

POSTing the following query:
<?xml version='1.0' encoding='UTF-8'?>
<wrs:GetRecord xmlns="urn:oasis:names:tc:ebxml-regrep:rim:xsd:2.1"
xmlns:wrs="http://www.opengis.net/wrs" xmlns:ogc="http://www.opengis.net/ogc"
outputFormat="XML">
 <wrs:Query typeName="Service">
 <ogc:PropertyName>/Service</ogc:PropertyName>
 </wrs:Query>
</wrs:GetRecord>
to http://dali.galdosinc.com:80//registry/wrs
requires that the HTTP Content-type header be set to "text/xml". If that is set, the
response contains information about 2 services.

6.2 Syncline WRS

POSTing this request:
<?xml version='1.0' encoding='UTF-8'?>
<wrs:GetRecord xmlns="urn:oasis:names:tc:ebxml-regrep:rim:xsd:2.1"
xmlns:wrs="http://www.opengis.net/wrs" xmlns:ogc="http://www.opengis.net/ogc"
outputFormat="XML">
 <wrs:Query typeName="Service">
 <ogc:PropertyName>/Service</ogc:PropertyName>

58 © OGC 2003 – All rights reserved

 </wrs:Query>
</wrs:GetRecord>
to http://ogc-tie.syncline.com:8080//mapaccess/main.jsp
requires the client to accept two cookies. Then nothing further happens.

6.3 Ionic WRS

The following request:
<?xml version='1.0' encoding='UTF-8'?><wrs:GetRecord
xmlns="urn:oasis:names:tc:ebxml-regrep:rim:xsd:2.1"
xmlns:wrs="http://www.opengis.net/wrs" xmlns:ogc="http://www.opengis.net/ogc"
outputFormat="XML">
 <wrs:Query typeName="Service">
 <ogc:PropertyName>/Service</ogc:PropertyName>
 </wrs:Query>
</wrs:GetRecord>

returns 500 Internal Server Error

6.4 PCI WRS

No URL is listed for the PCI registry.

Polexis used the client to upload the following file:

C:\Program Files\Polexis\Vigilys 1.2\viking\root\registeredimages\demoArea.gif

with these parameters:

image/gif urn:opengis:services:image-archive:roles:data 0.0.1 content1036708346493

and received this response:

<?xml version="1.0" encoding="UTF-8"?> <ia:TransactionResponse
xmlns:ia="http://www.opengis.net/iarchive"> <ia:InsertResult
handle="content1036708346493"> <ia:InsertedContent msg-content-
ref="content1036708346493" oid="urn:uuid:09471b2c-ad38-4d0b-b3f0-b408b99aea8b"
/> <ia:Status>SUCCESS</ia:Status> </ia:InsertResult>
<ia:Status>SUCCESS</ia:Status> <ia:Message>All operations succeeded (Count
=1)</ia:Message> </ia:TransactionResponse>

Then we used the URL of the inserted image in a HTTP GET request as follows:

http://gws.pcigeomatics.com/ia?request=GetObjectByID&objectid=urn:uuid:09471b2c-
ad38-4d0b-b3f0-b408b99aea8b

The result was the original image.

The mime type of the response from the GET request was wrong. This was reported to
PCI, who report that that is work in progress.

 All rights reserved
59

© OGC 2003 –

6.5 CubeWerx WRS

This request:

<?xml version='1.0' encoding='UTF-8'?><wrs:GetRecord
xmlns="urn:oasis:names:tc:ebxml-regrep:rim:xsd:2.1"
xmlns:wrs="http://www.opengis.net/wrs" xmlns:ogc="http://www.opengis.net/ogc"
outputFormat="XML">
 <wrs:Query typeName="Service">
 <ogc:PropertyName>/Service</ogc:PropertyName>
 </wrs:Query>
</wrs:GetRecord>

returns this response:

<?xml version="1.0" encoding="ISO-8859-1"?>
<ServiceExceptionReport version="1.2.0">
 <ServiceException>
CWWRS-61394: No error/message description available (raised in function
 wrsParse() of file "wrsParse.c" line 274)
CWWRS-61104: No error/message description available (raised in function
 wrsExecGetRecord() of file "wrsGetRecord.c" line 1033)
CWWRS-61438: No error/message description available (raised in function
 wrsExecQuery() of file "wrsGetRecord.c" line 967)
CWWRS-17000: ORA-00904: invalid column name (raised in function cwdbsExecute()
 of file "cwdbs.pc" line 470)
</ServiceException>
</ServiceExceptionReport>

6.6 CubeWerx WMS

The Polexis client has successfully tied with the Cubewerx SLD enabled WMS and used
a style from the Polexis SMS to restyle a layer from the WMS.

7 Ionic

7.1.1 Operations Exercised:

• WFS

o GetCapabilities

o DescribeFeatureType

o GetFeature

• WMS

o GetCapabilities

60 © OGC 2003 – All rights reserved

o GetMap

o GetFeatureInfo

• SCS

o GetObservation

7.1.2 TIE Partners:

WFS Intergraph http://ogc.intergraph.com/Alpha_wfs/Request.asp

 Cubewerx http://demo.cubewerx.com/ows12/wfs/cwwfs.cgi

 Galdos http://wfs.galdosinc.com:8980/wfs/http

WMS NASA http://globe.digitalearth.gov/viz-bin/wmt.cgi

 CAST http://ogc.cast.uark.edu:8080/ows12/wms

 Cubewerx http://demo.cubewerx.com/ows12/cubeserv/cubeserv.cgi

 Intergraph http://ogc.intergraph.com/alpha/request.asp

SCS Polexis http://ogc.polexis.com/airquality/scs

UDDI Nasa http://sindbad.gsfc.nasa.gov:8080/uddi/inquiry

7.1.3 Client Architecture:

The client architecture is based on the following:

• Classical Web Browser as Netscape, Internet Explorer,…

• The Internet through standard HTML

• J2EE Application Server with a Web Application developed using Ionic
components.

• OGC Protocols based on HTTP/XML

• OGC Web Services provided by Ionic Server Components or other participant
services

7.1.4 How to use the client

The client is used through a standard web browser; just connect it to
http://demo.ionicsoft.com/owsDemo. The client has multiple tabs where you can:

 All rights reserved
61

© OGC 2003 –

http://demo.cubewerx.com/ows12/wfs/cwwfs.cgi
http://wfs.galdosinc.com:8980/wfs/http

• Search a place: perform a Gazetteer search using GNS multimillion points dataset.

• Add service: add any WMS service from either a URL or an entry in Ionic Web
Registry Service.

• Handle layers: perform common navigation tasks as pan, zoom, layer up/down,
layer visibility,…

• Contexts: handle contexts, you can save/load it, send it as a mail attachment…

• Report: this is a real time generated report based on WFS features intersected by
the damaged area feature displayed in the default context as a red area.

• Client config: some configuration parameter for the client.

7.1.5 Physical configuration of data, software and hardware

The end user access client is a standard web browser (IE, Netscape,…).

The middle tier application is a standard J2EE Web Application and may be deployed
in any J2EE compatible environment, such as Tomcat 4.0.x, BEA WebLogic 6.1 or
Resin application server.

7.1.6 Known problems or un-implemented features

The Sensor Collection Service access has been added to the client component.
Unfortunately, we have not yet updated the user interface to allow access to this kind
of service.

7.1.7 Online services

The interoperability is brought to the application by the use of Ionic client
components. These components have the ability to connect to any compliant WFS
and WMS supporting one of the following specification versions:

• WMS 1.0, 1.1.0, 1.1.1

• WFS 0.0.13, 0.0.14, 1.0.0

For the purpose of this demo we have also added the ability to connect to Sensor
Collection Services, Web Service Registries and UDDI Registries.

7.1.8 Results, observations, and lessons learned

For WMS, the result is really encouraging. Almost any available WMS has been
accessed without any problem. The only remaining problem is regarding to the
publication by the services of the spatial reference system in which underlying
datasets are available. See next section for more details.

For WFS, more work has been done to interoperate. The main issue was the
compliance of the feature type descriptions published by the services. They were

62 © OGC 2003 – All rights reserved

either wrong or not complete. Once schema issues were resolved, getting and parsing,
on the fly discovered features, goes straightforward.

For SCS, the most important fact is that it uses GML as its result encoding. So
accessing SCS was just a matter of sending a valid request. The result has been easily
integrated to the other components thanks to the use of GML.

For WRS, the interface to access and query registries was successfully used, but the
attempt to get useful information back from other vendor registries failed. Actually,
differences in the use of the OGC registry information model lead to inconsistency of
the use of WRS. This issue has been partially addressed in the latest version of the
WRS IPR but was not tested during demo process.

For UDDI, interaction with NASA UDDI registry was successful. The RPC-like
interface leads to a very short development effort. The drawback is that the UDDI
registry model is too weak to achieve use cases like the ones achieve thanks to the
WRS.

7.1.9 Recommend changes

OGC Service:

One important issue we have encounter is the integration of data coming from servers
that are not using the same spatial reference system. We had to perform on the fly
coordinate transformation of the datasets. Unfortunately, there is no way to know the
initial SRS in which the data are stored in the service. This may lead to multiple
transformations and therefore to accuracy and performance problem.

WRS:

The filter encoding used in the WRS does not handle all the fine grained queries
required by the OGC Registry Information Model. Especially, the complex properties
are not handled in an efficient way.

WFS:

The XML schema definition is a very difficult process and many other participant
implementations do not provide a valid schema.

Some WFS also define their feature type using draft GML 3 schemas. We came to the
conclusion that we do need a way to specify which schema version the client want to
use.

SCS:

The only real problem we encounter is regarding the EPSG 4326 definition. The order
in which coordinates are encoded seems not clear enough (x,y => lat,long or long,lat
?).

 All rights reserved
63

© OGC 2003 –

	Scope
	Reference Documents
	Terms and definitions
	Conventions
	Symbols (and abbreviated terms)
	UML Notation

	Overview
	Service Discovery & Binding
	Imagery Production/Exploitation
	Feature Production
	Sensor Web Production
	Project Persistence & Sharing

	Requirements
	Sponsor Requirements
	End User Requirements
	Project creation, storage, loading, and sharing.
	OGC specifications

	Architectural and Design Considerations
	Characteristics of Client Technology and Architecture Choices
	Reliability
	Availability
	Serviceability
	Usability
	Security
	Performance

	Other Architectural and Design Choices

	Client Components and Modules
	Factoring
	Generic Descriptions of Client Components
	Search and Discovery System
	Data Selection Component
	Display and Navigation System
	Coordinate Transformation Engine
	Rendering Engine
	Style Editing and Management Interface
	Geospatial Analysis Logic
	Modelling Tools or Interfaces
	Image Processing Engine

	Implementations Developed or Presented in OWS 1.2

	User Interface
	Introduction
	Considerations Regarding a Standard User Interface
	Benefits
	Obstacles

	UI Description Languages
	Additional UI Topics
	Summary and recommendations

	Test Considerations and Results
	Issues and Opportunities
	Combinatorics of testing many services.
	Staged testing; leveraging one service to test others

	External vs. Internal Interoperability
	TIEs and Results
	WRS Registry TIEs
	UDDI Registry TIEs
	WMS TIEs
	WFS TIEs
	WCS and IAS TIEs
	SCS TIEs

	Summary
	Laser-Scan, Inc.
	Galdos WRS
	Operations Exercised
	Test Procedures
	Test Results
	Next Steps (Actions Required)

	Syncline WRS
	Operations Exercised
	Test Procedures
	Test Results
	Next Steps (Actions Required)

	Ionic WRS
	Operations Exercised
	Test Procedures
	Test Results
	Next Steps (Actions Required)

	Polexis WRS
	Operations Exercised
	Test Procedures
	Test Results
	Next Steps (Actions Required)

	Cubewerx WRS
	1.5.1 Operations Exercised
	Test Procedures
	Test Results
	Next Steps (Actions Required)

	Syncline UDDI
	Operations Exercised
	Test Procedures
	Test Results
	Next Steps (Actions Required)

	CubeWerx WMS
	Operations Exercised
	Test Procedures
	Test Results

	Ionic WMS
	Operations Exercised
	Test Procedures
	Test Results

	Intergraph WMS
	Operations Exercised
	Test Procedures
	Test Results

	Ionic WMS
	1.10.1 Operations Exercised
	Known problems or limitations
	Test Procedures
	Test Results

	Intergraph WFS
	Operations Exercised
	Known problems or limitations
	Test Procedures
	Test Results
	Next Steps (Actions Required)

	ubeWerx WCS
	Operations Exercised
	Test Procedures
	Test Results

	PCI WCS
	Operations Exercised
	Test Procedures
	Test Results

	Intergraph WCS
	Operations Exercised
	Test Procedures
	Test Results

	GMU WCS
	Operations Exercised
	Test Procedures
	Test Results

	Polexis SCS
	Operations Exercised
	Known problems or limitations
	Test Procedures
	Test Results
	Next Steps (Actions Required)

	Intergraph
	CubeWerx WFS
	Ionic WFS
	Intergraph WFS
	GMU WCS
	UAH WCS
	PCI Geomatics WCS
	Intergraph IAS

	Autodesk
	Galdos WFS
	Final Status

	Galdos WRS
	Final Status:

	Syncline WRS
	Final Status:

	Ionic WRS
	Final Status:

	Cubewerx WMS
	Final Status:

	Intergraph WMS
	Final Status:

	Intergraph WFS
	Final Status:

	CAST WMS
	Final Status:

	Polexis WRS
	Final Status:

	Cubewerx WRS
	Final Status:

	UAH
	UAH STT client to WMS servers
	Description
	Operations Exercised
	TIE Partners
	TIE Components
	How to use
	Physical configuration (data, software, hardware environment)
	Test Procedures
	Test Description.
	Test Results

	UAH STT client to WFS servers
	Description
	Operations Exercised
	TIE Partners
	TIE Components
	How to use
	Physical configuration (data, software, hardware environment)
	Test Procedures
	Test Description.
	Test Results

	UAH STT client to WCS servers
	Description
	Operations Exercised
	TIE Partners
	TIE Components
	How to use
	Physical configuration (data, software, hardware environment)
	Test Procedures
	Test Description.
	Test Results

	GMU
	CubeWerx WRS
	Operations Exercised
	Test Procedures
	Test Results

	CubeWerx WMS
	Operations Exercised
	Test Procedures
	Test Results

	Intergraph WMS
	5.3.1 Operations Exercised
	Test Procedures
	Test Results

	CAST WMS
	Operations Exercised
	Test Procedures
	Test Results

	CubeWerx WFS
	Operations Exercised
	Test Procedures
	Test Results

	Ionic WFS
	5.6.1 Operations Exercised
	Test Procedures
	Test Results

	Intergraph WFS
	Operations Exercised
	Test Procedures
	Test Results

	Polexis
	Galdos WRS
	Syncline WRS
	Ionic WRS
	PCI WRS
	CubeWerx WRS
	CubeWerx WMS

	Ionic
	
	Operations Exercised:
	TIE Partners:
	Client Architecture:
	How to use the client
	Physical configuration of data, software and hardware
	Known problems or un-implemented features
	Online services
	Results, observations, and lessons learned
	Recommend changes

