

OGC 09-127r2

Copyright © 2012 Open Geospatial Consortium.
vii

 52north

 University of California San Diego/Ocean Observatories Initiative

 Northrop Grumman

 Compusult Ltd

v. Submission contact points

All questions regarding this document should be directed to the editor or the contributors:

Contact Affiliation Email

Tom O'Reilly
(editor)

MBARI oreilly<at>mbari.org

Kent Headley MBARI headley<at>mbari.org
Duane R.
Edgington

MBARI duane<at>mbari.org

Antoni Manuel
Lazaro

UPC-SARTI antoni.manuel<at>upc.edu

Joaquin del Rio
Fernandez

UPC-SARTI joaquin.del.rio<at>upc.edu

Daniel Mihai
Toma

UPC-SARTI daniel.mihai.toma<at>upc.edu

Arne Broering 52 North broering<at>52north.org

Luis Bermudez SOSC lbermudez<at>opengeospatial.org
Robert Thomas Compusult Ltd rthomas<at>compusult.net

Scott Fairgrieve Northrop
Grumman

Scott.Fairgrieve<at>ngc.com

Randy Gillespie MI Randy.Gillespie<at>mi.mun.ca

Christoph
Waldmann

MARUM waldmann<at>marum.de

John Graybeal UCSD/OOI jgraybeal<at>ucsd.edu

OGC 09-127r2

 Copyright © 2012 Open Geospatial Consortium.

vi. Revision history

Date Release Author Paragraph modified Description

2009-08-17 0.1.0 Carl Reed First version in OGC document template

2010-11-30 1.0 Tom O’Reilly Numerous Preparation for RFC
2010-12-30 1.0 Carl Reed Numerous Preparation for RFC

2011-06-02 1.0 Tom O'Reilly Numerous Preparation for RFC, completed
requirements and conformance tests

2011-12-2 1.0 Carl Reed Numerous Prepare for publication as an OGC
standard

vii. Changes to the OGC® Abstract Specification

The OGC® Abstract Specification does not require changes to accommodate this OGC®
standard.

OGC 09-127r2

Copyright © 2012 Open Geospatial Consortium.
ix

Foreword

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. Open Geospatial Consortium shall not be held responsible for
identifying any or all such patent rights. However, to date, no such rights have been
claimed or identified.

Recipients of this document are requested to submit, with their comments, notification of
any relevant patent claims or other intellectual property rights of which they may be
aware that might be infringed by any implementation of the standard set forth in this
document, and to provide supporting documentation.

Future	 Work	
OGC PUCK protocol does not provide an authentication mechanism to write device
contents. A user could write malicious metadata or even executable code to devices that
implement PUCK payload. Likewise, malicious metadata could be written to devices that
implement a writable datasheet. Subsequent readers of the datasheet or payload would
then misidentify the instrument, misinterpret its data, or execute malicious code. This
problem is not necessarily an issue for every PUCK deployment:

o Many sensor networks are protected by firewalls
o In almost all current PUCK implementations, the datasheet is "read only"
o Some sensor networks will not expect and hence not execute code from

the PUCK payload

Future versions of the protocol may include an authentication mechanism for writing
datasheet or payload.

OGC 09-127r2

 Copyright © 2012 Open Geospatial Consortium.

Introduction

Sensor networks consist of interconnected sensors as well as dedicated “hosts” or “peer”
machines that control the sensors and process their data. One or more sensors are often
physically integrated into a single “instrument” device. These components are connected
through wired or wireless communication port interfaces; RS232 or Ethernet are
commonly used. Various interactions are possible on the network; a host machine may
provide a user interface for an instrument, may acquire and log the instrument's data, or
may distribute the data to a wider network.

In order to perform these functions, the host requires information about the instrument,
including communication port configuration, knowledge of the instrument command
protocol, and metadata that describe the instrument and the science data it produces.
Many instruments do not themselves supply all of this information automatically, but
instead require that the host be configured beforehand. Part of the configuration process
generally involves installation of sensor-specific driver software on the host; the driver
actually handles interaction with the instrument. In addition files that describe the sensor
characteristics (“configuration files”) must be installed. Most sensor networks today
require careful manual installation and configuration by technicians to assure that the
software components are properly associated with the physical instruments that they
represent. In some cases these manual steps must be performed in environments that are
physiologically and psychologically challenging (e.g. in bad weather or aboard ship in
rough seas), thus increasing the possibility of human procedural errors.

Standards such as OGC SWE and IEEE 1451 strive to integrate diverse instruments into
networks with minimal human effort and high reliability. Nevertheless use of these
standards may require several software components to be manually installed on the
instrument network, including instrument "drivers", web servers, and metadata
documents that describe instruments in a standard way.

PUCK protocol addresses these installation and configuration challenges by defining a
standard instrument protocol to store and automatically retrieve metadata and other
information from the instrument's "PUCK memory". This information can include
descriptive documents such as OGC SWE SensorML or IEEE 1451 TEDS as well as
actual instrument “driver” code. A host computer that understands PUCK can
automatically retrieve and utilize this information from the instrument itself when the
device is installed. For example, a SensorML document and instrument driver code can
be physically stored in the instrument's PUCK memory before deployment; the
information can later be automatically retrieved and utilized by a host on the sensor
network when the instrument is plugged in, thus minimizing manual installation steps.
We refer to this automated process as "plug and work". PUCK protocol is currently
defined for devices with an EIA232 (aka "RS232") or Ethernet physical/electrical

OGC 09-127r2

Copyright © 2012 Open Geospatial Consortium.
xi

interface.

PUCK defines a small standard “instrument datasheet” in PUCK memory that can be
retrieved from any PUCK-enabled instrument. The datasheet metadata include a
universally unique identifier (UUID) that is guaranteed to be unique among all PUCK-
enabled instruments, as well as manufacturer and model codes. These metadata can serve
as pointers to more extensive instrument information; e.g. instrument SensorML
documents could be stored in a separate network-accessible database that is keyed to
instrument PUCK UUID. All compliant PUCK instruments must supply the datasheet.
PUCK also defines an optional “PUCK payload” in PUCK memory that contains
additional information needed to operate the instrument; this information can include
instrument driver code and metadata such as SensorML. In the case of driver code, note
that the code is not executed on the instrument itself; rather it is retrieved by a capable
host machine through PUCK and executed on the host. PUCK does not restrict the
payload content beyond standard payload "tags", leaving the content decision up to
observatory developers and users.

PUCK augments but does not replace existing instrument protocols. Thus a manufacturer
can modify its instrument firmware by adding PUCK commands to the already-existing
instrument command set. This approach allows manufacturers to implement PUCK
without abandoning their existing firmware and software applications. Since many
instruments already include a non-volatile memory device (e.g. Flash), it is usually easy
for manufacturers to allocate some of that memory to PUCK memory. Note that PUCK
does not specify an instrument's "native protocol", i.e. the manufacturer-defined
commands that actually configure and operate the instrument. Instead it is expected that
the native protocol can be deduced from references in the PUCK instrument datasheet or
the optional PUCK payload.

Figure 1 illustrates how PUCK complements other OGC SWE standard components.
SWE services must sometimes interact with an actual physical sensor in order to carry
out client requests; e.g. the Sensor Planning Service Submit operation ultimately requires
that data acquisition be triggered from a physical sensor. Many of today's sensors are not
themselves network-capable; instead they are connected to the network through a sensor
host machine's serial port. Moreover most sensors themselves do not implement a
standard protocol; instead the SWE service must access the device through a sensor
driver, which runs on the sensor host and translates the service request to the appropriate
sensor protocol command. The driver may also transform the sensor's response to a
standard format, e.g. it may transform the sensor's "raw" data to an OGC Observation and
Measurement object. Moreover, the OGC services also need access to the sensor's
SensorML document, which may also reside on the sensor host. These critical sensor-
specific components - sensor driver and SensorML document - can be stored in the sensor
itself and automatically retrieved and installed with PUCK protocol by a component on
the host (not shown) when the sensor is physically plugged in.

OGC 09-127r2

 Copyright © 2012 Open Geospatial Consortium.

Figure 1: OGC SWE services, SensorML and PUCK

The PUCK protcol was originally developed by the Monterey Bay Aquarium Research
Institute (MBARI) to simplify the integration and maintenance of ocean sensor networks.
MBARI first implemented the protocol in a small device that could be attached to the
serial port of any existing RS232 instrument. This “external PUCK device” contains
persistent storage for PUCK datasheet and payload, a small microprocessor that executes
PUCK protocol, and a relay. When the device is in “PUCK mode”, incoming serial traffic
from the host is relayed to the microprocessor, which processes PUCK commands. When
switched to “Sensor mode” the relay connects the incoming serial lines to the attached
instrument; thus the instrument itself processes incoming "native instrument" commands
from the host. This prototype external PUCK device endowed any existing RS232
instrument with PUCK capability, but also added mechanical and electrical complexity to
the system in the form of underwater connectors and cabling. A much simpler solution
became available when several commercial manufacturers implemented PUCK directly

OGC 09-127r2

Copyright © 2012 Open Geospatial Consortium.
xiii

in their instruments’ firmware (“embedded PUCK”), thereby eliminating the need for an
external device or extra connectors.

OpenGIS® Standard OGC 09-127r2

Copyright © 2012 Open Geospatial Consortium.
1

OGC Encoding standard: PUCK protocol

1 Scope

This standard defines OGC PUCK version 1.4 protocol for RS232 and Ethernet
instruments. Every implementation of a PUCK v1.4 device shall adhere to this
standard. PUCK is a member of the OGC SWE suite and can provide on-instrument
storage for SensorML as well as driver code which implements SWE protocols.
However PUCK may be used independently of the other SWE standards, e.g. non-
SWE instrument descriptions such as IEEE 1451 TEDS may be stored in and
retrieved from a PUCK-enabled device. Annex B of this document describes several
use-cases for PUCK.

1 Conformance

Conformance with this standrd shall be checked using all the relevant tests specified
in Annex A (normative). The framework, concepts, and methodology for testing, and
the criteria to be achieved to claim conformance are specified in ISO 19105:
Geographic information — Conformance and Testing.

In order to conform to this OGC™ interface standard, a software implementation
may choose to implement: Any one of the conformance levels specified in Annex A
(normative).

2 Normative references

The following normative documents contain provisions that, through reference in
this text, constitute provisions of this part of OGC standard. For dated references,
subsequent amendments to, or revisions of, any of these publications do not apply.

IETF RFC 3927, "Dynamic Configuration of IPv4 Link-Local Addresses":
http://www.ietf.org/rfc/rfc3927.txt

IETF Draft Standard, "Multicast DNS": http://files.multicastdns.org/draft-cheshire-
dnsext-multicastdns.txt

IETF Draft Standard, "DNS-based Service Discovery": http://files.dns-sd.org/draft-
cheshire-dnsext-dns-sd.txt

IETF RFC 4122, "A Universally Unique Identifier (UUID) URN Namespace":
http://www.ietf.org/rfc/rfc4122.txt

2 Copyright © 2012 Open Geospatial Consortium.

IETF RFC 793, "Transmission Control Protocol": http://www.ietf.org/rfc/rfc793.txt

Electronic Industries Association, "EIA Standard RS-232-C Interface Between Data
Terminal Equipment and Data Communication Equipment Employing Serial Data
Interchange", August 1969, reprinted in Telebyte Technology Data Communication
Library, Greenlawn NY, 1985, no ISBN

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1 PUCK-enabled device, PUCK-enabled instrument

A device or instrument that implements PUCK protocol

3.2 RS232 PUCK

PUCK protocol for devices having an RS232 serial port over which the protocol is
carried out.

3.3 IP PUCK

PUCK protocol for devices having an Ethernet port over which the protocol is carried
out.

3.4 Host platform

 A controller and required infrastructure capable of communicating with attached RS232
PUCK-enabled instruments.

3.5 Peer

A software component that utilizes IP PUCK to communicate with IP PUCK-enabled
instruments over an IP network.

3.6 Instrument

A data-gathering device that may be composed of one or more sensors sharing a physical
interface to a host or network

3.7 Metadata

"Metadata" is information about data that enables processing of that data, or that puts the
data into useful context. A description of an instrument and its data format are examples
of metadata.

Copyright © 2012 Open Geospatial Consortium.
3

3.8 Native commands, instrument mode, and instrument port

"Native commands" are instrument-specific manufacturer-defined commands that are not
included in PUCK protocol. Native commands provide means to actually operate the
instrument, including commands for configuration, sample acquisition, data retrieval, etc.
"Instrument mode" refers to the state of a RS232 PUCK-enabled device in which native
commands are recognized and processed. "Instrument port" refers to an IP PUCK-
enabled instrument's TCP/IP port on which native commands are recognized and
processed.

3.9 PUCK mode

The state of an RS232 PUCK-enabled device in which PUCK commands are recognized
and processed. Response to native commands while in PUCK mode is not defined by this
specification.

3.10 Plug and work

"Plug and work" refers to automated integration of an instrument into an observing
system that occurs when the instrument is physically plugged into the system.

3.11 Smart Ocean Sensors Consortium

The Smart Ocean Sensors Consortium
(http://groups.google.com/group/sosclist/web/smart-ocean-sensors-consortium) consists
of manufacturers and users dedicated to development of standard interfaces for marine
instrumentation.

3.12 Instrument datasheet

A 96-byte data structure provided by every PUCK-enabled instrument; the instrument
datasheet uniquely identifies and defines the device.

3.13 PUCK payload

Information can be stored in a device's optional "PUCK payload" memory; the payload
content is not defined by the PUCK specification beyond standard payload "tags", but can
be defined by individual observing systems.

3.14 External PUCK

A device that can be attached to a non-PUCK instrument, to endow the instrument with
PUCK functionality.

4 Copyright © 2012 Open Geospatial Consortium.

3.15 Embedded PUCK

PUCK protocol embedded within an instrument’s firmware (contrast with external
PUCK).

4 Document conventions

4.1 Typographical conventions

The following are conventions that are used through out this document.

PUCK input/output is displayed in the courier font, for example

GB<CR>

19200<CR>PUCKRDY<CR>

The notation <CR> and <LF> are used to denote carriage return and linefeed respectively

The notation [0,255] is used to denote a parameter range (e.g. 0 parameter 255)

Normative requirements are indicated in this document by the word REQ in bold font,
followed by an identifying URI, e.g.

REQ /req/core/datasheet

Some requirements are declared within table cells, while others are prepended to clauses
within the document text.

4.2 Symbols (and abbreviated terms)

Some frequently used abbreviated terms:

ISO International Organization for Standardization

OGC Open Geospatial Consortium

SOSC Smart Ocean Sensors Consortium

SWE Sensor Web Enablement

TEDS Transducer Electronic Data Sheet

UUID Universally Unique Identifier

XML eXtended Markup Language

Copyright © 2012 Open Geospatial Consortium.
5

4.3 Namespace convention

The URL http://www.opengis.net/spec/PUCK/v1.4/ is assumed throughout this document
as the namespace prefix for PUCK requirement and conformance test URIs.

5 Core PUCK Requirements

Core PUCK requirements are applicable to all PUCK implementations (RS232 PUCK
and IP PUCK).

Table 1: PUCK core requirement classes

Requirement
name

Description

Instrument
datasheet
class

REQ class /req/core/datasheet

PUCK SHALL provide a PUCK instrument datasheet in memory as specified
in Sections Error! Reference source not found. and 9.1

Core
commands
class

REQ class /req/core/cmds

The PUCK-enabled device SHALL implement those commands in Section 8
that are designated as belonging to this class.

PUCK
payload class

REQ class /req/core/payload-tags

Information stored to PUCK payload memory SHALL be structured as
specified in Section 10.

6 RS232 PUCK Requirements

This section describes requirements for PUCK-over-RS232 ("RS232 PUCK")
implementations. RS232 PUCK presumes that PUCK is carried out over the PUCK-
enabled device's EIA232-compliant physical/electrical interface, with that interface
configured for eight data bits, no parity, and one stop bit.

6 Copyright © 2012 Open Geospatial Consortium.

Table 2: RS232 PUCK requirements

Requirement
name

Description

PUCK soft
break

REQ /req/rs232/softbreak

RS232 PUCK SHALL respond to PUCK commands following
receipt of at most three successive RS232 PUCK soft breaks at
the configured PUCK baud rate

PUCK mode
timeout

REQ /req/rs232/puck-timeout

RS232 PUCK SHALL output "PUCKTMO\<CR>" and
automatically transition from PUCK mode to instrument mode
after 2 minutes of command inactivity. The device SHALL
never transition to instrument mode while a PUCK command
is executing.

Instrument
mode startup

REQ /req/rs232/startup-mode

RS232 PUCK SHALL respond to native non-PUCK
commands following a full power cycle of the device.

RS232 PUCK
commands
class

REQ class /req/rs232/cmds

RS232 PUCK SHALL implement all PUCK commands in
Table 4, except those commands designated as “IP PUCK”
only

6.1 RS232 PUCK State Transitions

Figure 1 depicts states and state-transitions of an RS232 PUCK-enabled instrument, from
the standpoint of a host.

Following retrieval of information from the PUCK-enabled instrument, the host may
issue a command to put the device into instrument mode. When the device enters
instrument mode the host platform may communicate with it using native instrument
commands. An RS232 PUCK-enabled device can be switched from instrument mode to
PUCK mode via the “PUCK soft break” mechanism.

As shown in Figure 2, an RS232 PUCK-enabled device SHALL be in instrument mode
following a full power cycle (Table 2, /req/rs232/startup-mode). At other times, the host
can use the mechanisms shown in the diagram to set the state of the device.

Copyright © 2012 Open Geospatial Consortium.
7

Note that the definitions of instrument mode and PUCK mode (sections 1.2.5 and 1.2.6)
allow implementations that respond to both PUCK and instrument-specific commands
within a single mode, without violating any provisions of this specification.

Figure 2: State diagram for RS232 PUCK

6.2 RS232 PUCK Mode Timeout (Table 2, /req/rs232/puck-timeout)

If a PUCK-enabled device implementation distinguishes between instrument and PUCK
modes, it SHALL automatically switch from PUCK mode to instrument mode following 2
minutes of inactivity, as measured from the completion of the last issued PUCK
command. Thus the device SHALL never transition to instrument mode while a PUCK
command is executing. The device SHALL write the string “PUCKTMO<CR>” to its
serial port when PUCK mode timeout occurs. Implementations that do not distinguish
between PUCK mode and instrument mode need not implement PUCK timeout.

6.3 RS232 PUCK soft break (Table 2, /req/rs232/softbreak)

A host may switch a PUCK-enabled device from instrument mode to PUCK mode by
issuing a PUCK soft break, which consists of the following sequence:

“@@@@@@”

8 Copyright © 2012 Open Geospatial Consortium.

(wait 750 milliseconds)

“!!!!!!”

(wait 500 milliseconds)

(A soft break received by a device already in PUCK mode should be treated as a
successful PUCK command, responding with "PUCKRDY".)

Note that a host may not necessarily “know” the baud rate for which the PUCK-enabled
instrument's UART is configured. Thus the host may need to issue the soft break at
several common baud rates before discovering the correct one. The host can confirm a
successful soft break by sending the "null PUCK" command (“PUCK<cr>”) to the
device; a response of PUCKRDY indicates that the device is now in PUCK mode. A
compliant RS232 PUCK implementation SHALL switch to PUCK mode within three
successive soft break attempts when those soft breaks are issued at the correct baud rate.

Note that the device SHALL not automatically switch its baud rate in response to a PUCK
soft break.

7 IP PUCK Requirements

This section describes requirements for PUCK-over-IP ("IP PUCK") implementations. IP
PUCK presumes that the PUCK-enabled device has a physical/electrical interface such as
Ethernet, capable of TCP-IP protocols.

Copyright © 2012 Open Geospatial Consortium.
9

Table 3: IP PUCK requirements

Requirement
name

Description

Self-assigned
IP address

REQ /req/ip/address

IP PUCK SHALL implement self-assigned IPv4 link-local
addresses per IETF RFC 3927
(http://www.ietf.org/rfc/rfc3927.txt)

Multicast
DNS

REQ /req/ip/multi-dns

IP PUCK SHALL implement multicast DNS for automatic
name assignment, per http://files.multicastdns.org/draft-
cheshire-dnsext-multicastdns.txt

DNS service
discovery

REQ /req/ip/discovery

IP PUCK SHALL implement DNS Service Discovery (DNS-
SD) protocol, as defined at http://files.dns-sd.org/draft-
cheshire-dnsext-dns-sd.txt, with service type "_puck._tcp".

PUCK port REQ /req/ip/puck-port

All PUCK commands and responses SHALL be carried out on
a designated PUCK port; this port SHALL be specified in the
DNS-SD SRV record.

TCP protocol REQ /req/ip/tcp

All communications on the PUCK port SHALL be
implemented with connection-oriented TCP protocol as
defined at http://www.ietf.org/rfc/rfc793.txt

Exclusive
PUCK port
access

REQ /req/ip/exclusive-access

Only one peer may have a connection to the PUCK port at any
given time. If a second peer attempts to connect to the PUCK
port while another peer has a connection to the port, the
instrument SHALL respond to the second peer with TCP/IP
error 10061 (connection refused).

10 Copyright © 2012 Open Geospatial Consortium.

PUCK port
access timeout

REQ /req/ip/access-timeout

A peer connection to the PUCK port SHALL timeout after two
minutes of inactivity since completion of the last PUCK
command, at which time the IP PUCK will write the string
“PUCKTMO<CR>” to the PUCK port and close the
connection to the peer.

IP PUCK
commands
class

REQ /req/ip/cmds class

An IP PUCK instrument SHALL implement all PUCK
commands in Table 4, except those commands designated as
“RS232 only”

The PUCK port is used for PUCK commands, and the instrument SHALL also provide a
port for native instrument protocol (see Table 3, /req/ip/puck-port). The RS232 PUCK
concepts of “PUCK mode” and “instrument mode” are not applicable to IP PUCK.

7.1 Zeroconf implementation

Every IP PUCK-enabled instrument SHALL implement Zeroconf DNS Service Discovery
(DNS-SD) protocol, as defined at http://files.dns-sd.org/draft-cheshire-dnsext-dns-sd.txt
(Table 3, /req/ip/discovery).

 The IP PUCK service type SHALL be specified “_puck._tcp”.

 The instrument response to SRV requests SHALL specify port number as the
PUCK port number (Table 3, /req/ip/puck-port).

 The instrument should respond to PTR requests with a suitably mnemonic
instance name. For example, instance name could be “BrandX-modelY-1234”,
denoting manufacturer, model, and serial number. Note that instance names can
have a length of up to 63 bytes, and may contain Unicode or ASCII characters
including space, punctuation, numbers, upper and lower case, and punctuation.

IP PUCK-enabled instruments SHALL also implement Zeroconf’s self-assigned IPv4
link-local addresses as specified by IETF RFC 3927 (http://www.ietf.org/rfc/rfc3927.txt)
and multicast DNS for automatic name assignment (http://files.multicastdns.org/draft-
cheshire-dnsext-multicastdns.txt) (Table 3, /req/ip/address and /req/ip/multi-dns). In
addition to these required protocols, implementations may also support other mechanisms
for address assignment (e.g. via DHCP) and naming (e.g. via DNS).

Copyright © 2012 Open Geospatial Consortium.
11

8 PUCK commands

PUCK defines a simple command-response protocol. PUCK commands are interpreted
by an RS232 instrument in PUCK mode, or by an IP instrument when received on the
PUCK port. PUCK commands are expressed as ASCII strings, beginning with “PUCK”
and are terminated by a <CR>. All PUCK commands are case-sensitive, and are in
uppercase. When a command is issued the device will attempt to execute that command.
Upon successful execution the PUCK-enabled device will return the characters:

PUCKRDY<CR>

This indicates that the PUCK-enabled instrument is ready for the next command. The
string “PUCK<CR>” is also a valid command (the “null command”) that results in a
PUCKRDY response. If the PUCK-enabled instrument is unable to execute a command
beginning with the characters “PUCK” successfully it will issue the characters

ERR ####<CR>

PUCKRDY<CR>

Where the ‘####’ is a four digit base ten error code in the range [1,9999]. PUCK error
codes are defined in Table 6. If the command is a request for information then the
command will return the information requested followed by the characters

PUCKRDY<CR>

The PUCK-enabled instrument will terminate any transaction initiated by a PUCK
command with the characters

PUCKRDY<CR>

at which point it is ready for another command to be issued.

8.1 PUCK memory

Every compliant PUCK-enabled instrument must allocate a section of non-volatile
"PUCK memory". PUCK memory contains the PUCK datasheet and (optionally) PUCK
payload. PUCK memory is addressed starting at 0; the highest PUCK memory address is
determined by the result of the PUCKSZ command. The "PUCK memory pointer" refers
to the PUCK memory address that will be read or written by the next PUCKRM or
PUCKWM command. The pointer can be set with the PUCKSA command, and its
current value can be read with the PUCKGA command.

In the following sections that describe individual PUCK commands, reference is made to
a “write session”. Note that the sequence of commands used when writing to PUCK
memory are specified so as to accommodate implementation in resource-constrained
environments that use available FLASH memory technology. Thus a "write session" is

12 Copyright © 2012 Open Geospatial Consortium.

defined as the following sequence of commands, with no other commands intervening:

1. The PUCKEM command to erase all of PUCK memory
2. Optionally a PUCKSA command to set the starting address
3. One or more PUCKWM commands to write to PUCK-enabled instrument memory
4. The PUCKFM command to flush PUCK memory contents to non-volatile storage

Note that the PUCKFM (flush PUCK memory) command should be used only after a
write session is complete; i.e. after PUCKFM is issued, no more PUCKWM commands
are allowed until a new write session is initiated with PUCKEM.

8.2 PUCK Command specifications

Table 4 is a summary of all PUCK commands. In the case of RS232 PUCK, the
commands and responses are transmitted on the serial port RX and TX lines. In the case
of IP PUCK, the commands and responses are sent as connection-oriented TCP messages
through the PUCK port.

Copyright © 2012 Open Geospatial Consortium.
13

Table 4: PUCK command summary

Command Description

 PUCKRM Read from PUCK memory

 PUCKWM Write to PUCK memory

 PUCKFM End PUCK write session

 PUCKEM Erase PUCK memory

 PUCKGA Get address of PUCK internal memory pointer

 PUCKSA Set address of PUCK internal memory pointer

 PUCKSZ Get the size of PUCK memory

 PUCKTY Query PUCK type

 PUCKVR Get PUCK version string

 PUCK Null command

 PUCKIM Put PUCK into instrument mode (RS232 PUCK only)

 PUCKVB Verify baud rate support (RS232 PUCK only)

 PUCKSB Set PUCK-enabled instrument baud rate (RS232 PUCK only)

 PUCKIP Get instrument port number (IP PUCK only)

The following subsections discuss each command in detail. Note that for each command
there is an associated “timeout” specification. Timeout is defined as the time between
transmission of the command’s terminating carriage return and receipt of the first byte of
the device response message. Commands designated “RS232 PUCK only” should not be
recognized by IP PUCK implementations. Commands designated “IP PUCK only”
should not be recognized by RS232 PUCK implementations.

8.2.1 PUCKRM – Read from PUCK memory

REQ /req/core/cmds/puckrm: The PUCKRM command reads bytes from PUCK
memory. The command SHALL accept an ASCII parameter from 0 to 1024 specifying
the number of bytes requested. The read memory command SHALL respond with the
ASCII character ‘[‘ followed by the number of binary bytes requested starting at the byte
pointed to by the memory address pointer (see commands PUCKSA and PUCKGA for
memory address pointer details). If the memory pointer reaches the end of PUCK
memory it SHALL rollover to address 0 and continue returning bytes until the number of

14 Copyright © 2012 Open Geospatial Consortium.

bytes requested has been sent. When the final byte has been sent, the PUCK-enabled
instrument SHALL append the byte packet with the ASCII character ‘]’ and the
PUCKRDY<CR> terminator.

Errors

ERR 0020 – the number of bytes requested is out of range.

Timeout: 500 milliseconds

Example

PUCK RX: PUCKRM 10<CR>

PUCK TX: [0123456789]PUCKRDY<CR>

8.2.2 PUCKWM – Write to PUCK memory

REQ /req/core/cmds/puckwm: The PUCKWM command writes bytes to PUCK
memory. The command SHALL accept an ASCII parameter from 0 to 32 specifying the
number of bytes to be written to PUCK memory, expressed in decimal format. After the
PUCKWM command and parameter have been entered the PUCK-enabled instrument
SHALL accept the number of binary bytes requested for storage to PUCK memory. The
bytes SHALL be stored starting at the address pointed to by the memory pointer (see
commands PUCKSA and PUCKGA for memory pointer details). The memory pointer
SHALL be incremented appropriately for each successful PUCKWM command executed
by the PUCK-enabled instrument. If the number bytes requested to write exceeds PUCK
memory capacity based on the current address of the memory pointer then an ERR 0021
SHALL be returned. If the PUCK-enabled instrument attempts to write to a read-only
region of memory an ERR 0022 SHALL be returned (see section 9 for a description of the
read-only instrument datasheet option). If a write is attempted before PUCK memory has
been initialized by the PUCKEM command, an ERR 0023 is returned.

Errors

ERR 0020 – the number of bytes to be written is out of range.

ERR 0021 – address requested out of range.

ERR 0022 – write attempted to read only memory.

ERR 0023 – write attempted to non-initialized memory

Timeout: 500 milliseconds

Example

PUCK RX: PUCKWM 10<CR>0123456789

PUCK TX: PUCKRDY<CR>

Copyright © 2012 Open Geospatial Consortium.
15

8.2.3 PUCKFM – Flush to persistent memory

REQ /req/core/cmds/puckfm: The PUCKFM command ensures that any bytes buffered
by the PUCK-enabled instrument during a write session (section 8.1) are stored to PUCK
memory immediately, terminating the write session. Following a PUCKFM command,
no other PUCKWM commands should be attempted until a new write session is initiated
with PUCKEM. A PUCK implementation SHALL accept the PUCKFM command
whether or not the particular PUCK implementation requires it.

Errors

Timeout: 30 seconds

Example

PUCK RX: PUCKFM<CR>

PUCK TX: PUCKRDY<CR>

8.2.4 PUCKEM – Erase PUCK memory

REQ /req/core/cmds/puckem: The PUCKEM command is used to erase all of PUCK
memory with the exception of the datasheet if it is read-only. The command SHALL put
the memory in a state such that the PUCKWM command can be used to store bytes to
PUCK memory. Any write sessions to the PUCK-enabled instrument should be
proceeded by the PUCKEM command (section 8.1). After the execution of the
PUCKEM command the address held by the PUCK memory pointer SHALL be 0.

Errors

Timeout: 30 seconds

Example

PUCK RX: PUCKEM<CR>

PUCK TX: PUCKRDY<CR>

8.2.5 PUCKGA – Get address referenced by PUCK internal memory pointer

REQ /req/core/cmds/puckga: The PUCKGA command is used to return the memory
address (expressed in decimal) pointed to by the PUCK memory pointer. When the
PUCKRM or PUCKWM command are used the PUCK-enabled instrument reads or
writes bytes starting at the address pointed to by the memory pointer. For every byte that
is read or written to PUCK memory, the memory pointer will be incremented by 1.

Errors

Timeout: 500 milliseconds

16 Copyright © 2012 Open Geospatial Consortium.

Example

PUCK RX: PUCKGA<CR>

PUCK TX: 1234<CR>PUCKRDY<CR>

8.2.6 PUCKSA – Set address referenced by the PUCK internal memory pointer

REQ /req/core/cmds/pucksa: The PUCKSA command sets the PUCK memory address
value of the PUCK memory pointer. When the PUCKRM or PUCKWM command are
used the PUCK-enabled instrument reads or writes bytes starting at the address pointed to
by the memory pointer. For every byte that is read or written to PUCK memory, the
memory pointer will be incremented by 1. If an attempt is made to set the memory
pointer to an address outside of PUCK memory range the PUCK SHALL indicate that an
address range violation has occurred by returning error 0021. The specified address is
expressed in decimal format.

Errors

ERR 0021 – memory address out of range

Example

PUCK RX: PUCKSA 1234<CR>

PUCK TX: PUCKRDY<CR>

8.2.7 PUCKSZ – Get the size of PUCK memory

REQ /req/core/cmds/pucksz: The PUCKSZ command is used to determine the total
number of bytes that may be stored in PUCK memory, including PUCK instrument
datasheet and payload. PUCKSZ returns the total (used and unused) number of bytes
expressed in decimal format.

Errors

Timeout: 500 milliseconds

Example

PUCK RX: PUCKSZ<CR>

PUCK TX: 1048576<CR>PUCKRDY<CR>

8.2.8 PUCKTY – Query PUCK type

REQ /req/core/cmds/puckty: The PUCKTY command is used to determine the PUCK
type. A Hex ASCII value will be returned containing the mask of various PUCK type
flags as shown in Table 5.

Copyright © 2012 Open Geospatial Consortium.
17

Table 5: PUCK type flags

PUCK Attribute Description

000 Embedded PUCK, read-write datasheet

0001 Embedded PUCK, read-only datasheet memory

0002 PUCK hardware is external to the instrument

0003 – 8000 Reserved

Errors

Timeout: 500 milliseconds

Example

PUCK RX: PUCKTY<CR>

PUCK TX: 0003<CR>PUCKRDY<CR>

8.2.9 PUCKVR – Get PUCK version string

REQ /req/core/cmds/puckvr: The PUCKVR command is used to request a version
identifier of the PUCK implementation. When the PUCKVR command is issued the
PUCK SHALL return a version string having the following format:

 vx.y

where the literal lowercase “v” is followed by “major version number” x, followed by
literal ‘.’, followed by the “minor version number” y. There are no spaces in the version
string. The values of x and y are determined by the version of PUCK which has been
implemented.

Errors

Timeout: 500 milliseconds

Example

PUCK RX: PUCKVR<CR>

PUCK TX: v1.4<CR>PUCKRDY<CR>

18 Copyright © 2012 Open Geospatial Consortium.

8.2.10 PUCK – Null PUCK command

REQ /req/core/cmds/null-puck: The PUCK command simply results in a PUCKRDY
response from the device if it is in PUCK mode (RS232 PUCK) or if received on the
PUCK port (IP PUCK).

Errors

Timeout: 100 milliseconds

Example

PUCK RX: PUCK<CR>

PUCK TX: PUCKRDY<CR>

8.2.11 PUCKIM – Put PUCK device into instrument mode

REQ /req/rs232/cmds/puckim: Upon receiving PUCKIM, an RS232 PUCK-enabled
instrument SHALL recognize and process subsequent native instrument commands.
PUCKIM applies to RS232 PUCK only.

Errors

Timeout: 500 milliseconds

Example

PUCK RX: PUCKIM<CR>

PUCK TX: (undefined)

8.2.12 PUCKVB – Verify baud rate support

REQ /req/rs232/cmds/puckvb: The PUCKVB command is used to verify that a PUCK
implementation supports a particular baud rate. The VB command followed by an ASCII
representation of a baud rate SHALL cause the PUCK implementation to return
YES<CR> or NO<CR> followed by the PUCKRDY<CR> prompt. PUCKVB applies to
RS232 PUCK only.

Errors

Timeout: 500 milliseconds

Example

PUCK RX: PUCKVB 9600<CR>

PUCK TX: YES<CR>PUCKRDY<CR>

Copyright © 2012 Open Geospatial Consortium.
19

PUCK RX: PUCKVB 1234<CR>

PUCK TX: NO<CR>PUCKRDY<CR>

8.2.13 PUCKSB – Set PUCK-enabled instrument baud rate

REQ /req/rs232/cmds/pucksb: The PUCKSB command is used to change the RS232
PUCK baud rate. The PUCKSB command followed by an ASCII representation of a
valid baud rate SHALL cause the PUCK-enabled instrument to set its UART to the
requested baud rate. The PUCK implementation SHALL return the PUCKRDY<CR>
prompt at the newly requested baud rate if successful. If the requested baud rate is not
available then the PUCK implementation SHALL return an error code indicating that the
requested baud rate is invalid for this implementation of RS232 PUCK. The host can
determine if a particular baud rate is valid by using the PUCKVB command. PUCKSB
applies to RS232 PUCK only.

Errors

Timeout: 500 milliseconds

ERR 0010 – Invalid baud rate requested

Example

PUCK RX: PUCKSB 19200<CR>

PUCK TX: PUCKRDY<CR>

8.2.14 PUCKIP – Get instrument port number

REQ /req/ip/cmds/puckip: The PUCKIP command returns an IP port number that is
used for native instrument commands. The port is expressed as a decimal number
followed by a carriage return, followed by the PUCKRDY<CR> prompt. PUCKIP
applies to IP PUCK only.

Example

PUCK RX: PUCKIP<CR>

PUCK TX: 49201<CR>PUCKRDY<CR>

20 Copyright © 2012 Open Geospatial Consortium.

8.3 PUCK Error Codes

Table 6: PUCK error codes

Error Code Description

0004 No command match

0010 Invalid baud rate requested

0020 Bytes requested for read or write out of range

0021 Address requested out of range

0022 Write attempted to read only memory

0023 Write attempted to non-initialized memory

9 PUCK Instrument Datasheet

REQ /req/core/datasheet/map: The PUCK instrument datasheet SHALL occupy the first
contiguous 96 bytes of PUCK memory. Fields within the datasheet SHALL be ordered as
shown in Table 7, e.g. the UUID is located at address 0. The instrument datasheet may
optionally be read-only. In the case of embedded PUCK, it is desirable to have a read-
only instrument datasheet, as the information should never change for the life of the
instrument. It can be determined whether an instrument datasheet is read-only via the
PUCKTY command. The formats shown in the "Format" column of Table 7 are as
follows:

U32 – an unsigned 32-bit integer stored in big endian format

U16 – an unsigned 16-bit integer stored in big endian format

UUID – the Leach-Salz variant of a universally unique identifier

CHAR ARRAY – an array of ASCII characters

Copyright © 2012 Open Geospatial Consortium.
21

Table 7: Instrument datasheet memory map

Description Size (bytes) Format

UUID for instrument 16 UUID

Version of instrument datasheet 2 U16

Datasheet size 2 U16

Manufacture ID 4 U32

Manufacture model 2 U16

Manufacture version 2 U16

Serial number 4 U32

Instrument name 64 CHAR ARRAY

Total size 96

9.1 Instrument datasheet entries

9.1.1 Universally Unique Identifier

REQ /req/core/datasheet/uuid: The UUID SHALL be a Leach-Salz variant of a
universally unique identifier assigned to the instrument that is associated with this
PUCK-enabled instrument. The UUID uniquely identifies a specific instance of an
instrument; thus two different instruments having identical manufacturer, model, and
version codes must have different UUIDs. A description of the Leach-Salz UUID
generation algorithm is described by IETF RFC 4122 at http://www.ietf.org /rfc4122.txt.

9.1.2 Version – Instrument datasheet version

REQ /req/core/datasheet/version: The version SHALL be a U16 number identifying the
version of the PUCK specification that defines the instrument datasheet structure. All
unassigned version numbers are reserved for future use.

22 Copyright © 2012 Open Geospatial Consortium.

Table 8: Instrument datasheet versions

Instrument datasheet version Specification revision

1 MBARI PUCK Specification revision 1.2

2 MBARI PUCK Specification revision 1.3

3 OGC PUCK Specification revision 1.4

9.1.3 Datasheet size – instrument datasheet size

REQ /req/core/datasheet/size: The datasheet size entry SHALL be a U16 number
specifying the size in bytes of the instrument datasheet, expressed in decimal format. For
PUCK version 1.4, this number SHALL be equal to 96.

9.1.4 Manufacture ID – Identifier of instrument manufacture

The manufacture identifier should be a U32 number that is assigned by the Smart Ocean
Sensors Consortium.

Table 9: Manufacturer ID numbers

Manufacture ID Description

0 No manufacture ID assigned

1 – 255 Experimental use

256 – 4,294,967,295 Managed by Smart Ocean Sensors Consortium

9.1.5 Manufacture Model – The model of a manufactures instrument

The manufacture model is a U16 that should be used by the manufacture to identify
different instrument models. A value of 0 means that no model has been assigned to this
instrument. All assigned model numbers should be made available by the instrument
manufacturer for use by PUCK application developers.

9.1.6 Manufacture Version – The version of a manufactures instrument model

The manufacture version is a U16 that should be used by the manufacture to differentiate
between different versions of the same model instrument. A value of 0 means that no
version has been assigned to this instrument. All assigned version numbers should be
made available by the instrument manufacture for use by PUCK application developers.

Copyright © 2012 Open Geospatial Consortium.
23

9.1.7 Serial Number – Instrument serial number

The serial number is a U32 number that should be assigned by manufactures. The serial
number should be set to 0 if it is not available.

9.1.8 Instrument Name – ASCII string containing instrument name

The instrument name is a free-form ASCII string containing the name of the instrument.
Any unused characters should be set to 0. If the instrument name is not used all
characters should be set to 0.

10 PUCK Payload

This section describes the structure of information stored in the optional PUCK payload
memory.

Allocation of PUCK payload memory is optional for manufacturers. Payload capacity can
be determined by the PUCKSZ command, minus the datasheet size (the third item in
Table 7), and may be equal to zero. Note that payload content is not constrained in any
way by the PUCK commands in Table 4. However this section of the PUCK standard
defines structure and format that should be imposed by applications that write to PUCK
payload memory.

PUCK payload memory can contain one or more logical payload components
simultaneously, limited only by payload capacity. PUCK does not restrict the format or
content of individual components, which may be human-readable text, binary format
information, or a combination of these.

REQ /req/core/payload/tags: Applications that write to PUCK payload memory SHALL
divide the payload content into one or more logical payload component; each logical
PUCK payload component SHALL be immediately preceded in payload memory by a
valid XML empty element tag consisting of ASCII bytes, which SHALL follow the
following format:

<puck_payload type=”type” name=”name” size=”size” md5=”checksum”
next_addr=”address” version=”version” />

The payload component’s content SHALL immediately follow the tag’s “/>” closure
characters. The tag name (puck_payload) and the attribute names are case sensitive; all
attributes (except version) are required and attribute values must be enclosed in quotes.

The tag attributes are defined as follows:

24 Copyright © 2012 Open Geospatial Consortium.

Table 10: Payload component tag components

Attribute Name Required Description

type Y Indicates payload type. Table 11 shows
standard types

name Y Payload name. Payload may be stored in a file
of this name when extracted.

size Y Payload size in bytes, not including the tag
itself

md5 Y MD5 checksum of the payload (not including
the tag)

next_addr Y PUCK memory address of the next payload
tag; -1 indicates no more payloads

version N
Optional version information allowing host
systems to accommodate one or more
variations of a type

Thus the tags specify a linked list of components in PUCK payload memory. The
components need not be contiguous, i.e. it is allowed to have unused memory between
components. Figure 3 shows a schematic map of PUCK memory.

Table 11 is a list of standard PUCK payload component types.

REQ /req/core/payload/swe-tag: In the case of a SensorML payload component, the
"type" SHALL be specified as “SWE-SensorML” (case sensitive).

Copyright © 2012 Open Geospatial Consortium.
25

Table 11: Standard payload component type names

Payload Type Description

IEEE-1451-binary-TEDS IEEE-1451 TEDS (binary format)

IEEE-1451-xml-TEDS IEEE-1451 TEDS (XML format)

SWE-SensorML SensorML format

MBARI-SIAM MBARI SIAM JAR file

Figure 3: PUCK memory map showing payload components and tags

26 Copyright © 2012 Open Geospatial Consortium.

Annex A: Recommended Conformance Tests

Core PUCK Tests

This section describes compliance tests that are common to both RS232 and IP PUCK
implementations. If testing an RS232 PUCK-enabled instrument, these tests presume that
the test software issues PUCK commands after putting the instrument into PUCK mode
via PUCK soft break. If testing an IP PUCK-enabled instrument, the tests presume that
test software issues PUCK commands via connection to the PUCK port.

a. PUCK memory integrity test

/conf/core/memory-integrity-test
Requirements addressed: /req/core/cmds/pucksz, /req/core/cmds/puckem,
/req/core/cmds/pucksa, /req/core/cmds/puckwm, /req/core/cmds/puckfm,
/req/core/cmds/puckga, /req/core/cmds/puckrm

Issue PUCKSZ command to determine total PUCK memory – verify that returned value
matches device specification.
Determine whether datasheet is read-write or read-only (with PUCKTY command); if
read-only, subtract datasheet size (96 bytes for PUCK v1.4) from PUCKSZ result to get
total writable payload size.

The following procedure should be followed for both "walking-1's" and "walking-0's"
tests:

Issue PUCKEM to erase memory and begin PUCK write session.
Issue PUCKSA 0 (read-write datasheet) or PUCKSA 96 (read-only

datasheet) to set starting address.
Repeat until all of PUCK memory has been written:
 Issue PUCKWM to fill PUCK memory block with walking-1's or

walking-0's pattern.
 Issue PUCKSA to set memory pointer to next PUCK memory

block

Issue PUCKFM to flush, close PUCK write session.

Issue PUCKSA and PUCKRM commands to read memory, compare to expected
walking-1's or walking-0's pattern

b. PUCK memory pointer test

/conf/core/memory-pointer-test

Copyright © 2012 Open Geospatial Consortium.
27

Requirements addressed: /req/core/cmds/puckty, /req/core/cmds/puckvr,
/req/core/cmds/pucksa, /req/core/cmds/pucksz, /req/core/cmds/puckga

Issue PUCKTY; verify that PUCK is of expected type
Issue PUCKVR; verify expected version (e.g. “v1.4”)
Issue invalid PUCK command “PUCKFOOBAR”; verify “ERR 0004” return

Issue “PUCKSA 0” to set memory pointer to start of PUCK memory; issue “PUCKGA”
and verify it returns “0”. Get size of PUCK memory with “PUCKSZ”, issue “PUCKSA s-
1” (where “s” is result of PUCKSZ), verify that “PUCKGA” returns s-1. Issue “PUCKSA
s” to set memory pointer to location beyond valid PUCK memory, verify that it returns
“ERR 0021”

c. PUCK datasheet test

/conf/core/datasheet
Requirements addressed: /req/core/datasheet/map, /req/core/datasheet/uuid,
/req/core/datasheet/version, /req/core/datasheet/size

Step 1: Generate a datasheet and write to PUCK memory with the "PUCKWM"
command. When generating the datasheet fields note that the values for "datasheet
version" is constrained to 3, and "datasheet version" is constrained to 96. The UUID must
be generated using the Leach-Salz algorithm described at http://www.ietf.org/rfc/rfc4122.txt.
"Manufacturer ID", "Manufacturer model", "Manufacturer version", and "Serial number"
should be set per the directions in Section 9.1 of this specification.

Step 2: After writing the datasheet, issue "PUCKRM 96\r" and examine the resulting 96
bytes, making reference to the PUCK datasheet memory map in Table 7. Verify that
"datasheet version" is equal to 3. Verify that "datasheet size" is equal to 96. Verify that
remaining field values are as generated in step 1 of this test.

d. PUCK payload test

/conf/core/puck-payload-test
Requirements addressed: /req/core/payload/tags, /req/core/payload/swe-tag

Note that the standard PUCK payload tag rules are NOT enforced by firmware within the
PUCK-enabled device itself. Rather, they must be implemented by any application that
writes to PUCK payload.

RS-232 PUCK Tests

This section describes compliance tests that are specific to RS232 PUCK
implementations. Note that there is no “standard” set of RS232 baud rates, but there is a

28 Copyright © 2012 Open Geospatial Consortium.

commonly-used set. In this document, we define “common baud rates” to include 1200,
2400, 4800, 9600, 19200, and 38400.

a. PUCK softbreak test

/conf/rs232/puck-softbreak-test
Requirements addressed: /req/rs232/softbreak, /req/rs232/cmds/puckim,
/req/core/cmds/null-puck

Ensure that device is in “instrument mode” with PUCKIM command. Note that we don’t
necessarily know a priori instrument’s baud when trying to assert PUCK mode; thus the
PUCK softbreak should be issued at all common baud rates until a “PUCKRDY”
response is received in response to the null PUCK command ("PUCK\r").

At each common baud rate, issue the following sequence:

Issue “@@@@@@”
(wait 750 milliseconds)
Issue “!!!!!!”
(wait 500 milliseconds)
Issue “PUCK\r”; check for “PUCKRDY” response (indicates success)

Verify that the device responds to "PUCK\r" with "PUCKRDY" within three successive
soft break attempts at the correct baud rate.

PUCK mode timeout test
/conf/rs232/puck-timeout-test
Requirements addressed: /req/rs232/softbreak, /req/core/cmds/null-puck, /req/rs232/puck-
timeout

Issue PUCK soft break to put instrument into PUCK mode, verify with “PUCK\r” which
should return “PUCKRDY”. Issue no further commands, and verify that “PUCKTMO\r”
is received from instrument 120 seconds later. Verify that instrument now recognizes
non-PUCK "native" instrument commands.

e. Instrument mode test

/conf/rs232/instrument-mode-test
Requirements addressed: /req/rs232/startup-mode, /req/rs232/softbreak,
/req/core/cmds/null-puck, /req/rs232/cmds/puckim

Issue PUCK soft break to put instrument into PUCK mode, verify with “PUCK\r” which
should return “PUCKRDY”. Then issue “PUCKIM” command, and verify that
instrument recognizes and processes non-PUCK “native” instrument commands.

Copyright © 2012 Open Geospatial Consortium.
29

Remove all power from instrument, wait 10 seconds, then reapply power. Verify that
instrument recognizes and processes non-PUCK "native" instrument commands.

f. Valid PUCK baudrates test

/conf/rs232/valid-baudrates-test
Requirements addressed: /req/rs232/cmds/puckvb, /req/rs232/cmds/pucksb,
/req/rs232/softbreak, /req/core/cmds/null-puck

Issue PUCK soft break at common bauds to establish connection with instrument in
PUCK mode.

For each common baud rate:
 Issue “PUCKVB b\r”, where ‘b’ is the baud rate. If PUCK responds “YES”, note ‘b’ as
a valid PUCK baud

For each valid PUCK baud as determined above:
 Issue “PUCKSB b\r” to set PUCK baud rate to ‘b’
 Set host port’s baud to ‘b’, issue “PUCK\r” and verify “PUCKRDY” response

IP PUCK Tests

This section describes compliance tests that are specific to IP PUCK implementations.

g. ZeroConf compliance test

/conf/ip/zeroconf-test
Requirements addressed: /req/ip/address, /req/ip/multi-dns, /req/ip/discovery,
/req/ip/puck-port, /req/ip/tcp

For this test, run a ZeroConf browser (e.g. Bonjour Browser) on the instrument test
network.
Power up instrument, then connect to IP network via Ethernet connection. Using
ZeroConf browser, verify that instrument PUCK service appears on network with service
type "_puck._tcp", with a link-local address, and that instrument has human-readable
name.

Verify that PUCK commands are recognized on a TCP connection established on the
PUCK port (specified by the DNS SRV request response).

h. Exclusive PUCK port access test

/conf/ip/puck-port-test
Requirements addressed: /req/ip/exclusive-access

30 Copyright © 2012 Open Geospatial Consortium.

While one peer has a TCP connection to the PUCK port, run a second peer that attempts
to connect; the second peer should receive TCP/IP error 10061 (connection refused).

i. PUCK port timeout test

/conf/ip/puck-port-timeout-test
Requirements addressed: /req/ip/access-timeout, /req/core/startup
Power-cycle PUCK-enabled device, wait 4 seconds then attempt to establish connection
to PUCK port, issue “PUCK\r”, verify “PUCKRDY” response; verify that connection
establishment and processing of commands on PUCK port is achieved within 5 seconds
of device power-up. Do not issue further commands on PUCK port, and verify receipt of
“PUCKTMO” from port after 120 seconds followed by disconnection. Verify that peer
can immediately reconnect to PUCK port.

j. Native instrument port test

/conf/ip/native-port-test
Requirements addressed: /req/ip/cmds/puckip

Peer connects to PUCK port, issues “PUCKIP\r” to retrieve “native instrument protocol
port” number.; peer connects to the native port,; verify that native protocol is recognized
on that port.

Copyright © 2012 Open Geospatial Consortium.
31

Annex B: PUCK Use Cases (informative)

This annex describes how PUCK can be used in various scenarios. Some of these
examples are drawn from the OGC Ocean Sciences Interoperability Experiment II, which
includes more detail [1].

k. Example Architecture #1

Figure 4 illustrates an architecture developed by MBARI and Compusult Ltd which
integrates a standard SWE SOS interface into a MBARI “SIAM” observatory [1]. SIAM
is middleware developed by MBARI before the advent of Sensor Web Enablement. Each
physical instrument in a SIAM observatory is represented by a SIAM “instrument
service” which presents a generic Java RMI interface to network clients. The SIAM
instrument service interface is logically similar to the SWE SOS standard. For example,
SIAM's Instrument.getMetadata() method provides a standardized instrument description
document, corresponding to the SOS DescribeSensor operation. SIAM's
Instrument.acquireSample() and Instrument.getPackets() methods are analogous to the
SOS GetObservation operation. The Compusult team incorporated this logical mapping
into an adapter component that translates between SOS and SIAM protocols.

32 Copyright © 2012 Open Geospatial Consortium.

Figure 4: Example architecture #1 – integration of PUCK, MBARI SIAM middleware, and SWE

Thus the SOS can be readily integrated with the "legacy" SIAM instrument service.
In this system, each instrument’s PUCK payload is loaded with the appropriate
SensorML document and SIAM driver code before deployment, with appropriate “tags”
preceding the payload components. When the PUCK-enabled instrument is deployed, the
instrument host computer uses PUCK protocol to retrieve the payload and extracts the
components based on the tags; the host then executes the retrieved driver code and makes
the retrieved SensorML document available to SOS client DescribeSensor requests.

l. Example Architecture #2

Figure 5 illustrates an architecture developed by 52North.org, UPC-SARTI, and MBARI
that eliminates the need for instrument-specific driver software [2]. This architecture
utilizes a proposed extension to SensorML known as Sensor Interface Descriptors (SID)
[3, 4]. SID provides a schema to describe instrument command protocols and data
structures in a standard way. For example, the SID document for a conductivity-
temperature-depth (CTD) instrument specifies the command that should be issued to the
instrument’s serial interface to acquire a sample, as well as the expected response. A
generic component called a SID interpreter uses an instrument SID to map between
standard SWE protocols and the instrument’s protocol.

Copyright © 2012 Open Geospatial Consortium.
33

Figure 5: Example architecture 2

Thus the SID approach eliminates the need for instrument-specific instrument drivers,
since the generic SID interpreter can operate any instrument that has a corresponding SID
document. As shown in Figure 5, an instrument’s SID document can be stored in the
instrument’s PUCK payload, then later retrieved by the SID interpreter through PUCK.
The instrument can then be operated through standard SWE components such as SOS,
SPS, and SAS, which access the instrument through the SID interpreter. An
implementation of an SID interpreter can be found at http://52north.org/sid.

m. PUCK-enabled instrument detection strategies

To completely automate the instrument installation process, methods that detect the
presence of a PUCK-enabled instrument must be employed. IP PUCK utilizes Zeroconf
protocol to enable asynchronous detection of PUCK-enabled instruments on an IP
network. An alternate mechanism must be used for a RS232 PUCK-enabled instrument,
which is plugged into a host computer’s serial port. RS232 PUCK requires just RX, TX,

34 Copyright © 2012 Open Geospatial Consortium.

and GND RS232 signals in order to be compatible with existing oceanographic
instruments and applications, connectors and cables. Oceanographic instruments are often
deployed on the end of long cables, e.g. hanging from a mooring. Many oceanographic
instruments are also deployed on platforms that are limited in available power. The
RS232 serial protocol is compatible with these constraints, and so is the most common
oceanographic instrument interface. In addition, underwater systems are usually designed
to minimize the number of wires in order to control housing and connector complexity,
cable weight, and cost. Thus RS232 PUCK does not utilize a single dedicated connector
pin signal to detect when an instrument is physically installed or removed from a host
computer port. Instead other approaches that utilize just RX, TX, and GND must be used
to determine when these events have occurred. These approaches include the following:

a) PUCK detection at boot time: In this approach, the host computer attempts to contact
instruments with the PUCK "soft break" command on each serial port immediately after
the host is booted. The soft break must be issued at all possible baud rates since PUCK
does not specify a "discovery" baud rate. If the host receives a PUCK response from a
port, it can then retrieve the PUCK datasheet and optional payload from the instrument
and utilize them to load the appropriate instrument driver and metadata. If a PUCK
response is not received at any baud, then the next serial port is tried until are ports are
checked. After all ports have been processed, the host initializes all discovered
instruments and goes into normal operations mode. This approach requires the instrument
host computer to be rebooted when instruments are installed or removed. However this
requirement is quite acceptable for many systems in which instruments are changed
relatively infrequently.

b) Manual notification of instrument installation and removal: In this approach, a human
operator runs a simple utility that notifies the instrument host computer that a PUCK-
enabled instrument has been installed or removed from a serial port. When notified that
an instrument has been physically installed, the host uses PUCK to automatically retrieve
the PUCK datasheet and optional payload, and installs appropriate instrument drivers and
metadata. This approach sacrifices automated device detection and “hot- swapping” but
conserves power and avoids safety and corrosion issues associated with applying power
to exposed underwater wires. MBARI currently uses this approach on its deployed buoy-
based and cable-to-shore observatories.

c) Automated detection of installation and removal using PUCK: A group at UPC-SARTI
has developed a “hot swapping” approach that does not require any manual steps other
than physical installation or removal of an instrument [1]. Error! Reference source not
found. illustrates this algorithm as a flowchart. The host computer periodically
interrogates the serial port for a PUCK-enabled instrument by issuing a PUCK "soft
break" command. If the host receives a PUCK response from the serial port, the host
retrieves the 96-byte PUCK datasheet and examines the UUID to determine if a new
instrument has been installed (the UUID is guaranteed unique to each instrument). If so,
the host can retrieve the instrument’s optional PUCK payload and load an appropriate

Copyright © 2012 Open Geospatial Consortium.
35

driver and metadata to configure the newly detected instrument. Finally the driver begins
retrieving data samples from the instrument at some interval ISAMPLE. If ISAMPLE is greater than
the time needed to query an instrument for its PUCK datasheet (TPUCK-CHECK), then the
instrument driver will attempt to read the PUCK datasheet before each sample, thus
detecting when the instrument has been removed or replaced with another. If on the other
hand ISAMPLE is shorter than TPUCK-CHECK, then the host checks the serial port for a PUCK
response only if an error is encountered when attempting to communicate with the
instrument. This algorithm presumes that replacing a fast-sampling instrument with
another will always result in a communications error. However note that if the instrument
is quickly replaced with another of the same model, a communications error might not
occur and hence the host would not be aware that the instrument was replaced. Thus
subsequent data samples would not be associated with the correct instrument and
metadata. Therefore users must be aware that when swapping fast-sampling instruments
of the same make and model they should leave the instrument port empty for at least
ISAMPLE to ensure that the algorithm will properly detect the new instrument.

Figure 6: Algorithm for automatic detection of RS232 PUCK

36 Copyright © 2012 Open Geospatial Consortium.

Annex C: External RS232 PUCK Implementation (informative)

n. RS232 PUCK Physical Interface

All RS232 PUCK implementations must support a subset of the standard RS232 serial
interface signals and power as shown in Error! Reference source not found.. The
PUCK or instrument electronics may be implemented with isolated communications and
power returns if required by the application, e.g. underwater applications.

Table 12: RS 232 PUCK physical interface description

Signal Description

RX Serial port receive line

TX Serial port transmit line

power Instrument and PUCK power

return Signal return

o. External RS232 PUCK-enabled instrument schematic

An "external" RS232 PUCK is a device that can be attached to an existing RS232
instrument's serial port to endow that instrument with PUCK capability, from the
standpoint of an instrument host computer. The RS232 PUCK electronics may be
implemented with isolated communications and power returns if an instrument requires
it, but it is not necessary for a PUCK to work on a particular host platform. As shown in
Figure, a relay within the external PUCK-enabled instrument routes serial traffic either
between host and instrument (when in "Instrument mode") or host and PUCK processor
(when in "PUCK mode"). An external PUCK-enabled instrument should be designed to
operate under the same electrical and environmental conditions as instruments that can be
attached to it.

Copyright © 2012 Open Geospatial Consortium.
37

PUCK
electronics

TX

RX

return

power

RX

TX

return

power

Host Instrument

External PUCK Schematic

Figure 7: External PUCK schematic

38 Copyright © 2012 Open Geospatial Consortium.

BIBLIOGRAPHY

[1] Ocean Science Interoperability Experiment Phase II Report, OGC #09-156

[2] K. Headley et al, (2010), “OGC standards for end-to-end sensor network
integration”, Abstract IN31B 1291 presented at 2010 Fall Meeting, AGU, San Francisco
California

[3] Bröring, A. & S. Below (2010): Sensor Interface Descriptors. OGC Discussion Paper.
Open Geospatial Consortium. OGC 10-134.

[4] Bröring, A., S. Below & T. Foerster (2010): Declarative Sensor Interface Descriptors
for the Sensor Web. WebMGS 2010: 1st International Workshop on Pervasive Web
Mapping, Geoprocessing and Services. 26.-27. August 2010. Como, Italy

