OGC 05-050

OGC 05-050

Open Geospatial Consortium Inc.

Date: 2005-10-31

Reference number of this OGC® Project Document: OGC 05-050

Version: 1.0.0

Category: OpenGIS® Discussion Paper

Editor: Craig Bruce (CubeWerx Inc.)

GML Performance Investigation by CubeWerx
Copyright notice

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an OGC Standard.

Document type:

OpenGIS® Discussion Paper
Document subtype:
if applicable
Document stage:
Approved

Document language:
English
Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

This page left intentionally blank.

TABLE OF CONTENTS
11
Scope

12
Conformance

13
Normative references

14
Terms and definitions

25
Conventions

25.1
Requirement levels

25.2
Symbols (and abbreviated terms)

26
Encoding formats

36.1
Binary-encoding formats

36.2
Data-compression formats

46.3
Complete format list

57
Coordinate-value precision

68
Network environments

68.1
Local filesystem

68.2
LAN and Internet environments with WFS

68.3
WFS integration

78.4
External codec

78.5
Limited-bandwidth network

89
Scalability

810
Testing approach and environment

810.1
Sample application

910.2
Test data

910.3
Testing methodology

910.4
Testing environment

1010.5
Testing tools

1110.6
Local-file-system testing

1110.7
Network simulation

1210.8
WFS simulation

1311
VMAP0-data testing

1311.1
Local file-system testing

1311.1.1
Built-up areas

1711.1.2
Inland water bodies

1811.1.3
Elevation points, single precision

2011.1.4
Elevation points, double precision

2111.1.5
Water courses, single precision

2311.1.6
Water courses, double precision

2411.1.7
Contour lines

2511.1.8
Conclusions

2611.2
LAN testing with high-performance simulated WFS

2611.2.1
Built-up areas

2611.2.2
Inland water bodies

2611.2.3
Elevation points, single precision

2711.2.4
Elevation points, double precision

2711.2.5
Water courses, single precision

2811.2.6
Water courses, double precision

2811.2.7
Contour lines

2811.2.8
Conclusions

2811.3
LAN testing with relational-database WFS

2811.3.1
Built-up areas

2911.3.2
Inland water bodies

2911.3.3
Elevation points, single precision

3011.3.4
Elevation points, double precision

3011.3.5
Water courses, single precision

3011.3.6
Water courses, double precision

3011.3.7
Contour lines

3111.3.8
Conclusions

3111.4
Internet testing with simulated high-performance WFS

3111.4.1
Built-up areas

3111.4.2
Inland water bodies

3211.4.3
Elevation points, single precision

3211.4.4
Elevation points, double precision

3211.4.5
Water courses, single precision

3311.4.6
Water courses, double precision

3311.4.7
Contour lines

3311.4.8
Conclusions

3411.5
Internet testing with relational-database WFS

3411.5.1
Built-up areas

3411.5.2
Inland water bodies

3411.5.3
Elevation points, single precision

3511.5.4
Elevation points, double precision

3511.5.5
Water courses, single precision

3511.5.6
Water courses, double precision

3611.5.7
Contour lines

3611.5.8
Conclusions

3611.6
Dial-up testing

3611.6.1
Measured results

3711.6.2
Extrapolated results

3711.6.3
Conclusions

3712
MSD3-data testing

3812.1
Local file-system testing

3812.1.1
MSD3 aggregation, 3D

4012.1.2
MSD3 aggregation, 2D

4012.1.3
AAL015

4112.1.4
LAP030

4212.1.5
PAL015

4312.1.6
Conclusions

4412.2
LAN testing

4412.2.1
MSD3 aggregation, 3D

4512.2.2
MSD3 aggregation, 2D

4512.2.3
AAL015

4612.2.4
LAP030

4612.2.5
PAL015

4612.2.6
External codec

4712.2.7
Conclusions

4812.3
Internet testing

4812.3.1
MSD3 aggregation, 3D

4812.3.2
MSD3 aggregation, 2D

4912.3.3
AAL015

4912.3.4
LAP030

4912.3.5
PAL015

5012.3.6
External codec

5012.3.7
Conclusions

5112.4
Dial-up testing

5112.4.1
MSD3 aggretation, 3D

5112.4.2
MSD3 aggregation, 2D

5212.4.3
AAL015

5212.4.4
LAP030

5212.4.5
PAL015

5312.4.6
Conclusions

5313
GML issues

5313.1
The trouble with application schemas

5413.2
GML MeasureType

5513.3
GML streamability

5513.3.1
Mid-stream errors

5513.3.2
Bounding envelope

5513.3.3
Feature interleaving

5614
Conclusions

5614.1
Local file-system testing

5714.2
LAN testing

5714.3
Internet testing

5814.4
Dial-up testing

Preface

The Open Geospatial Consortium (OGC) is an international industry consortium of more than 300+ companies, government agencies, and universities participating in a consensus process to develop publicly available geo-processing specifications. This Interoperability Program Report (IPR) is a product of the OGC Web Services Initiative, the objective of which is to provide a vendor-neutral interoperable framework for the web-based discovery and exploitation of geo-processing functions.

The OGC Web Services Initiative is part of the OGC’s Interoperability Program: a global, collaborative, hands-on engineering and testing program designed to deliver prototype technologies and proven candidate specifications into the OGC’s Specification Development Program. In OGC Interoperability Initiatives, international teams of technology providers work together to solve specific geo-processing interoperability problems posed by Initiative sponsors.

Submitting organizations

This Interoperability Program Report—Performance Investigation is being submitted to the OGC Interoperability Program by the following organization:

CubeWerx Inc.
15 rue Gamelin, Suite 506
Gatineau, QC J8Y 6N5
Canada

Document Contributor Contact Points

All questions regarding this submission should be directed to the editor or the submitters:

Dr. Craig S. Bruce
CubeWerx Inc.

Panagiotis (Peter) A. Vretanos
CubeWerx Inc.

Revision history

	Date
	Release
	Description

	2005-05-19
	05-050/0.0.1
	Initial plan version

	2005-05-24
	05-050/0.0.2
	Revised plan version

	2005-07-28
	05-050/0.0.n
	Initial results reports, additional updates (n=3–9)

	2005-10-31
	05-050
	Final IPR for OWS-3 project

	2006-04-24
	050
	C Reed. Fix copyright, use of OGC, OpenGIS etc. Other editorial changes

Changes to the OpenGIS® Abstract Specification

No revisions to the OpenGIS Abstract Specification are required.

Changes to OpenGIS® Implementation Specifications

No revisions to any OpenGIS Implementation Specifications are required. However, some problems with GML are discussed in clause 13.

Foreword

Attention is drawn to the possibility that some of the elements of OGC 05-050 may be the subject of patent rights. Open Geospatial Consortium Inc. shall not be held responsible for identifying and or all such patent rights.

Introduction

This OpenGIS® Interoperability-Program report proposes and executes methods to evaluate the performance of the use of the Geography Markup Language (GML) as encoded in various ways.

The Geography Markup Language [GML] is an increasingly important feature-encoding format for use in interoperable GIS systems. Unfortunately, the innate text encoding that it uses is both bulky and slow to process. To help GML realize its potential, its encoding efficiency should be made to be comparable with other commonly used feature-encoding formats, such as ESRI® Shapefile [SHAPE] format. To this end, OGC has undertaken to test the compactness and system-throughput capacity of GML as encoded in numerous different ways, including binary encoding in BXML [BXML] and BinXML™ [BINXML] and general compression formats such as GZIP [GZIP] and BZIP2 [BZIP2]. The decision of potential GML adopters becomes much easier when they can have both interoperability and efficiency.

GML Performance Investigation by CubeWerx

1 Scope

This OpenGIS® Interoperability-Program report proposes and executes methods to evaluate the performance of GML as encoded in various different ways.

2 Conformance

Not required in an IP DIPR, IPR or Discussion Paper.

3 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this Interoperability Program Report. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this document (OGC 05-050) are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies.

[GML] OGC 03-105r1 (February 2004), OpenGIS® Geography Markup Language (GML) Implementation Specification, version 3.1.0, <http://portal.opengeospatial.org/files/?artifact_id=4700>.

[GML-SF] OGC 05-033r9 (July 2005), GML Simple Features Profile, version 0.0.19, Peter Vretanos (ed.).

[XML] W3C (October 2000), Extensible Markup Language (XML) 1.0 (Second Edition), <http://www.w3.org/TR/REC-xml>.

4 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

BinXML™

Binary encoding format/system for XML data.

BXML

Shorthand for “Binary eXtensible Markup Language”. The format is a markup-for-markup-compatible binary encoding of XML data.

Codec

Encoder-decoder pair.

5 Conventions

5.1 Requirement levels

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC 2119 [KEYWORDS].

5.2 Symbols (and abbreviated terms)

The following symbols and abbreviations are used in this document:

	API
	Application-Program Interface

	BinXML™
	Binary-XML encoding system

	BXML
	Binary eXtensible Markup Language

	BZIP2
	general compression format

	C/C++
	C and/or C++ programming languages

	DOM
	Document Object Model

	GML
	Geography Markup Language

	GZIP
	GNU Zip compression format

	HTTP
	Hypertext Transfer Protocol

	IETF
	Internet Engineering Task Force

	MIME
	Multipurpose Internet Mail Extensions

	RFC
	Request For Comments

	SAX
	Simple API for XML

	URL
	Uniform Resource Locator

	WFS
	Web Feature Service

	XML
	Extensible Markup Language

6 Encoding formats

It would informative to test the throughput and compactness of a number of feature-encoding formats, including GML-XML, GML-BXML, ESRI® Shapefile, and MapInfo® MIF, both with and without GZIP and BZIP2 compression. The GML version will be 3.1.1 with the Simple Features [GML-SF] profile. With binary encoding, we believe that the GML format can be much more competitive with binary formats such as Shapefile in terms of compactness and processing throughput. MIF is an all-text format, which would be interesting to compare to GML-XML format.

6.1 Binary-encoding formats

BXML [BXML] is a straightforward patent-unencumbered binary-encoding format for XML data which is designed to be easy to implement and for which an open-source C-language reference implementation is freely available [CWXML]. It is also an OGC Discussion Paper. One of its most important features for our immediate purposes is that it allows lists of floating-point coordinate values to be directly represented as raw-binary arrays. This provides both compactness and system throughput since converting coordinate values to and from a text representation is surprisingly time-consuming.

BinXML™ is a commercial software product for which Galdos Systems is a reseller. Galdos can better explain the strengths of BinXML™.

While a direct comparison of BXML and BinXML™ implemented in the same runtime environment would be desirable, CubeWerx does not have the resources or expertise to implement testing for BinXML™ in the scope of the OWS-3 project even if software licenses were provided. However, an independent BinXML™ implementation in a different software architecture, such as a scripting-language/XML-tool environment relative to CubeWerx's RDBMS/C-language environment would still allow the direct comparison of encoding compactness and would provide an interesting performance characterization of the effectiveness of different encoding methods in the different GML-processing environments as well as a concrete comparison of the architectural approaches overall.

6.2 Data-compression formats

GZIP [GZIP] and BZIP2 [BZIP2] formats do an excellent job of compressing XML data. In one rough example that was tested, GZIP achieved around an 80% compression rate (one-fifth the original size) and BZIP2 achieved around an 85% rate (one-sixth the original size) with GML data that had no unnecessary whitespace. Specialized XML compression methods probably cannot out-compress GZIP and BZIP2 significantly in the general case.

However, the encoding and decoding of GZIP and BZIP2 formats are very CPU-intensive, so the “compaction” of the raw information before the “compression” step can have an large impact on overall system performance. This trade-off is investigated. Binary encodings of XML are considerably more compact than XML itself.

ZIP [ZIP] and compress [COMPRESS] compression formats are also in general use. ZIP format does not need to be considered in this investigation because it generally uses exactly the same compression method that GZIP does, called “Deflate”. It is also not a streamable format which imposes complications in a streaming client/server environment. The compress method does not achieve as high a compression rate as GZIP (74% compression for the example) and, as it turns out, does not execute as quickly as GZIP, so it does not need to be considered in this study. Historically, compress executed more efficiently than GZIP, however, use and refinement of the method stagnated for many years because of patent issues.

6.3 Complete format list

The complete list of GML-encoding combinations that should be tested for both compactness and throughput is as follows:

	Base Format
	Encoding
	Compression

	GML
	XML
	none

	GML
	XML
	GZIP

	GML
	XML
	BZIP2

	GML
	BXML
	none

	GML
	BXML
	GZIP

	GML
	BXML
	BZIP2

The GML encodings should be compared to other common feature-encoding formats, plus an extremely efficient one:

	Base Format
	Encoding
	Compression

	ESRI® Shapefile
	Binary + Text
	none

	ESRI® Shapefile
	Binary + Text
	GZIP

	ESRI® Shapefile
	Binary + Text
	BZIP2

	MapInfo® MIF
	Text
	none

	MapInfo® MIF
	Text
	GZIP

	MapInfo® MIF
	Text
	BZIP2

	CubeWerx® MDF
	Binary
	none

	CubeWerx® MDF
	Binary
	GZIP

	CubeWerx® MDF
	Binary
	BZIP2

MDF is an high-performance format used by CubeWerx to load feature data into the Oracle database system. It is a simple all-binary format in which geometries are stored in OGC Well-Known-Binary [WKB] format and the other properties are stored in fixed-sized fields.

One complication with the Shapefile, MIF, and MDF formats is that they are realized as a collection of multiple files instead of just one file. The represented size will be the sum of the sizes of the constituent files that contain the equivalent information to GML format. In a client/server environment, these files would need to be packaged together in an archive format such as ZIP or TAR [TAR], and the packaging requirement limits the potential streamability of the formats since the complete first file in the package must be available before the first record of the subsequent file is streamed out from a server.

For our testing purposes, it is sufficient to test the Shapefile and MIF formats only on a single machine to compare them with GML results on a single machine. It would be a burden to incorporate these formats into the WFS interface, though it is technically feasible (when combined with a packaging format as mentioned above).

One capability lacking from GML that Shapefile has is that of random access. BXML and presumably BinXML™ incorporate mechanisms for random access to elements based on identifier attributes, but this is not a spatial index. A spatial index would be needed to access features spatially as Shapefile and MDF allow, but none is provided by the GML format.

7 Coordinate-value precision

An easy way to achieve data compaction in both the XML and BXML representations of GML data is to reduce the precision of the coordinate values in the features. Coordinate values are normally represented as double-precision floating-point values in GIS systems and this is equivalent to about 16 significant decimal digits. However, no real-world data is this accurate and some applications do not even need the full precision of the real data. Sixteen decimal digits is equivalent to 4.4 nanometers (billionths of a meter) of resolution along the equator of the Earth.

The GML encoding should be tested with both double-precision coordinate values as well as single-precision in order to quantify the increased compactness. Single precision is equivalent to about seven significant decimal digits or 2.4 meters of resolution along the equator. BXML encoding has the capability to dynamically select different encodings for XML-Schema [XML-SCHEMA] content identified as “list of double,” such as GML coordinates values.

Intermediate precisions could also be tested. This is easy to do with XML-encoded GML by selecting any integral number of significant decimal digits, though it is slightly more difficult to achieve with a binary encoding. Floating-point doubles would best be used for this encoding with the least-significant bits of the mantissas zeroed out. This data will have the same uncompressed size as with the full double precision, but it will compress better. CubeWerx does not consider it to be worthwhile to investigate intermediate precisions at this time, though in the future, if systems have metadata about the absolute accuracy of the coorindate values in a feature collection, it could automatically select intermediate precisions individually for each feature type.

There is an indirect benefit to always using full double precision values in all calculations in a distributed system in that most computers implement IEEE 754-1995 [FLOATS] floating-point format in hardware so that most systems will compute similar or identical results and will behave more deterministically when making threshold decisions (e.g., “value >= 1e6”). However, the increased compactness of using lesser precision in GML data may be a more important benefit.

8 Network environments

Testing should be conducted in the following environments: local file system (single machine), LAN (Local Area Network), Internet, and limited bandwidth (dial-up).

8.1 Local filesystem

It is very important to test GML-encoding performance on a single machine to determine directly and accurately the performance of the different GML encodings in isolation from confounding factors like network delays. The most scientifically accurate methods should be applied in this experiment and measuring only in a distributed environment would be like measuring the dimensions of a book with a ruler that is marked only in integral feet. Also, the encoding compactness will be the same as in local case as in the distributed case but will be easier to measure in the local case. Testing on a local machine will also be necessary to compare against formats like Shapefile on their “home turf”.

8.2 LAN and Internet environments with WFS

GML is normally used to exchange geographic data in the LAN (Local-Area Network) within a single organization and over the Internet between organizations. The purpose of testing in these network environments, considering that raw performance can be measured in a local-machine environment, is to demonstrate interoperability and to assess whether the raw performance differences are actually significant when combined with the network-transfer and WFS-processing costs of the normal GML usage environment.

The LAN and Internet environments have different performance characteristics and represent the common cases for distributed GML-processing systems. Compression almost always makes sense in an Internet environment since modern computers can apply GZIP compression to at least 70 Mbits/sec of text GML data, thereby saturating even high-speed Internet links. However, modern LANs operate at at least 100 Mbits/sec, which imposes a different cost structure on encodings.

8.3 WFS integration

Two methods are available to integrate alternate GML encodings into the WFS interface: the WFS output-format mechanism and the HTTP transfer-encoding mechanism.

The WFS interface provides a mechanism for selecting among different encodings for the feature data that it delivers. The WFS 1.0.0 specification describes an optional attribute called “outputFormat” on the GetFeature request for which the default value is “GML2” in Section 9.2 on page 25. The description on the same page also says:

The outputFormat attribute defines the format to use to generate the result set. The default value is GML2 indicating that GML [2] shall be used. Vendor specific formats (including non-XML and binary formats), declared in the capabilities document are also possible. The available types are identified using <ResultFormat> tag of the Capabilities document.

In WFS version 1.1.0, the format identifiers are a little different. The example in Section 9.2 shows the string as “text/xml; subtype=3.1.1”. To request BXML, the equivalent would be “application/x-bxml; subtype=3.1.1”. The Capabilities schema is a little hard to follow, but it looks like the Capabilities tag is <OutputFormatList>.

HTTP [HTTP], which the WFS interface is build on top of, also provides a built-in mechanism for requesting GZIP or compress encoding of the transferred content. The client can include an “Accept-Encoding” MIME-header tag in the request message and the server has the option of responding with a “Content-Encoding” MIME-header tag in the reply message that indicates that the body is compressed. The HTTP RFC does not explicitly spell out support for BZIP2 encoding, but it can logically be included by using either “x-bzip2” or even “bzip2” as the encoding-tag value. The nature of the mechanism makes the use of ad-hoc symbols non-intrusive. BXML encoding could even be requested in this way.

Since this content-encoding mechanism is built-in and optional, any WFS or WFS client has the option to support it and the data transfer will be optimized wherever possible. All WFS clients and servers should support at least this mechanism. Really, CubeWerx finds it rather mind-boggling that any production work would be attempted with GML in the Internet environment without at least using the HTTP mechanism for GZIP compression of the data stream.

8.4 External codec

An external codec is a piece of software that would be placed between a WFS client and server which would accept an XML-encoded GML stream from the WFS server, encode it into an alternate format, transport it to the client site, decode it back into XML-encoded GML and then pass it to the client application.

A general external codec has at least two major problems: it is complicated to implement since it essentially would be a distributed, cascading WFS; it is inefficient since it requires the parsing and generation of the GML data not once but three times, including two times as XML-encoded GML, which would most likely render it less efficient than directly GZIP-compressing a plain XML-encoded GML stream using the HTTP mechanism.

8.5 Limited-bandwidth network

A limited bandwidth environment can serve as a guide for wireless and dial-up cases where limited facilities are available. A suitable speed it 56 kbps. The general compression methods are expected to have the most significant impact in this environment, since the crucial performance factor will be minimizing the bandwidth usage.

9 Scalability

The scalability of GML data and processing systems should also be investigated. This can be done easily using small, medium, and large data sets of the representative geometry types: points, lines, and polygons. The testing definition of a ‘large’ data set is one with approximately 1-million features.

A GML-processing system based on utilizing a DOM (Document Object Model) approach to XML processing will have its scalability inherently limited to the number of features that can be stored in machine memory at one time, so GML-processing systems should not be based strictly on the DOM methodology. Systems based on XSLT [XSLT] tools will have the same scalability problems for the same reason.

CubeWerx anticipates no inherent scalability problems with either the representation of or processing of a large number of GML features in its GML-processing systems. The CWXML [CWXML] open-source library utilized by CubeWerx provides a node/subtree mechanism that supplies the convenience of a DOM mechanism with the scalability of the streamable SAX mechanism.

Since the sponsor-supplied MSD3 data totals only in the thousands of features, VMAP0 data is used to conduct scalability testing.

10 Testing approach and environment

10.1 Sample application

The two kinds of “performance” to be measured in the GML Performance Investigations are system throughput (speed) and information-encoding compactness. To test throughput, the various software levels of a representative GML-processing application are measured in a number of usage environments. The compactness can be determined by measuring the size of the same GML feature data as encoded and compressed by the various different means.

A representative GML-processing application is the fetching and rendering of a stream of GML data into a displayable image. The application has the following software levels which can be characterized independently and in combination:

· fetch features from underlying system

· generate features in GML

· transport features

· parse features into internal programming-language structures

· render features into raster

Feature rendering is not strictly necessary for measuring GML performance, but it provides concrete visible proof that all of the features of a data set were actually processed and it supplies an interesting comparison of the performance of two different architectures for SLD [SLD] styling that have been pursued by OGC participants: native implementation vs. XML tools. Most GIS-product vendors including CubeWerx use the native-implementation approach. Galdos uses an XML-tools approach. Proponents have long advocated the benefits of each approach. Also, the software to render features is already available in the testing environments anyway, and the timing of the rendering component can easily be computed and factored out of the GML-transfer components.

10.2 Test data

An MSD3 data set was supplied by the project sponsors which is defined relative to a large central XML Schema and some VMAP0 data was selected by the participants since it has more bulk for reliable testing and it has small schemas. The VMAP0 data selected is described in clause 11 and the MSD3 data is described in clause 12.

10.3 Testing methodology

The general measuring methodology employed is to run each test case four times and discard the first run and average the subsequent three. The first run may involve variable system-caching overheads that would be difficult to measure reliably. In some cases, it is not feasible to perform four runs of every combination because it would take too long.

All time measurements are for real elapsed “wall-clock” time. This is the time of principal concern to most users. (Other conceivable timing measurements include CPU-processing time.)

All figures for file sizes, transfer speeds, use SI unit-multiplier prefixes, which are normally base-10 [SI] but include a special notation for base-2 [SI-BIN]. For example, 1 KB means exactly 1,000 bytes and 1 KiB means exactly 1,024 bytes.

10.4 Testing environment

The computer selected to be the server for the network test cases and the host for the local-file-system test case has the following specifications:

· Processor: AMD® Athlon-64 3200+ (64-bit), 2.01 GHz, 512 KiB cache

· Main memory: 1 GiB dual-channel DDR-400 MHz (PC-3200)

· Hard drive: single 200-GB SATA 3-GB/s channel

· HD sustained read speed: 63.73 MB/sec

· OS: Fedora Core 4 Linux for x86-64 (2.6.12 kernel)

· Compiler: GCC 4.0.1 with -O3 optimization

· File system: Linux ext3 journaling type

Its name is “a64.cubewerx.com”.

The computer selected to be the client for network testing is a laptop model with the following specifications:

· Processor: Intel® Pentium-4 Mobile (32-bit), 2.00 GHz, 512 KiB cache

· Main memory: 512 KiB

· Hard drive: single 40-GB ATA U100

· HD sustained read speed: 30.08 MB/sec

· OS: Fedora Core 4 Linux for i686 (2.6.12 kernel)

· Compiler: GCC 4.0.1 with -O3 optimization

· File system: Linux ext3 journaling type

10.5 Testing tools

The following tools are be used in the testing:

· cwcat – simple command-line file copier

· cwdump – simple command-line feature-file displayer/copier

· cwplot – simple command-line feature-file plotter with SLD support

· xmlscan – simple command-line XML file copier/converter

· CWXML – XML/BXML parser/generator library

· CubeSERV® WFS – Oracle®-based Web Feature Service

· gzip – open-source compression library

· bzip2 – open-source compression library

The cwcat program is modeled after the Unix® cat program but has special features including the capability to read from remote URLs (as do all of the “cw” programs) and to limit the throughput of the data it copies. This latter feature is used to simulate Internet and dial-up networks as described in clause 10.7.

The cwdump program includes the capability to generate GML data in a CGI environment and this capability is used to implement the simulated high-performance WFS that is used for some test cases. The implementation is described in clause 10.8.

The xmlscan program is included with the open-source CWXML library and is handy for reformatting and ‘pretty printing’ XML/BXML data.

Version 1.2.3 of the gzip compression library is used. The maximum compression level of ‘9’ is used since the library can produce data at this compression level much faster than the LAN can absorb it, so it is better to maximize the amount of compression. Recent versions of this library include significant performance improvements over older versions. The library-default compression level is ‘6’.

Version 1.0.3 of the bzip2 compression library is used. The bzip2 compression level of ‘9’ is used, which is the maximum and the library default.

10.6 Local-file-system testing

Reading-speed testing was performed by using a script that translates the source data from the GML-XML distribution format into the format to be tested and then reads the data four times in a loop. After the first read, the file content will be cached in memory, assuming that it fits, and subsequent reads show be as efficient as the format allows.

Writing-speed testing was performed using the same approach as the reading testing, except that the time taken to read from the source-data format (uncompressed GML encoded in XML) is subtracted from the total read+write time, giving only the writing time.

10.7 Network simulation

Early Internet testing was attempted using the real Internet, but the results were far too variable minute-by-minute and day-by-day to produce results that were actually comparable to each other. Instead, this testing is carried out using the CubeWerx internal 100-Mbps LAN with the server CGI shell-script program augmented to pass the outgoing data through cwcat used as a precise flow-controlling filter. This filter is so light-weight that it does not influence the results and its operation closely simulates what happens with normal Internet transfers: the outgoing data from the generator program gets queued up in the outgoing socket buffers until the generator process is suspended while the data is slowly emptied onto the outgoing network connection.

The data rate selected for Internet testing is 150 Kbytes/sec, which represents a decent Internet connection between any two points in North America or perhaps the world. Because of the structure of the interaction as a small request with a single large reply, it is not necessary to simulate packet latency (ping times) since TCP/IP is a sliding-window protocol that quite effectively hides packet latency for large transfers, but a 60-millisecond latency is added on the server side anyway.

The data rate selected for Dial-up testing is 5.6 Kbytes/sec, which corresponds to 56 Kbits/sec uncompressed. A response latency of 200 milliseconds is inserted on the server side.

The LAN used is a lightly loaded 100-Mbps Ethernet system with the server and laptop client directly connected to the network. Pinging the server from the client takes an average of 0.141 milliseconds and the sustained HTTP data-transfer rate is 11.70 MB/second.

10.8 WFS simulation

CubeWerx had insufficient time to fully integrate the needs of the MSD3 data into the CubeSERV transactional WFS, so a light-weight simulated WFS was implemented with this capability by building on the cwdump feature-displaying utility. This utility is so efficient that it serves a second important purpose which is to determine what transfer costs are caused by the network as opposed to the relational-database system used by the full-feature WFS. As it turns out, the RDBMS is quite costly.

The simulated WFS has a simple CGI interface and it reads features from BXML-encoded GML files stored on the server and it recodes them on the fly according to the received request into XML or BXML encoding with GZIP, BZIP2, or no compression. In the case that uncompressed BXML is requested, the full re-coding process is still carried out for timing consistency. The returned GML data references a schema which is also generated by the web application on request to be encoded in the same way as the GML data for the VMAP0 test data and which is copied directly from a pre-encoded schema file on the server for MSD3 data. These methods correspond to the way these data sets would normally be used, since the MSD3 data is defined relative to a fixed central schema.

For example, the following request for XML+GZIP:

http://a64.cubewerx.com/ows3/simfs/simfs.cgi?REQUEST=GetFeature&TYPENAME=builtupa&OUTPUTFORMAT=text/xml%3Bencoding%3Dgzip

will reference its schema as:

http://a64.cubewerx.com/ows3/simfs/simfs.cgi?REQUEST=DescribeFeatureType&TYPENAME=builtupa&OUTPUTFORMAT=text/xml%3Bencoding%3Dgzip

The testing carried out is only to fetch and internally plot the requested data using the cwplot application, excluding the time taken to write out the resulting PNG image from the internal raster representation. The features received at the client are not stored; each is discarded immediately after plotting.

Thus, the execution time will include reading and re-coding the source data on the server, transferring it over the network, parsing the data into internal C-language feature representations, and plotting it into a C-language raster representation. The translation from GML to internal the C-language structures provides a means of validating the data in terms of properties and data types, though this is a different from from XML-Schema-based validation.

The plotting speed turns out to be so fast that plotting adds virtually no overhead to the process, so it is safe to include here. Also, the data is fully streamed, so if the client can process the data more quickly than the network can deliver it, the client operations will effectively have no cost. The same is true of the server if it can supply the data faster than the network can absorb it.

11 VMAP0-data testing

The following feature collections from the VMAP0 data are used for testing, in order of the number of features per collection:

	Collection
	Description
	Geom Type
	Properties
	Features
	Vertices

	builtupa
	Built-up Areas
	Polygon
	6
	8,346
	17.3

	inwatera
	Inland Water Bodies
	Polygon
	6
	153,358
	19.2

	elevp
	Elevation Points
	Point
	8
	175,880
	1.0

	watrcrsl
	Water Courses
	LineString
	6
	290,528
	8.9

	coutourl
	Contour Lines
	LineString
	7
	1,099,837
	30.7

The terms “feature type” and “feature collection” can be used interchangeably here, since each feature collection includes features of exactly one type. The “Properties” column gives the number of properties in the features; the “Features” column gives the number of features in each feature collection; and the “Vertices” column gives the average number of vertices in the geometry of each feature, which indicates how complex the geometries are. (The start/end point of a polygon ring is counted as two vertices.) This data set includes feature-collection sizes of medium volume to large volume. The contourl feature collection is suitable for demonstrating the scalability of the processing applications.

The source VMAP0 geometries have single-precision coordinate values, so versions of the elevp and watrcrsl feature collections were created that have double-precision coordinate values for comparison purposes. Use of the double-precision versions is specifically noted.

11.1 Local file-system testing

11.1.1 Built-up areas

11.1.1.1 Reading

The reading results for the builtupa feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	6.17
	0.533
	15,659

	GML
	XML
	indented
	7.41
	0.547
	15,258

	GML
	BXML
	none
	2.44
	0.151
	55,272

	GML
	XML
	gzip
	1.15
	0.592
	14,098

	GML
	XML
	indented + gzip
	1.16
	0.609
	13,704

	GML
	BXML
	gzip
	1.07
	0.183
	45,607

	GML
	XML
	bzip2
	1.016
	0.882
	9,463

	GML
	BXML
	bzip2
	1.053
	0.404
	20,658

The compression type indicated as “indented” is not compression at all but means that the text file was “pretty printed” with an indentation of two spaces for each XML-tag level. As expected, it makes the uncompressed version of the file significantly large; however, it does not add significantly to the gzip-compressed size or time. This extra whitespace compresses very well.

In general, the GZIP compression/decompression method operates faster than expected. It will likely be made faster still in the future when certain hashing-table patents expire.

We fixed a performance bug in the BXML parser during the course of this testing that caused it to unnecessarily convert numeric property values to text before re-converting them back to numbers for the reading application. This resulted in a 40% performance increase.

The GML reader is not that heavily optimized. It uses the node/subtree interface of the CWXML library, which reads in DOM-like subtrees for each feature but only holds one feature in memory at a time. In contrast, the GML writer uses a node-by-node approach and its performance of 117,549 given below shows how much faster that approach can be. The node-subtree approach is easier to program for reading, however, and some modest optimization attempts showed that reading features is harder to optimize than writing them.

11.1.1.2 Reading alternate formats

The reading results for the builtupa feature collection represented in alternative formats to GML are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	Shapefile
	(binary+text)
	none
	3.70
	0.047
	178,143

	MIF
	(text)
	none
	3.25
	0.249
	33,558

	MDF
	(binary)
	none
	3.62
	0.031
	267,819

The relevant comparison here is to GML encoded in BXML at 55.3 kF/s and XML at 15.7 kF/s. The MIF text format can be processed twice as fast as XML-encoded GML and Shapefile can be processed 3.2 times as fast as BXML-encoded GML. This is a little surprising and disappointing, given that Shapefile numeric properties are actually stored in a text representation. CubeWerx MDF format performs 4.9 times as fast as BXML-encoded GML. It should also be noted that both Shapefile and MDF formats always store coordinate values as double-precision floats, but they still out-perform BXML-encoded GML.

The processing performance of these alternate formats when compressed was not tested, but the compressed sizes were measured as follows:

	Format
	Encoding
	Compression
	Size (MB)

	Shapefile
	(binary+text)
	gzip
	1.45

	Shapefile
	(binary+text)
	bzip2
	1.25

	MIF
	(text)
	gzip
	1.02

	MIF
	(text)
	bzip2
	0.94

	MDF
	(binary)
	gzip
	1.49

	MDF
	(binary)
	bzip2
	1.17

The compressed sizes are comparable to but not quite as good as the GML compressed sizes, except for MIF format, which is more compact in all cases.

11.1.1.3 Writing

The writing results for the builtupa feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	6.17
	0.693
	12,043

	GML
	XML
	indented
	7.41
	0.723
	11,544

	GML
	BXML
	none
	2.44
	0.071
	117,549

	GML
	XML
	gzip
	1.15
	1.698
	4,915

	GML
	XML
	indented + gzip
	1.16
	1.685
	4,953

	GML
	BXML
	gzip
	1.07
	0.436
	19,142

	GML
	XML
	bzip2
	1.016
	3.000
	2,782

	GML
	BXML
	bzip2
	1.053
	0.791
	10,551

The reported timings for the writing speed are reduced by the 0.533 seconds taken to read the source builtupa data. There is quite a spike in the performance of the uncompressed BXML case, since this format is very efficient to write.

11.1.1.4 Plotting

The plotting results for the builtupa feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	6.17
	0.582
	14,340

	GML
	BXML
	none
	2.44
	0.231
	36,130

	GML
	XML
	gzip
	1.15
	0.641
	13,020

	GML
	BXML
	gzip
	1.07
	0.262
	31,855

The plotting window is between longitudes -180 and 0 and latitudes -40 to 90 and is size 3600 pixels horizontal by 2600 vertical and the output image type is PNG. The writing time of the PNG file is excluded from the time. The SLD styling symbol uses a light-pink fill (#EEA9B8) with a dark-pink outline (#FFC0CB). A scaled down version (to reduce document size) of the resulting image is included here:

[image: image1.png]
The data is rather sparse, but this test demonstrates that the full North American coverage has been processed in our testing.

If we eliminate the GML-data-reading time, the internal plotting time is only around 0.080 seconds for a speed of around 104,000 features per second. While this performance is not strictly what is to be measured in this experiment, it would be very interesting to see how well a GML-XSLT-SVG plotting system performs. We suspect not as well. A system needs to be fast at plotting features in order to offer an effective WMS interface.

11.1.2 Inland water bodies

11.1.2.1 Reading

The reading results for the inwatera feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	120.41
	10.494
	14,614

	GML
	BXML
	none
	47.44
	2.802
	54,732

	GML
	XML
	gzip
	20.81
	11.582
	13,241

	GML
	BXML
	gzip
	19.67
	3.433
	44,672

	GML
	XML
	bzip2
	18.61
	17.535
	8,746

	GML
	BXML
	bzip2
	18.30
	7.686
	19,953

11.1.2.2 Writing

The writing results for the inwatera feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	120.41
	15.961
	9,608

	GML
	BXML
	none
	47.44
	1.386
	110,648

	GML
	XML
	gzip
	20.81
	38.103
	4,025

	GML
	BXML
	gzip
	19.67
	8.881
	17,268

	GML
	XML
	bzip2
	18.61
	60.603
	2,531

	GML
	BXML
	bzip2
	18.30
	17.276
	8,877

The reported timings for the writing speed are reduced by the 10.494 seconds taken to read the source inwatera data.

11.1.2.3 Plotting

The plotting results for the inwatera feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	120.41
	10.656
	13,027

	GML
	BXML
	none
	47.44
	3.560
	32,917

The plotting window and image size are the same as for the builtupa feature collection, except that the SLD plotting style has a dark-blue stroke (#0000FF) over a light-blue fill (#ADD8E6):

[image: image2.png]The raw internal plotting speed is around 202,000 features per second.

11.1.3 Elevation points, single precision

11.1.3.1 Reading

The reading results for the elevp feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	62.63
	7.193
	24,452

	GML
	BXML
	none
	25.94
	2.133
	82,457

	GML
	XML
	gzip
	3.60
	7.521
	23,358

	GML
	BXML
	gzip
	3.23
	2.321
	75,778

	GML
	XML
	bzip2
	2.57
	8.973
	19,601

	GML
	BXML
	bzip2
	2.42
	3.822
	46.018

11.1.3.2 Reading alternate formats

The reading results for the elevp feature collection represented in alternative formats to GML are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	Shapefile
	(binary+text)
	none
	13.02
	0.746
	235,724

	Shapefile
	(binary+text)
	gzip
	3.34
	
	

	Shapefile
	(binary+text)
	bzip2
	3.01
	
	

	MIF
	(text)
	none
	13.60
	1.493
	117,815

	MIF
	(text)
	gzip
	3.65
	
	

	MIF
	(text)
	bzip2
	3.15
	
	

	MDF
	(binary)
	none
	14.07
	0.248
	618,290

	MDF
	(binary)
	gzip
	3.06
	
	

	MDF
	(binary)
	bzip2
	2.63
	
	

The time performance of the compressed formats was not tested. The native feature formats are still greatly faster than GML.

11.1.3.3 Writing

The writing results for the elevp feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	62.63
	4.913
	35,799

	GML
	BXML
	none
	25.94
	1.128
	155,922

	GML
	XML
	gzip
	3.60
	10.644
	16,524

	GML
	BXML
	gzip
	3.23
	6.098
	28,842

	GML
	XML
	bzip2
	2.57
	45.469
	3,868

	GML
	BXML
	bzip2
	2.42
	13.754
	12,788

The reported timings for the writing speed are reduced by the 7.193 seconds taken to read the source elevp data.

11.1.3.4 Plotting

The plotting results for the elevp feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	62.63
	7.034
	25,004

	GML
	BXML
	none
	25.94
	2.394
	73,467

The plotting window and image size are the same as for the builtupa feature collection, except that the SLD plotting style uses little squares with dark-green stroke over a light-green fill:

[image: image3.png]The raw internal plotting speed is around 674,000 features per second.

11.1.4 Elevation points, double precision

11.1.4.1 Reading

The reading results for the elevp_dbl feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	67.89
	7.067
	24,888

	GML
	BXML
	none
	28.05
	2.197
	80,055

	GML
	XML
	gzip
	5.59
	7.476
	23,526

	GML
	BXML
	gzip
	4.64
	2.420
	72,678

	GML
	XML
	bzip2
	4.20
	9.579
	18,361

	GML
	BXML
	bzip2
	3.91
	4.098
	42,918

The performance is pretty close to the single-precision test case, though the file sizes here are significantly larger.

11.1.4.2 Writing

The writing results for the elevp_dbl feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	67.89
	6.006
	29,284

	GML
	BXML
	none
	28.05
	1.894
	92,861

	GML
	XML
	gzip
	5.59
	12.215
	14,399

	GML
	BXML
	gzip
	4.64
	6.741
	26,091

	GML
	XML
	bzip2
	4.20
	43.871
	4,009

	GML
	BXML
	bzip2
	3.91
	10.262
	17,139

The reported timings for the writing speed are reduced by the 7.067 seconds taken to read the source elevp_dbl data. The double-precision files are significantly larger than the single-precision ones and the processing time is significantly greater.

11.1.5 Water courses, single precision

11.1.5.1 Reading

The reading results for the watrcrsl feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	146.82
	13.053
	22,258

	GML
	BXML
	none
	58.91
	3.329
	87,272

	GML
	XML
	gzip
	20.59
	14.141
	20,545

	GML
	BXML
	gzip
	19.64
	4.049
	71,753

	GML
	XML
	bzip2
	17.58
	19.953
	14,561

	GML
	BXML
	bzip2
	17.29
	8.616
	33,720

11.1.5.2 Reading alternate formats

The reading results for the watrcrsl feature collection represented in alternative formats to GML are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	Shapefile
	(binary+text)
	none
	68.01
	1.183
	245,632

	Shapefile
	(binary+text)
	gzip
	28.18
	
	

	Shapefile
	(binary+text)
	bzip2
	22.74
	
	

	MIF
	(text)
	none
	61.68
	5.658
	51,347

	MIF
	(text)
	gzip
	18.38
	
	

	MIF
	(text)
	bzip2
	16.31
	
	

	MDF
	(binary)
	none
	63.07
	0.586
	495,425

	MDF
	(binary)
	gzip
	26.65
	
	

	MDF
	(binary)
	bzip2
	20.09
	
	

The speed of the compressed representations was not tested. The native feature formats are still greatly faster than the comparable GML encodings.

11.1.5.3 Writing

The writing results for the watrcrsl feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	146.82
	15.483
	18,764

	GML
	BXML
	none
	58.91
	1.901
	152,829

	GML
	XML
	gzip
	20.59
	35.216
	8,250

	GML
	BXML
	gzip
	19.64
	10.813
	26,868

	GML
	XML
	bzip2
	17.58
	87.510
	3,320

	GML
	BXML
	bzip2
	17.29
	24.540
	11,839

The reported timings for the writing speed are reduced by the 13.053 seconds taken to read the source watrcrsl data.

11.1.5.4 Plotting

The plotting results for watrcrsl feature collection are as follows:

	Format
	Encoding
	Compression
	Read+Plot
	Tot. Time (s)
	Speed (F/s)

	GML
	XML
	none
	12.897
	14.136
	20,552

	GML
	BXML
	none
	3.960
	5.200
	55,871

The plotting window and image size are the same as for the builtupa feature collection, except that the SLD plotting style uses dark-blue strokes (#000080):

[image: image4.png]The raw internal plotting speed is around 460,000 features per second.

11.1.6 Water courses, double precision

11.1.6.1 Reading

The reading results for watrcrsl_dbl feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	196.62
	13.660
	21,269

	GML
	BXML
	none
	80.71
	3.433
	84,382

	GML
	XML
	gzip
	44.43
	15.493
	18,752

	GML
	BXML
	gzip
	37.18
	4.438
	65,464

	GML
	XML
	bzip2
	38.83
	27.288
	10,647

	GML
	BXML
	bzip2
	38.11
	12.748
	22,790

11.1.6.2 Writing

The writing results for the watrcrsl_dbl feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	196.62
	23.217
	12,514

	GML
	BXML
	none
	80.71
	3.174
	91,534

	GML
	XML
	gzip
	44.43
	50.845
	5,714

	GML
	BXML
	gzip
	37.18
	13.291
	21,859

	GML
	XML
	bzip2
	38.83
	95.444
	3,044

	GML
	BXML
	bzip2
	38.11
	26.140
	11,114

The reported timings for the writing speed are reduced by the 13.660 seconds taken to read the source watrcrsl_dbl data.

11.1.7 Contour lines

11.1.7.1 Reading

The reading results for the contourl feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	1,005.92
	77.809
	14,135

	GML
	BXML
	none
	423.08
	14.047
	78,297

	GML
	XML
	gzip
	222.05
	85.793
	12,820

	GML
	BXML
	gzip
	218.26
	20.072
	54,795

	GML
	XML
	bzip2
	193.90
	143.972
	7,639

	GML
	BXML
	bzip2
	189.91
	58.142
	18,916

The GML-XML-uncompressed case likely includes file-cache-miss effects, since the file size is just short of the amount of physical memory on the machine, but the effect is most likely not significant, since the performance is consistent with the GML-XML-gzip case.

11.1.7.2 Writing

The writing results for the contourl feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	1,005.92
	150.485
	7,309

	GML
	BXML
	none
	423.08
	21.212
	51,850

	GML
	XML
	gzip
	222.05
	461.263
	2,384

	GML
	BXML
	gzip
	218.26
	72.882
	15,091

	GML
	XML
	bzip2
	193.90
	494.094
	2,226

	GML
	BXML
	bzip2
	189.91
	160.737
	6,842

The reported timings for the writing speeds are reduced by the 77.809 seconds taken to read the source contourl data.

These results most likely include file-cache-miss effects. However, this effect appears to be limited, since if the testing tool is limited to processing only the first 200,000 features (which will fit into the file-cache memory), the feature throughput is only about 4.5% faster.

11.1.7.3 Plotting

The plotting results for the contourl feature collection are as follows:

	Format
	Encoding
	Compression
	Read+Plot
	Tot. Time (s)
	Speed (F/s)

	GML
	XML
	none
	79.182
	80.279
	13,700

	GML
	BXML
	none
	18.374
	19.255
	57,120

The plotting window covers the whole world and the image is 3600 pixels across by 1800 (with a scaled-down version included here). The SLD plotting style uses brown strokes (#808000):

[image: image5.png]The raw internal plotting speed is around 254,000 features per second.

11.1.8 Conclusions

Uncompressed BXML provided the fastest reading, writing, and plotting performances for local file-system testing. This is the expected result. Averaging the single-precision test cases, BXML format files were only 40% as large as the uncompressed-XML files; they were read 4.0 times as fast for an average of 71,606 features/second; and they were written 8.2 times as fast for an average of 117,760 features/second.

Using compression in the local file system just slows down the performance. This would only be recommended to conserve space. The compressed file sizes between BXML and XML are quite similar, but the compressed BXML files could be read and written much faster than the compressed XML files.

Using double precision coordinate values produces files that are significantly larger and take significantly more time to process. This is as expected.

The BXML encoding of GML falls far short of the reading performance of Shapefile and CubeWerx MDF formats. Shapefile, the golden standard, can be read an average of 3.0 times as fast as the BXML-encoded GML format.

The plotting performance of the CubeWerx SLD renderer is astonishingly high.

11.2 LAN testing with high-performance simulated WFS

11.2.1 Built-up areas

The plotting results for the builtupa feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	6.17
	1.590
	5,249

	GML
	BXML
	none
	2.44
	0.693
	12,043

	GML
	XML
	gzip
	1.15
	1.972
	4,232

	GML
	BXML
	gzip
	1.07
	0.768
	10,867

	GML
	XML
	bzip2
	1.016
	3.763
	2,218

	GML
	BXML
	bzip2
	1.090
	2.127
	3,924

There are competing factors in the determination of the performance in this environment: the encoding, the compressing and decompressing, and the network bandwidth. The network in this case is fairly high in bandwidth and compression is fairly expensive. The client-side CPU utilization showed up as being between 8% and 43%, with the former for uncompressed data and the latter for bzip2-compressed data.

11.2.2 Inland water bodies

The plotting results for the inwatera feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	120.41
	29.130
	5,265

	GML
	BXML
	none
	47.44
	11.157
	13,745

	GML
	XML
	gzip
	20.81
	39.650
	3,868

	GML
	BXML
	gzip
	19.67
	12.472
	12,296

	GML
	XML
	bzip2
	18.61
	64.052
	2,394

	GML
	BXML
	bzip2
	19.17
	25.739
	5,958

11.2.3 Elevation points, single precision

The plotting results for the elevp feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	62.63
	19.174
	9,173

	GML
	BXML
	none
	25.94
	7.017
	25,065

	GML
	XML
	gzip
	3.60
	17.369
	10,126

	GML
	BXML
	gzip
	3.23
	8.617
	20,411

	GML
	XML
	bzip2
	2.57
	48.273
	3,643

	GML
	BXML
	bzip2
	2.44
	16.966
	10,367

It is interesting that the XML+gzip case is faster than the XML-uncompressed case, as opposed to most other feature types where the uncompressed data is faster. In this case, the GML file contains a much greater amount of redundancy than the other feature types since the quasi-random coordinate data occupies a much smaller portion of the file and the XML tags a much greater portion. The file ends up being compressed to such a degree that the faster transfer speed improves the overall performance. Or, it could be that the GZIP compressor is disproportionately slow at compressing quasi-random numbers.

11.2.4 Elevation points, double precision

The plotting results for the elevp_dbl feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	67.89
	19.574
	8,985

	GML
	BXML
	none
	28.05
	7.074
	24,863

	GML
	XML
	gzip
	5.59
	17.881
	9,836

	GML
	BXML
	gzip
	4.64
	9.542
	18,432

	GML
	XML
	bzip2
	4.20
	51.201
	3,435

	GML
	BXML
	bzip2
	3.91
	18.038
	9,751

11.2.5 Water courses, single precision

The plotting results for the watrcrsl feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	146.82
	35.075
	8,283

	GML
	BXML
	none
	58.91
	12.089
	24,032

	GML
	XML
	gzip
	20.59
	39.050
	7,440

	GML
	BXML
	gzip
	19.66
	14.892
	19,509

	GML
	XML
	bzip2
	17.58
	92.006
	3,158

	GML
	BXML
	bzip2
	18.08
	33.215
	8,747

11.2.6 Water courses, double precision

The plotting results of the watrcrsl_dbl feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	196.62
	39.754
	7,308

	GML
	BXML
	none
	80.71
	13.361
	21,744

	GML
	XML
	gzip
	44.43
	53.609
	5,419

	GML
	BXML
	gzip
	37.18
	16.282
	17,843

	GML
	XML
	bzip2
	38.83
	114.080
	2,547

	GML
	BXML
	bzip2
	38.11
	48.259
	6,020

11.2.7 Contour lines

The plotting results for the contourl feature collection is as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	1,005.92
	206.250
	5,333

	GML
	BXML
	none
	423.08
	62.596
	17,570

	GML
	XML
	gzip
	222.05
	401.249
	2,741

	GML
	BXML
	gzip
	218.80
	85.491
	12,865

	GML
	XML
	bzip2
	193.89
	541.616
	2,030

	GML
	BXML
	bzip2
	198.18
	220.583
	4,986

11.2.8 Conclusions

Uncompressed BXML still gives the best performance in the LAN environment with the simulated WFS, performing an average of 2.8 times as fast as XML encoding over the seven test cases.

Gzip compression is much more competitive in this environment and was actually faster than uncompressed data in a couple of instances. Bzip2 compression is still too CPU-bound to be competitive in this environment.

11.3 LAN testing with relational-database WFS

LAN testing with a relational-database WFS is carried out using the CubeSERV WFS accessing feature from Oracle relational tables.

11.3.1 Built-up areas

The plotting results for the builtupa feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	6.17
	27.114
	308

	GML
	BXML
	none
	2.31
	25.436
	328

	GML
	XML
	gzip
	1.16
	26.814
	311

	GML
	BXML
	gzip
	1.14
	25.725
	324

	GML
	XML
	bzip2
	1.03
	27.675
	302

	GML
	BXML
	bzip2
	1.13
	25.974
	321

These results are somewhat disappointing and show that accessing a relational database incurs a substantial time overhead. The close similarity of all the timings regardless of encoding format show that accessing this data from the database has a fixed cost of around 25 seconds relative to a few seconds of difference for processing the different encodings, rendering the encoding unimportant in this environment.

11.3.2 Inland water bodies

The plotting results for the inwatera feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	120.41
	463.5
	331

	GML
	BXML
	none
	46.03
	469.0
	327

	GML
	XML
	gzip
	21.30
	490.5
	313

	GML
	BXML
	gzip
	20.72
	469.4
	327

	GML
	XML
	bzip2
	19.05
	504.1
	304

	GML
	BXML
	bzip2
	19.64
	471.9
	325

11.3.3 Elevation points, single precision

The plotting results for the elevp feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	67.38
	164.6
	1,068

	GML
	BXML
	none
	28.10
	163.9
	1,073

	GML
	XML
	gzip
	5.53
	182.3
	965

	GML
	BXML
	gzip
	6.27
	187.7
	937

	GML
	XML
	bzip2
	4.50
	204.4
	861

	GML
	BXML
	bzip2
	4.78
	181.5
	969

The performance here is better than for other geometry types because points are simpler geometry types and they are stored in a simpler way in the database accessed by the WFS.

11.3.4 Elevation points, double precision

The plotting results for the elevp_dbl feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	72.64
	164.9
	1,067

	GML
	BXML
	none
	30.21
	166.9
	1,053

	GML
	XML
	gzip
	7.54
	182.7
	963

	GML
	BXML
	gzip
	7.03
	186.6
	943

	GML
	XML
	bzip2
	6.15
	204.5
	860

	GML
	BXML
	bzip2
	5.61
	173.3
	1,015

11.3.5 Water courses, single precision

The plotting results for the watrcrsl feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	146.82
	849.1
	342

	GML
	BXML
	none
	54.71
	839.1
	346

	GML
	XML
	gzip
	21.22
	894.7
	325

	GML
	BXML
	gzip
	21.08
	878.4
	331

	GML
	XML
	bzip2
	18.04
	910.1
	319

	GML
	BXML
	bzip2
	18.86
	875.4
	332

11.3.6 Water courses, double precision

The plotting results for the watrcrsl_dbl feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	196.61
	889.6
	327

	GML
	BXML
	none
	76.51
	848.4
	342

	GML
	XML
	gzip
	44.83
	910.9
	319

	GML
	BXML
	gzip
	38.57
	880.2
	330

	GML
	XML
	bzip2
	39.30
	941.5
	309

	GML
	BXML
	bzip2
	39.95
	894.0
	325

11.3.7 Contour lines

The plotting results for the contourl feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	1,005.92
	3,384
	325

	GML
	BXML
	none
	407.54
	3,244
	339

	GML
	XML
	gzip
	226.34
	3,676
	299

	GML
	BXML
	gzip
	223.72
	3,365
	327

	GML
	XML
	bzip2
	199.03
	3,677
	299

	GML
	BXML
	bzip2
	199.68
	3,423
	321

11.3.8 Conclusions

The GML encoding did not have a great effect in this testing. Retrieving the feature data from Oracle was the major bottleneck in this environment.

11.4 Internet testing with simulated high-performance WFS

11.4.1 Built-up areas

The plotting results for the builtupa feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	6.173
	41.256
	202

	GML
	BXML
	none
	2.435
	16.338
	510

	GML
	XML
	gzip
	1.151
	7.857
	1,062

	GML
	BXML
	gzip
	1.069
	7.274
	1,147

	GML
	XML
	bzip2
	1.015
	7.589
	1,099

	GML
	BXML
	bzip2
	1.090
	7.828
	1,066

There are competing factors in the determination of the performance in this environment: the encoding, the compressing and decompressing, and the network bandwidth. The network in this case is fairly low in bandwidth and compression is relatively inexpensive, so file size is the major determinate of performance.

One would need to be crazy not to compress GML data being sent over the Internet.

11.4.2 Inland water bodies

The plotting results for the inwatera feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	120.41
	802.728
	191

	GML
	BXML
	none
	47.44
	316.314
	485

	GML
	XML
	gzip
	20.81
	138.957
	1,104

	GML
	BXML
	gzip
	19.67
	131.248
	1,168

	GML
	XML
	bzip2
	18.61
	124.725
	1,230

	GML
	BXML
	bzip2
	19.17
	128.348
	1,195

11.4.3 Elevation points, single precision

The plotting results for the elevp feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	62.63
	417.583
	421

	GML
	BXML
	none
	25.94
	173.034
	1,016

	GML
	XML
	gzip
	3.60
	24.329
	7,229

	GML
	BXML
	gzip
	3.23
	21.810
	8,064

	GML
	XML
	bzip2
	2.57
	48.571
	3,621

	GML
	BXML
	bzip2
	2.44
	17.220
	10,213

The XML+bzip2 case may seem anomalously slow, but this is what was reliably measured. The major factor would be the bulkiness of the data input to the expensive bzip2-compression algorithm.

11.4.4 Elevation points, double precision

The plotting results for the elevp_dbl feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	67.89
	452.651
	389

	GML
	BXML
	none
	28.05
	187.104
	940

	GML
	XML
	gzip
	5.59
	37.557
	4,683

	GML
	BXML
	gzip
	4.64
	31.181
	5,641

	GML
	XML
	bzip2
	4.20
	51.197
	3,435

	GML
	BXML
	bzip2
	3.91
	26.564
	6,621

11.4.5 Water courses, single precision

The plotting results for the watrcrsl feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	146.82
	978.816
	297

	GML
	BXML
	none
	58.91
	392.769
	740

	GML
	XML
	gzip
	20.59
	137.466
	2,113

	GML
	BXML
	gzip
	19.66
	131.205
	2,214

	GML
	XML
	bzip2
	17.58
	117.729
	2,468

	GML
	BXML
	bzip2
	18.08
	121.026
	2,401

11.4.6 Water courses, double precision

The plotting results for the watrcrsl_dbl feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	196.62
	1,310.726
	222

	GML
	BXML
	none
	80.71
	538.089
	540

	GML
	XML
	gzip
	44.43
	296.354
	980

	GML
	BXML
	gzip
	37.18
	247.932
	1,172

	GML
	XML
	bzip2
	38.83
	259.576
	1,119

	GML
	BXML
	bzip2
	38.11
	254.603
	1,141

11.4.7 Contour lines

The plotting results for the contourl feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	1,005.92
	6,705.465
	164

	GML
	BXML
	none
	423.08
	2,820.376
	390

	GML
	XML
	gzip
	222.05
	1,480.280
	743

	GML
	BXML
	gzip
	218.80
	1,458.621
	754

	GML
	XML
	bzip2
	193.89
	1,292.842
	851

	GML
	BXML
	bzip2
	198.18
	1,321.149
	832

The simulated high-performance network is efficient enough to saturate the network in all cases except for using bzip2 compression, but it comes close even then.

11.4.8 Conclusions

Compression is the most important factor in this test environment. Since the compressed sizes of BXML and XML are quite similar, the performance was also quite similar. Using bzip2 compression frequently gave the best performance, though bzip2 applied to XML was substantially slower than the other encodings since BXML is slow to execute and XML gives the compression method a bulky input stream.

11.5 Internet testing with relational-database WFS

11.5.1 Built-up areas

The plotting results for the builtupa feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	6.17
	42.523
	196

	GML
	BXML
	none
	2.31
	24.880
	335

	GML
	XML
	gzip
	1.16
	26.855
	311

	GML
	BXML
	gzip
	1.14
	25.659
	325

	GML
	XML
	bzip2
	1.03
	31.207
	267

	GML
	BXML
	bzip2
	1.13
	31.749
	263

The network was the bottleneck in the uncompressed-XML test case but retrieving the features from the database was the bottleneck in the rest of the cases. The throughput was about 145 kbytes/sec in the uncompressed-XML case but only 93 kbytes/sec in the uncompressed-BXML test case (significantly less than the network bandwidth). Applying compression increases the elapsed time since retrieving features from the database is already a CPU-intensive activity, and compression adds to the CPU-power bottleneck. The XML+bzip2 test case achieves a network utilization of only 33 kbytes/sec. The other feature types below follow a similar pattern.

11.5.2 Inland water bodies

The plotting results for the inwatera feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	120.41
	804.4
	191

	GML
	BXML
	none
	46.03
	448.8
	342

	GML
	XML
	gzip
	21.30
	489.6
	313

	GML
	BXML
	gzip
	20.72
	467.8
	328

	GML
	XML
	bzip2
	19.05
	566.5
	271

	GML
	BXML
	bzip2
	19.64
	567.1
	270

11.5.3 Elevation points, single precision

The plotting results for the elevp feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	67.38
	449.9
	391

	GML
	BXML
	none
	28.10
	188.5
	933

	GML
	XML
	gzip
	5.53
	181.8
	968

	GML
	BXML
	gzip
	6.27
	186.6
	943

	GML
	XML
	bzip2
	4.50
	203.1
	866

	GML
	BXML
	bzip2
	4.78
	188.3
	934

11.5.4 Elevation points, double precision

The plotting results for the elevp_dbl feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	72.64
	484.9
	363

	GML
	BXML
	none
	30.21
	202.1
	870

	GML
	XML
	gzip
	7.54
	184.3
	954

	GML
	BXML
	gzip
	7.03
	187.4
	938

	GML
	XML
	bzip2
	6.15
	208.4
	844

	GML
	BXML
	bzip2
	5.61
	194.1
	906

11.5.5 Water courses, single precision

The plotting results for the watrcrsl feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	146.82
	983.2
	295

	GML
	BXML
	none
	54.71
	834.1
	348

	GML
	XML
	gzip
	21.22
	887.1
	328

	GML
	BXML
	gzip
	21.08
	870.2
	334

	GML
	XML
	bzip2
	18.04
	953.5
	305

	GML
	BXML
	bzip2
	18.86
	954.0
	305

11.5.6 Water courses, double precision

The plotting results for the watrcrsl feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	196.61
	1,313.0
	221

	GML
	BXML
	none
	76.51
	846.1
	343

	GML
	XML
	gzip
	44.83
	912.4
	318

	GML
	BXML
	gzip
	38.57
	879.3
	330

	GML
	XML
	bzip2
	39.30
	1,094.2
	266

	GML
	BXML
	bzip2
	39.95
	1,094.2
	266

11.5.7 Contour lines

The plotting results for the contourl feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	1,005.91
	6,714
	164

	GML
	BXML
	none
	407.54
	3,299
	333

	GML
	XML
	gzip
	226.34
	3,669
	300

	GML
	BXML
	gzip
	223.72
	3,376
	326

	GML
	XML
	bzip2
	199.01
	4,477
	246

	GML
	BXML
	bzip2
	199.68
	4,489
	245

11.5.8 Conclusions

Using a relational database shows less overhead in the Internet environment, though full network utilization is not achieved for the non-uncompressed-XML test cases. The other encodings are compact enough that the CPU and database access on the server is the bottleneck.

11.6 Dial-up testing

This testing was carried out using the same simulated method as with the Internet testing. In this case, the link speed was set to 5,600 bytes/second to correspond to a 56-kbit/second low-speed link. No built-in compression was simulated over the link.

11.6.1 Measured results

The plotting results for the builtupa feature collection are as follows:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	6.172
	1,102.382
	7.57

	GML
	BXML
	none
	2.435
	435.063
	19.18

	GML
	XML
	gzip
	1.151
	205.945
	40.53

	GML
	BXML
	gzip
	1.069
	191.193
	43.65

	GML
	XML
	bzip2
	1.015
	182.290
	45.78

	GML
	BXML
	bzip2
	1.089
	195.392
	42.71

Transferring any volume of data over the link is obviously very slow and is completely dominated by the link speed. The CPU utilization on the client was shown as 0% to 2%.

Very limited plotting performance was measured for the inwatera feature collection:

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	120.41
	21,499
	7.13

This test case ran for approximately six hours.

11.6.2 Extrapolated results

The testing for the dial-up case is extremely time-consuming and the results have been demonstrated to be determined by the link speed, so presented here is an extrapolation of the testing of all seven feature collections being concatenated together (2,194,357 features):

	Format
	Encoding
	Compression
	Size (MB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	1,606.46
	286,868
	7.65

	GML
	BXML
	none
	666.56
	119,029
	18.44

	GML
	XML
	gzip
	318.22
	56,825
	38.62

	GML
	BXML
	gzip
	304.22
	54,325
	40.39

	GML
	XML
	bzip2
	276.71
	49,413
	44.41

	GML
	BXML
	bzip2
	280.92
	50,164
	43.74

If all these test cases were executed once in practice, it would take over seven days.

11.6.3 Conclusions

Dial-up links are very slow, so the GML encoding with the greatest compression will have the highest throughput. In this case, bzip2 gives the best compression and therefore, the best throughput. The bzip2 file sizes are slightly smaller for XML than BXML, so XML+bzip2 gives the best throughput.

12 MSD3-data testing

It would not be feasible or greatly useful to perform manual testing on all of the individual feature types, so four instances were chosen for manual testing to represent the MSD3 data set: three feature collections of varying geometry type plus an aggregation of all the feature types. The aggregation was obtained simply by concatenating together all of the <gml:featureMember> elements of the supplied GML feature collections. The schema references were also changed to be locally available and offered up with the different encodings of the test instances (e.g., XML, BXML, compressed). The source data is all three-dimensional, but two-dimensional versions are also tested.

The following feature collections from the MSD3 data are used for testing:

	Collection
	Description
	Geom Type
	Properties
	Features
	Vertices

	MSD3
	MSD3 Aggregate
	various
	33.0
	7,448
	8.5

	AAL015
	Building Areas
	MultiSurface
	45
	857
	7.2

	LAP030
	Roads
	MultiCurve
	20
	1,444
	5.5

	PAL015
	Building Points
	MultiPoint
	45
	2,888
	1.0

The “Properties” column gives the average number of properties per feature present in the MSD3 collection, excluding the topology property (since it is not processed). The “Vertices” column is the average number of vertices per geometry for all feature collections.

Two versions of the MSD3 schema were available for testing: the full version and a version with all of the <appinfo> metadata trimmed out of it. The major reporting of results is for the trimmed version of the schema with additional comments about the performance with the full schema.

The testing of 3D coordinate values versus 2D coordinate values is reported only for the MSD3-aggregation feature collection. The performance difference between 2D and 3D is not that large and the aggregation case shows the difference sufficiently.

12.1 Local file-system testing

The GML and schema files were tested using local files.

12.1.1 MSD3 aggregation, 3D

The MSD3 aggregate feature collection has the following appearance when plotted with translucent fills and no feature-type-specific styling:

[image: image6.png]The reading results for the MSD3 feature collection using the trimmed MSD3 schema are as follows:

	Format
	Encoding
	Compression
	Size (KB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	13,511
	1.621
	4,594

	GML
	BXML
	none
	7,172
	0.876
	8,466

	GML
	XML
	gzip
	626
	1.715
	4,342

	GML
	BXML
	gzip
	929
	0.926
	8,046

	GML
	XML
	bzip2
	499
	2.485
	2,997

	GML
	BXML
	bzip2
	819
	1.416
	5,261

Parsing the schema takes a significant amount of the elapsed time. The schema is supplied with in the same encoding and compression format as the GML data. The parsing time for the trimmed and full MSD3 schemas are as follows, with schema sizes in KB and parsing times in seconds:

	Format
	Encoding
	Compress
	Trim Size
	Trim Time
	Full Size
	Full Time

	Schema
	XML
	none
	1,337
	0.318
	8,056
	0.815

	Schema
	BXML
	none
	581
	0.238
	3,696
	0.433

	Schema
	XML
	gzip
	28
	0.329
	446
	0.873

	Schema
	BXML
	gzip
	21
	0.241
	307
	0.460

	Schema
	XML
	bzip2
	14
	0.411
	204
	1.442

	Schema
	BXML
	bzip2
	12
	0.273
	190
	0.715

The writing results for the MSD3 feature collection are as follows:

	Format
	Encoding
	Compression
	Size (KB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	13,511
	1.030
	7,231

	GML
	BXML
	none
	7,172
	0.335
	22,226

	GML
	XML
	gzip
	626
	1.943
	3,833

	GML
	BXML
	gzip
	929
	1.030
	7,234

	GML
	XML
	bzip2
	499
	11.656
	639

	GML
	BXML
	bzip2
	819
	6.458
	1,153

The source-data reading time of 1.621 seconds is subtracted from the write timings above. Note that no new schema file is written out here since the generated GML data refers to a preexisting schema file.

The XML encodings of the compressed data are significantly smaller than the BXML versions. This is likely because BXML format compacts the data with the primary goal being for speed of processing whereas GZIP and BZIP2 formats compact data with the primary goal being minimization of size.

12.1.2 MSD3 aggregation, 2D

The reading results for the MSD3_2D feature collection are as follows:

	Format
	Encoding
	Compression
	Size (KB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	13,241
	1.577
	4,735

	GML
	BXML
	none
	6,645
	0.845
	8,815

	GML
	XML
	gzip
	562
	1.664
	4,477

	GML
	BXML
	gzip
	831
	0.906
	8,224

	GML
	XML
	bzip2
	447
	2.413
	3,087

	GML
	BXML
	bzip2
	725
	1.356
	5,494

There does not appear to be a great performance advantage in using 2D coordinates over 3D ones. This is presumably because the extra coordinate dimension takes a relatively small amount of space compared to all of the attributes. The difference would be larger if the geometries in the MSD3 data included significantly more vertices.

The writing results for the MSD3_2D feature collection are as follows:

	Format
	Encoding
	Compression
	Size (KB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	13,241
	0.921
	8,084

	GML
	BXML
	none
	6,645
	0.325
	22,925

	GML
	XML
	gzip
	562
	1.808
	4,119

	GML
	BXML
	gzip
	831
	0.812
	9,171

	GML
	XML
	bzip2
	447
	11.631
	640

	GML
	BXML
	bzip2
	725
	6.386
	1,166

The writing time excludes the 1.577 seconds required to read the source data to be written.

12.1.3 AAL015

[image: image7.png]The AAL015 feature collection (Building Areas) has the following appearance:

The reading results for the AAL015 feature collection are as follows:

	Format
	Encoding
	Compression
	Size (KB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	1,984.1
	0.570
	1,504

	GML
	BXML
	none
	999.5
	0.383
	2,237

	GML
	XML
	gzip
	63.9
	0.589
	1,454

	GML
	BXML
	gzip
	86.3
	0.397
	2,158

	GML
	XML
	bzip2
	48.1
	0.781
	1,097

	GML
	BXML
	bzip2
	82.1
	0.502
	1,707

As discussed with the MSD3-aggregate case, parsing the schema takes a substantial amount of the elapsed time. However, since this feature collection is much smaller and the schema-parsing time is fixed for each different encoding, schema parsing now takes the majority of the elapsed time.

The writing results for the AAL015 feature collection are as follows:

	Format
	Encoding
	Compression
	Size (KB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	1,984.1
	0.130
	6,613

	GML
	BXML
	none
	999.5
	0.054
	15,730

	GML
	XML
	gzip
	63.9
	0.234
	3,655

	GML
	BXML
	gzip
	86.3
	0.118
	7,269

	GML
	XML
	bzip2
	48.1
	1.770
	484

	GML
	BXML
	bzip2
	82.1
	0.950
	902

The 0.570 seconds taken to read the source data is removed from the writing times.

12.1.4 LAP030

The LAP030 feature collection has the following appearance:

[image: image8.png]The reading results for the LAP030 feature collection are as follows:

	Format
	Encoding
	Compression
	Size (KB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	1,629
	0.527
	2,742

	GML
	BXML
	none
	754
	0.383
	3,770

	GML
	XML
	gzip
	102
	0.589
	2,451

	GML
	BXML
	gzip
	140
	0.397
	3,637

	GML
	XML
	bzip2
	74
	0.781
	1,849

	GML
	BXML
	bzip2
	117
	0.502
	2,877

The writing results for the LAP030 feature collection are as follows:

	Format
	Encoding
	Compression
	Size (KB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	1,629
	0.173
	8,367

	GML
	BXML
	none
	754
	0.098
	14,742

	GML
	XML
	gzip
	102
	0.277
	5,205

	GML
	BXML
	gzip
	140
	0.161
	8,974

	GML
	XML
	bzip2
	74
	1.813
	796

	GML
	BXML
	bzip2
	117
	0.993
	1,454

The writing times exclude the 0.527 seconds taken to read the source data.

12.1.5 PAL015

The PAL015 feature collection has the following appearance (with the points rendered as small squares):

[image: image9.png]The reading results for the PAL015 feature collection are as follows:

	Format
	Encoding
	Compression
	Size (KB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	5,580.4
	0.931
	3,102

	GML
	BXML
	none
	2,710.9
	0.566
	5,103

	GML
	XML
	gzip
	70.7
	0.976
	2,959

	GML
	BXML
	gzip
	71.9
	0.588
	4,911

	GML
	XML
	bzip2
	41.9
	1.309
	2,207

	GML
	BXML
	bzip2
	54.0
	0.733
	3,735

The writing results for the PAL015 feature collection are as follows:

	Format
	Encoding
	Compression
	Size (KB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	5,580.4
	0.292
	9,896

	GML
	BXML
	none
	2,710.9
	0.173
	16,737

	GML
	XML
	gzip
	70.7
	0.537
	5,375

	GML
	BXML
	gzip
	71.9
	0.285
	10,136

	GML
	XML
	bzip2
	41.9
	5.367
	538

	GML
	BXML
	bzip2
	54.0
	3.184
	907

The writing times exclude the 0.931 seconds used to read the source data.

12.1.6 Conclusions

Uncompressed BXML encoding gives the best performance in the local-file-system test case. Since the MSD3 3D case actually includes the data for the other test cases, it is the most representative one. The BXML format was 1.85 times as fast as XML and was only 53% as large for using the trimmed schema.

A large performance factor with this data is the schema, since it is so large relative to the data. Two versions were tested, a trimmed version and the full version which includes a great deal of metadata. Both versions include definitions for hundreds of feature types that are not present in the test data set.

The BXML version of the trimmed schema is 43% as large as the XML version and can be processed 1.34 times as fast. The BXML version of the full schema is 46% as large as the XML version and can be processed 1.88 times as fast. Parsing the trimmed schema takes 27% of the BXML execution time.

Compression gives poor performance in this environment because the compression algorithms are slow to execute. However, if storage size is the crucial restriction, then XML+bzip2 gives the best compression, though it is much slower to execute than gzip compression.

The BXML compressed files are substantially larger than the XML compressed file. The reason for this is not known.

Processing 2D data versus 3D data did not make a substantial difference in either the processing time or the file size. This is likely because the features have relatively few vertices per geometry and have a large number of properties, so the extra coordinate in the 3D data does not take a substantial amount of extra space.

12.2 LAN testing

The BXML format includes a central symbol table and a mechanism to make any text content reference a string in this table. The advantage is that a literal string value need appear in the BXML file only once and it can be referenced by a compact index value thereafter. The option is enabled in the BXML generator for the MSD3 network cases to make all generated content strings use this central symbol table for greater compactness.

The reason this option was not enabled in the file-system testing is that there appears to be a performance bug in the CWXML library that makes processing referenced strings a little slower than literal strings. However, in the network environment, the increased compactness of the volume of data sent over the network provides better performance than using the literal strings.

12.2.1 MSD3 aggregation, 3D

The plotting results for the MSD3 feature collection with the trimmed schema are as follows:

	Format
	Encoding
	Compression
	Size (KB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	13,512
	4.855
	1,534

	GML
	BXML
	none
	3,753
	2.201
	3,385

	GML
	XML
	gzip
	627
	4.098
	1,817

	GML
	BXML
	gzip
	910
	2.263
	3,291

	GML
	XML
	bzip2
	499
	13.055
	571

	GML
	BXML
	bzip2
	776
	4.391
	1,696

Schema parsing takes a significant amount of the processing time (sizes in KB, times in seconds):

	Format
	Encoding
	Compress
	Trim Size
	Trim Time
	Full Size
	Full Time

	Schema
	XML
	none
	1,336.7
	0.706
	8,056
	2.003

	Schema
	BXML
	none
	350.2
	0.445
	2,263
	0.796

	Schema
	XML
	gzip
	27.7
	0.615
	446
	1.654

	Schema
	BXML
	gzip
	26.0
	0.425
	235
	0.700

	Schema
	XML
	bzip2
	14.1
	0.831
	204
	2.984

	Schema
	BXML
	bzip2
	16.9
	0.463
	160
	1.037

12.2.2 MSD3 aggregation, 2D

The plotting results for the MSD3_2D feature collection with the trimmed schema are as follows:

	Format
	Encoding
	Compression
	Size (KB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	13,241
	4.653
	1,601

	GML
	BXML
	none
	3,225
	2.148
	3,467

	GML
	XML
	gzip
	563
	3.974
	1,874

	GML
	BXML
	gzip
	819
	2.063
	3,611

	GML
	XML
	bzip2
	447
	12.977
	574

	GML
	BXML
	bzip2
	729
	4.262
	1,748

Again, the 2D case is not greatly more efficient than the 3D case. The third-dimension coordinate values occupy a relatively small portion of the overall file sizes.

12.2.3 AAL015

The plotting results for the AAL015 feature collection are as follows:

	Format
	Encoding
	Compression
	Size (KB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	1,984.2
	1.640
	4,542

	GML
	BXML
	none
	437.6
	1.029
	7,239

	GML
	XML
	gzip
	64.1
	1.571
	4,740

	GML
	BXML
	gzip
	84.5
	1.032
	7,218

	GML
	XML
	bzip2
	48.1
	3.775
	1,973

	GML
	BXML
	bzip2
	82.0
	1.429
	5,212

12.2.4 LAP030

The plotting results for the LAP030 feature collection are as follows:

	Format
	Encoding
	Compression
	Size (KB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	1,692.2
	1.532
	4,861

	GML
	BXML
	none
	424.6
	1.010
	7,374

	GML
	XML
	gzip
	101.7
	1.453
	5,126

	GML
	BXML
	gzip
	136.5
	1.004
	7,415

	GML
	XML
	bzip2
	74.2
	3.254
	2,289

	GML
	BXML
	bzip2
	120.2
	1.375
	5,416

12.2.5 PAL015

The plotting results for the PAL015 feature collection are as follows:

	Format
	Encoding
	Compression
	Size (KB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	5,580.6
	2.672
	2,787

	GML
	BXML
	none
	973.9
	1.326
	5,618

	GML
	XML
	gzip
	70.8
	2.634
	2,827

	GML
	BXML
	gzip
	67.9
	1.418
	5,251

	GML
	XML
	bzip2
	42.0
	6.508
	1,144

	GML
	BXML
	bzip2
	55.8
	2.556
	2,914

12.2.6 External codec

An external codec (encoder-decoder, external to the main GML-consuming program) was added to the LAN testing script by adding a Unix shell statement of the form:

 xmlscan -url data_url -pack | cwplot -f - parameters

This executes the xmlscan program which reads the GML data from the server as a separate process from the cwplot program which plots the data. The xmlscan program reads the data in whatever format is requested from the server but always delivers it to the cwplot program as uncompressed XML, so this arrangement operates as an “external codec” for delivering GML data to a client application that does not understand BXML or the compression formats. A caveat is that it would be very awkward to intercept the retrieval of the schemas, so only the GML data is subjected to the external codec, not the schema access. Also, this external codec is implemented only on the client side; the external codec could be extended onto the server side as discussed in clause 8.4 which would impose greater costs and complications for recognizing and translating coordinate values and other numbers.

This arrangement is functionality equivalent to the direct MSD3 test, except the external codec will create more execution overhead on the client from managing multiple processes and in interprocess pipe and from executing an extra decoding and encoding step. Additionally, the extra encoding step will be for regular XML and the decoding step inside of the cwplot program will always be for regular XML-encoded GML.

The plotting results for the MSD3 3D feature collection using the external codec are as follows (sizes in KB, times in seconds, speeds in features/second):

	Format
	Encoding
	Compress
	Size
	Time
	Speed
	Lost Time
	Lost Speed

	GML
	XML
	none
	13,512
	6.777
	1,099
	1.922
	435

	GML
	BXML
	none
	3,753
	5.928
	1,257
	3.727
	2,128

	GML
	XML
	gzip
	627
	6.091
	1,223
	1.999
	594

	GML
	BXML
	gzip
	910
	5.708
	1,305
	3.445
	1,986

	GML
	XML
	bzip2
	499
	13.316
	559
	0.261
	12

	GML
	BXML
	bzip2
	776
	8.071
	923
	3.680
	773

The results show that the use of an external codec imposes significant throughput costs in the Internet environment and the benefits of using BXML in this environment are largely nullified. The lost performance would be significantly larger if the schema fetching was also run through an external codec.

Note that the XML-none figure does not really belong here since the main application in this arrangement can consume regular XML directly, so an external codec is not really needed in this case.

12.2.7 Conclusions

The uncompressed BXML encoding gives the best performance in the LAN test case, same as with the VMAP0 data. The BXML format was 2.2 times as fast as XML and was only 28% as large for using the trimmed schema. Using the symbol-table BXML mechanism makes the BXML files substantially smaller here than in the file-system testing where it was turned off.

Schema processing is a large factor with the MSD3 data. The BXML verison of the trimmed schema is 26% as large as the XML version and can be processed 1.59 times as fast. The BXML version of the full schema is 28% as large as the XML version and can be processed 2.5 times as fast. Parsing the trimmed schema takes 20% of the BXML execution time. The schemas compress extremely well.

Compression performs better in this environment than in the file-system environment because there is a trade-off between processing time taken to compress the data and the effectively increased network throughput of the compressed data. However, the LAN is fast enough that the processing time is more costly. The BXML compressed data files are substantially larger than the XML compressed file. The reason for this is not known.

Using an external codec adds a substantial overhead in this environment and tends to even out the timings because of the large fixed overhead of the fixed XML-GML generate/parse steps.

12.3 Internet testing

12.3.1 MSD3 aggregation, 3D

The plotting results for the MSD3 feature collection with the trimmed schema are as follows:

	Format
	Encoding
	Compression
	Size (KB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	13,512
	99.002
	75

	GML
	BXML
	none
	3,753
	27.400
	272

	GML
	XML
	gzip
	627
	6.042
	1,233

	GML
	BXML
	gzip
	910
	6.910
	1,078

	GML
	XML
	bzip2
	499
	14.001
	532

	GML
	BXML
	bzip2
	776
	7.448
	1,000

Schema parsing takes a significant amount of the processing time (sizes in KB, times in seconds):

	Format
	Encoding
	Compress
	Trim Size
	Trim Time
	Full Size
	Full Time

	Schema
	XML
	none
	1,336.7
	9.335
	8,056
	54.222

	Schema
	BXML
	none
	350.2
	2.762
	2,263
	15.573

	Schema
	XML
	gzip
	27.7
	0.732
	446
	3.618

	Schema
	BXML
	gzip
	26.0
	0.621
	235
	2.084

	Schema
	XML
	bzip2
	14.1
	1.013
	204
	3.318

	Schema
	BXML
	bzip2
	16.9
	0.649
	160
	1.663

12.3.2 MSD3 aggregation, 2D

The plotting results for the MSD3_2D feature collection with the trimmed schema are as follows:

	Format
	Encoding
	Compression
	Size (KB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	13,241
	97.146
	77

	GML
	BXML
	none
	3,225
	23.781
	313

	GML
	XML
	gzip
	563
	5.282
	1,410

	GML
	BXML
	gzip
	819
	6.320
	1,179

	GML
	XML
	bzip2
	447
	13.897
	536

	GML
	BXML
	bzip2
	729
	6.889
	1,081

12.3.3 AAL015

The plotting results for the AAL015 feature collection are as follows:

	Format
	Encoding
	Compression
	Size (KB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	1,984
	22.119
	39

	GML
	BXML
	none
	438
	5.216
	164

	GML
	XML
	gzip
	64
	1.982
	432

	GML
	BXML
	gzip
	85
	1.458
	588

	GML
	XML
	bzip2
	48
	4.017
	213

	GML
	BXML
	bzip2
	82
	2.194
	391

12.3.4 LAP030

The plotting results for the LAP030 feature collection are as follows:

	Format
	Encoding
	Compression
	Size (KB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	1,692
	20.161
	72

	GML
	BXML
	none
	425
	5.133
	281

	GML
	XML
	gzip
	102
	1.840
	785

	GML
	BXML
	gzip
	136
	1.376
	1,056

	GML
	XML
	bzip2
	74
	3.476
	415

	GML
	BXML
	bzip2
	120
	2.357
	613

12.3.5 PAL015

The plotting results for the PAL015 feature collection are as follows:

	Format
	Encoding
	Compression
	Size (KB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	5,581
	46.100
	63

	GML
	BXML
	none
	974
	8.802
	328

	GML
	XML
	gzip
	71
	3.065
	942

	GML
	BXML
	gzip
	68
	2.088
	1,383

	GML
	XML
	bzip2
	42
	6.770
	427

	GML
	BXML
	bzip2
	56
	3.095
	933

12.3.6 External codec

An external codec was added to the Internet testing script using the method described in clause 12.2.6 for the GML data but not the schema. The plotting results for the MSD3 3D data with the external data codec are as follows (sizes in KB, times in seconds, speeds in features/second):

	Format
	Encoding
	Compress
	Size
	Time
	Speed
	Lost Time
	Lost Speed

	GML
	XML
	none
	13,512
	98.554
	76
	-0.448
	-1

	GML
	BXML
	none
	3,753
	27.216
	274
	-0.184
	-2

	GML
	XML
	gzip
	627
	7.245
	1,028
	1.203
	205

	GML
	BXML
	gzip
	910
	8.250
	903
	1.340
	175

	GML
	XML
	bzip2
	499
	14.027
	531
	0.026
	1

	GML
	BXML
	bzip2
	776
	9.814
	759
	2.366
	241

The results here are quite different from the LAN test case. The primary difference is that in this case, the client CPU is largely idle in the direct-connection case, so the resources are readily available to execute the external codec and while keeping up with the server. There is no obvious explanation for why the uncompressed cases actually experience performance improvements, though there may be some subtle effects in the network-simulation implementation.

The cases where the performance is significantly worse is probably related to the fixed overhead of executing the decode-generate-decode steps on the client. The break-even point seems to be around the 14-second period of the XML-bzip2 case, though in this case, the server would be very busy executing the expensive bzip2-compression algorithm. Indeed, in this case, the server can only generate 37 kbytes/sec over the simulated 150-kbyte/sec link. The server is nearly able to saturate the link in the gzip test cases, and so would deliver the maximum concentration of features per second. In the uncompressed cases, the network is the bottleneck, so the number of features per second that the client needs to process is restricted.

12.3.7 Conclusions

Compression is crucial to performance in the Internet environment because of the limited network bandwidth. However, while bzip2 compression gives the greatest compactness, gzip gives the better throughput.

The XML+gzip case gives the best throughput in this environment. The portion time taken parsing the schema is substantially lower in this environment than in the LAN environment because the schemas compress incredibly well.

Using an external codec adds greatly less overhead than in the LAN environment because the client machine has much more idle time while waiting for data to come from the network that it can spend on the fixed cost of the fixed XML-GML generate/parse steps.

12.4 Dial-up testing

Dial-up testing is carried out using a simulated 5.6-kbyte/sec uncompressed link.

12.4.1 MSD3 aggretation, 3D

The plotting results for the MSD3 feature collection with the trimmed schema are as follows:

	Format
	Encoding
	Compression
	Size (KB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	13,512
	2,627.3
	2.8

	GML
	BXML
	none
	3,753
	707.7
	10.5

	GML
	XML
	gzip
	627
	112.5
	66.2

	GML
	BXML
	gzip
	910
	163.7
	45.5

	GML
	XML
	bzip2
	499
	90.6
	82.2

	GML
	BXML
	bzip2
	776
	140.1
	53.2

Schema parsing takes a significant amount of the processing time (sizes in KB, times in seconds):

	Format
	Encoding
	Compress
	Trim Size
	Trim Time
	Full Size
	Full Time

	Schema
	XML
	none
	1,336.7
	239.27
	8,056
	1,440.63

	Schema
	BXML
	none
	350.2
	63.11
	2,263
	405.30

	Schema
	XML
	gzip
	27.7
	5.56
	446
	80.74

	Schema
	BXML
	gzip
	26.0
	5.23
	235
	42.72

	Schema
	XML
	bzip2
	14.1
	3.24
	204
	37.71

	Schema
	BXML
	bzip2
	16.9
	3.70
	160
	29.34

12.4.2 MSD3 aggregation, 2D

The plotting results for the MSD3_2D feature collection with the trimmed schema are as follows:

	Format
	Encoding
	Compression
	Size (KB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	13,241
	2,578.9
	2.9

	GML
	BXML
	none
	3,225
	614.1
	12.1

	GML
	XML
	gzip
	563
	102.2
	72.9

	GML
	BXML
	gzip
	819
	147.8
	50.4

	GML
	XML
	bzip2
	447
	94.9
	78.5

	GML
	BXML
	bzip2
	729
	134.9
	55.2

12.4.3 AAL015

The plotting results for the AAL015 feature collection are as follows:

	Format
	Encoding
	Compression
	Size (KB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	1,984
	577.3
	1.5

	GML
	BXML
	none
	438
	116.0
	7.4

	GML
	XML
	gzip
	64
	12.7
	67.3

	GML
	BXML
	gzip
	85
	15.7
	54.7

	GML
	XML
	bzip2
	48
	11.7
	73.4

	GML
	BXML
	bzip2
	82
	20.0
	42.8

12.4.4 LAP030

The plotting results for the LAP030 feature collection are as follows:

	Format
	Encoding
	Compression
	Size (KB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	1,692
	517.3
	2.8

	GML
	BXML
	none
	425
	113.7
	12.7

	GML
	XML
	gzip
	102
	19.3
	74.8

	GML
	BXML
	gzip
	136
	25.0
	57.8

	GML
	XML
	bzip2
	74
	15.3
	94.5

	GML
	BXML
	bzip2
	120
	26.9
	53.7

12.4.5 PAL015

The plotting results for the PAL015 feature collection are as follows:

	Format
	Encoding
	Compression
	Size (KB)
	Time (s)
	Speed (F/s)

	GML
	XML
	none
	5,581
	1,212.0
	2.4

	GML
	BXML
	none
	974
	211.6
	13.6

	GML
	XML
	gzip
	71
	13.8
	209.3

	GML
	BXML
	gzip
	68
	13.0
	222.2

	GML
	XML
	bzip2
	42
	19.1
	151.2

	GML
	BXML
	bzip2
	56
	17.3
	167.3

12.4.6 Conclusions

With a dial-up link, compression is crucial to performance. Whatever encoding method produces the fewest bytes to represent a feature collection will be the fastest, pretty much regardless of how much processing the encoding method takes. In the case of the MSD3 data, the best encoding method for dial-up links is XML+bzip2.

13 GML issues

In the course of carrying out this performance study, some problem areas with using GML were identified.

13.1 The trouble with application schemas

There are two general approaches to handling the schemas associated with GML data. One way is to auto-generate a custom-tailored schema for each GML file that is generated from the information available from the source feature format, as was done for the VMAP0 test data set, and the other way is to use an external, centralized schema, as was done for the MSD3 test data set.

Using a custom-tailored schema is the approach taken with most other feature formats, with the schema information normally embedded within the data file(s). A vulnerability with this approach is the fidelity with which the schema information is carried from one representation to another. Sometimes, the sizes of properties or letter case of names are changed, and most feature formats have tricky idiosyncrasies. For example, in Shapefile format, numeric types are actually stored as strings, and a numeric type with width=9 and scale=3 can actually store any number that can be represented in nine characters. Some tools even write numbers in scientific notation.

Using the centralized-schema approach has problems also. One major problem is that the centralized schema may include a great number of feature-type definitions and a great deal of metadata that is not relevant to the purpose at hand. For example, the MSD3 central schema includes definitions for 443 different feature types even though the sponsor-supplied data includes only 93 feature types and 83% of the bulk of the full schema contains metadata which is not relevant to the performance-testing activities of the OWS-3 project. The schema is so large that parsing it takes a significant portion of the time to read the MSD3 data and it even takes the majority of the time for smaller feature collections.

The other major problem with centralized application schemas is that it is easy to include arbitrary formatting declarations that general-purpose GML client and server applications cannot understand or follow. This problem is present with custom-generated schemas also, though the arbitrariness is limited in practice to the types of declarations that are portable between common representation formats. For instance, if the data is held in a relational-database format using simple types (plus a geometry), then the generated schema will reflect this simplicity.

Handling arbitrary schema declarations may be an unsolvable computing problem in the general case and is at least a complex artificial-intelligence problem since in order for a computer to transform data from one representation into an arbitrary new one, it needs to “understand” the semantics of the information, and arbitrary semantics probably are not representable in a declarative way.

Schema-processing in the centralized-schema approach is particularly onerous because the schema theoretically needs to be parsed and understood in order to even write the GML data correctly, whereas with the custom-generated schema approach the GML writer is easily and statically preprogrammed to generate its output GML in accordance with the schema that it generates. In practice, however, vendors will not implement a capability to “understand” the schema of the GML data they are writing; they will instead simply implement application-specific hacks into their GML generators to handle any arbitrariness in the application schemas.

It is also possible to implement any arbitrary transformations needed for generated data using a hand-made application-specific transformation script as a post-processing step and to do the reverse in the same way on the client side. However, beyond the manual effort involved in creating and managing the transformation programs to service all of the different feature types in a data set, portable transformation programs are generally written in XSLT, which, given the way that XSLT operates, is likely to be inefficient and may not work at all for large feature sets like the Contour Lines of the VMAP0 test data since XSTL implementations tend to store the entire XML stream in memory, which also imposes streamability limitations. It is theoretically possible to optimize XSLT to behave in a streamable fashion where the transformation to be carried out permits, but this optimization is not yet available in real-world XSLT implementations, but even if it is available, the XML stream still needs to be parsed and generated an additional time.

However, there is a fairly easy way around the problems of dealing with arbitrary XML schemas, which is to use simplified canonical profiles of GML and XML-Schema, such as the GML Simple-Features Profile [GML-SF]. If both the application schema and the GML generator conform to the profile (or specific compliance level of future versions of the profile), and if the source format for the generator retains the typing information of the schema with the full fidelity of the schema profile, then the generated GML will always conform to the central application schema.

13.2 GML MeasureType

A practical problem with gml:MeasureType is that the attributes take a fairly large amount of space in the GML data files, whereas the measurement unit for individual properties all appear to be constant in the MSD3 data. It would be much more space-efficient if the if the fixed unit associated with each measurement property in the MSD3 data could be specified once in the schema definition or metadata rather than being repeated in-line with every property instance.

The presence of the attribute on every property instance also imposes the need on consumers to re-map and retain this information for every measurement property instance when the data is transformed into another feature format in order to maintain the fidelity of the data, since the consumer will not know in advance (or really, ever) that the unit is actually fixed. This information may be awkward to re-map and will be time- and space-consuming in other feature representations. This author is not aware of any other format that includes a variable-unit mechanism.

13.3 GML streamability

A format is “streamable” if it can be generated, transfered, and consumed without any undue storage between the end points. Streamability is desirable because it minimizes processing delays and storage costs throughout the system. However, there are a few features of GML that interfere with its streamability.

13.3.1 Mid-stream errors

A GML feature collection can include features from numerous different feature types and the WFS interface allows requests to be made for multiple feature types and this can cause streamability issues on the server side since many systems implement the storage of features of different types using a separate internal feature collection for each different type. Also, all OWS requests require the response to be either a valid document of the requested format or to be a specially coded exception report.

The way that a query that includes multiple feature types is normally implemented is to process the feature-type queries in order and generate the GML output. But this poses a big problem if any errors are encountered in the intermediate steps, since if any errors are encountered at any point during the GML-generation process, an exception report must be generated instead of a GML document. GML includes no mechanism for reporting an error after the generation of the stream has begun.

In order for a generating application to be (mostly) safe is to generate all of the output data to a temporary file and then copy this file to the network, but then the generation time is wasted. This problem is compounded in the Internet environment because the network is usually the bottleneck and it will be idle while the temporary file is generated.

Really, the only sane approach for WFS implementers is to cheat in some way.

13.3.2 Bounding envelope

The requirement that the bounding envelope be stated at the beginning of a feature stream is desirable for clients, but it imposes restrictions on streamability for servers. The only way to be sure that the tightest envelope is stated in the general case is to pre-scan all of the features according to all of the query constraints.

13.3.3 Feature interleaving

Another streamability issue is that features in a GML feature collection may appear in any order and be mixed together. This poses no problems for GML generators since they can choose any order which is convenience, but it does pose problems for GML consumers since many client applications cannot process a sequence of more than one feature type at a time. If only one feature type is in a stream, a clever client with the one-feature-type-at-a-time constraint can process it in one pass, but this is not possible if more than one feature type is present in the stream. The client would need to either store or re-retrieve the stream when it is ready to process the next feature type.

GML should include some mechanism to indicate whether or not the features of a type are contiguous and/or appear in the order of the feature types in the schema. This would allow simple applications to process a GML stream one feature-type at a time in one pass.

14 Conclusions

14.1 Local file-system testing

Testing in the local file system showed that binary encoding using BXML was around four times as fast for reading and eight times as fast for writing GML data compared to XML for the VMAP0 test data. The performance figures for the MSD3 data showed a lower overall improvement because the parsing of the bulky application schema is conflated with the data encode/decode speeds. When factored out, the BXML reading is about twice as fast and the writing is about three times as fast. The MSD3 data has many more properties than the VMAP0 data.

We also need to be cognizant in general that the CWXML parser is extremely well optimized for scanning XML and BXML realized in other environments may be even more efficient than comparable XML parsers since the BXML format is quite easy to process efficiently.

The BXML files are around 40% the size of the XML files and can be smaller still if space-saving options are enabled, and there are design tweaks that can be applied to future versions of BXML to increase compactness. When compression is applied, the BXML files are frequently around the same size as the XML files, though sometimes the BXML files can be significantly larger, as with the MSD3 data files. The XML encoding of MSD3 has the advantage that the source data is rounded to ten significant decimal digits, but these are not round values when represented in binary, which reduces the compressibility of the BXML representation. The compressed BXML files are still substantially faster to process than the compressed XML files, especially with the relatively efficient GZIP method.

Using double-precision coordinate values with the VMAP0 data produced files that were significantly larger and slower to process than using single-precision coordinates. However, using 2D coordinate values instead of 3D coordinate values with the MSD3 data did not make a significant difference in size or processing speed, likely because the coordinate values occupy a relatively small portion of the overall MSD3-data size.

The BXML encoding of GML falls far short of the performance available with other feature-file formats. Shapefile can be read about three times faster than BXML-encoded GML.

14.2 LAN testing

The speed and size savings of BXML translate well to the LAN environment. The uncompressed BXML encoding is still the most efficient, performing 2.8 times as fast with transfers of the VMAP0 data and 2.2 times as fast with the MSD3 data.

Utilizing an relational database system as the feature storage system imposes an unexpected high burden and is the major bottleneck in the LAN environment. The overhead is so high that the effects of the different encodings tend to be largely muted, though BXML still technically performs the best. CubeWerx will be investigating optimizations. The use of a dual-processor server would like improve throughput significantly, since the Oracle activity during feature retrieval seems to be split between two processes which compete for CPU time. (The server in the test environment has only one processor.)

Using an external codec with an efficient GML generator imposes substantial costs in this environment because of the fixed cost of the additional XML-GML parse/generate step(s).

14.3 Internet testing

In the Internet environment, compression is very important because of the limited bandwidth, 150 Kbytes/sec in the test case. Since the compressed sizes of BXML and XML data are quite similar, their performance was also quote similar. While BZIP2 gave the greatest amount of compression, GZIP provides the greatest throughput and GZIP is a ubiquitous format.

The sponsors of this project, including NGA, should insist that all of their software suppliers equip their GML-processing clients and servers with HTTP-based GZIP-compression support. Using the HTTP mechanism allows support to be optional for both client and server while providing compression when both client and server support it. GZIP is suitable for compressing streamed data on-the-fly.

Using an relational database system to server the features slowed down the transfer significantly, though not to the degree experienced in the LAN environment. Using either BXML encoding or compression gives similar throughput since the server in this case cannot saturate the network link except in the XML case, where the network becomes the bottleneck instead of the database system.

Using an external codec with an efficient GML generator degrades performance, though not to the same degree as in the LAN case since the network is now the bottleneck and the client has more otherwise-idle CPU time with which to execute the external codec process.

14.4 Dial-up testing

In the dial-up network case, compression is crucial. BZIP2-compressed XML generally gives the best performance in this environment since it generally gives the best compression.

Summary of key GML-testing variables

(Informative)

Encoding: XML, BXML, [BinXML™ tested by Galdos].

Compression: none, GZIP, BZIP2.

Precision: 16 digits or 7 digits.

Network: none (local filesystem), LAN, Internet, dial-up.

Scalability: hundreds, tens-of-thousands, or 1-million features.

Bibliography

[BASE64] IETF RFC 1521 (September 1993), MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and Describing the Format of Internet Message Bodies, N. Borenstein, et al., <http://www.ietf.org/rfc/rfc1952.txt>.

[BINXML] Expway, BinXML™ binary-XML encoding system.

[BXML] OGC 03-002r8 (May 2003), Binary-XML Encoding Specification version 0.0.8, Craig Bruce, <http://www.opengeospatial.org/docs/03-002r8.pdf>.

[BZIP2] (June 2000), The bzip2 and libbzip2 official home page, Julian Seward, <http://www.digistar.com/bzip2/>.

[COMPRESS] Unix compress file format, Unix manual.

[CWXML] CubeWerx (May 2005), CWXML Library, Craig Bruce (ed.), <http://www.cubewerx.com/main/cwxml/>.

[FLOATS] IEEE 754-1985 (1985), Standard for Binary Floating-Point Arithmetic, <http://grouper.ieee.org/groups/754/>.

[GZIP] IETF RFC 1952 (May 1996), GZIP File Format Specification Version 4.3, L. Peter Deutsch, <http://www.ietf.org/rfc/rfc1952.txt>.

[HTTP] IETF RFC 2616 (1999), Hypertext Transfer Protocol—HTTP/1.1, R. Fielding, et al., <http://www.ietf.org/rfc/rfc2616.txt >.

[KEYWORDS] IETF RFC 2119 (March 1997), Key words for use in RFCs to Indicate Requirement Levels, Scott Bradner, <http://www.ietf.org/rfc/rfc2119.txt>.

[PNG] PNG (2003), PNG: Portable Network Graphics: A Turbo-Studly Image Format with Lossless Compression, Greg Roelofs, et al, <http://www.libpng.org/pub/png/>.

[SHAPE] ESRI® (July 1988), ESRI® Shapefile Technical Description, <http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf>.

[SI] System International base-10 prefixes, <http://www.bipm.fr/en/si/prefixes.html>.

[SI-BIN] System International base-2 prefixes, <http://physics.nist.gov/cuu/Units/binary.html>.

[SLD] OGC 02-070 (August 2002), Styled Layer Descriptor, Bill Lalonde (ed.), <https://portal.opengeospatial.org/files/?artifact_id=1188>.

[TAR] Unix Tape Archive utility, tar, Unix manual.

[WFS] OGC (2004) 04-094, Web Feature Service (WFS) Implementation Specification, Peter Vretanos (ed.), <https://portal.opengeospatial.org/files/?artifact_id=8339>.

[WKB] OGC (May 1999) 99-049, Simple Features Implementation Specification For SQL, clause 3.3, Keith Ryden (ed.), <http://portal.opengeospatial.org/files/?artifact_id=829>.

[XML-SCHEMA] W3C (May 2001), XML Schema Part 0: Primer, David C. Fallside (ed.), <http://www.w3.org/TR/xmlschema-0/>.

[ZIP] PKWARE (April 2005), ZIP File Format Specification, <http://www.pkware.com/business_and_developers/developer/popups/appnote.txt>.

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.
Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

